
(12) United States Patent
Ashley et al.

USOO9609023B2

US 9,609,023 B2
Mar. 28, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

SYSTEMAND METHOD FOR SOFTWARE
DEFINED DEPLOYMENT OF SECURITY
APPLIANCES USING POLICY TEMPLATES

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Paul Anthony Ashley, Toowong (AU);
Stefan Berger, Ossining, NY (US);
Tian Cheng Liu, Beijing (CN); He
Yuan Huang, Beijing (CN); Sreekanth
Ramakrishna Iyer, Karnataka (IN);
Ashish Kundu, Elmsford, NY (US);
Nataraj Nagaratnam, Cary, NC (US);
Dimitrios Pendarakis, Westport, CT
(US); Ronald Becker Williams, Austin,
TX (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/618,943

Filed: Feb. 10, 2015

Prior Publication Data

US 2016/023425O A1 Aug. 11, 2016

Int. C.
H04L 29/06 (2006.01)
U.S. C.
CPC H04L 63/20 (2013.01); H04L 63/105

(2013.01)
Field of Classification Search
CPC H04L 63/20: H04L 63/105

(Continued)

Retrieve Workload
Definition Document

102

Parse Workload
Definition Document 110

104.

Extract Workload
Type/Attributes

06

108

Populate Selected
Template with

Settings

Select Template

Access Security
Policy Template

Library

(56) References Cited

U.S. PATENT DOCUMENTS

6,839,338 B1* 1/2005 Amara HO4L 63,0227
370,338

2003/0037040 A1 2/2003 Beadles HO4L 41,22

(Continued)

OTHER PUBLICATIONS

United States Office Action dated Apr. 6, 2016 in U.S. Appl. No.
14/750,247.

(Continued)

Primary Examiner — Kambiz Zand
Assistant Examiner — Aubrey Wyszynski
(74) Attorney, Agent, or Firm — Jeff LaBaw, Esq.;
McGinn IP Law Group, PLLC

(57) ABSTRACT
A method includes retrieving, from a memory accessible by
a computer, a document comprising a workload definition
document that defines an intended virtual configuration to
include at least one virtual machine and at least one network
appliance to be associated with at least one of the virtual
machines in the intended virtual configuration, each network
appliance respectively serving a role in the intended virtual
configuration of transforming, inspecting, filtering, or oth
erwise manipulating all the network traffic, before it reaches
an intended virtual machine, for purpose other than a data
packet forwarding in a virtual configuration. The workload
definition document is parsed to extract attributes of each of
the network appliances, including one or more security
policy to be applied to each network appliance. Configura
tion data is extracted from the parsed workload definition
document that is related to any security policy of any of the
network appliances to be deployed. A security template
library is accessed to select a security template for each
network appliance that will implement the one or more
security policy for that network appliance to be deployed.

13 Claims, 9 Drawing Sheets

Deploy Selected
Template with

Populated Settings

114

Chain Deployed Template
into intended Network

Configuration

116

100

US 9,609,023 B2
Page 2

(58) Field of Classification Search
USPC .. 726/1
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0241183 A1* 9, 2009 Boss GO6F 17,218
726/17

2013,0291052 A1* 10, 2013 Hadar G06F 21,6218
T26.1

2013/029 1502 A1* 11/2013 Gorman BOD 46,0005
55.490

2013/0333045 A1* 12/2013 Shigemoto GO6F 21,577
726/25

2014/O164607 A1 6, 2014 Bai et al.
2015, OO67404 A1* 3, 2015 Elam G06F 11,3006

714,38.1

OTHER PUBLICATIONS

United States Office Action dated Oct. 14, 2016, in U.S. Appl. No.
14/750,247.

* cited by examiner

US 9,609,023 B2 U.S. Patent

NJ
OTT

US 9,609,023 B2 Sheet 3 of 9 Mar. 28, 2017 U.S. Patent

subuawo • suonoes •

puenbeyond ?on peop?iona

US 9,609,023 B2 Sheet 8 of 9 Mar. 28, 2017 U.S. Patent

US 9,609,023 B2
1.

SYSTEMAND METHOD FOR SOFTWARE
DEFINED DEPLOYMENT OF SECURITY

APPLIANCES USING POLICY TEMPLATES

BACKGROUND

The present invention relates to improving security in
computer systems. More specifically, it provides a virtual
security appliance deployment tool that makes use of a
library of security policy templates enabling automatic cre
ation, configuration, and deployment of security appliances
for workloads in cloud and virtualized environments without
requiring that a user configure the security policy and other
parameters of the instantiated security appliances.

In virtualized and cloud computing environments, com
plex workloads can be assembled and deployed dynami
cally. In the context of the present invention, the term
“workload’ refers to the instantiation of a virtual computing
configuration including at least one virtual machine that is
running an application. Conventionally, the composition,
topology, and configuration parameters of complex work
loads can be specified through workload definition docu
ments (WDDs) and modified through APIs (Application
Program Interfaces) offered by a cloud management stack.
In the context of the present invention and as well known in
the art, an API is a set of routines, protocols, and tools for
building software applications which specify how software
components should interact. The API set is often used when
programming graphical user interface (GUI) components.
The present inventors have recognized that the automated

deployment of computing workloads has not been accom
panied by a corresponding automated deployment of net
work security controls (appliances) that provide security
functionality for computing workloads. Furthermore, the
network security controls are not automatically configured
with appropriate security policies providing optimal protec
tion for the workload. Currently, cloud computing environ
ments provide ways to deploy basic network security con
trols like traffic firewalls that filter traffic at layers 2, 3, and
4, for example, in the form of security groups as imple
mented, for example, in the OpenStack cloud computing
software platform exemplarily used herein to describe the
concepts of the present invention. Although cloud comput
ing environments already provide ways for deploying (vir
tual) security appliances, for example appliances for intru
sion detection/prevention, data encryption, monitoring, and
security intelligence, these deployments require that a user
make appropriate settings to these highly complex (virtual)
security appliances.
The present inventors have also recognized that, once

these appliances are deployed, currently it is not possible to
automatically drive the configuration of their security poli
cies based on the types of workloads that have been
deployed. Instead, cloudusers typically get access to the
security appliance management console, set of APIs, etc.,
and have to use these to themselves provision the appropri
ate security policies for the workload they have deployed.
Configuring appropriate policies for these complex security
appliances, however, typically requires expert users with the
appropriate skill set to apply knowledge of the workloads
security requirements to the security policies for those
(virtual) security appliances.

SUMMARY

According to an exemplary embodiment of the present
invention, to address these problems, the present inventors

10

15

25

30

35

40

45

50

55

60

65

2
have recognized that Such problems can be addressed by
providing re-useable security policy templates that can be
automatically linked with the type of workload being
deployed in a cloud, customized for deployment in specific
cloud environments, and can even be dynamically adapted
as security policies change, for example, due to detected
anomalies.
The present invention thereby provides automated

deployment of virtual appliances as part of a complex
workload, including the configuration of the (virtual) Secu
rity appliance for providing optimal protection of specific
workload(s). An implementation of the present invention
can also be used to automate the setup of appropriate
policies as new workloads are added/removed or other
changes made to the configuration. The present invention
goes beyond the state of the art by matching expert-provided
security policy templates to workloads security require
ments and by configuring the security policies enforced by
(virtual) security appliances.
The present invention leverages conventional Software

defined infrastructure, such as SDN (Software-Defined Net
working), to dynamically deploy new security controls,
redirect traffic, etc., to achieve middlebox configuration in
virtual networking environments. A middlebox can be a
network appliance that is dynamically inserted into the
network packet flow in front of a target device and receives
all packets before they reach said target device. Middlebox
insertion is enable by SDN, which can be regarded as an
approach to computer networking that allows network
administrators to manage network services through abstrac
tion of lower-level network switching functionality and
provides network administrators control via policy-enabled
workflow automation.

In the context of the present invention, a middlebox, also
referred to herein as a network appliance or a network
control, is a computer networking device that transforms,
inspects, filters, or otherwise manipulates traffic for purposes
other than packet forwarding. Common examples of middle
boxes include, for example, firewalls, which filter unwanted
or malicious traffic, and network address translators, which
modify packets Source and destination addresses.

Dedicated middlebox hardware is widely deployed in
enterprise networks to improve network security and per
formance, and the IBM(R) XGSR) appliance can be used as
one such middlebox to provide IDS/IPS (intrusion detection
system/intrusion protection system) functions. The next gen
eration XGS will incorporate a number of other middlebox
functions other than IDS/IPS functions, so that the XGS is
ideal as an exemplary platform to explain concepts of the
present invention, given that the next generation will have
multiple middlebox functions available and can accordingly
selectively provide any or all of different middlebox func
tions.
The widespread deployment of middleboxes and other

network appliances has resulted in some challenges and
criticism due to Such factors as poor interaction with higher
layer protocols and difficulty in configuring middlebox
functions for optimal results if one does not have expertise.
The present invention can alleviate some of these deploy
ment problems as applied to virtual configurations by pro
viding a tool that can automatically configure middlebox
functions without requiring assistance of an expert.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 describes an exemplary embodiment of the present
invention in a generic, high-level flowchart format 100:

US 9,609,023 B2
3

FIG. 2 describes a specific exemplary embodiment 200
based on Openstacks orchestration engine Heat and XGS
components for a simple exemplary workload configuration
with five VMs and five middleboxes;

FIG.3 shows a sequence of actions 300 for the exemplary
scenario described in FIG. 2;

FIG. 4 exemplarily shows a simple static XGS template
400 in XML:

FIG. 5 exemplarily shows a simple dynamic XGS tem
plate 500 in XML:

FIG. 6 exemplarily shows a Heat JSON markup 600;
FIG. 7 depicts a cloud computing node 700 according to

an embodiment of the present invention;
FIG. 8 depicts a cloud computing environment 850

according to an embodiment of the present invention; and
FIG.9 depicts abstraction model layers 900-940 accord

ing to an embodiment of the present invention.

DETAILED DESCRIPTION

With reference now to FIG. 1, the present invention
provides a system and method for creating security policy
templates or re-usable policy building blocks that can be
deployed with matching workloads in cloud and virtualized
environments. These building blocks can be composed into
full policies that are used to configure virtual or physical
security appliances. The method of the present invention
automatically determines and applies security appliance
policies based on the type of workloads that are dynamically
deployed in a cloud computing environment. The system
links the workload definition, which may consist of multiple
tiers and multiple VMs (virtual machines) with the cloud
management system and the security appliance manage
ment, allowing cloud users to have a unified management
system for deploying workloads/VMs and configuring Secu
rity policies.

In one exemplary instantiation used to explain the con
cepts of the present invention, the cloud management system
relied upon is based on OpenStack, a free and open-source
cloud computing software platform which users primarily
deploy as an Infrastructure as a Service (IaaS) solution. A
second key component used in explaining the present inven
tion is a virtual XGS security appliance, corresponding to
IBM's XGS 5100R), known in the art as a hardware IPS/IDS
(Intrusion Prevention System/Intrusion Detection System)
component, available as a physical appliance since 2013,
and used for in-line, real-time intrusion protection to defend
critical data and applications. Release of the virtual machine
version of the XGS is imminent.
The XGS appliance provides intrusion prevention func

tions for Ethernet networks, including botnet (e.g., a collec
tion of Internet-connected programs communicating with
other similar programs in order to perform tasks) command
and control protection, malware protection, Secure Sockets
Layer (SSL) man-in-the-middle inspection of encrypted
traffic, firewall protection for web applications, application
and application action control, protocol analysis-based intru
sion prevention, URL filtering, Injection Logic Protection,
Shell Code heuristics, and virtual patch. The XGS thus has
a number of characteristics, including its capability to pro
tect against Web vulnerabilities such as SQL injection and
cross-site scripting attacks, its fine grained network access
control policy (“who, what, when'), its ability to inspect
encrypted (SSL) traffic, and URL categorization and filtering
(Web application filtering).

However, it should be clear that the present invention,
once understood, could be implemented with either virtual

10

15

25

30

35

40

45

50

55

60

65

4
or physical (hardware) components, and it should also be
clear that specific components other than OpenStack or XGS
could also be used.
A key aspect of typical cloud workloads is that they are

complex, dynamic (e.g., auto-scale, migrate, etc.), and have
Some parameters determined at deployment time. Security
policy templates Support multiple artifacts to automate the
deployment and facilitate the configuration of security poli
cies for security appliances in cloud environments, including
the following attributes and components:

1. Parameters: these may express properties that are cloud
deployment specific and thus allow the separation of abstract
security policies for a given type of workload from specifics
about the instantiation of the workload in a cloud. A typical
example of a parameter is an IP address; typically this is
known only at cloud deployment time, when the parameter
can be assigned.

2. Arrays and iterators: these provide a way to define and
assign multiple parameters to a specific component inside a
security policy; e.g. assign multiple IP addresses to a vari
able that serves as a placeholder and can take on multiple
concrete values.

3. Sections: these facilitate the ordering of security rules/
policies as they are applied, for example on network traffic
in form of network traffic filtering rules. For example, the
ordering of network traffic rules within a particular section
does not matter, while the ordering of sections relative to
each other does matter.

4. "Owners' of rules: these allow the association of
owners with particular filtering rules and facility easier
life-cycle management of individual rules, including their
deletion and replacement.
As shown in the generic flowchart 100 of FIG. 1, the

automated middlebox deployment mechanism of the present
invention begins in step 102 by receiving a Workload
Definition Document (WDD) that defines an intended work
load deployment. In step 104, the WDD is parsed, so that, in
step 106, the workload type and attributes and other con
figuration data can be extracted. In the exemplary embodi
ment of the present invention, this parsing and extraction
automatically invokes, in step 108, access to a security
policy deployment tool that can retrieve Security policy
templates from a template library. This library could be
directly associated with the computer executing the WDD
parsing, or could be a database remotely located and acces
sible to the computer via a network. By using a word search
mechanism, in step 110, the library can be searched/filtered
to select the template from the library that appropriately
matches the WDD extractions for attributes of the intended
security policy configuration. The searching/filtering pro
cess of the library could be executed by the machine that
executed the WDD parsing or could be executed by different
remote processing, with the results communicated back to
the computer executing the tooling mechanism of the pres
ent invention. In step 112, the selected template is then
populated with parameter values that are based on data
found in the WDD and parameters such as a workload’s IP
addresses set up by the virtual network configuration man
ager. In step 114, the populated selected template is con
verted into a security policy that the deployed (virtual)
security appliance understands and the (virtual) security
appliance is finally programmed with the Security policy. In
step 116, the deployed (virtual) security appliance is chained
into the network configuration defined by the WDD, thereby
enabling the network middlebox configuration and, with
that, enabling the filtering of the traffic for a workload that
is to be protected from possibly malicious data.

US 9,609,023 B2
5

FIG. 2 presents a pictorial/diagrammatic exemplary over
view 200 of the present invention, as implemented exem
plarily using OpenStack on a Linux R, operating system, to
implement virtual XGS functions in an intended virtual
configuration. However, the present invention is not contin
gent on OpenStack, Linux, or XGS, since virtual orchestra
tion platforms other than OpenStack, operating systems
other than Linux, and network appliances other than XGS
could also provide platforms upon which to implement the
present invention. Examples for other cloud management
system are CloudStack or proprietary systems from Ama
Zonr), or Microsoft(R), that could similarly implement the
present invention’s functionality. Further, there are many
vendors that offer virtual security appliance, among those
VMWareR), Cisco R, Juniper R, Hewlett Packard(R), and
Fortinet(R), that could take the role of the exemplary XGS
appliance of the present invention.

For any conventional virtual management/orchestration
platform, the starting point is a workload definition docu
ment (WDD), which would describe the exemplary intended
workload 202. In the case of OpenStack, the workload
definition document is a Heat JSON document that specifies
the type of workload and high-level security requirements.
In the present invention, the user would prepare a WDD in
the conventional manner for the OpenStack management
system.

In the exemplary scenario of FIG. 2, the intended work
load topology configuration 204 and security policies are
shown in the upper right corner of FIG. 2, as including a first
tier 206 with two VMs and associated IDS middlebox, a
second tier 208, and a third tier 210 with one VM and
associated IDS and database protecting middleboxes.

For clarity of the nomenclature of the intended workload
202 in FIG. 2, it is noted that the term ERP stands for
Enterprise Resource Planning, a business management soft
ware, and usually a Suite of integrated applications, that a
company can use to collect, store, manage and interpret data
from many business activities, including product planning,
cost, manufacturing and/or service delivery, and marketing
and/or sales. ERP business process management Software
allows an organization to use a system of integrated appli
cations to manage the business and automate many back
office functions related to technology, services, and human
SOUCS.

OpenStack Heat 212 is a project of the OpenStack
Orchestration program and aims to create a human and
machine-accessible service for managing the entire lifecycle
of infrastructure, virtual machines, and applications within
OpenStack clouds. Heat implements an orchestration engine
that can launch multiple composite cloud applications based
on templates that are written in the form of text files and can
be treated like code. A Heat template describes the infra
structure for a cloud application in a text file that is readable
and writable by humans. Infrastructure resources that can be
described include virtual machines, floating IP addresses,
storage Volumes, security groups for low-level filtering of
network traffic that can reach VMs, network and subnet
configurations, etc. Templates can also specify the relation
ships between resources, e.g. a specific storage Volume is
connected to a particular virtual machine. The detailed
description of the intended cloud application configuration
enables Heat to invoke the OpenStack APIs to create all of
the intended infrastructure, including virtual machines, in
the correct order and to completely launch an application
204.

Heat can also manage the whole lifecycle of an applica
tion, so, when a user needs to change part of said application

10

15

25

30

35

40

45

50

55

60

65

6
infrastructure, the template can simply be modified and used
for updating. Heat knows how to make the necessary
changes and will also delete all of the resources when the
application is completed.

OpenStack Neutron/Quantum 214 is a cloud networking
controller and a networking-as-a-service project within the
OpenStack cloud computing initiative. Neutron includes a
set of application program interfaces (APIs), plug-ins and
authentication/authorization control software that enable
interoperability and orchestration of network devices and
technologies within infrastructure-as-a-service (IaaS) envi
rOnmentS.

The OpenDaylight software 216 is a combination of
components including a fully pluggable controller, applica
tion programming interfaces, protocol plug-ins and applica
tions. With this common platform both customers and ven
dors can innovate and collaborate in order to commercialize
SDN- and NFV-based (network function virtualization)
solutions. KVM (Kernel-based Virtual Machine) 218 is a
virtualization infrastructure for the Linux kernel that turns it
into a hypervisor. The KVM 218 thus serves as a hypervisor
for the virtual workload configuration 204. In the exemplary
implementation of the present invention, a workload defi
nition document is parsed and executed by Heat. Heat
plugins 220 are invoked after the contents and requirements
are found during the parsing of the WDD. As part of the
plugin invocations, the XGS plugin 220, developed as a
component of the present invention, may also be invoked
and trigger the deployment of a (virtual) security appliance
as well as its configuration with a security policy, as per the
present invention.

Thus, in FIG. 2, the XGS Heat Plug-in 220 is a component
developed for the present invention and is responsible for
parsing the part of the WDD that describes the parameters
relevant for deploying the XGS as a middlebox and its
related security requirements. It is also responsible for
configuring the underlying components, such as instantiat
ing an XGS virtual machine from a virtual machine image
from OpenStack glance image repository 226, and config
uring the XGS's filtering policy to implement the require
ments. The parsing of the JSON document triggers the
invocation of a security policy deployment tool 224 of the
present invention, which in turn accesses a database of
policy templates and builds or composes the workload
specific security template based on the workload type,
requirements found in the WDD, and other attributes. The
Heat Plug-in 220 works with the cloud management infra
structure (e.g. OpenStack) to deploy the virtual security
appliance 222 and populates parameters of the workload and
the policy template, like, for example, IP addresses that
OpenStack develops as it instantiates the components of the
intended virtual configuration 204. In the exemplary instan
tiation used to explain the present invention, the security
appliance is a virtual appliance of a next generation intrusion
detection/intrusion prevention (IPS/IDS) device. In addition
to IPS/IDS functionality, the next generation IBM XGS
appliance additionally Supports firewalling, URL filtering,
SSL traffic inspection and web application filtering, so any
of these additional capabilities can be selectively imple
mented with the XGS templates.
The following discussion assumes that the XGS appliance

is a virtual component although a conventional XGS hard
ware appliance could also be incorporated into the intended
workload configuration 204. The XGS policy template
library 224 is a key component developed for the present
invention. It provides security policy templates, which are
selected following the parsed workload definition document,

US 9,609,023 B2
7

and used to create the security policy enforced by the
virtualized XGS security appliance 222. The virtualized
XGS will typically be instantiated from a copy of the virtual
XGS image 226 from the OpenStack Image Repository.

From a slightly different, more generic perspective, the
present invention can be described as providing a computer
based tool system that is based on providing a library of
security templates for network appliance (e.g., XGS). These
security templates have been previously prepared by an
expert familiar with different security requirements of dif
ferent types of possible workloads. The tool system of the
present invention includes a network appliance plug-in (e.g.,
XGS Heat Plug-in) that interfaces with an API of a conven
tional virtual configuration orchestration/management tool
(e.g., Heat). If invoked by the user, the network appliance
plug-in automatically uses results of the parsed WDD to
select the proper security policy templates, from the security
template library, and then fills in proper variable values into
the template, as available from the parsed WDD and other
inputs. Such as IP addresses from the orchestration/manage
ment tool (e.g., Heat). The present invention thereby pro
vides a mechanism to permit a user to define a conventional
workload definition document for a conventional virtual
configuration orchestration/management tool, with the Secu
rity settings for any network appliance in the intended
workload being automatically set by the tool of the present
invention, based on variables identified by the user in the
conventional workload definition document.

FIG. 3 shows the lifecycle 300 of creating and deploying
security policy templates, using OpenStack Heat and XGS,
as per the previous discussion. It shows the configuration of
the XGS by an expertuser interacting with the device's Web
Services GUI, in step 302, configuring the device to, for
example, create a security policy protecting a specific type
of workload. In step 304, a snapshot of the XGS’s current
state is taken and stored into a file. The current state contains
deployment specific configuration information, such as the
IP address of the device in its local setting or configuration
data Such as the time Zone the device is located in. It also
contains non-deployment specific information, such as the
current network filtering security policy. To be able to use
the snapshot in the previously described middle box inser
tion scenarios in environments other than the one where the
expert user is located in, it is necessary that all deployment
specific configuration data is removed from the Snapshot, as
shown in step 306. What is left is an XGS base image that
can be transferred between XGS installations. This base
image contains default configuration settings that represent
a well-known start-out state for any Subsequent configura
tion of the device.

Before the XGS base image is uploaded 308 to a target
XGS, the snapshot from the target XGS is retrieved and all
non-deployment-specific data are removed and the remain
ing deployment-specific parameters 310 are merged 312
with the non-deployment-specific parameters of the XGS
base image. The resulting Snapshot is uploaded 314 to the
XGS. At this point the XGS can be considered to be in a
well-known start-out state. Deployment-specific data are,
for example, time Zone configuration, user accounts of the
XGS, etc. In another step 316 the XGS security policy
template can be instantiated on the XGS. The security policy
template may previously have been acquired by an expert
user by retrieving the Security policy configuration from the
XGS device. The export user may have done this in another
step than 302. The retrieval of the security policy template
can be achieved by using a tool written for this purpose. To
realize step 316, the XGS security policy deployment tool is

10

15

25

30

35

40

45

50

55

60

65

8
invoked, which in turn searches the library of security
templates for the name of the requested security template
and retrieves the actual templates, which in the present
invention are exemplarily XML type of documents. The
security policy deployment tool parses the XML policy
template documents and replaces variables 318 found in
those documents with concrete values that were passed to
the deployment tool as part of its invocation. It then instan
tiates the filtering rules and as part of that may create
filtering rules that serve as headers for sections 316 of
filtering rules. Filtering rules belonging to a particular sec
tion may then be inserted at the appropriate place under the
filtering rule representing the start of a section. To be able to
associate individual filtering rules with owners 316, such as
virtual machines to which certain traffic filtering rules apply,
an owner identifier is encoded in the comment of a particular
filtering rule. Ownership association of rules allows for
easier life-cycle management of filtering rules, such as their
deletion or replacement.

Step 320 shows how an existing XGS configuration
Snapshot can be downloaded for modification or changes.
The screenshot in FIG. 4 shows a simple static XGS

template 400 achieving the intended goals 402 as set by the
user with the exemplary GUI settings 404. The values 406
can be seen in the exemplary GUI as well as in the XML
representation of this simple policy. The IP addresses 408
may be specific to the environment where the policy is being
applied.

FIG. 5 shows an exemplary simple dynamic XGS tem
plate 500 with one variable 502. The shown policy is a
derivative of the policy shown in FIG. 4 where the IP
address 10.0.0.0/24 has been replaced with the variable
(placeholder) ip that needs to be assigned a concrete value
upon instantiation of the template. In the present invention
either the WDD parsed by Heat and the Heat plugin, or Heat
itself would have to provide a value for the variable ip to
the security policy deployment tool so that the template can
be instantiated on the XGS. The dollar sign “S” before the
variable name merely indicates that the following letters are
to be understood as the name of a variable.
Once the security appliance is deployed, it is necessary to

chain this appliance into the network traffic flow so that the
traffic can be monitored by the security appliance. FIG. 2
shows a sample service chain 204 having various security
appliances. After the security appliance, say an IPS, is
deployed and configured as described above, it needs to be
chained in the network as shown in the picture. To do this,
the Cloud management infrastructure needs to configure the
network. In the case of OpenStack, the Heat plugin interacts
with Neutron, which further invokes the corresponding
Neutron plugin, to do so. One previous invention “Method
and apparatus for realizing service chaining (CN9-2014
0029), incorporated herein by reference, describes a method
and apparatus to implement such service chaining using
Software Defined Networking technology. FIG. 6 shows a
small portion 600 of a sample Heat template markup in
JSON format, with VM declaration 602 and extensions 604
that define the security requirements for the XGS middle
box. The “type' statement 606 indicates that an XGS
middlebox is to be incorporated. The “ImageId' statement
608 causes a certain XGS base image to be retrieved and
instantiated on the XGS (see FIG. 3). “Targets' 610 iden
tifies “Test VM 612 as the VM whose workload is to be
protected. “NetworkInterfaces' 614 provides the lists of
interfaces of the “Test VM whose packet stream is to be
protected by the XGS. The example shows that the packet
stream entering the VM's network interface NI1 is to be

US 9,609,023 B2

protected. “XGSTemplate” identifies "http protect’ as the
name of the XGS security template to be applied, which will
be retrieved from the security template library of the present
invention. A list of values 618 is shown and an exemplary
variable “dnsserver” is assigned the value “8.8.8.8 620. It
can be expected that the exemplary http protect template
contains a variable “dnsserver'.

It should be clear that parsing this Heat template docu
ment would provide the information necessary to provide an
appropriate security template from the security template
library of the present invention.

Exemplary Hardware Aspects. Using a Cloud Computing
Environment

It is understood in advance that, although this section of
the disclosure provides a detailed description on cloud
computing, implementation of the teachings recited herein
are not limited to a cloud computing environment. Rather,
embodiments of the present invention are capable of being
implemented in conjunction with any other type of comput
ing environment now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:
On-demand self-service: a cloud consumer can unilater

ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service's provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider's computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:
Software as a Service (SaaS): the capability provided to

the consumer is to use the provider's applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface Such as
a web browser (e.g., web-based email). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or

10

15

25

30

35

40

45

50

55

60

65

10
even individual application capabilities, with the possible
exception of limited user-specific application configuration
Settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools Supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, net
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, Stor
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:
Private cloud: the cloud infrastructure is operated solely

for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.
Community cloud: the cloud infrastructure is shared by

several organizations and Supports a specific community that
has shared concerns (e.g., mission, Security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard
ized or proprietary technology that enables data and appli
cation portability (e.g., cloud bursting for load-balancing
between clouds).
A cloud computing environment is service oriented with

a focus on Statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 7, a schematic 700 of an example
of a cloud computing node is shown. Cloud computing node
700 is only one example of a suitable cloud computing node
and is not intended to Suggest any limitation as to the scope
of use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node 700 is
capable of being implemented and/or performing any of the
functionality set forth hereinabove.

In cloud computing node 700 there is a computer system/
server 712, which is operational with numerous other gen
eral purpose or special purpose computing system environ
ments or configurations. Examples of well-known
computing systems, environments, and/or configurations
that may be suitable for use with computer system/server
712 include, but are not limited to, personal computer
systems, server computer systems, thin clients, thick clients,
handheld or laptop devices, multiprocessor systems, micro
processor-based systems, set top boxes, programmable con
Sumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud com
puting environments that include any of the above systems
or devices, and the like.

US 9,609,023 B2
11

Computer system/server 712 may be described in the
general context of computer system-executable instructions,
Such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 712 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.
As shown in FIG.7, computer system/server 712 in cloud

computing node 700 is shown in the form of a general
purpose computing device. The components of computer
system/server 712 may include, but are not limited to, one or
more processors or processing units 716, a system memory
728, and a bus 718 that couples various system components
including system memory 728 to processor 716.

Bus 718 represents one or more of any of several types of
bus structures, including a memory bus or memory control
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi
tectures. By way of example, and not limitation, Such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.
Computer system/server 712 typically includes a variety

of computer system readable media. Such media may be any
available media that is accessible by computer system/server
712, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 728 can include computer system read
able media in the form of Volatile memory, Such as random
access memory (RAM) 730 and/or cache memory 732.
Computer system/server 712 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 734 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
and typically called a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a "floppy
disk”), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 718 by one
or more data media interfaces. As will be further depicted
and described below, memory 728 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

Program/utility 740, having a set (at least one) of program
modules 742, may be stored in memory 728 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple
mentation of a networking environment. Program modules
742 generally carry out the functions and/or methodologies
of embodiments of the invention as described herein.

Computer system/server 712 may also communicate with
one or more external devices 714 such as a keyboard, a

5

10

15

25

30

35

40

45

50

55

60

65

12
pointing device, a display 724, etc.; one or more devices that
enable a user to interact with computer system/server 712;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 712 to communicate with
one or more other computing devices. Such communication
can occur via Input/Output (I/O) interfaces 722. Still yet,
computer system/server 712 can communicate with one or
more networks such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter 720. As depicted,
network adapter 720 communicates with the other compo
nents of computer system/server 712 via bus 718. It should
be understood that although not shown, other hardware
and/or Software components could be used in conjunction
with computer system/server 712. Examples, include, but
are not limited to: microcode, device drivers, redundant
processing units, external disk drive arrays, RAID systems,
tape drives, and data archival storage systems, etc.

Referring now to FIG. 8, illustrative cloud computing
environment 850 is depicted. As shown, cloud computing
environment 850 comprises one or more cloud computing
nodes 700 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 854A, desktop com
puter 854B, laptop computer 854C, and/or automobile com
puter system 854N may communicate. Nodes 700 may
communicate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 850 to offer infrastruc
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It is understood that the types of com
puting devices 854A-N shown in FIG. 8 are intended to be
illustrative only and that computing nodes 700 and cloud
computing environment 850 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).

Referring now to FIG. 9, a set of functional abstraction
layers provided by cloud computing environment 850 (FIG.
8) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 9 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 900 includes hardware and
Software components. Examples of hardware components
include mainframes, in one example IBM(R) zSeries(R) sys
tems: RISC (Reduced Instruction Set Computer) architec
ture based servers, in one example IBM pSeries(R systems:
IBM xSeries(R) systems; IBM BladeCenterR) systems; stor
age devices; networks and networking components.
Examples of Software components include network appli
cation server software, in one example IBM WebSphere(R)
application server Software; and database software, in one
example IBM DB2(R) database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide). The tooling
that implements the present invention would be located in
layer 900.

Virtualization layer 920 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net
works, including virtual private networks; virtual applica
tions and operating systems; and virtual clients. The virtual

US 9,609,023 B2
13

machines and network appliances that are generated and
instantiated by the tooling of the present invention would
operate on layer 920.

In one example, management layer 930 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com
prise application Software licenses. Security provides iden
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provide pre
arrangement for, and procurement of cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 940 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro
vided from this layer include any number of functions and
applications, such as mapping and navigation; Software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and, more particularly relative to the present
invention, the APIs and run-time system components of the
graph analytical tool described here.
The descriptions of the various embodiments of the

present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:
1. A system, comprising:
a processor; and
a first memory device, the memory device tangibly
embodying a set of instructions to permit the processor
tO:

retrieve a document comprising a workload definition
document that defines an intended virtual configu
ration to include at least one virtual machine and at
least one network appliance to be associated with at
least one of the virtual machines in the intended
virtual configuration, each network appliance
respectively serving a role in the intended virtual
configuration of transforming, inspecting, filtering,
or otherwise manipulating all network traffic, before
said network traffic reaches an intended virtual
machine, for purpose other than a data packet for
warding in a virtual configuration;

parse the workload definition document to extract attri
butes of each of the network appliances, including
one or more security policy to be applied to each
network appliance;

10

15

25

30

35

40

45

50

55

60

65

14
extract configuration data from the parsed workload

definition document that is related to any security
policy of any of the network appliances to be
deployed; and

access a security template library to select a security
template for each network appliance that will imple
ment the one or more security policies for that
network appliance to be deployed.

2. The system of claim 1, further comprising a second
memory device tangibly embodying a library of security
policy templates applicable to different security policies for
the network appliance to be deployed,

wherein the instructions in the first memory device permit
the processor to secure an appropriate security policy
template for each network appliance to be deployed,
based on the configuration data extracted from the
parsed workload definition document.

3. The system of claim 2, further comprising a third
memory device tangibly embodying a library of templates
for base images for different network appliances that can
selectively be deployed,

wherein the instructions in the first memory device permit
the processor to secure an appropriate template for each
network appliance to be deployed, based on the work
load definition document.

4. The system of claim 3, wherein the instructions in the
first memory device comprise a Web Services GUI (graphi
cal user interface) to permit a user to provide controls to
implement the intended virtual configuration.

5. The system of claim 3, wherein a hardware network
appliance can be used for at least one network appliance in
the intended virtual configuration.

6. The system of claim 1, wherein a configuration of
security policies for security applications in cloud environ
ments include one or more of the following attributes and
components:

parameters that express properties that are cloud deploy
ment specific and allow a separation of abstract security
policies for a given type of workload from specifics
about an instantiation of the workload in the cloud;

arrays and innovators that provide a way to define and
assign multiple parameters to a specific component
inside a security policy;

sections that facilitate an ordering of security rules/poli
cies as they are applied; and

owners of tools that allow an association of owners with
particular filtering goals and facilitate an easier life
cycle management of individuals rules, including a
deletion and a replacement.

7. The system of claim 1, wherein said parsing of said
workload definition document results in values for variables
to be filled into predetermined locations in said to selected
security template Such that network appliances defined in a
conventional workload definition document will be auto
matically set up with a conventional virtual configuration
orchestration/management tool.

8. The system of claim 1, wherein/policies as they are
applied security template library comprises a plurality of
security templates each prepared by an expert familiar with
different security requirements of different types of possible
workloads.

9. The system of claim 1, wherein said workload defini
tion document defines virtual configurations in a virtualiza
tion infrastructure that turns an operating system into a
hypervisor.

US 9,609,023 B2
15

10. The system of claim 9, wherein said operation system
comprise a Linux kernel and said virtualization infrastruc
ture comprises a Kernel-based Virtual Machine (KVM)
infrastructure.

11. A computerized tool, comprising:
a library of security policy templates, as tangibly embod

ied in a non-transitory storage medium;
a network appliance plug-in comprising a set of instruc

tions tangibly embodied in a non-transitory storage
device, to interface with a virtual configuration infra
structure management/orchestration system, the net
work appliance plug-in permitting an automatic selec
tion of an appropriate security policy template for each
network appliance defined in a workload definition
document received by the virtual configuration infra
structure management/orchestration system; and

a set of instructions tangibly embodied in the non-transi
tory storage device that:
receives a set of configuration data parsed from the

workload definition document related to a security
policy of any network appliance in the workload
definition document;

16
Selects an appropriate security policy template as a base
image for each network appliance to be deployed;

merges deployment-specific data from a Snapshot taken
of each network appliance with the base image; and

returns each selected security policy template to the
virtual configuration infrastructure management/or
chestration system.

12. The computerized tool of claim 11, wherein said
10 parsing of said workload definition document results in

15

values for variables to be filled into predetermined locations
in said to selected security template Such that network
appliances defined in a conventional workload definition
document will be automatically set up with a conventional
virtual configuration orchestration/management tool.

13. The computerized tool of claim 11, wherein said
security template library comprises a plurality of security
templates each prepared by an expert familiar with different
security requirements of different types of possible work

20 loads.

