US012141226B2

a2 United States Patent
Ma et al.

US 12,141,226 B2
Nov. 12, 2024

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND PROCESSES FOR
ORGANIZING AND CONTROLLING
MULTIPLE MATRIX PROCESSOR CIRCUITS

(71)
(72)

Applicant: Expedera, Inc., Santa Clara, CA (US)

Inventors: Siyad Chih-Hua Ma, Palo Alto, CA
(US); Shang-Tse Chuang, Los Altos,
CA (US); Sharad Vasantrao Chole,

San Jose, CA (US)
(73)

")

Assignee: Expedera, Inc., Santa Clara, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 5 days.

1) 16/377,103

(22)

Appl. No.:
Filed: Apr. 5, 2019

Prior Publication Data

US 2020/0226201 Al Jul. 16, 2020

(65)

Related U.S. Application Data

Provisional application No. 62/791,585, filed on Jan.
11, 2019.

(60)

Int. CL.
GO6F 17/16
GO6N 3/04
U.S. CL
CPC

(51)
(2006.01)
(2023.01)
(52)
GOGF 17/16 (2013.01); GO6N 3/04

(2013.01)

(58) Field of Classification Search

CPC GO6F 9/3877; GOGF 9/3879; GO6F 9/3881;
GOG6F 9/3885; GOGF 9/3887; GOGF

9/3889; GOGF 9/3891; GOGF 9/3893;
GOG6F 9/3895; GOGF 9/3897; GOGF

Command
Bus 407

2009/3883; GO6F 17/16; GOGF 15/8053;

GOG6F 15/8061; GO6F 15/8069; GO6F

15/8076; GO6F 15/8084; GOGF 15/8092;

GO6N 3/04; GO6N 3/084; GO6N 3/063

USPC 708/520
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0189652 Al* 7/2018 Korthikanti
2019/0392297 Al* 12/2019 Lau

GO6N 3/084
GO6N 3/08

* cited by examiner

Primary Examiner — Tan V Mai
(74) Attorney, Agent, or Firm — Carr & Ferrell LLP

(57) ABSTRACT

Artificial intelligence is an increasingly important sector of
the computer industry. However, artificial intelligence is
extremely computationally intensive field such that it can be
expensive, time consuming, and energy consuming. Fortu-
nately, many of the calculations required for artificial intel-
ligence can be performed in parallel such that specialized
processors can greatly increase computational performance.
Specifically, artificial intelligence generally requires large
numbers of matrix operations to implement neural networks
such that specialized Matrix Processor circuits can improve
performance. But a neural network is more than a collection
of matrix operations; it is a set of specifically coordinated
matrix operations with complex data dependencies. Without
proper coordination, Matrix Processor circuits may end up
idle or spending large amounts of time loading in different
weight matrix data. Thus this document discloses apparatus
and methods for organizing and controlling multiple Matrix
Processor circuits efficiently.

16 Claims, 34 Drawing Sheets

Matrix Processor 401

("_Operand 1 420-1 Resuit 1 490-1)

Operand 2 420-2 Control Result 2 490-2 >

Operand 3 420-3 Y | System P16 X186 M?t”{(Resull 3 490-3 >

Operand 4 4204 405 meisé‘;g ogic Resull 4 490-4_>

Oﬁerand 5 420-5 Resuit 5 490-6 >

Oéerand 6 420-6 Result 6 490-6 >

| Oéerand 7 420-7 Resuit 7 490-7 >
gg;;! Operand 6 420-8 Memory 430 Resul 84908 »| Juipdt
Vgggor Operand 9 420-9 Result 9 490-9 > Vgggor

Operand 10 42040 | §~=="7 =777 : Result 10 490-10 »

Operand 11 42041 | | We}ghmgmx Resull 1149011 >

Operand 12 420-12 : 437 : Result 12 490-12

Oﬁerand 13 420-13 G Result 13 490-13 >

Oéerand 14 420-14 Result 14 490-14 >

Operand 15 420-15 Result 15 490-15 >

Operand 16 420-16 Result 16 490-16)

US 12,141,226 B2

Sheet 1 of 34

Nov. 12, 2024

U.S. Patent

L6l
IndinQ

V1 dIngiy

0Ll
uonoun

Indino

1447
no

vl
no

rA43
no

ozl
XLiyew W6Iapp

U.S. Patent Nov. 12, 2024 Sheet 2 of 34

Output Output
Function ?
170

o<

2=

o1 \»'

(.¢®

2N
S

‘/. \. . Out
i L\ 154
eight matrix
122

Figure 1B

US 12,141,226 B2

Sheet 3 of 34

Nov. 12,2024

U.S. Patent

V<
3.1n3I

ove

09¢

sjueg Qv

1ZZ sng pueledO

_
_
A Ax:_\,_ v
syjueg XN\
AR

L0¢ shg
f A ~ puUBWIWOY
0€c
NVHS &
SPIM
I'] orz 2 Jpuesedo e
<
’4 XN “ XN XN\ XN\ XN c0z
y y \ 4 v \ Emﬁw\Aw
|oJjuo
_\/A j OVIN OVIN OVIN OVIN _i OVIN OVIN T.
0G¢ |44 Insay <
002
\ 4 v \ 4 4 v v
0.z o511 uononpey ¥
C~ \ v v v 4~\
Y
G6¢ shg 162 sng }insey
20Npay v

U.S. Patent Nov. 12, 2024 Sheet 4 of 34 US 12,141,226 B2

Reduce Bus

25 N

Figure

5 Redustion
f Tree 310

Resul /
Hegister M /
it

» MAC Barks
o j 20

Operand 1
Register Fie
st

fosews 3
foo2
i
S

P i
o Fo S

=IEIELE
P 2 1S

=l=[=]=
e R SR e S R e S St
s
M
P
o

US 12,141,226 B2

Sheet 5 of 34

Nov. 12, 2024

U.S. Patent

a16¢
sng jnsey

A1 6¢ Shg }Insey

N

oce
AloWws|N

19¢
2160| Buissado.d

LO¢ JO0SS2201d XIlIJEeN

G0¢
wolsAg
|0Jju0D

1122 sng pueledQ

10Z shg UcmEEoo_

AN

lice
shg pueltadQ

U.S. Patent Nov. 12, 2024 Sheet 6 of 34 US 12,141,226 B2

>0 D~

a [a [a || H a
= = || = =
| | ™ | |
O
< o) >
I I o I I
o | a US|l a H H o
= = = = =
AN 8 N
) o)
= < £ > o
> | | (o) | | >
m o | o Uaollae U a
= = c = =
®©
< > >
I I = I I
o | n._g a || [a
= = 13 = =
M
M S 4%~ QO « «—

Figure
3A-1

US 12,141,226 B2

Sheet 7 of 34

Nov. 12, 2024

U.S. Patent

>0 D~

M S% v O -« v«

¢ NdA
1 1 A 1 1
diA dA H| | dIN diA
[[_ [
1 1 1 1
diA dA H| |H dIN diN
[[_ [
_ _ _ _
diA dN H| | dIN diA
| | 1 __
I I I I
diA diN 1| LH dIN diA
_ _ _ I
¢ Jayng

Ve
N3

US 12,141,226 B2

Sheet 8 of 34

Nov. 12, 2024

U.S. Patent

¢ NdA

€T din” AN k=~ AN k= QAT

gl i 4 il it 7 M
vl

€= - " - - mm oo | e s omm b e = =] -
diN dIA diN dIN J
S itk 4 e /i 2 B H O
n I J

Q]
A b ur e ar el st =l s

-t <Y M-EAVEEE ML T
. d

|

€T din’ AN el diN |.m_>_|._|

it 4 it 4 il

¢ Jayng

a¢
N3

U.S. Patent Nov. 12, 2024 Sheet 9 of 34 US 12,141,226 B2

>0 D~

1
I
MP
I
L >
MP:
I $
=
VPl

o
Ll Lyl Ll Ly

—I —
I
“MP
I T
MP:
I $
i
Ivpi

Buffer 2
VPU 2

I_ —
I
MP
I

| [>
11
MP,
I

I $

|

P

M S %~ QO « «—

Figure
3C

US 12,141,226 B2

Sheet 10 of 34

Nov. 12, 2024

U.S. Patent

>0 D~

[o

=

M S5u4— v Q@ ~ «—

¢ Jayng

(13
N3

U.S. Patent Nov. 12, 2024 Sheet 11 of 34 US 12,141,226 B2

>0 D~
4 4 4 4
1 1 1 1
o =T 1A =TIAF 2T T
=l =l A| =l =l

Buffer 2
VPU 2

Figure
3E

U.S. Patent Nov. 12, 2024 Sheet 12 of 34 US 12,141,226 B2

>0 D~
))))
| | | |
[a [a [a [a
=l =l =l =
-11=-"=1-t—"=F-1 =" 1-=- 1
. | | | |
|
.]]]]
[o. o. o. 0.
o _;._.2!_._._2.!_ - _2!_ i .E!.-., ~
2 . | | | | E
> | S
m | D_! D_! D_I D_!
s o E|_ — _§.|_ — _§| N R §|. -+ >
|
. | | | |
I M M M
. al al al al
ll_= l_|=_|J]J=1.4.=. 1,
r | 1 |
= - - === |
M S% v O« v«

Figure
3F

US 12,141,226 B2

Sheet 13 of 34

Nov. 12, 2024

U.S. Patent

ot
ered
IndinQ

({91-06¥ 91 Insey

A“ G1-06v G| }nssy

A“ v1-06¥ t| HINSSY

A“ €1-06v €1 }nssy

{Z1-06¥ ¢l Insoy

A“ LL-06¥ L1 HINSSY

{01-06¥% 01 INsoy

6-06¥ 6 }INSaY

8-06¥ 8 }iNsay

9l X9l

L XUIElN JUBIepA

oct Alows|p

LEY

91-02¥ 91 PUessdQ |)

(§1-02¥ G puessdQ |

1-02¥ v PUessdQ |

€1-02¥ €1 pUessdQ |

(Z1-02¥ | puessdQ |

11702 11 Pueisdo |

01-02¥ O} PUEssdQ |

(_6-02¥ 6 PUEISd0

(_8-02¥ 8 PUEISdD

L-06¥ / }INSaYy

9-06¥ 9 }INSay

G-06¥ G }INSay

¥-06¥ v IINSSY

€-06¥ € }INSay

{__C-06¥ ¢ JINssy

K T-06v 1 INsey

A1 4
2160| Buissaso.d

XUeN 91 X 9l

sov
wolsAg
|oJjuo)

LOY Josseo0ld XIeN

(_Z-02¥ / pueIsdo

" 9-02¥ 9 PUEISd0

(02 G PueIsdo

_¥-02¥ ¥ PUeIsdo

(_€-02¥ € pueIsdo

K__¢-02Y ¢ pueJsdQ

(_1-02¥ | pueIsdo

A4 4

Sq sng
puewwo)

N3

-

(¥4 4
JOJOBA
eleq
indu

US 12,141,226 B2

Sheet 14 of 34

Nov. 12, 2024

U.S. Patent

v-26v
7 J0JO9/ <
JNSay

€-26V
€ 10J09A <
JNSay

2-26v
Z Jojoap <
JNSay

1-26¥
| JOJOBA <
JNSay

({91-06¥ 01 INsey

A“ G1-06v G| }nssy

A“ v1-06¥ t| HINSSY

rA €1-06v €1 }nssy

((Z1-06Y ¢1 Insoy

A“ LL-06¥ L1 HINSSY

A“ 01-06% Ol }nssy

(<_6-06% 6 }Nsay

8-06¥ 8 }iNsay

gy
XU JyBispA
! ¥ Xy

oct Alows|p

L-06¥ / }INSaYy

9-06¥ 9 }INSay

G-06¥ G }INSay

¥-06¥ v IINSSY

2160| Buissaso.d

€-06¥ € }INSay

AN AN

{__C-06¥ ¢ JINssy

(<1-06Y 1 Insey

JA: | 4

X1

LOY Josseo0ld XIeN

91-02¥ 91 pUessd |

(§1-02¥ G puessdQ |

1-02¥ v PUessdQ |

E1-02¥ €1 puessd | |

Z1-02¥ | puessd |

11702 11 Pueisdo |

01-02¥ O} PUEssdQ |

(_6-02¥ 6 PUEISd0

L

(_8-02¥ 8 PUEISdD

~

|

(_Z-02y / pueisdo_|

902y 9 PUEISdD |

502 G pueisdo | |

gop | 702y v puesdo)

welsAS | K €-02p € pueladp |

10AU0D | |52 Z PUBTRA0 |

_1-02¥ | pueisdo | |
T~ dr

40¥ sng aIng1y
puewwo) C

v-Zcy
-7 JOJOBA
ejed

1 AA 4
\-¢ J0JOBA
eleq

[ArAA Y4
\-Z JOJ08A
eleq

L-¢cvy
| JOJO8A
ejed

US 12,141,226 B2

Sheet 15 of 34

Nov. 12, 2024

U.S. Patent

{91-06¥ o1 Insey

{S1-06¥ G1 Insey

{T1-06¥ 71 Insey

{E1-06¥ €1 Insey

{TT-06¥ 1 WINsoy

T-06F 11 3nsoy

{01-06¥ 01 Insey

6-06% 6 HNSaY

8-06% 8 HiNSay

gey
“x_:m_\/_vxz

wou Jybram |

L-06¥ / }iNSey

9-06% 9 HNSaY

§-06¥ G HiNSaY

¥-061¢ ¥ }INSay

€-06% € HNSaY

{_2-06¥ C linssy

{_1-06v 1 Inssy

(91-02¥ 91 puessdo |

(§1-02¥ G puessdo |

(¥1-02v 71 puessdo |

(€1-02v £1 puessdo |

(Z1-02¥ ¢| PUEIsAQ |

 T1-0¢b 11 pueRdo |

(01-02¥ 01 puessdo |

(_6-02v 6 PUEISd0

oSt Alows\ .
(§-02y g puEIRd0 |
_Z-02y / pUERA0]
902 9 PUERA0 |
e " S-0ey G pUeIRdo |
o16o| Buisseoold goy |K_¥-0cy ¥ PUBISAQ |
XLIEIN 91 X 91 weisAg | K €-02F € PueIsdo |
1020 | 702 z puessdD |
(_T-02% | pUERd0 |
LOF 10SS2004d XIJIB|A

>; U.—V

L0V sng N3
puewwoD

US 12,141,226 B2

Sheet 16 of 34

Nov. 12, 2024

U.S. Patent

L6v
JOJOB/N
ejed <
Indino
leryed

({91-06¥ 91 Insey

A“ G1-06v G| }nssy

A“ v1-06¥ t| HINSSY

A“ €1-06v €1 }nssy

{Z1-06¥ ¢l Insoy

A“ LL-06¥ L1 HINSSY

{01-06¥% 01 INsoy

6-06¥ 6 }INSaY

8-06¥ 8 }iNsay

6EY m
sjubiop XLjeN i
179 X ¥9 40 1980NnS |

oct Alows|p

L-06¥ / }INSaYy

9-06¥ 9 }INSay

G-06¥ G }INSay

¥-06¥ v IINSSY

€-06¥ € }INSay

{__C-06¥ ¢ JINssy

K T-06v 1 INsey

JA: | 4

2160| Buissaso.d
XUeiN 9L X 9l

LOY Josseo0ld XIeN

sov
wolsAg
|oJjuo)

91-02¥ 91 PUessdQ |)
(§1-02¥ G puessdQ |
1-02¥ v PUessdQ |
€1-02¥ €1 pUessdQ |
(Z1-02¥ | puessdQ |
11702 11 Pueisdo |
01-02¥ O} PUEssdQ |
(_6702¥ 6 PUEISd0 |
802y 8 PUEISdD |
(_Z-02y / pueisdo_|
902y 9 PUEISdD |
(_§-02y G pueisdo_|
|
|
|

_¥-02¥ ¥ PUeIsdo
(_€-02¥ € pueIsdo

K__¢-02Y ¢ pueJsdQ

(_1-02¥ | pueIsdo

o.v sng
pu

BUlIWO)

ar

N3

(X4 4
SOBENY
>ejed

indu
[eled

US 12,141,226 B2

Sheet 17 of 34

Nov. 12, 2024

U.S. Patent

>0 D

[o

[o

=

ry ry 7y 7y
oLy | SLY | T A Sy |
| dIA_] 7 din _|<-a|_>_|_ diAl |
| | | | | 1
e 1 Iy 1 oLy |1 6y |
| dIAl N dNL <|n_B_L diN
]]]]
8y | v | o | St |
diN diN - diN diN -
= =TNA= VT - 1 I
I I I I
v e | v | W
diN diN diN diN
M2 VR

q¥
N3

US 12,141,226 B2

Sheet 18 of 34

Nov. 12, 2024

U.S. Patent

L6V
JOJOBA

eleq <
IndinQ
[elued

({91-06¥ 91 Insey

A“ G1-06v G| }nssy

A“ v1-06¥ t| HINSSY

A“ €1-06v €1 }nssy

{Z1-06¥ ¢l Insoy

A“ LL-06¥ L1 HINSSY

{01-06¥% 01 INsoy

6-06¥ 6 }INSaY

8-06¥ 8 }iNsay

vey

X1 OIS 9GZ X 9GZ dU)
o slesang 9 Ag 91 sidiynp

oct Alows|p

L-06¥ / }INSaYy

9-06¥ 9 }INSay

G-06¥ G }INSay

¥-06¥ v IINSSY

€-06¥ € }INSay

{__C-06¥ ¢ JINssy

K T-06v 1 INsey

A1 4
2160| Buissaso.d

XUeN 91 X 9l

Lot 10SS220.1d XIJeN

sov
wolsAg
|oJjuo)

91-02¥ 91 PUessdQ |)
(§1-02¥ G puessdQ |
1-02¥ v PUessdQ |
€1-02¥ €1 pUessdQ |
(Z1-02¥ | puessdQ |
11702 11 Pueisdo |
01-02¥ O} PUEssdQ |
(_6702¥ 6 PUEISd0 |
802y 8 PUEISdD |
(_Z-02y / pueisdo_|
902y 9 PUEISdD |
(_§-02y G pueisdo_|
|
|
|

_¥-02¥ ¥ PUeIsdo
(_€-02¥ € pueIsdo

K__¢-02Y ¢ pueJsdQ

(_1-02¥ | pueIsdo

Sq sng
pu

BUlIWO)

Ay

N3

(X4 4
SOBENY
>ejed

indu
[eled

US 12,141,226 B2

Sheet 19 of 34

Nov. 12, 2024

U.S. Patent

alls NdA/MeHng

ALLS
NdA
[1a4ng

diA diA diA diA
diA diA diA diA
diA diA diA diA
diA diA diA diA

LIS NdA/A84Ng

LLS
NdA
[1a4ng
\2
N3

US 12,141,226 B2

Sheet 20 of 34

Nov. 12, 2024

U.S. Patent

¥12g shg puesadQ

shg pueltadQ

a1¢s

a166
sng jnsey

A1 6S shg }Nssy

0cs
Alows|y

as
N3

199
2160| Buissaso.d

G0S
wolsAg
|0Jju0D

116G sSng }nsay

T12s sng puelado

10S Sng puewwo? _

AN

LOG Jossao0id XIe

11689
sng jynsey

llcs
shg pueltadQ

US 12,141,226 B2

Sheet 21 of 34

Nov. 12, 2024

U.S. Patent

ALLS
NdA
[1a4ng

g tidd

alls NdA/MeHng

TS 3000
\

TN A00]

N

N 7

r

i 444

LLS
NdA
[1a4ng

LIS NdA/A84Ng

IS
N3

US 12,141,226 B2

Sheet 22 of 34

Nov. 12, 2024

U.S. Patent

r7 7 Jodus induy |

||||||||| [|

7

1 ¢v9

doud

L yoeg H

q9 dan3iq

rejed

iy L{79 ssed pJemio
4¥_V [

L&_:__

eleq!
indu!

V9 2.In31y

US 12,141,226 B2

Sheet 23 of 34

Nov. 12, 2024

U.S. Patent

L

v 991

NEYER

V-7

Wi
ssed pJemio

F'ZG] joiie INdInQ

gL dIn31y

IIIIIIIIIIII 1

VL dIng1y

US 12,141,226 B2

Sheet 24 of 34

Nov. 12, 2024

U.S. Patent

(8 2Ans1y

|

“NQMDW
IndinQr

|

zssed pJemio

Zinduj
/LINAINO:

4
/ [L1 1

i

q8 dIm31]

D8 231

| |

| Leleqy
INdINQ:

|ssed pJemio

/
/ [L1 1

Leled
induj!

&

=

V8 2an31j

US 12,141,226 B2

Sheet 25 of 34

Nov. 12, 2024

U.S. Patent

d8 dIn31y

elepdn

A8 dIn31y

US 12,141,226 B2

Sheet 26 of 34

Nov. 12, 2024

U.S. Patent

1

1] JoLT! zJoJig!
nduy | yndinQ:;
S o7

s — i [
zdoud
1 pdoig L 1 oeg [
Xoed
- [} \l\
e L \ A
L__pousinding | < | ziousndu

6 2An31] D6 N3]

r zinduj e “ _
m_\N“_“__JQ“_J_Om zssed plemioS celed. __\GU_GD_A

IIIIIIIII

Lssed pJemioS Lejeq

inding; IndinQy N Indu
: _ ')

qoodlJ L i

6 dIM31] V6 231y

US 12,141,226 B2

iz10113 INdINQ!

Sheet 27 of 34

IIIIIIIIIIIIIIII

Nov. 12, 2024

U.S. Patent

US 12,141,226 B2

Sheet 28 of 34

Nov. 12, 2024

U.S. Patent

I\
1901

Ldoid yoeg

] H_I_\\

1

L JoLg:
v induy

1

IIIIIIIIIIIIIIII 1
1
L L . 1

d0[dIn31y

\\r Zvol

/_ C plemiod ¢

d01 dIn31q

..... |

Zglougq !
IndinQ !

=

¢SS0l

zdoud oegqg

.

D01 dIn31y

Lvol
| pJemio

VOI dInsiy

US 12,141,226 B2

I

Sheet 29 of 34

‘ Lejeq! P L
, elepdn Induj | :wo::m_x meqzu

N 4

Nov. 12, 2024

U.S. Patent

130113 nding) geleg indul;
L[] HOT
N3 aNn3I

US 12,141,226 B2

Sheet 30 of 34

Nov. 12, 2024

U.S. Patent

” 174 ULMEOH_I

| A

¢ pJemio

d 11 dIns1y

D11 dInsiy

\v_!

| pJemio

Z piemiod ||
/_

d11 2In31y

V11 2an3iq

US 12,141,226 B2

Sheet 31 of 34

Nov. 12, 2024

U.S. Patent

11 [N

T

|

— doid oeqg v

zdoid xoeg ||

HIT dInsiy

iy

A4

D[dIn31y

/\

/J

B
o |

¢ doud doeg

1 [

NTT T

7 doud oeg

ATT dIn31y

AT dIn31y

U.S. Patent Nov. 12, 2024 Sheet 32 of 34

US 12,141,226 B2

Sheet 33 of 34

Nov. 12, 2024

U.S. Patent

FT ;_ —
_ _ cvel 874 !
aronol 20T [| o
_H hiuy ssed B1ed; T
“.jm._.“
icindul7pnding: RG]
D1 2In31y 7] 2In31]

US 12,141,226 B2

Sheet 34 of 34

Nov. 12, 2024

U.S. Patent

1., S
_[celeq! _[celed;
uinjal a)eys LS ! uinjal 8jejs 191e1g |
[|
Mlﬁ””glJﬁHHH“Nmth“ _Hmmwwd
19)e)s ! i i
g Z piemio Huwm- g | Plemiod(ig1e)g !
“Nmu.mo“ mHHHH.HH”_
1 Induy LE1Ed,
] T | Lindur}
|
cejeq; ejed: zeleq; ejec:
L___19)e)1S M InQ 1 91818 —HIN0_—

DET N3y d¢T 2ansiy

i L
gt Vel
sm_c_._.“ N3
Z

Ti—-=—

izeleq! eeq
L 15)1e1g N0 |

US 12,141,226 B2

1
SYSTEMS AND PROCESSES FOR
ORGANIZING AND CONTROLLING
MULTIPLE MATRIX PROCESSOR CIRCUITS

RELATED APPLICATIONS

The present U.S. patent application claims the benefit of
the previous U.S. Provisional Patent Application entitled
“Methods And Apparatus For Organizing And Controlling
Matrix Operations Circuits” filed on Jan. 11, 2019 having
Ser. No. 62/791,585.

TECHNICAL FIELD

The present invention relates to the field of digital pro-
cessing circuits. In particular, but not by way of limitation,
the present invention discloses digital circuit designs, archi-
tectures, control systems, and operating modes for digital
circuits that perform matrix operations.

BACKGROUND

A conventional computer system uses the well-known
traditional Von Neumann computer architecture. The Von
Neumann computer architecture generally consists of an
input/output unit for moving data into and out of the
computer system, a memory system for storing data within
the computer system, an Arithmetic and Logic Unit (ALU)
for logically processing data, and a control system for
controlling the operation of the computer system. The Von
Neumann architecture computer system operates by having
the control system repetitively move data from the memory
system through Arithmetic and Logic Unit (ALU) and then
back into the memory system to process the data in a
controlled manner. With the traditional Von Neumann com-
puter architecture, a computer system can perform any
desired calculation by processing the data with the proper set
of processing steps through the arithmetic and logic unit
(ALU).

Although the traditional Von Neumann computer archi-
tecture is extremely flexible in that the Von Neumann
computer architecture can ultimately perform any desired
calculation, complex calculations may require extremely
large numbers of sequential processing iterations. Specifi-
cally, each individual processing iteration step may require
reading data from the memory, processing that data within
the Arithmetic and Logic Unit (ALU) and then writing the
processed output data back to the memory system. Thus,
complex calculations requiring extremely large number of
sequential processing iteration steps wherein each process-
ing iteration step may comprise several individual sub-steps
becomes very time consuming.

To reduce the time required to perform complex calcula-
tions, many specialized processors have been developed for
handling specialized computing tasks. For example, special-
ized Digital Signal Processors have been developed for
processing signals. Similarly, Graphical Processing Units
(GPUs) have been developed for performing specialized
three-dimensional computer graphics operations.

One of the fields most in need of specialized processor is
the field of Artificial Intelligence (Al). Artificial Intelligence
is increasingly being used for a wide variety of complex
tasks such as image recognition, High-Performance Com-
puting (HPC), scientific computing, machine learning, data-
mining, speech recognition, and self-driving vehicles. Arti-
ficial Intelligence applications tend to rely very heavily upon
matrix computations. Specifically, matrix operations are

10

15

20

25

30

35

40

45

50

55

60

65

2

required to implement artificial neural networks (ANNs) that
learn from a set of training data and then later apply that
learning to new input data.

Due to the very heavy usage of matrix computations,
artificial intelligence is a very computationally intensive
field of computing desperately in need of computational
optimizations. One of the most popular techniques is to
create specialized digital matrix processing circuits for the
performing matrix operations needed to implement an arti-
ficial neural network. However, an artificial neural network
is more than just a large set of matrix operations. Specifi-
cally, the matrix operations must be performed in a specific
order and there are critical data dependencies between the
matrix operations. Without proper coordination, the special-
ized matrix processor circuits may end up idle or spending
large amounts of time loading in different weight matrix
data. Therefore, it is desirable to further develop new
techniques for organizing and controlling multiple Matrix
Processor circuits efficiently in order to optimize the com-
putational tasks associated with implementing artificial neu-
ral networks.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals describe substantially similar components
throughout the several views. Like numerals having differ-
ent letter suffixes represent different instances of substan-
tially similar components. The drawings illustrate generally,
by way of example, but not by way of limitation, various
embodiments discussed in the present document.

FIG. 1A illustrates a conceptual diagram of a single layer
artificial neural network.

FIG. 1B illustrates a conceptual diagram of a double-layer
artificial neural network.

FIG. 2A illustrates a block diagram of one embodiment
Matrix Processor that may be used to perform matrix
calculations.

FIG. 2B illustrates a conceptual diagram of the Matrix
Processor of FIG. 2A with a four-by-four weight matrix
consisting of sixteen weight value elements W[0,0] to W[3,
3] stored within the wide SRAM memory system.

FIG. 2C illustrates a block diagram of an abstracted
Matrix Processor that may be used to perform matrix
calculations.

FIG. 3A-1 illustrates a block diagram of an array of
Matrix Processors surrounded by buffers on two sides and
vector processors on two sides.

FIG. 3A-2 illustrates one embodiment of the matrix
processor array of FIG. 3A-1.

FIG. 3B illustrates the block diagram of the array of
Matrix Processors of FIG. 3A-2 being operated in a left-to-
right manner.

FIG. 3C illustrates the block diagram of the array of
Matrix Processors of FIG. 3A-2 being operated in a top-to-
down manner.

FIG. 3D illustrates the block diagram of the array of
Matrix Processors of FIG. 3A-2 being operated in a top-to-
right manner.

FIG. 3E illustrates the block diagram of the array of
Matrix Processors of FIG. 3A-2 being operated in a left-to-
bottom manner.

FIG. 3F illustrates the block diagram of the array of
Matrix Processors of FIG. 3A-2 updating weight matrices in
each Matrix Processor by receiving two data vectors.

US 12,141,226 B2

3

FIG. 4A illustrates an abstracted matrix processor that is
specifically designed to operate on a 16 by 16 matrix being
used to process a 16 by 16 matrix.

FIG. 4B illustrates an abstracted matrix processor that is
specifically designed to operate on a 16 by 16 matrix being
used to process four sets of a 4 by 4 matrix.

FIG. 4C illustrates an abstracted matrix processor that is
specifically designed to operate on a 16 by 16 matrix being
used to process 16 data elements with 1 weight from a 4 by
4 matrix.

FIG. 4D illustrates an abstracted matrix processor that is
specifically designed to operate on a 16 by 16 matrix being
used to process a subset of a 64 by 64 matrix to create a
partial result.

FIG. 4E illustrates how the partial results from FIG. 4D
are combined to create a full result.

FIG. 4F illustrates an abstracted matrix processor that is
specifically designed to operate on a 16 by 16 matrix being
used to process multiple subsets of a 256 by 256 matrix to
create a partial result.

FIG. 5A illustrates a block diagram of reflexive array of
Matrix Processors surrounded on all sides by combined
buffer and vector processor units.

FIG. 5B illustrates a block diagram of an abstracted
Matrix Processor that is connected on all four sides with
both operand buses and result buses.

FIG. 5C illustrates a block diagram of the buffer and
vector processor unit support structure for a matrix proces-
sor that is connected on all four sides with both operand
buses and result buses.

FIG. 6A illustrates a horizontal left to right forward pass
operation.

FIG. 6B illustrates a vertical top to bottom backward
propagation operation.

FIG. 6C illustrates a weight update operation.

FIG. 7A illustrates a left to top forward pass operation.

FIG. 7B illustrates a top to right backward propagation.

FIG. 7C illustrates a weight update operation.

FIG. 8A illustrates a first horizontal left to right forward
pass operation.

FIG. 8B illustrates a second horizontal left to right for-
ward pass operation.

FIG. 8C illustrates a vertical top to bottom backward
propagation operation for the forward pass of FIG. 8B.

FIG. 8D illustrates a vertical top to bottom backward
propagation operation for the forward pass of FIG. 8A.

FIG. 8E illustrates a weight update operation for the
backward propagation operation of FIG. 8C.

FIG. 8F illustrates a weight update operation for the
backward propagation operation of FIG. 8D.

FIG. 9A illustrates a first horizontal left to right forward
pass operation.

FIG. 9B illustrates a reflexive second horizontal forward
pass operation in a right to left manner.

FIG. 9C illustrates a vertical bottom to top backward
propagation operation for the forward pass of FIG. 9B.

FIG. 9D illustrates a vertical top to bottom backward
propagation operation for the forward pass of FIG. 9A.

FIG. 9E illustrates a weight update operation for the
backward propagation operation of FIG. 9C.

FIG. 9F illustrates a weight update operation for the
backward propagation operation of FIG. 9D.

FIG. 10A illustrates a first left to top forward pass
operation.

FIG. 10B illustrates a second forward pass operation in a
top to right manner.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 10C illustrates a right to top backward propagation
operation for the forward pass of FIG. 10B.

FIG. 10D illustrates a top to left backward propagation
operation for the forward pass of FIG. 10A.

FIG. 10E illustrates a weight update operation for the
backward propagation operation of FIG. 10C.

FIG. 10F illustrates a weight update operation for the
backward propagation operation of FIG. 10D.

FIG. 11A illustrates a first left to top forward pass
operation.

FIG. 11B illustrates a second forward pass operation in a
top to right manner.

FIG. 11C illustrates a third forward pass operation in a
right to bottom manner.

FIG. 11D illustrates a fourth forward pass operation in a
bottom to left manner.

FIG. 11E illustrates a right to bottom backward propaga-
tion operation for the forward pass of FIG. 11D.

FIG. 11F illustrates a bottom to right backward propaga-
tion operation for the forward pass of FIG. 11C.

FIG. 11G illustrates a right to top backward propagation
operation for the forward pass of FIG. 11B.

FIG. 11H illustrates a top to left backward propagation
operation for the forward pass of FIG. 11A.

FIG. 12A illustrates an artificial neural network that uses
input data from a low layer as input data that is also used in
a higher layer.

FIG. 12B illustrates a first left to top forward pass
operation for the network of FIG. 12A.

FIG. 12C illustrates a data pass thru and a second first top
to right forward pass operation for the network of FIG. 12A.

FIG. 13A illustrates a matrix processor configuration for
a network that uses feedback state data.

FIG. 13B illustrates a first left to top forward pass
operation that also passes back state data top to left data for
a subsequent operation.

FIG. 13C illustrates a second left to top forward pass
operation that also passes back state data top to left data for
a subsequent operation.

DETAILED DESCRIPTION

The following detailed description includes references to
the accompanying drawings, which form a part of the
detailed description. The drawings show illustrations in
accordance with example embodiments. These embodi-
ments, which are also referred to herein as “examples,” are
described in enough detail to enable those skilled in the art
to practice the invention. It will be apparent to one skilled in
the art that specific details in the example embodiments are
not required in order to practice the present invention. For
example, although some of the example embodiments are
disclosed with reference to a specific symmetric Matrix
Processor, the techniques may be used with other imple-
mentations of a matrix processor circuit. The example
embodiments may be combined, other embodiments may be
utilized, or structural, logical and electrical changes may be
made without departing from the scope of what is claimed.
The following detailed description is, therefore, not to be
taken in a limiting sense, and the scope is defined by the
appended claims and their equivalents.

In this document, the terms “a” or “an” are used, as is
common in patent documents, to include one or more than
one. In this document, the term “or” is used to refer to a
nonexclusive or, such that “A or B” includes “A but not B,”
“B but not A,” and “A and B,” unless otherwise indicated.
Furthermore, all publications, patents, and patent documents

US 12,141,226 B2

5

referred to in this document are incorporated by reference
herein in their entirety, as though individually incorporated
by reference. In the event of inconsistent usages between
this document and those documents so incorporated by
reference, the usage in the incorporated reference(s) should
be considered supplementary to that of this document; for
irreconcilable inconsistencies, the usage in this document
controls.

Neural Networks Overview

One of the core techniques in artificial intelligence (Al) is
the use of artificial neural networks (ANNSs). Artificial neural
networks first learn from training data and then are later used
to make logical inferences from new input data. Artificial
neural networks were originally designed to be similar to the
biological neuron networks in animal brains.

FIG. 1A illustrates a conceptual diagram of a single-layer
four-input artificial neural network 100. Referring to FIG.
1A, inputs 101 to 104 are provided with training data during
training sessions and then with new input data when the
artificial neural network is used to make inferences. The
input data (101 to 104) are processed with a weighted matrix
120 to create output data (141 to 144). Many different types
of data processing may be performed using weighted matrix
120 (such as a Hadamard product, Frobenius inner product,
matrix addition, etc.) however this document will focus
upon the well-known matrix product. (Note that the tech-
niques described in this document can be used with any of
these other data processing operations.)

After processing the input data (101 to 104) with the
weighted matrix 120 to create the output data (141 to 144),
the output data (141 to 144) may be combined with an output
function 170 to create a final output 191 for the artificial
neural network 100. The output function 170 may be
referred to as an activation function.

Note that the four-input artificial neural network of FIG.
1A illustrates just one example of small an artificial neural
network. Artificial neural networks may be constructed
much wider than just four inputs. Multiple independent
artificial neural networks may be used in parallel and the
outputs of the independent artificial neural networks may be
combined.

Artificial neural networks may comprise many layers of
weight matrices such that very complex analysis of the input
data may be performed. For example, FIG. 1B illustrates a
two-layer artificial neural network wherein the input data
(101 to 104) is processed with a first weighted matrix 121 to
create intermediate output data (141 to 144). Next, interme-
diate output data (141 to 144) is processed with a second
weighted matrix 122 to create output data (151 to 154).
Output data (151 to 154) may be processed by output
function 170 to create a final output. Alternatively (or in
addition to), the output data (151 to 154) may also be used
as intermediate data that is fed into additional artificial
neural network layers (not shown) such that very complex
hierarchical artificial neural networks may be created.

Example Matrix Processor

As illustrated with reference to FIGS. 1A and 1B, artificial
intelligence relies upon large amounts of computationally
intensive matrix operations in order to initially learn using
training data and later to draw inferences from a set of new
input data. Fortunately, such matrix operations used in
artificial neural network allow for many optimizations to be
made since there is a significant amount of parallelism in the
matrix computational tasks that are required. Thus, many
special processors for artificial intelligence applications use
a Single Instruction Multiple-Data (SIMD) architecture

20

35

40

45

6

where wide data vectors are processed with each instruction
such that matrix operations can be performed efficiently.

To provide optimal processing for artificial intelligence
tasks, specialized Matrix Processor may be used. A Matrix
Processor is digital processing circuit that has been designed
to help efficiently perform artificial intelligence computa-
tional tasks. Specifically, a Matrix Processor is designed in
a manner to rapidly read input data vectors, output data
vectors, and matrix weight data in parallel format for high
throughput. In this manner, the Matrix Processor can be used
for forward propagation inferences as well as for backpropa-
gation artificial intelligence learning.

FIG. 2A illustrates a block diagram of one embodiment of
a matrix processor 200 that handles a data with six data
elements. Note that matrix processors can be made to handle
data vectors with many more or fewer data elements in each
data vector.

The matrix processor 200 of FIG. 2A has access to a wide
State Random Access Memory (SRAM) bank 230 (also
referred to herein as wide SRAM, SRAM, memory, and
memory system). The wide SRAM 230 is configured such
that entire wide rows of data can be accessed in a single
memory cycle. In this manner, an entire input vector or an
entire row of weight values from a weight matrix can be read
out from the SRAM 230 or written to the SRAM 230 in a
single memory cycle. The matrix processor 200 also
includes an operand register file 210 for storing input data
and other data that will be used as operands during compu-
tations.

The wide SRAM 230, the operand register file 210, and an
operand bus 221 are coupled to a bank of multiplexors 240
that provide operand data to a bank of Multiply And Accu-
mulate (MAC) units 260. A control system 205 controls all
of these individual circuit elements to perform the required
data vector processing. Thus, control system 205 selects
between data stored within the wide SRAM 230, data in the
operand register file 210, and data an operand bus 221 to be
provided to the Multiply and Accumulate (MAC) units 260
for processing.

Results from the bank of Multiply and Accumulate
(MAC) units 260 may be stored in result register file 250.
These output results may be distributed in raw form in
parallel using result bus 291. Alternatively (or in addition to
the raw output data), the results in the result register file 250
may be combined with reduction tree 270 to provide a single
output on reduce bus 295.

Note that for some operations the results stored in the
result register file 250 may be used as an operand in another
calculation. To handle this such calculations, there are data
paths from the result register file 250 back to bank of
Multiply And Accumulate (MAC) units 260. Control system
205 is used to control exactly how the Multiply and Accu-
mulate (MAC) units 260 will select the data to be processed
and how the data is processed.

FIG. 2B illustrates how a four by four weight matrix
consisting of elements W[0,0] to W[3,3] is stored within the
wide SRAM 230. The weight values in the weight matrix are
stored in alignment with the underlying SRAM memory’s
row structure such that entire rows of weight values can be
read out in a single memory cycle. For example, weight
values W[0,0], W[0,1], W[0,2], and W[0,3] can be read out
of SRAM 230 in a single memory cycle and provided
simultaneously to the individual Multiply And Accumulate
(MAC) units 260 in the MAC bank in parallel. The other
operands for a computation may come from the operand
register file 210 or from the operand bus (not shown in FIG.
2B).

US 12,141,226 B2

7

The matrix processor 200 of FIGS. 2A and 2B illustrates
only one possible embodiment of a matrix processor unit.
Details of the matrix processor 200 of FIGS. 2A and 2B can
be found in the U.S. patent application Ser. No. 16/149,054
and titled “Methods and Apparatus for Constructing Digital
Circuits for Performing Matrix Operations” which is hereby
incorporated by reference. However, matrix processors can
be implemented in many different manners and in many
different sizes.

Abstracted Matrix Processor

Matrix processors can be implemented in many different
sizes and in many different manners. This document will
primarily concern combining multiple different matrix pro-
cessor circuits in efficient manners that can perform a wide
variety of matrix operations. Thus, to simplify this disclo-
sure an abstracted matrix processor will be discussed.

FIG. 2C illustrates a first block diagram of an abstracted
matrix processor 201. The abstracted matrix processor 201
receives input data on one or more operand buses. In the
particular embodiment of FIG. 2C, there are two operand
buses: operand bus from the top 221T and operand bus 2211
from the left. Data received on the operand buses may be
used directly by the processing logic 267 or may be stored
in memory 230 for later usage. The data received may
comprise entire weight matrices and input data operand
vectors. The memory system 230 may also include register
files closely coupled to the processing logic 267.

The matrix processor 201 also receives commands on
command bus 207. The control system 205 within the matrix
processor 201 parses the commands received and uses the
commands to determine how the processing logic 267 will
be used to process data. The processing logic 267 may be
implemented in many different manners as long as the
matrix processor 201 performs the desired matrix operations
and outputs the proper matrix operation results. For
example, the processing logic 267 may be implemented with
a single-instruction multiple-data (SIMD) processor, a digi-
tal signal processor (DSP), a conventional central processing
unit (CPU) core, a highly parallelized specialized matrix
processor 200 as illustrated in FIGS. 2A and 2B, or in any
other manner that performs the desired matrix operations.

The matrix processor 201 may be designed to operate
using many different types of data formats and data precision
levels. For example, the matrix processor 201 may process
integers, 16-bit floating point numbers, 32-bit floating point
numbers, or any other data format.

Many different matrix operations may be implemented in
the abstracted matrix processor 201. Two well-known matrix
operations that may be included are the matrix dot product
and the matrix cross products.

The control system 205 instructs the processing logic 267
to output the results of requested matrix operations on one
or more result bus 291. In some embodiments, the matrix
processor 201 will include the reduction logic output a
reduced form of the result on a reduce bus 295.

The operand buses are wide parallel buses such that entire
input data vectors can be loaded in a single cycle. Similarly,
entire weight matrix rows from a weight matrix may be read
into the matrix processor 201 in a single cycle. Similarly, the
result buses 291 are also wide parallel buses such that entire
output data vectors can be output in a single cycle.

The memory system 230 is very important component of
the abstracted matrix processor 201. To optimize perfor-
mance, the memory system 230 of the matrix processor 201
is both wide and deep.

The memory system 230 is wide in that entire data vectors
can be written into or read out of the memory system 230 in

10

15

20

25

30

35

40

45

50

55

60

65

8

a single cycle. For example, in Matrix Processor that handles
a 16 by 16 element matrix wherein each element is a 16-bit
floating-point value, the memory system can read out 256 bit
values such that entire sixteen element data vectors of
16-bits each can be read out of the memory system 230 in
a single cycle.

The memory system 230 is deep in that it is constructed
large enough to store multiple different sets of weight
matrices. In this manner the matrix processor 201 can be
used to perform matrix operations on multiple different
artificial neural network layers. For example, if a matrix
processor 201 cannot perform an operation for one particular
neural network layer because a required input data vector is
not yet available, that matrix processor can instead be used
to perform matrix operations for other neural network layers
or other neural networks. A deep memory 230 allows the
matrix processor 201 to be used very efficiently since it can
handle a steady stream of requested matrix operations for
many different neural networks without ever needing to load
in weight matrix data, one of the most time consuming (and
energy consuming) tasks for matrix processing.

In addition to storing multiple weight matrices, the
memory 230 can be used to store other information that may
be needed such as input data vectors, output data vectors,
error vectors, etc. Intermediate result data vectors from
forward pass operations may be stored in the memory
system 230 and then later accessed when performing a
related back propagation operation. Another very important
type of data that may be stored is matrix weight gradients.
A matrix weight gradient comprises a matrix of adjustments
for a weight matrix that may be periodically used to update
the weight matrix.

Combining Matrix Processors into an Array

The abstracted matrix processor 201 illustrated in FIG. 2C
can be used alone to perform simple matrix operations very
quickly. For example, the matrix processor 201 can be used
to implement the very small artificial neural network 100
illustrated in FIG. 1A. It could also be used to implement the
small two-layer artificial neural network illustrated in FIG.
1B by using it serially to perform the required matrix
operations of both artificial neural network layers.

However, most artificial neural networks must handle
many more inputs and outputs than the very small example
artificial neural networks illustrated in FIGS. 1A and 1B. It
is therefore desirable to combine together the computing
ability of many different matrix processors in order process
wider artificial neural networks and multi-layer artificial
neural networks. In this manner, much larger multi-layer
artificial neural networks that are used to perform useful
artificial intelligence tasks can be handled very efficiently.

FIG. 3A-1 illustrates a block diagram of a first embodi-
ment of an architecture using multiple Matrix Processor
circuits in a coordinated matter to implement wide multi-
layer artificial neural networks. In FIG. 3A-1, each indi-
vidual Matrix Processor is labelled as “MP” for Matrix
Processor. As illustrated in FIG. 3A-1, the Matrix Processors
are arranged in a grid format. In between the individual
matrix processors of the matrix processor array is bus wiring
and combination logic 399 that couples all of the matrix
processors to buffers that provide input data and vector
processing units (VPU) that receive result data vectors and
further process those result data vectors. The bus wiring and
combination logic 399 may be implemented in different
manners to achieve different goals.

To provide data vectors to the array of matrix processors
in one embodiment, Buffer 1 on left and Buffer 2 on the top
are coupled to the operand bus of every individual matrix

US 12,141,226 B2

9

processor in the bus wiring and combination logic 399. This
may be accomplished by coupling operand bus 221L to
Buffer 1 and operand bus 2217 to Buffer 2 as illustrated in
FIG. 3A-2. In this manner, data vectors from either Buffer 1
or Buffer 2 can be loaded into the matrix processors in the
array. The data vectors may comprise weight matrix rows,
input data vectors, or any other required data. Note that since
there are multiple buses, the operand loading operations can
be performed in parallel.

Similarly, the result bus of every matrix processor in the
array is coupled to Vector Processing Unit 1 (VPU1) on the
right and Vector Processing Unit 2 (VPU2) on the bottom of
the array using bus wiring and combination logic 399. This
may be accomplished by coupling result bus 291R to Vector
Processing Unit 1 (VPU1) on the right and result bus 291B
to Vector Processing Unit 2 (VPU2) on the bottom as
illustrated in FIG. 3A-2. The Vector Processing Units con-
tain both storage for storing result data vectors and process-
ing logic for performing various vector processing opera-
tions on received result data vectors. For example, the Vector
Processing Units (VPUs) can combine partial result data
vectors from multiple different Matrix Processors into a
single complete output data vector result.

All of the individual Matrix processors in the array
receive commands on their individual command buses 207
(not shown in FIG. 3A-2). In this manner, each individual
Matrix Processor in the array can be controlled individually.
For example, the individual Matrix Processors can be
informed when data is available on their operand buses and
what operations to perform. By carefully controlling each
individual matrix processor of the array in a coordinated
manner, the matrix processor array becomes a very powerful
system for efficiently processing matrix operations needed
for artificial intelligence applications.

Pipeline Mode Matrix Processor Array Processing

The first embodiment of a Matrix Processor array as
illustrated in FIGS. 3A-1 and 3A-2 can be used operate in a
coordinated manner to efficiently perform multiple matrix
operations to implement an artificial neural network. To
pipeline matrix operations, the Matrix Processor array
embodiment illustrated in FIGS. 3A-1 and 3A-2 may be
operated in a left-to right manner or a top-to-bottom manner.

For example, FIG. 3B illustrates the Matrix Processor
Array used in a left-to right manner where in the individual
columns of Matrix Processors may be used to implement
multiple layers of an artificial neural network. Alternatively,
the successive columns may be used to compute partial
results of a matrix operation that are then combined together
into a final result.

Referring to FIG. 3B, the operand bus 221L from Buffer
1 is illustrated as a dash-dot line. Operand bus 221L allows
Buffer 1 to load operand input data vectors into the indi-
vidual matrix processors in the matrix processor array.
Weight matrices are first loaded into the individual matrix
processors one row at a time. Once loaded, the weight
matrices may be used for many matrix operations. For each
matrix operation using external data, an input data vector is
placed on the operand bus 221L.

After each processing event, each matrix processor may
output data on its result bus 291R illustrated as a dash line
in FIG. 3B. Output data is sent from Matrix Processors on
result bus 291R to Vector Processing unit 1 (VPU1). For
some operations, the output data vector placed on the result
bus 291R may be a partial result. The triangle represents the
combination logic that may be used to merge such partial
results data in sequential, tree, or other manner to create a

10

20

35

40

45

50

55

10

combined result. For example, the combination logic may be
adders that combine partial results into a full result.

FIG. 3C illustrates the first embodiment matrix processor
array operated in a top-to-bottom manner. Specifically, FIG.
3C illustrates the matrix processor array wherein the Oper-
and Bus is illustrated as a dash-dot line that allows Buffer 2
to load operand input data vectors into the individual matrix
processors in the array. Correspondingly, after each process-
ing event, each matrix processor may output data on its
Result Bus illustrated as a dash line extending downwards
towards Vector Processing unit 2 in FIG. 3C.

Orthogonal Mode Matrix Processor Array Processing

In addition to the pipeline mode illustrated in FIGS. 3B
and 3C Matrix Processor array illustrated of FIG. 3A can
also be operated in an orthogonal manner. Specifically, the
matrix processor array may be operated in a top-to-right
manner or right-to-bottom manner wherein the result data
vectors are output 90 degrees From the input data vectors.
The orthogonal operating mode maps very well onto the
matrix multiplication operations that are very critical to
artificial intelligence applications such that it is one of the
most important operating modes. Specifically, the orthogo-
nal processing system can be more efficient for partial sum
reductions.

FIG. 3D illustrates the Matrix Processor array wherein the
operand bus 221T is illustrated as a dash-dot line that allows
Buffer 2 to load operand input data vectors from the top into
the individual matrix processors in the array. After each
processing event, each Matrix Processor may output data on
its result bus 291R illustrated as a dash line extending
rightward towards Vector Processing unit 1 (VPU1). Note
that the triangle represents combination logic that can com-
bine partial results.

FIG. 3E illustrates the Matrix Processor array wherein the
operand bus 2211 is illustrated as a dash-dot line that allows
Buffer 1 to load operand input data vectors from the left into
the individual matrix processors in the matrix processor
array. After each processing event, each Matrix Processor
may output data on its result bus 291B illustrated as a dash
line extending rightward towards Vector Processing unit 2
(VPU2).

Matrix Processor Array Processing Examples

The Matrix Processor array illustrated in FIGS. 3A to 3E
can be used to efficiently implement an artificial neural
network. Specifically, the Matrix Processor array illustrated
in FIGS. 3A to 3E can perform the common forward pass
(inference), backward propagation (error calculation), and
weight update (learning) operations that are the main opera-
tions used to create and use an artificial neural network. An
example of each of these common artificial intelligence
operations will be described using FIGS. 3D, 3E, and 3F.

Referring to FIG. 3D, before performing forward pass
operations, the needed weight matrix data must be loaded
into the Matrix Processors. This can be performed by
loading in entire rows of the weight matrix from a Buffer one
at time until the full weight matrix has been loaded. Note
that once a weight matrix has been loaded, it can be used
over and over for forward pass inference operations and
backward propagation operations without reloading the data.
Furthermore, after backward propagation operations to cal-
culate errors in the model, the weight matrix can be updated
in place.

The first step to perform a forward pass operation is to
load input data vectors from the Buffer using the operand
bus depicted as a dot-dash line as depicted in FIG. 3D. The
Matrix Processors in the array are then instructed using the
command bus to each compute partial sums. Next, the

US 12,141,226 B2

11

partial sums are sent over on result bus depicted as a dashed
line. Depending on how the matrix processor array has been
configured for operation, the system may reduce the data
movement by using local reduction.

The Vector Processing Unit 1 (VPU1) will accumulate all
these partial sums. The Vector Processing Unit 1 (VPU1)
will use any activation function or pooling function on
accumulated results as required to generate a final result for
the forward pass (inference) operation.

FIG. 3E illustrates how a back propagation (error calcu-
lation) operation may be performed using the Matrix Pro-
cessor array. A back propagation operation takes an output
error vector and processes it to determine an input error
vector. Note that a back propagation operation operates on
atransposed version of the weight matrix. Instead of actually
transposing a weight matrix, the back propagation operation
may be performed a direction orthogonal to the forward pass
operation thereby achieving the same result. Specifically,
since the forward pass operation depicted in FIG. 3D was
top-to-right, the back propagation operation will be per-
formed left-to-bottom.

Referring to FIG. 3E, the output error vectors are placed
on operand bus 221L from Buffer 1 at the left. The command
bus coupled to the Matrix Processors is then used to request
the Matrix processor to compute partial input errors. The
partial input errors will be sent over result bus 291B toward
Vector Processing Unit 2 (VPU2) at the bottom. These
partial input error vectors can be reduced on their way to
Vector Processing Unit 2 (VPU2) using reduction logic
depicted as triangles. The Vector Processing Unit 2 (VPU2)
may perform additional processing on input error vectors as
needed.

The input error vectors calculated by the back propagation
operation described in the previous paragraph are used in the
third very important matrix operation for artificial neural
networks: weight matrix updates. Specifically, the output
error vectors and input error vectors are used to calculate
data that will be used to adjust the matrix weight values
stored in each matrix processor. Adjustments may be per-
formed directly or accumulated into a gradient matrix that is
then periodically used to adjust the weight matrix.

As set forth above, weight matrix update operations
require both output error vectors and input error vectors to
be provided to each matrix processor. FIG. 3F illustrates
how the weight matrix values in the Matrix Processor array
can be updated using both the left Buffer 1 and the top Buffer
2 to quickly load the two sets of data vectors required for the
weight matrix update. Referring to FIG. 3E, the output error
vectors may be loaded on operand bus in top-to-bottom
direction and then the input error vectors are loaded on
left-to-right direction of operand bus. This may be per-
formed in a single cycle since there are independent buses
available for loading these two data vectors.

After loading the two required data vectors, the individual
matrix processors are then commanded via the command
bus to perform updates to the weight matrix. Note that
updating the weight matrices within each matrix processor
minimizes the time and energy required to perform the
updates.

Many variations of weight matrix update formulas may be
used. For example, the weight matrix updates may use
complex algorithms like ADAM, ADAGRAD, etc. Further-
more, the system may make a local copy of a weight matrix
before applying updates such that multiple versions of
weight matrices may be kept.

Mapping Matrix Weights into Matrix Processor Array

10

20

30

40

45

60

12

An individual matrix processor 201 (as illustrated in FIG.
2C) can only quickly perform matrix operations on a matrix
of a size that it has been designed to operate on or smaller.
A slightly smaller matrix can be handled by zeroing out extra
rows & columns that go beyond the small matrix. An
individual matrix processor can handle larger matrix by
serially computing partial results of a larger matrix operation
and then combining those partial results.

The matrix processor array of FIGS. 3A to 3E allows for
matrix operations of many different sizes to be efficiently
handled. A key aspect is how the individual weights from a
weight matrix are distributed among the different matrix
processors in the matrix processor array and how the matrix
processors are coordinated in their operation. The following
sections will describe how the weight matrices may be
distributed among matrix processors and how the matrix
processor operations are coordinated to efficiently handle
almost any size of matrix operation.

First, the base case will be disclosed. FIG. 4A illustrates
an abstracted matrix processor 401 that is specifically
designed to operate on a 16 by 16 matrix. That matrix
processor 401 stores a 16 by 16 weight matrix 437 in the
memory 430. The matrix processor 401 includes 16 by 16
matrix processing logic 467 for performing a variety of
matrix operations on a 16 by 16 matrix.

To perform a 16 by 16 matrix operation such as a matrix
and vector multiplication, an input data vector 421 consist-
ing of sixteen operands (420-1 to 420-16) is received on
operand bus, multiplied by the weight matrix 437, and
output as an output data vector 491 consisting of sixteen
result values (490-1 to 490-16).

When the 16 by 16 matrix processor 401 is placed in the
4 by 4 matrix processor array of FIGS. 3A to 3E, the system
can efficiently process sixteen different 16 by 16 matrix
processor operations simultaneously. A control system 405
will provide commands to each individual matrix processor
on their individual command bus 407 as to when to load in
input data vectors and from which bus; and when to output
result data vectors and on which result bus.

The 16 by 16 matrix processor 401 in the 4 by 4 matrix
processor array can also easily handle slightly smaller
matrix operations by zero out weight matrix values. For
example, if a 14 by 14 matrix operation needs to be handled
then the last two columns and the last two rows of the matrix
operation can be filled with zeros. The next two sections
describe how much smaller matrix operations can be
handled and how much larger matrix operations can be
handled.

Mapping Smaller Matrixes into Matrix Processor Array

When a needed matrix operation is significantly smaller
than the matrix operation a particular matrix process is
designed to natively handle, it could be handled by zeroing
out extra rows & columns that go beyond the small matrix.
However, this is a waste of the matrix processing logic and
should be avoided if possible. Instead, each individual
matrix processor can be configured to process multiple
matrix operations simultaneously.

For example, FIG. 4B illustrates a matrix processor 401
that is specifically designed to operate on a 16 by 16 matrix
but has instead been loaded with a 4 by 4 weight matrix 438.
To efficiently handle the 4 by 4 matrix operations, four
different input data vectors 422-1 to 422-4 may be simul-
taneously sent to the matrix processor 401 using four groups
of four in the sixteen operands (420-1 to 420-16). The matrix
processor is then instructed to perform four simultaneous 4
by 4 matrix processing operations that do not interfere with
each other. (Note that this will require some additional logic

US 12,141,226 B2

13

in the matrix processing logic 467 beyond just the 16 by 16
processing logic.) To efficiently perform this operation, there
should probably be four copies of the 4 by 4 weight matrix
such that 4 copies of a matrix row can be read of out the
memory 430 at once. The results from the four simultaneous
matrix operations can be output on as result data vectors
492-1 to 492-4 may be simultancous sent out using four
groups of four elements from the sixteen result buses (490-1
to 490-16).

Within the context of a 4 by 4 matrix processor array of
FIGS. 3A to 3E a full 64 simultaneous 4 by 4 matrix
operations can be performed. Specifically, four different 4 by
4 matrix operations in each of the sixteen matrix processors
in the matrix processor array.

The matrix processor array can be operated in multiple
different ways to accomplish the same result. For example,
referring to FIGS. 3D and 4C, a single weight value from a
4 by 4 weight matrix may be sent to each of the matrix
processors 401 in the 4 by 4 matrix processor array. In this
manner, each individual matrix processor could receive data
elements from sixteen data vectors on the sixteen operand
buses (420-1 to 420-16), perform 16 different multiplication
operations simultaneously, output the sixteen results with
the sixteen result buses (490-1 to 490-16), then combine the
results from the sixteen operations with the results from the
matrix processors of the same row to create sixteen partial
result elements for that row. With all four rows of matrix
processors performing the same operation, the sixteen par-
tial result elements from each row are combined by the
Vector Processing Unit 1 (VPU1) to create sixteen output
data vectors.

Mapping Larger Matrixes into Matrix Processor Array

When a needed matrix operation is larger than a particular
matrix processor is designed to natively handle, the matrix
processor array is used to combine the processing power of
multiple matrix processors to operate in parallel in order to
perform the large matrix operation. Individual matrix pro-
cessor calculates partial results and the partial results cal-
culated simultaneously are then combined to create a full
result for the large matrix operation.

For example, FIG. 4D illustrates a matrix processor 401
that is specifically designed to operate on a 16 by 16 matrix
but has instead been loaded with a subset of a 64 by 64
weight matrix 439. Referring to FIG. 4E, the subsets may be
assigned to matrix processors in the manner that makes the
entire matrix processor array into one large system for
processing a 64 by 64 matrix. Specifically, matrix processor
41 is assigned the first sixteen elements of the first sixteen
rows. Similarly, adjacent matrix processor 42 is assigned the
next sixteen elements of the first sixteen rows, matrix
processor 43 is assigned the third set of sixteen elements of
the first sixteen rows, and matrix processor 44 is assigned
the last sixteen elements of the first sixteen rows. In this
manner the first row of matrix processors in the array (41 to
44) are configured to handle the first 16 rows of the 64 by
64 matrix. The remaining three rows are filled with remain-
ing subsets of the 64 by 64 matrix in the same manner.

The matrix processor array configured as above then
operates by sending the proper partial input data vector to
each matrix processor to create partial result. As illustrated
in FIG. 4D, the partial input data vector 421 is received on
the operand bus, processed with the 16 by 16 matrix
processing logic 467 with the subset of weight matrix 439,
and then outputs a partial output data vector 491. The sixteen
elements of the partial output data vector 491 are combined
with corresponding output elements from the same row to
create a final set of partial result elements for the row of

20

30

40

45

50

14

matrix processors. For example, the outputs from the first
row of matrix processors (41 to 44) are combined to create
a first set of sixteen elements for final result. The other three
rows of matrix processors also create sixteen elements each
thus creating a final 64 element final output vector in the
Vector Processing Unit.

The 64 by 64 element matrix example set forth with FIGS.
4A to 4D is the largest matrix that can be natively handled
by the 4 by 4 matrix processor array in of FIG. 4D. In that
example, the 64 by 64 matrix is spread across all of the space
in the matrix processor array. To handle larger matrices, the
dimension of time must be used.

For example, to handle a 256 by 256 matrix, each indi-
vidual matrix processor in the matrix processor array must
handle multiple 16 by 16 sections of the larger 256 by 256
matrix. FIG. 4F illustrates a matrix processor 401 that has
been loaded with sixteen different 16 by 16 subsets of a 256
by 256 weight matrix 434. Referring to FIG. 4D, it may be
matrix processor 41 that is loaded with the first four sets of
16 elements from the first 16 rows of the weight matrix, the
first four sets of 16 elements from the next 16 rows, and so
until matrix processor 401 contains the upper-left 64 by 64
patch of the overall 256 by 256 array. Similarly, the next
three adjacent matrix processors 42 to 44 in the same row
each contain the next four 64 by 64 patches of the overall
256 by 256 array. The next three rows of matrix processors
(45 to 416) also each contain four 64 by 64 patches of the
overall 256 by 256 array to complete the full overall 256 by
256 array.

To execute a full 256 by 256 matrix operation, each
individual matrix processor serially performs four sets of 16
by 16 matrix operations for the first row of 16 by 16 patches
and outputs the partial results rightward to the Vector
Processing unit. The outputs during each 16 by 16 matrix
operations are combined with the triangle combiner illus-
trated in FIG. 4E as they are passed to the Vector Processing
Unit (VPU) on the right. The Vector Processing Unit (VPU)
combines the partial results from the first four 16x16 patches
to complete a set of 16 rows.

Each matrix processor then proceeds through the next row
with a set of four 16 by 16 patches to create the partial data
needed to create the next 16 rows of partial results. And so
on for the next two rows of four sets of 16 by 16 patches
each. Ultimately, each individual matrix processor processes
16 batches of 16 by 16 matrix data. This is equivalent to a
64 by 64 patch. With each matrix processor handling a 64 by
64 patch of the full 256 by 256 matrix, all sixteen matrix
processors complete the full 256 by 256 matrix array opera-
tion.

Note that this system requires spreading the large 256 by
256 matrix across both space (the 16 matrix processors that
can only handle 16 by 16 matrix each) and across time
(every one of the 16 matrix processors must process matrix
operations 16 times). But the sum total of matrix elements
processed is 16*16*16%*16=256%*256=65,536 matrix ele-
ments.

Note that in this manner any sized matrix array can be
handled. Again, array sizes that do not perfectly line up with
the size matrix array can be handled by having rows and
columns of zeroed out elements.

Reflexive Matrix Processor Array

The Matrix Processor array illustrated in FIGS. 3A to 3F
has been designed to operate generally in a single direction.
Specifically, operand data vectors are loaded in from the left
Buffer 1 or top Buffer 2 and result data vectors are output to
the right Vector Processing Unit 1 (VPU1) or the bottom
Vector Processing Unit 2 (VPU2). A problem with this

US 12,141,226 B2

15

design is that often the data needed for a subsequent opera-
tion will be located in a destination Vector Processing Unit
when that data is really needed in a buffer unit as input data
for a subsequent operation.

For example, referring to FIG. 3D, a first forward propa-
gation operation may product a result output vector at Vector
Processing Unit 1. But in a multi-layer artificial neural
network, that result output vector data is the input data
vector for the next layer of the multi-layer artificial neural
network. Thus, that output vector data needs to be moved
from Vector Processing Unit 1 (VPU2) back to Buffer 2 (or
to Buffer 1) in order to perform matrix operations for the
next layer of the multi-layer artificial neural network. Mov-
ing data vectors around the matrix processor array takes time
and the entire matrix processor array may be idle during
such data movements thus wasting very valuable processing
resources.

To remedy this shortcoming, all sides of the matrix
processor array may be made designed to operate in any
direction. FIG. 5A illustrates an embodiment of a reflexive
matrix processor array. The Reflexive Matrix Processor
array is surrounded on all four sides with combined Buffer
& Vector Processing units 5111, 51171, 511R, and 511B.
Whenever a particular side of the needs to provide operand
data then that side operates in buffer mode. Conversely,
when a particular side needs to receive data vectors then that
side operates in Vector Processing Unit (VPU) mode. In this
manner, the matrix processing can be performed in any
direction. Specifically, any side of the matrix processor array
may act as the source of operand vectors and any side of the
matrix processor array may receive a result data vectors.

To implement a reflexive matrix processor array, addi-
tional buses must be added to the matrix processor array.
FIG. 5B illustrates a revised version of the abstracted matrix
processor of FIG. 2C for use within a reflexive matrix
processor array. The matrix processor 501 now includes four
operand buses and four result buses. The operand buses
521L, 5217, 521R, and 521B are connected to Buffer &
Vector Processing units 5111, 511T, 511R, and 511B,
respectively such that the matrix processor 501 can receive
data vectors from any side. Similarly, the operand buses
591L, 5917, 591R, and 591B are connected to Buffer &
Vector Processing units 5111, 511T, 511R, and 511B,
respectively such that the matrix processor 501 can output
data vectors any side. The command bus 507 informs the
Control System 505 as to which bus to use and when. Data
received on the operand buses may be used directly by the
processing logic 367 or may be stored in memory 530 for
later usage.

FIG. 5C illustrates the bus support structure for the matrix
processor array. Specifically, every side of the matrix pro-
cessor array handles both four operand buses 521 and four
result buses 591.

Basic Reflexive Matrix Processor Array Operations

The Reflexive Matrix Processor Array disclosed in the
previous section adds significant flexibility to the matrix
processor array. The disclosed reflexive matrix processor
array has been designed to perform matrix operations for
artificial neural network applications. Thus, the primary
matrix operations used by artificial neural networks will be
discussed. Specifically, the forward pass operation used for
making inferences, the backward propagation operation
used for detecting errors, and the weight update operation
for updating weight matrix values are the main focus.

The forward pass, backward propagation, and weight
update operations are generally performed for every new
data vector while an artificial neural network is being

5

10

15

20

25

30

35

40

45

50

55

60

65

16

trained. All three are computationally intensive and the
second two operations depend on data from the previous
operations.

FIGS. 6A to 6C illustrate the three artificial neural net-
work operations for a simple schedule of a single layer
network. Details from the diagrams have been omitted for
clarity. FIG. 6A illustrates the forward pass operation 641. In
the forward pass operation 641 of FIG. 6 A the operand data
vector enters from the buffer on the left and the results of the
inference operation exit to a vector processing unit on the
right.

Next, FIG. 6B illustrates a back propagation operation
642 that determines the input error from the previous
forward pass operation 641. The output error data vector
enters from the buffer at the top and the calculated input
error result vector exits to a vector processing unit on the
bottom.

Finally, FIG. 6C illustrates a weight update operation that
adjusts the weights based on the input data vector (update
643) and the output error vector (update 644) from the
previous back propagation operation.

FIGS. 7A to 7C illustrate the three artificial neural net-
work operations for an orthogonal schedule of a single layer
network. Referring to FIG. 7A, for a forward pass operation
741 input data vector 750 enters from the left and output data
vector 751 exits to a vector processing unit at the top.

Next, FIG. 7B illustrates a back propagation operation
742 that determines the input error from the previous
forward pass operation 741. Specifically, the backward
propagation operation 742 processes the output error 752
from the top to create an input error vector 755 that exits on
the right.

Finally, FIG. 7C illustrates an update (743, 744) of the
matrix weights. Referring to FIG. 7C, the original input data
vector 750 from the left and the input error 755 from the top
are used to calculate weight adjustments. The weight adjust-
ments may be applied to weight adjustment gradient matrix
that accumulates changes or may be applied directly to the
weight matrix.

Finally, FIG. 7C illustrates an update of the matrix
weights. Referring to FIG. 7C, the original input data 750
from the left and the input error 755 from the top are used
to calculate weight adjustments. The weight adjustments
may be may be applied to weight adjustment gradient matrix
that accumulates changes or may be applied directly to the
weight matrix.

Reflexive Two-Layer Matrix Processor Array Operation

With more complex artificial neural networks, one needs
to carefully consider the scheduling of the matrix processors
in the matrix processor array. Specifically, one must care-
fully schedule the matrix processor operations in a manner
that minimizes the idling of the available matrix processor
resources due to data dependencies.

With a multi-layer artificial neural network, all forward
pass operations must be performed in order since higher
layers depend on data from the lower layers. Furthermore,
all forward pass operations must be completed before the
backward propagation operations can begin. The backward
propagation operations must be performed in the reverse
order of the forward propagation operations since each
backward propagation operation depends on data from
higher layers. The weight update operations can only be
performed when both the forward propagation and backward
propagation operations have been performed for that layer.

Various different methods of operation will be disclosed
including a simple scheduling, a reflexive scheduling, and an

US 12,141,226 B2

17

orthogonal scheduling. Each method of operation has unique
properties that will be discussed.

The first two-layer scheduling system to be disclosed is a
simple scheduling. The simple scheduling system can be
executed using the original matrix processor array of FIGS.
3A to 3F. The simple scheduling system is mainly being
shown to allow a contrast between it and the more efficient
scheduling systems that require the reflexive matrix proces-
sor array.

Referring to FIG. 8A, on the first layer forward pass 1 the
input datal at the left is processed into output datal on the
right. That output datal is also the input data2 for the next
layer. Thus, that input data2 must be moved back to the left
side for the second layer forward pass 2 illustrated in FIG.
8B to create output data2 on the right.

The backward propagation begins by moving output data2
to the top buffer as output error2 and then performing back
propagation Back Prop2 as illustrated in FIG. 8C to create
input error2 at the bottom. Input error2 is then used to
calculate output errorl for the final back propagation Back
Propl. FIG. 8D illustrates the back propagation Back Prop1
of output errorl to created input errorl.

Finally, the weight updates can be processed. FIG. 8E
illustrates output error2 at the top combined with input data2
to update the weights for the second layer. Similarly, FIG. 8F
illustrates output errorl at the top combined with input datal
from the right to update the weights for the second layer.

Note that in this simple scheduling, the required data is
almost never available at the buffer where that data is
required. Thus, time must be spent moving the data around
leaving the matrix processor idle. To improve upon this,
basic reflexive scheduling can be used.

FIGS. 9A to 9F illustrate the improved performance of
reflexive scheduling. Referring to FIG. 9A, a first forward
pass (Forward Passl) takes input data on the left and
processes it to create output datal on the right. This output
datal is also the input data 2 for the second layer. FIG. 9B
illustrates this input data2 processed (Forward Pass2) from
the left to output data 2 on the right. Note that the input data2
was already present such that the forward pass for the second
layer could immediately be performed.

Next, FIG. 9C illustrates a back propagation (Back Prop2)
for the second layer wherein the output error2 is processed
from the bottom to calculate input error2 at the top. Input
error2 is then used to calculate output error 1 within the top
VPU. This allows the back propagation (Back Propl) for
layer 1 to be quickly calculated from output error1 at the top
to calculated input errorl at the bottom.

Finally, FIG. 9E illustrates a weight update for the second
layer using the input data2 from the right and the output
error2 from the bottom and FIG. 9F illustrates the weight
update using input datal from the right and output errorl
from the top. Note that the input data for both weight updates
are from their original positions.

The reflexive scheduling of FIGS. 9A to 9F operates much
more efficiently than the simple scheduling system illus-
trated in FIGS. 8A to 8F. However, there are still some data
movements. Furthermore, the orthogonal processing system
can be more efficient for partial result combinations that are
often required as set forth in the earlier section on distrib-
uting weight values to matrix processors matrix processor
array.

FIGS. 10A to 10F illustrate the operations for an orthogo-
nal operation mode for a two-layer artificial neural network.
Referring to FIG. 10A, input datal for a first layer is
processed with an orthogonal forward pass 1041 to create an
output vector in the top VPU. That outputl data vector is the

10

15

20

25

30

35

40

45

50

55

60

65

18

input2 data for the second layer. To efficiently operate, that
input2 is immediately then processed with an orthogonal
forward pass 1042 to create output2 vector on the right.

Next, the back propagation operations begin. Output2
vector of FIG. 10B is used to create an output error2 vector
on the right that can immediately be processed with back
propagation 1052 to create input error2 in the top VPU.
Input error 2 is then used to create output errorl in the top
VPU. Thus, the next back propagation 1051 operation
creates input errorl in the left VPU. Note that in all of these
operations, no data movement was required.

Finally, the weight updates can be performed. FIG. 10E
illustrates using input data2 available in the top buffer
combined with Output error data2 from the right buffer to
update the weights for the second layer. Similarly, FIG. 10F
illustrates output errorl available in the top buffer combined
with input datal from the left buffer to update the weights.

The reflexive Matrix Processor array can be very efficient
and implementing multi-layer neural networks since, as
illustrated with the reflexive scheduling and orthogonal
scheduling the output data from a first layer becomes the
input data for a next layer. Specifically, a forward pass for
one layer immediately produces output data that can be can
immediately be used for the next for the layer.

The orthogonal scheduling can be scaled up indefinitely
by rotating through the different sides until the final layer is
reached. The system then reverses directions to perform the
back propagation operations. FIGS. 11A to 11H illustrate the
rotational scheduling for a four layer artificial neural net-
work.

Referring to FIG. 11A, the forward pass operation (For-
ward 1) for a first layer starts at the left and creates an output
vector at the top. That output vector is the input for the next
forward pass (Forward 2) that creates an output vector at the
right as illustrated in FIG. 11B. That output on the right is
processed with a third forward pass (Forward 3) to create an
output vector at the bottom as illustrated in FIG. 11C.
Finally, as illustrated in FIG. 11D, the output vector is used
as an input vector to create a final output vector on the right
with a fourth forward pass (Forward 4). Thus, the system
works in a clockwise rotating manner around the different
sides of the matrix processor array. Note that all of these
operations were performed without moving any data.

The back propagation can operate in the same manner by
reversing the rotation direction to counter-clockwise. A top
(fourth) layer data error value is calculated on the left and
then processed with a back propagation operation (Back
Prop 4) to create an input error value at the bottom as
illustrated in FIG. 11E. That input error value is then used in
the next back propagation (Back Prop 3) in 11F. The back
propagation operations (Back Prop 2 and Back Prop 1)
proceed for the second and first layers as depicted in FIGS.
11G and 11H until the system is back at original left starting
point. Again, note that no movement of data was required
such that there was no idling of the matrix processors in the
matrix processor array.

Reflexive Matrix Processor Array State Data Movements

The Matrix Processor Array disclosed in the previous
sections has an extensive bus network for moving data
around the matrix processor array. Specifically, FIGS. 3A-1,
3A-2, 5B, and 5C illustrate some of the possible bus
embodiments. These bus embodiments have been described
operating in a simple multi-layer artificial neural network
environment.

However, there are many variations that may be imple-
mented in artificial neural networks. For example, FIG. 12A
illustrates an artificial neural network that uses input data

US 12,141,226 B2

19

from a low layer as input data that is also used in a higher
layer. Specifically, in the artificial neural network of FIG.
12A, input data 1205 that is used conventionally in the first
neural network layer (depicted with weight matrix 1221) is
also used as input data in the second neural network layer
(depicted with weight matrix 1222). Thus, the input data
1205 must be provided to both the processing of the first and
second layers of the artificial neural network.

To do this, the extensive bus system of the disclosed
matrix processor array can be used to move data around as
necessary. For example, FIG. 12B illustrates a matrix pro-
cessor array performing a forward pass operation 1241 that
processes all of the input data vector values (input data 1201
to 1205) through the first layer of the artificial neural
network to create an output data vector 1 that is part of the
input vector for next layer.

However, to process the second artificial neural network
layer, the input data 1205 is also required. Thus, the input
data 1205 is passed with a data pass through operation as
illustrated in FIG. 12C. In this manner, all of the data values
required for the second artificial neural network layer are
available in the top buffer such that second forward pass
operation 1242 may be performed. Note that due to the large
amount of bus capacity, the pass thru operation can be
performed at the same time that other operations are being
performed such that there is no reduction in performance.

There are many other such data movement operations that
may be performed with the matrix processor array system.
For example, some neural network operations use data
feedback operations wherein a subset of state data is
returned to earlier layers for processing with later layers.
Again, the extensive bus system of the matrix processor
array can easily handle this requirement.

FIG. 13A illustrates a matrix processor array system that
processes data from the left side to the top. That system uses
both input datal and state data 1 to perform operations that
create output data and state data2. However, for subsequent
operations, that state data 2 needs to be returned to the input
area for use on subsequent operations. This is performed as
illustrated in FIGS. 13B and 13C.

Referring to FIG. 13B, the system starts with input data 1
and state data 1 on the left side. A forward pass operation 1
is performed to create output data 2 and state data 2.
However, as soon as state data 2 is available, that state data
is moved back to the left side such that the state return passes
back the state data 2 to the left side.

With the state data 2 back at the left side, a subsequent
forward pass operation 2 can be performed with input data
2 and state data 2 in order to create output data and state data
3 as illustrated in FIG. 13C. Again, the state data 3 is
immediately passed back using available bus capacity to the
left side such that it can be used in the next forward pass
operation.

As set for above, the extensive bus system of the disclosed
matrix processor array system allows for data to be moved
around very efficiently with little or no effect on matrix
operations being performed.

Matrix Processor Array System Advantages

The matrix processor array embodiments disclosed in this
document allow for the system to very efficiently perform
the matrix operations commonly used within most artificial
intelligence applications. In particular, there are two very
important elements that allow the disclosed system to oper-
ate significantly better than existing systems: the deep and
wide memory system close to the matrix computing and the
low-latency pipelined system that easily handles both for-
ward and backward propagation. The advantages of each of

25

30

40

45

55

20

these features will be described below. The combination of
these features allows the system to synergistically provide
previous unseen performance.

Referring back to FI1G. 2C, each matrix processor includes
a memory system 230. The memory system 230 is both wide
and deep. The memory is wide in that entire multiple-data-
element data vectors can be accessed by the processing logic
267. The memory is deep in that entire weight matrices may
be stored within the memory 230. Multiple weight matrices
allow various different layers to be handled without reload-
ing the matrix processor 201. Gradient matrices may be
stored for period weight matrix updates. Result data vectors
from forward pass operations may be stored for later use in
back propagation operations. By having a wide and deep
memory, the matrix processor can minimize the amount of
data that needs to be moved around and thus minimize
latency caused by reloading data.

The second very important feature is the low-latency
pipelined nature of the matrix processor array system that
easily handles both forward and backward propagation
operations. This low latency operation is implemented at
both the individual matrix processor array level and the
matrix processor array level. Each individual matrix proces-
sor is designed to very efficiently perform matrix operations
and quickly provide a result.

When multiple matrix processors are assembled into an
array, the array can efficiently perform large matrix opera-
tions by dividing the problem into subsets wherein each
matrix processor generates partial results. The partial results
from matrix processors are combined to create a final result.
Since each matrix processor contains a wide and deep
memory system, each matrix processor stores the needed
weight matrices for matrix operations. As described with
reference to FIGS. 11A to 11D, the matrix processor array
can be used to perform forward pass matrix operations for
multiple layers of an artificial neural network without any
interruptions. Similarly, the backward propagation opera-
tions can also be performed without interruption as illus-
trated by FIGS. 11E to 11H.

As set forth in this document, each matrix processor and
the matrix processor array in general is designed to effi-
ciently perform both forward pass and backward propaga-
tion operations. Specifically, the weight matrices do not have
to be reloaded or transposed thus there is no latency intro-
duced by reloading weight matrices or transposing weight
matrices as occurs in existing matrix processing circuits.

The preceding technical disclosure is intended to be
illustrative, and not restrictive. For example, the above-
described embodiments (or one or more aspects thereof)
may be used in combination with each other. Other embodi-
ments will be apparent to those of skill in the art upon
reviewing the above description. The scope of the claims
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled. In the appended claims, the
terms “including” and “in which” are used as the plain-
English equivalents of the respective terms “comprising”
and “wherein.” Also, in the following claims, the terms
“including” and “comprising” are open-ended, that is, a
system, device, article, or process that includes elements in
addition to those listed after such a term in a claim is still
deemed to fall within the scope of that claim. Moreover, in
the following claims, the terms “first,” “second,” and
“third,” etc. are used merely as labels, and are not intended
to impose numerical requirements on their objects.

The Abstract is provided to comply with 37 C.FR. §
1.72(b), which requires that it allow the reader to quickly

US 12,141,226 B2

21

ascertain the nature of the technical disclosure. The abstract
is submitted with the understanding that it will not be used
to interpret or limit the scope or meaning of the claims. Also,
in the above Detailed Description, various features may be
grouped together to streamline the disclosure. This should
not be interpreted as intending that an unclaimed disclosed
feature is essential to any claim. Rather, inventive subject
matter may lie in less than all features of a particular
disclosed embodiment. Thus, the following claims are
hereby incorporated into the Detailed Description, with each
claim standing on its own as a separate embodiment.

We claim:

1. A digital processing circuit, said digital processing
circuit comprising:

a plurality of matrix processing units, said plurality of
matrix processing units arranged into a matrix proces-
sor array comprising a plurality of rows and columns of
the matrix processing units, each of said matrix pro-
cessing units comprising:

a left operand bus for receiving a first operand vector, the
first operand vector comprising a plurality of operands,
the left operand bus being a plurality of operands wide;

a right result bus for outputting a result vector, the result
vector comprising a plurality of result values, said right
result bus being the plurality of result values wide;

a memory for storing matrix data;

a processing system for performing matrix operation, and
a command input for receiving control commands;

a plurality of combiner circuits, each said combiner
circuits coupled to said right result bus such that result
vectors from matrix processing units in a common row
are combined with a first function; and

a control system, said control system for loading weight
matrices into said plurality of matrix processing units,
loading in said first operand vector, and requesting a
matrix operation by sending a control command on said
command input.

2. The digital processing circuit of claim 1 wherein the
result vectors from matrix processing units in a common
column are combined with said first function.

3. The digital processing circuit of claim 1 wherein a first
function comprises summation.

4. The digital processing circuit of claim 1 wherein each
of said matrix processing units further comprises:

a top operand bus for receiving a second operand vector,
the second operand vector comprising a plurality of
operands, the top operand bus being the plurality of
operands wide; and

a right result bus for outputting a second result vector, the
second result vector comprising a plurality of result
values, said right result bus perpendicular to said top
operand bus, and the right result bus being the plurality
of result values wide.

5. The digital processing circuit of claim 4 wherein said
left operand bus is horizontal in said matrix processor array
and said top operand bus is vertical in said matrix processor
array.

6. The digital processing circuit of claim 4 wherein each
of said matrix processing units further comprises:

a right operand bus for receiving a third operand vector,
the third operand vector comprising a plurality of
operands, the right operand bus being a plurality of
operands wide;

a bottom operand bus for receiving a fourth operand
vector, the fourth operand vector comprising a plurality
of operands, the bottom operand bus being a plurality
of operands wide;

25

30

35

40

45

55

65

22

a bottom result bus for outputting a third result vector, the
third result vector comprising a plurality of result
values, said bottom result bus perpendicular to said
right operand bus, and the bottom result bus being the
plurality of result values wide; and

a left result bus for outputting a fourth result vector, the
fourth result vector comprising a plurality of result
values, said left result bus perpendicular to said bottom
operand bus, and the left result bus being the plurality
of result values wide.

7. The digital processing circuit of claim 4, said digital

processing circuit further comprising:

a first buffer circuit on a first side of said matrix processor
array, said first buffer circuit to provide said top oper-
and vector;

a second buffer circuit on a second side of said matrix
processor array, said second buffer circuit to provide
said top operand vector;

a first vector processing unit on a third side of said matrix
processor array, said first vector processing unit to
receive said result vector; and

a second vector processing unit on a fourth side of said
matrix processor array, said second vector processing
unit to receive said second result vector.

8. The digital processing circuit of claim 1, said digital

processing circuit further comprising:

a first buffer circuit on a first side of said matrix processor
array, said first buffer circuit to provide said first
operand vector; and

a first vector processing unit on a second side of said
matrix processor array, said first vector processing unit
to receive said result vector.

9. A method of performing matrix operations in a digital

processing circuit, said method comprising of:

arranging a plurality of matrix processing units into a
matrix processor array, said matrix processor array
comprising a plurality of rows and columns of matrix
processing units, each of said matrix processing units
comprising:

a left operand bus for receiving a first operand vector, the
first operand vector comprising a plurality of operands,
the left operand bus being a plurality of operands wide;

perpendicularizing a bottom result bus for outputting a
result vector, the result vector being a plurality of result
values, said bottom result bus perpendicular to said left
operand bus, and the bottom result bus being the
plurality of result values wide;

a memory for storing matrix data;

a processing system for performing matrix operation, and
a command input for receiving control commands;
loading weight matrices into said plurality of matrix

processing units; loading in said first operand vector;
requesting a matrix operation by sending a control com-
mand on said command input; and

combining result vectors from matrix processing units in
a common row with a set of combiner circuits coupled
to a bottom result bus such that result vectors from the
matrix processing units in the common row are com-
bined with a first function using said combiner circuits
in said common row.

10. The method of performing matrix operations in a
digital processing circuit as set forth in claim 9, said method
further comprising:

combining the result vectors from matrix processing units
in a common column with said first function using
combiner circuits in said common column.

US 12,141,226 B2

23

11. The method of performing matrix operations in a
digital processing circuit as set forth in claim 9 wherein said
first function comprises summation.

12. The method of performing matrix operations in a
digital processing circuit as set forth in claim 9 wherein each
of said matrix processing units further comprises:

a top operand bus for receiving a second operand vector,
the second operand vector comprising a plurality of
operands, the second operand bus being the plurality of
operands wide; and

a right result bus for outputting a second result vector, the
second result vector comprising a plurality of result
values, said right result bus perpendicular to said top
operand bus, the right result bus being the plurality of
result values wide.

13. The method of performing matrix operations in a
digital processing circuit as set forth in claim 12 wherein
said left operand bus is horizontal in said matrix processor
array and said top operand bus is vertical in said matrix
processor array.

14. The method of performing matrix operations in a
digital processing circuit as set forth in claim 9, said method
further comprising:

providing said first operand vector on said left operand
bus with a first buffer circuit on a first side of said
matrix processor array; and

receiving said result vector on said bottom result bus with
a first vector processing unit on a second side of said
matrix processor array.

15. The method of performing matrix operations in a

digital processing circuit as set forth in claim 9 wherein each
of said matrix processing units further comprises:

5

10

20

25

24

a right operand bus for receiving a third operand vector,
the third operand vector comprising a plurality of
operands, the right operand bus being the plurality of
operands wide;

a bottom operand bus for receiving a fourth operand
vector, the fourth operand vector comprising a plurality
of operands, the bottom operand bus being the plurality
of operands wide;

a bottom result bus for outputting a third result vector, the
third result vector comprising a plurality of result
values, said bottom result bus perpendicular to said
right operand bus, the bottom result bus being the
plurality of result values wide; and

a left result bus for outputting a fourth result vector, the
fourth result vector comprising a plurality of result
values, said left result bus perpendicular to said bottom
operand bus, and the left result bus being the plurality
of result values wide.

16. The method of performing matrix operations in a
digital processing circuit as set forth in claim 12, said digital
processing circuit further comprising:

providing said left operand vector on said left operand bus
with a first buffer circuit on a first side of said matrix
processor array;

providing said top operand vector on said top operand bus
with a second buffer circuit on a second side of said
matrix processor array;

receiving said result vector on said bottom result bus with
a first vector processing unit on a third side of said
matrix processor array; and

receiving said second result vector on said right result bus
with a second vector processing unit on a fourth side of
said matrix processor array.

#* #* #* #* #*

