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(57) ABSTRACT 
Subject matter disclosed herein relates to arrangements and 
techniques that provide for identifying objects within an 
image such as the face position of a user of a portable 
electronic device. An application specific integrated circuit 
(ASIC) is configured to locate objects within images. The 
ASIC includes an image node configured to process an 
image and a search node configured to search the image for 
an object in the image. The search node includes an integral 
image generation unit configured to generate an integral 
image of the image and a Haar feature evaluation unit 
configured to evaluate search windows of the integral image 
with respect to Haar-like features. The ASIC also includes an 
ensemble node configured to confirm the presence of the 
object in the image. 
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ANALYZING INTEGRAL IMAGES WITH 
RESPECT TO HAAR FEATURES 

CROSS-REFERENCE TO RELATED 
APPLICATION 

The present disclosure is a divisional of and claims 
priority to U.S. patent application Ser. No. 14/501,665, filed 
Sep. 30, 2014, which is incorporated herein by reference. 

BACKGROUND 

Many portable or stationary electronic devices are becom 
ing more complex and using various technologies for con 
trolling the portable electronic devices as well as for pro 
viding various user functionality and interactions. The 
implementation of these complex technologies and the pro 
cessing associated therewith can require a large amount of 
resources from the portable electronic devices application 
processor and/or central processing unit (CPU). Such pro 
cessing requirements can result in slower performance by 
the portable electronic device, greater power requirements, 
and/or the need for larger and more powerful processors for 
the portable electronic device. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The detailed description is described with reference to 
non-limiting and non-exhaustive embodiments illustrated in 
the accompanying figures. The same reference numerals in 
different figures refer to similar or identical items. 

FIG. 1 schematically illustrates an Application Specific 
Integrated Circuit (ASIC), in accordance with various 
embodiments. 

FIG. 2 schematically illustrates an image node of the 
ASIC of FIG. 1, in accordance with various embodiments. 

FIG. 3 schematically illustrates a search node of the ASIC 
of FIG. 1, in accordance with various embodiments. 

FIGS. 4A and 4B schematically illustrate integral images 
for pixels of an image. 

FIG. 5A schematically illustrates examples of Haar fea 
tures that are used with an exhaustive search array of the 
search node of FIG. 3. 

FIG. 5B schematically illustrates Haar features that are 
used with the search node of FIG. 3. 

FIG. 5C is a table illustrating weights for the Haar 
features of FIG. SB. 

FIG. 6 schematically illustrates an arrangement of part of 
the exhaustive search array of the search node of FIG. 3, in 
accordance with various embodiments. 

FIGS. 7A-7F schematically illustrate examples of a cir 
cuit for implementing a Haar feature evaluation module 
corresponding to a feature evaluate block of the arrangement 
of FIG. 6, in accordance with various embodiments. 

FIG. 8 schematically illustrates an ensemble node of the 
ASIC of FIG. 1, in accordance with various embodiments. 

FIG.9 schematically illustrates a template matching array 
of the ensemble node of FIG. 8, in accordance with various 
embodiments. 

FIGS. 10A and 10B schematically illustrate line buffers of 
the template matching array of FIG. 9, in accordance with 
various embodiments. 

FIG. 11 schematically illustrates a match window array of 
the template matching array of FIG. 9, in accordance with 
various embodiments. 
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2 
FIG. 12 is a flowchart illustrating an example of a process 

of locating an object in an image using the ASIC of FIG. 1, 
in accordance with various embodiments. 

FIG. 13 is a flowchart illustrating operations 1204 and 
1206 of FIG. 12 in more detail, in accordance with various 
embodiments. 

FIG. 14 is a flowchart illustrating an example of a process 
of confirming the presence of an object in an input image 
using the ASIC of FIG. 1, in accordance with various 
embodiments. 

FIG. 15 illustrates select components of an example 
portable electronic device that includes the ASIC of FIG. 1, 
in accordance with various embodiments. 

DETAILED DESCRIPTION 

The present application provides arrangements and tech 
niques for identifying objects within an image such as the 
face position of a user of a portable electronic device. More 
particularly, the present disclosure provides an Application 
Specific Integrated Circuit (ASIC) that identifies the position 
of a user's face, verifies a position of the user's face and then 
provides the position of the user's face to the application 
processor (AP) of the portable electronic device for use by 
the AP. 
A portable electronic device Such as, for example, a 

Smartphone, a tablet computing device, a notebook comput 
ing device, etc., generally displays content on a display. The 
content can include, for example, images, words, etc. Such 
content can be displayed to a user for viewing. When the 
user is ready to move on to further content, the user can 
"scroll” the content on the display to new content. Often, the 
user Scrolls the content on the display via, for example, by 
contacting the display (e.g., a touchscreen display), or 
physical inputs such as a keyboard, a toggle Switch, a mouse 
pad type device, etc. However, technology has now been 
developed and used to allow for the portable electronic 
device to recognize an image of a portion of the user and 
track that portion of the user for movement that can be used 
by the portable electronic device to signify a desire to scroll 
content displayed on the display of the portable electronic 
device. For example, an image of the position of a user's 
face can be tracked by cameras on the portable electronic 
device to thereby signify desired movement of scrolling of 
the content on the display. For example, the cameras may 
track the user's face to determine that the user's face is 
moving in an upward motion, thereby indicating that the 
user wishes the content on the display to scroll upward to 
provide further content on the display. Likewise, the cam 
eras can track movement of the user's face in a downward 
or side-to-side movement to indicate a desire for the user to 
have content Scrolled in a downward motion on the display 
or in a side-to-side motion. However, such processing 
requires a great deal of power and time on the part of the 
application processor for the portable electronic device. 

In accordance with various embodiments, the NoC 
included with a portable electronic device includes three 
nodes for processing and identifying images corresponding 
to a position of a user's face. The NoC includes an image 
node that receives images from four corner cameras. The 
four corner cameras are generally located in the four corners 
of a display of the portable electronic device. In accordance 
with various embodiments, only two of the four images are 
utilized by the image node since often, one or two of the 
cameras are occluded by the user's fingers. Furthermore, as 
will become apparent herein, only two images are generally 
needed for identifying a position of the user's face. The other 
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two images, and thus a total of four images, can be utilized 
to calibrate the four corner cameras of the portable elec 
tronic device. The image node processes the two images so 
that the two images can be searched for a user's face. The 
processing can include exposure correction in the form of a 
black level correction, defective pixel correction, and a 
statistical analysis of the images. 
Once the image node has processed the two images, 

generally a left image and a right image, the two images are 
forwarded to a search node. The search node generally 
scales the image down Such that a minimum size of an object 
of interest, such as the user's face, can fit within a search 
window. The search node then searches for the user's face 
within a first image. Once the search node determines that it 
has found the user's face within a region of interest, the 
search node searches the second image in order to determine 
if the face can be found in a similar region of interest within 
the second image. 

The search node will progressively search within the first 
image and will continue to scale the first image down Such 
that a maximum size of the item of interest, Such as the 
user's face, will fit within a search window. In accordance 
with various embodiments, the search node includes a 
cascade classifier that contains stages of Haar features that 
are trained to identify a particular object or pattern. The 
searching of the various regions within the images pro 
gresses through the various stages of the cascade classifier 
until either a stage fails, or a region of interest in the image 
passes all of the stages, thereby indicating the presence of an 
object Such as the user's face. The downsizing and searching 
of the image continues until a location of the object within 
the image can be determined. 
Once the search node has identified the presence of a face 

in both the right and left images, the image is sent to an 
ensemble node of the ASIC. The ensemble node is utilized 
to confirm the presence and size of the face in a region of 
interest in the first image and a corresponding region of 
interest in the second image. In accordance with various 
embodiments, a template is utilized by the ensemble node to 
compare, pixel-by-pixel, the region of interest in the first 
image and, pixel-by-pixel, the region of interest in the 
second image. If the ensemble node confirms the presence 
and size of a face in the two images, then the image of the 
face is sent back to the search node to extract facial features 
from the face. The features from the face are then forwarded 
to the application processor which will then analyze the 
features of the face to determine positions of the face in 
order to control the scrolling. 

FIG. 1 schematically illustrates an Application Specific 
Integrated Circuit (ASIC) 100 that includes four nodes 102, 
104, 106 and 108. The four nodes 102, 104, 106 and 108 
include an image node 102, a search node 104, an ensemble 
node 106 and a master node 108. The ASIC 100 includes 
four scaler Microprocessor without Interlocked Pipeline 
Stages (MIPS) cores 110a, b, c and d and four megabytes of 
internal memory 112a, b, c and d arranged as a Network on 
Chip (NoC). In accordance with various embodiments, the 
internal memory is static random access memory (SRAM). 
More or less memory may be included if desired. The ASIC 
100 further includes a low speed input/output unit 114. As 
can be seen, the four processor cores 110a, b, c and d are 
associated with one of the nodes 102, 104, 106 and 108, 
respectively. Each memory 112a, b, c and dis also generally 
associated with one of the four nodes 102,104,106 and 108. 
The master node 108, serves as “the command and control 

block” for the ASIC 100. The master node 108 is responsible 
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4 
for boot and power management, as well as controlling the 
three other MIPS processor cores 110a, b and c in the ASIC 
1OO. 
As can be seen, the image node 102 is in communication 

with the four corner cameras, represented by a camera block 
114 via a Mobile Industry Processor Interface (MIPI) inter 
face 116. A low speed input output (I/O) 118 is in commu 
nication with an application processor (not illustrated) of a 
portable electronic device (not illustrated) that includes the 
ASIC 10O. 

FIG. 2 schematically illustrates the image node 102. The 
image node 102 includes two image sensor processors (ISP) 
200, 202 and two camera calibration logic (CCL) 204, 206. 
The ISPs 200, 202 and the CCLS 204, 206 are in commu 
nication with the MIPI interface 116 that is in communica 
tion with the four corner cameras (camera block 114). The 
image node 102 also includes a 90 degree rotate (NDR) 208, 
and a debug port output (DPO) 210. The CCLs 204, 206 and 
the DPO 210 are utilized for calibration of the four corner 
cameras (in conjunction with the ISPs 200, 202). The 
calibration of the four corner cameras is performed by the 
AP and will not be discussed further herein. However, the 
calibration of the four corner cameras is important so that a 
relative position of a region of interest (ROI) in one camera 
translates to a maximally bounded corresponding ROI in 
another camera based on estimated Z-depth. Specifically, the 
uncertainty in the size and position of the ROI in the second 
camera should be a function primarily of the uncertainty in 
the Z-depth estimation and not the uncertainty of the two 
cameras in global coordinate space. The image node 102 
also includes buffers (not illustrated). The image node 102 
also includes a cache line arbiter 212. 
The NDR 208 is utilized since often the user may be using 

the portable electronic device in a “landscape' mode. In 
Such an instance, images arriving from the cameras may 
actually be on their sides. Thus, the NDR 208 can be utilized 
to rotate the images based upon an indication that the 
portable electronic device is being operated in a landscape 
mode. In accordance with various embodiments, the NDR 
208 is configured to rotate the images 90 degrees, 180 
degrees and 270 degrees. 

Each ISP 200, 202 provides functionality that includes 
static and dynamic defective pixel detection and correction, 
black-level correction and gain control, and full and partial 
image statistical generation and analysis. Generally, the 
primary processing is to the camera exposure control. These 
are latency critical adjustments, so dedicated hardware is 
included to statistically analyze the full input images over 
one of several specified regions of interest (ROI) in the 
image. Camera adjustments can be based on the entire image 
or can be made to track ROIs corresponding to tracking or 
potential face positions. Local black level correction also 
facilities search retrying of images corrected based on 
different regions (if new images are not available yet due to 
low frame rate). The image statistical generation and analy 
sis can be used for normalization of matching thresholds. 

Generally, the ISPs 200, 202 receive a signal that a frame 
is coming in and then moves the frame through the ISPs 200, 
202 to process the images. The processed images can then be 
written to memory 112a or can be provided to another node 
within the ASIC 100. 

FIG. 3 schematically illustrates the search node 104. The 
search node 104 includes an exhaustive search array unit 
(ESA)300 and a scaling resample filter (SRF) 302. The ESA 
300 and the SRF 302 are controlled by the MIPS core 110b. 
The SRF 302 is designed to resample an image while 

downsizing it. In accordance with various embodiments, the 
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SRF 302 is a six tap programmable scaler. The coefficients 
are programmable, so various types of filters can be imple 
mented. In accordance with various embodiments, Lanczos 
resampling coefficients are used and the maximum down 
scale is approximately one-sixth. 
Once the image is scaled down, the image is ready to be 

searched for objects. Search processing by the ESA 300 
largely involves passing a search window over the image 
until the entire Scaled image has been searched. An indi 
vidual window is searched by applying and testing each 
stage of a cascade classifier until a stage fails or all stages are 
passed. If all stages pass, then an object is determined to 
have been found in the image and its coordinates and 
dimensions are saved. Generally, the process is then 
repeated for a second image related to the first image, i.e. the 
Stereo image of the first image, to check if the object is also 
located at the same coordinates and with the same dimen 
sions in the second image. Searching of the second image 
can also be done simultaneously with searching the first 
image if desired. 
More particularly, it is possible to search a full size image, 

which in accordance with various embodiments, is approxi 
mately 400x400 pixels. However, the search window, in 
accordance with various embodiments, is generally 32x32 
pixels. Since a minimum size for an object, e.g., the user's 
face, is 50x50, the image generally needs to be scaled down 
until the minimum size of the object fits within the 32x32 
image. Thus, the original 400x400 image is generally scaled 
down to 256x256. The entire image is searched by passing 
the search window over the scaled down image, generally 
beginning at location 0, 0 of the image. The scaled image is 
generally saved and if the initial searching passes the stages, 
then the image is further scaled down and searched until the 
image has been scaled down to a point that the maximum 
object size, e.g., 220x220 for a user's face, fits within a 
32x32 search window. The image is scaled by a program 
mable factor with a default of 1.2 each iteration. 
The search implementation utilizes Haar Evaluator type 

features based upon the Viola-Jones algorithm. The Haar 
features are combinations of 2 or 3 rectangular shapes. 
These shapes can be compared and tested against a thresh 
old, and this yields useful information regarding the pres 
ence of a face or facial features in the current search window. 
Generally the Haar features and the Viola-Jones algorithm 
are very efficient at indicating when an object is not present 
within an image. The rectangular shapes of the Haar features 
are computed by adding up pixel values of all of the pixels 
in the given rectangle. This can generally be accomplished 
very quickly for any arbitrarily sized rectangle if an “integral 
image' of a given input image is computed ahead of time. 
As is known, in order to create an integral image, each 

pixel is assigned a value that is equivalent to the Sum of all 
the pixels to the upper left of the location of the pixel. More 
particularly, the integral image is a version of the input 
image where each pixel is replaced by the value of all of the 
pixels to the left and above the given pixel location in the 
input image. Thus, as can be seen in FIG. 4A, a target pixel 
402 of an image 400 is assigned a value equal to all of the 
pixels in the integral area 404. Note that the integral image 
is one pixel wider and higher than the input image (addi 
tional row/column 406). Further note that the pixel at 
location w, h contains the total of all of the pixels in the 
entire image 400. 

Referring to FIG. 4B, given an integral image, the pixel 
total of any rectangle in an image can be quickly computed 
by adding and Subtracting the integral images (II) of the four 
pixels at the corners A, B, C and D of the rectangle. 
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However, it can be seen in FIG. 5A that when integral image 
pixels B and C are Subtracted from integral image pixel D. 
the integral image pixel A is subtracted off twice. Thus, the 
area is given by: Rect (A, B, C, D). area=II(D)-II(C)-II(B)+ 
II(A). 
As previously noted, Haar features are weighted combi 

nations of 2 or 3 rectangles. FIG. 5A illustrates examples of 
Haar features that are based on the Haar features illustrated 
in FIG. 5B and that are used with the ESA 300 of FIG. 3. 
Note that the white rectangles are assumed to cover the 
entire feature (including the area under the black rectangle), 
and each rectangle has an area weight associated with it. The 
weights in FIG. 5C are for the black rectangles. The white 
rectangles always have a multiplier of -1. 
As can be seen in FIG. 5A, there are four Haar features 

that are unique and not simply just a new orientation. Those 
are Haar features 1a, 2a, 2b, and 3a. These Haar features are 
further referred to herein as type I, II, III and IV, respec 
tively. A fifth Haar feature is also included as type V. 
The type I Haar feature evaluation Summation is com 

puted using the following weights and expression: 

Sum(TI)-2 (C12-C1-Co-Co)-(C2-Co-Co+Coo) 

This is the resulting 6-term addition that must be imple 
mented for the type I Haar feature. The C reference refers to 
the corner pixel location. The 90-degree rotated version of 
the type I Haar feature operates on the transposed feature 
(mirrored about the x-y axis). Thus the sum for the trans 
posed type I Haar feature is written by simply reversing the 
indices on each of the corners: 

The Haar type II feature evaluation Summation is com 
puted using the following weights and expression: 

Sum(TII)=2C2-2C-2Co+2Co+C2-C1-Co 
Co-C13+Co+Co3-Coo 

This is the resulting 12-term addition that must be imple 
mented for the type II Haar feature. The sum for the 
transposed (or rotated) version of Haar type II feature is 
simply: 

Sum(TII)-2C21-2C1-2Co+2Co+C21-C1-Co 
Co-C+Co1+Co-Coo 

The type III Haar feature evaluation summation is com 
puted using the following weights and expression: 

SUM(TIII)=2C-2C-2Co+2Co-C+Co+Co1 
Coo 

This is the resulting 8-term addition that must be imple 
mented for the type III Haar feature. The sum for the 
transposed (or rotated) version of the type III Haar feature is 
simply: 
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The type IV Haar feature evaluation summation is com 
puted using the following weights and expression: 

This is the resulting 12-term addition that must be imple 
mented for the type IV Haar feature. This type of feature is 
radially symmetric. So it has no transpose orientations. 
The type V Haar feature evaluation summation is com 

puted using the following weights and expression: 15 

This is the resulting 9-term addition that must be imple 
mented for the type V Haar feature. 

Referring to FIG. 6, an arrangement 600 of part of the 25 
ESA 300 of FIG. 3 is schematically illustrated. Generally, 
the ESA 300 is configured for a complete 32x32 search 
window array of pixels in parallel. The ESA 300 does this 
continually for every possible location of the search window. 
An integral image (II) pixel II is only partially computed 30 

at an II generate module 602 to minimize a pixel width of a 
line buffer 604. Rather than computing the full integral 
image pixel, only integral columns are computed. As the 
columns are read from the line buffer 604 to fill a two 
dimensional (2D) search window array 606, the full integral 35 
pixel is computed by adding a new column to the last 
column of the actual integral image pixel concatenated to the 
search window array 606. 

In addition to the II previously discussed, a second 
integral image called the Squared Integral Image (SII) is also 40 
generated at a SII generate module 608. The SII is used to 
compensate Haar feature thresholds by the reciprocal of the 
standard deviation. These special integrated images SII are 
stored into a line buffer 610 such that a larger 2D array of 
pixels can be formed and accessed. This is necessary for 45 
both the II and SII frames; however only the II is used to 
feed the search window array 606. 
A threshold normalization block 612 requires the pixel 

total and the squared pixel total for a current search window. 
Thus, normalization only requires 2 rows from each of the 50 
II and SII frames at any one time. Furthermore, standard 
deviation is only updated when the search window actually 
OWS. 

Once the 2D search window array 606 is full and ready to 
use, the first Haar features of the first stage can begin 55 
evaluation on the very first search window (located at 0, 0). 
A feature evaluation block 614 reads in the corner pixel 
locations from a Haar feature locations memory 616. The 
feature evaluation block 614 evaluates the sum of as many 
Haar features as possible until the stage is ready for evalu- 60 
ation. 
The evaluation of each Haar feature is passed to a stage 

evaluation block 618 that evaluates each stage using feature 
thresholds and weights from a feature thresholds and 
weights memory 620 and stage thresholds from a stage 65 
threshold memory 622. The stage evaluation block 618 will 
choose a left node value or a right node value for each Haar 

8 
feature, and accumulate the values into a stage total. When 
the last Haar feature of the stage is finished, the stage total 
is evaluated. If the stage fails, the search window is 
advanced to the next pixel step and the process begins again. 
However, if the stage passes, the Haar feature locations 
memory 616 is advanced to the next stage of Haar features. 
Once a search window passes all stages, coordinates of the 
location of an object in the image is forwarded to a coor 
dinate FIFO register 624. 
A clock gating buffer 626 controls the input to the line 

buffers 604, 610. The integral image generation by the II 
generate module 602 and the squared integral image is 
generated in the SII generate. The search window array is 32 
by 32 so only 18-bits of integral image and 26-bits of 
squared integral image are produced. An interface 628 is 
provided for communication with the image node 102 and 
search nodes 104. 

Each of the 32 previous integral pixels are retained in an 
accumulator (not illustrated), and when a new integral 
column is read, each pixel is also accumulated in and the 32 
accumulated Sums passed on as the new integral pixel. The 
Squared Integral Image SII is computed in a very similar 
way except that an incoming pixel is squared before being 
registered. All of the data widths are increased from the 
integral widths listed by 8-bits (due to the squaring). 
The threshold normalization unit 612 scales trained 

thresholds based on the reciprocal of the standard deviation 
multiplied by the search window area. Standard deviation is 
generally straight forward to compute once the pixel total 
and squared pixel totals for the search window are known. 

FIG. 7A illustrates an example of a circuit 700 in the form 
of a cascade classifier for implementing a Haar feature 
evaluation unit corresponding to feature evaluate block 614 
of FIG. 6. In accordance with various embodiments, two 
Haar feature evaluation units 700 are included within the 
ESA 302, although only one Haar feature evaluation unit 
700 may be included if desired, or more Haar feature 
evaluation units may be included if desired. This allows for 
a complete 32x32 search window array of pixels to be 
performed in parallel. The previously described Haar fea 
tures are able to be searched by the Haar feature evaluation 
unit 700. Utilizing the calculated integral images, the values 
of the calculated integral images are input into the various 
ports of the feature evaluation unit 700 to arrive at a value 
at one of the output ports. The values or sums from the out 
ports, which correspond to the possible presence or non 
presence of a Haar feature, are compared to a node thresh 
old. If the value is greater than the node threshold, then a 
right node value is assigned for that integral image, where 
the right node value indicates a greater likelihood of the 
presence of an object in the search window. If the value is 
less than the node threshold, then a left node value is 
assigned to the integral image thereby indicating that it is 
less likely that an object is present in the search window. 
During a stage, multiple Haar features are evaluated with 
respect to the integral images within the search window. At 
the end of a stage, all of the node values are Summed and the 
sum of the node values is compared to a threshold. If the sum 
of the node values is greater than the threshold, then the 
stage has been passed. If the sum of the node values is less 
than the stage threshold, then the stage has failed. Generally, 
once a search window fails a stage, then no further stages are 
evaluated with respect to that search window. The search 
window is moved and the process repeats for the new area 
of the image for which the search window is overlaid. 
However, if the stage passes, then another stage of Haar 
feature evaluations is performed by the Haar evaluation unit 
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700 with respect to the search window in order to determine 
if the Subsequent stage is passed or not. If all stages are 
passed, then it is determined that an object has been found. 
The coordinates of the region of interest (ROI) that includes 
the object are passed to the ensemble mode 106. The image 
is searched for an object between a minimum and a maxi 
mum object size specified. Thus the image is repeatedly 
scaled down from an original size Such that larger and larger 
objects can be recognized in a fixed sized search window. 
More particularly, FIG. 7A illustrates a circuit 700 for 

implementing feature types I-V. The circuit 700 comprises a 
plurality of compression modules 702a, . . . , 7021. Indi 
vidual ones of the compression modules 702a, 702b, 702d. 
702e, 702g, 702h, 702i, 702k and 7021 have a compression 
ratio of 4:2, while individual ones of the compression 
modules 702c, 702f and 702i have a compression ratio of 
4:1. The compression module 702a, for example, concat 
enates or combines four inputs into two inputs. 
The circuit 700 further comprises a plurality of multi 

plexers 704a, . . . , 704i. Individual ones of the multiplexers 

10 

15 

10 
a corresponding one of the corner coefficients C00, CO1, 
C11, or the like, based on a Haar feature type that is being 
implemented by the circuit 700. The circuit 700 may be 
configured to output one or more of Sum values 0, 1, 2 and 
3, based on a feature type that is implemented by the circuit 
700. 

FIG. 7B illustrates the circuit 700 implementing an analy 
sis with respect to the Haarfeature type I, FIG. 7C illustrates 
the circuit 700 implementing the Haar feature type II, FIG. 
7D illustrates the circuit 700 implementing the Haar feature 
type III, FIG. 7E illustrates the circuit 700 implementing the 
Haar feature type IV, and FIG. 7F illustrates the circuit 700 
implementing the Haar feature type V. Table 3 below pro 
vides, for each Haar feature type, a mapping between 
individual ports and the corner coefficient received at the 
corresponding ports while the circuit 700 implements the 
corresponding Haar feature type. Table 3 also illustrates the 
multipliers by which the corner coefficients are multiplied, 
while the corner coefficients are being transmitted via the 
circuit 700. 

TABLE 3 

Type II 

Port Sum Mult. Corner Sum Mult. Corner Sum 

O Sum 3 2 CO1 Sum O 1 C10 Sum O 
1 2 C11 1 -C13 
2 C12 Sum 1 1 C10 Sum 1 
3 -CO2 1 -C13 
4 C10 Sum 2 1 C10 Sum 2 
5 -COO 1 -C13 
6 Sum O 2 CO1 Sum O 1 CO3 Sum O 
7 2 -C11 1 -COO 
8 C12 3 C12 
9 -CO2 3 -C11 
10 C10 3 CO1 
11 -COO 3 -CO2 
12 Sum 1 2 CO1 Sum 1 1 CO3 Sum 1 
13 2 -C11 1 -COO 
14 C12 3 C12 
15 -CO2 3 -C11 
16 C10 3 CO1 
17 -COO 3 -CO2 
18 Sum 2 2 CO1 Sum 2 1 CO3 Sum 2 
19 2 -C11 1 -COO 
2O C12 3 C12 
21 -CO2 3 -C11 
22 C10 3 CO1 
23 -COO 3 -CO2 

may receive a plurality of corresponding inputs, and gener 
ate an output based on a feature type (e.g., one of the feature 
types I-V) being currently implemented by the circuit 700. 

Although not illustrated in FIG. 7A, the circuit 700 
comprises a plurality of multipliers. For example, an input to 
the compression module 702a is labeled as 2x, implying that 
a multiplier (not illustrated in FIG. 7A) multiplies the input 
to the compression module 702a by two. As another 
example, an input to the multiplexer 704d is labeled as 0.5x, 
implying that a multiplier (not illustrated in FIG. 7A) 
multiplies the input to the multiplexer 704d by 0.5. 
As illustrated in FIG. 7A, the circuit 700 may receive 

input from twenty-four input ports, labeled as ports 0, . . . . 
23. The ports may be divided into four groups, with a first 
group of ports comprising ports 0, . . . , 5; a second group 
of ports comprising ports 6, . . . . 11; a third group of ports 
comprising ports 12. . . . , 17; and a fourth group of ports 
comprising ports 18, ... , 23. As will be discussed in further 
detail herein later, individual ones of the ports may receive 

Type III 
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Type IV Type V 

Mult. Corner Sum Mult. Corner Sum Mult. Corner 

2 CO1 Sum O 1 C30 Sum 3 Feature type I 
2 -CO3 1 -C33 Supported only if 

CO1 Sum 1 1 C30 Sum O is also 
-CO3 1 -C33 feature type I 
CO1 Sum 2 1 C30 
-CO3 1 -C33 

2 C13 Sum O 1 CO3 Sum O Feature types I, 
2 -C11 1 -COO II, III, IV, or V 

C10 9 C22 Supported for 
-C14 9 -C21 Sum O 
CO)4 9 C11 
-COO 9 -C12 

2 C13 Sum 1 1 CO3 Sum 2 2 C12 
2 -C11 1 -COO 2 -C11 

C10 9 C22 1 CO1 
-C14 9 -C21 1 -CO2 
CO)4 9 C11 1 CO1 
-COO 9 -C12 1 -C2O 

2 C13 Sum 2 1 CO3 2 C21 
2 -C11 1 -COO 2 -C11 

C10 9 C22 1 C10 
-C14 9 -C21 1 -C22 
CO)4 9 C11 1 C10 
-COO 9 -C12 1 -COO 

FIG. 7B illustrates the circuit 700 implementing the Haar 
feature type I. In FIG. 7B, those lines that are used to 
implement the equations associated with the Haar feature 
type I are illustrated in bold. As an example, the multiplexer 
704a may be configured to receive (i) input from ports 4-5 
and (ii) input from ports 12-13. While Haar feature type I is 
being implemented by the circuit 700, the multiplexer 704a 
may be configured to output the input received from ports 
4-5, while refraining from outputting the input received 
from ports 12-13. Thus, the line between ports 4-5 and the 
multiplexer 704a is illustrated in bold (implying that the 
signal transmitted by this line is transmitted to the next 
component, and is used in implementing the feature type I), 
while the line between ports 12-13 and the multiplexer 704a 
is not illustrated in bold. 
As previously discussed herein, the equation used for 

implementing Haar feature type I is given by: 
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As illustrated in FIG. 7B and as will be discussed in detail 
herein later, the circuit 700 outputs sum 3, based on inputs 
from ports 0-5, such that the value of sum 3 is equal to 
sum(TI). Similarly, the circuit 700 outputs sum 0, sum 1 and 
Sum 2, each of which is equal to the Sum(TI). 
As illustrated in the Table 3, for Haar feature type I, the 

ports 0, . . . , 5 receives corner coefficients CO1, -C11, C12, 
-C02, C10 and -COO, respectively. The corner coefficients 
C01 and -C11 from ports 0 and 1 are multiplied by 2, as 
illustrated in FIG.7B (illustrated as “2x” in the line between 
ports 1-0 and the compression module 702a), and as also 
illustrated in Table 3. Thus, the multiplexer 704b receives 
(2C01-2C11) as one of its input. 

Furthermore, the corner coefficients C12 and -CO2 from 
ports 2 and 3, respectively, are received in the multiplexer 
704b, via the compression module 702b, the multiplexer 
704c and the compression module 702a. No multiplication 
is performed to the inputs from ports 2 and 3, as illustrated 
in FIG. 7B and Table 3. Accordingly, the multiplexer 704b 
also receives (C12-C02) as one of its input. 

Also, the corner coefficients C10 and -COO from ports 4 
and 5, respectively, are received in the multiplexer 704b, via 
the multiplexer 704a, the compression module 702b, the 
multiplexer 704c and the compression module 702a. No 
multiplication is performed to the inputs from ports 4 and 5. 
as illustrated in FIG. 7B and Table 3. Accordingly, the 
multiplexer 704b also receives (C10-C00) as one of its 
input. 

Thus, the multiplexer 704b receives the following three 
inputs: (i) (2C01-2C11) from ports 0-1, (ii) (C12-C02) from 
ports 2-3, and (iii) (C10-C00) from ports 4-5. The multi 
plexer 704b outputs these three inputs (e.g., in sequence), 
such that they are summed at the output of the multiplexer 
704b. Thus, the summation of the three outputs of the 
multiplexer 704b results in (2C01-C11+C12-C02+C10 
C00) (illustrated as sum 3 in FIG. 7B), which is the sum(TI) 
discussed above for the Haar feature type I. 

Similar to the generation of sum 3, the circuit 700 also 
generates sum 0, sum 1 and sum 2, as illustrated in FIG. 7B 
and Table 3. Each of the sum 0, sum 1 and sum 2 is equal 
to (2C01-C11+C12-C02+C10-C00), which is the sum(TI) 
discussed above for the Haar feature type I. 
FIG.7C illustrates the circuit 700 implementing an analy 

sis with respect to the Haar feature type II. Table 3 also 
maps, for Haar feature type II, individual ports with the 
corner coefficients received at the corresponding ports. 
Similar to FIG. 7B, in FIG. 7C, those lines that are used to 
implement the equations associated with the Haar feature 
type II are illustrated in bold. 
As previously discussed herein, the equation used for 

implementing Haar feature type II is given by: 

In sum(TII), there are twelve terms. It is to be noted that 
the terms (2C-2C-2C+2C) and the terms (C- 
C-Co+Co1) in Sum(TII) have the same corner coeffi 
cients, but with different multipliers. There are four other 
terms (-C+Co+Co-Coo) in Sum(TII). 
As illustrated in FIG. 7C, the output of the multiplexer 

704b is not enabled for Haar feature type II (e.g., not 
illustrated using bold lines). That is, the circuit 700 does not 
output sum 3 for Haar feature type II. Furthermore, for 
feature type II, inputs from ports 0 and 1 are used to generate 
Sum 0, in addition to using inputs from ports 6-11. Also, 
inputs from ports 2 and 3 are used to generate sum 1, in 
addition to using inputs from ports 12-17. Inputs from ports 
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4 and 5 are used to generate Sum 2, in addition to using 
inputs from ports 18-23. Put differently, sum 0 is generated 
based on inputs from ports 0-1 and 6-11. Similarly, sum 1 is 
generated based on inputs from ports 2-3 and 12-17. Fur 
thermore, Sum 2 is generated based on inputs from ports 4-5 
and 18-23. 

Referring to Table 3, for generating sum 0, ports 0-1 and 
6-11 receive corner coefficients C10, -C13, CO3, -COO, 
C12, -C11, CO1 and -CO2, respectively. As illustrated in 
FIG. 7C, the corner coefficients C10 and -C13 are received 
in the compression module 702c from the ports 0-1, via the 
compression module 702a and the multiplexer 704d. Also, 
each of the corner coefficients C10 and -C13 are multiplied 
by 2 and 0.5, while being transmitted from the ports 0-1 to 
the compression module 702c (e.g., multiplied by 2 between 
ports 0-1 and the compression module 702a, illustrated by 
“2x'; and also multiplied by 0.5 between the compression 
module 702a and the multiplexer 704d, illustrated by 
“0.5x”). Thus, effectively, the corner coefficients C10 and 
-C13 are multiplied by (2x0.5), i.e., by 1 (e.g., as illustrated 
in Table 3), and the compression module 702c receives and 
outputs (C10-C13) from ports 0-1. 
The compression module 702c also receives the corner 

coefficients C03 and -COO from ports 6-7, respectively, via 
the multiplexer 704c., the compression module 702a and the 
multiplexer 704d. As illustrated in FIG. 7C, the corner 
coefficients C03 and -000 are multiplied by 2 and 0.5, i.e., 
effectively by 1, prior to being received by the compression 
module 702c (e.g., as illustrated in Table 3). Thus, the 
compression module 702c receives and outputs (CO3-C00) 
from ports 6-7. 
The compression module 702c also receives the corner 

coefficients C12, -C11, CO1 and -CO2 from ports 8-11, 
respectively, via two routes. For example, the compression 
module 702c receives the corner coefficients C12, -C11, 
C01 and -CO2 from ports 8-11, respectively, via a first route 
comprising the compression module 702e, the multiplexer 
704e, and the compression module 702d. In the first route, 
between the compression module 702e and the multiplexer 
704e, each of the corner coefficients C12, -C11, CO1 and 
-CO2 is multiplied by 2. The compression module 702c also 
receives the corner coefficients C12, -C11, C01 and -CO2 
from ports 8-11, respectively, via a second route comprising 
the compression module 702e and the compression module 
702d (i.e., the second route bypasses the multiplexer 704e). 
The corner coefficients are multiplied only by 1 while being 
transmitted via the second route. Thus, Subsequent to the 
compression module 702c receiving the corner coefficients 
C12, -C11, CO1 and -CO2 from ports 8-11, respectively, via 
the first and second routes, each of these corner coefficients 
are multiplied by 2 (e.g., while being transmitted via the first 
route) and also by 1 (e.g., while being transmitted via the 
second route). Thus, the compression module 702c receives 
and outputs ((2C12-2C11+2C01-2C02)+(C12-C11+C01 
C02)) from ports 8-11. That is, each of the corner coeffi 
cients C12, -C11, CO1, and -CO2 are multiplied by 3, as 
illustrated in Table 3. 

Thus, the compression module 702c receives and outputs 
(i) (C10–C13) from ports 0-1, (ii) (C03-C00) from ports 
6-7, and (iii) (2C12-2C11+2C01-2C02+C12-C11+C01 
C02) from ports 8-11. These outputs of the compression 
module 702c are summed, resulting in sum 0, which is given 
by (2C12-2C11+2C01-2C02+C12-C11+C01-C02+C10 
C13+C03-C00), and which is equal to sum(TII). That is, 
while the circuit 700 implements the Haarfeature type II, the 
sum 0 of the circuit 700 is equal to sum(TII). 
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In a similar manner, the circuit 700 outputs sum 1 and sum 
2, each of which is equal to sum(TII), as illustrated in FIG. 
7C and Table 3. 

FIG. 7D illustrates the circuit 700 implementing an analy 
sis with respect to the Haar feature type III, FIG. 7E 5 
illustrates the circuit 700 implementing the feature type IV. 
and Table 3 provides, for each of Haar feature types III and 
IV, a mapping between individual ports and the corner 
coefficient received at the corresponding ports. Based on the 
discussion associated with Haar feature types I and II, the 10 
operation of the circuit 700 for each of feature types III and 
IV is readily apparent from FIGS. 7D, 7E and Table 3. 
Accordingly, a more detailed discussion of the implemen 
tation of the circuit 700 for Haar feature types III and IV is 
omitted herein. 15 

FIG. 7F illustrates the circuit 700 implementing an analy 
sis with respect to Haar feature type V, and Table 3 provides, 
for Haar feature type V, a mapping between individual ports 
and the corner coefficients received at the corresponding 
ports. 2O 
As illustrated in FIG. 7F and Table 3, based on the ports 

12-23 receiving the corner coefficients C12, -C11, CO1, 
-C02, CO1, -C20, C21, -C11, C10, -C22, C10 and -COO, 
respectively, the Sum 2 at the output of the compression 
module 702i represents represent the sum(TV), which is 25 
given by sum(TV)=2C12-4C11-C02-+2C01+2C21-C20+ 
2C10-C22-COO. 

Although the mapping is not illustrated in Table 3, based 
on the ports 0-11 receiving the corner coefficients C12, 
-C11, CO1, -CO2, CO1, -C20, C21, -C11, C10, -C22, C10 30 
and -COO, respectively, the sum 0 at the output of the 
compression module 702c may also represent the sum(TV). 
That is, in an example, the circuit 700 may output sum 0 and 
Sum 2, each of which may be equal to Sum(TV). 

In an embodiment, while the sum 2 represents sum(TV), 35 
at least some of the ports 0-11 may simultaneously be used 
to output any one of Sum(TI), Sum(TII), Sum(TIII), Sum 
(TIV) and sum(TV) at the output of the compression module 
702c. That is, while the inputs of the ports 12-23 are used to 
generate a feature type V output at Sum 2, inputs of at least 40 
some of the ports 0-11 may be used to implement one of 
feature types I, II, III, IV or V at sum 0, as illustrated in the 
Table 3. 

Also, if Haar feature type I is implemented at Sum 0 using 
inputs from ports 6, . . . , 11, then Haar feature type I may 45 
also be implemented at Sum 3 using inputs from ports 
0, . . . , 5(e.g., while feature type 5 is being implemented at 
Sum 2, using inputs from ports 12-23). 

In accordance with various embodiments, the Haar fea 
tures vary as to importance in passing a stage. Thus, the right 50 
node and left node values assigned for each Haar feature are 
proportional to the importance of the Haar feature with 
respect to passing a stage evaluation. For example, the more 
important the Haar feature may be, the greater the difference 
between the right node value and left node value. For 55 
example, an important Haar feature may have a right node 
value of +5 and a left node value of -5, while a lesser 
important Haar feature may have a right node value of +1 
and a left node value of -1. A training algorithm is utilized 
to set node values. 60 

In accordance with various embodiments, the ESA 300 
works on a small group of search windows in parallel and 
can skip from one to the other within a current buffer or 
group of search windows. The ESA300 needs to evaluate all 
search windows, so even if a search window is started that 65 
will eventually pass many stages, there is never a shortage 
of necessary operations that can be started. Any new search 

14 
window can always be started without any speculation 
whether the computations are necessary or not. The first 
stage will always need to be evaluated for every search 
window. The only exception is when the input image gets 
down to the very end, and it runs out of new search windows 
(i.e. pixel columns) to introduce. 
As long as new search windows can be introduced, then 

there is never a need to speculate on any search window 
stages' need for execution. After the first search window is 
started, new search windows can be started every cycle after 
that until the first search window's first stage completes. 
Once the first search window's first stage completes, then it 
will be known if the first search window passes on to stage 
two or if the first search window failed and the search 
window is retired. In general, the first column of pixel values 
written is the first to be replaced. 

It is desirable that results of stages issue completely once 
the results of stages start issuing. In this way there is no need 
to track and match up intermediate results. Instead, new 
Haarfeature results simply accumulate with previous ones at 
the end of the cascade classifier. This also avoids specula 
tively issuing instructions by completing stage N and testing 
stage N's result and only starting stage N-1 if stage N has 
actually passed. This is referred to as end-to-end execution 
because a stage must come out the back end of the stage 
evaluation logic of the ESA 300 before being allowed to 
reenter the front end of the stage evaluation logic. If specu 
lative execution can’t be avoided, then it is preferable to 
speculate on the maximum number of search windows 
possible. It is probable that any particular search window 
may proceed to pass all stages all the way through the very 
last stage. However, if a particular search window passes 
stage N, then it is probable that other nearby search windows 
will also pass stage N. Thus, when speculative issue is 
unavoidable, then speculating on as many local search 
windows as possible will increase the hit rate of the specu 
lations. 

It is desirable to remain in end-to-end issue mode while 
keeping the stage evaluation logic completely full for as 
long as possible. When a current search window requires 
more stages to complete than other search windows nearby 
that are entering the stage evaluation logic, it may not be 
possible to issue the additional stages for the current search 
window with certainty. That is, it may be necessary to issue 
speculatively because there isn't room to introduce any new 
windows into the cascade classifier and none of the currently 
executed Stages have finished for the current search window, 
so it can’t yet be determined if the next stage will be needed 
or not for the current search window. When this happens, the 
stage evaluation logic will move into a speculative issue 
mode. 

End-to-end issue mode simply waits for the result of stage 
N before starting stage N+1, so that stage N+1 is only started 
if it has been determined to be necessary (rather than simply 
speculating). As previously noted, the control strategy 
strives to stay in End-To-End mode whenever possible. Only 
when nothing in the stage evaluation logic can issue with 
certainty and there is no room to add any windows into the 
search window array, then the issues mode must become 
speculative. 

Just because no stages can be started with certainty does 
not mean that stage results stop. Rather it means that stage 
results will now be speculative until certainty can be rees 
tablished. The focus of this particular mode is the oldest 
search window remaining in the cascade classifier. If the 
oldest search window can be retired, then there will be space 
in the search window buffer and a new search window can 
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begin. If a new search window can begin, then the control 
will no longer need to be speculative. 

Given that search windows in a common area of the image 
tend to penetrate into the cascade classifier to similar stages, 
it is more reasonable to speculate that each active search 
window will pass to the next stage rather than that only one 
of the search windows will penetrate deep into the cascade 
classifier stages while the other search windows around the 
one search window quickly retire. The speculative mode 
takes this into account by tracking all active search windows 
in the cascade classifier and taking turns speculating on 
whether or not the search windows will pass a stage. The 
speculation must start with the oldest search window since 
the oldest search window is where any new columns must be 
written into the cascade classifier. 
Any search windows that are initially speculated to pass 

a future stage but are later retired should be removed from 
the cascade classifier Such that such search windows are not 
processed within the cascade classifier anymore (specula 
tively or not). The speculation continues until the oldest 
search window is retired by either failing a stage or passing 
all the stages. 

FIG. 8 schematically illustrates the ensemble node 106. 
The ensemble node 106 augments the search node 104. The 
initial search from the search node 104 can be equated to 
finding a Region of Interest (ROI). The ensemble node 106 
accelerates post-search tasks Such as stereo association and 
primary face selection or temporal association. 

Even when the search node 104 initially appears to 
produce a strong detection by finding a face in both the left 
and right stereo images, such a finding still needs to be 
confirmed. It is confirmed by comparing that the position 
and size of a face found in one image has a corresponding 
face of the appropriate size and position in the other stereo 
image of the pair of images. If there are multiple faces in the 
frame the ensemble node creates a depth map of any faces 
found in the images and selects the face closest to the 
cameras as the face to track. Furthermore, histories of 
previously found face templates are retained in order to 
distinguish a primary user from other faces found in the 
image. Once the primary face has been found, the ensemble 
node 106 sends the face back to the search node 104 to 
extract the features from the face. The ensemble node then 
sends the features and X, Y, Z coordinates of the location of 
the face to the application processor (not illustrated). 

The ensemble node 106 is primarily designed to compare 
a face found in one image to an area of interest in another 
spatially or temporally related image. The ensemble node 
106 includes a mechanism for comparing a small area of one 
image to a somewhat larger area of another image. The Small 
image is generally referred to as a template, and the act of 
comparison is referred to as template matching. The 
ensemble node 106 uses integral image pixel values com 
puted by the search node 104. 
The ensemble node 106 includes a SRF 800 that is 

identical to the SRF 302 of the Search node 104. The 
ensemble node 106 further includes a template matching 
array (TMA) 802, a Bit-Blit Copy (BBC) 804 and a cache 
line arbiter 806. 
The SRF 800 can be used independently or it can be 

configured to feed scaled images directly into the TMA 802. 
Once matches are found by the TMA 802, the ensemble node 
106 needs to organize the information by moving templates 
or pieces of images around. These pieces of images are 
referred to as “bit-blits.” The bit-blits are moved around by 
the BBC 804. The BBC 804 is dedicated hardware support 
for copying Sub-frame windows of pixels from one location 
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to another. A common example is the retention of the most 
recent 10 matching face templates used by the TMA 802. 
FIG.9 schematically illustrates the TMA 802. As can be 

seen, the TMA 802 largely comprised of a 2D register 
array/line buffer structure similar to the ISPs 200, 202 and 
the ESA300. In the TMA 802, a parallel buffer 900 is used 
to store a current template. The template buffer receives a 
template from a NoC memory read (NMR) block 902. The 
template is a 32x32 template of integral image pixel values 
for the ROIs in the images from the search node 104 and can 
either be a previous template stored in memory or can be 
based upon one of the two images where an object was 
found in the ROIs by the search node 104. 
The template buffer 900 and an image buffer 904 both 

feed the 2D match window array 906 where partial com 
parison data is generated. The comparison data is partial 
because it is only summed over each row in the 2D window. 
A column of row results are output from the 2D window 
once every pixel cycle after the template has been com 
pletely circulated the first time. 

Each partial result column is passed to a column Summa 
tion and test block 908 where the column is processed into 
a pixel locations complete template matching result. The 
comparison result pixel is passed to a NoC memory write 
(NMW) block 910 for assembly into cache lines and output 
to the NoC, i.e. memory 112b or 112c. Each of the matching 
result pixels is tested to find a minimum or maximum value 
across the image. There are multiple types of matching 
methods that can be specified. Some of the methods indicate 
a best match as the minimum pixel result and other methods 
indicate a best match by a maximum result pixel value. 
The TMA 802 will only start generating comparison pixel 

output once a full template is loaded into the template buffer 
900. However, the TMA 802 can proceed to load the image 
buffer 902 until the full template is loaded. The image pixels 
can be loaded from the SRF 800 or from memory 112b. A 
clock gating buffer 912 controls the loading of the image 
pixels into the image buffer 902. 

Table 4 below provides examples of comparison methods 
that can be used by the match window array 906. 

TABLE 4 

Best 
Method Match Description 

SQDIFF Min Simple square of the differences 
SQDIFF NORM Min Simple square of the differences 

w/normalization 
CCORR Max Cross correlation 
CCORR NORM Max Cross correlation winormalization 

The comparison methods can be normalized by dividing 
the comparison result by the square root of the product of the 
Sum of template pixels squared and the Sum of the image 
pixels that are covered by the template squared. More 
particularly, the normalization of any of the pixel results can 
be computed by multiplying it by the normalization value: 

where x' represents the range of the X positions of the 32x32 
template and y' represents the range of they positions of the 
32x32 template. 

Each of the 2D match array taps in the match window 
array 906 is a standalone computational engine capable of 
calculating a partial comparison result. The physical micro 
architecture is sensitive to the large number of Such com 
putational elements. 
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In accordance with various embodiments, the match win 
dow array 906 performs the comparison using a multi-pass 
strategy, which utilizes less power. A full 32x32 match is 
still supported, but the match window array 906 actually 
implements the comparison as two passes through a 32x16 
array. Each computational engine is now shared by 4-pixel 
comparison, so the physical array is actually an array 
8-engines wide and 16-engines tall where each engine 
handles a 1-row of 4-pixels. 

Referring to FIG. 10A, it can be seen that the line buffers 
still contain a full template height of 32 image rows, but they 
are read out only 16 rows at a time. The partial results of the 
image comparison and the image Summation are both saved 
from pass 1 and compressed into pass 2. Once matching row 
0 has been fully compared, the top image row can be 
discarded from the line buffers and matching row 1 can then 
begin processing, as illustrated in FIG. 10B. 

Referring to FIG. 11, which schematically illustrates the 
match window array 906, the partial comparison results for 
each pixel result from pass 1 in FIGS. 10A and 10B must be 
saved into a dedicated line buffer 1100. If normalization is 
active, then the partial image Summation results for each 
pixel must also be saved into an additional dedicated line 
buffer (not illustrated). These saved partial results are then 
read by the second pass and compressed into its partial 
results before being written back into the dedicated line 
buffer(s). The results of the 2" pass are final results and can 
proceed to the normalization and final result computation. 
The match window array 906 is an array of small com 

putational engines and logic necessary to feed the compu 
tational engines operands to work on. The operands are a 2D 
image and a smaller 2D template, and each are stored in 
arrays of circular row buffers 1102, 1104. The circular row 
buffers 1102, 1104 work very similarly to the ISPs 200, 202 
and ESA 300. Specifically, the image buffers 1102 provide 
access to the complete Subset of 32x32 Sub-images present 
in the original image starting at the top left hand corner of 
the original image and proceeding in raster order through to 
the bottom right hand corner of the original image. Every 
pixel cycle the left column of the array is dropped and a new 
right column is added, so the 32x32 Sub-image (or more 
accurately the 32x16 Sub-image) is only valid in the array 
for a single pixel cycle. 
The template is assumed to be loaded into the circular row 

buffers 1104 before the image is loaded into the circular row 
buffers 1102, so the template's top 16 rows of pixels can be 
preloaded into a computational array 1106. The 16 rows of 
pixels are shifted in from array column O (on the left) toward 
array column 31 (on the right). Once in place, the template 
pixels are static for the entire 32x16 comparison. The image 
enters the computational array 1106 much differently. The 
image is presented to the computational array 1106 one 
column at a time, and it is provided to every column in the 
computational array 1106 simultaneously. 
On the first cycle that the computational array 1106 is 

completely filled with template pixels, the first column of the 
image (i.e. column 0) is compared across all of the columns 
of the computational array 1106. The first column of the 
image is only compared to the first column of the template 
and when the image column gets equal to or larger than the 
template width, the image pixel will be used in all 32-partial 
comparison results in parallel. 

Each image column is sequenced through and presented 
to the computational array 1106. Note that the number of 
comparisons an individual image pixel is used in tapers 
down as the right edge of the image is approached. In fact 
the right most image pixel is just like the left in that it is also 
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only used in a single template comparison. This is the reason 
the template is shifted into the computational array 1106 
from left to right rather than the more familiar raster order. 
The next 16 template pixel rows can enter the array directly 
behind the last value accumulator for the current 16 rows as 
the last value accumulator shifts out. However, there is some 
flexibility because as long as template column O is valid, the 
next 16 rows can start the first accumulation directly behind 
the current 16 rows. 
The rows of the computational array 1106 do not interact 

except in two specially designed places—the partial row 
result accumulation column 1100 and an image row accu 
mulation column 1108. The partial row result accumulation 
column 1100 and the image row accumulation column 1108 
are both specially designed columns that are used to aggre 
gate the accumulated row results and combine them into a 
single result. 
The rows of the computational array 1106 operate inde 

pendent of each other for the most part until a Sub-image row 
result is complete. When ready, the column where the 
Sub-image row exists is selected to enter the partial row 
image accumulation column 1100. The partial row image 
accumulation column 1100's primary function is to sum all 
of the row accumulate results into a final accumulated result 
and deliver it to a result normalization and formatting block 
1110. 
The top three partial row results are accumulated into 

redundant binary, i.e. carry/save, by a full adder vector. This 
initial 3:2 is followed by another 3:2 for each additional row 
that is accumulated for a total of 14-each 3:2 stages. The 
final 3:2 (in row 15) is followed by a full carry propagation 
adder (CPA), which is used to compute the final column 
result. 
The image accumulation column 1108 is generally more 

complicated than the partial row result accumulation column 
1100 because it also accumulates each row result first. A 
computational engine is necessary to compute the image 
accumulation for each row. This computational engine will 
serve to calculate the sum-of-squares (SoS) for the template, 
the first 48x48 Sub-image in the image row, and then each 
subsequent 32x32 Sub-image in the row. In order to share 
hardware between the template SoS and the many sub-image 
SoSs, the template is loaded first into the template buffers 
1104 and the template's SoS can be calculated while the 
image is still being read into the image buffers 1102. The 
TMA 802 will need to sequence all of the template columns 
through the match window array 906 once before matching 
starts in order to compute the template SoS. Note that an 
accumulator (not illustrated) can be used to retain the 
accumulated results from the rows 0-15. Template rows 
16-31 will simply accumulate with row 0-15 before the 
individual row accumulators are Summed down the column. 
The first Sub-image in any given image row is calculated 

much differently than each Subsequent Sub-image. The first 
in the row is calculated directly. Specifically, each image 
pixel is read in, squared, and accumulated with all of the 
previous pixels in the row. Normally, it would be necessary 
to retain 31 other partial results in parallel with this first 
accumulation, but since it is a running total, once the first 32 
pixel row result is ready, the next result can be calculated by 
accumulating in the next squared pixel value (as normal), 
but also by Subtracting the squared pixel value that is being 
removed from the left edge of the match window array 906 
being fed from the right edge of the match window array906 
by the image buffer 902. 
A 32-entry FIFO 1112 is provided for the image pixel 

input row 31 since image pixel input row 31 doesn't require 



US 9,589,176 B1 
19 

a line buffer. A second read from the line buffers is an option 
for the other 31 rows because the other 31 rows are only read 
every 4-cycles. A full crossbar switch 1114 is provided for 
controlling loading from the circular image buffers 1102 into 
the computational array 1106. 

The result provided by the match window array 906 
requires normalization if a normalized comparison method 
is selected for use. The normalization requires the SoS for 
both the template and each individual 32x32 sub-image. The 
template SoS is computed (as the image is still being read in 
from memory) and saved for the remainder of the frame in 
a holding register. Once the first image accumulation col 
umn result arrives, it is multiplied by the saved SoS resulting 
in a 52-bit fixed-point result (assuming 32x32). The result 
has been computed to full accuracy (no rounding or trun 
cation) and then converted to “statistically unbiased round to 
nearest” in accordance with IEEE 754. 
Once the result has been computed and the presence of an 

object, i.e. a user's face, has been confirmed, the image can 
be sent to the search node 104 to extract facial features from 
the image. The final result is a position of the object, i.e. the 
user's face, given by X, Y and Z coordinates. The position 
of the user's face is relative to the center between the user's 
eyes. The coordinates are provided to an application pro 
cessor, central processing unit, etc. of a portable electronic 
device that includes the ASIC 100. 

FIG. 12 is a flowchart illustrating an example of a process 
1200 of a method of locating an object in an input image 
using an ASIC, for example the ASIC 100, in accordance 
with various embodiments. At 1202, an image node of an 
Application Specific Integrated Circuit (ASIC) processes an 
image to improve quality of the image. A search node of the 
ASIC searches the image for an object in the image. At 1204, 
an integral image of the image is generated by the search 
node. As previously noted, in order to create an integral 
image, each pixel in the input image is assigned a value that 
is equivalent to the sum of all the pixels to the upper left of 
the location of the pixel. More particularly, the integral 
image is a version of the input image where each pixel is 
replaced by the value of all of the pixels to the left and above 
the given pixel location in the input image At 1206, the 
search node searches search windows of the integral image 
are evaluated with respect to Haar features, wherein the 
evaluating the search windows comprises searching each 
search window in a plurality of stages until either (i) the 
search window fails a stage or (ii) the search window passes 
all stages. More particularly, utilizing calculated integral 
images, the values of the calculated integral images are input 
into the various ports of a feature evaluation unit to arrive at 
a value at one of the output ports of the feature evaluation 
unit. The values or sums at the output ports, which corre 
spond to the possible presence or non-presence of a Haar 
feature, are compared to a node threshold. If the value is 
greater than the node threshold, then a right node value is 
assigned for that integral image, where the right node value 
indicates a greater likelihood of the presence of an object in 
the search window. If the value is less than the node 
threshold, then a left node value is assigned to the integral 
image thereby indicating that it is less likely that an object 
is present in the search window. During a stage, multiple 
Haar features are evaluated with respect to the integral 
images within the search window. At the end of a stage, all 
of the node values are summed and the sum of the node 
values is compared to a threshold. If the sum of the node 
values is greater than the threshold, then the stage has been 
passed. If the Sum of the node values is less than the stage 
threshold, then the stage has failed. Generally, once a search 
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window fails a stage, then no further stages are evaluated 
with respect to that search window. The search window is 
moved and the process repeats for the new area of the image 
for which the search window is overlaid. However, if the 
stage passes, then another stage of Haar feature evaluations 
is performed by the Haar evaluation unit with respect to the 
search window in order to determine if the Subsequent stage 
is passed or not. If all stages are passed, then it is determined 
that an object has been found. The coordinates of the region 
of interest (ROI) that includes the object are passed to an 
ensemble node. At 1208, if the search window passes all 
stages thereby indicating the presence of an object in the 
image, the ensemble node of the ASIC confirms the presence 
of the object in the input image. 

FIG. 13 is a flowchart illustrating operations 1204 and 
1206 of FIG. 12 in more detail. At 1302, an integral image 
is created for an input image, where each pixel in the input 
image is assigned a value that is equivalent to the Sum of all 
the pixels to the upper left of the location of the pixel. At 
1304, the values of the calculated integral images are input 
into various ports of a feature evaluation unit to arrive at a 
value at one of the output ports of the feature evaluation unit. 
At 1306, the values or sums at the output ports are compared 
to a node threshold. At 1308, if the value is greater than the 
node threshold, then a right node value is assigned for that 
integral image, where the right node value indicates a greater 
likelihood of the presence of an object in the search window. 
At 1310, if the value is less than the node threshold, then a 
left node value is assigned to the integral image thereby 
indicating that it is less likely that an object is present in the 
search window. At 1312, at the end of a stage, all of the node 
values are summed and the sum of the node values is 
compared to a threshold. At 1314, if the sum of the node 
values is greater than the threshold, then the stage has been 
passed. At 1316, if the sum of the node values is less than 
the stage threshold, then the stage has failed. 

FIG. 14 is a flowchart illustrating an example of a process 
1400 of a method of confirming the presence of an object in 
an input image using an ensemble node of an ASIC, for 
example the ASIC 100, in accordance with various embodi 
ments. At 1402, a template is loaded from a NoC memory 
read (NMR) block. The template generally is a 32x32 
template of integral image pixel values for the ROIs in the 
Stereo images from the search node and can either be a 
previous template stored in memory or can be based upon 
one of the two images where an object was found in the 
ROIs by the search node. At 1404, a ROI in the two images 
is compared with the template to confirm the presence of an 
object, i.e. a face, in the images. At 1406, if there are 
multiple faces in the frame, a depth map of any faces found 
in the images is created and the face closest to the cameras 
is selected as the primary face. In general, histories of 
previously found face templates are retained in order to 
distinguish a primary user from other faces found in the 
image. At 1408, once the primary face has been found, the 
face is sent back to the search node to extract the features 
from the face. At 1410, the features and X, Y, Z coordinates 
of the location of the face are sent to an application proces 
SO. 

FIG. 15 illustrates select example components of an 
example portable electronic device 1500 that includes an 
ASIC 100 as described herein. The portable electronic 
device 1500 may be implemented as any of a number of 
different types of electronic devices. Some examples of the 
portable electronic device 1500 may include digital media 
devices and eBook readers 1500-1; tablet computing devices 
1500-2; Smartphones, mobile devices and portable gaming 
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systems 1500-3; laptop and netbook computing devices 
1500-4; wearable computing devices 1500-5: augmented 
reality devices, helmets, goggles or glasses 1500-6; etc. This 
list is only an example and is not meant to be limiting. 

In a very basic configuration, the portable electronic 
device 1500 includes, or accesses, components such as at 
least one control logic circuit, central processing unit, appli 
cation processor, or processor 1502, and one or more com 
puter-readable media 1504. Each processor 1502 may itself 
comprise one or more processors or processing cores. For 
example, the processor 1502 can be implemented as one or 
more microprocessors, microcomputers, microcontrollers, 
digital signal processors, central processing units, state 
machines, logic circuitries, and/or any devices that manipu 
late signals based on operational instructions. In some cases, 
the processor 1502 may be one or more hardware processors 
and/or logic circuits of any suitable type specifically pro 
grammed or configured to execute the algorithms and pro 
cesses described herein. The processor 1502 can be config 
ured to fetch and execute computer-readable instructions 
stored in the computer-readable media 1504 or other com 
puter-readable media. 

Depending on the configuration of the portable electronic 
device 1500, the computer-readable media 1504 may be an 
example of tangible non-transitory computer storage media 
and may include volatile and nonvolatile memory and/or 
removable and non-removable media implemented in any 
type of technology for storage of information Such as 
computer-readable instructions, data structures, program 
modules or other data. The computer-readable media 1504 
may include, but is not limited to, RAM, ROM, EEPROM, 
flash memory or other computer-readable media technology, 
CD-ROM, digital versatile disks (DVD) or other optical 
storage, magnetic cassettes, magnetic tape, Solid-state stor 
age and/or magnetic disk storage. Further, in Some cases, the 
portable electronic device 1500 may access external storage, 
Such as RAID storage systems, storage arrays, network 
attached storage, storage area networks, cloud storage, or 
any other medium that can be used to store information and 
that can be accessed by the processor 1502 directly or 
through another computing device or network. Accordingly, 
the computer-readable media 1504 may be computer storage 
media able to store instructions, modules or components that 
may be executed by the processor 1502. 
The computer-readable media 1504 may be used to store 

and maintain any number of functional components that are 
executable by the processor 1502. In some implementations, 
these functional components comprise instructions or pro 
grams that are executable by the processor 1502 and that, 
when executed, implement operational logic for performing 
Some actions described herein. Functional components of 
the portable electronic device 1500 stored in the computer 
readable media 1504 may include an operating system/user 
interface module 1506 for controlling and managing various 
functions of the portable electronic device 1500. 

In addition, the computer-readable media 1504 may also 
store data, data structures and the like, that are used by the 
functional components. For example, data stored by the 
computer-readable media 1504 may include user informa 
tion and, optionally, one or more content items 1508. 
Depending on the type of the portable electronic device 
1500, the computer-readable media 1504 may also option 
ally include other functional components and data, Such as 
other modules and data 1510, which may include programs, 
drivers and so forth, and the data used by the functional 
components. Further, the portable electronic device 1500 
may include many other logical, programmatic and physical 
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components, of which those described are merely examples 
that are related to the discussion herein. Further, while the 
figures illustrate the functional components and data of the 
portable electronic device 1500 as being present on the 
portable electronic device 1500 and executed by the pro 
cessor 1502 on the portable electronic device 1500, it is to 
be appreciated that these components and/or data may be 
distributed across different computing devices and locations 
in any manner. 

FIG. 15 further illustrates other components of the 
example of the portable electronic device 1500. Such 
examples include a display 1512 and various types of 
sensors, which may include a GPS device 1514, an accel 
erometer 1516, one or more cameras 1518, a compass 1520, 
a microphone 1522, a gyroscope 1524, and so forth. In 
accordance with various embodiments, the portable elec 
tronic device includes at least four corner cameras located at 
corners and/or edges of the display 1512. 
The portable electronic device 1500 may further include 

one or more communication interfaces 1526, which may 
Support both wired and wireless connection to various 
networks, such as cellular networks, radio, Wi-Fi networks, 
close-range wireless connections, near-field connections, 
infrared signals, local area networks, wide area networks, 
the Internet, and so forth. The communication interfaces 
1526 may further allow a user to access storage on or 
through another device. Such as a remote computing device, 
a network attached storage device, cloud storage, or the like. 
The portable electronic device 1500 may further be 

equipped with one or more speakers 1528 and various other 
input/output (I/O) components 1530. Such I/O components 
1530 may include a touchscreen and various user controls 
(e.g., buttons, a joystick, a keyboard, a keypad, etc.), a haptic 
or tactile output device, connection ports, physical condition 
sensors, and so forth. For example, the operating system 
1506 of the portable electronic device 1500 may include 
Suitable drivers configured to accept input from a keypad, 
keyboard, or other user controls and devices included as the 
I/O components 1530. The display 1512 may be configured 
as a touchscreen or the portable electronic device 1500 may 
include a separate touchscreen. The processor 1502 can 
perform one or more functions attributed to a graphic 
controller (not illustrated) for the display 1512. Functional 
components of the portable electronic device 1500 stored in 
the computer-readable media 1504 may include the user 
interface module 1506 for controlling and managing various 
functions of the portable electronic device 1500, and for 
generating one or more user interfaces on the display 1512 
of the portable electronic device 1500. Additionally, the 
portable electronic device 1500 may include various other 
components that are not illustrated, examples of which 
include removable storage, a power source. Such as a battery 
and power control unit, a PC Card component, and so forth. 

Various instructions, methods and techniques described 
herein may be considered in the general context of com 
puter-executable instructions, such as program modules 
stored on computer storage media and executed by the 
processors herein. Generally, program modules include rou 
tines, programs, objects, components, data structures, etc., 
for performing particular tasks or implementing particular 
abstract data types. These program modules, and the like, 
may be executed as native code or may be downloaded and 
executed. Such as in a virtual machine or other just-in-time 
compilation execution environment. Typically, the function 
ality of the program modules may be combined or distrib 
uted as desired in various implementations. An implemen 
tation of these program modules and techniques may be 
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stored on computer storage media or transmitted across 
Some form of communication. 

Although the subject matter has been described in lan 
guage specific to structural features and/or methodological 
acts, it is to be understood that the subject matter defined in 
the appended claims is not necessarily limited to the specific 
features or acts described. Rather, the specific features and 
acts are disclosed as illustrative forms of implementing the 
claims. 
One skilled in the art will realize that a virtually unlimited 

number of variations to the above descriptions are possible, 
and that the examples and the accompanying figures are 
merely to illustrate one or more examples of implementa 
tions. 

It will be understood by those skilled in the art that 
various other modifications can be made, and equivalents 
can be substituted, without departing from claimed subject 
matter. Additionally, many modifications can be made to 
adapt a particular situation to the teachings of claimed 
Subject matter without departing from the central concept 
described herein. Therefore, it is intended that claimed 
subject matter not be limited to the particular embodiments 
disclosed, but that such claimed Subject matter can also 
include all embodiments falling within the scope of the 
appended claims, and equivalents thereof. 

In the detailed description above, numerous specific 
details are set forth to provide a thorough understanding of 
claimed subject matter. However, it will be understood by 
those skilled in the art that claimed subject matter can be 
practiced without these specific details. In other instances, 
methods, devices, or systems that would be known by one of 
ordinary skill have not been described in detail so as not to 
obscure claimed Subject matter. 

Reference throughout this specification to “one embodi 
ment” or “an embodiment can mean that a particular 
feature, structure, or characteristic described in connection 
with a particular embodiment can be included in at least one 
embodiment of claimed subject matter. Thus, appearances of 
the phrase “in one embodiment' or “an embodiment” in 
various places throughout this specification are not neces 
sarily intended to refer to the same embodiment or to any 
one particular embodiment described. Furthermore, it is to 
be understood that particular features, structures, or charac 
teristics described can be combined in various ways in one 
or more embodiments. In general, of course, these and other 
issues can vary with the particular context of usage. There 
fore, the particular context of the description or the usage of 
these terms can provide helpful guidance regarding infer 
ences to be drawn for that context. 

What is claimed is: 
1. A method of confirming the presence of an object 

within an image, the method comprising: 
processing, by an application specific integrated circuit 

(ASIC), an image: 
searching, by the ASIC, the image for presence of an 

object; 
upon determining the presence of an object in the image, 

confirming, by the ASIC, the presence of the object, 
wherein the confirming comprises: 
storing a template in a template buffer, wherein the 

template comprises integral image pixel values for a 
region of interest in the image, wherein the integral 
image values are arranged in columns and rows, 
wherein the template corresponds to a portion of 
another image in which the object was found, and 
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wherein the region of interest corresponds to a 
location in the image where the object was deter 
mined to be present; 

storing integral image pixel values for the image in an 
image buffer, and 

comparing the integral image pixel values of the tem 
plate with integral image pixel values of the region 
of interest in the image. 

2. The method of claim 1, wherein the comparing com 
prises Summing results from comparison of rows of integral 
image pixel values of the template with rows of integral 
image values of the region of interest into comparison result 
pixel values. 

3. The method of claim 2, wherein the comparing further 
comprises comparing the comparison result pixel values 
with one of (i) a simple square of the differences method or 
(ii) a cross correlation method. 

4. The method of claim 3, wherein the comparing further 
comprises normalizing results of the one of (i) the simple 
square of the differences method or (ii) the cross correlation 
method. 

5. The method of claim 1, further comprising determining 
X, Y, Z, coordinates of a location of the object in the image. 

6. The method of claim 5, further comprising determining 
features of the object and forwarding the features and X, Y, 
Z coordinates to an application processor. 

7. A portable electronic device comprising: 
multiple cameras to capture images; and 
a circuit configured to locate objects within the images, 

the ASIC comprising: 
a first node configured to process an image: 
a second node configured to search for the presence of 

an object in the image; and 
a third node configured to confirm the presence of the 

object in the image, wherein the third node is con 
figured to: 

store a template in a template buffer, wherein the 
template comprises integral image pixel values for a 
region of interest in the image in a template buffer of 
the third node, wherein the integral image values are 
arranged in columns and rows, wherein the template 
corresponds to a portion of another image in which 
the object was found, and wherein the region of 
interest corresponds to a location in the image where 
the object was determined to be present; 

store integral image pixel values for the image in an 
image buffer of the third node; and 

compare the integral image pixel values of the template 
with integral image pixel values of the regions of 
interest in the image. 

8. The portable electronic device of claim 7, wherein the 
third node is further configured to sum results from com 
parison of rows of integral image pixel values of the 
template with rows of integral image values of the region of 
interest into comparison result pixel values. 

9. The portable electronic device of claim 8, wherein the 
third node is further configured to compare the comparison 
result pixel values by one of (i) a simple square of the 
differences method or (ii) a cross correlation method. 

10. The portable electronic device of claim 9, wherein the 
third node is further configured to normalize results by one 
of (i) the simple square of the differences method or (ii) the 
cross correlation method. 

11. The portable electronic device of claim 7, wherein the 
third node is further configured to determine X, Y, Z. 
coordinates of a location of the object in the image. 
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12. The portable electronic device of claim 11, wherein 
the second node is further configured to determine features 
of the object and the third node is further configured to 
forward the features and the X, Y, Z coordinates to an 
application processor. 

13. The portable electronic device of claim 7, wherein the 
first node is configured to process the image by detecting and 
correcting defective pixels of the images, and by correcting 
black-levels within the images. 

14. The portable electronic device of claim 7, wherein the 
third node further comprises a clock gating buffer configured 
to control loading of the integral image pixel values of the 
image into the image buffer only when needed by the image 
buffer. 

15. The portable electronic device of claim 7, wherein the 
third node comprises a match window array that is config 
ured to compare the integral image pixel values of the 
template with integral image pixel values of the region of 
interest in the image. 
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16. The portable electronic device of claim 7, wherein the 

template buffer and the image buffer each comprise circular 
row buffers. 

17. The portable electronic device of claim 15, wherein 
the match window array comprises an array of 32 columns 
by 16 rows. 

18. The method of claim 1, wherein storing integral image 
pixel values for the image in the image buffer comprises 
controlling, by a clock gating buffer, loading of the integral 
image pixel values of the image into the image buffer only 
when needed by the image buffer. 

19. The method of claim 1, wherein processing, by the 
application specific integrated circuit (ASIC), the image 
comprises processing the image by detecting and correcting 
defective pixels of the images. 

20. The method of claim 19, wherein processing, by the 
application specific integrated circuit (ASIC), the image 
further comprises processing the image by correcting black 
levels within the image. 
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