
(12) United States Patent
Lindgren et al.

USO09591129B2

US 9,591,129 B2
Mar. 7, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(86)

(87)

(65)

(51)

(52)

(58)

METHOD OF REDUCING SIZE OF
PRESENCE MESSAGES

Inventors: Anders Lindgren, Alvsjö (SE);
Christer Boberg, Tungelsta (SE)

Assignee: Telefonaktiebolaget LM Ericsson
(Publ), Stockholm (SE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1730 days.

Appl. No.: 12/746,246

PCT Fed: Dec. 4, 2007

PCT No.:

S 371 (c)(1),
(2), (4) Date:

PCT/SE2007/050936

Jun. 4, 2010

PCT Pub. No.: WO2O09/072942

PCT Pub. Date: Jun. 11, 2009

Prior Publication Data

US 2010/0274844 A1 Oct. 28, 2010

Int. C.
G06F 5/16 (2006.01)
H04M 3/42 (2006.01)

(Continued)
U.S. C.

CPC. H04M 3/42365 (2013.01); H04L 65/1006
(2013.01); H04L 67/24 (2013.01); H04M
7/006 (2013.01); H04M 7/0093 (2013.01)

Field of Classification Search
CPC H04M 3/42365; H04M 7/006; H04M

7/0093: H04L 65/1006; H04L 67/24
See application file for complete search history.

9.
Client

4:1. SPSUBSCRIBE versioning red.)

(56) References Cited

U.S. PATENT DOCUMENTS

7,412,541 B1* 8/2008 Stadler HO4L 69/04
379,900

8,121,990 B1* 2/2012 Chapweske GO6F 17,301.74
707,695

(Continued)

FOREIGN PATENT DOCUMENTS

NL T412541. A * 4f1975 CO7D 333/24
WO WO 2007.116258 10/2007

OTHER PUBLICATIONS

Niemi Aet al., Session Initiation Protocol (SIP) Extension for Event
State Publication, rfc3903, U. S. A., Internet Engineering Task
Force, Oct. 1, 2004, IETF Standard.

Primary Examiner — Suraj Joshi
Assistant Examiner — Jaren M Means

(74) Attorney, Agent, or Firm — Patent Portfolio Builders,
PLLC

(57) ABSTRACT
A method in a communication network of delivering mes
sages associated with an information exchange service. A
message, to be delivered between two entities is interrogated
to determining if the data content has already been delivered
to the terminating entity. If the data content has not already
been delivered to the second entity, the message is trans
mitted to the second entity unchanged, while the message is
modified, so that the modified message comprises a data
identifier, identifying the data content, but no data content.
The modified message is then transmitted to the terminating
entity, and the data identifier is cached together with the
associated data content when a successful transmission of
the message has been Verified. The Suggested versioning
mechanism enables transmission of messages with a reduced
S17C.

33 Claims, 4 Drawing Sheets

400

Server

4:5 t

4:10

E 4:2. 2 K(versionin rt

4:4 SIP NOTIFY (versioning rea, data D1 vers=x) 4-8
4:6 200 OK (versioning done)

14.7
4:9 SIP NOTIFY (versioning req., data D2, vers="y" 4:8

4.11 200 OK (versioning done)
4:12

'4.14 SIP NOTIFY (vers=x)
4:15:

4:16 200 OK - ->

US 9,591,129 B2
Page 2

(51) Int. Cl.
H04L 29/06 (2006.01)
H04L 29/08 (2006.01)
HO4M 7/OO (2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0120813 A1* 6/2003 Majumdar HO4L 29/06
709/247

2006/0195660 A1* 8/2006 Sundarrajan HO4L 69,329
T11 118

2007/0239866 A1* 10, 2007 COX HO4L 67.24
TO9,224

2009 OO 13078 A1* 1/2009 Bencheikh HO4L 65/1036
709,227

2009/00 19158 A1* 1/2009 Langen HO4L 67/1095
TO9,226

* cited by examiner

U.S. Patent Mar. 7, 2017 Sheet 1 of 4 US 9,591,129 B2

101

108

-HD
102

106 1HD

104
1Ho

107 109
103

Figure 1

201 2OO

2:1

2:3
2:4. 200 OK (Et

2:7. SIP PUBLISH (versioning required, data D2 2:6

2:8:
: 29, 200 OK (Etag="y", versioning done

2:10

2:12. SIP PUBLISH (Etag "x") 2:11
2:13

: 2:14.200 OK

U.S. Patent Mar. 7, 2017 Sheet 2 of 4 US 9,591,129 B2

301 300

3:2 SIP PUBLISH (versioning req., data D1, vers="x")

3:3
3:4 200 OK (versioning done

3:5

3:7 SIP PUBLISH (versioning req., data D2, vers ="y")

38
3:9 200 OK (Versionind dOne

3:12 SIP PUBLISH (vers="x")
3:13

3:14 200 OK

Versioning Processing
Comm. Unit Unit Unit

Figure 6

U.S. Patent Mar. 7, 2017 Sheet 3 of 4 US 9,591,129 B2

401 4OO

i 4:1. SPSUBSCRIBE (VerSiOnlinC red.

4:2. 200 OK (Versionino Supported

4:4. SIP NOTIFY (Versionindred... data D1. VerS="x" 4:3
4:5

: 4:6 200 OK (versioning done
4:7

4:9 SIP NOTIFY (versioning red., data D2, vers="y" : 4:8
4:10 ;

4:11 200 OK (versioning done
: 4:12

4.14 SIP NOTIFY (vers=X) 4:13
4:15

Processing Versioning
Unit Unit Comm. Unit

Figure 8

U.S. Patent Mar. 7, 2017 Sheet 4 of 4 US 9,591,129 B2

Figure 5

Versioning Processing
Unit Unit

Figure 7

US 9,591,129 B2
1.

METHOD OF REDUCING SIZE OF
PRESENCE MESSAGES

TECHNICAL FIELD

The present invention relates generally to a method and
arrangement for reducing the size of messages, such as e.g.
SIP messages, communicated between a client and a server,
or vice versa.

BACKGROUND

IP Multimedia Subsystem (IMS) is a technology defined
by the Third Generation Partnership Project (3GPP) to
provide IP Multimedia services over mobile communication
networks. The IMS makes use of the Session Initiation
Protocol (SIP) to set up and to control calls or sessions
between user entities or between a user entity or a client and
a server. Whilst SIP was created as a user-to-user protocol,
IMS allows operators and service providers to control user
access to services and to charge users accordingly. The
3GPP architecture defines different types of Call Session
Control Functions (CSCFs), providing services to different
user entities in an IMS.

There are a number of situations where an IMS client A
may want to maintain updated information about another
IMS client B, which have given client A access permission
to do so. The Presences Service based on the IETF SIMPLE
(SIP Instant Messaging and Presence Leveraging Exten
sions) technology is a particular application built on top of
the SIP event notification framework. This type of service
allows a user to be informed about the reachability, avail
ability, and willingness of communication of another user.
The presence service may be used to indicate whether
different users are online or not and whether online users are
idle or busy. The presence service may also give details of
communication means and the respective capabilities of
each communication means. A person who is providing
presence information is typically called a presences entity, or
presentity. A given presentity may have one or more entities
operating as clients, typically also referred to as Presence
User Agents (PUAS), which can Supply updated presence
information, i.e. a set of attributes that characterize the
properties of the presentity, such as e.g. status, capabilities
and/or communication address to a server, providing the
presence service to Subscribing users.

FIG. 1 schematically shows an exemplified scenario of a
SIP presence architecture adapted to provide a presence
service according to the prior art. In an IMS network 100,
three clients 101-103, which may be any of e.g. an IMS
terminal, a laptop, and/or a desktop computer, each have a
piece of information about a presentity 104 stored locally.
Different clients may hold different or identical information
about the presentity 104. An IMS terminal may e.g. hold
information about the registration status of the presentity
104, while a laptop may hold information as to if the
presentity 104 is logged on or not. In addition, a client may
hold richer presence information, Such as e.g. whether the
presentity is available for videoconferences and/or wants to
receive a voice call at present. All presentity clients 101-103
send their respective pieces of information to a presences
server 105, which gathers all information and obtains a
complete picture of the presentity's 104 presence. FIG. 1
also shows two users 106,107, typically referred to as
watchers, each equipped with a respective entity 108, 109,
wherein each entity is operating as a respective watcher
client, via which the respective user 106.107 may subscribe

10

15

25

30

35

40

45

50

55

60

65

2
to presence information of a specific presentity or a number
of presentities, specified in a list, i.e. a presentities presence
list. The presence server 105 notifies all the subscribing
watchers when a change has occurred in the respective
presentity's presence information, i.e. when a presentity has
delivered new presence information to the presence server
105 via a SIP PUBLISH request, by delivering the published
information to the respective one or more watchers in a SIP
NOTIFY request.

In current SIMPLE based solutions it is necessary for the
presence server to send a new notification, comprising all
data or parts of the data, i.e. partial notify, whenever a
change occurs in the presence data. Such a notification must
be sent no matter if the presence data has already been
delivered to a respective watcher in a previous notification
Or not.

Since many of the notifications sent from the presence
server to a watcher are just toggling of one data, Such as
“open' or “closed for a service, a lot of data which has
already been delivered between the two entities is sent over
the air-interface. Even in the case of partial notifications, the
size is not without significance.

In addition, repeated transmissions of identical data con
tent requires more complicated functionality, rendering a
costly processing, both at the server, creating a notification,
and at the watcher, having to process each received notifi
cation and to create a final result on the basis of the
processed content.

SUMMARY

The object of the present invention is to address at least
some of the problems outlined above. In particular it is an
object of the present invention to provide a solution that can
generally reduce the size of Some messages transmitted in a
communication network between a client and a server, or
Vice versa.

These objects, along with others, may be obtained by
using a method and entities according to the attached
independent claims.

According to one aspect, the present invention provides a
method in a communication network of delivering messages
associated with an information exchange service between a
first entity and a second entity. Initially a message, associ
ated with an information exchange service, comprising data
content and a request for versioning is processed at the first
entity. Versioning is defined as a selectable mechanism,
adapted to associate each version of data content of a
message with a data identifier, identifying the respective
version. The first entity then interrogates the received mes
sage, to determine if the data content has already been
delivered to the second entity in an earlier transmission. If
it is determined that the data content has not already been
delivered to the second entity, the message will remain
unchanged when transmitted to the second entity. If, how
ever, it is found that the data content has already been
delivered to the second entity, a modified message, com
prising a data identifier but no data content, is instead
transmitted to the second entity.

According to a first embodiment, the first entity is a server
and the second entity is a client.

Typically, the first entity receives a request for an infor
mation exchange service from the second entity, prior to
executing the received message, wherein the request com
prises an indication that versioning is required. The message
may be a SIP notification, which is transmitted from the
client to the server.

US 9,591,129 B2
3

According to a second embodiment, the first entity is
instead a client and the second entity is a server. In Such an
embodiment the message may instead be a SIP publication.
The Suggested determining step may comprise the step of

interrogating a cache of the first entity in order to determine
if the respective data content has already been delivered to
the second entity.

According to one aspect, the data identifier is inserted into
the message at the first entity.

According to another aspect, the data identifier is instead
provided from the second entity.
A data identifier provided from the second entity may be

provided to the first entity in a response message, the
response message indicating a successful delivery of the
message.

According to another aspect, the present invention pro
vides a method in a communication network of handling
messages associated with an information exchange service
at a first entity, wherein messages are delivered from a
second entity to the first entity.

Initially, the first entity receives a message associated with
the requested information exchange service, wherein the
message comprises a request for versioning. At the first
entity it is determined if the message, requesting for ver
Sioning, comprises data content. If it is found that the
message comprises data content, a data identifier, associated
with the data content is retrieved by the first entity, and the
data content is stored together with the data identifier.

If, however, the message does not comprise any data
content, the message will instead be provided with data
content associated with a data identifier, wherein the data
identifier is retrieved from the message. Once the respective
data content has been retrieved, the message may be pro
cessed accordingly.

According to a first embodiment, the first entity is a client
and the second entity is a server. In such a scenario the
message may be a SIP notification.

According to one aspect, a request for an information
exchange service, indicating that versioning is required, is
forwarded to the second entity, prior to executing the receiv
ing step mentioned above.

According to a second embodiment, the first entity is
instead be a server, while the second entity is a client. In
Such a case the message may instead be a SIP publication.

According to one aspect, the data identifier is retrieved
from the first entity, wherein the data identifier may be
forwarded from the first entity to the second entity in a
response message, the response message indicating that the
message has been delivered successfully.

According to yet another aspect, the data identifier may
instead be retrieved from the message, the data identifier
being inserted into the message at the second entity.

According to another aspect, the data content and the
associated data identifier are stored in a cache of the first
entity Subsequent to receiving a response message, verifying
that the message has been successfully delivered to the
second entity, and that the data content and the associated
data have been stored at another cache of the second entity.

According to one aspect, a first response message com
prises an indication of the total capacity of the cache of said
second entity.

According to another aspect, each response message may
instead comprise an indication of the remaining capacity of
the cache of said second entity according to another aspect.
The data identifier may be a version number, a unique
identity, or an Etag.

5

10

15

25

30

35

40

45

50

55

60

65

4
According to another aspect, a first entity for delivering

messages associated with an information exchange service
to a second entity is provided. A processing unit is adapted
to process a message, comprising data content and a request
for versioning, associated with the requested information
exchange service. A versioning unit is adapted to determine
whether the data content has already been delivered to the
client or not. If it is found that the data content has not
already been delivered to the client, the message will be
transmitted unchanged to the client from a communication
unit. If, however, it is determined that the data content has
already been delivered to the second entity, a modified
message will instead be transmitted to the client, wherein the
modified message will comprise a data identifier but no data
COntent.

According to a first embodiment, the first entity is a
server, while the second entity is a client.

According to one aspect, the communication unit may
also comprise a receiver for receiving a request for an
information exchange service from the second entity, the
request indicating that versioning is required.

According to yet another aspect, the versioning unit may
be adapted to determine if the data content has already been
delivered to the first entity or not, by interrogating a cache.

According to a second embodiment, the first entity is
instead a client, while the second entity is a server.

According to another aspect, a first entity of handling
messages associated with an information exchange service is
provided, wherein messages are received from a second
entity. The first entity comprises a communication unit for
receiving a message from the second entity, the message
comprising a request for versioning. The entity also com
prises a versioning unit for determining if the message
comprises data content. The versioning unit is adapted to
retrieve a data identifier associated with the data content and
to cache the data content together with the associated data
identifier if the message comprises data content. If, however,
the message does not comprise any data content, the ver
Sioning unit is adapted to provide the message with stored
data content, after having retrieved the associated data
identifier from the message. The first entity also comprises
a processing unit for processing the message.

According to one embodiment, the first entity is a server
and the second entity is a client,

According to one aspect, the communication unit of the
first entity may also comprise a transmitter for forwarding a
request for an information exchange service, indicating that
versioning is required, to the second entity.

According to yet another aspect, the versioning unit is
connected to a cache, wherein the versioning unit is adapted
to cache data content and an associated data identifier in
response to a Successfully delivered or received message.

According to a second embodiment, the first entity is
instead a client, while the second entity is a server.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described in more
detail by means of exemplary embodiments and with refer
ence to the accompanying drawings, in which:

FIG. 1 is a basic overview of a SIP Presence architecture,
according to the prior art.

FIG. 2 is a schematic flow diagram of a presence publi
cation between a client and a server, according to one
embodiment.

US 9,591,129 B2
5

FIG. 3 is a schematic flow diagram of a presence publi
cation between a client and a server, according to another
embodiment.

FIG. 4 is a schematic flow diagram of a presence notifi
cation between a server and a client, according to one
embodiment.

FIG. 5 is a schematic illustration of a caching of presence
data, according to one embodiment.

FIG. 6 is a schematic illustration of a client adapted to
provide updated data content to a server, according to one
embodiment.

FIG. 7 is a schematic illustration of a server adapted to
manage updated data content, according to one embodiment.

FIG. 8 is a schematic illustration of a client adapted to
handle received updated data content, according to one
embodiment.

DETAILED DESCRIPTION

Typically for an IMS service. Such as e.g. a presence
service, a large amount of data is delivered to entities that
has already received identical data content earlier, i.e. in an
earlier request, Such as a publication or a notification. The
Scope of this document is to present a mechanism which
allows a transmitting entity to avoid transmitting data con
tent, e.g. presence information, from a transmitting entity to
a receiving entity, if the same information has already been
delivered from the transmitting entity to the receiving entity
at a previous stage.

Since many notifications that are sent from a presence
server, managing a presence service, are carrying the same
presence information as an earlier sent notification, it would
heavily reduce the notification size if it would be possible to
point out to the presence server what presence information
that is presently valid for the presentity. Also for the com
munication between a presentity and the presence server a
corresponding mechanism would be desirable in order to
reduce the size of at least some of the publications.
A mechanism addressing the problems mentioned above

may be achieved by including a data identifier, carrying e.g.
an Etag, version number or a unique identifier, into a SIP
message. Such as e.g. a notification or a publication. When
ever a new message is to be transmitted to the same server
or client and the data content to be forwarded via the SIP
message is found to be identical to data content sent in an
earlier SIP message after having interrogated a cache at the
transmitting end, the new message will only include the data
identifier, thereby avoiding to transmit the already delivered
data content once again. This means that the transmitting
entity will have to keep track of the data content that has
been delivered from the entity in earlier messages, as well as
the data identifier, associated with the respective data con
tent.

In order to get a more clearly understanding of the
Suggested versioning mechanism, it will now be exemplified
in the context of executing a presence service, as illustrated
with reference to FIGS. 2-4. FIGS. 2 and 3 illustrates how
versioning may be executed between a client, operating as a
presentity, providing updated publications to a server, which
in this case is a presentity server, according to two alterna
tive embodiments. FIG. 4, illustrates a way of realising a
corresponding versioning mechanism, operable between a
server, providing notifications to one or more clients, and a
client, operating as a watcher, receiving notifications from
the server.

For simplicity reasons, all examples in this document are
limited to describing versioning executed between two enti

10

15

25

30

35

40

45

50

55

60

65

6
ties, i.e. between a client and a server, such as, e.g. a
presentity and a presence server, or between a presence
server and a watcher. It is, however, to be understood that the
described versioning mechanism may be applicable also
between a number of entities involved in the execution of a
service, wherein versioning may be applicable all the way
from a presentity, to a presence server and also of a termi
nating watcher. It is also to be understood that the described
versioning mechanism is not limited to handling only deliv
ery of presence service information, but any type of service
information delivery. In particular, versioning according to
any of the described embodiments will also be applicable in
other implementations where it is required to reduce the
transmission of redundant data content, or more specifically,
the amount of data content that has to be transmitted
between interacting entities.

FIG. 2 illustrates an exemplified signalling scenario,
relevant for the execution of publishing associated with a
presence service, i.e. signalling between a client 200, oper
ating as a presentity, providing publications to a server, and
a server 201, operating as a presentity server. The embodi
ment described with reference to FIG. 2 is one way of
providing versioning by using the already existing Etag, i.e.
for using the Etag also for the purpose of identifying
different versions of transmitted presence information.
A client 200, having relevant presence information, i.e.

data content, here identified as D1, to be deliver to a server
201 may enabling versioning if such a mechanism is Sup
ported by both entities. Publications are typically delivered
between entities as messages, provided as publication
requests, i.e. as SIP PUBLISH requests. Publication
requests, therefore may comprise a request for versioning,
e.g. as “versioning required, in addition to the usual data
content D1.

In a first step 2:1, the client 200 processes a publication
and interrogates a cache in order to determine if the data
content D1 of the publication, delivered as a SIP PUBLISH
request has been sent to the server in a previous request.
However, since this is the first time data content D1 is to be
transmitted to the server 201, no data content which is
identical to D1 can be found in the cache. The SIPPUBLISH
request is therefore transmitted unchanged to the server in a
next step 2:2. In response to the SIP PUBLISH request, the
server, Supporting Versioning, generates and assigns a data
identifier 'x'', which will be used to identify data content D1,
and stores, or caches this data and the associated data
identifier 'x' in a cache in a next step 2:3. According to one
embodiment, the data identifier may be an already existing
Etag, which, in addition to its conventional use, may be used
also for the described versioning purpose. The SIP PUB
LISH request can now be processed by the server 201
according to conventional procedures.

Next, the server 201 indicates a successful reception of
the SIP PUBLISH request to the client 200, including an
indication that versioning is Supported has been executed by
generating a response message, e.g. a 200 OK. The response
message comprises data identifier 'x' and e.g. “versioning
done, and is transmitted to the client in a Subsequent step
2:4. Once the client has received the 200 OK response
message, data identifier 'x' is cached together with data
content D1, as indicated with a next step 2:5.
At a later occasion, a new SIP PUBLISH request, com

prising of presence information, here denoted data content
D2, is provided to the client 200 by the presentity. The
publication is processed by the client and interrogated by
checking the cache, and also this time it is determined that
data content D2 has not already been published to the server

US 9,591,129 B2
7

by checking the cache of the client 200. This procedure is
executed at a step 2:6, prior to transmitting the request to the
server 201 at a next step 2:7.

In a subsequent step 2:8, the server interrogates the SIP
PUBLISH request and verifies that versioning is required
and, thus, another data identifier “y”, associated with data
content D2 is retrieved by the server. The data identifier “y”
is then cached at the server 201, together with the associated
data content D2, and the SIP PUBLISH request can be
processed by the server 201 in a conventional manner. The
successfully completed reception of the SIP PUBLISH
request, including a Successful execution of the required
versioning procedure, executed for data content D2, is then
verified to the client in a 200 OK response message, as
indicated with a step 2:9. In resemblance to step 2:5, data
identifier “y” and data content D2 are then cached by the
client 200 in a next step 2:10.
Once again the client 200 receives presence information

from the presentity. This time, however, the inserted pres
ence information is found to be identical to already trans
mitted data content, i.e. data content D1. Since a checking
procedure at the cache reveals that data content D1 is already
present in the clients cache, a modified SIP PUBLISH
request, only comprising the data identifier associated with
D1, i.e. data identifier 'x'', which is retrieved from the cache,
but no data content, will be transmitted to the server. This
procedure is executed at a step 2:11, and a SIP PUBLISH
request, with a reduced size, compared to an ordinary SIP
PUBLISH request will be transmitted to the server in a next
step 2:12.
At a Subsequent step 2:13, the server recognises that the

SIP PUBLISH request only comprises data identifier “x”,
and, thus, the cache will be interrogated for determining
whether there is data content stored which can be linked to
via data identifier 'x''. When found in the cache, data content
D1 is added to the SIP PUBLISH request before it is
processed by the server 201 in a conventional manner. The
server verifies a successful versioning to the client 200 by
transmitting a 200 OK response message to the client, as
illustrated with a step 2:14. If, however, the expected data
content could not be found in the cache, the server 200 will
instead respond by requesting for a retransmission. Such a
retransmission will be a complete SIP PUBLISH request,
comprising both the data identifier and the relevant data
content, which upon reception can be cached accordingly,
before the data content is inserted into the publication, which
is forwarded to a processor for conventional publication
processing.
As mentioned above, once presence information has been

delivered to the server 201, and if applicable, a successful
versioning has been executed, the retrieved data content can
be further processed by the server 201, i.e. the data content
can be delivered to one or more watchers as a notification,
all according to conventional, well known presence service
procedures.
By indicating in the requests sent to the server 201 when

versioning is required, the Suggested versioning mechanism
may be enabled or disabled, respectively, upon request,
thereby allowing the respective information exchange Ser
Vice to disable versioning and to run the service in a
conventional manner, only using versioning when required,
or on a more permanent basis. Alternatively, versioning may
be enabled, e.g. between a presence server and a watcher,
while being disabled between the presentity and the pres
ence server, or vice versa.

According to another embodiment, an alternative version
ing mechanism may be introduced, wherein a data identifier

10

15

25

30

35

40

45

50

55

60

65

8
is generated already at the client, instead of at the server. An
exemplary scenario, illustrating such a mechanism will now
be described with reference to FIG. 3.

Initially, a SIPPUBLISH request comprising a request for
versioning and presence data, delivered as data content D1,
initiated by the presentity, is processed and checked against
a cache of a client 300 in a first step 3:1, in order to
determined if data content D1 has been previously trans
mitted to a server 301. Since this is the first time data content
D1 is transmitted to server 301, no corresponding data
content will be found in the cache. As a result, the SIP
PUBLISH request is provided with a data identifier 'x'',
generated at, and inserted by the client 300. The SIP
PUBLISH request is then transmitted to the server 301 in a
Subsequent step 3:2.
At the server 301, it is determined that versioning is

required, and the data content D1 and data identifier 'x' are
therefore cached subsequent to receiving the SIP PUBLISH.
This is illustrated with a step 3:3. A successful reception and
versioning is verified to the client with a 200 OK response
message, as illustrated with a step 3:4. In response to the 200
OK response message, also the client caches data content D1
together with data identifier 'x' in a cache of the client 300,
in a next step 3:5.

In steps 3:6-3:10, a corresponding procedure is repeated
for another setting of presence data, delivered as data
content D2, and in a corresponding way another data iden
tifier 'y', associated with data content D2 is derived and
inserted into the SIP PUBLISH request, together with D2.

In another step 3:11, the client 300 receives and processes
a new SIP PUBLISH request, comprising new presence data
for publishing. Since a checking at the cache reveals that the
new presence data, represented as data content D1, is
identical to an already transmitted, and cached version of
presence data, i.e. the data content transmitted in step 3:2.
the SIP PUBLISH request is modified, stripping the request
from its data content and inserting data identifier 'x' into the
request, wherein data identifier 'x' will be used as an
identifier of data content D1 at the receiving end, i.e. at the
server 301. A SIP PUBLISH request of limited size will now
be transmitted to the server in a next step 3:12.

At the server 301 it is checked whether the data content,
identified by data identifier 'x'', has been cached previously
or not. This is done in a subsequent step 3:13. Successful
reception, and versioning of the SIP PUBLISH request is
then indicated to the client 200 with a 200 OK response
message, in a final step 3:14.

In resemblance to the previous embodiment, failure to
find the relevant presence data in the cache will result in a
request for a retransmitted publishing request, wherein both
presence data and the associated data identifier will be
transmitted in a SIP PUBLISH request. The presence data
can now be retrieved from the cache and added to the SIP
PUBLISH request, which will then be available for process
ing, according to well known publishing processing proce
dures.
Today Presence Servers may be equipped with some sort

of caching algorithm, such as, e.g. a Least Recently Used
(LRU) algorithm, assuring that the number of versions of
data content stored in the cache does not excess a preset
limit. An LRU algorithm keeps track of, and removes the
least recently used version, whenever the limit for the
maximum number of versions that the server can handle is
about to be reached.

In addition to the embodiments described above, covering
pushing of information from a client to a server, the

US 9,591,129 B2

described versioning mechanism, or any corresponding
mechanism, may be applicable also for polling of informa
tion.

Typically for a presence service, a watcher, Subscribing
for presence information associated with a certain presentity,
or a group of presentities, will be notified of a new relevant
published data identifier as soon as it is available at the
presence server. Such a notification is typically forwarded to
the Watcher as a SIP NOTIFY request. By introducing
versioning also when handling notifications forwarded from
a presence server towards a watcher, even more capacity can
be gained than what is the case when handling publications,
delivered to the presence server from a presentity.
A scenario, exemplifying how a client, operating as a

watcher, may interact with a server, operating as a presentity
server, for handling updated presence information, using the
described versioning mechanism, according to one embodi
ment, will now be described with reference to FIG. 4.
A client 401 wanting to subscribe to presence information

of a specific presentity (not shown) can initiate such a
subscription by sending a SIP SUBSCRIBE request to a
server 400, as indicated with a first step 4:1. Since the client
401 Supports versioning and wants to activate this feature, a
request, such as e.g. “versioning required' is added to the
SIP SUBSCRIBE request. The server 400, also supporting
versioning, responds by returning a 200 OK response mes
sage to the client 401 in a Subsequent step 4:2.
Once a Subscription of presence information, including

versioning, has been activated by the server 400, the server
will notify the client 401 when a change has occurred in the
respective presentity’s presence data. In another step 4:3, the
server receives and processes a SIP NOTIFY request, com
prising presence data for delivery to the client. Once the
server has identified new presence data, by executing con
ventional presence service processing, the data content, in
this case delivered via a publication, will be interrogated. In
this case versioning is required and, thus, this is indicated in
a respective notification, e.g. as “versioning required. In
addition to the data content, D1, the SIP NOTIFY request is
also provided with an associated data identifier, which may
be the same one as was used for the publishing case,
described earlier, or it may be a new data identifier, gener
ated by and inserted into the SIP NOTIFY request at the
server. In resemblance to the embodiments describing pub
lication deliveries, the data identifier may be provided into
the notification, either at the server 400 or at the client 401.
In this embodiment, the data identifier is provided to the
notification at the server 400. At a step 4:4, a SIP NOTIFY
request, comprising data content D1 and an associated data
identifier 'x'', is transmitted to the client.
Upon receiving the SIP NOTIFY request, the client 401

caches the presence data D1 and the associated data iden
tifier 'x'', as indicated with a subsequent step 4:5. At this
stage the retrieved presence data can be processed by the
client in a conventional manner.
The client 400 then verifies a successful reception, includ

ing a successful versioning, by transmitting a 200 OK
response message to the server 400 in a next step 4:6. In
response to the 200 OK response message, the server 400
caches data content D1 and the associated data identifier 'x'
in another step 4:7. At subsequent steps 4:8-4:12, a corre
sponding notification procedure is executed also for pres
ence data D2, which is delivered to the client 401, together
with an associated data identifier “y”. At another step 4:13,
a new notification is generated at the server 400 in response
to the reception of a publication from the presentity. A new
SIP NOTIFY request, comprising presence data, this time

10

15

25

30

35

40

45

50

55

60

65

10
identified as data content D1, is again identified at the server
400. This time, however, it is determined that data content
D1 has already been delivered from the server 400 to the
client 401, since an identical version of the presence data is
found in the cache. As a consequence, the SIP NOTIFY
request to be delivered to the client 401 will only comprise
data identifier 'x'', but no presence data, and thus, the
request will be modified, stripping the request from its data
content, D1, inserting instead data identifier 'x' into the
request. A notification of reduced size is then transmitted to
the client in a Subsequent step 4:14.
The client 401, receiving a SIP NOTIFY request, only

comprising a version, interrogates the cache in order to
determine whether the presence data associated with data
identifier 'x' actually has been cached at a previous stage.
Since this was done at step 4:5, the respective presence data,
i.e. data content D1, is retrieved from the cache and added
to the notification. This is indicated with a step 4:15. The
client 401 sends a 200 OK response message to the server
400 in a subsequent step 4:16, verifying a successful ver
Sioning, and the stored data content D1 can now be pro
cessed by the client 401 in a conventional way.

Alternatively, a procedure corresponding to the one
described with reference to FIG. 2, wherein a data identifier
is provided to the SIP NOTIFY at the client instead of at the
server, may be applicable. Such a mechanism may rely e.g.
on using Etags.

In an alternative embodiment, a client, receiving updated
information from a server, may indicate to the server how
many versions of data content it can handle. This informa
tion can be provided to the server 400 in a first response
message to a request. Alternatively, each response messages
sent by a server may comprise an indication as to how many
remaining versions the client can handle. Any of these two
alternative ways of controlling the number of versions of
data content, handled simultaneously by a client and stored
in the cache, may be implemented and used as a complement
to, or as an alternative to an LRU algorithm.
Which actual value as such that is chosen to indicate a

specific data identifier is not of relevant importance. The
server may for example choose the same value when noti
fying different clients, wherein a data identifier could be any
string that is unique for the client, such as, e.g. a hash value
of the included data, or simply a data identifier that is kept
by the server and the client.
The Suggested versioning mechanism requires that the

entities involved in the communication of the requests keep
track of which data content, e.g. presence data, that has been
transmitted to which entity.
As described above, this may be achieved by caching the

data content and an associated data identifier both at the
transmitting, and the receiving entity.

FIG. 5 schematically illustrates how such a caching
mechanism may be organised, according to one embodi
ment. The figure illustrates how caching may be arranged for
one presentity 500 and two watchers 501,502, all of which
are adapted to enable versioning according to any of the
embodiments, described above. The clients 500-502 may
access different information exchange services from a pres
ence server 503, also adapted to enable versioning. It is to be
understood that in the figure additional functionality neces
sary for execution of relevant services at the respective
entities have been omitted for simplicity reasons.
The presentity 500 comprises a cache 504 for caching

data content and an associated data identifier that has been
successfully transmitted by the presentity 500 to the server
503. A subsection used for caching when transmitting pub

US 9,591,129 B2
11

lications to server 503 is represented by 505. At the watchers
501 and 502, subsections of caches 505 and 506 are repre
sented by 507 and 508, respectively. A watcher receiving a
notification from the server 503 caches the received pres
ence data, together with the respective data identifier, and
interrogates the cache when a notification, only comprising
a data identifier is received in order to retrieve the respective
data content. The server comprises one cache 509 for
caching incoming requests, i.e. for caching presence data
content and a data identifier associated with publications
received from a client. The server also comprises one cache
510 for caching outgoing requests, i.e. for caching presence
data content and a data identifier associated with notifica
tions transmitted to a terminating client. A subsection 511 of
cache 509, is used for storing information received from
presentity 500, while cache 510 has corresponding subsec
tions 512 and 513, where presence data and a data identifier
associated with Watcher 501 or 502, respectively, are stored.

Exemplary embodiments describing functionality for
executing a versioning mechanism according to any of the
described embodiments at a server and clients will now be
described with reference to FIG. 6-8. It is to be understood
that the arrangements described in the following sections are
purely logical and that the described units, providing rel
evant functionality at the nodes, can be implemented in
different, alternative ways. It is also to be understood that
any functionality which is not necessary for the understand
ing of the mechanism behind the implementation of the
proposed versioning feature have been omitted for simplic
ity reasons.

FIG. 6 describes a client 600, e.g. a presentity, which is
adapted to deliver data content, e.g. presence information, to
a server (not shown), e.g. a presence server, according to one
embodiment. The client 600, comprises a conventional
processing unit 601, typically along with additional process
ing units, adapted to process requests, associated with a
requested information exchange service.

Before a request, which may require versioning, is for
warded to the relevant server via a conventional communi
cation unit 602, it is interrogated by a versioning unit 603,
while a request not requiring versioning will be handled
according to known procedures, i.e. forwarded directly to
the communication unit 602, which then forwards the
request to the respective server in a conventional manner.
The versioning unit 603 is connected to a cache 604, where
a complete version of data content and an associated data
identifier are stored the first time the data content is trans
mitted to the server. According to one embodiment, the
versioning unit is also adapted to provide a data identifier,
which will be associated with a respective data content.
According to another embodiment, where a data identifier is
instead provided by the server, the versioning unit is adapted
to cache the data content in response to receiving a response
message, i.e. a 200 OK response, verifying a Successful
reception of a request, including the Successful execution of
a versioning procedure.

In order to enable versioning at a server, also the server
has to be adapted accordingly. A server, such as e.g. a
presence server, adapted to provide versioning according to
any of the embodiments described above will therefore now
be presented with reference to FIG. 7.

The Server 700 of FIG. 7 comprises at least one conven
tional communication unit 701 for communicating with
clients (not shown), such as, e.g. presentities, providing
service related data content via requests forwarded as mes
sages, e.g. publications, to the server. The server is also
adapted to communicate with watchers, which may expect

5

10

15

25

30

35

40

45

50

55

60

65

12
another type of messages, e.g. notifications, to be delivered
from the server, according to predefined rules and con
straints. The communication unit 701 is adapted to forward
a message, e.g. a publication, received from a client, to a
versioning unit 702. If no versioning is requested in the
massage, the message is forwarded directly to a conven
tional processing unit 703, where it can be processed in a
conventional manner. In response to receiving a publication,
one or more notifications may e.g. be generated, all accord
ing to relevant subscriptions, managed by the server 700. In
case versioning is supported by the server 700, a received
message comprising a request for versioning, but no data
identifier, will be provided with a data identifier, which is
added to the message and forwarded to the initiating client.

In case a data identifier is instead provided at the client,
a message, comprising a request for versioning and the data
identifier together with the associated data content will
instead be identified by the versioning unit 802. The data
content and the data identifier are then cached at a first cache
704, dedicated for the receiving side of the server, prior to
processing the message at the processing unit 703, and
delivering an associated message, e.g. notification, to the
communication unit 701. In case versioning is required and
a data identifier is present, but no associated data, i.e. this
data content has been delivered to the server before, the
versioning unit 702, is instead adapted to interrogate the first
cache 704 to determine, whether the data content associated
with the data identifier is actually stored in the first cache
704.
A message to be delivered to a client from the server, e.g.

as a notification, is provided to the versioning unit 702 from
the processing unit 703. The message, comprising a request
for versioning, a data identifier, and associated data content
will be checked by the versioning unit 702, which is
interrogating a second cache 705, dedicated for the trans
mitting end of the server 700. If data content linked to by the
respective data identifier is found in the second cache 705,
this means that the present data content has been transmitted
to the respective client before. The versioning unit then
modifies the message by removing the data content, in order
to limit the size of the message. If, however, no correspond
ing data content can be found in the second cache 705, it is
determined that this is the first time the data content is to be
transmitted to the client and, thus, the message will remain
unchanged, carrying both data content and a version when
transmitted to a terminating client.
The data content and the corresponding data identifier are

then forwarded to the communication unit 701, from where
the notification is transmitted to a respective client, and in
response to receiving a 200 OK response message from the
client, indicating a successful reception and versioning of
the message, the data content and the associated data iden
tifier are cached at cache 705.

If it is found by the versioning unit that versioning of the
publication is required, but no versioning has been executed
in a prior step, e.g. during publishing, or if separate ver
sioning procedures is to be executed at the different server
ends, the versioning unit is adapted to provide the message
with a data identifier before delivering the message to the
client. If a terminating client responds with a negative
response to such a message, which was carrying a data
identifier but no data content, the versioning unit 702 is
adapted to generate a new message, comprising both the new
data identifier and the relevant data content, retrieved from
the cache 705. The versioning unit 702 then forwards the
new message to the communication unit 702 for transmis
sion to the client.

US 9,591,129 B2
13

A client, such as e.g. a Watcher, adapted to enable
versioning for received messages, e.g. notifications from a
Server has already been mentioned above. Such a modified
client will now be described with reference to FIG. 8. A
message delivered by a server (not shown). Such as e.g. the
one described above, is received by a communication unit
801, of a client 800 and interrogated by a versioning unit
802. Upon receiving a message, comprising a request for
versioning, but no data identifier, the versioning unit 802 is
adapted to provide a data identifier, such as e.g. an Etag,
which is then cached at a cache 803, together with the
associated data content. The versioning unit 802 is also
adapted to provide a response message comprising the data
identifier to the server.

If, however, the message comprises a data identifier, but
no data content, the versioning unit 803 is adapted to instead
check the cache 803 for data content stored together with the
respective data identifier, and to provide the message with
the respective identified data content, before the message is
forwarded to the processing unit 804 for conventional pro
cessing of the message. A message comprising a data
identifier and associated data content is handled accordingly
by the versioning unit 802, and the data identifier and the
associated data content are stored at the cache 803 in
response to a successful reception and versioning of the
message. Upon having cached the delivered content, the
message is forwarded to the processing unit 804 for pro
cessing of the data content.

Nodes involved in data processing according to any of the
embodiments described above may be configured to use any
of the described versioning mechanisms, or a corresponding
solution, as an alternative to standard functionality, i.e. when
required according to circumstances, or parallel to standard
transmission functionality.

While the invention has been described with reference to
specific exemplary embodiments, the description is gener
ally only intended to illustrate the inventive concept and
should not be taken as limiting the Scope of the invention,
which is defined by the appended claims.

The invention claimed is:
1. A method in a communication network of delivering

messages associated with an information exchange service
between a first entity and a second entity, said method
comprising the following steps, executed by the first entity:

processing a message associated with an information
exchange service, said message comprising data con
tent and a request for versioning, wherein versioning
comprises associating each version of data content of a
message with a data identifier, identifying said version,

determining if the data content has already been delivered
to the second entity, and

transmitting said message unchanged to the second entity
in case said data content has not already been delivered
to the second entity, or

transmitting a modified message to the second entity in
case the data content has already been delivered to the
second entity, said modified message comprising a data
identifier but no data content.

2. A method according to claim 1, wherein said first entity
is a server and said second entity is a client.

3. A method according to claim 2, wherein said message
a SIP notification.

4. A method according to claim 3, further comprising the
following step, to be executed prior to said processing step:

receiving a request for an information exchange service
from the second entity, said request indicating that
versioning is required.

10

15

25

30

35

40

45

50

55

60

65

14
5. A method according to claim 1, wherein said first entity

is a client and said second entity is a server.
6. A method according to claim 5, wherein said message

is a SIP publication.
7. A method according to claim 1, wherein said determin

ing step comprises interrogating a cache.
8. A method according to claim 1, wherein said data

identifier is inserted into said message at the first entity.
9. A method according to claim 1, wherein said data

identifier is provided from the second entity.
10. A method according to claim 9, wherein said data

identifier is provided to the first entity in a response mes
sage, said response message indicating Successful delivery
of said message.

11. A method according to claim 1, wherein said data
content and said associated data identifier are stored in a
cache of said first entity Subsequent to receiving a response
message, verifying that said message has been Successfully
delivered to and stored at a cache of said second entity.

12. A method according to claim 11, wherein a first
response message comprises an indication of the total capac
ity of the cache of said second entity.

13. A method according to claim 11, wherein each
response message comprises an indication of the remaining
capacity of the cache of said second entity.

14. A method according to claim 1, wherein said data
identifier is a version number or a unique identity.

15. A method according to claim wherein said data
identifier is an Etag.

16. A method in a communication network of handling
messages associated with an information exchange service
at a first entity, wherein said messages are delivered from a
second entity to said first entity, said method comprising the
following steps:

receiving a message associated with the requested infor
mation exchange service, said message comprising a
request for versioning; wherein versioning comprises
associating each version of data content of a message
with a data identifier, identifying said version,

determining if said message comprises data content,
retrieving a data identifier associated with the data content

and storing said data content together with said data
identifier, in case said message comprises data content,
O

providing the message with stored data content, associ
ated with a data identifier, said data identifier being
retrieved from the message, in case said message does
not comprise any data content, and
processing the message.

17. A method according to claim 16, wherein said first
entity is a client and said second entity is a server.

18. A method according to claim 17, wherein said mes
sage is a SIP notification.

19. A method according to claim 18, further comprising
the following step, to be executed prior to said receiving
step:

forwarding a request for an information exchange
service to the second entity, said request indicating that
versioning is required.

20. A method according to claim 16, wherein said first
entity is a server and said second entity is a client.

21. A method according to claim 20, wherein said mes
sage is a SIP publication.

22. A method according to claim 16, wherein said retriev
ing step comprises retrieving said data identifier from the
first entity.

US 9,591,129 B2
15

23. A method according to claim 22, wherein said data
identifier is forwarded from the first entity to the second
entity in a response message, said response message indi
cating a successful delivery of said message.

24. A method according to claim 16, wherein said retriev
ing step comprises retrieving the data identifier from the
message, said data identifier being inserted into said mes
sage at the second entity.

25. A first entity of delivering messages associated with an
information exchange service to a second entity, said first
entity comprising:

a processing unit for processing a message associated
with the requested information exchange service, said
message comprising data content and a request for
versioning, wherein versioning comprises associating
each version of data content of a message with a data
identifier, identifying said version,

a versioning unit for determining if the data content has
already been delivered to the client, and

a communication unit for transmitting the message
unchanged to the client in case said data content has not
already been delivered to said client, or for transmitting
a modified message to the client in case said data
content has already been delivered to said client, said
modified message comprising a data identifier but no
data content.

26. A first entity according to claim 25, wherein said first
entity is a server and said second entity is a client.

27. A first entity according to claim 26, wherein said
communication unit further comprises:

a receiver for receiving a request for an information
exchange service from the second entity, said request
indicating that versioning is required.

10

15

25

30

16
28. A first entity according to claim 26, wherein said

versioning unit is adapted to interrogate a cache in order to
determine if said data content has already been delivered to
said first entity.

29. A first entity according to claim 25, wherein said first
entity is a client and said second entity is a server.

30. A first entity of handling messages associated with an
information exchange service, wherein said messages are
received from a second entity, said method comprising the
following steps:

a communication unit for receiving a message from the
second entity, said message comprising a request for
versioning, wherein versioning comprises associating
each version of data content of a message with a data
identifier, identifying said version,

a versioning unit for determining if said message com
prises data content, said versioning unit being adapted
to retrieve a data identifier associated with the data
content and to cache said data content together with
said data identifier, in case said message comprises data
content, or to provide the message with stored data
content associated with a data identifier, after having
retrieved said data identifier from the message, in case
said message does not comprise any data content, and

a processing unit for processing the message.
31. A first entity according to claim 30, wherein said

versioning unit is connected to a cache, said versioning unit
being adapted to cache data content and an associated data
identifier in response to a successfully delivered or received
message.

32. A first entity according to claim 30, wherein said first
entity is a server and said second entity is a client.

33. A first entity according to claim 30, wherein said first
entity is a client and said second entity is a server.

k k k k k

