
(12) United States Patent
Bass et al.

USOO960.6838B2

US 9,606,838 B2
Mar. 28, 2017

(10) Patent No.:
(45) Date of Patent:

(54) DYNAMICALLY CONFIGURABLE
HARDWARE QUEUES FOR DISPATCHING
JOBS TO A PLURALITY OF HARDWARE
ACCELERATION ENGINES

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Brian M. Bass, Apex, NC (US);
Bartholomew Blaner, Underhill Center,
VT (US); George W. Daly, Jr., Austin,
TX (US); Jeffrey H. Derby, Chapel
Hill, NC (US); Ross B. Leavens, Cary,
NC (US); Joseph G. McDonald,
Raleigh, NC (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 32 days.

(21) Appl. No.: 14/827,333

(22) Filed: Aug. 17, 2015

(65) Prior Publication Data

US 2015/0355949 A1 Dec. 10, 2015

Related U.S. Application Data
(62) Division of application No. 13/323.914, filed on Dec.

13, 2011, now Pat. No. 9,448,846.

(51) Int. Cl.
G06F 9/46 (2006.01)
G06F 9/50 (2006.01)
G06F 9/48 (2006.01)

(52) U.S. Cl.
CPC G06F 9/5038 (2013.01); G06F 9/4843

(2013.01); G06F 9/5027 (2013.01); G06F
2209/5021 (2013.01)

10 100
JOBREQUESS
JOBKILS

102

FLOATING
ENTRIES. FLOATING N9 MIT

- ENTRES
O3 Q

hwaCC eng
type 1

0.

JOBREQUESER

QUEUECONTROLLER

EMPTYPOSTIONS TAL v.
FLOATINGENTRY-- " " '
DEDICATEDENTRY - HEAD Q

O4 105 O6

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

11, 1997 Whittaker
7/2001 Hellestrand et al.

(Continued)

5,687,348 A
6,263.302 B1

FOREIGN PATENT DOCUMENTS

EP 1912124 A2
WO WOO155847 A1

4/2008
8, 2001

OTHER PUBLICATIONS

Lee, et al. “Architectural Enhacements for Network Congestion
Control Applications”, IEEE Transactions on Very Large Scale
Integration Systems, vol. 14, No. 6, Jun. 2006, pp. 609-615.

Primary Examiner — Kenneth Tang
(74) Attorney, Agent, or Firm — Reza Sarbakhsh

(57) ABSTRACT
A computer system having a plurality of processing
resources, including a sub-system for scheduling and dis
patching processing jobs to a plurality of hardware accel
erators, the Subsystem further comprising a job requestor, for
requesting jobs having bounded and varying latencies to be
executed on the hardware accelerators; a queue controller to
manage processing job requests directed to a plurality of
hardware accelerators; and multiple hardware queues for
dispatching jobs to the plurality of hardware acceleration
engines, each queue having a dedicated head of queue entry,
dynamically sharing a pool of queue entries, having con
figurable queue depth limits, and means for removing one or
more jobs across all queues.

4 Claims, 7 Drawing Sheets

OBREECTS

M-4 MT |- - 3

hWaCC erg . . . hwaCC eng
type 2 type in

108 09

US 9,606,838 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

6,363,472 B1 3/2002 Linnermark
6,584,436 B2 6, 2003 Hellestrand et al.
6,714,960 B1 3, 2004 Bitar et al.
6,751,583 B1 6, 2004 Clarke et al.
6,775,749 B1 8/2004 Mudgett et al.
7,047,176 B2 5, 2006 Klevans et al.
7,113,516 B1 9, 2006 Sheffi et al.
7.460,473 B1* 12/2008 Kodama HO4L 47.10

370,230
7,934,028 B1 4/2011 Leonard et al.
8,065,680 B2 11/2011 Parvathaneni et al.
8,533,716 B2 * 9/2013 Lippett G06F94812

T10/22
2002/0143915 A1 10, 2002 Mathieson
2005/0278502 A1 12/2005 Hundley
2008/0052714 A1 2/2008 Wong
2008/O118065 A1 5, 2008 Blaisdell et al.
2008/0222383 A1 9/2008 Spracklen et al.
2008/0222434 A1 9, 2008 Shimizu et al.
2008, 0235695 A1* 9, 2008 Itou G06F94881

T18, 103
2008/0300707 A1 12, 2008 Ruml et al.
2009, O158282 A1 6, 2009 Blaisdell et al.
2010.0153.962 A1* 6, 2010 Tatu GO6F9,5027

T18, 105
2010/0205619 A1 8/2010 Barsness et al.
2011 O161972 A1 6/2011 Dillenberger et al.
2013/0152099 A1 6, 2013 Bass et al.
2015, 0355948 A1 12, 2015 Bass et al.

* cited by examiner

U.S. Patent Mar. 28, 2017 Sheet 1 of 7 US 9,606,838 B2

JOBREQUESTER
101 100

JOBREQUESTS
JOBKILLS JOBREJECTS

QUEUE CONTROLLER

FLOATING
ENTRIES FLOATING N9M" E" LIMT-3 - ENTRIES EMPTYPOSITIONS
103 FLOATING ENTRY Qn

hWaCC eng
type 1

hWaCC eng hWaCC eng
type 2 typen

107 108 109

FIG. 1

U.S. Patent Mar. 28, 2017 Sheet 2 of 7 US 9,606,838 B2

1 TIME (ASSUMEA, BAND CARE ALREADYASSIGNED)
4.

N Q2 JOBREQD Q3 JOBREQE / Q1 JOBREQF
Y ASSIGN REJECT ASSIGN2

Y N. N
N YN

N Yal
Ya n

N n

n N -Q2LIMIT

5 2
Q3 LIMIT

FLOATING 11
ENTRIES

Q1 Q2 Q3

FIG. 2

U.S. Patent Mar. 28, 2017 Sheet 3 of 7 US 9,606,838 B2

301

Examine recieVed Job
Descriptor JobType

302

FIG. 3

308

Reject job

QE.Job Info <- JobDescriptor
es. QEAllOCated <- 1

QEAIOCated = 1 QEQPOS <- QTail+1

JobType match
any Q?

303

Any
QEAllOCated = 0

available?

Q.LimiteXCeeded?

QE.Job Info <- JobDescriptor
QEAllOCated <- 1
QEQPOS <- QTai+1 Reject job
Q. Tail <-QE.Qpos

U.S. Patent Mar. 28, 2017 Sheet 4 of 7 US 9,606,838 B2

ACCelerator COnnected to Q
asserts JobComplete

401

403

No job for
aCCelerator

402

QEAIOCated 1 at
head of Q?

404 Send head QE.Jobinfo to
aCCelerator COnnected to Q,

asserts JobWalid

Head QEAllOCated <- O

406

Number of QES in
Q = QMin?

Head QEAssignedQ<-0

Subtract 1 from every QE.QPos
in this Q Older than head QE.

Set last QE. Tail <- 1

FIG. 4

405

407

Head QE.Qp0s <-Q. Tail

Subtract 1 from every QE.QPOs
in this Q younger than head QE

408

409

410

411

U.S. Patent Mar. 28, 2017 Sheet S of 7 US 9,606,838 B2

START

Examine received Job) in
kill request

502

OblDmatch any
QEJOblD With

QEAllOCated=12

501

509

Kill request
COmplete

Y

QEAllOCated <- 0

406

Number of QES in
Q = Q.Min?

407

Head QEQpOs
<- Q. Tail

Subtract 1 from
Head QEAssignedQ<-0 every QE.QPOs in

this Q Older than
head QE. | Subtract 1 from every QE.QPOs

in this Q Older than head QE.

Set last QE. Tail <- 1

OblDmatch any
QE.Jobl) With

QEAllOCated=12
FIG. 5

U.S. Patent Mar. 28, 2017 Sheet 6 of 7 US 9,606,838 B2

Job Request Job Request Job Request

Floating
Q1 Q2 QE

Dispatch Dispatch
Q1 Q2 Floating

Floating
QE

FIG. 6

US 9,606,838 B2 U.S. Patent

US 9,606,838 B2
1.

DYNAMICALLY CONFIGURABLE
HARDWARE QUEUES FOR DISPATCHING
JOBS TO A PLURALITY OF HARDWARE

ACCELERATION ENGINES

FIELD OF THE INVENTION

The present invention relates to computer systems
employing multiple co-processors as hardware accelerators
to improve processing throughput of specific functions and
more particularly to a method and apparatus for dynamically
configuring hardware queues for dispatching processing
jobs to a plurality of independent hardware acceleration
engines.

BACKGROUND

General purpose microprocessors are designed to Support
a wide range of workloads and applications, usually by
performing tasks in Software. If processing power beyond
existing capabilities is required then hardware accelerators
may be integrated in a computer system to meet require
ments of a particular application.

Hardware accelerators may perform certain tasks more
efficiently then processors running a software routine. One
aspect of hardware acceleration is that algorithmic opera
tions are performed on data using specially designed hard
ware rather than generic hardware, as is the case with
Software running on a microprocessor. A hardware accel
erator can be any hardware that is designed to perform
specific algorithmic operations on data. In this regard,
hardware accelerators generally perform a specific task to
offload CPU (Software) cycles. This is accomplished by
transferring the data that requires processing into the domain
of the hardware accelerator (usually part or all of a chip or
a circuit board assembly), performing the hardware accel
erated processing on that data, and then transferring the
resultant data back to the Software domain.

Examples of hardware accelerators include the IBM Cell
B.E. (broadband engine) processor, encryption units, com
pression/decompression engines and graphics processing
units (GPUs). Hardware accelerators may be programmable
to enable specialization of a particular task or function and
may include a combination of Software, hardware, and
firmware. Hardware accelerators may be attached directly to
the processor complex or nest, by PCIexpress (peripheral
component interconnect) IO (input-output) slots or remotely
via high-speed networks.

Hardware accelerators may be implemented in separate
integrated circuits including FPGAs (Field Programmable
Gate Arrays) and connected via a bus to a general purpose
microprocessor, Multiple co-processors serving as hardware
accelerators may be instantiated on the same die as the
processor or as part of a multi-chip module (MCM), as in the
case of IBM's Power series mainframe systems.

Typical uses of hardware accelerators may include com
pression and decompression of memory pages to conserve
overall memory usage. If a block of data residing in memory
has not been recently used and main memory space is
limited, compressing the block can reduce the address space
necessary for storage and when the same data is needed for
Subsequent processing it can be recalled and decompressed.
Having a dedicated hardware accelerator to perform this
function relieves the general purpose processor from this
task, performs the compression and decompression opera
tions at higher throughput, allowing the general purpose

10

15

25

30

35

40

45

50

55

60

65

2
processor to continue executing other processing functions,
and maximizes efficient utilization of finite memory
SOUCS.

Similarly, when encrypted data is received from an I/O
device for processing, encryption/decryption engines enable
analysis of the received data to proceed more efficiently,
which can speed timely analysis of, for example, financial or
telemetry data. In this regard, accelerators may aid process
ing merely by transposing data formats compatible with a
certain application or protocol. Off loading this function
from the main processor eliminates processing bottlenecks
associated with Such tasks.
Management of a diverse pool of processing resources

may be accomplished through high level controllers known
as hypervisors or virtual machine managers (VMM). These
implement hardware virtualization techniques allowing mul
tiple operating systems to run concurrently on a host com
puter. The hypervisor provides a virtual operating platform
and manages the execution of the guest operating systems
and applications. Multiple instances of a variety of operating
systems may share the virtualized hardware resources.
Hypervisors are installed on server hardware whose only
task is to run guest operating systems. Non-hypervisor
virtualization systems are used for similar tasks on dedicated
server hardware, but also commonly on desktop, portable
and even handheld computers.

Logical partitioning (LPAR) allows hardware resources to
be shared by means of virtualization among multiple guest
operating systems. One guest operating system comprises
one LPAR. Two LPARs may access memory from a com
mon memory chip, provided that the ranges of addresses
directly accessible to each do not overlap. One partition may
indirectly control memory controlled by a second partition,
but only by commanding a process in that partition. CPUs
may be dedicated to a single LPAR or shared. On IBM
mainframes, LPARs are managed by the hypervisor. IBM
mainframes operate exclusively in LPAR mode, even when
there is only one partition on a machine. Multiple LPARs
can run on one machine or be spread across multiple
machines.

Efficient utilization of a finite number of hardware accel
erators requires a queue management system to prioritize
processing jobs and ensure fairness in allocating available
processing acceleration resources amongst the LPARs.
Computer systems must accommodate scheduling, dispatch,
execution and perhaps termination of a wide variety of
processing jobs with different execution latencies and vastly
different memory constraints. High priority applications,
even those with predictable processing requirements, may
demand a disproportionately large share of processing
resources, thereby inhibiting completion of lower priority
jobs—perhaps indefinitely—because a higher priority job
may always take precedence over a lower priority job. To
prevent a high bandwidth job from completely dominating
acceleration resources, a fairness protocol is needed to
ensure lower priority jobs are executed within an acceptable
period of latency.

Even in computer systems employing hardware accelera
tion, co-processing resources are limited and must be care
fully managed to meet expected throughput requirements of
all applications running on the system. In this regard,
processing latency would be enhanced by a queue manage
ment scheme capable of dynamically configuring available
hardware acceleration queues so processing jobs may be
assigned to queues based on usage, job latency and capacity.

SUMMARY

The embodiments of the invention relate generally to
queue management in computing systems having a variety

US 9,606,838 B2
3

of co-processor resources and more particularly to an appa
ratus and method for implementing multiple hardware
queues for dispatching jobs to a plurality of hardware
acceleration engines. For each type of hardware acceleration
engine there is assigned a dedicated queue, and each queue
includes a dedicated head of queue entry. A pool of floating
queue entries may be dynamically allocated across multiple
queues. In this regard, queue depth limits are configurable
and may be modified to accommodate processing needs. The
system also has the capability to remove one or more jobs
across all queues to accommodate changes in the availability
of resources and maintenance.
The hardware acceleration engines process jobs within a

bounded latency. Latencies may vary, sometimes by orders
of magnitude from one acceleration engine type to another.
Therefore queue waiting time may vary considerably as
between different queue types. The capability for limiting
the number of queue entries allocated to a queue coupled
with the dynamically shared queue entries provides advan
tages over prior art in that a burst of job requests for a longer
latency engine does not consume all the floating entries,
thereby making them unavailable for lower-latency jobs
allocated for other queues. Further, the parallel structure of
the entries and queues rather than the sequential access
nature of the memory buffer in, for example, U.S. Pat. No.
7,113,516, enables parallel operation of the queues, leading
to lower latency of the entire queuing mechanism. The
parallel structure of the entries and queues also allows a
parallel search for jobs to remove from the queues, rather
than limiting to a sequential search.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention are set forth in the appended
claims. The invention itself, however, will be best under
stood by reference to the following detailed description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 illustrates a block diagram of an exemplary com
puter system architecture having a multiple queue system
according to embodiments of the invention.

FIG. 2 depicts a diagram illustrating the operation of a
queue controller managing multiple queues having a com
bination of dedicated and floating queue entries.

FIG. 3 shows a flow diagram illustrating the contents of
control registers in connection with enqueing a job in one of
the multiple queues.

FIG. 4 shows a flow diagram illustrating the contents of
control registers in connection with dispatching a job from
a queue to a hardware accelerator attached to the queue.

FIG. 5 shows a flow diagram illustrating the contents of
control registers in connection with terminating jobs iden
tified by a Job Requestor.

FIG. 6 illustrates a block diagram of a segmented queue
controller capable of handling operations, including creating
queue entries, dispatching jobs and terminating jobs in
parallel according to embodiments of the invention.

FIG. 7 shows a block diagram of data flow in a computer
system utilizing co-processors for hardware acceleration.

DETAILED DESCRIPTION

An example of a computer architecture employing dedi
cated co-processor resources for hardware acceleration is the
IBM Power Server system. A simplified block diagram of
hardware acceleration dataflow in the Power Server System
is shown in FIG. 7. Power Processor chip 700 has multiple

10

15

25

30

35

40

45

50

55

60

65

4
CPU cores (0-n) and associated cache 710, 711, 712 which
connect to Power Bus 709. Memory controller 713 provides
the link between Power Bus 709 and external system
memory 714. I/O controller 715 provides the interface
between Power Bus 709 and external I/O devices 716.
Power Bus 709 is the bus fabric that facilitates data, address,
and control movement between the various interconnected
components.

Co-processor Engines 701 perform cryptographic func
tions and memory compression/decompression. DMA
engine 702 reads and writes data and status on behalf of
co-processors. PowerBus Interface (PBI) 703 buffers data
routed between the DMA engine 702 and PowerBus 709 and
enables bus transactions necessary to Support co-processor
data movement, interrupts, and memory management I/O
associated with hardware acceleration processing.
Advanced encryption standard (AES) and secure hash

algorithm (SHA) cryptograph accelerators 705, 706 are
connected pairwise to a DMA channel, allowing a combi
nation AES-SHA operation to be processed moving the data
only one time. Asymmetric Math Functions (AMF) 707
Perform RSA cryptography and ECC (elliptical curve cryp
tography). 842 accelerator co-processors 708 perform
memory compression/decompression.

In order for the accelerators to perform work for the
system, accelerator unit 701 must be given work from the
hypervisor. A request for co-processor hardware acceleration
is initiated when a co-processor request command is
received by the PBI 703. Permission to issue the request, the
type of co-processor operation, and availability of a queue
entry for the requested type of co-processor operation are
checked and assuming all checks are passed, the command
is enqueued and a state machine is assigned to the request,
otherwise the co-processor job request is rejected. If a
request is successfully enqueued, when a co-processor is
available the job will be dispatched to the DMA engine, i.e.,
PBI 703 signals DMA engine 702 that there is work for it to
perform and DMA engine 702 will remove the job from the
head of the job request queue and start processing this
request. DMA engine 702 then assigns the co-processor
request to an appropriate DMA channel connected to the
type of co-processor requested. DMA 702 tells the co
processor to start and also begins fetching the data associ
ated with the job request. If a requested input queue is full,
the Power Bus Interface will issue a PowerBus retry partial
response to the co-processor request. When the data arrives,
PBI 703 will direct data to the correct input data queue and
inform DMA 702 the queue is non-empty. When the co
processor has output data or status to be written back to
memory, it makes an output request to DMA 702, and DMA
702 moves the data from the co-processor to local buffer
storage and from there to PBI 703 and PBI 703 writes it to
memory. A co-processor also signals to DMA 702 when it
has completed a job request accompanied by a completion
code indicating completion with or without error. Upon
completion, the co-processor is ready to accept another job
request.

With reference to a first embodiment, FIG. 1 shows a
Queue Controller 102 and a plurality of queues 104, 105 and
106 for enqueuing jobs received from Job Requestor 101
and dispatching the jobs from the heads of the queues to
hardware acceleration engines 107, 108 and 109, which may
include different methods of encryption (RSA, AES), com
pression/decompression, or data analytics. A person of skill
in the art will appreciate that many types of hardware
accelerator engines could be employed using embodiments
of the present invention and are not limited to the type

US 9,606,838 B2
5

shown in FIG. 7. FIG. 1 shows one queue (Q1, Q2 ... Qn)
for each type of hardware acceleration engine 107, 108 and
109.
A queue comprises one or more queue positions (posi

tion”) in memory arranged in first-in-first-out stack order,
wherein the depth of the stack is variable. Queue positions
are shown in FIG. 1 as rectangular boxes representing empty
positions, floating entries or dedicated positions. A position
corresponds to the place in the order of the total number of
queue entries allocated to a particular acceleration engine
and is either empty or full. A full position has a queue entry
(“entry') with a job allocated to it; an empty position does
not.

A queue entry is made up of storage elements containing
information pertaining to a job. Such as identifiers connect
ing the job to a software process, entry empty or full bit,
queue position, operands, or memory addresses specifying
the location of instruction groups to be processed. Queue
entries may also specify job priority and whether a job is
completed through an interrupt or a write access to memory.
As shown in Qn 106 of FIG. 1, the position at which an entry
is first endueued in a queue is the tail; the position from
which a entry may be dequeued (position made empty) and
job dispatched to an engine is the head. For simplicity, these
position descriptors are not shown in queues Q1 and Q2.
Entries advance by one queue position as jobs are dequeued
and dispatched from the head position. In this manner an
entry is emptied and becomes available to receive a new job
from the Queue Controller. In a queue with a single position
or in an empty queue, the tail position is the same as the head
position.
As shown in FIG. 1, there are two types of entries:

dedicated and floating. A dedicated entry, be it empty or full,
is permanently assigned to a queue. If a dedicated entry is
empty it is available to accept a job for the assigned queue
from Queue Controller 102. A floating entry 103 may be
allocated to the tail of the queue and filled with a job if the
number of entries allocated to the queue has not exceeded a
configurable limit if such a limit exists.

Referring to FIG. 3, a queue entry may be specified in a
hardware description language, such as VHDL or Verilog.

Job Requestor 101 may at any time request that one or
more jobs associated with a particular identifier be removed
from any and all of the queues, in any and all queue
positions. This operation is called a “kill Queue entries
associated with killed jobs are emptied and become avail
able to receive another job. Queue Controller 102 includes
logic to interrogate this identifier in all allocated entries and
remove entries with matching identifiers from the queues.
Queue Controller 102 decides whether to accept a job

from the Job Requestor for a given queue. To do so, it
examines the job type, i.e., which type of hardware accel
eration engine it requires, to choose the correct queue from
the plurality of queues. If the entry dedicated to the head
position of the destination queue is empty, the job is
accepted and the entry at the head is filled with the job. If the
entry at the head is full, the Queue Controller checks if the
number of entries allocated to the queue is less than the limit
and that a floating entry is available. If both of these
conditions are true, the job is accepted, a floating entry is
filled with the job and allocated to the tail of the queue.
Otherwise, the job is rejected.

FIG. 2 shows an example of an embodiment in operation.
There are three job queues Q1, Q2. Q3 and eight entries.
There are 3 dedicated entries, one for each of the three
queues shown, which are represented by the open ended

10

15

25

30

35

40

45

50

55

60

65

6
boxes above Q1, Q2 and Q3. The remaining five entries are
shown as floating entries 1-5.
A floating entry may be allocated to Q3 if the number of

entries allocated to Q3 is less than the Q3 Limit and an
empty floating entry is available, or to Q2 if the the number
of entries allocated to Q2 is less than the Q2 Limit and an
empty floating entry is available. The remaining empty
floating entries may be allocated to Q1. For example, if the
Q3 Limit is set to 1 and the Q2 Limit is set to 2, then only
one dedicated entry may be allocated to Q3; and one
dedicated entry plus one floating entry may be allocated to
Q2. The remaining three floating entries may only be
allocated to Q1.

In the example shown in FIG. 2, earlier in time jobs A, B,
and C filled the dedicated entries of each queue and were
allocated to the head positions of queues Q1, Q2, and Q3.
respectively. As time advances, job request D for Q2 is
received. An empty floating entry is available and the
number of entries enqueued in Q2 is less than the limit,
therefore floating entry 1 is allocated to Q2 and filled with
job D. Next, job request E for Q3 is received. An empty
floating entry is available but the number of entries
enqueued in Q3 equals the limit, therefore job request E is
rejected. Next, job request F for Q1 is received. An empty
floating entry is available and Q1 has no limit, therefore
floating entry 2 is allocated to Q1 and filled with job E.

FIGS. 3-5 describe the operation of the Queue Controller
(QC) with respect to the following events: 1. assignment of
a Queue Entry (QE) to particular Queue, i.e., enqueing a job;
2. Job Completion and Job Dispatch; and 3. Job Termination
(“JobKill'). The QC receives jobs from a Job Requestor and
controls a plurality of Queue Entries (QE) by dynamically
assigning Queue Entries to one of several queues. The QC
dispatches jobs from the queues to hardware accelerators
attached to the queues and is able to terminate jobs identified
by the Job Requestor. A particular queue is referred to as Qn.
A QE may be implemented with a series of registers in
hardware named and defined as follows:

TABLE 1.

REGISTERNAME DEFINITION

Allocated if = 1 then this QE has a valid
JobInfo else Jobinfo is invalid.

AssignedO if = 0 then this QE is not assigned
to any Q else it is assigned to the Q
number in this field.

QPos if = 0 then this QE is in the head
position of Q else it is in the
indicated position, 1, 2", etc.

JobInfo Multiple variable length fields that
define the job, e.g., operation code,
operand addresses, unique job
identifier, etc.

A queue has several necessary parameters and variables
that may be stored in registers associated with the queue.
Referring to FIG. 3, Q.Head defines QE.QPos=0 in a Q.
Thus, QPos=0 refers to the first position in a queue. Q. Tail
refers to the youngest position, i.e., highest numbered QE.O-
Pos, in a Q or QE that will be dispatched to a hardware
accelerator last. Q.Min refers to the minimum number of
QES assigned to a Q, which represent the fixed QES assigned
to a queue. Q. Limit is the maximum number of QES that
may be assigned to a queue.
The JobRequester supplies the QC a JobDescriptor that

contains at least a JobType, which identifies the Q to which
a job will be assigned, and JobD, which uniquely identifies
the job.

US 9,606,838 B2
7

With reference to FIG. 3, in step 301 QC examines the
JobType in the JobDescriptor received from the Job
Requestor. In step 302, if the JobType does not match any of
the QS, no accelerator exists for the requested job type and
the job is rejected in step 308, i.e., an indication is sent back
to the Job Requestor that the QC could not accept the job.
It may be observed by a person of skill in the art that
additional information may be provided further qualifying
the type of rejection.

If the JobType matches a dedicated hardware accelerator
for a specific Q, step 302 continues to step 303 which
ascertains whether Q.Head is already allocated. If it is not,
then the incoming job may be endueued in this QE in step
307 and in this instance Q.Head=Q.Tail. If it is already
allocated, then step 304 determines whether any unallocated,
i.e., floating, QES exist. If no floating entries are available,
the job is rejected in step 309. If at least one unallocated QE
exists, step 305 determines whether Q. Limit has been met:
if it has then the job is rejected in step 309. If Q. Limit has
not been met, then step 306 enqueues QE at the tail of Q. In
boxes 306 and 307, the notation QE.JobInfo<-JobDescriptor
means fields from the JobDescriptor the hardware accelera
tor requires to perform the job are copied from the JobDe
scriptor to the QE.Job Info register. Such fields may com
prise operation code, operand addresses, unique job
identifier, job priority, etc.

FIG. 4 describes the QC action of dispatching a job from
a queue to an attached accelerator. It will be appreciated by
one skilled in the art that an interface (not shown) between
QC and the attached accelerator is implemented where:
The accelerator can signal to QC that it may accept

another job by asserting the JobComplete signal.
The QC may dispatch Job Info from Q.Head to the accel

erator simultaneously asserting a Job Valid signal to the
accelerator.

In step 401, the accelerator has asserted JobComplete,
indicating to the QC that it can accept another job. Step 402
follows where the QC determines if there is a job at Q.Head.
If no job is enqueued, the process moves to step 403 and
ends. The QC periodically checks the job status for a job at
Q.Head; if there is a job, in step 404 the QC sends Q.Head
QE.Jobinfo to the accelerator and asserts Job Valid and in
step 405 Q.Head QE is marked as not allocated.

Step 406 queries whether the number of queue entries in
the queue is equal to Q.Min. If yes, Q.Head becomes Q. Tail
in step 408, then QEs younger than Q.Head, if any, are
moved forward one queue position in Q in step 408. Oth
erwise in step 409, the QE at Q.Head is deallocated and the
QES in Q are advanced one queue position toward Q.head in
step 410 and the Q.Tail is updated with the QPos of the new
tail QE.

FIG. 5 describes the action of terminating a queue entry
(QE kill), i.e., dequeuing, a QE from the queues. For ease of
exposition, it is assumed that QC activities of enqueuing and
dispatching jobs are Suspended until the kill is completed.
This assumption is not limiting as one skilled in the art could
design a system where these activities proceed concurrently.
In step 501 a kill request of job JobD is received by the QC
from the Job Requestor and in step 502 all allocated QEs are
examined to see if there is a match. If there is no match, step
509 follows and the kill is completed trivially with no jobs
killed. If there is a match, the QE containing the job is
deallocated in step 503, step 406 ensues with either steps
407 and 408, or 409, 410, and 411, which move QEs toward
head in Q as described previously.

In another embodiment of the invention, the JobDescrip
tor contains priority information, for example, a single bit

5

10

15

25

30

35

40

45

50

55

60

65

8
field indicating the job is high priority if the field is 1 and
low priority if the field is 0, or multiple bit fields could be
used to create a broader range of priorities. The Queue Entry
contains register storage for the job priority information that
is filled from the JobDescriptor when the job is enqueued.
The Job Dispatch function of the Queue Controller uses the
job priority information in the enqueued queue entries to
determine the highest priority job to dispatch next. In the
previous example, if a job of low priority were endueued at
the head of the queue and a job of high priority were
enqueued behind it, Job Dispatch would dispatch the high
priority job at the next opportunity rather than the low
priority job at the head of the queue. In this embodiment, the
Queue Controller further employs a fairness algorithm to
ensure that high priority jobs do not forever prevent lower
priority jobs from being dispatched. Such algorithms are
known by those skilled in the art and not further elaborated
here. One skilled in the art would also appreciate that the
same prioritized dispatch could be accomplished alterna
tively by partitioning a queue into a plurality of queues, one
for each level of priority, enqueuing a job of given priority
into the corresponding queue, and dispatching from highest
priority queue first, then next highest priority queue, and so
on, down to the lowest priority queue, applying a fairness
algorithm as previously mentioned.

In another embodiment of the invention, multiple job
requests are received by Queue Controller 102 in parallel.
The Queue Controller is partitioned into segments, one
segment per queue type. The segments enqueue entries,
dispatch jobs to engines, and handle kill requests in parallel.
The segments must arbitrate with each other for access to the
shared floating entries. With reference to FIG. 6, N QC
segments are shown (QC1, QC2, . . . QCn) with three
primary functions of Enqueue, Dispatch, and Kill shown
abstractly as boxes and their respective queues Q1, Q2. . . .
Qn under their control. Multiple job requests can come into
the system concurrently at the top. A shared pool of floating
QEs is shown on the right with access to the QEs controlled
by an Arbiter. The Arbiter operates in steps 304, 305, and
306 in FIG. 3. In these steps, a QC segment with a job to
enqueue must determine if a floating QE is available and if
yes, step 306 enqueues the job. In a multi-QC system, a first
QC would make a request to the Arbiter to gain access to the
QEs; if a second QC currently had access to the QEs, the
Arbiter would not grant the first QC access to the QEs until
the second QC had moved on from step 306.

In another embodiment of the invention hardware accel
eration engines are replaced with more generic queue Serv
ers. The queue servers have properties of type and service
time (latency) not unlike the hardware acceleration engines.
The description of the embodiments of the present inven

tion is given above for the understanding of the present
invention. It will be understood that the invention is not
limited to the particular embodiments described herein, but
is capable of various modifications, rearrangements and
substitutions as will now become apparent to those skilled in
the art without departing from the scope of the invention.
Therefore, it is intended that the following claims cover all
Such modifications and changes as fall within the true spirit
and scope of the invention.
What is claimed is:
1. A method for implementing multiple hardware queues

for dispatching jobs to a plurality of hardware acceleration
engines, the method comprising:

providing a job requestor, for requesting jobs having
bounded and varying latencies to be executed on the
hardware acceleration engines;

US 9,606,838 B2
9 10

providing a queue controller to receive job requests from
the job requestor, dispatch and enqueue jobs to the
plurality of hardware acceleration engines;

providing a plurality of queues with a first queue of said
plurality assigned to one type of said plurality of 5
hardware acceleration engines, wherein,
each of said plurality of queues having a first (head)

queue position and a last queue position (tail), and
at least one of said plurality of queues having a con

figurable limit, limiting the number of positions in 10
said at least one of said plurality of queues;

providing a plurality of queue entries being either empty
or filled with job information data, at least one of said
entries being assigned to only one of said plurality of
queues, and at least one of said entries being assignable 15
to any of said plurality of queues, wherein said job
information data includes at least a job identifier.

2. The method according to claim 1, further comprising
setting priorities for job requests in said queue entries by the
queue controller. 2O

3. The method according to claim 1, wherein, the job
requestor interrogates a queue entry filled with job informa
tion data to determine whether said job information data
contains a matching job identifier associated with a termi
nation request identifier. 25

4. The method according to claim 1, wherein the job
requestor sends a command to remove a queue entry from an
assigned queue when a corresponding job is terminated.

k k k k k

