
(12) United States Patent
Iyengar et al.

USOO96O234.4B1

US 9,602,344 B1
Mar. 21, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(51)

(52)

(58)

AUTOMATED ESTABLISHMENT OF
ACCESS TO REMOTE SERVICES

Applicant: CloudVelocity, Inc., Santa Clara, CA
(US)

Inventors: Anand Iyengar, Belmont, CA (US);
Rajeev Chawla, Union City, CA (US);
Raman Chawla, Cupertino, CA (US);
Panagiotis Tsirigotis, Cupertino, CA
(US); Jun Kang Chin, Palo Alto, CA
(US); Chung-Shang Shao, Hayward,
CA (US)

Assignee: CLOUDVELOX, INC., Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 521 days.

Appl. No.: 14/144,485

Filed: Dec. 30, 2013

Int. C.
H04L 29/06 (2006.01)
H04L 2/24 (2006.01)
HO4M 3/OO (2006.01)
U.S. C.
CPC H04L 4I/0813 (2013.01)
Field of Classification Search
CPC H04L 63/029; HO4L 12/4641; H04L

12/4675: H04L 12/4633; H04L 63/0272:
H04L 63/0892; H04L 67/16; H04L 67/34;

76/022; H04W 4.0/00
USPC 709/201-203, 217 219, 220, 227 229,

709/249 250; 726/14, 1, 11, 27
See application file for complete search history.

Site
Manager

100
obtain configuration
information 305
so

Source
system
110

information 30

Ootain file system
data 325
H -

data 350

Provide configuration

Provide file system data 330
--

Provide changes to filesystem

(56) References Cited

U.S. PATENT DOCUMENTS

7,787,494 B1* 8/2010 Aubin HO4L 12/4675
370,352

2009/0036111 A1* 2, 2009 Danford HO4L 41,0893
455,419

2010, 0191783 A1* 7, 2010 Mason GO6F 17,30088
707/822

2011/0261828 A1* 10, 2011 Smith HO4L 12,462
370/401

2012/0096.134 A1* 4/2012 Suit GO6F 9/5072
TO9,221

2012/0096.171 A1* 4/2012 Suit HO4L 12,6418
709,227

2012/0096271 A1* 4/2012 Ramarathinam ... HO4L 63,0807
713, 172

2012/0281706 A1* 11/2012 Agarwal HO4L 67/10O2
370,395.53

2012fO281708 A1* 11/2012 Chauhan HO4L 63,0272
370/401

(Continued)
Primary Examiner — Alina N Boutah
(74) Attorney, Agent, or Firm — Fenwick & West LLP
(57) ABSTRACT
A Software application designed to operate within an enter
prise system is modified to operate properly within a system
of a third-party provider. In one embodiment, a site manager
obtains pertinent information about the software application
from the Source systems that make up the enterprise system
and provides it to a cloud manager, and the cloud manager
uses the information to generate a modified version of the
software application for use on the cloud provider. The
modification may include operations such as driver injec
tion, file system mounting customization, customization of
hostname-to-network address mappings, and boot image
creation. Secure connections may also be established
between the enterprise system and third-party provider to
allow the application running on the third-party provider to
access the services of the enterprise system.

18 Claims, 7 Drawing Sheets

Cloud
Provide
13

Cloud
Manager

120

Store configuration
information 315
Initialize file
systems 320

Replicate file
- system 335

Update file system
355

Perform kernel file
injection 375
Perform image

- Customization 380

Create boot image
38s

Generate cloud
machine image 390

Clone enterprise
application 395

US 9,602,344 B1
Page 2

(56) References Cited 2013/0291.087 A1* 10/2013 Kailash HO4L 63.1425
T26/11

U.S. PATENT DOCUMENTS 2013/0311778 A1* 11/2013 Cherukuri HO4L 41,0803
2012,031 1659 A1* 12/2012 Narain HO4W 12/08 713,171

T26.1 2013,0347072 A1* 12/2013 Dinha HO4L 63,0272
2013/0054763 A1 2/2013 Van der Merwe HO4W 8/12 T26/4

TO9.220 2014/0007222 A1* 1/2014 Qureshi G06F 21 10
2013/0152169 A1* 6, 2013 Stuntebeck HO4L 67/16 T26, 16

T26/4 2014/0108665 A1 4/2014 Arora HO4L 67,141

2013/017424.6 A1* 7, 2013 Schrecker HO4L 63,029 709,227
CCK T26/14 2014/0366155 A1* 12/2014 Chang G06F 21/10

ck 726/27
2013/0227137 A1* 8, 2013 Damola Gote: 2014/0369229 A1* 12/2014 Martineau HO4L 45.02

370,254
2013,0268643 A1* 10, 2013 Chang GO6F 9/45558 2015,0341230 A1* 11/2015 Dave HO4L 41,5058

709,223 705/7.29
2013/0283364 A1* 10/2013 Chang HO4L 49.70

T26/12 * cited by examiner

U.S. Patent Mar. 21, 2017 Sheet 1 of 7

Cloud image
generation

information 127
123

Cloud
machine
images
128

File systems
124 Customization

126

US 9,602,344 B1

Cloud provider 130
Virtual
machine
instances

Site manager 100

Enterprise 105

Cloud-Side
tunneling

machine
imageS

Source system 110
Information provider 115

Configuration
eader 116

File system
reader 117

File systems
114

System
identification

119

FIG. 1

128

Enterprise
Side

tunneling
113

U.S. Patent Mar. 21, 2017 Sheet 2 of 7

Source system 110

Cloud manager 120

File
database

122

File systems
114

Customization
126

File systems
124

Cloud image generation
127

Cloud
machine
image
128

FIG. 2

US 9,602,344 B1

Configuration
information

123

U.S. Patent Mar. 21, 2017 Sheet 3 of 7 US 9,602,344 B1

Source Site Cloud Cloud
System Manager Manager Provider
110 1 OO 120 130

Obtain Configuration
information 305

Provide configuration
information 310

Store configuration
information 315

Initialize file
Obtain file system systems 320
data 325

Provide file system data 330
Replicate file
system 335

Provide changes to filesystem
data 350

Update file system
355

Perform kernel file
injection 375

- Perform image
Customization 380

Create boot image
385

Generate cloud
machine image 390

Clone enterprise
application 395

FIG. 3

ZEI?E?TITEET)

US 9,602,344 B1 U.S. Patent

US 9,602,344 B1 U.S. Patent

097

US 9,602,344 B1 U.S. Patent

US 9,602,344 B1

0: …)

U.S. Patent

US 9,602,344 B1
1.

AUTOMATED ESTABLISHMENT OF
ACCESS TO REMOTE SERVICES

TECHNICAL FIELD

The disclosed embodiments relate generally to server
based applications. In particular, the disclosed embodiments
are directed to automatically reconfiguring computer soft
ware applications hosted by a given enterprise system to be
hosted by a different system, such as that of a cloud provider.

BACKGROUND

Many companies and other organizations have created
computer Software applications designed to be hosted on
their own enterprise systems. This requires the organizations
to commit considerable resources to the design and main
tenance of the enterprise systems that host the applications.
For example, the organizations must employ many infor
mation technology professionals to ensure that the networks,
storage systems, security settings, and other components of
the enterprise systems continue to provide the proper levels
of performance and security.
As an alternative model, a third-party provider may make

its own computing systems available for hosting the orga
nizations applications. In this model, the third-party pro
vider (hereinafter referred to as a "cloud provider') supplies
the hardware and software systems that provide the com
puting, storage, and network capacity required by the Soft
ware applications, configures system settings to provide
proper data security, and the like. Thus, the third-party
provider is responsible for the technological and adminis
trative details necessary for the applications to properly
function, freeing the organizations from the need to attend to
Such details. The organizations can then Supply the appli
cations to the third-party provider for hosting, compensating
the third-party provider according to the resources con
Sumed. Such as a certain amount of storage space, or a
certain amount of computing power.

However, it can be complex, labor-intensive, and error
prone for an organization to modify its existing applications
for migration to a third party cloud computing system so that
they will function properly on the systems of the third-party
providers. That is, the computing environment—e.g., hard
ware devices, operating system types and versions, network
settings, and the like—of the third-party provider's system
may differ significantly from that of the organization’s
enterprise computing systems, and hence an application will
likely need to be significantly modified if it is to function
properly in the third-party environment. For example, the
operating system version made available by the third-party
provider might differ from that of the enterprise system,
leading (for example) to an unavailability of libraries
expected by the application. Similarly, the Internet Protocol
(IP) addresses of the third-party provider will differ from
those of the enterprise system. The names of the storage
devices, and system host names, will likely differ, as well.
Thus, applications that make reference to these values will
cease to function properly when hosted by the third-party
provider.

Additionally, for reasons such as security and efficiency it
may not be acceptable to host certain services of the enter
prise system within the third-party environment. Thus, the
applications migrated from the enterprise to the third-party
environment will need to be able to communicate with the
enterprise in order to access the services that would not be
available from within the third-party environment. However,

10

15

25

30

35

40

45

50

55

60

65

2
it requires additional effort to configure the applications
running in the third-party environment to communicate with
the services hosted on the remote enterprise. This additional
configuration becomes particularly tedious and error-prone
when many different systems are involved in providing
services for the application (and hence many different sys
tems must be properly configured), and/or many services are
used by the application.

SUMMARY

An “enterprise-based application.” which includes both
the software specifically written to implement the applica
tion and the operating system and other software constitut
ing the environment in which it executes, is originally
designed to operate within an enterprise system. The enter
prise-based application is automatically modified to operate
properly within a system of a third-party provider (referred
to hereinafter as the "cloud provider'). In one embodiment,
a cloud manager obtains pertinent information about the
enterprise-based application from the Source systems that
make up the enterprise system and uses the information to
generate a modified version of the enterprise-based appli
cation for use on the cloud provider.
The enterprise-based application is constructed to service

a user's client device through the various interactions
between the source systems in the enterprise system, Such as
the providing of information by a database server system,
and the providing of a web page by a web server system. The
cloud manager replicates the environment of the enterprise
system using the information obtained from the source
systems and performs a number of modifications of the
enterprise-based application by modifying the replicated
environments of the Source systems that together make up
the enterprise-based application.

In one embodiment, the modifications of the enterprise
based application include kernel file injection. Based on an
operating system type and version of the Source systems of
the enterprise system, and optionally based on the cloud
provider, kernel files required for the enterprise-based appli
cation to function properly on the cloud provider are iden
tified, and these kernel files are then added to the replicated
environments of the Source systems.

In one embodiment, the modifications of the enterprise
based application include file system mounting customiza
tion. A mount table file is modified to use a unique identifier
for a file system of the source system; the unique identifier
may be generated and stored within metadata of the file
system. When the corresponding operating system begins
execution and the mount table file is analyzed to establish
the file system mount points, the unique identifier is located
within the file system metadata, thereby correlating the file
system with the proper device name of the underlying
storage, regardless of whether the device names differ
between the source system and the cloud provider.

In one embodiment, the modifications of the enterprise
based application include customization of hostname-to
network address mappings. Source systems of the enterprise
that are relevant to the application are identified, and a
mapping between hostnames and IP addresses of the source
systems within the enterprise are generated and stored in a
mapping file accessed by the operating system during ini
tialization. In one embodiment, the relevant source systems
are identified at least in part by the users using a user
interface that permits users to add and remove source
systems and to specify their network visibility and other
properties.

US 9,602,344 B1
3

In one embodiment, the modifications of the enterprise
based application include boot image creation. The target
operating system on the cloud provider is compared with the
operating system type and version of source system(s) of the
enterprise system to identify whether the operating
system(s) of the source systems is not compatible with the
cloud provider, e.g., Sufficiently old. If so, then a set of
newer boot files is copied to a boot directory (e.g., “/boot')
of the replicated environments of the source systems. Addi
tionally, in one embodiment a configuration file of a boot
loader is modified to identify the device on which the root
file system partition is located using the unique identifier of
the file system.

With the environments of the pertinent source systems
replicated and modified, the application may be executed on
the cloud provider by creating an instance of each of the
pertinent source systems within a virtual machine of the
cloud provider. Further, multiple independent instances of
the application may be made available to different users by
creating, for each user, a set of instances of the pertinent
Source systems.
The features and advantages described in this Summary

and the following detailed description are not all-inclusive.
Many additional features and advantages will be apparent to
one of ordinary skill in the art in view of the drawings,
specification, and claims hereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a system environment in which an existing
enterprise-based application of an organization is modified
to be hosted by a cloud provider, according to one embodi
ment.

FIG. 2 illustrates the data flow that takes place when
generating cloud machine images for a source system using
the components of FIG. 1, according to one embodiment.

FIG. 3 illustrates the interactions that take place between
the various components of FIG. 1 when generating a cloud
machine image allowing an enterprise-based application to
be hosted by the cloud provider, according to one embodi
ment.

FIGS. 4A-4B respectively illustrate example graphical
user interfaces used in the process of replicating an enter
prise-based application on a cloud provider and creating
instances of that enterprise-based application, according to
one embodiment.

FIG. 5 illustrates a more concrete example of the envi
ronment of FIG. 1, in which tunneling is used to allow an
application hosted on the cloud provider to access services
provided by the enterprise 105, according to one embodi
ment.

FIG. 6 illustrates the interactions that take place between
the various components of FIG. 5 when establishing tunnels
enabling transparent access to a remote service, according to
one embodiment.
The figures depict various embodiments of the present

invention for purposes of illustration only. One skilled in the
art will readily recognize from the following description that
other alternative embodiments of the structures and methods
illustrated herein may be employed without departing from
the principles of the invention described herein.

DETAILED DESCRIPTION

System Architecture
FIG. 1 shows a system environment in which an existing

enterprise-based application of an organization is modified

10

15

25

30

35

40

45

50

55

60

65

4
in order to be hosted by a cloud provider, according to one
embodiment. Illustrated in FIG. 1 are an enterprise 105, an
optional site manager 100, a cloud provider 130, and a cloud
manager 120. The enterprise 105 represents the computing
system environment for which the existing enterprise-based
application was designed, and the cloud provider 130 rep
resents a software hosting environment provided by a third
party. The optional site manager 100 communicates infor
mation about the enterprise-based application (which
includes the environment on the enterprise 105) to the cloud
manager 120, which replicates the enterprise-based appli
cation on the cloud provider 130, including the modifica
tions needed for the enterprise-based application to operate
properly on the cloud provider 130.
More specifically, the enterprise 105 includes any number

of source systems 110. The source systems 110 represent
physical computing systems—such as web servers, database
servers, and application servers—along with the network
infrastructure that connects the Source systems to each other
and to external client systems. In one embodiment, the
Source systems 110 may also represent virtual systems
defined within a virtual machine server running within the
enterprise 105. The collective actions of the different source
systems 110 together constitute the enterprise-based appli
cation that clients can access. For example, the actions of a
database server to provide requested information, and of a
web server to provide a web page graphically embodying the
provided information, together might produce a particular
web page of a web-based enterprise application.
The source systems 110 of an enterprise may include

systems providing services, such as a database server that
provides access to data of a database (e.g., in response to
queries in the Structured Query Language (SQL)), a direc
tory information server providing directory information
about the enterprise (e.g., a Lightweight Directory Access
Protocol (LDAP) server), or the like. For various reasons, it
may be preferable for these services to remain within the
enterprise, rather than to be replicated within the cloud
provider 130. For example, database services might not
provide the required transactional properties when repli
cated within the cloud provider 130, or might become out of
sync with the database data stored within the enterprise 105.
As another example, security policies of the enterprise 105
might dictate that directory information databases be kept
within the enterprise, rather than hosted externally.
The individual source systems 110 of the enterprise 105

have given hardware and software characteristics. For
example, each Source system 110 has a certain amount of
primary memory (RAM), a given number of processors
(and/or cores within a single processor), and a set of
networks to which the computer has a connection (repre
sented by, e.g., their IP addresses). A given source system
110 also has file system characteristics, such as file system
type (e.g., the ext2 or ext3 file system types for the LINUX
operating system) and capacity (e.g., 2 TB).
A source system 110 comprises one or more file systems

114. The file systems 114 may contain data used or generated
by the enterprise-based application, such as configuration or
log files, or files created by and loaded by a database server
and storing customer information, for example. The file
systems 114 may also contain the code that is specific to the
enterprise-based application, Such as a compiled binary
directly executable by a processor, intermediate compiled
code executable by a virtual machine (e.g., JAVA code),
Scripting code interpreted by an interpreter for languages
such as PYTHON or RUBY, or the like. The file systems 114
further contain the files making up the operating system

US 9,602,344 B1
5

environment of the Source system 110. Such as the operating
system kernel or link libraries, and which constitute the
environment of the enterprise-based application.

In one embodiment, the Source systems 110 also comprise
an information provider module 115 provided by the orga
nization responsible for the site manager 100 and the cloud
manager 120. The information provider module 115 of a
source system 110 forms a network connection with the site
manager 100 (or directly with the cloud manager 120) and
provides it with information about the source system that is
used to generate a cloud machine image of the source system
110. The information provider module 115 comprises sub
modules that perform operations such as identifying the
source systems 110, obtaining the information about the
Source systems, and providing that information to the cloud
manager 120.

Specifically, in one embodiment the information provider
module 115 comprises a configuration reader module 116, a
file system reader module 117, a sender module 118, and a
system identification module 119.
The system identification module 119 identifies the set of

source systems 110 within the enterprise 105 that are can
didates for replication on the cloud provider 130. The system
identification module 119 analyzes communication patterns
within the enterprise 105 to identify active source systems.
For example, the system identification module 119 can
analyze the information provided by an operating system
utility such as “netstat” to identify source systems 110, and
can further automatically install the information provider
module 115 on such systems. Alternatively and/or addition
ally, authorized users of the enterprise 105 can manually
identify the relevant source systems 110 and install the
information provider module 115 on those systems. In one
embodiment, login information (e.g., usernames and pass
words) of one or more of the source systems 110 of the
enterprise 105 is provided to the system identification mod
ule 119 so that the system identification module can obtain
the permissions necessary for this analysis.

The configuration reader module 116 obtains configura
tion information about the hardware and software charac
teristics of the source systems 110 within the enterprise 105.
In one embodiment, the configuration information for a
Source system 110 includes the amount of primary memory,
the number of processors, the available networks, and the
type and capacity of each file system.

The file system reader module 117 obtains file system
data—that is, the data stored by the file systems 114. For
example, the file system reader module 117 can obtain a
listing of every file within a file system, along with the data
stored by those files, using local disk read system calls.
The file system reader module 117 can also determine a

difference between the current state and a previous state of
the file systems 114. For example, the file system reader
module 117 can identify files that have changed since a
given previous file system state (along with the data of the
changed files), the files that have been added (along with the
data of the added files), and the files that have been deleted.
The sender module 118 provides the information obtained

by the configuration reader module 116 and the file system
reader 117 to the site manager 100, and/or directly to the
cloud manager 120, using the network 150.
The infrastructure of a cloud provider 130 may be com

posed of any number of physical systems, such as applica
tion servers, web servers, database servers, and the like, as
well as the network infrastructure that connects the physical
systems and provides network access. Examples of a cloud

10

15

25

30

35

40

45

50

55

60

65

6
provider 130 include AMAZON WEB SERVICES (AWS),
RACKSPACE, WINDOWSAZURE, and GOOGLE COM
PUTE ENGINE.
The cloud provider 130 can simulate a physical machine

by launching an instance of a virtual machine constructed
based on a cloud provider-specific machine image descrip
tion. The cloud machine image consists of the property
description that describes the computing characteristics of
the virtual machine to be launched. Such as memory size,
and the storage configuration that includes the number and
size of the virtual storage devices and the locations of
replicated data from the source file systems 114.

Thus, the cloud provider 130 may host an enterprise
based application of an enterprise 105 by launching for each
relevant source system 110 in the enterprise 105, a virtual
machine instance 137 that runs a cloud machine image 128
corresponding to the source system 110. The set of virtual
machine instances 137 in cloud provider 130 replicates the
interconnection relationship of the source systems 110 and
the operational objectives of the enterprise 105.
Some aspects of the environment of the cloud provider

130 will differ from those of the enterprise 105. For
example, the cloud provider 130 may offer its users a choice
of some set of predetermined operating system types and
versions, such as CENTOS 5.3, CENTOS 5.6, UBUNTU
12.04, WINDOWS 2008, WINDOWS 2012, and the like,
and these types/versions may differ from the types/versions
deployed on the source systems 110 of the enterprise 105. To
mitigate the differences, the cloud manager 120, based on
the original operating system of the Source system 110.
generates an operating system image which is Supported by
the cloud provider 130 by modifying the replicated file
system 124.

Further, the cloud provider 130 will have its own set of
public network addresses (e.g., IP addresses) that it allocates
to the enterprise-based applications that it hosts. These
network addresses will differ from the public network
addresses used by the enterprise 105.
The various source systems 110 of the enterprise 105 may

also use devices with names that differ from those on the
cloud provider 130, such as a device named “sdal’ on a
source system 110, and “xvdfl” on the cloud provider 130.
The site manager 100 (or the information provider 115)

and the cloud manager 120 communicate to generate appro
priately-modified representations of the source systems 110
on the cloud provider 130. This replicates the enterprise
based application (achieved by the collective operation of
the source systems 110) on the cloud provider 130. The site
manager 100 and the cloud manager 120 are now described
in greater detail.

In one embodiment, the site manager 100 is implemented
using a virtual machine. For example, one or more source
systems 110 of the enterprise 105 might have hypervisors
(e.g., ESX or FUSION by VMWARE) installed, in which
case the site manager 100 could be implemented with a
machine image created for, and executed by, those hyper
visors. In another embodiment, the site manager 100 is
implemented as a machine image created for, and executed
by, a virtual machine of the cloud provider 130. In another
embodiment, the site manager 100 is a physical machine
accessible via the network 150. Thus, the location of the site
manager 100 with respect to the enterprise 105 can differ in
different embodiments, and may (but need not) be within
either the enterprise 105 or the cloud provider 130. For the
sake of simplicity, however, the site manager 100 is depicted
in FIG. 1 as being an entity separate from the enterprise 105
and the cloud provider 130. Regardless of the location of the

US 9,602,344 B1
7

site manager 100, in embodiments in which the site manager
100 is used, the information provider module 115 of a source
system 110 creates a network connection with the site
manager when providing information about the source sys
tem.

In one embodiment, the cloud manager 120 is imple
mented as a machine image created for, and executed by, the
virtual machine of the cloud provider 130. In such an
embodiment, the cloud manager 120 executes within the
cloud provider 130, although for the purposes of simplicity
the cloud manager is depicted in FIG. 1 as being logically
separate from the cloud provider 130.
The cloud manager 120 comprises a receiver module 121,

a file database 122, configuration information 123, file
systems 124, a customization module 126, a cloud image
generation module 127, cloud machine images 128, and a
cloning module 129.
The receiver module 121 receives the configuration infor

mation and file system data sent by the site manager 100 (or
sent directly by the sender module 118) for the various
Source systems 110 and stores them locally as configuration
information 123 and file system data 124. The file system
data 124 thus correspond to the file systems 114 of the
source systems 110 on the enterprise 105.
The file database 122 stores different sets of baseline

operating systems for different cloud providers 130. A
baseline operating system stored in the file database 122
includes driver files, boot files, and the like. The file database
122 may further store the additional files themselves. As an
illustrative example simplified for purposes of clarity, Table
1 below illustrates several different LINUX operating sys
tems of different distributions (i.e., CENTOS and
UBUNTU) and several different WINDOWS operating sys
tems (i.e., Windows 2008 and 2012), and the corresponding
baseline operating system files which are stored in the file
database 122 and for use by different cloud providers 130,
as well as a cloud provider (i.e. AWS and AZURE) for each.

TABLE 1.

Source OS version Cloud provider Files required

CentOS 5.3 AWS A, B, D
CentOS S.S AZURE A, D
CentOS 5.6 AWS A.
Ubuntu 12.04 AWS A, B, C
Ubuntu 12.10 AWS A, B
Windows 2008 AWS W, X, Z
Windows 2008 AZURE W, X, Y
Windows 2012 AWS Z. X.

For each (operating system, version, cloud providers
tuple, there is a list of kernel files required to be added to the
environment of the cloud provider 130, reflecting, for
example, that those kernel files are needed to run software
on the cloud provider, yet are not provided by the designated
operating system and version. For example, referring to the
example of Table 1, the <CentOS, 5.3, AWSD tuple has a
corresponding set of kernel files {A, B, D, reflecting,
perhaps, that CentOS 5.3 lacks kernel files A, B, and D,
which are necessary for the enterprise-based application to
function within the hosting environment of AWS.

Note that although to simplify the example of Table 1 a
single-letter identifier Such as 'A has been used, in practice
concrete kernel file identifiers would be listed, such as full
pathnames of files for the kernel files. It is further appreci
ated that the file database 122 need not represent information
in tabular form, as in the example; rather, many data

10

15

25

30

35

40

45

50

55

60

65

8
structures, such as trees, may provide an efficient imple
mentation and may also be used.

It is additionally appreciated that certain information may
be added to, or omitted from, that shown in Table 1. For
example, in an embodiment solely directed to a particular
cloud provider 130, there need not be a “Cloud provider
element in the table, since the identity of the cloud provider
is implicit and fixed.
The customization module 126 customizes the file system

data 124 obtained from the source system 110 in order to
allow the enterprise-based application to properly function
in the environment provided by the cloud provider 130.
Specifically, in one embodiment the customization module
126 performs driver injection and image customization, and
also creates a boot image suitable for the cloud provider 130.
These operations are now explained in more detail.

(A) Kernel File Injection
The Source systems 110 might be lacking in certain

drivers or other files associated with the operating system
kernel and required for the application to function properly
on the cloud provider 130. Accordingly, the cloud customi
zation module 126 performs kernel file injection (see step
375 of FIG. 3) so that the cloud machine images 128 have
all the required kernel files.

In one embodiment, kernel file injection is accomplished
by identifying relevant kernel files through comparison of
the operating system type and version of the source system
110 with the cloud provider 130 that is to be used to host the
enterprise-based application. The file database 122 can be
used for this purpose. For example, referring again to the
simplified example of Table 1, above, if the enterprise-based
application were using CENTOS v. 5.3, and were intended
to be hosted on AWS, then kernel files A, B, and D would
be added to the file system data 124.

(B) Image Customization
Image customization involves analyzing and modifying

the contents of existing files obtained from the source
system 110. The image customization includes file system
mounting customization, hostname and network address
mapping customization, and network address allocation
customization, each of which is now described in more
detail.

(i) File System Mounting Customization
The source systems 110 and the cloud provider 130 may

use different names to address the underlying storage
devices. Such device names can be used in the file system
mount table file to reference the file systems which reside on
the named Storage devices. For example, the primary drive
on a web server of a given source system 110 might be
named “sdal, whereas the primary drive of the environ
ment provided by the cloud provider 130 might be named
“xvdfl'. Thus, an attempt to mount a file system using the
device name “sdal’ as a reference will fail in the cloud
provider 130, since the storage device name has changed to
“xvdal” in the cloud provider 130.

Accordingly, the customization module 126 customizes a
mount table file for the given source system 110. For
example, the mount table file for a LINUX operating system
might be the file/etc/fstab. As a specific example, the file/
etc/fstab on the source system 110 might contain the entry:

folev/sca1/ext3
which specifies that one ext3 typed file system, which
resides in storage device “/dev/sdal, should be mounted at
the location “f” in the Linux system. As noted, the mount
described by this line would lead to incorrect results within

US 9,602,344 B1
9

the cloud provider 130 if the cloud provider's storage drive
were named “xvdfl', rather than “sdal’ as in the source
system 110.

In order to rectify this problem, the customization module
126 instead determines, for each file system of the source
system 110, a unique ID corresponding to that file system.
For example, in one embodiment the unique ID, which is
stored in the metadata of the file system 114 on the source
system 110, is retrieved and reported to cloud manager 120.
The cloud manager 120 saves this unique ID into the
metadata of the file system 124, and replaces the device
name with this unique ID in the mount table file. For
example, for the device named “/dev/sdal of a given source
system 110, the customization module 126 could retrieve the
hexadecimal String “ff.514a)-2954-473c-9a47
664a4.d4eb0d4” of the file system 114 from configuration
information 123 as reported by information provider 115 on
the source system 110. The customization module 126 could
then write the hexadecimal string into the metadata for the
file system 124 and also modify the entry of the file/etc/fstab
from

foev/sca1/ext3
tO

UUID=f6f.514a)-2954-473c-9a47-664a4.d4ebOd4/ext3
which has the effect of mounting a file system, whose unique
ID is “föf514a.9-2954-473c-9a47-664a4.d4eb0d4, at the
root directory of a Linux system. Since the unique ID for the
file system 114 has been written into the file system 124, as
well as into the mount table file/etc/fstab, a Linux system
can properly identify the file system, as referenced in the
mount table file, to perform a file system mounting opera
tion, regardless the name change of the underlying storage
device. In another embodiment, the unique ID may be
randomly generated, rather than read from the metadata of
the file system 114.

(ii) Hostname and Network Address Mapping Customi
Zation
A static hostname-to-network address mapping specifies

logical host names that will be associated with network
addresses such as Internet protocol (IP) addresses. (For
example, for a LINUX operating system, the file/etc/hosts
might specify the hostname-to-network address mapping.)
The static hostname-to-network address mapping provides
appropriate mappings between host names and network
addresses even if the local server designed for that purpose
(e.g., a DNS server) is not currently available. Thus, network
communications using hostnames specified by the host
name-to-network address mappings could continue prop
erly, even if the local DNS server had malfunctioned, for
example.
Many enterprise applications make reference to network

addresses of the various source systems 110 associated with
the application, e.g., in application configuration files, many
of which are not documented or otherwise explained. Thus,
it is tedious and error-prone to attempt to locate and revise
these network addresses (e.g., in the application configura
tion riles) when migrating an enterprise-based application
from an enterprise 105 to a cloud provider 130. Retaining
the network addresses used in the enterprise 105, rather than
updating the network addresses to those made available by
the network provider, avoids this difficulty.

The customization module 126 generates a static host
name-to-network address mapping based on the Source
systems 110 identified by the system identification module
119. That is, for each identified system, the customization
module 126 determines its IP address and its hostname, e.g.,
using operating system functionality Such as the "hostname

10

15

25

30

35

40

45

50

55

60

65

10
command or system call. The system customization module
126 also generates variants of the hostname. For example,
the system customization module 126 may obtain the host
name in its fully qualified form and generate variants by
stripping away the domains, e.g., starting with the fully
qualified hostname “machine.company.corp' and forming
simplified variant hostnames “machine.company' and
“machine'. As a more detailed example, and referring ahead
to FIG. 4A, assuming that the identified four source systems
416A-416D were found to have hostnames sugar2
WS1.company.corp, Sugar2-WS1.company.corp, Sugar2
1b.company.corp, and Sugar2-db.company.corp and corre
sponding IP addresses 198.101.232.7, 198.101.232.200,
198.101.232.118, and 198.101.232.219, the customization
module 126 might generate the following mappings:

127.0.0.1 localhost. localdomain localhost
198.101.232.7 sugar2-ws1.company.corp Sugar2-ws1
198.101.232.200 sugar2-ws2.COMPANY.CORP sugar2

ws2
198.101.232.118 sugar2-db.COMPANY.CORP sugar2-db
198.101.232.219 sugar2-1b-node.COMPANY.CORP

Sugar2-1b-node
The line “198.101.232.7 Sugar2-wsl.company.corp Sugar2
ws1' indicates, for example, that the fully-qualified host
name "Sugar2-wsl.company.corp', and the shortened host
name “sugar2-ws1', are both aliases for the IP address
“198.101.232.7. The generated mappings are then stored in
a known address-hostname mapping file. Such as thefetc/
hosts file in the LINUX operating system.

(iii) Network Address Allocation Customization
The cloud provider 130 may require that virtual machine

instance 137 dynamically obtain its network (e.g., IP)
addresses, rather than using static address assignments, in
order to more effectively manage its network infrastructure.
Thus, in one embodiment the customization module 126
modifies the operating system settings stored in the file
system data 124 and obtained from the source system 110 so
as to enable dynamic address allocation. Thus, in one
embodiment the customization module 126 changes, for the
operating system settings corresponding to each source
system 110, any static network address allocations to use the
Dynamic Host Configuration Protocol (DHCP). More spe
cifically, since operating system settings such as network
address allocation are stored within the corresponding file
system, the customization module 126 modifies the file
systems 124 stored by the cloud manager 120 to reflect the
change.

(iii) Boot Image Creation
The customization module 126 generates a cloud boot file

system in the file systems defined by the file system data
124, e.g., by creating a new boot Volume mapped to a fboot
directory in the file systems at boot time.

If operating system versions of the Source systems 110 are
sufficiently old, they may not be able to properly boot up a
virtual machine instance 137 on the cloud provider 130.
Thus, in one embodiment the customization module 126
uses the version of the operating system provided by the
cloud provider 130 to identify files that should be in the
cloud boot file system. For example, if the operating system
of one of the source systems 110 is before a particular known
version (e.g., version 6.0 of CENTOS), then a particular
given set of files is used (e.g., the versions of boot/vmlinuZ
kernel, /boot/initrd, and the?boot/grub/menu.lst boot loader
file that are stored within the file database 122); otherwise,
the files already within the?boot directory from the source
system 110 are used. In one embodiment, the file database

US 9,602,344 B1
11

122 is used to determine which boot files are required, given
a particular source operating system, operating system ver
Sion, and cloud provider.
The customization module 126 further configures a boot

loader for the application on the cloud provider 130. For
example, for a LINUX system and the GRUB boot loader,
the bootloader configuration file could be the file grub.conf
within the grub/subfolder of the cloud boot file system. In
one embodiment, the customization module 126 modifies
the bootloader configuration file from the source system 110
to boot from the customized root file system described above
with respect to file system mounting customization—that is,
the customized root file system identified by the generated
unique ID. For example, assume that the boot loader con
figuration file from the source system 110 contained the
following line:

kernel (boot/vmlinuz-2.6.32-220.e16.x86_64 ro root=7
dev/sdal rd NO LUKS KEYBOARDTYPE=pc
KEYTABLE=us LANG=en US.UTF-8 nomodeset
rhgb crashkernel=auto quiet rd NO MD quiet
SYSFONT=latarcyrheb-sun 16 rhgb crashkernel=auto
rd NO LVM rd NO DM

The customization module 126 could modify the “root
parameter to no longer refer to the device “/dev/sdal, but
rather to refer to the unique root identifier “ff514a9-2954
473c-9a47-664a4.d4eb0d4. This permits the boot loader to
properly boot the system, even when the physical device on
which the?boot partition resides has a different name on the
source system 110 from that on the cloud provider 130.

With the files within the file system data 124 properly
configured, the cloud manager 120 generates a cloud
machine image 128.
The cloud image generation module 127 causes genera

tion of an image of each of the relevant source systems 110
within the enterprise 105 based on the (customized) contents
of the file systems 124 and on the configuration information
123, and the resulting set of images is stored in the cloud
machine images repository 128. For example, if the cloud
provider 130 is AMAZON WEB SERVICES (AWS), the
corresponding cloud machine images 128 are AMAZON
Machine Image (AMI) objects.

In one embodiment, the cloud image generation module
127 generates an image using an application programming
interface (API) of the cloud provider 130. For example, if
the cloud provider is AMAZON WEB SERVICES, the
generation of an image named “My AMI might be
requested using the URL
https://ec2.amazonaws.com/?Action=
RegisterImage&RootDeviceName=/dev/
sdal&BlockDeviceMapping. 1.DeviceName=/dev/
sdal&Name=My AMI&AUTHPARAMS.
As a result, each relevant source system 110 of the

enterprise 105 has a corresponding cloud machine image
128 registered with, and stored on, the cloud provider 130.
The cloning module 129 can be used to generate instances

(also referred to as “clones”) of each application. Multiple
instances of virtual machines running the same cloud
machine images can be created to allow multiple instances
of the enterprise application to be run independently by
different users. Thus, for example, multiple application
testers could be given different independent instances of the
application to test, merely by requesting the creation of a
new instance for each tester. Similarly, separate production
and testing systems could be created by generating separate
instances of the application, one for production and one for
staging or testing (for example).

5

10

15

25

30

35

40

45

50

55

60

65

12
More specifically, when the cloning module 129 receives

a request to create a clone of an application, the cloning
module identifies the set of cloud machine images 128
corresponding to the source systems 110 for the enterprise
105 embodying the application. The cloning module 129
then requests the cloud provider 130 to launch the identified
cloud machine images 128 into the virtual machine instances
137. In one embodiment, each identified cloud machine
image 128 is launched in a separate virtual machine instance
137. Some cloud providers 130 create a single virtual private
networking environment for all the virtual machine
instances associated with the application and assign local IP
address to each virtual machine instance in the virtual
private networking environment.
The instance creation may be customized based on, for

example, additional data known about the relevant Source
systems 110. For example, referring ahead to the user
interface of FIG. 4A, some source systems 110 may be
designated as private and others as public, with public
systems having internet accessible IP addresses assigned in
addition to their local IP addresses.

In one embodiment, the enterprise 105 and the cloud
manager 120 include tunneling modules 113, 135 which act
together to establish tunnels between the application running
within the cloud provider 130 and the source systems 110 of
the enterprise 105 and the services provided by the enter
prise 105. Further details of the tunneling modules 113, 135
are provided below with respect to FIGS. 5 and 6.
Data Flow

FIG. 2 illustrates the data flow that takes place when
generating the cloud machine images 128 for a source
system 110 using the components of FIG. 1, according to
one embodiment.
The metadata and content of the file systems 114 of the

source system 110 are provided to the customization module
126, which generates the customized file systems 124 of the
cloud manager 120. The customization module 126 also
controls injection of files of the file database 122 of the cloud
manager 120 into the customized file systems 124 to ensure
that the image of the source system 110 will have the
necessary kernel files (e.g., drivers and libraries) needed to
function properly on the cloud provider 130. Additionally,
configuration information 123 is obtained from the source
system 110.
The cloud image generation module 127 then produces,

for the source system 110, a corresponding cloud machine
image 128, based both on the customized file systems 124
and on the configuration information 123.

This process is repeated for each source system 110
determined (e.g., at least in part by the system identification
module 119) to be associated with the enterprise-based
application.
System Interactions

FIG. 3 illustrates the interactions that take place between
the source system 110, the site manager 100, the cloud
manager 120, and the cloud provider 130 when generating
a cloud machine image 128 allowing an enterprise-based
application to be hosted by the cloud provider, according to
one embodiment.
Initial Data Gathering
As discussed above, the site manager 100 obtains infor

mation from the source systems 110, including configuration
information and data from the file systems 114. The site
manager 100 further customizes the enterprise-based appli
cation (as embodied in the source systems 110) so that it will
function properly on the cloud provider 130. Additionally,

US 9,602,344 B1
13

the site manager 100 may further monitor any changes to the
source system 110, updating the file systems 124 to reflect
the changes.

Specifically, the site manager 100 obtains 305 configura
tion information from the source system 110, as discussed
above with respect to the configuration reader module 116 of
FIG. 1. The site manager 100 provides 310 the obtained
configuration information to the cloud manager 120, which
stores 315 the configuration information as configuration
information 123.
The cloud manager 120 uses the configuration informa

tion to initialize 320 the file systems on the cloud manager
120. (As noted above, in some embodiments the cloud
manager 120 and its file systems 124 are physically stored
within storage of the cloud provider 130.) Specifically, for
every source file system 114 for which file system configu
ration information was obtained, the cloud manager 120
establishes a corresponding file system 124 as specified by
the file system configuration information, e.g., by requesting
the cloud provider 130 to provide a storage volume of the
given type and having the given capacity. The cloud man
ager 120 then formats the storage Volume into a given typed
file system as reported from configuration information 123
regarding to the file system 114 on source system 110. This
newly formatted file system is the file system 124, to which
the action of providing 330 file system data (below) will
transfer data.

In addition to obtaining configuration information, Such
as file system type and capacity, the site manager 100 also
obtains 325 file system data—that is, the data stored by the
file system—as described above with respect to the file
system reader module 117 of FIG.1. The site manager 100
provides 330 the obtained file system data to the cloud
manager 120. The cloud manager 120 replicates 335 the file
systems from the source system 110 by writing the file
system data provided in step 330 into the file systems
initialized at step 320. In one embodiment, the cloud man
ager 120 maintains a mapping relationship between each file
system 114 of the source system 110 and the location of its
corresponding file system 124 on cloud manager 120. Thus,
the file system data from one file system 114, which arrives
at step 330, will be placed at correct file system 124 in step
335.
File System Monitoring and Updating
The authors of the enterprise-based application repre

sented by the source systems 110 may modify the enterprise
based application after the initial replication of steps 325
335. In order to properly reflect any such modifications, the
site manager 100 (or the information provider 115) may
further monitor the file systems 114 of the source systems
110 and propagate those changes to the corresponding file
systems created on the cloud provider 130. In one embodi
ment, the file system reader 117 is configured to identify any
changes to the file systems of the individual systems within
the source system 110 and to provide 350 an indication of
the changes to the cloud manager 120, which then causes
corresponding modifications to the corresponding file sys
tems of the cloud provider 130, thereby updating 355 the file
systems. The file system reader 117 can identify the changes
by (for example) periodically reading the file allocation
tables of the different file systems and noting any file
modification dates more recent than those previously noted.
Changes to a file may be specified by the identifier of the file
(e.g., file system ID and full pathname within the file
system) and an indication that the file was changed, along
with the complete data of the changed file (or a delta value
that expresses the particular change made). Similarly, the

5

10

15

25

30

35

40

45

50

55

60

65

14
addition of a new file may be specified by the identifier of
the new file, an indication that the file was added, and all the
data of the new file, and the deletion of a file may be
specified by the identifier of the deleted file and an indication
that the file was deleted.
As a result of the file system updating 355, the file systems

on the cloud provider 130 are kept consistent with those on
the source system 110. Thus, if the source systems 110
change, corresponding changes are reflected on in the cloud
manager and/or the cloud provider 130.
Customization
The cloud manager 120 further customizes the data

obtained from the source system 110 in order to allow the
enterprise-based application to properly function in the
environment provided by the cloud provider 130. Specifi
cally, the cloud manager 120 performs kernel file injection
375 and image customization 380, and also creates 385 a
boot image suitable for the cloud provider 130, as described
above with respect to the customization module 126.
Cloning
The cloud manager 120 further can generate 390 cloud

machine images 128 corresponding to the different source
system 110, one cloud machine image per source system, as
described above with respect to the cloud image generation
module 127. The cloud manager 120 can also create 395
clones of the enterprise application by requesting the cloud
provider 130 to launch the cloud machine images into virtual
machine instances 137. Each clone operates independently
of the others, so different users may independently operate
the different clones as if they each constituted a separate
enterprise 105.
User Interfaces

FIGS. 4A-4B respectively illustrate example graphical
user interfaces used in the process of replicating an enter
prise-based application on a cloud provider and creating
instances of that application, according to one embodiment.

FIG. 4A illustrates a user interface 400 used by an
employee or other authorized member of the enterprise 105
to identity the particular source systems 110 within the
enterprise that make up the enterprise-based application, as
well as specifying attributes of those source systems that are
relevant to the replication of the enterprise-based application
on the cloud provider 130.
An enterprise-based application made up of a set of

source systems 110 of the enterprise 105 is assigned the
name in text area 405 (“My App'), and the source systems
to be replicated within the cloud provider 130 are depicted
in the system area 415 of the user interface.

In the embodiment of FIG. 4A, the source systems are
partitioned into private systems and public systems, respec
tively depicted in areas 420A and 420B, with source systems
416A, 416B, and 416D being private systems, and source
system 416C being a public system. The source systems 110
placed in the private systems group 420A will be made
non-accessible to outside systems when the enterprise-based
application is launched on the cloud provider 130, whereas
the systems of the public systems group 420B will be
accessible. (To control accessibility, the private systems
420A may be assigned IP addresses from a private IP address
range, for example, and the public systems 420B may be
assigned IP addresses from a non-private IP address range.)
The source systems 110 may further be partitioned based

on functionality. For example, in FIG. 4A the source systems
110 are partitioned based on whether they represent database
servers, with systems in partitions 425A and 425B repre
senting database servers, and those in other areas represent
ing non-database servers. The Source systems 110 may then

US 9,602,344 B1
15

be treated differently based on their identified functionality.
For example, referring again to FIG. 3, source systems 110
identified as being database servers may be treated differ
ently when providing file system data during steps 330 or
350 in order to provide the transactional properties neces
sary to achieve database data integrity, Such as by copying
data using a database-specific API.

In one embodiment, the user interface 400 initially dis
plays source systems 110 identified by the system identifi
cation module 119 of FIG. 1. The user of the user interface
400 may then use the interface to move the systems into the
appropriate area of the user interface, thereby specifying
their properties (e.g., private/public visibility, or database/
non-database functionality). The user may also select con
trol 435 to request the system identification module 119 to
attempt to discover additional source systems 110 within the
enterprise 105, or controls such as Add button 417 to
manually add a source system to one of the groups (e.g.,
group 420A). Identified source systems may also be moved
into group 430 to be removed from the enterprise-based
application, and will accordingly not be replicated on the
cloud provider 130.

In one embodiment, the functionality upon which the
partition is based is the provision of important services. Such
as database services or directory services. For example, any
Source systems 110 providing such services may be illus
trated in a separate portion of the user interface 400 in the
same way as the database servers were provided their own
area in FIG. 4A. Such source systems 110 will then not be
replicated on the cloud provider 130, since the services
should continue to be provided locally, even when the
remainder of the application is migrated to the cloud pro
vider 130.

In one embodiment, application architectural components
may also be added via the user interface 400. For example,
checkbox 410 allows the user to specify whether the enter
prise-based application should use a load balancer. Since the
checkbox 410 has been enabled in the user interface 400 of
FIG. 4, a load balancer system 416C is inserted within the
public group 420B.
Once the enterprise-based application has been made

available on the cloud provider 130 by replicating the source
systems 110 of the enterprise 105 (e.g., those indicated in
FIG. 4A), the application may be launched by creating an
instance (also referred to as a “clone') of the replicated
source systems 110. As noted, multiple independent sets of
instances of the replicated source systems may be created.

FIG. 4B illustrates a user interface 450 used by an
employee or other authorized member of the enterprise 105
to create instances of an enterprise-based application. The
application list 455 contains the names of application con
figurations (corresponding to enterprises 105) that a user has
replicated on the cloud provider 130. For each such appli
cation, the corresponding clone button 460 allows a user to
request that a new instance of the application be created, as
described above with respect to the cloning module 129. The
delete button 461 allows a user to remove the replicated
application (i.e., the cloud machine images 128) from the
cloud provider 130.
The add new application button 465 allows creation of a

new configuration of the application, corresponding to a
different set of source systems 110, or different properties for
the same systems. Referring again to FIG. 4A, for example,
a new, separate configuration of the application could be
created by adding an additional web server system within
the private group 420A, or by removing the load balancer.

10

15

25

30

35

40

45

50

55

60

65

16
Application information area 470 Summarizes informa

tion about the replicated applications of the user, Such as the
identity of the cloud provider 130 used to host the applica
tions, and the various statuses of replicated applications for
which instances have been created (e.g., which are running,
which have been terminated, etc.). The applications for
which instances have been created may be further managed.
For example, the instances can be suspended, terminated,
resumed, and the like.

FIG. 5 illustrates a more concrete example of the envi
ronment of FIG. 1, in which tunneling is used to allow the
application running on the cloud provider 130 to access
services provided by the enterprise 105, according to one
embodiment. The enterprise-side application server 510
represents a particular source system 110 of the enterprise
105 that provides all or a portion of the logic of the overall
application. Similarly, the cloud-side application server 530
represents the executed machine image of the enterprise
application server 510 when running within the cloud pro
vider 130. The enterprise 105 has one or more services 520,
which represent a service (e.g., a database service or direc
tory service) provided by a source system 110 that is not
executed on the cloud provider 130 due to the preferences of
those responsible for the enterprise 105. For example, the
policy of the enterprise 105 may prohibit making the service
520 directly accessible outside the enterprise.

Since one or more services 520 are not directly available
within the cloud provider 130, the cloud-side application
server 530 needs an indirect way to use the services.
Accordingly, an enterprise-side tunneling component 113
and a cloud-side tunneling component 135 together establish
secure tunnels by which the cloud-side application server
530 can send requests to the service 520. The establishment
and use of the tunnels are described in more detail below
with respect to FIG. 6.
The enterprise-side application server 510 stores or has

access to configuration data 511 (e.g., a configuration file)
that specifies attributes of the tunneling process. An example
set of configuration data 511 according to one embodiment
is provided below in Table A.

Table A
remote ssh ip=192.168.1. 171
remote ssh port–7550
forward tunnel remote destination ip=192.168.1.51
forward tunnel remote destination port–22
is first establish forward tunnel=True

The example configuration data 511 of Table A includes the
port number and destination IP address (the private IP
address of the enterprise-side tunneling module 113) used to
form a secure connection, as well as the private IP address
and port number of the cloud-side application server 530
used as part of a tunnel between the application servers 510,
S30.

Similarly, the cloud-side application server 530 stores or
has access to configuration data 531 (e.g., a configuration
file) that specifies attributes of the tunneling process. An
example set of configuration data 531 according to one
embodiment is provided below in Table B.

Table B
Ssh tunnel
Ssh config file=/opt/denali/etc/ssh.config
ssh key file=/opt/denali/etc/remotenetworkservice

Ssh key
reverse tunnel local destination ip=127.0.0.1
reverse tunnel local destination port=50000
reverse tunnel remote listening ip=127.0.0.1
reverse tunnel remote listening port=50000

US 9,602,344 B1
17

service laap junkang-wordpress-web1 389
nameldap junkang-wordpress-web1 389
protocol=TCP
real server ip-junkang-wordpress-web 1
real server port=389
proxy server port 50101
proxy server ip=127.0.0.1
service ldap 127.0.0.1 389
name=ldap 127.0.0.1 389
protocol=TCP
real server ip=127.0.0.1
real server port=389
proxy server port 50100
proxy server ip=127.0.0.1
service 192.168.1.153
name=192.168.1.1 53
protocol=UDP
real server ip=192.168.1.1
real server port=53
proxy server port=53
proxy server ip=127.0.0.1

The configuration data 531 of cloud-side application server
530 contains information not included within the configu
ration data 511 of the enterprise-side application server 510,
Such as information about how to access various services
520 of the enterprise 105.

FIG. 6 illustrates the interactions that take place between
the various components of FIG. 5 when establishing tunnels
enabling transparent access to a remote service, according to
one embodiment.
The components of the enterprise namely, the service

520, the enterprise-side application server 510, and the
enterprise-side tunneling module 113—begin with private IP
addresses, denoted IPs, IP, and IP respectively. Since
the IP addresses are private, they cannot be used outside of
the enterprise 105 by the cloud provider 130 to communicate
directly with their corresponding components inside the
enterprise.
The cloud manager 120 initiates 605A execution of the

cloud-side application server 530 by creating a clone of the
application, as in step 395 of FIG. 3. It also initiates 605B
the application's cloud-side tunneling component 135.

The cloud manager 120 assigns the cloud-side application
server 530 with a private IP address, donated IP and
assigns the cloud-side tunneling module 135 with a public IP
address, IP, and port P. (e.g., port 22, the port for the
Secure Shell (SSH) protocol) by which the cloud-side tun
neling module can be reached from outside the private
network address space of the application running within the
cloud provider 130. The cloud manager 120 further provides
610 the enterprise-side tunneling module 113 with IP,
P, IP and P. So that it has the necessary connection
information to communicate with the cloud-side tunneling
module 135 and the cloud-site application server 530.
The enterprise-side tunneling module 113 picks one of its

own unused ports, denoted P, and uses the received IP
and P to establish 615 port forwarding from enterprise
side tunneling module 113's IP address IP and port P. to
the cloud-side tunneling module 135 at IP and P. As a
result, any packets sent to the enterprise-side tunneling
module 113 at IP address IP and on port P will be
forwarded to the cloud-side tunneling module 135. This port
forwarding operation 615 conceptually establishes a first
tunnel 616 between the enterprise 105 and the cloud pro
vider 130, and more specifically from enterprise-side tun
neling module 113 to cloud-side tunneling module 135.

10

15

25

30

35

40

45

50

55

60

65

18
Upon successful configuration 615 of port forwarding, the

enterprise-side tunneling module 113 will send 617 a request
to enterprise-side application server 510 to initialize a sec
ond tunnel between enterprise-side application server 510
and cloud-side application server 530. The body of the
request 617 will contain the cloud-side application server
530’s IP address IP and port P., which were originally
provided by cloud manager 120 at an earlier step 610.
The enterprise-side application server 510 initiates

another secure connection (which will eventually become
secure connection 631) over the first tunnel by sending 620
a request for the secure connection to the enterprise-side
tunneling module 113 at IP address IP and port P; the
request contains the private IP address IP and port P. of
the cloud-side application server 530 within the body of the
packet. Due to the establishment of the first tunnel at step
615, the request for this secure connection is forwarded 625
from the enterprise-side tunneling module 113 over the first
tunnel 616 to the cloud-side tunneling module 135. The
cloud-side tunneling module 135 extracts the private address
IP and P from the body of the packet and accordingly
establishes 630 a secure connection 631 with the cloud-side
application server 530. At this point, cloud-side tunneling
module 135 will start forwarding any request for a secure
connection to the cloud-side application server 530’s private
IP address IP and port P.
The enterprise-side application server 510 establishes 635

port forwarding to the cloud-side application server 530 (at
the private IP address IP of the cloud-side application
server) for packets received locally (e.g., IP address
127.0.0.1) on a particular port (hereinafter denoted P.).
This establishes a second tunnel 636, which operates over
the secure connection 631, which in turn operates over the
first tunnel 616. As a result, any packets sent to the enter
prise-side application server 510 on port P are securely
forwarded over the second tunnel 636 to the cloud-side
application server 530. This marks the completion of the
second tunnel initialization that was initiated by request 617.
With the second tunnel 636 established, the enterprise

side application server 510 uses functionality of the secure
connection 631 (e.g., the “cp' command of an SSH connec
tion) to request 640 a copy of the configuration data 531 of
the cloud-side application server 530, which the cloud-side
application server accordingly provides 645. (More specifi
cally, the enterprise-side application server 510 sends a
packet to 127.0.0.1 on port P. containing a command,
Such as "cp.” to be executed by a process implementing the
secure connection. This packet is forwarded over the second
tunnel 636 via the secure connection 631 due to the use of
destination address 127.0.0.1 and port P. and the process
on the cloud-side application server 530 implementing the
secure connection executes the command, providing 645 the
configuration data 531 back to the enterprise-side applica
tion server 510.)

In configuration data 531, each service 520 available on
enterprise-side application will have a corresponding con
nection information entry (IP protocol, IP address and port—
e.g., protocol TCP, IP address 127.0.0.1 and port 50000),
herein denoted as ServiceInfo. ServiceInfo can either be an
address within the private address space of cloud provider
130, or the local address (e.g. 127.0.0.1) of cloud-side
application server 530. The cloud-side application server
530 will be able to connect using the ServiceInfo to reach
the corresponding enterprise-side service 520. There are a
few ways that the ServiceInfo is presented to an application
running on the cloud-side application server 530. While
modifying the filesystem data at (for example) step 350 of

US 9,602,344 B1
19

FIG. 3, the cloud manager 120 can parse the applications
configuration file to determine the enterprise-side connec
tion information of service 520. The cloud manager 120 can
then replace that enterprise-side information with a dynami
cally generated ServiceInfo and save the mapping between
service 520 and ServiceInfo in configuration data 531.
Hence, at the time that the cloud-side application server 530
is booted 605A by the cloud manager 120, the cloud-side
application server 530 will already be configured to use the
ServiceInfo to reach the enterprise-side service 520 without
the need for any manual configuration. Alternatively, the
application can also be manually configured after step 605A
to use ServiceInfo.
As noted, the configuration data 531 specifies information

used to access the service(s) 520 available on the enterprise
105. Thus, using the configuration data 531, the enterprise
side application server 510 enables access to services by the
cloud-side application server 530 by recording 650 the
ServiceInfo for which it will respond to requests from the
cloud-side application server 530.

With the secure connection 631 established 630, and with
the ports recorded 650 by the enterprise-side application
server 510, the cloud-side application server 530 can request
the use of a service by sending 655 the request using the
address and port data of the corresponding ServiceInfo in
configuration data 531; this causes the request to be sent
through the tunnel 636, which in turn operates over the first
tunnel 616. The enterprise-side application server 510
receives the request 655 on the other side of the tunnel 636,
invokes 660 the service 520 and receives the result that the
service provides 665. It then returns 670 the provided result
from step 665 back to the cloud-side application server 530
via the tunnel 636 (using the first tunnel 616). Since the
secure connection 631 is secure (e.g., encrypted), informa
tion can be safely provided to/from the service 520, even
outside of the enterprise 105 across the network 150.

ADDITIONAL CONSIDERATIONS

Reference in the specification to “one embodiment' or to
“an embodiment’ means that a particular feature, structure,
or characteristic described in connection with the embodi
ments is included in at least one embodiment. The appear
ances of the phrase “in one embodiment in various places
in the specification are not necessarily all referring to the
same embodiment.

In this description, the term “module” refers to compu
tational logic for providing the specified functionality. A
module can be implemented in hardware, firmware, and/or
software. It will be understood that the named modules
described herein represent one embodiment, and other
embodiments may include other modules. In addition, other
embodiments may lack modules described herein and/or
distribute the described functionality among the modules in
a different manner. Additionally, the functionalities attrib
uted to more than one module can be incorporated into a
single module. Where the modules described herein are
implemented as Software, the module can be implemented as
a standalone program, but can also be implemented through
other means, for example as part of a larger program, as a
plurality of separate programs, or as one or more statically
or dynamically linked libraries. In any of these software
implementations, the modules are stored on the computer
readable persistent storage devices of a system, loaded into
memory, and executed by the one or more processors of the
system's computers.

5

10

15

25

30

35

40

45

50

55

60

65

20
The operations herein may also be performed by an

apparatus. This apparatus may be specially constructed for
the required purposes, or it may comprise a general-purpose
computer selectively activated or reconfigured by a com
puter program stored in the computer. Such a computer
program may be stored in a computer readable storage
medium, Such as, but is not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, magnetic
optical disks, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, magnetic or opti
cal cards, application specific integrated circuits (ASICs), or
any type of media Suitable for storing electronic instructions,
and each coupled to a computer system bus. Furthermore,
the computers referred to in the specification may include a
single processor or may be architectures employing multiple
processor designs for increased computing capability.
The algorithms and displays presented herein are not

inherently related to any particular computer or other appa
ratus. Various general-purpose systems may also be used
with programs in accordance with the teachings herein, or it
may prove convenient to construct more specialized appa
ratus to perform the required method steps. The required
structure for a variety of these systems will appear from the
description below. In addition, the present invention is not
described with reference to any particular programming
language. It will be appreciated that a variety of program
ming languages may be used to implement the teachings of
the present invention as described herein, and any references
below to specific languages are provided for disclosure of
enablement and best mode of the present invention.

While the invention has been particularly shown and
described with reference to a preferred embodiment and
several alternate embodiments, it will be understood by
persons skilled in the relevant art that various changes in
form and details can be made therein without departing from
the spirit and scope of the invention.

Finally, it should be noted that the language used in the
specification has been principally selected for readability
and instructional purposes, and may not have been selected
to delineate or circumscribe the inventive subject matter.
Accordingly, the disclosure of the present invention is
intended to be illustrative, but not limiting, of the scope of
the invention, which is set forth in the following claims.

What is claimed is:
1. A computer-implemented method performed by an

enterprise system for enabling a remote application server
hosted by a cloud provider system to access services local to
the enterprise system, the method comprising:

establishing a first tunnel between the enterprise system
and the cloud provider system;

establishing a secure connection over the first tunnel, the
secure connection being encrypted;

obtaining configuration data from the cloud provider
system over the secure connection, the configuration
data including information on one or more services
local to the enterprise system, the obtaining comprising
sending a packet containing a file copy command to be
executed by a process implementing the secure con
nection, wherein the process implementing the secure
connection is SSH (Secure Shell), and the file copy
command is the SSH copy command; and

enabling access to the one or more services by the remote
application server, using the obtained configuration
data.

2. The computer-implemented method of claim 1, further
comprising:

US 9,602,344 B1
21

receiving a request for one of the services from the remote
application server, and

responsive to the enabling:
invoking the requested service, and
providing a result of the invocation of the requested

service to the remote application server over the
secure connection.

3. The computer-implemented method of claim 1,
wherein establishing the first tunnel comprises:

receiving, from the cloud provider system, public address
information of a tunneling module of the cloud pro
vider System; and

establishing forwarding of packets received by a tunnel
ing module of the enterprise system on a first port, to
a public network address of the tunneling module on a
second port specified in the public address information.

4. The computer-implemented method of claim 3,
wherein establishing the secure connection comprises:

sending a request for the secure connection to the tunnel
ing module of the enterprise system, a body of the
request including a private network address of the
remote application server, and

forwarding the request from the tunneling module of the
enterprise system over the first tunnel to the tunneling
module of the cloud provider system.

5. A non-transitory computer-readable storage medium
storing instructions executable by a processor, the instruc
tions comprising:

instructions for establishing a first tunnel between the
enterprise system and the cloud provider system;

instructions for establishing a secure connection over the
first tunnel;

instructions for obtaining configuration data from the
cloud provider system over the secure connection, the
configuration data including information on one or
more services local to the enterprise system, the obtain
ing comprising sending a packet containing a file copy
command to be executed by a process implementing
the secure connection, wherein the process implement
ing the secure connection is SSH (Secure Shell), and
the file copy command is the SSH copy command; and

instructions for enabling access to the one or more ser
vices by the remote application server, using the
obtained configuration data.

6. The non-transitory computer-readable storage medium
of claim 5, the instructions further comprising:

instructions for receiving a request for one of the services
from the remote application server; and

instructions for, responsive to the enabling:
invoking the requested service, and
providing a result of the invocation of the requested

service to the remote application server over the
secure connection.

7. The non-transitory computer-readable storage medium
of claim 5, wherein establishing the first tunnel comprises:

receiving, from the cloud provider system, public address
information of a tunneling module of the cloud pro
vider System; and

establishing forwarding of packets received by a tunnel
ing module of the enterprise system on a first port, to
a public network address of the tunneling module on a
second port specified in the public address information.

8. The non-transitory computer-readable storage medium
of claim 7, wherein establishing the secure connection
comprises:

sending a request for the secure connection to the tunnel
ing module of the enterprise system, a body of the

5

10

15

25

30

35

40

45

50

55

60

65

22
request including a private network address of the
remote application server, and

forwarding the request from the tunneling module of the
enterprise system over the first tunnel to the tunneling
module of the cloud provider system.

9. The non-transitory computer-readable storage medium
of claim 5, the instructions further comprising instructions
for establishing a second tunnel between the remote appli
cation server hosted by the cloud provider system and an
application server of the enterprise system.

10. The non-transitory computer-readable storage
medium of claim 5, the instructions further comprising:

instructions for, for at least one source system of a
plurality of source systems of the enterprise system that
together provide an enterprise-based computer soft
ware application to users:
obtaining configuration information associated with the

Source system;
obtaining file system information describing one or
more file systems of the Source system, a first one of
the file systems storing operating system files in a
boot directory;

replicating the file systems and files of the file systems
within a cloud manager system located remotely
from the enterprise system, using the obtained file
system information;

identifying, based on a version of an operating system
of the source system, a set of boot files:

replacing operating system files in the boot directory of
the first one of the replicated file systems with the
identified set of boot files;

causing generation of an image of the source system
using the obtained configuration information and the
replaced files in the boot directory of the replicated
file system, the generated image executable within a
virtual machine of the remote application server
hosted by the cloud provider system; and

instructions for receiving a plurality of requests to execute
the enterprise-based application on the remote applica
tion server hosted by the cloud provider system; and

instructions for, for each of the plurality of requests,
causing the remote application server to execute the
images generated for the plurality of Source systems;
and

instructions for wherein the requests cause the executed
images to request the services local to the enterprise
system.

11. A computer system comprising:
a computer processor, and
a computer program stored on a non-transitory computer

readable storage medium and executable by the com
puter processor, and comprising:
instructions for establishing a first tunnel between the

enterprise system and the cloud provider system;
instructions for establishing a secure connection over

the first tunnel;
instructions for obtaining configuration data from the

cloud provider system over the secure connection,
the configuration data including information on one
or more services local to the enterprise system, the
obtaining comprising sending a packet containing a
file copy command to be executed by a process
implementing the secure connection, wherein the
process implementing the secure connection is SSH
(Secure Shell), and the file copy command is the
SSH copy command; and

US 9,602,344 B1
23

instructions for enabling access to the one or more
services by the remote application server, using the
obtained configuration data.

12. The computer system of claim 11, the computer
program further comprising:

instructions for receiving a request for one of the services
from the remote application server; and

instructions for, responsive to the enabling:
invoking the requested service, and
providing a result of the invocation of the requested

service to the remote application server over the
secure connection.

13. The computer system of claim 11, wherein establish
ing the first tunnel comprises:

receiving, from the cloud provider system, public address
information of a tunneling module of the cloud pro
vider system; and

establishing forwarding of packets received by a tunnel
ing module of the enterprise system on a first port, to
a public network address of the tunneling module on a
Second port specified in the public address information.

14. The computer system of claim 13, wherein establish
ing the secure connection comprises:

sending a request for the secure connection to the tunnel
ing module of the enterprise system, a body of the
request including a private network address of the
remote application server; and

forwarding the request from the tunneling module of the
enterprise system over the first tunnel to the tunneling
module of the cloud provider system.

15. The computer system of claim 11, the non-transitory
computer-readable storage medium further comprising
instructions for establishing a second tunnel between the
remote application server hosted by the cloud provider
System and an application server of the enterprise system.

16. The computer system of claim 11, the non-transitory
computer-readable storage medium further comprising:

instructions for, for at least one source system of a
plurality of source systems of the enterprise system that
together provide an enterprise-based computer soft
ware application to users:
obtaining configuration information associated with the

Source system;
obtaining file system information describing one or
more file systems of the source system, a first one of
the file systems storing operating system files in a
boot directory;

replicating the file systems and files of the file systems
within a cloud manager system located remotely
from the enterprise system, using the obtained file
system information;

identifying, based on a version of an operating system
of the source system, a set of boot files:

replacing operating system files in the boot directory of
the first one of the replicated file systems with the
identified set of boot files:

5

10

15

25

30

35

40

45

50

55

24
causing generation of an image of the source system

using the obtained configuration information and the
replaced files in the boot directory of the replicated
file system, the generated image executable within a
Virtual machine of the remote application server
hosted by the cloud provider system; and

instructions for receiving a plurality of requests to execute
the enterprise-based application on the remote applica
tion server hosted by the cloud provider system; and

instructions for, for each of the plurality of requests,
causing the remote application server to execute the
images generated for the plurality of source systems;
and

instructions for wherein the requests cause the executed
images to request the services local to the enterprise
System.

17. The computer-implemented method of claim 1, fur
ther comprising establishing a second tunnel between the
remote application server hosted by the cloud provider
System and an application server of the enterprise system.

18. The computer-implemented method of claim 1, fur
ther comprising:

for at least one source system of a plurality of source
Systems of the enterprise system that together provide
an enterprise-based computer software application to
USerS:

obtaining configuration information associated with the
Source system;

obtaining file system information describing one or
more file systems of the source system, a first one of
the file systems storing operating system files in a
boot directory;

replicating the file systems and files of the file systems
within a cloud manager system located remotely
from the enterprise system, using the obtained file
system information;

identifying, based on a version of an operating system
of the source system, a set of boot files:

replacing operating system files in the boot directory of
the first one of the replicated file systems with the
identified set of boot files:

causing generation of an image of the source system
using the obtained configuration information and the
replaced files in the boot directory of the replicated
file system, the generated image executable within a
Virtual machine of the remote application server
hosted by the cloud provider system; and

receiving a plurality of requests to execute the enterprise
based application on the remote application server
hosted by the cloud provider system; and

for each of the plurality of requests, causing the remote
application server to execute the images generated for
the plurality of source systems; and

wherein the requests cause the executed images to request
the services local to the enterprise system.

