
(12) United States Patent
Arnold

USOO9589176B1

US 9,589,176 B1
Mar. 7, 2017

(10) Patent No.:
(45) Date of Patent:

(54) ANALYZING INTEGRAL IMAGES WITH
RESPECT TO HAAR FEATURES

(71) Applicant: Amazon Technologies, Inc., Seattle,
WA (US)

(72) Inventor: Vaughn Todd Arnold, Scotts Valley,
CA (US)

(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 35 days.

(21) Appl. No.: 14/584,203

(22) Filed: Dec. 29, 2014

Related U.S. Application Data
(62) Division of application No. 14/501,665, filed on Sep.

30, 2014.

(51) Int. Cl.
G06K 9/56 (2006.01)
G06K 9/00 (2006.01)
G06T 5/00 (2006.01)

(52) U.S. Cl.
CPC G06K 9/00234 (2013.01); G06T5/005

(2013.01); G06T 2207/20021 (2013.01)
(58) Field of Classification Search

CPC G06T 3/00; G06T 3/40: G06T 3/4007; G06T
7/004: G06T 7/0044: G06T 7/0079; G06T
7/0081; G06T 15/10; G06T 2207/10004:
G06T 2207/20021; G06T 2207/30201;
G06T 5/005; G06K 9/00221; G06K

9/00228
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,003,176 B1* 2/2006 Suzuki GO6T 3,4015
345.3.3

7,123,277 B2 * 10/2006 Brown Elliott GO6T 3,4015
345.426

7,180,528 B2 * 2/2007 Bossut GO6T 11.60
345,619

7,379,613 B2 * 5/2008 Dowski, Jr. GO2B 27/0025
356,521

7,398.378 B2 * 7/2008 Sugure G06F 13/24
T10,260

7,583,859 B2* 9/2009 Suzuki GO6T 3,4015
345,660

7,688,335 B2* 3/2010 Brown Elliott GO6T 3,4015
345.426

8,169,656 B2 * 5/2012 Kondo GO6T 3/4007
345,660

(Continued)
Primary Examiner — Samir Ahmed
(74) Attorney, Agent, or Firm — Lee & Hayes, PLLC

(57) ABSTRACT
Subject matter disclosed herein relates to arrangements and
techniques that provide for identifying objects within an
image such as the face position of a user of a portable
electronic device. An application specific integrated circuit
(ASIC) is configured to locate objects within images. The
ASIC includes an image node configured to process an
image and a search node configured to search the image for
an object in the image. The search node includes an integral
image generation unit configured to generate an integral
image of the image and a Haar feature evaluation unit
configured to evaluate search windows of the integral image
with respect to Haar-like features. The ASIC also includes an
ensemble node configured to confirm the presence of the
object in the image.

20 Claims, 22 Drawing Sheets

/ 1400

1402

y

y

Load a template from a NoC remory read (NMR) black

1404

Compare a ROI in the two images with the template to confirm
the presence of an object, i.e. a face, in the images

If there are multiple faces in the frame, create a depth map of
any faces found in the images and the face closest to the

cameras is selected as the primary face

-1408

Once the primary face has been found, send the face back to
the search node to extract the features from the face

140

See the features and X, Y, Z coordinates of the location of the
face to an application processor

US 9,589,176 B1
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2009, 0290791 A1* 11, 2009 Holub GO6K9/00234
382, 164

2010.00533.68 A1 3/2010 Nanu GO6K9/00248
348,224.1

2010.0054592 A1 3/2010 Nanu et al.
2011 0102643 A1* 5, 2011 Nanu GO6K9/00248

348,241
2011/0211233 A1 9/2011 Yokono
2011/0268319 A1 11/2011 Niskanen et al.
2012/O120283 A1 5/2012 Capata et al.
2012/O195495 A1 8, 2012 Shiell et al.
2013/0272575 A1 10, 2013 Li et al.

* cited by examiner

US 9,589,176 B1 Sheet 1 of 22 Mar. 7, 2017 U.S. Patent

US 9,589,176 B1 Sheet 2 of 22 Mar. 7, 2017 U.S. Patent

Z '91-'

U.S. Patent Mar. 7, 2017 Sheet 3 of 22 US 9,589,176 B1

US 9,589,176 B1 U.S. Patent

U.S. Patent Mar. 7, 2017 Sheet S of 22 US 9,589,176 B1

type V

Type 1

Type IV

U.S. Patent Mar. 7, 2017 Sheet 6 of 22 US 9,589,176 B1

F.G. 5B

U.S. Patent Mar. 7, 2017 Sheet 7 of 22 US 9,589,176 B1

Line

FIG. 5C

US 9,589,176 B1 Sheet 8 of 22 Mar. 7, 2017 U.S. Patent

009_4
Áeuge

U.S. Patent

Sum 3 704b.

0.5x 1X

O
- 7

704d

Sun O

O

704g

702f

Surn 1

O

- 7

704

Sum 2

Mar. 7, 2017 Sheet 9 of 22

704a

US 9,589,176 B1

7OO 1.
PortS 3 - 2
PortS 5 - 4

2x

2x

O

- 7 i.
1x 8x

704e 9te /702e/
/opa/ 70

POrtS 7 - 6
POrtS 11 - 8

7th/702/

1 X
2

8 X

Ports 13 - 12
POrtS 17 - 14

POrtS 19 - 18
POrtS 23 - 20

U.S. Patent

Sum 2

Mar. 7, 2017 Sheet 10 of 22 US 9,589,176 B1

7OO
1.
POrtS 1 - O
Ports 3 - 2
POrtS 5 - 4

POS 7 - 6
POrtS 11 - 8

Ports 13 - 12
POrtS 17 - 14.

POrtS 19 - 18
POrtS 23 - 20

FIG. 7B (FEATURE TYPE I)

U.S. Patent Mar. 7, 2017 Sheet 11 of 22 US 9,589,176 B1

PortS 1 - O
Ports 3 - 2

2x POrtS 5 - 4

Surn 3

POrtS 7 - 6
O Ports 1 - 8

Sun 0

POrtS 13 - 2
O POrtS 7 - 14

Sun 1

PortS 19 - 18
O PortS 23 - 20

Sum 2

FIG.7C (FEATURE TYPE II)

U.S. Patent Mar. 7, 2017 Sheet 12 of 22 US 9,589,176 B1

7OO 1.
POrtS 1 - O
Ports 3 - 2
POrtS 5 - 4

Sun 3

POrtS 7 - 6
POrtS 11 - 8

POrtS 13 - 2
POrtS 17 - 14

Sum 1

PortS 19 - 18
PortS 23 - 20

FIG. 7D (FEATURE TYPE III)

U.S. Patent Mar. 7, 2017 Sheet 13 of 22 US 9,589,176 B1

7OO 1.
POrtS 1 - O
Ports 3 - 2

2x - POrtS 5 - 4

/702a/ N 7 704a

NY 7 /702/
Sum 3 704b. O 2x

Po?tS 7 - 6
Ports 11 - 8

POrtS 13 - 12
POrtS 7 - 14

PortS 19 - 18
Po?tS 23 - 20

FIG. 7E (FEATURE TYPE IV)

U.S. Patent Mar. 7, 2017 Sheet 14 of 22 US 9,589,176 B1

700 f
Ports 1 - O
Ports 3 - 2
Ports 5 - 4

POrtS 7 - 6
Ports 11 - 8

O 2 PortS 13 - 2
1. PortS 17 - 14 XI 18.

in /702n/
Sun 1

PortS 19 - 18
O 1 2 8x POrtS 23 - 20

x - x - 7

704i 704
1x

Sum 2

FIG. 7F (FEATURE TYPE V)

U.S. Patent Mar. 7, 2017 Sheet 15 of 22 US 9,589,176 B1

Input cache line from
NoC / memory

Scaling
resample filter
(SRF) 800

Template
matching Bit-blit copy

array (TMA) (BBC) 804
802

Cache line
arbiter 906

Ensemble
node 106

Output cache line to
NoC / memory

FIG. 8

U.S. Patent Mar. 7, 2017 Sheet 16 of 22 US 9,589,176 B1

Cache line from NOC / Pixel stream from
memory SRF f memory

900 1.

Match
window
array 906

Clock
Image buffer 902 gating

buffer 912

Template
buffer 900

Column
Summation
and test
908

NMW 910

Cache line to NOC

FIG. 9

U.S. Patent Mar. 7, 2017 Sheet 17 of 22 US 9,589,176 B1

—image width—

image ows Matching row, PASS 1

Image roWS
16-31

y
Matching row, PASS 2 Image height

image ows Matching row, PASS 1

imagews Matching row, PASS 2 Image height

FIG. 10B

US 9,589,176 B1 Sheet 18 of 22 Mar. 7, 2017 U.S. Patent

pue]]

7 3WS 8CSSO 3 in

OO uunOO uOpen unooense. WC. eled

80 uun OO uOlenLunooe WOu e

<!--suuun?00 Z$---?

U.S. Patent Mar. 7, 2017 Sheet 19 of 22 US 9,589,176 B1

? 1200

Process, via an image node of a network on a chip (NoC), an
image to improve quality of the image

Generate an integral image of the image

Evaluate search windows of the integral image with respect to
Haar features in a plurality of stages until either (i) the search

window fails a stage or (ii) the search window passes all stages

If the search window passes all stages thereby indicating the
presence of an object in the image, confirm, via an ensemble
node of the NoC, the presence of the object in the image

FIG. 12

U.S. Patent Mar. 7, 2017 Sheet 20 of 22 US 9,589,176 B1

1302

Create an integral image for an input image

Input the values of the calculated integral images into various
ports of a feature evaluation unit to arrive at a value at one of

the output po?ts of the feature evaluation unit

Compare the values or sums at the output ports to a node
threshold

If the value is greater than the node threshold, then assign a
right node value for that integral image

lf the value is greater than the node threshold, then assign a left
node value for that integral image

At the end of a stage, sum all of the node values and compare
the sum of the node values to a threshold

If the sum of the node values is greater than the threshold, then
the stage has been passed

If the sum of the node values is less than the stage threshold,
then the stage has failed

FIG. 13

U.S. Patent Mar. 7, 2017 Sheet 21 of 22 US 9,589,176 B1

? 1400

Compare a ROI in the two images with the template to confirm
the presence of an object, i.e. a face, in the images

If there are multiple faces in the frame, create a depth map of
any faces found in the images and the face closest to the

Cameras is selected as the primary face

Once the primary face has been found, send the face back to
the Search node to extract the features from the face

Send the features and X, Y, Z Coordinates of the location of the
face to an application processor

FIG. 14

U.S. Patent Mar. 7, 2017 Sheet 22 of 22 US 9,589,176 B1

PORTABLE EECTRONIC DEVICE
1500

PROCESSOR(S)
1502 ASIC 1 OO

COMPUTER-READABLE MEDA 1504

OPERATING SYSTEM/USER
INTERFACE MODULE 1506 CoNTENT ITEM(s) 1508

OTHER MODULES AND DATA
1510

US 9,589,176 B1
1.

ANALYZING INTEGRAL IMAGES WITH
RESPECT TO HAAR FEATURES

CROSS-REFERENCE TO RELATED
APPLICATION

The present disclosure is a divisional of and claims
priority to U.S. patent application Ser. No. 14/501,665, filed
Sep. 30, 2014, which is incorporated herein by reference.

BACKGROUND

Many portable or stationary electronic devices are becom
ing more complex and using various technologies for con
trolling the portable electronic devices as well as for pro
viding various user functionality and interactions. The
implementation of these complex technologies and the pro
cessing associated therewith can require a large amount of
resources from the portable electronic devices application
processor and/or central processing unit (CPU). Such pro
cessing requirements can result in slower performance by
the portable electronic device, greater power requirements,
and/or the need for larger and more powerful processors for
the portable electronic device.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to
non-limiting and non-exhaustive embodiments illustrated in
the accompanying figures. The same reference numerals in
different figures refer to similar or identical items.

FIG. 1 schematically illustrates an Application Specific
Integrated Circuit (ASIC), in accordance with various
embodiments.

FIG. 2 schematically illustrates an image node of the
ASIC of FIG. 1, in accordance with various embodiments.

FIG. 3 schematically illustrates a search node of the ASIC
of FIG. 1, in accordance with various embodiments.

FIGS. 4A and 4B schematically illustrate integral images
for pixels of an image.

FIG. 5A schematically illustrates examples of Haar fea
tures that are used with an exhaustive search array of the
search node of FIG. 3.

FIG. 5B schematically illustrates Haar features that are
used with the search node of FIG. 3.

FIG. 5C is a table illustrating weights for the Haar
features of FIG. SB.

FIG. 6 schematically illustrates an arrangement of part of
the exhaustive search array of the search node of FIG. 3, in
accordance with various embodiments.

FIGS. 7A-7F schematically illustrate examples of a cir
cuit for implementing a Haar feature evaluation module
corresponding to a feature evaluate block of the arrangement
of FIG. 6, in accordance with various embodiments.

FIG. 8 schematically illustrates an ensemble node of the
ASIC of FIG. 1, in accordance with various embodiments.

FIG.9 schematically illustrates a template matching array
of the ensemble node of FIG. 8, in accordance with various
embodiments.

FIGS. 10A and 10B schematically illustrate line buffers of
the template matching array of FIG. 9, in accordance with
various embodiments.

FIG. 11 schematically illustrates a match window array of
the template matching array of FIG. 9, in accordance with
various embodiments.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 12 is a flowchart illustrating an example of a process

of locating an object in an image using the ASIC of FIG. 1,
in accordance with various embodiments.

FIG. 13 is a flowchart illustrating operations 1204 and
1206 of FIG. 12 in more detail, in accordance with various
embodiments.

FIG. 14 is a flowchart illustrating an example of a process
of confirming the presence of an object in an input image
using the ASIC of FIG. 1, in accordance with various
embodiments.

FIG. 15 illustrates select components of an example
portable electronic device that includes the ASIC of FIG. 1,
in accordance with various embodiments.

DETAILED DESCRIPTION

The present application provides arrangements and tech
niques for identifying objects within an image such as the
face position of a user of a portable electronic device. More
particularly, the present disclosure provides an Application
Specific Integrated Circuit (ASIC) that identifies the position
of a user's face, verifies a position of the user's face and then
provides the position of the user's face to the application
processor (AP) of the portable electronic device for use by
the AP.
A portable electronic device Such as, for example, a

Smartphone, a tablet computing device, a notebook comput
ing device, etc., generally displays content on a display. The
content can include, for example, images, words, etc. Such
content can be displayed to a user for viewing. When the
user is ready to move on to further content, the user can
"scroll” the content on the display to new content. Often, the
user Scrolls the content on the display via, for example, by
contacting the display (e.g., a touchscreen display), or
physical inputs such as a keyboard, a toggle Switch, a mouse
pad type device, etc. However, technology has now been
developed and used to allow for the portable electronic
device to recognize an image of a portion of the user and
track that portion of the user for movement that can be used
by the portable electronic device to signify a desire to scroll
content displayed on the display of the portable electronic
device. For example, an image of the position of a user's
face can be tracked by cameras on the portable electronic
device to thereby signify desired movement of scrolling of
the content on the display. For example, the cameras may
track the user's face to determine that the user's face is
moving in an upward motion, thereby indicating that the
user wishes the content on the display to scroll upward to
provide further content on the display. Likewise, the cam
eras can track movement of the user's face in a downward
or side-to-side movement to indicate a desire for the user to
have content Scrolled in a downward motion on the display
or in a side-to-side motion. However, such processing
requires a great deal of power and time on the part of the
application processor for the portable electronic device.

In accordance with various embodiments, the NoC
included with a portable electronic device includes three
nodes for processing and identifying images corresponding
to a position of a user's face. The NoC includes an image
node that receives images from four corner cameras. The
four corner cameras are generally located in the four corners
of a display of the portable electronic device. In accordance
with various embodiments, only two of the four images are
utilized by the image node since often, one or two of the
cameras are occluded by the user's fingers. Furthermore, as
will become apparent herein, only two images are generally
needed for identifying a position of the user's face. The other

US 9,589,176 B1
3

two images, and thus a total of four images, can be utilized
to calibrate the four corner cameras of the portable elec
tronic device. The image node processes the two images so
that the two images can be searched for a user's face. The
processing can include exposure correction in the form of a
black level correction, defective pixel correction, and a
statistical analysis of the images.
Once the image node has processed the two images,

generally a left image and a right image, the two images are
forwarded to a search node. The search node generally
scales the image down Such that a minimum size of an object
of interest, such as the user's face, can fit within a search
window. The search node then searches for the user's face
within a first image. Once the search node determines that it
has found the user's face within a region of interest, the
search node searches the second image in order to determine
if the face can be found in a similar region of interest within
the second image.

The search node will progressively search within the first
image and will continue to scale the first image down Such
that a maximum size of the item of interest, Such as the
user's face, will fit within a search window. In accordance
with various embodiments, the search node includes a
cascade classifier that contains stages of Haar features that
are trained to identify a particular object or pattern. The
searching of the various regions within the images pro
gresses through the various stages of the cascade classifier
until either a stage fails, or a region of interest in the image
passes all of the stages, thereby indicating the presence of an
object Such as the user's face. The downsizing and searching
of the image continues until a location of the object within
the image can be determined.
Once the search node has identified the presence of a face

in both the right and left images, the image is sent to an
ensemble node of the ASIC. The ensemble node is utilized
to confirm the presence and size of the face in a region of
interest in the first image and a corresponding region of
interest in the second image. In accordance with various
embodiments, a template is utilized by the ensemble node to
compare, pixel-by-pixel, the region of interest in the first
image and, pixel-by-pixel, the region of interest in the
second image. If the ensemble node confirms the presence
and size of a face in the two images, then the image of the
face is sent back to the search node to extract facial features
from the face. The features from the face are then forwarded
to the application processor which will then analyze the
features of the face to determine positions of the face in
order to control the scrolling.

FIG. 1 schematically illustrates an Application Specific
Integrated Circuit (ASIC) 100 that includes four nodes 102,
104, 106 and 108. The four nodes 102, 104, 106 and 108
include an image node 102, a search node 104, an ensemble
node 106 and a master node 108. The ASIC 100 includes
four scaler Microprocessor without Interlocked Pipeline
Stages (MIPS) cores 110a, b, c and d and four megabytes of
internal memory 112a, b, c and d arranged as a Network on
Chip (NoC). In accordance with various embodiments, the
internal memory is static random access memory (SRAM).
More or less memory may be included if desired. The ASIC
100 further includes a low speed input/output unit 114. As
can be seen, the four processor cores 110a, b, c and d are
associated with one of the nodes 102, 104, 106 and 108,
respectively. Each memory 112a, b, c and dis also generally
associated with one of the four nodes 102,104,106 and 108.
The master node 108, serves as “the command and control

block” for the ASIC 100. The master node 108 is responsible

10

15

25

30

35

40

45

50

55

60

65

4
for boot and power management, as well as controlling the
three other MIPS processor cores 110a, b and c in the ASIC
1OO.
As can be seen, the image node 102 is in communication

with the four corner cameras, represented by a camera block
114 via a Mobile Industry Processor Interface (MIPI) inter
face 116. A low speed input output (I/O) 118 is in commu
nication with an application processor (not illustrated) of a
portable electronic device (not illustrated) that includes the
ASIC 10O.

FIG. 2 schematically illustrates the image node 102. The
image node 102 includes two image sensor processors (ISP)
200, 202 and two camera calibration logic (CCL) 204, 206.
The ISPs 200, 202 and the CCLS 204, 206 are in commu
nication with the MIPI interface 116 that is in communica
tion with the four corner cameras (camera block 114). The
image node 102 also includes a 90 degree rotate (NDR) 208,
and a debug port output (DPO) 210. The CCLs 204, 206 and
the DPO 210 are utilized for calibration of the four corner
cameras (in conjunction with the ISPs 200, 202). The
calibration of the four corner cameras is performed by the
AP and will not be discussed further herein. However, the
calibration of the four corner cameras is important so that a
relative position of a region of interest (ROI) in one camera
translates to a maximally bounded corresponding ROI in
another camera based on estimated Z-depth. Specifically, the
uncertainty in the size and position of the ROI in the second
camera should be a function primarily of the uncertainty in
the Z-depth estimation and not the uncertainty of the two
cameras in global coordinate space. The image node 102
also includes buffers (not illustrated). The image node 102
also includes a cache line arbiter 212.
The NDR 208 is utilized since often the user may be using

the portable electronic device in a “landscape' mode. In
Such an instance, images arriving from the cameras may
actually be on their sides. Thus, the NDR 208 can be utilized
to rotate the images based upon an indication that the
portable electronic device is being operated in a landscape
mode. In accordance with various embodiments, the NDR
208 is configured to rotate the images 90 degrees, 180
degrees and 270 degrees.

Each ISP 200, 202 provides functionality that includes
static and dynamic defective pixel detection and correction,
black-level correction and gain control, and full and partial
image statistical generation and analysis. Generally, the
primary processing is to the camera exposure control. These
are latency critical adjustments, so dedicated hardware is
included to statistically analyze the full input images over
one of several specified regions of interest (ROI) in the
image. Camera adjustments can be based on the entire image
or can be made to track ROIs corresponding to tracking or
potential face positions. Local black level correction also
facilities search retrying of images corrected based on
different regions (if new images are not available yet due to
low frame rate). The image statistical generation and analy
sis can be used for normalization of matching thresholds.

Generally, the ISPs 200, 202 receive a signal that a frame
is coming in and then moves the frame through the ISPs 200,
202 to process the images. The processed images can then be
written to memory 112a or can be provided to another node
within the ASIC 100.

FIG. 3 schematically illustrates the search node 104. The
search node 104 includes an exhaustive search array unit
(ESA)300 and a scaling resample filter (SRF) 302. The ESA
300 and the SRF 302 are controlled by the MIPS core 110b.
The SRF 302 is designed to resample an image while

downsizing it. In accordance with various embodiments, the

US 9,589,176 B1
5

SRF 302 is a six tap programmable scaler. The coefficients
are programmable, so various types of filters can be imple
mented. In accordance with various embodiments, Lanczos
resampling coefficients are used and the maximum down
scale is approximately one-sixth.
Once the image is scaled down, the image is ready to be

searched for objects. Search processing by the ESA 300
largely involves passing a search window over the image
until the entire Scaled image has been searched. An indi
vidual window is searched by applying and testing each
stage of a cascade classifier until a stage fails or all stages are
passed. If all stages pass, then an object is determined to
have been found in the image and its coordinates and
dimensions are saved. Generally, the process is then
repeated for a second image related to the first image, i.e. the
Stereo image of the first image, to check if the object is also
located at the same coordinates and with the same dimen
sions in the second image. Searching of the second image
can also be done simultaneously with searching the first
image if desired.
More particularly, it is possible to search a full size image,

which in accordance with various embodiments, is approxi
mately 400x400 pixels. However, the search window, in
accordance with various embodiments, is generally 32x32
pixels. Since a minimum size for an object, e.g., the user's
face, is 50x50, the image generally needs to be scaled down
until the minimum size of the object fits within the 32x32
image. Thus, the original 400x400 image is generally scaled
down to 256x256. The entire image is searched by passing
the search window over the scaled down image, generally
beginning at location 0, 0 of the image. The scaled image is
generally saved and if the initial searching passes the stages,
then the image is further scaled down and searched until the
image has been scaled down to a point that the maximum
object size, e.g., 220x220 for a user's face, fits within a
32x32 search window. The image is scaled by a program
mable factor with a default of 1.2 each iteration.
The search implementation utilizes Haar Evaluator type

features based upon the Viola-Jones algorithm. The Haar
features are combinations of 2 or 3 rectangular shapes.
These shapes can be compared and tested against a thresh
old, and this yields useful information regarding the pres
ence of a face or facial features in the current search window.
Generally the Haar features and the Viola-Jones algorithm
are very efficient at indicating when an object is not present
within an image. The rectangular shapes of the Haar features
are computed by adding up pixel values of all of the pixels
in the given rectangle. This can generally be accomplished
very quickly for any arbitrarily sized rectangle if an “integral
image' of a given input image is computed ahead of time.
As is known, in order to create an integral image, each

pixel is assigned a value that is equivalent to the Sum of all
the pixels to the upper left of the location of the pixel. More
particularly, the integral image is a version of the input
image where each pixel is replaced by the value of all of the
pixels to the left and above the given pixel location in the
input image. Thus, as can be seen in FIG. 4A, a target pixel
402 of an image 400 is assigned a value equal to all of the
pixels in the integral area 404. Note that the integral image
is one pixel wider and higher than the input image (addi
tional row/column 406). Further note that the pixel at
location w, h contains the total of all of the pixels in the
entire image 400.

Referring to FIG. 4B, given an integral image, the pixel
total of any rectangle in an image can be quickly computed
by adding and Subtracting the integral images (II) of the four
pixels at the corners A, B, C and D of the rectangle.

10

15

25

30

35

40

45

50

55

60

65

6
However, it can be seen in FIG. 5A that when integral image
pixels B and C are Subtracted from integral image pixel D.
the integral image pixel A is subtracted off twice. Thus, the
area is given by: Rect (A, B, C, D). area=II(D)-II(C)-II(B)+
II(A).
As previously noted, Haar features are weighted combi

nations of 2 or 3 rectangles. FIG. 5A illustrates examples of
Haar features that are based on the Haar features illustrated
in FIG. 5B and that are used with the ESA 300 of FIG. 3.
Note that the white rectangles are assumed to cover the
entire feature (including the area under the black rectangle),
and each rectangle has an area weight associated with it. The
weights in FIG. 5C are for the black rectangles. The white
rectangles always have a multiplier of -1.
As can be seen in FIG. 5A, there are four Haar features

that are unique and not simply just a new orientation. Those
are Haar features 1a, 2a, 2b, and 3a. These Haar features are
further referred to herein as type I, II, III and IV, respec
tively. A fifth Haar feature is also included as type V.
The type I Haar feature evaluation Summation is com

puted using the following weights and expression:

Sum(TI)-2 (C12-C1-Co-Co)-(C2-Co-Co+Coo)

This is the resulting 6-term addition that must be imple
mented for the type I Haar feature. The C reference refers to
the corner pixel location. The 90-degree rotated version of
the type I Haar feature operates on the transposed feature
(mirrored about the x-y axis). Thus the sum for the trans
posed type I Haar feature is written by simply reversing the
indices on each of the corners:

The Haar type II feature evaluation Summation is com
puted using the following weights and expression:

Sum(TII)=2C2-2C-2Co+2Co+C2-C1-Co
Co-C13+Co+Co3-Coo

This is the resulting 12-term addition that must be imple
mented for the type II Haar feature. The sum for the
transposed (or rotated) version of Haar type II feature is
simply:

Sum(TII)-2C21-2C1-2Co+2Co+C21-C1-Co
Co-C+Co1+Co-Coo

The type III Haar feature evaluation summation is com
puted using the following weights and expression:

SUM(TIII)=2C-2C-2Co+2Co-C+Co+Co1
Coo

This is the resulting 8-term addition that must be imple
mented for the type III Haar feature. The sum for the
transposed (or rotated) version of the type III Haar feature is
simply:

US 9,589,176 B1
7

The type IV Haar feature evaluation summation is com
puted using the following weights and expression:

This is the resulting 12-term addition that must be imple
mented for the type IV Haar feature. This type of feature is
radially symmetric. So it has no transpose orientations.
The type V Haar feature evaluation summation is com

puted using the following weights and expression: 15

This is the resulting 9-term addition that must be imple
mented for the type V Haar feature.

Referring to FIG. 6, an arrangement 600 of part of the 25
ESA 300 of FIG. 3 is schematically illustrated. Generally,
the ESA 300 is configured for a complete 32x32 search
window array of pixels in parallel. The ESA 300 does this
continually for every possible location of the search window.
An integral image (II) pixel II is only partially computed 30

at an II generate module 602 to minimize a pixel width of a
line buffer 604. Rather than computing the full integral
image pixel, only integral columns are computed. As the
columns are read from the line buffer 604 to fill a two
dimensional (2D) search window array 606, the full integral 35
pixel is computed by adding a new column to the last
column of the actual integral image pixel concatenated to the
search window array 606.

In addition to the II previously discussed, a second
integral image called the Squared Integral Image (SII) is also 40
generated at a SII generate module 608. The SII is used to
compensate Haar feature thresholds by the reciprocal of the
standard deviation. These special integrated images SII are
stored into a line buffer 610 such that a larger 2D array of
pixels can be formed and accessed. This is necessary for 45
both the II and SII frames; however only the II is used to
feed the search window array 606.
A threshold normalization block 612 requires the pixel

total and the squared pixel total for a current search window.
Thus, normalization only requires 2 rows from each of the 50
II and SII frames at any one time. Furthermore, standard
deviation is only updated when the search window actually
OWS.

Once the 2D search window array 606 is full and ready to
use, the first Haar features of the first stage can begin 55
evaluation on the very first search window (located at 0, 0).
A feature evaluation block 614 reads in the corner pixel
locations from a Haar feature locations memory 616. The
feature evaluation block 614 evaluates the sum of as many
Haar features as possible until the stage is ready for evalu- 60
ation.
The evaluation of each Haar feature is passed to a stage

evaluation block 618 that evaluates each stage using feature
thresholds and weights from a feature thresholds and
weights memory 620 and stage thresholds from a stage 65
threshold memory 622. The stage evaluation block 618 will
choose a left node value or a right node value for each Haar

8
feature, and accumulate the values into a stage total. When
the last Haar feature of the stage is finished, the stage total
is evaluated. If the stage fails, the search window is
advanced to the next pixel step and the process begins again.
However, if the stage passes, the Haar feature locations
memory 616 is advanced to the next stage of Haar features.
Once a search window passes all stages, coordinates of the
location of an object in the image is forwarded to a coor
dinate FIFO register 624.
A clock gating buffer 626 controls the input to the line

buffers 604, 610. The integral image generation by the II
generate module 602 and the squared integral image is
generated in the SII generate. The search window array is 32
by 32 so only 18-bits of integral image and 26-bits of
squared integral image are produced. An interface 628 is
provided for communication with the image node 102 and
search nodes 104.

Each of the 32 previous integral pixels are retained in an
accumulator (not illustrated), and when a new integral
column is read, each pixel is also accumulated in and the 32
accumulated Sums passed on as the new integral pixel. The
Squared Integral Image SII is computed in a very similar
way except that an incoming pixel is squared before being
registered. All of the data widths are increased from the
integral widths listed by 8-bits (due to the squaring).
The threshold normalization unit 612 scales trained

thresholds based on the reciprocal of the standard deviation
multiplied by the search window area. Standard deviation is
generally straight forward to compute once the pixel total
and squared pixel totals for the search window are known.

FIG. 7A illustrates an example of a circuit 700 in the form
of a cascade classifier for implementing a Haar feature
evaluation unit corresponding to feature evaluate block 614
of FIG. 6. In accordance with various embodiments, two
Haar feature evaluation units 700 are included within the
ESA 302, although only one Haar feature evaluation unit
700 may be included if desired, or more Haar feature
evaluation units may be included if desired. This allows for
a complete 32x32 search window array of pixels to be
performed in parallel. The previously described Haar fea
tures are able to be searched by the Haar feature evaluation
unit 700. Utilizing the calculated integral images, the values
of the calculated integral images are input into the various
ports of the feature evaluation unit 700 to arrive at a value
at one of the output ports. The values or sums from the out
ports, which correspond to the possible presence or non
presence of a Haar feature, are compared to a node thresh
old. If the value is greater than the node threshold, then a
right node value is assigned for that integral image, where
the right node value indicates a greater likelihood of the
presence of an object in the search window. If the value is
less than the node threshold, then a left node value is
assigned to the integral image thereby indicating that it is
less likely that an object is present in the search window.
During a stage, multiple Haar features are evaluated with
respect to the integral images within the search window. At
the end of a stage, all of the node values are Summed and the
sum of the node values is compared to a threshold. If the sum
of the node values is greater than the threshold, then the
stage has been passed. If the sum of the node values is less
than the stage threshold, then the stage has failed. Generally,
once a search window fails a stage, then no further stages are
evaluated with respect to that search window. The search
window is moved and the process repeats for the new area
of the image for which the search window is overlaid.
However, if the stage passes, then another stage of Haar
feature evaluations is performed by the Haar evaluation unit

US 9,589,176 B1
9

700 with respect to the search window in order to determine
if the Subsequent stage is passed or not. If all stages are
passed, then it is determined that an object has been found.
The coordinates of the region of interest (ROI) that includes
the object are passed to the ensemble mode 106. The image
is searched for an object between a minimum and a maxi
mum object size specified. Thus the image is repeatedly
scaled down from an original size Such that larger and larger
objects can be recognized in a fixed sized search window.
More particularly, FIG. 7A illustrates a circuit 700 for

implementing feature types I-V. The circuit 700 comprises a
plurality of compression modules 702a, . . . , 7021. Indi
vidual ones of the compression modules 702a, 702b, 702d.
702e, 702g, 702h, 702i, 702k and 7021 have a compression
ratio of 4:2, while individual ones of the compression
modules 702c, 702f and 702i have a compression ratio of
4:1. The compression module 702a, for example, concat
enates or combines four inputs into two inputs.
The circuit 700 further comprises a plurality of multi

plexers 704a, . . . , 704i. Individual ones of the multiplexers

10

15

10
a corresponding one of the corner coefficients C00, CO1,
C11, or the like, based on a Haar feature type that is being
implemented by the circuit 700. The circuit 700 may be
configured to output one or more of Sum values 0, 1, 2 and
3, based on a feature type that is implemented by the circuit
700.

FIG. 7B illustrates the circuit 700 implementing an analy
sis with respect to the Haarfeature type I, FIG. 7C illustrates
the circuit 700 implementing the Haar feature type II, FIG.
7D illustrates the circuit 700 implementing the Haar feature
type III, FIG. 7E illustrates the circuit 700 implementing the
Haar feature type IV, and FIG. 7F illustrates the circuit 700
implementing the Haar feature type V. Table 3 below pro
vides, for each Haar feature type, a mapping between
individual ports and the corner coefficient received at the
corresponding ports while the circuit 700 implements the
corresponding Haar feature type. Table 3 also illustrates the
multipliers by which the corner coefficients are multiplied,
while the corner coefficients are being transmitted via the
circuit 700.

TABLE 3

Type II

Port Sum Mult. Corner Sum Mult. Corner Sum

O Sum 3 2 CO1 Sum O 1 C10 Sum O
1 2 C11 1 -C13
2 C12 Sum 1 1 C10 Sum 1
3 -CO2 1 -C13
4 C10 Sum 2 1 C10 Sum 2
5 -COO 1 -C13
6 Sum O 2 CO1 Sum O 1 CO3 Sum O
7 2 -C11 1 -COO
8 C12 3 C12
9 -CO2 3 -C11
10 C10 3 CO1
11 -COO 3 -CO2
12 Sum 1 2 CO1 Sum 1 1 CO3 Sum 1
13 2 -C11 1 -COO
14 C12 3 C12
15 -CO2 3 -C11
16 C10 3 CO1
17 -COO 3 -CO2
18 Sum 2 2 CO1 Sum 2 1 CO3 Sum 2
19 2 -C11 1 -COO
2O C12 3 C12
21 -CO2 3 -C11
22 C10 3 CO1
23 -COO 3 -CO2

may receive a plurality of corresponding inputs, and gener
ate an output based on a feature type (e.g., one of the feature
types I-V) being currently implemented by the circuit 700.

Although not illustrated in FIG. 7A, the circuit 700
comprises a plurality of multipliers. For example, an input to
the compression module 702a is labeled as 2x, implying that
a multiplier (not illustrated in FIG. 7A) multiplies the input
to the compression module 702a by two. As another
example, an input to the multiplexer 704d is labeled as 0.5x,
implying that a multiplier (not illustrated in FIG. 7A)
multiplies the input to the multiplexer 704d by 0.5.
As illustrated in FIG. 7A, the circuit 700 may receive

input from twenty-four input ports, labeled as ports 0,
23. The ports may be divided into four groups, with a first
group of ports comprising ports 0, . . . , 5; a second group
of ports comprising ports 6, 11; a third group of ports
comprising ports 12. . . . , 17; and a fourth group of ports
comprising ports 18, ... , 23. As will be discussed in further
detail herein later, individual ones of the ports may receive

Type III

50

55

60

65

Type IV Type V

Mult. Corner Sum Mult. Corner Sum Mult. Corner

2 CO1 Sum O 1 C30 Sum 3 Feature type I
2 -CO3 1 -C33 Supported only if

CO1 Sum 1 1 C30 Sum O is also
-CO3 1 -C33 feature type I
CO1 Sum 2 1 C30
-CO3 1 -C33

2 C13 Sum O 1 CO3 Sum O Feature types I,
2 -C11 1 -COO II, III, IV, or V

C10 9 C22 Supported for
-C14 9 -C21 Sum O
CO)4 9 C11
-COO 9 -C12

2 C13 Sum 1 1 CO3 Sum 2 2 C12
2 -C11 1 -COO 2 -C11

C10 9 C22 1 CO1
-C14 9 -C21 1 -CO2
CO)4 9 C11 1 CO1
-COO 9 -C12 1 -C2O

2 C13 Sum 2 1 CO3 2 C21
2 -C11 1 -COO 2 -C11

C10 9 C22 1 C10
-C14 9 -C21 1 -C22
CO)4 9 C11 1 C10
-COO 9 -C12 1 -COO

FIG. 7B illustrates the circuit 700 implementing the Haar
feature type I. In FIG. 7B, those lines that are used to
implement the equations associated with the Haar feature
type I are illustrated in bold. As an example, the multiplexer
704a may be configured to receive (i) input from ports 4-5
and (ii) input from ports 12-13. While Haar feature type I is
being implemented by the circuit 700, the multiplexer 704a
may be configured to output the input received from ports
4-5, while refraining from outputting the input received
from ports 12-13. Thus, the line between ports 4-5 and the
multiplexer 704a is illustrated in bold (implying that the
signal transmitted by this line is transmitted to the next
component, and is used in implementing the feature type I),
while the line between ports 12-13 and the multiplexer 704a
is not illustrated in bold.
As previously discussed herein, the equation used for

implementing Haar feature type I is given by:

US 9,589,176 B1
11

As illustrated in FIG. 7B and as will be discussed in detail
herein later, the circuit 700 outputs sum 3, based on inputs
from ports 0-5, such that the value of sum 3 is equal to
sum(TI). Similarly, the circuit 700 outputs sum 0, sum 1 and
Sum 2, each of which is equal to the Sum(TI).
As illustrated in the Table 3, for Haar feature type I, the

ports 0, . . . , 5 receives corner coefficients CO1, -C11, C12,
-C02, C10 and -COO, respectively. The corner coefficients
C01 and -C11 from ports 0 and 1 are multiplied by 2, as
illustrated in FIG.7B (illustrated as “2x” in the line between
ports 1-0 and the compression module 702a), and as also
illustrated in Table 3. Thus, the multiplexer 704b receives
(2C01-2C11) as one of its input.

Furthermore, the corner coefficients C12 and -CO2 from
ports 2 and 3, respectively, are received in the multiplexer
704b, via the compression module 702b, the multiplexer
704c and the compression module 702a. No multiplication
is performed to the inputs from ports 2 and 3, as illustrated
in FIG. 7B and Table 3. Accordingly, the multiplexer 704b
also receives (C12-C02) as one of its input.

Also, the corner coefficients C10 and -COO from ports 4
and 5, respectively, are received in the multiplexer 704b, via
the multiplexer 704a, the compression module 702b, the
multiplexer 704c and the compression module 702a. No
multiplication is performed to the inputs from ports 4 and 5.
as illustrated in FIG. 7B and Table 3. Accordingly, the
multiplexer 704b also receives (C10-C00) as one of its
input.

Thus, the multiplexer 704b receives the following three
inputs: (i) (2C01-2C11) from ports 0-1, (ii) (C12-C02) from
ports 2-3, and (iii) (C10-C00) from ports 4-5. The multi
plexer 704b outputs these three inputs (e.g., in sequence),
such that they are summed at the output of the multiplexer
704b. Thus, the summation of the three outputs of the
multiplexer 704b results in (2C01-C11+C12-C02+C10
C00) (illustrated as sum 3 in FIG. 7B), which is the sum(TI)
discussed above for the Haar feature type I.

Similar to the generation of sum 3, the circuit 700 also
generates sum 0, sum 1 and sum 2, as illustrated in FIG. 7B
and Table 3. Each of the sum 0, sum 1 and sum 2 is equal
to (2C01-C11+C12-C02+C10-C00), which is the sum(TI)
discussed above for the Haar feature type I.
FIG.7C illustrates the circuit 700 implementing an analy

sis with respect to the Haar feature type II. Table 3 also
maps, for Haar feature type II, individual ports with the
corner coefficients received at the corresponding ports.
Similar to FIG. 7B, in FIG. 7C, those lines that are used to
implement the equations associated with the Haar feature
type II are illustrated in bold.
As previously discussed herein, the equation used for

implementing Haar feature type II is given by:

In sum(TII), there are twelve terms. It is to be noted that
the terms (2C-2C-2C+2C) and the terms (C-
C-Co+Co1) in Sum(TII) have the same corner coeffi
cients, but with different multipliers. There are four other
terms (-C+Co+Co-Coo) in Sum(TII).
As illustrated in FIG. 7C, the output of the multiplexer

704b is not enabled for Haar feature type II (e.g., not
illustrated using bold lines). That is, the circuit 700 does not
output sum 3 for Haar feature type II. Furthermore, for
feature type II, inputs from ports 0 and 1 are used to generate
Sum 0, in addition to using inputs from ports 6-11. Also,
inputs from ports 2 and 3 are used to generate sum 1, in
addition to using inputs from ports 12-17. Inputs from ports

10

15

25

30

35

40

45

50

55

60

65

12
4 and 5 are used to generate Sum 2, in addition to using
inputs from ports 18-23. Put differently, sum 0 is generated
based on inputs from ports 0-1 and 6-11. Similarly, sum 1 is
generated based on inputs from ports 2-3 and 12-17. Fur
thermore, Sum 2 is generated based on inputs from ports 4-5
and 18-23.

Referring to Table 3, for generating sum 0, ports 0-1 and
6-11 receive corner coefficients C10, -C13, CO3, -COO,
C12, -C11, CO1 and -CO2, respectively. As illustrated in
FIG. 7C, the corner coefficients C10 and -C13 are received
in the compression module 702c from the ports 0-1, via the
compression module 702a and the multiplexer 704d. Also,
each of the corner coefficients C10 and -C13 are multiplied
by 2 and 0.5, while being transmitted from the ports 0-1 to
the compression module 702c (e.g., multiplied by 2 between
ports 0-1 and the compression module 702a, illustrated by
“2x'; and also multiplied by 0.5 between the compression
module 702a and the multiplexer 704d, illustrated by
“0.5x”). Thus, effectively, the corner coefficients C10 and
-C13 are multiplied by (2x0.5), i.e., by 1 (e.g., as illustrated
in Table 3), and the compression module 702c receives and
outputs (C10-C13) from ports 0-1.
The compression module 702c also receives the corner

coefficients C03 and -COO from ports 6-7, respectively, via
the multiplexer 704c., the compression module 702a and the
multiplexer 704d. As illustrated in FIG. 7C, the corner
coefficients C03 and -000 are multiplied by 2 and 0.5, i.e.,
effectively by 1, prior to being received by the compression
module 702c (e.g., as illustrated in Table 3). Thus, the
compression module 702c receives and outputs (CO3-C00)
from ports 6-7.
The compression module 702c also receives the corner

coefficients C12, -C11, CO1 and -CO2 from ports 8-11,
respectively, via two routes. For example, the compression
module 702c receives the corner coefficients C12, -C11,
C01 and -CO2 from ports 8-11, respectively, via a first route
comprising the compression module 702e, the multiplexer
704e, and the compression module 702d. In the first route,
between the compression module 702e and the multiplexer
704e, each of the corner coefficients C12, -C11, CO1 and
-CO2 is multiplied by 2. The compression module 702c also
receives the corner coefficients C12, -C11, C01 and -CO2
from ports 8-11, respectively, via a second route comprising
the compression module 702e and the compression module
702d (i.e., the second route bypasses the multiplexer 704e).
The corner coefficients are multiplied only by 1 while being
transmitted via the second route. Thus, Subsequent to the
compression module 702c receiving the corner coefficients
C12, -C11, CO1 and -CO2 from ports 8-11, respectively, via
the first and second routes, each of these corner coefficients
are multiplied by 2 (e.g., while being transmitted via the first
route) and also by 1 (e.g., while being transmitted via the
second route). Thus, the compression module 702c receives
and outputs ((2C12-2C11+2C01-2C02)+(C12-C11+C01
C02)) from ports 8-11. That is, each of the corner coeffi
cients C12, -C11, CO1, and -CO2 are multiplied by 3, as
illustrated in Table 3.

Thus, the compression module 702c receives and outputs
(i) (C10–C13) from ports 0-1, (ii) (C03-C00) from ports
6-7, and (iii) (2C12-2C11+2C01-2C02+C12-C11+C01
C02) from ports 8-11. These outputs of the compression
module 702c are summed, resulting in sum 0, which is given
by (2C12-2C11+2C01-2C02+C12-C11+C01-C02+C10
C13+C03-C00), and which is equal to sum(TII). That is,
while the circuit 700 implements the Haarfeature type II, the
sum 0 of the circuit 700 is equal to sum(TII).

US 9,589,176 B1
13

In a similar manner, the circuit 700 outputs sum 1 and sum
2, each of which is equal to sum(TII), as illustrated in FIG.
7C and Table 3.

FIG. 7D illustrates the circuit 700 implementing an analy
sis with respect to the Haar feature type III, FIG. 7E 5
illustrates the circuit 700 implementing the feature type IV.
and Table 3 provides, for each of Haar feature types III and
IV, a mapping between individual ports and the corner
coefficient received at the corresponding ports. Based on the
discussion associated with Haar feature types I and II, the 10
operation of the circuit 700 for each of feature types III and
IV is readily apparent from FIGS. 7D, 7E and Table 3.
Accordingly, a more detailed discussion of the implemen
tation of the circuit 700 for Haar feature types III and IV is
omitted herein. 15

FIG. 7F illustrates the circuit 700 implementing an analy
sis with respect to Haar feature type V, and Table 3 provides,
for Haar feature type V, a mapping between individual ports
and the corner coefficients received at the corresponding
ports. 2O
As illustrated in FIG. 7F and Table 3, based on the ports

12-23 receiving the corner coefficients C12, -C11, CO1,
-C02, CO1, -C20, C21, -C11, C10, -C22, C10 and -COO,
respectively, the Sum 2 at the output of the compression
module 702i represents represent the sum(TV), which is 25
given by sum(TV)=2C12-4C11-C02-+2C01+2C21-C20+
2C10-C22-COO.

Although the mapping is not illustrated in Table 3, based
on the ports 0-11 receiving the corner coefficients C12,
-C11, CO1, -CO2, CO1, -C20, C21, -C11, C10, -C22, C10 30
and -COO, respectively, the sum 0 at the output of the
compression module 702c may also represent the sum(TV).
That is, in an example, the circuit 700 may output sum 0 and
Sum 2, each of which may be equal to Sum(TV).

In an embodiment, while the sum 2 represents sum(TV), 35
at least some of the ports 0-11 may simultaneously be used
to output any one of Sum(TI), Sum(TII), Sum(TIII), Sum
(TIV) and sum(TV) at the output of the compression module
702c. That is, while the inputs of the ports 12-23 are used to
generate a feature type V output at Sum 2, inputs of at least 40
some of the ports 0-11 may be used to implement one of
feature types I, II, III, IV or V at sum 0, as illustrated in the
Table 3.

Also, if Haar feature type I is implemented at Sum 0 using
inputs from ports 6, . . . , 11, then Haar feature type I may 45
also be implemented at Sum 3 using inputs from ports
0, . . . , 5(e.g., while feature type 5 is being implemented at
Sum 2, using inputs from ports 12-23).

In accordance with various embodiments, the Haar fea
tures vary as to importance in passing a stage. Thus, the right 50
node and left node values assigned for each Haar feature are
proportional to the importance of the Haar feature with
respect to passing a stage evaluation. For example, the more
important the Haar feature may be, the greater the difference
between the right node value and left node value. For 55
example, an important Haar feature may have a right node
value of +5 and a left node value of -5, while a lesser
important Haar feature may have a right node value of +1
and a left node value of -1. A training algorithm is utilized
to set node values. 60

In accordance with various embodiments, the ESA 300
works on a small group of search windows in parallel and
can skip from one to the other within a current buffer or
group of search windows. The ESA300 needs to evaluate all
search windows, so even if a search window is started that 65
will eventually pass many stages, there is never a shortage
of necessary operations that can be started. Any new search

14
window can always be started without any speculation
whether the computations are necessary or not. The first
stage will always need to be evaluated for every search
window. The only exception is when the input image gets
down to the very end, and it runs out of new search windows
(i.e. pixel columns) to introduce.
As long as new search windows can be introduced, then

there is never a need to speculate on any search window
stages' need for execution. After the first search window is
started, new search windows can be started every cycle after
that until the first search window's first stage completes.
Once the first search window's first stage completes, then it
will be known if the first search window passes on to stage
two or if the first search window failed and the search
window is retired. In general, the first column of pixel values
written is the first to be replaced.

It is desirable that results of stages issue completely once
the results of stages start issuing. In this way there is no need
to track and match up intermediate results. Instead, new
Haarfeature results simply accumulate with previous ones at
the end of the cascade classifier. This also avoids specula
tively issuing instructions by completing stage N and testing
stage N's result and only starting stage N-1 if stage N has
actually passed. This is referred to as end-to-end execution
because a stage must come out the back end of the stage
evaluation logic of the ESA 300 before being allowed to
reenter the front end of the stage evaluation logic. If specu
lative execution can’t be avoided, then it is preferable to
speculate on the maximum number of search windows
possible. It is probable that any particular search window
may proceed to pass all stages all the way through the very
last stage. However, if a particular search window passes
stage N, then it is probable that other nearby search windows
will also pass stage N. Thus, when speculative issue is
unavoidable, then speculating on as many local search
windows as possible will increase the hit rate of the specu
lations.

It is desirable to remain in end-to-end issue mode while
keeping the stage evaluation logic completely full for as
long as possible. When a current search window requires
more stages to complete than other search windows nearby
that are entering the stage evaluation logic, it may not be
possible to issue the additional stages for the current search
window with certainty. That is, it may be necessary to issue
speculatively because there isn't room to introduce any new
windows into the cascade classifier and none of the currently
executed Stages have finished for the current search window,
so it can’t yet be determined if the next stage will be needed
or not for the current search window. When this happens, the
stage evaluation logic will move into a speculative issue
mode.

End-to-end issue mode simply waits for the result of stage
N before starting stage N+1, so that stage N+1 is only started
if it has been determined to be necessary (rather than simply
speculating). As previously noted, the control strategy
strives to stay in End-To-End mode whenever possible. Only
when nothing in the stage evaluation logic can issue with
certainty and there is no room to add any windows into the
search window array, then the issues mode must become
speculative.

Just because no stages can be started with certainty does
not mean that stage results stop. Rather it means that stage
results will now be speculative until certainty can be rees
tablished. The focus of this particular mode is the oldest
search window remaining in the cascade classifier. If the
oldest search window can be retired, then there will be space
in the search window buffer and a new search window can

US 9,589,176 B1
15

begin. If a new search window can begin, then the control
will no longer need to be speculative.

Given that search windows in a common area of the image
tend to penetrate into the cascade classifier to similar stages,
it is more reasonable to speculate that each active search
window will pass to the next stage rather than that only one
of the search windows will penetrate deep into the cascade
classifier stages while the other search windows around the
one search window quickly retire. The speculative mode
takes this into account by tracking all active search windows
in the cascade classifier and taking turns speculating on
whether or not the search windows will pass a stage. The
speculation must start with the oldest search window since
the oldest search window is where any new columns must be
written into the cascade classifier.
Any search windows that are initially speculated to pass

a future stage but are later retired should be removed from
the cascade classifier Such that such search windows are not
processed within the cascade classifier anymore (specula
tively or not). The speculation continues until the oldest
search window is retired by either failing a stage or passing
all the stages.

FIG. 8 schematically illustrates the ensemble node 106.
The ensemble node 106 augments the search node 104. The
initial search from the search node 104 can be equated to
finding a Region of Interest (ROI). The ensemble node 106
accelerates post-search tasks Such as stereo association and
primary face selection or temporal association.

Even when the search node 104 initially appears to
produce a strong detection by finding a face in both the left
and right stereo images, such a finding still needs to be
confirmed. It is confirmed by comparing that the position
and size of a face found in one image has a corresponding
face of the appropriate size and position in the other stereo
image of the pair of images. If there are multiple faces in the
frame the ensemble node creates a depth map of any faces
found in the images and selects the face closest to the
cameras as the face to track. Furthermore, histories of
previously found face templates are retained in order to
distinguish a primary user from other faces found in the
image. Once the primary face has been found, the ensemble
node 106 sends the face back to the search node 104 to
extract the features from the face. The ensemble node then
sends the features and X, Y, Z coordinates of the location of
the face to the application processor (not illustrated).

The ensemble node 106 is primarily designed to compare
a face found in one image to an area of interest in another
spatially or temporally related image. The ensemble node
106 includes a mechanism for comparing a small area of one
image to a somewhat larger area of another image. The Small
image is generally referred to as a template, and the act of
comparison is referred to as template matching. The
ensemble node 106 uses integral image pixel values com
puted by the search node 104.
The ensemble node 106 includes a SRF 800 that is

identical to the SRF 302 of the Search node 104. The
ensemble node 106 further includes a template matching
array (TMA) 802, a Bit-Blit Copy (BBC) 804 and a cache
line arbiter 806.
The SRF 800 can be used independently or it can be

configured to feed scaled images directly into the TMA 802.
Once matches are found by the TMA 802, the ensemble node
106 needs to organize the information by moving templates
or pieces of images around. These pieces of images are
referred to as “bit-blits.” The bit-blits are moved around by
the BBC 804. The BBC 804 is dedicated hardware support
for copying Sub-frame windows of pixels from one location

10

15

25

30

35

40

45

50

55

60

65

16
to another. A common example is the retention of the most
recent 10 matching face templates used by the TMA 802.
FIG.9 schematically illustrates the TMA 802. As can be

seen, the TMA 802 largely comprised of a 2D register
array/line buffer structure similar to the ISPs 200, 202 and
the ESA300. In the TMA 802, a parallel buffer 900 is used
to store a current template. The template buffer receives a
template from a NoC memory read (NMR) block 902. The
template is a 32x32 template of integral image pixel values
for the ROIs in the images from the search node 104 and can
either be a previous template stored in memory or can be
based upon one of the two images where an object was
found in the ROIs by the search node 104.
The template buffer 900 and an image buffer 904 both

feed the 2D match window array 906 where partial com
parison data is generated. The comparison data is partial
because it is only summed over each row in the 2D window.
A column of row results are output from the 2D window
once every pixel cycle after the template has been com
pletely circulated the first time.

Each partial result column is passed to a column Summa
tion and test block 908 where the column is processed into
a pixel locations complete template matching result. The
comparison result pixel is passed to a NoC memory write
(NMW) block 910 for assembly into cache lines and output
to the NoC, i.e. memory 112b or 112c. Each of the matching
result pixels is tested to find a minimum or maximum value
across the image. There are multiple types of matching
methods that can be specified. Some of the methods indicate
a best match as the minimum pixel result and other methods
indicate a best match by a maximum result pixel value.
The TMA 802 will only start generating comparison pixel

output once a full template is loaded into the template buffer
900. However, the TMA 802 can proceed to load the image
buffer 902 until the full template is loaded. The image pixels
can be loaded from the SRF 800 or from memory 112b. A
clock gating buffer 912 controls the loading of the image
pixels into the image buffer 902.

Table 4 below provides examples of comparison methods
that can be used by the match window array 906.

TABLE 4

Best
Method Match Description

SQDIFF Min Simple square of the differences
SQDIFF NORM Min Simple square of the differences

w/normalization
CCORR Max Cross correlation
CCORR NORM Max Cross correlation winormalization

The comparison methods can be normalized by dividing
the comparison result by the square root of the product of the
Sum of template pixels squared and the Sum of the image
pixels that are covered by the template squared. More
particularly, the normalization of any of the pixel results can
be computed by multiplying it by the normalization value:

where x' represents the range of the X positions of the 32x32
template and y' represents the range of they positions of the
32x32 template.

Each of the 2D match array taps in the match window
array 906 is a standalone computational engine capable of
calculating a partial comparison result. The physical micro
architecture is sensitive to the large number of Such com
putational elements.

US 9,589,176 B1
17

In accordance with various embodiments, the match win
dow array 906 performs the comparison using a multi-pass
strategy, which utilizes less power. A full 32x32 match is
still supported, but the match window array 906 actually
implements the comparison as two passes through a 32x16
array. Each computational engine is now shared by 4-pixel
comparison, so the physical array is actually an array
8-engines wide and 16-engines tall where each engine
handles a 1-row of 4-pixels.

Referring to FIG. 10A, it can be seen that the line buffers
still contain a full template height of 32 image rows, but they
are read out only 16 rows at a time. The partial results of the
image comparison and the image Summation are both saved
from pass 1 and compressed into pass 2. Once matching row
0 has been fully compared, the top image row can be
discarded from the line buffers and matching row 1 can then
begin processing, as illustrated in FIG. 10B.

Referring to FIG. 11, which schematically illustrates the
match window array 906, the partial comparison results for
each pixel result from pass 1 in FIGS. 10A and 10B must be
saved into a dedicated line buffer 1100. If normalization is
active, then the partial image Summation results for each
pixel must also be saved into an additional dedicated line
buffer (not illustrated). These saved partial results are then
read by the second pass and compressed into its partial
results before being written back into the dedicated line
buffer(s). The results of the 2" pass are final results and can
proceed to the normalization and final result computation.
The match window array 906 is an array of small com

putational engines and logic necessary to feed the compu
tational engines operands to work on. The operands are a 2D
image and a smaller 2D template, and each are stored in
arrays of circular row buffers 1102, 1104. The circular row
buffers 1102, 1104 work very similarly to the ISPs 200, 202
and ESA 300. Specifically, the image buffers 1102 provide
access to the complete Subset of 32x32 Sub-images present
in the original image starting at the top left hand corner of
the original image and proceeding in raster order through to
the bottom right hand corner of the original image. Every
pixel cycle the left column of the array is dropped and a new
right column is added, so the 32x32 Sub-image (or more
accurately the 32x16 Sub-image) is only valid in the array
for a single pixel cycle.
The template is assumed to be loaded into the circular row

buffers 1104 before the image is loaded into the circular row
buffers 1102, so the template's top 16 rows of pixels can be
preloaded into a computational array 1106. The 16 rows of
pixels are shifted in from array column O (on the left) toward
array column 31 (on the right). Once in place, the template
pixels are static for the entire 32x16 comparison. The image
enters the computational array 1106 much differently. The
image is presented to the computational array 1106 one
column at a time, and it is provided to every column in the
computational array 1106 simultaneously.
On the first cycle that the computational array 1106 is

completely filled with template pixels, the first column of the
image (i.e. column 0) is compared across all of the columns
of the computational array 1106. The first column of the
image is only compared to the first column of the template
and when the image column gets equal to or larger than the
template width, the image pixel will be used in all 32-partial
comparison results in parallel.

Each image column is sequenced through and presented
to the computational array 1106. Note that the number of
comparisons an individual image pixel is used in tapers
down as the right edge of the image is approached. In fact
the right most image pixel is just like the left in that it is also

10

15

25

30

35

40

45

50

55

60

65

18
only used in a single template comparison. This is the reason
the template is shifted into the computational array 1106
from left to right rather than the more familiar raster order.
The next 16 template pixel rows can enter the array directly
behind the last value accumulator for the current 16 rows as
the last value accumulator shifts out. However, there is some
flexibility because as long as template column O is valid, the
next 16 rows can start the first accumulation directly behind
the current 16 rows.
The rows of the computational array 1106 do not interact

except in two specially designed places—the partial row
result accumulation column 1100 and an image row accu
mulation column 1108. The partial row result accumulation
column 1100 and the image row accumulation column 1108
are both specially designed columns that are used to aggre
gate the accumulated row results and combine them into a
single result.
The rows of the computational array 1106 operate inde

pendent of each other for the most part until a Sub-image row
result is complete. When ready, the column where the
Sub-image row exists is selected to enter the partial row
image accumulation column 1100. The partial row image
accumulation column 1100's primary function is to sum all
of the row accumulate results into a final accumulated result
and deliver it to a result normalization and formatting block
1110.
The top three partial row results are accumulated into

redundant binary, i.e. carry/save, by a full adder vector. This
initial 3:2 is followed by another 3:2 for each additional row
that is accumulated for a total of 14-each 3:2 stages. The
final 3:2 (in row 15) is followed by a full carry propagation
adder (CPA), which is used to compute the final column
result.
The image accumulation column 1108 is generally more

complicated than the partial row result accumulation column
1100 because it also accumulates each row result first. A
computational engine is necessary to compute the image
accumulation for each row. This computational engine will
serve to calculate the sum-of-squares (SoS) for the template,
the first 48x48 Sub-image in the image row, and then each
subsequent 32x32 Sub-image in the row. In order to share
hardware between the template SoS and the many sub-image
SoSs, the template is loaded first into the template buffers
1104 and the template's SoS can be calculated while the
image is still being read into the image buffers 1102. The
TMA 802 will need to sequence all of the template columns
through the match window array 906 once before matching
starts in order to compute the template SoS. Note that an
accumulator (not illustrated) can be used to retain the
accumulated results from the rows 0-15. Template rows
16-31 will simply accumulate with row 0-15 before the
individual row accumulators are Summed down the column.
The first Sub-image in any given image row is calculated

much differently than each Subsequent Sub-image. The first
in the row is calculated directly. Specifically, each image
pixel is read in, squared, and accumulated with all of the
previous pixels in the row. Normally, it would be necessary
to retain 31 other partial results in parallel with this first
accumulation, but since it is a running total, once the first 32
pixel row result is ready, the next result can be calculated by
accumulating in the next squared pixel value (as normal),
but also by Subtracting the squared pixel value that is being
removed from the left edge of the match window array 906
being fed from the right edge of the match window array906
by the image buffer 902.
A 32-entry FIFO 1112 is provided for the image pixel

input row 31 since image pixel input row 31 doesn't require

US 9,589,176 B1
19

a line buffer. A second read from the line buffers is an option
for the other 31 rows because the other 31 rows are only read
every 4-cycles. A full crossbar switch 1114 is provided for
controlling loading from the circular image buffers 1102 into
the computational array 1106.

The result provided by the match window array 906
requires normalization if a normalized comparison method
is selected for use. The normalization requires the SoS for
both the template and each individual 32x32 sub-image. The
template SoS is computed (as the image is still being read in
from memory) and saved for the remainder of the frame in
a holding register. Once the first image accumulation col
umn result arrives, it is multiplied by the saved SoS resulting
in a 52-bit fixed-point result (assuming 32x32). The result
has been computed to full accuracy (no rounding or trun
cation) and then converted to “statistically unbiased round to
nearest” in accordance with IEEE 754.
Once the result has been computed and the presence of an

object, i.e. a user's face, has been confirmed, the image can
be sent to the search node 104 to extract facial features from
the image. The final result is a position of the object, i.e. the
user's face, given by X, Y and Z coordinates. The position
of the user's face is relative to the center between the user's
eyes. The coordinates are provided to an application pro
cessor, central processing unit, etc. of a portable electronic
device that includes the ASIC 100.

FIG. 12 is a flowchart illustrating an example of a process
1200 of a method of locating an object in an input image
using an ASIC, for example the ASIC 100, in accordance
with various embodiments. At 1202, an image node of an
Application Specific Integrated Circuit (ASIC) processes an
image to improve quality of the image. A search node of the
ASIC searches the image for an object in the image. At 1204,
an integral image of the image is generated by the search
node. As previously noted, in order to create an integral
image, each pixel in the input image is assigned a value that
is equivalent to the sum of all the pixels to the upper left of
the location of the pixel. More particularly, the integral
image is a version of the input image where each pixel is
replaced by the value of all of the pixels to the left and above
the given pixel location in the input image At 1206, the
search node searches search windows of the integral image
are evaluated with respect to Haar features, wherein the
evaluating the search windows comprises searching each
search window in a plurality of stages until either (i) the
search window fails a stage or (ii) the search window passes
all stages. More particularly, utilizing calculated integral
images, the values of the calculated integral images are input
into the various ports of a feature evaluation unit to arrive at
a value at one of the output ports of the feature evaluation
unit. The values or sums at the output ports, which corre
spond to the possible presence or non-presence of a Haar
feature, are compared to a node threshold. If the value is
greater than the node threshold, then a right node value is
assigned for that integral image, where the right node value
indicates a greater likelihood of the presence of an object in
the search window. If the value is less than the node
threshold, then a left node value is assigned to the integral
image thereby indicating that it is less likely that an object
is present in the search window. During a stage, multiple
Haar features are evaluated with respect to the integral
images within the search window. At the end of a stage, all
of the node values are summed and the sum of the node
values is compared to a threshold. If the sum of the node
values is greater than the threshold, then the stage has been
passed. If the Sum of the node values is less than the stage
threshold, then the stage has failed. Generally, once a search

10

15

25

30

35

40

45

50

55

60

65

20
window fails a stage, then no further stages are evaluated
with respect to that search window. The search window is
moved and the process repeats for the new area of the image
for which the search window is overlaid. However, if the
stage passes, then another stage of Haar feature evaluations
is performed by the Haar evaluation unit with respect to the
search window in order to determine if the Subsequent stage
is passed or not. If all stages are passed, then it is determined
that an object has been found. The coordinates of the region
of interest (ROI) that includes the object are passed to an
ensemble node. At 1208, if the search window passes all
stages thereby indicating the presence of an object in the
image, the ensemble node of the ASIC confirms the presence
of the object in the input image.

FIG. 13 is a flowchart illustrating operations 1204 and
1206 of FIG. 12 in more detail. At 1302, an integral image
is created for an input image, where each pixel in the input
image is assigned a value that is equivalent to the Sum of all
the pixels to the upper left of the location of the pixel. At
1304, the values of the calculated integral images are input
into various ports of a feature evaluation unit to arrive at a
value at one of the output ports of the feature evaluation unit.
At 1306, the values or sums at the output ports are compared
to a node threshold. At 1308, if the value is greater than the
node threshold, then a right node value is assigned for that
integral image, where the right node value indicates a greater
likelihood of the presence of an object in the search window.
At 1310, if the value is less than the node threshold, then a
left node value is assigned to the integral image thereby
indicating that it is less likely that an object is present in the
search window. At 1312, at the end of a stage, all of the node
values are summed and the sum of the node values is
compared to a threshold. At 1314, if the sum of the node
values is greater than the threshold, then the stage has been
passed. At 1316, if the sum of the node values is less than
the stage threshold, then the stage has failed.

FIG. 14 is a flowchart illustrating an example of a process
1400 of a method of confirming the presence of an object in
an input image using an ensemble node of an ASIC, for
example the ASIC 100, in accordance with various embodi
ments. At 1402, a template is loaded from a NoC memory
read (NMR) block. The template generally is a 32x32
template of integral image pixel values for the ROIs in the
Stereo images from the search node and can either be a
previous template stored in memory or can be based upon
one of the two images where an object was found in the
ROIs by the search node. At 1404, a ROI in the two images
is compared with the template to confirm the presence of an
object, i.e. a face, in the images. At 1406, if there are
multiple faces in the frame, a depth map of any faces found
in the images is created and the face closest to the cameras
is selected as the primary face. In general, histories of
previously found face templates are retained in order to
distinguish a primary user from other faces found in the
image. At 1408, once the primary face has been found, the
face is sent back to the search node to extract the features
from the face. At 1410, the features and X, Y, Z coordinates
of the location of the face are sent to an application proces
SO.

FIG. 15 illustrates select example components of an
example portable electronic device 1500 that includes an
ASIC 100 as described herein. The portable electronic
device 1500 may be implemented as any of a number of
different types of electronic devices. Some examples of the
portable electronic device 1500 may include digital media
devices and eBook readers 1500-1; tablet computing devices
1500-2; Smartphones, mobile devices and portable gaming

US 9,589,176 B1
21

systems 1500-3; laptop and netbook computing devices
1500-4; wearable computing devices 1500-5: augmented
reality devices, helmets, goggles or glasses 1500-6; etc. This
list is only an example and is not meant to be limiting.

In a very basic configuration, the portable electronic
device 1500 includes, or accesses, components such as at
least one control logic circuit, central processing unit, appli
cation processor, or processor 1502, and one or more com
puter-readable media 1504. Each processor 1502 may itself
comprise one or more processors or processing cores. For
example, the processor 1502 can be implemented as one or
more microprocessors, microcomputers, microcontrollers,
digital signal processors, central processing units, state
machines, logic circuitries, and/or any devices that manipu
late signals based on operational instructions. In some cases,
the processor 1502 may be one or more hardware processors
and/or logic circuits of any suitable type specifically pro
grammed or configured to execute the algorithms and pro
cesses described herein. The processor 1502 can be config
ured to fetch and execute computer-readable instructions
stored in the computer-readable media 1504 or other com
puter-readable media.

Depending on the configuration of the portable electronic
device 1500, the computer-readable media 1504 may be an
example of tangible non-transitory computer storage media
and may include volatile and nonvolatile memory and/or
removable and non-removable media implemented in any
type of technology for storage of information Such as
computer-readable instructions, data structures, program
modules or other data. The computer-readable media 1504
may include, but is not limited to, RAM, ROM, EEPROM,
flash memory or other computer-readable media technology,
CD-ROM, digital versatile disks (DVD) or other optical
storage, magnetic cassettes, magnetic tape, Solid-state stor
age and/or magnetic disk storage. Further, in Some cases, the
portable electronic device 1500 may access external storage,
Such as RAID storage systems, storage arrays, network
attached storage, storage area networks, cloud storage, or
any other medium that can be used to store information and
that can be accessed by the processor 1502 directly or
through another computing device or network. Accordingly,
the computer-readable media 1504 may be computer storage
media able to store instructions, modules or components that
may be executed by the processor 1502.
The computer-readable media 1504 may be used to store

and maintain any number of functional components that are
executable by the processor 1502. In some implementations,
these functional components comprise instructions or pro
grams that are executable by the processor 1502 and that,
when executed, implement operational logic for performing
Some actions described herein. Functional components of
the portable electronic device 1500 stored in the computer
readable media 1504 may include an operating system/user
interface module 1506 for controlling and managing various
functions of the portable electronic device 1500.

In addition, the computer-readable media 1504 may also
store data, data structures and the like, that are used by the
functional components. For example, data stored by the
computer-readable media 1504 may include user informa
tion and, optionally, one or more content items 1508.
Depending on the type of the portable electronic device
1500, the computer-readable media 1504 may also option
ally include other functional components and data, Such as
other modules and data 1510, which may include programs,
drivers and so forth, and the data used by the functional
components. Further, the portable electronic device 1500
may include many other logical, programmatic and physical

10

15

25

30

35

40

45

50

55

60

65

22
components, of which those described are merely examples
that are related to the discussion herein. Further, while the
figures illustrate the functional components and data of the
portable electronic device 1500 as being present on the
portable electronic device 1500 and executed by the pro
cessor 1502 on the portable electronic device 1500, it is to
be appreciated that these components and/or data may be
distributed across different computing devices and locations
in any manner.

FIG. 15 further illustrates other components of the
example of the portable electronic device 1500. Such
examples include a display 1512 and various types of
sensors, which may include a GPS device 1514, an accel
erometer 1516, one or more cameras 1518, a compass 1520,
a microphone 1522, a gyroscope 1524, and so forth. In
accordance with various embodiments, the portable elec
tronic device includes at least four corner cameras located at
corners and/or edges of the display 1512.
The portable electronic device 1500 may further include

one or more communication interfaces 1526, which may
Support both wired and wireless connection to various
networks, such as cellular networks, radio, Wi-Fi networks,
close-range wireless connections, near-field connections,
infrared signals, local area networks, wide area networks,
the Internet, and so forth. The communication interfaces
1526 may further allow a user to access storage on or
through another device. Such as a remote computing device,
a network attached storage device, cloud storage, or the like.
The portable electronic device 1500 may further be

equipped with one or more speakers 1528 and various other
input/output (I/O) components 1530. Such I/O components
1530 may include a touchscreen and various user controls
(e.g., buttons, a joystick, a keyboard, a keypad, etc.), a haptic
or tactile output device, connection ports, physical condition
sensors, and so forth. For example, the operating system
1506 of the portable electronic device 1500 may include
Suitable drivers configured to accept input from a keypad,
keyboard, or other user controls and devices included as the
I/O components 1530. The display 1512 may be configured
as a touchscreen or the portable electronic device 1500 may
include a separate touchscreen. The processor 1502 can
perform one or more functions attributed to a graphic
controller (not illustrated) for the display 1512. Functional
components of the portable electronic device 1500 stored in
the computer-readable media 1504 may include the user
interface module 1506 for controlling and managing various
functions of the portable electronic device 1500, and for
generating one or more user interfaces on the display 1512
of the portable electronic device 1500. Additionally, the
portable electronic device 1500 may include various other
components that are not illustrated, examples of which
include removable storage, a power source. Such as a battery
and power control unit, a PC Card component, and so forth.

Various instructions, methods and techniques described
herein may be considered in the general context of com
puter-executable instructions, such as program modules
stored on computer storage media and executed by the
processors herein. Generally, program modules include rou
tines, programs, objects, components, data structures, etc.,
for performing particular tasks or implementing particular
abstract data types. These program modules, and the like,
may be executed as native code or may be downloaded and
executed. Such as in a virtual machine or other just-in-time
compilation execution environment. Typically, the function
ality of the program modules may be combined or distrib
uted as desired in various implementations. An implemen
tation of these program modules and techniques may be

US 9,589,176 B1
23

stored on computer storage media or transmitted across
Some form of communication.

Although the subject matter has been described in lan
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as illustrative forms of implementing the
claims.
One skilled in the art will realize that a virtually unlimited

number of variations to the above descriptions are possible,
and that the examples and the accompanying figures are
merely to illustrate one or more examples of implementa
tions.

It will be understood by those skilled in the art that
various other modifications can be made, and equivalents
can be substituted, without departing from claimed subject
matter. Additionally, many modifications can be made to
adapt a particular situation to the teachings of claimed
Subject matter without departing from the central concept
described herein. Therefore, it is intended that claimed
subject matter not be limited to the particular embodiments
disclosed, but that such claimed Subject matter can also
include all embodiments falling within the scope of the
appended claims, and equivalents thereof.

In the detailed description above, numerous specific
details are set forth to provide a thorough understanding of
claimed subject matter. However, it will be understood by
those skilled in the art that claimed subject matter can be
practiced without these specific details. In other instances,
methods, devices, or systems that would be known by one of
ordinary skill have not been described in detail so as not to
obscure claimed Subject matter.

Reference throughout this specification to “one embodi
ment” or “an embodiment can mean that a particular
feature, structure, or characteristic described in connection
with a particular embodiment can be included in at least one
embodiment of claimed subject matter. Thus, appearances of
the phrase “in one embodiment' or “an embodiment” in
various places throughout this specification are not neces
sarily intended to refer to the same embodiment or to any
one particular embodiment described. Furthermore, it is to
be understood that particular features, structures, or charac
teristics described can be combined in various ways in one
or more embodiments. In general, of course, these and other
issues can vary with the particular context of usage. There
fore, the particular context of the description or the usage of
these terms can provide helpful guidance regarding infer
ences to be drawn for that context.

What is claimed is:
1. A method of confirming the presence of an object

within an image, the method comprising:
processing, by an application specific integrated circuit

(ASIC), an image:
searching, by the ASIC, the image for presence of an

object;
upon determining the presence of an object in the image,

confirming, by the ASIC, the presence of the object,
wherein the confirming comprises:
storing a template in a template buffer, wherein the

template comprises integral image pixel values for a
region of interest in the image, wherein the integral
image values are arranged in columns and rows,
wherein the template corresponds to a portion of
another image in which the object was found, and

5

10

15

25

30

35

40

45

50

55

60

65

24
wherein the region of interest corresponds to a
location in the image where the object was deter
mined to be present;

storing integral image pixel values for the image in an
image buffer, and

comparing the integral image pixel values of the tem
plate with integral image pixel values of the region
of interest in the image.

2. The method of claim 1, wherein the comparing com
prises Summing results from comparison of rows of integral
image pixel values of the template with rows of integral
image values of the region of interest into comparison result
pixel values.

3. The method of claim 2, wherein the comparing further
comprises comparing the comparison result pixel values
with one of (i) a simple square of the differences method or
(ii) a cross correlation method.

4. The method of claim 3, wherein the comparing further
comprises normalizing results of the one of (i) the simple
square of the differences method or (ii) the cross correlation
method.

5. The method of claim 1, further comprising determining
X, Y, Z, coordinates of a location of the object in the image.

6. The method of claim 5, further comprising determining
features of the object and forwarding the features and X, Y,
Z coordinates to an application processor.

7. A portable electronic device comprising:
multiple cameras to capture images; and
a circuit configured to locate objects within the images,

the ASIC comprising:
a first node configured to process an image:
a second node configured to search for the presence of

an object in the image; and
a third node configured to confirm the presence of the

object in the image, wherein the third node is con
figured to:

store a template in a template buffer, wherein the
template comprises integral image pixel values for a
region of interest in the image in a template buffer of
the third node, wherein the integral image values are
arranged in columns and rows, wherein the template
corresponds to a portion of another image in which
the object was found, and wherein the region of
interest corresponds to a location in the image where
the object was determined to be present;

store integral image pixel values for the image in an
image buffer of the third node; and

compare the integral image pixel values of the template
with integral image pixel values of the regions of
interest in the image.

8. The portable electronic device of claim 7, wherein the
third node is further configured to sum results from com
parison of rows of integral image pixel values of the
template with rows of integral image values of the region of
interest into comparison result pixel values.

9. The portable electronic device of claim 8, wherein the
third node is further configured to compare the comparison
result pixel values by one of (i) a simple square of the
differences method or (ii) a cross correlation method.

10. The portable electronic device of claim 9, wherein the
third node is further configured to normalize results by one
of (i) the simple square of the differences method or (ii) the
cross correlation method.

11. The portable electronic device of claim 7, wherein the
third node is further configured to determine X, Y, Z.
coordinates of a location of the object in the image.

US 9,589,176 B1
25

12. The portable electronic device of claim 11, wherein
the second node is further configured to determine features
of the object and the third node is further configured to
forward the features and the X, Y, Z coordinates to an
application processor.

13. The portable electronic device of claim 7, wherein the
first node is configured to process the image by detecting and
correcting defective pixels of the images, and by correcting
black-levels within the images.

14. The portable electronic device of claim 7, wherein the
third node further comprises a clock gating buffer configured
to control loading of the integral image pixel values of the
image into the image buffer only when needed by the image
buffer.

15. The portable electronic device of claim 7, wherein the
third node comprises a match window array that is config
ured to compare the integral image pixel values of the
template with integral image pixel values of the region of
interest in the image.

5

10

15

26
16. The portable electronic device of claim 7, wherein the

template buffer and the image buffer each comprise circular
row buffers.

17. The portable electronic device of claim 15, wherein
the match window array comprises an array of 32 columns
by 16 rows.

18. The method of claim 1, wherein storing integral image
pixel values for the image in the image buffer comprises
controlling, by a clock gating buffer, loading of the integral
image pixel values of the image into the image buffer only
when needed by the image buffer.

19. The method of claim 1, wherein processing, by the
application specific integrated circuit (ASIC), the image
comprises processing the image by detecting and correcting
defective pixels of the images.

20. The method of claim 19, wherein processing, by the
application specific integrated circuit (ASIC), the image
further comprises processing the image by correcting black
levels within the image.

k k k k k

