
(12) United States Patent
Haustein et al.

USOO9588.986B2

US 9,588,986 B2
*Mar. 7, 2017

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR BACKUP AND
RECOVERY

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Nils Haustein, Mainz (DE); Thorsten
Krause, Mainz (DE); Harald Seipp,
Mainz (DE); Daniel J. Winarski,
Tucson, AZ (US)

Inventors:

(73) INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Notice: (*)

(21)

(22)

Appl. No.: 15/052,371

Filed: Feb. 24, 2016

(65) Prior Publication Data

US 2016/O196262 A1 Jul. 7, 2016

Related U.S. Application Data
Continuation of application No. 14/589,126, filed on
Jan. 5, 2015, now Pat. No. 9,311,193, which is a

(Continued)

(63)

(30) Foreign Application Priority Data

Jan. 2, 2012 (EP) 1215OO 10

(51) Int. Cl.
G06F 7/30
G06F II/4

(2006.01)
(2006.01)

S302 START

Receive a File Write Operation with a
new jersion of a File to be writte

A version of the File exists
in the File Repository

YS

Werity Wersioning Policies

Nier fiersions to be
saved higher thana

Positioning Number of the file
Repository?

Move Fielersion

Write New File to Fierepository

ExecuteRepository Extra Functions

(52) U.S. Cl.
CPC G06F 17/3023 (2013.01); G06F 11/1448

(2013.01); G06F II/1469 (2013.01); G06F
17/30008 (2013.01)

(58) Field of Classification Search
CPC G06F 17/301.44; G06F 17/30162; G06F

17/30592: G06F 11/1448; G06F 11/1469;
(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

7/2000 Van Huben et al.
7/2000 Burns et al.

(Continued)

6,088,693. A
6,088,694. A

OTHER PUBLICATIONS

Suparna Bhattacharya et al. "Coordinating Backup/Recovery and
Data Consistency Between Database and File Systems' ACM
SIGMOD 2002, Jun. 4-6, 2002, Madison, Wisconsin, USA. Copy
right 2002 ACM-Proceeding SIGMOD '02 Proceedings of the
2002 ACM SIGMOD international conference on Management of
data pp. 500-511.*

(Continued)

Primary Examiner — Anh Ly
(74) Attorney, Agent, or Firm — Griffiths & Seaton PLLC

(57) ABSTRACT

For data backup and recovery based on linked file reposi
tories with each of the linked file repositories representing
an individual file system capable of storing at least one
version of a file and being connected to at least one server
system, each of the linked file repositories are placed in a
certain position for storing a certain version of the file. Each
position of each of the linked file repositories is continu
ously numbered. A number of the versions of the file are
determined by the position of the one of the linked file
repositories.

18 Claims, 7 Drawing Sheets

Delete Old Wersio of Fie

S340

US 9,588.986 B2
Page 2

Related U.S. Application Data
continuation of application No. 13/718,542, filed on
Dec. 18, 2012, now Pat. No. 8,996,566.

(58) Field of Classification Search
CPC G06F 17/30008; G06F 17/3023; G06F

17/30; G06F 17/30289; G06F 17/30356;
G06F 17/30887; G06F 3/0641; G06F
3/0619; G06F 17/3008: G06F 11/14;
G06F 3/067; G06F 11/1412: Y1OS

707/99934
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,094,654 A 7/2000 Van Huben et al.
6,353,878 B1* 3/2002 Dunham G06F 11,1456

T11/112
6,366,987 B1 * 4/2002 Tzelnic G06F 11,1451

T11/112
6,453,325 B1 9, 2002 Cabrera et al.
6,564,215 B1* 5/2003 Hsiao G06F 11.1469

707/E17.005
6,868,497 B1 3/2005 Levy
6,874,001 B2 * 3/2005 Narang GO6F 17,30551

TO7/E17.014
7,096,342 B2 8, 2006 Chiu et al.
7,353,541 B1 4/2008 Ishibashi et al.
7,386,663 B2 6, 2008 Cousins
7,600,075 B2 10/2009 Cousins
7,774,315 B1 8, 2010 Galker
7,818,299 B1 * 10/2010 Federwisch G06F 11/2066

707,620
7,836,043 B2 11/2010 Jensen et al.
7,925,623 B2 4/2011 Therrien et al.
7,937,528 B2 5, 2011 Cousins
8,001,084 B2 8/2011 Liedes et al.
8,099,572 B1 1/2012 Arora et al.
8,352,431 B1* 1/2013 Protopopov GO6F 17,30082

TO7/640
8,621,166 B1* 12/2013 Chatterjee G06F 11.1435

T11 162
8,769,127 B2 7, 2014 Selimis et al.

2002/0147938 Al 10/2002 Hamilton, II et al.
2003, OO699.02 A1 4/2003 Narang et al.
2003/OO79.133 A1 4/2003 Breiter et al.
2003/0182312 A1* 9, 2003 Chen G06F 11.1435

714/E1.1136
2003/0182322 A1* 9/2003 Manley GO6F 17,30212

707/E17.O1
2003/082330 A1 9/2003 Manley et al.
2004/0103315 A1 5/2004 Cooper et al.
2004/O153761 A1* 8, 2004 Lee G06F 11,1451

T14f15
2005, OO15471 A1
2005/O187983 A1

1/2005 Zhang et al.
8/2005 Narang et al.

2006/0112151 A1
2006, O168451 A1
2006/0277187 A1
2007/013O232 A1
2007/0233827 A1
2008. O155094 A1
2008/0253283 A1
2008, O256140 A1
2009, OO77140 A1
2009, O168440 A1
2009,0249005 A1

5/2006 Manley et al.
7/2006 Ishibashi et al.
12/2006 Roese et al.
6/2007 Therrien et al.
10/2007 McKnight
6/2008 Roese et al.
10/2008 Douglis et al.
10/2008 Lazzaro et al.
3/2009 Anglin et al.
7, 2009 Croft
10/2009 Bender et al.

2009/0271412 A1* 10/2009 Lacapra GO6F 17,30206
707/E17.032

2009,0271586 A1* 10, 2009 Shaath G06F 12/1466
T11 163

2009,0282203 A1
2009,02877 35 A1
2010.019 1774 A1

11/2009 Haustein et al.
11/2009 Liedes et al.
7/2010 Mason, Jr. et al.

2010/0274765 A1* 10/2010 Murphy G06F 11,1451
707,652

2010/0306.178 Al 12/2010 Anglin et al.
2010/0306283 A1* 12/2010 Johnson GO6F 17,30085

707/8O3
2010/0312751 A1 12/2010 Anglin et al.
2010/0325093 A1* 12/2010 Bates GO6F 17,30156

707,692
2010/03324.54 A1
2011 0161299 A1

12/2010 Prahladet al.
6, 2011 Prahladet al.

2011/0252073 A1* 10/2011 Pauly GO6F 17,30091
707/812

2011/0264635 A1 10/2011 Yang
2011/0314148 A1* 12/2011 Petersen G06F 11.3476

TO9,224
2012fO259821 A1
2013/0066931 A1
2014.?007.4789 A1
2014/0172800 A1
2014/O18927O A1

10/2012 Alam
3/2013 Lacapra et al.
3/2014 Dutch et al.
6, 2014 Clark
7/2014 Iwanicki et al.

OTHER PUBLICATIONS

Randal Burns and Inderpal Narang "Version Management and
Recoverability for Large Object Data” Multi-Media Database
Management 1998—ieeexplore.ieee.org pp. 1-8.
Sun et al., “Data Backup and Recovery Based on Data De-Dupli
cation.” 2010 International Conference on Artificial Intelligence and
Computational Intelligence (AICI), vol. 2, 23-24, pp. 379-382, Oct.
2010.
Wright et al., “Extending ACID semantics to the file system.”
Journal ACM Transactions on Storage (TOS) TOS
Homepagearchive, vol. 3, Issue 2, Article No. 4. pp. 1-42, Jun. 2007.
Shaw et al., “Introduction.” Pro Oracle Database 11g RAC on
Linux—Installation, Administration, and Performance, pp. 1-25,
Copyright 2010.
Sumathi. "Objected-Oriented and Object Relational DBMS,” Stud
ies in Computational Intelligence (SCI), Fundamentals of Relational
Database, Springer-Verlag Berlin Heidelberg 2007, pp. 477-558.

* cited by examiner

U.S. Patent Mar. 7, 2017 Sheet 1 of 7 US 9,588,986 B2

100

, 102

114

Prior Art

FIG. 1

U.S. Patent Mar. 7, 2017 Sheet 2 of 7 US 9,588,986 B2

200

, 102

FIG 2

U.S. Patent Mar. 7, 2017 Sheet 3 of 7 US 9,588,986 B2

S302 START

Receive a File Write Operation with a
new Version of a File to be Written

S304

NO A Version of the File exists
in the File Repository?

S306
YES

Verify Versioning Policies

S308

Number of Versions to be
saved higher than a

Positioning Number of the file
Repository?

NO

S310

MOWe File Version Delete Old Version Of File

Write New File to File Repository

S330

S340

Execute Repository Extra Functions

STOP
FIG. 3

U.S. Patent Mar. 7, 2017 Sheet 4 of 7 US 9,588,986 B2

S402 START

Receiving a File Read Operation
including a Version Number of the

File to be read

S404

Examining the Version Number

Query appropriate File Repository

DOes a File Version with the
requested Version Number exist

in the File Repository whose
POSition Number matches With

the VerSiOn Number?

NO

Read and Send File Report File Read Error

STOP

FIG. 4

U.S. Patent Mar. 7, 2017 Sheet S of 7 US 9,588,986 B2

S502

Receive a File Write Operation with a
new Version of a File to be Written

A Version Of the File exists
in the File Repository?

S504

S506
YES

Verify Versioning Policies
S508

Compare Data Content of the new Version of
the File to be written with the existing Version

S510
Determine different Data BlockS

Number Of Versions to be
saved higher than a

Positioning Number of the file
Repository?

S514 S516
YES

MOWe different Data BlockS Of Delete different Data BOCKS
the existing File Version in the existing File Version

520
Write New File to Write different Data BIOCKS Of the
File Repository New File to the File Repository

a 540 Execute Repository Extra Functions

FIG. 5 STOP

NO

S530

U.S. Patent Mar. 7, 2017 Sheet 6 of 7 US 9,588,986 B2

S602 START

Receiving a File Read Operation
including a Version Number of the

File to be read

S604

Examining the Version Number

Query appropriate File Repository

S606

DOes a File Version With the
requested Version Number exist

in the File Repository whose
POsition Number matches with

the WerSiOn Number?

NO

Report File Read Error
ls the requested File
Version the most

recent Version Of the
File to be read?

G).
S620

Read and Send the File of the first File Repository
as requested Version of the File to be read

FIG. 6 STOP

U.S. Patent Mar. 7, 2017 Sheet 7 Of 7 US 9,588,986 B2

Read Content of each File Repository whose
Postion Number is less Or equal to the

requested Version Number of the File to be read

Replace the different Data Blocks of a more
reCentVersion Of the File to be read With the

different Data BlockS Of an Older Version Of the
File to be read to Create the requested Version

Of the File to be read

Send the recreated Version as requested
Version Of the File to be read

US 9,588,986 B2
1.

METHOD AND SYSTEM FOR BACKUP AND
RECOVERY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This Application is a Continuation of U.S. patent appli
cation Ser. No. 14/589,126, now U.S. Pat. No. 9,311,193,
filed on Jan. 5, 2015, which is a Continuation of U.S. patent
application Ser. No. 13/718,542, now U.S. Pat. No. 8,996,
566, filed on Dec. 18, 2012, which claims priority to
European Patent Application No. EPO121500 10.2, filed Jan.
2, 2012, each of which are hereby incorporated by reference
in their entirety.

FIELD OF THE INVENTION

The present invention relates in general to the field of data
backup and recovery, and in particular to a method and a
system for backup and recovery. Still more particularly, the
present invention relates to a data processing program and a
computer program product for backup and recovery.

DESCRIPTION OF THE RELATED ART

In today’s Society, computer systems are commonplace.
Computer systems may be found in the workplace, at home,
or at School. Computer systems may include data storage
systems, or disk storage systems, to process and store data.
A storage system may include various storage components,
such as one or more disk drives configured in a storage
environment. For example, the storage environment may
include a number of disk drives implemented in an array,
such as a Redundant Array of Independent Disks (RAID)
topology, to provide data security in the event of a hardware
or software failure. The storage environment may also
include other storage components, such as controllers and
interfaces to mange the flow of data. Moreover, the com
puter system may include a complex data processing system
or computing environment. A data processing system often
requires computational resources or availability require
ments that cannot be achieved by a single computer.

SUMMARY OF THE DESCRIBED
EMBODIMENTS

The technical problem underlying the present invention is
to provide a method and a system for backup and recovery,
which are able to scale and simplify backup and recovery
while avoiding shortcomings and pain points of prior art
backup and recovery. For databackup and recovery based on
linked file repositories with each of the linked file reposi
tories representing an individual file system capable of
storing at least one version of a file and being connected to
at least one server system, each of the linked file repositories
are placed in a certain position for storing a certain version
of the file. Each position of each of the linked file reposi
tories is continuously numbered. A number of the versions
of the file are determined by the position of the one of the
linked file repositories.

According to the present invention this problem is solved
by providing a method for backup and recovery having the
features of claim 1, a system forbackup and recovery having
the features of claim 12, a data processing program for
backup and recovery having the features of claim 14, and a
computer program product for backup and recovery having

10

15

25

30

35

40

45

50

55

60

65

2
the features of claim 15. Advantageous embodiments of the
present invention are mentioned in the Subclaims.

Accordingly, in an embodiment of the present invention a
method for backup and recovery is based on linked file
repositories, each representing an own file system capable of
storing one version of a file and being connected to a least
one server system; wherein each file repository is placed in
a certain position storing a certain version of the file;
wherein positions of the file repositories are continuously
numbered; wherein a number of the certain version of the
file is determined by the position of the corresponding file
repository; wherein a version-movement process overall file
repositories is implemented to perform a file write operation;
and wherein a version-recovery process over all file reposi
tories is implemented to perform a file-read operation of a
certain file version.

In further embodiments of the present invention, positions
of the file repositories are continuously numbered beginning
at “1”: wherein a first file repository is numbered “1” storing
a first version of the file representing a most recent version
of the file.

In further embodiments of the present invention, the
version-movement process is implemented with following
steps: Receiving a file write operation with a new version of
a file to be written from at least one server system or a
preceding file repository; determining if a version of the file
to be written already exists in a corresponding file reposi
tory; if a version of the file to be written already exists in the
file repository, Verify versioning policies; move the existing
file version from the repository to a subsequent file reposi
tory, if the versioning policies indicate a higher number of
versions to be saved than a position number of the file
repository; otherwise delete the existing file version in the
file repository; store the new version of the file to be written
from at least one server system or a preceding file repository
in the file repository; if no version of the file to be written
exists in the file repository, store the new version of the file
to be written in the file repository.

In further embodiments of the present invention, the
version-recovery process is implemented with following
steps: Receiving a file-read operation including a version
number of a file to be read from the at least one server
system; examining the version number of said file to be read;
determining if the requested version of the file to be read
exists in a file repository whose position number matches the
received version number; if the requested version of the file
to be read exists, read and send the file to a requesting server
system; otherwise indicate a file read-error to the requesting
server system if the requested version of the file does not
exist.

In further embodiments of the present invention, the
version-movement process is implemented on a block-dif
ferential basis with the following steps: Receiving a file
write operation with a new version of a file to be written
from the at least one server system or a preceding file
repository; determining if a version of the file to be written
already exists in a corresponding file repository; if a version
of the file to be written already exists in the file repository
verify versioning policies; compare data content of the new
version of the file to be written and an existing version of the
file to be written; and determine different data blocks; move
the different data blocks from the existing version of the file
to be written from the file repository to a subsequent file
repository, if the versioning policies indicate more versions
than a position number of the file repository; otherwise
delete the different data blocks of the existing file version in
the file repository; store the different data blocks of the new

US 9,588,986 B2
3

version of the file to be written from the at least one server
system or a preceding file repository in the file repository; if
no version of the file to be written exists in the file reposi
tory, store the new version of the file to be written in the file
repository.

In further embodiments of the present invention, the
version-recovery process is implemented on a block-differ
ential basis with the following steps: Receiving a file-read
operation including a version number of a file to be read
from the at least one server system; examining the version
number of the file to be read; determining if the requested
version of the file to be read exists in a file repository whose
position number matches with the requested version num
ber; if the requested version of the file to be read exists,
recreate the requested version of the file to be read by
determining if the requested version of the file to be read is
the most recent version of the file to be read; if the requested
version of the file to be read is the most recent version of the
file to be read, read and send the most recent version of the
file from the first file repository to the requesting server
system; otherwise read content of each file repository whose
position number is less or equal to the requested version
number of the file to be read; replace the different data
blocks of a more recent version of the file to be read with the
different data blocks of an older version of the file to be read:
and send the recreated version of the file to be read to the
requesting server system; if the requested version of the file
does not exist, indicate a file read-error to the requesting
server system.

In further embodiments of the present invention, the
requested version number is part of the read-command
including file name and the version number, or is set as file
attribute prior to sending the read-command.

In further embodiments of the present invention, the
requested version number is an integer number, or a date
range, or a time range.

In further embodiments of the present invention, each file
repository includes at least one of the following functions: A
deduplication function allowing to deduplicate files based on
their version number, indexing functions allowing to index
the files and providing search and discovery capabilities, and
an expiration function for moved files determining when a
moved file expires and is being deleted time-based or
event-based.

In further embodiments of the present invention, at least
one function is performed for all files stored in the file
repository.

In further embodiments of the present invention, at least
one function is performed for all files stored in the file
repository matching at least one of the following rules: File
extension matches a certain pattern; file name matches a
certain pattern; file path name matches a certain pattern; file
owner matches a certain pattern; and file creation, modifi
cation or last access time matches a certain date/time range.

In another embodiment of the present invention, a system
for backup and recovery in communication with at least one
server system comprises a number of file repositories physi
cally connected to each other; wherein each file repository
represents an own file system capable of storing one version
of a file and comprises at least one file system interface and
at least one file storage; wherein each file repository is
placed in a certain position storing a certain version of the
file; wherein positions of the file repositories are continu
ously numbered; wherein a number of the certain version of
the file is determined by the position of the corresponding
file repository; and a control module logically connected to
each file repository and the interfaces, wherein the control

10

15

25

30

35

40

45

50

55

60

65

4
module implements a version-movement process over all
file repositories to perform a file write operation; and
implements a version-recovery process over all file reposi
tories to perform a file-read operation.

In further embodiments of the present invention, the file
repository is implemented as local file system, or as linear
tape file system, or as remote file system. So, the file
repository could be implemented as any kind of state of the
art local file systems including but not limited to ZFS, sect3
and extA, Balanced Tree file system (BTRFS), General
Parallel File System (GPFS), New Technology File System
(NFTS), Apple File System (AFS) or as linear tape file
system (LTFS). Furthermore, the file repository could be
provided as remote file system Such as network attached
storage (NAS) system implementing Network File System
protocol (NFS) and Common Internet File System protocol
(CIFS).

In another embodiment of the present invention, a data
processing program for execution in a data processing
system comprises Software code portions for performing a
method for backup and recovery when the program is run on
the data processing system.

In yet another embodiment of the present invention, a
computer program product stored on a computer-usable
medium, comprises computer-readable program means for
causing a computer to perform a method for backup and
recovery when the program is run on the computer.

All in all, this invention teaches a backup storage file
system which enables scalable and simplified backup and
recovery solutions by using multiple file systems which are
logically connected. Each file system—also called file
repository—stores one version of a file. This fosters scal
ability because not all versions are stored in the same file
system. The backup storage file system provides a file
system interface. This fosters simplification for the backup
and recovery process because this does not require a backup
client and server. In opposite to prior art operating system
commands are used. In addition the data can be viewed and
accessed easily via a file system interface because the
data-format (file) is preserved.
The backup storage file system Supports enhanced func

tions such as versioning, deduplication, replication and
indexing which are all aware of the version of the file. For
example this allows to index the first (latest) version of a file,
which is typically needed for queries and recoveries; and to
deduplicate the second version of a file which is typically not
required for queries and recoveries.
The backup storage file system can store data on any

storage technology which Supports file systems including
but not limited to hard disk, solid state disk (SSD), optical
disk such as DVD or Blu-Ray, and tape, the latter leveraging
the linear tape file system.

Embodiments of the present invention implement a
backup storage file system physically connected via a net
work to one or more server systems, which require the
backup of files. In an alternated embodiment the backup
storage file system is comprised in a server system.
The backup storage file system includes one or more file

repositories each comprising at least one file system inter
face and at least one file storage. Said file repositories are
physically connected, for example via a network, to each
other; each representing an own file system capable of
storing one version of a file. Each file repository is placed in
a certain position which is continuously numbered begin
ning at “1”. The file repository with number “1”, i.e. the first
file repository, exposes its file storage capacity via its file
system interface to the servers connected to the backup

US 9,588,986 B2
5

storage file system. In the first file repository the first version
of the data is stored which in this semantic is the youngest
version.
The backup storage file system includes a control module,

which is logically connected to each file repository and the
interfaces. The control module implements a version-move
ment process over all file repositories. This version-move
ment process assures that each file repository stores a
version of each file. The number of the version is determined
by the position of the file repository. For example the first
file repository stores the first (latest version); the second file
repository stores the second (pre-latest version) and so on.

In one embodiment the movement process will only move
the parts of the file data that have changed between the
existing file (to be moved) and the new file that is being
written.

The same version-movement method is implemented for
the subsequent file repositories with the difference that the
subsequent file repositories do not receive direct file write
operations from the servers but from the control module. For
example if the existing file in the first file repository is
moved to the second file repository the control module
checks if a file with the same path and file name already
exists in the second repository. If this is the case then it
checks the versioning policies and if the versioning policies
indicate more than two versions then the existing version of
the file is moved to the third repository before said new file
is placed in the second repository. Otherwise if the version
ing policies indicate two versions or less then the new file
replaces the existing file in the second file repository.
Any file repository can include a deduplication function

allowing deduplicating files based on their version number.
Any file repository can include indexing functions allowing
to index the files and provide search and discovery capa
bilities. Each file repository beyond the first one can include
an expiration policy that is assigned to each file being stored
in the file repository. The expiration policy determines when
a file expires and is being deleted. The expiration policy can
be time-based (e.g. 30 days) or event-based (e.g. 30 days
after the file has been deleted). Any file repository can be a
file system on disk, SSD or on tape, the latter leveraging the
linear tape file system.
The control module included in the backup storage file

system implements a version-recovery process over all file
repositories. The version number of the file to be recovered
can be given by different means. It can be given as part of
the read-command, which requires changing the read-com
mand. It can also be given in a file attribute, which can easily
be set prior to sending the read command. It can also be
given by other means of communication. The Version num
ber, which is included in the file-read operation, can be an
integer number. It can also be a date and time range.
The above, as well as additional purposes, features, and

advantages of the present invention will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be
readily understood, a more particular description of the
invention briefly described above will be rendered by ref
erence to specific embodiments that are illustrated in the
appended drawings. Understanding that these drawings
depict embodiments of the invention and are not therefore to
be considered to be limiting of its scope, the invention will

10

15

25

30

35

40

45

50

55

60

65

6
be described and explained with additional specificity and
detail through the use of the accompanying drawings, in
which:

FIG. 1 is a schematic block diagram of a Prior Art backup
and recovery system architecture;

FIG. 2 is a schematic block diagram of a backup and
recovery system architecture, in accordance with an embodi
ment of the present invention;

FIG. 3 is a schematic flow diagram of a version-move
ment process being part of a backup and recovery method,
in accordance with a first embodiment of the present inven
tion;

FIG. 4 is a schematic flow diagram of a version-recovery
process being part of the backup and recovery method, in
accordance with the first embodiment of the present inven
tion;

FIG. 5 is a schematic flow diagram of a version-move
ment process being part of a backup and recovery method,
in accordance with a second embodiment of the present
invention; and

FIGS. 6 and 7 is a schematic flow diagram of a version
recovery process being part of the backup and recovery
method, in accordance with the second embodiment of the
present invention.
The detailed description explains the preferred embodi

ments of the invention, together with advantages and fea
tures, by way of example with reference to the drawings. In
the drawings, like elements are referred to with equal
reference numerals. The drawings are merely schematic
representations, not intended to portray specific parameters
of the invention. Moreover, the drawings are intended to
depict only typical embodiments of the invention and there
fore should not be considered as limiting the scope of the
invention.

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

Referring to FIG. 1, a typical backup and recovery system
100 includes a backup client 104 running on a server 102.
which includes one or more primary file systems 106,
primary in a sense that the original copy of the data is stored
here. The backup client 104 identifies and copies the files
from the primary file systems 106 to the backup server
system 110 via a backup network 108. The backup server
includes backup server software 112, which extracts the
metadata Such as retention times, policies and storage loca
tion for the files and stores the files in an attached backup
storage system 120 via a storage network 118. The metadata
is stored in a separate metadata database 114 maintained by
in the backup server software.

For recovery the backup client 104 sends a recovery
request for a certain file or sets of files to the server system
110. The server system software 112 checks the metadata
database 114 to find the storage location of the file and
retrieves said files from the backup storage 120 and sends it
to the clients system which places it on the primary storage.
The recovery-request sent by the client system may include
the version of the file to be recovered.

While backup and recovery systems offer a variety of
value adding functions such as versioning, indexing, high
availability, replication and deduplication their implemen
tation and operation is rather complex. The complexity
comes from the client-server architecture. It may include
multiple specialized server systems 110 such as media
servers and data servers. In addition the format of the data,
which is being backed up, is not preserved in the backup

US 9,588,986 B2
7

server system 110 and storage 120. This means the backup
server software 112 stores the data in a proprietary format
and maintains metadata describing the data. The metadata is
stored in the metadata database 114. Thus without the
backup server software 112, and in particular the metadata
database 114, no recovery is possible. Prior art backup and
recovery systems are flexible in regards to the storage
technology, which in fact makes the administration and
maintenance more complex. Prior art backup and recovery
systems integrate with different kinds of applications and
systems on the client site (102) such as file systems, data
bases, ERP systems, and mail servers. This provides flex
ibility, but at the same time makes it more complex for an
administrator to configure backup and recovery procedures.

According to international IT consultants in 2011, the
majority of the data today is stored in file systemshttp://
searchunifiedcommunications.bitpipe.com/detail/RES/
1273020851 887.html blank. In addition any operating sys
tem includes commands to copy files from one file system to
another file system, which enables simplified backup and
recovery solutions. However, the ever growing amount of
data files combined with multiple versions thereof drives
single file systems to its limits. The limits are set for example
by the number of inodes which a single file system can
manage. The limits are also set by housekeeping operations
Such as defragmentation, which may not be possible when a
certain maximum amount of files is exceeded in a file
system. For example, one GPFS (General Parallel File
System) file system within an IBM SoNAS system can store
1 billion files.

In the Patent Application Publication US 2010/0191774
A1 “METHOD AND SYSTEM FOR VERSIONED FILE
SYSTEMUSING STRUCTURED DATA REPRESENTA
TIONS''' by Mason, J. R. et al., a versioned file system is
disclosed. In a disclosed embodiment, at a first time, an
interface creates and exports to a data store a first structured
data representation corresponding to a first version of the
local file system. The first structured data representation is
an XML (eXtensible Markup Language) tree having a root
element, one or more file elements associated with the root
element and one or more file elements associated with a
given directory element. Upon a change within the file
system, e.g., file creation, file deletion and directory modi
fication, the interface creates and exports a second structured
data representation corresponding to a second version of the
file system. The second structured data representation differs
from the first structured data representation up to and
including the root element of the second structured data
representation. So the disclosed versioned file system is
based on different structured representations associated with
different versions of a file. Each different structured repre
sentation is exported as different file system to the user, so
each version of a file is a different file system within the
versioned file system. However, this patent application does
not disclose the concept of physically storing different
versions of a file in different file systems and automatically
migrating old versions to a next file system when a newer
version is backed up.

In the Patent Application Publication US 2009/0077140
A1 DATA RECOVERY IN A HIERARCHICAL DATA
STORAGESYSTEM” by Anglin et al. systems and methods
for retrieving data are disclosed. The disclosed systems and
methods comprise a plurality of storage pools. The disclosed
method comprises processing configurable data retrieval
instructions to determine a first storage pool from which
target backup data is to be retrieved, in response to a data
restore request; and retrieving the target backup data from

10

15

25

30

35

40

45

50

55

60

65

8
the first storage pool to satisfy the restore request. So,
systems and methods for physically storing different ver
sions of a file in different data pools and likewise methods
for retrieving different versions from the respective data
pool are disclosed. However, storing different versions of
files in physically linked file systems is not disclosed. File
systems are the origin of files and backing up files into a file
system makes recovery procedures easier, whereas pools as
abstract entities require additional efforts to extract files for
recovery.

FIG. 2 shows a novel backup and recovery architecture
200 which is based on the novel backup storage file system
202, according to an embodiment of the present invention.
The backup storage file system 202 is physically connected
via a backup network 108 to one or more server systems 102.
It thereby presents a file system interface 204 to the server
systems 102 which can be a remote file system—also known
as Network Attach Storage (NAS) such as NFS (Network
File System) or CIFS (Common Internet File System).
The backup storage file system 202 includes one or more

file repositories 210, 212, 214, each comprising at least one
file system interface and at least one file storage. The file
repositories 210, 212, 214 are physical connected via a
network 208 to each other. In an alternate embodiment these
file repositories are locally mounted in a server system
which is representing the backup storage file system 202.
Each file repository 210, 212, 214 is configured to store one
version of each file, for example as file repository 210 stores
the first (latest) version, file repository 212 stores the second
(pre-latest) version and file repository 214 stores the third
last version. People skilled in the art may recognize that the
number of file versions scales with the number of file system
repositories 210, 212, 214 to a virtual unlimited number of
versions.
The backup storage file system 202 also includes a

controller 206 which provides version-movement and ver
Sion-recovery functions. The version-movement function
assures that each version of a file is stored on a separate file
repository 210, 212, 214. The version-recovery function
allows recovering any existing version of a file. In an
alternate embodiment the novel backup storage file system
is included in server systems 102. Each file repository 210,
212, 214 can be configured to perform value adding func
tions according to techniques such as versioning, dedupli
cation, replication, indexing and search, expiration policies
and the like. These functions can be configured for all files
stored in a file repository 210, 212, 214 or they can be
configured for files matching certain rules, such as: File
extension matches a certain pattern; file name matches a
certain pattern; file path name matches a certain pattern; file
owner matches a certain pattern; file creation, modification
or last access time matches a certain date/time range. The
invention is not limited to these rules.
The server systems 102 include operating systems 201

which provide copy-commands. The backup storage file
system 202 presents a file system interface 204 to the server
systems 102. The copy commands of the operating system
201 of the server system 102 can be used to backup or
recover files from the primary file system 106 of the servers
and the backup storage file system 202. The controller 206
intercepts the copy commands in any direction and provides
version-movement (on write) and version-recovery (on
read) functions.

FIG. 3 shows a version-movement process being part of
a backup and recovery method, in accordance with a first
embodiment of the present invention. The first embodiment
of the version-movement process is being described with

US 9,588,986 B2
9

reference to FIGS. 2 and 3. In step S302, a file write
operation with a new version of a file to be written is
received from the at least one server system 102 or a
preceding file repository 210, 212. In step S304, it is
determined if a version of the file to be written already exists
in a corresponding file repository 210, 212, 214. If a version
of the file to be written already exists in the file repository
210, 212, 214 versioning policies are verified in step S306.
Versioning policies are configured by the administrator of
the backup storage file system 202 and are policies. In step
S308, it is determined if the versioning policies indicate a
higher number of versions to be saved than a position
number of the corresponding file repository 210, 212, 214.
If the versioning policies indicate a higher number of
versions to be saved than a position number of the file
repository 210, 212, 214, the existing file version from the
repository 210, 212 is moved to a subsequent file repository
212, 214 in step S310; otherwise the existing file version in
the file repository 210, 212, 214 is deleted in step S320. In
step S330 the new version of the file to be written from at
least one server system 102 or a preceding file repository
210, 212 is written to the file repository 210, 212, 214. If no
version of the file to be written exists in the corresponding
file repository 210, 212, 214, the new version of the file to
be written is written to the corresponding file repository 210,
212, 214 in step S330. For example, if the number of
versions to be saved is two and two versions of the file to be
written already exist in the file repositories 210, 212, the
existing version of the file to be written in the second file
repository 212 is deleted and the existing version of the file
to be written in the first file repository 210 is moved to the
second file repository 212, and the new version of the file to
be written from the file system 102 is written in the first file
repository 210.
The process including steps S302 to S340 is performed

for every file repository 210, 212, 214 of the backup storage
file system 202. In other words, for the first repository 210
the controller 206 receives a file write operation via interface
204 from a server system 102, in step S302. In the next step
S304, the controller 206 determines if a version of the file to
be written already exists in the first file repository 210. If the
file does not exist in the first file repository 210, the process
flows to step S330 where the file is being written to the first
file repository 210. If the file does exist in the first file
repository 210, versioning rules for the file are verified in
step S306. Therefore controller 206 queries the first file
repository 210. If only one version of the file is to be kept,
the process flows to step S320 where the old file is being
deleted in the first file repository 210. Afterwards the process
flows to step S330 where the file is being written to the first
file repository 210.

If the query of the first file repository 210 indicates that
more than one version is to be kept, the controller 206 moves
the existing version of the first file repository 210 in step
S310 to the second file repository 212. Now the version
movement process is performed for the second file reposi
tory 212. The second file repository 212 receives a new
version of the file to be written from the first file repository
210 in step S302. In the next step S304, the controller 206
determines if a version of the file to be written already exists
in the second file repository 212. If the file does not exist in
the second file repository 212, the process flows to step S330
where the file is being written to the second file repository
212. If the file does exist in the second file repository 212
versioning rules for the file are verified in step S306.
Therefore controller 206 queries the second file repository
212. If only two versions of the file are to be kept, the

10

15

25

30

35

40

45

50

55

60

65

10
process flows to step S320 where the old file is being deleted
in the second file repository 212. Afterwards the process
flows to step S330 where the file is written to the second file
repository 212. If more than two versions of the file are to
be kept, the process flows to step S310 where the old file is
being moved to the third file repository 214 in step S310.
Afterwards the process flows to step S330 where the new file
is written to the second file repository 212. Then the process
according to step S302 to S340 is repeated for the third file
repository 214 of the backup storage file system 202.
The third file repository 214 receives a new version of the

file to be written from the second file repository 212 in step
S302. In the next step S304, the controller 206 determines if
a version of the file to be written already exists in the third
file repository 214. If the file does not exist in the third file
repository 214, the process flows to step S330 where the file
is being written to the third file repository 214. If the file
does exist in the third file repository 214 versioning rules for
the file are verified in step S306. Therefore controller 206
queries the third file repository 212. Since only three file
repositories 210, 212, 214 are present in the shown embodi
ment, only three versions of the file can be kept in the system
202, and the process flows to step S320, where the old file
is being deleted in the third file repository 214. Afterwards
the process flows to step S330 where the file is written to the
third file repository 212.
Once the file movement operations are done and the file

has been written to the first file repository 210, the controller
206 or the file repositories 210, 212, 214 check and initiate
additional functionality like deduplication or indexing in the
file repositories 210, 212 and 214 in step S340, which ends
the active file write process.
The version-movement process essentially assures that if

a new version of a file is written to the backup storage file
system 202, the previous versions are moved to the subse
quent file repositories 212 and 214. This assures that the
different versions are stored in separated file systems allow
ing Scalability and the execution of value-adding functions.

In a further embodiment, a differential version-movement
process might be incorporated to lower the amount of data
that needs to be transferred while effectively saving storage
space, this is explained with reference to FIG. 5.

FIG. 4 shows a version-recovery process being part of the
backup and recovery method, in accordance with the first
embodiment of the present invention. Referring to FIG. 4.
the version-recovery process is executed when a read com
mand sent by a server system 102 for a file is received by the
backup storage file system 202. The read command might be
adjusted to include the version of the file that is to be read.
If the read command does not include a version number, the
latest and most actual version is referenced.

In an alternate embodiment a file attribute can be used to
denote the version of the file to be retrieved, instead of
modifying the read command. In this case the file attribute
is checked by the backup storage file system 202 when the
read-command is received and the proper version is
retrieved from the proper file repository according to the
version-recovery process. The version-recovery process is
being described with reference to FIGS. 2 and 4. In step 402.
controller 206 receives a file read command via interface
204 from a server system 102. The file read command might
be adjusted to include the version of the file that is to be read.

In the next step S404, controller 206 checks which version
number of the file is to be read. If no version number is being
given, the default value will be used which is the first file
version, meaning the latest saved one in the first file reposi
tory 210. In an alternate embodiment a file attribute can be

US 9,588,986 B2
11

used to denote the version of the file to be retrieved instead
of modifying the read command. In this case the file attribute
previously set by the server 102 is checked in step S404 and
the version is determined. After determining the file version
number that is to be restored, controller 206 will query the
file repository 210, 212, 214, which should have this file
version, in step S406. If the requested file version does not
exist within that file repository 210, 212, 214, the controller
206 moves from step S408 to step S420 and reports a file
read error to the server system 102. If the requested file
exists, then the controller 206 moves from step S408 to step
S410 and reads the file version from the determined file
repository 210, 212, 214 and send the read file version to the
requesting server system 102 via the interface 204 and the
network 108.
The version-recovery process allows recovering an exist

ing version of a file. The workload associated with the
recovery process is only present for that part of the file
repository 210, 212, 214 which has the requested version of
the file(s).

FIG. 5 shows a differential version-movement process
being part of a backup and recovery method, in accordance
with a second embodiment of the present invention; and
FIGS. 6 and 7 show a differential version-recovery process
being part of the backup and recovery method, in accordance
with the second embodiment of the present invention. The
differential version-movement process is being described
with special reference to FIGS. 5, 6 and 7.
As typically files are not completely changed between

versions but mostly only slightly modified it makes sense to
store only the differences for the different versions and point
to the original data. Therefore controller 206 shall incorpo
rate a differential analysis algorithm to discover changes
between files. Said algorithm might use binary differences or
content-orientated methods, i.e. text files checking, etc.

In step S502, a file write operation with a new version of
a file to be written is received from the at least one server
system 102 or a preceding file repository 210, 212. In step
S504, it is determined if a version of the file to be written
already exists in a corresponding file repository 210, 212,
214. If a version of the file to be written already exists in the
file repository 210, 212, 214 versioning policies are verified
in step S506. In step S508, data content of the new version
of the file to be written is compared with the existing version
of the file to be written. Then differing data blocks are
determined in step S510. In step S512, it is determined, if the
versioning policies indicate a higher number of versions to
be saved than a position number of the corresponding file
repository 210, 212, 214. If the versioning policies indicate
a higher number of versions to be saved than a position
number of the file repository 210, 212, 214 the differing data
blocks in the existing file version from the repository 210,
212 are moved to a subsequent file repository 212, 214 in
step S514; otherwise the differing data blocks in the existing
file version in the file repository 210, 212, 214 are deleted in
step S516. In step S520 the differing data blocks of the new
version of the file to be written from the at least one server
system 102 or a preceding file repository 210, 212 are
written in the file repository 210, 212, 214. If no version of
the file to be written exists in the corresponding file reposi
tory 210, 212, 214, the new version of the file to be written
is written in the corresponding file repository 210, 212, 214
in step S530.
Once the file movement operations are done and the file

has been written to the first file repository 210, the controller
206 checks and initiated additional functionality like dedu
plication or indexing in the file repositories 210, 212 and 214

5

10

15

25

30

35

40

45

50

55

60

65

12
in step S540, which ends the active file write process. The
process according to step S502 to S540 is performed for
every file repository 210, 212, 214 of the backup storage file
system 202.

In other words the controller 206 will calculate the
difference between the new version of the file to be written
and all previous versions. Upon that only the differences
between the new file version and the older versions will be
moved. The difference relates to data blocks or fixed or
variable files that are composing the file. Obviously the copy
will have a pointer to the original file to put the file back
together. Thus at the end of this process different segments
of a file are stored in different file repositories 210, 212, 214
and it is tracked which data blocks in which repository
match which version of the file.

Referring to FIGS. 6 and 7, in step S602, controller 206
receives a file read command via interface 204 from a server
system 102. The file read command might be adjusted to
include the version of the file that is to be read. In the next
step S604, controller 206 checks which version number of
the file is to be read. If no version number is being given, the
default value will be used which is the first file version,
meaning the latest saved one in the first file repository 210.
In an alternate embodiment a file attribute can be used to
denote the version of the file to be retrieved, instead of
modifying the read command. In this case the file attributes
previously set by the server 102 is checked in step S604 and
the version is determined. After determining the file version
number that is to be restored, controller 206 will query the
file repository 210, 212, 214, which should have this file
version, in step S606. If the requested file version does not
exist within that file repository 210, 212, 214, the controller
206 moves from step S608 to step S640 and reports a file
read error to the server system 102. If the requested file
exists, then the controller 206 moves from step S608 to step
S610 and determines if the requested file version is the most
recent version of the file to be read. If the most recent file
version is requested, the file of the first file repository 210 is
read and sent as requested version of the file to be read to the
requesting server system 102 via the interface 204 and the
network 108 in step S620.

If another file version than the most recent one is
requested, the controller 206 moves to step S622 and reads
content of each file repository 210, 212, 214, whose position
number is less or equal to the requested version number of
the file to be read. In step S624, the controller 206 replaces
different data blocks of more recent versions of the file to be
read with different data blocks from older versions of the file
to be read to create the requested version of the file to be
read. In step S626, the controller 206 sends the recreated
version as requested version of the file to be read to the
requesting server system 102 via the interface 204 and the
network 108.

This will lower the amount of data being transferred and
enhances read performance, because the most of the data
will reside on the first file repository, which will typically be
the most active because it stores the most recent version of
each file.
One further enhancement of the differential version

movement process might be to make the algorithm even
more intelligent to discover the most common version from
which the differences should be calculated. For example,
version “2 of a file might be more similar to all other file
versions than version “1”.
Embodiment of the present inventive can be entirely

implemented as a Software embodiment, or an embodiment
containing both hardware and Software elements. In a pre

US 9,588,986 B2
13

ferred embodiment, the present invention is implemented in
software, which includes but is not limited to firmware,
resident software, microcode, etc.

Furthermore, the present invention can take the form of a
computer program product accessible from a computer
usable or computer-readable medium providing program
code for use by or in connection with a computer or any
instruction execution system. For the purposes of this
description, a computer-usable or computer-readable
medium can be any apparatus that can contain, store, com
municate, propagate, or transport the program for use by or
in connection with the instruction execution system, appa
ratus, or device.
The medium can be an electronic, magnetic, optical,

electromagnetic, infrared, or semiconductor System (or
apparatus or device) or a propagation medium. Examples of
a computer-readable medium include a semiconductor or
Solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a rigid magnetic disk, and an optical disk.
Current examples of optical disks include compact disk-read
only memory (CD-ROM), compact disk-read/write (CD-R/
W), DVD, and BD (Blu-Ray Disk). A data processing
system suitable for storing and/or executing program code
will include at least one processor coupled directly or
indirectly to memory elements through a system bus. The
memory elements can include local memory employed
during actual execution of the program code, bulk storage,
and cache memories which provide temporary storage of at
least some program code in order to reduce the number of
times code must be retrieved from bulk storage during
execution. Input/output or I/O devices (including but not
limited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers.
Network adapters may also be coupled to the system to

enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modems, SCSI, iSCSI (Internet SCSI), Eth
ernet, and Fibre-Channel over Ethernet (FCoE) cards are just
a few of the currently available types of network adapters.
What is claimed is:
1. A method for data backup and recovery by a processor

based on linked file repositories with each of the linked file
repositories representing an individual file system capable of
storing at least one version of a file and being connected to
at least one server system, wherein the method includes:

placing each of the linked file repositories in one of a
plurality of positions for storing the at least one version
of the file;

continuously numbering each of the plurality of positions
of each of the linked file repositories;

determining a number of the at least one version of the file
by the one of a plurality of positions of the one of the
linked file repositories:

for each of the linked file repositories, performing at least
one function operation for each file stored in the linked
file repositories matching at least one rule, wherein the
at least one function operation includes at least one of
a deduplication function allowing deduplicating files
based on the version number, an indexing function
allowing to index the file and providing search and
discovery capabilities, and an expiration function for
moved files determining when a moved file expires and
is being deleted time-based or event-based; wherein the
at least one rule includes a file extension matching a

10

15

25

30

35

40

45

50

55

60

65

14
certain pattern, a file name matching one of a plurality
of patterns, a file path name matching the one of a
plurality of patterns, a file owner matching the one of
a plurality of patterns, a file creation, and a modifica
tion or last access time matching a specified date and a
specified time range; and

implementing the version-recovery process on a block
differential basis by performing one of:

receiving a write operation with a new one of the at least
one version of the file to be written from one of the at
least one server system and a preceding one of the
linked file repositories,

determining if the new one of the at least one version of
the file to be written exists in the one of the linked file
repositories,

if the new one of the at least one version of the file to be
written exists in the one of the linked file repositories
performing one of

comparing data of the new one of the at least one version
of the file to be written and an existing one of the at
least one version of the of the file to be written,
determining different data blocks,

moving the different data blocks from the existing one of
the at least one version of the of the file to be written
from the one of the linked file repositories to a subse
quent one of the linked file repositories if versioning
policies indicate a higher number of the at least one
version as compared to a position number of the one of
the linked file repositories, otherwise:
deleting the different data blocks of the existing one of

the at least one version in the one of the linked file
repositories, and

storing the different data blocks of the new one of the at
least one version of the file to be written from one of the
at least one server system and the preceding one of the
linked file repositories, and

if the at least one version of the file to be written does not
exist in the one of the linked file repositories:

storing the new one of the at least one version of the file
to be written from the one of the linked file repositories:

including the version number and a file name of the
requested version of the file to be read as part of the
read operation, wherein the requested version number
is one of an integer number, a date range, and a time
range; and

setting the version number of the requested version as a
file attribute prior to the read operation.

2. The method of claim 1, further including implementing
a version-recovery process over each of the linked file
repositories to perform a read operation of the at least one
version of the file.

3. The method of claim 1, further including continuously
numbering each of the plurality of positions of each of the
linked file repositories beginning at a numerical value of 1.
wherein a first one of the linked file repositories is numbered
as 1, and a first version of the at least one version of the file
representing a most recent version of the file is stored.

4. The method of claim 1, further including implementing
the version-recovery process by performing one of

receiving a write operation and a new one of the at least
one version of the file to be written from one of the at
least one server system and a preceding one of the
linked file repositories,

determining if the new one of the at least one version of
the file to be written exists in the one of the linked file
repositories,

US 9,588,986 B2
15

if the new one of the at least one version of the file to be
written exists in the one of the linked file repositories
performing one of
verifying versioning policies,

moving an existing one of the at least one version from the
corresponding one of the linked file repositories to a
subsequent one of the linked file repositories if the
versioning policies indicate a higher number of the at
least one version that are to be saved as compared to a
position number of the one of the linked file reposito
ries, otherwise:
deleting the existing one of the at least one version in

the one of the linked file repositories, and
storing the new one of the at least one version of the file

to be written from one of the at least one server system
and the preceding one of the linked file repositories,
and

if the new one of the at least one version of the file to be
written does not exist in the one of the linked file
repositories:

storing the new one of the at least one version of the file
to be written from the one of the linked file repositories.

5. The method of claim 4, further including implementing
the version-recovery process by performing one of

receiving the read operation and a version number of a
requested version of the file to be read from the at least
one server system,

examining the version number of the file to be read, and
determining if the requested version of the file to be read

exists in one of the linked file repositories having a
position number matching the received version num
ber, wherein if the requested version of the file to be
read exists:
reading and sending the file to a requesting server

system, otherwise
indicating a file read-error to the requesting server system

if the requested version of the file to be read does not
exist.

6. The method of claim 1, further including implementing
the version-recovery process on the block-differential basis
by performing one of:

receiving a read operation and a version number of a
requested version of the file to be read from the at least
one server system,

examining the version number of the file to be read:
determining if the requested version of the file to be read

exists in one of the linked file repositories having the
position number matching the received version num
ber,

if the requested version of the file to be read exists,
recreating the requested version of the file to be read by
determining if the requested version of the file to be
read is a most recent version of the at least one version
of the file to be read,

if the requested version of the file to be read is the most
recent version of the at least one version of the file to
be read:

reading and sending the most recent version of the at least
one version of the file to be read from a first one of the
linked file repositories to a requesting server system,
otherwise performing one of:
reading content of the linked file repositories having the

position number that is one of less than and equal to
the requested version number of the at least one
version of the file to be read,

replacing the different data blocks of the most recent
version of the at least one version of the file to be

10

15

25

30

35

40

45

50

55

60

65

16
read with the different data blocks of an older version
of the at least one version of the file, and

sending a recreated version of the file to be read to the
requesting server system, and

indicating a file read-error to the requesting server system
if the requested version of the file does not exists.

7. A system for data backup and recovery based on linked
file repositories, wherein the system includes at least one of:

at least one server System;
the linked file repositories, wherein each of the linked file

repositories representing an individual file system
capable of storing at least one version of a file, and in
communication with the at least one server system; and

at least one processor device, in communication with each
the linked file repositories and the at least one server
system, operable in the system, wherein the at least one
processor device:
places each of the linked file repositories in one of a

plurality of positions for storing the at least one
version of the file,

continuously numbers each of the plurality of positions
of each of the linked file repositories,

determines a number of the at least one version of the
file by the one of a plurality of positions of the one
of the linked file repositories,

for each of the linked file repositories, performs at least
one function operation for each file stored in the
linked file repositories matching at least one rule,
wherein the at least one function operation includes
at least one of a deduplication function allowing
deduplicating files based on the version number, an
indexing function allowing to index the file and
providing search and discovery capabilities, and an
expiration function for moved files determining
when a moved file expires and is being deleted
time-based or event-based; wherein the at least one
rule includes a file extension matching a certain
pattern, a file name matching one of a plurality of
patterns, a file path name matching the one of a
plurality of patterns, a file owner matching the one of
a plurality of patterns, a file creation, and a modifi
cation or last access time matching a specified date
and a specified time range, and

implements the version-recovery process on a block
differential basis by performing one of:

receiving a write operation with a new one of the at least
one version of the file to be written from one of the at
least one server system and a preceding one of the
linked file repositories,

determining if the new one of the at least one version of
the file to be written exists in the one of the linked file
repositories,

if the new one of the at least one version of the file to be
written exists in the one of the linked file repositories
performing one of

comparing data of the new one of the at least one version
of the file to be written and an existing one of the at
least one version of the of the file to be written,
determining different data blocks,

moving the different data blocks from the existing one of
the at least one version of the of the file to be written
from the one of the linked file repositories to a subse
quent one of the linked file repositories if versioning
policies indicate a higher number of the at least one
version as compared to a position number of the one of
the linked file repositories, otherwise:

US 9,588,986 B2
17

deleting the different data blocks of the existing one of
the at least one version in the one of the linked file
repositories, and

storing the different data blocks of the new one of the at
least one version of the file to be written from one of the
at least one server system and the preceding one of the
linked file repositories, and

if the at least one version of the file to be written does not
exist in the one of the linked file repositories:

storing the new one of the at least one version of the file
to be written from the one of the linked file repositories,

includes the version number and a file name of the
requested version of the file to be read as part of the
read operation, wherein the requested version number
is one of an integer number, a date range, and a time
range, and

sets the version number of the requested version as a file
attribute prior to the read operation.

8. The system of claim 7, wherein the at least one
processor device implements a version-recovery process
over each of the linked file repositories to perform a read
operation of the at least one version of the file.

9. The system of claim 7, wherein the at least one
processor device continuously numbers each of the plurality
of positions of each of the linked file repositories beginning
at a numerical value of 1, wherein a first one of the linked
file repositories is numbered as 1, and a first version of the
at least one version of the file representing a most recent
version of the file is stored.

10. The system of claim 7, wherein the at least one
processor device implements the version-recovery process
by performing one of

receiving a write operation and a new one of the at least
one version of the file to be written from one of the at
least one server system and a preceding one of the
linked file repositories,

determining if the new one of the at least one version of
the file to be written exists in the one of the linked file
repositories,

if the new one of the at least one version of the file to be
written exists in the one of the linked file repositories
performing one of
verifying versioning policies,

moving an existing one of the at least one version from the
corresponding one of the linked file repositories to a
subsequent one of the linked file repositories if the
versioning policies indicate a higher number of the at
least one version that are to be saved as compared to a
position number of the one of the linked file reposito
ries, otherwise:
deleting the existing one of the at least one version in

the one of the linked file repositories, and
storing the new one of the at least one version of the file

to be written from one of the at least one server system
and the preceding one of the linked file repositories,
and

if the new one of the at least one version of the file to be
written does not exist in the one of the linked file
repositories:

storing the new one of the at least one version of the file
to be written from the one of the linked file repositories.

11. The system of claim 10, wherein the at least one
processor device implements the version recovery process
by performing one of:

receiving the read operation and a version number of a
requested version of the file to be read from the at least
one server system,

10

15

25

30

35

40

45

50

55

60

65

18
examining the version number of the file to be read, and
determining if the requested version of the file to be read

exists in one of the linked file repositories having a
position number matching the received version num
ber, wherein if the requested version of the file to be
read exists:
reading and sending the file to a requesting server

system, otherwise
indicating a file read-error to the requesting server

system if the requested version of the file to be
read does not exist.

12. The system of claim 7, wherein the at least one
processor device implements the version-recovery process
on the block-differential basis by performing one of:

receiving a read operation and a version number of a
requested version of the file to be read from the at least
one server system,

examining the version number of the file to be read,
determining if the requested version of the file to be read

exists in one of the linked file repositories having the
position number matching the received version num
ber,

if the requested version of the file to be read exists,
recreating the requested version of the file to be read by
determining if the requested version of the file to be
read is a most recent version of the at least one version
of the file to be read,

if the requested version of the file to be read is the most
recent version of the at least one version of the file to
be read,

reading and sending the most recent version of the at least
one version of the file to be read from a first one of the
linked file repositories to a requesting server system,
otherwise performing one of:
reading content of the linked file repositories having the

position number that is one of less than and equal to
the requested version number of the at least one
version of the file to be read,

replacing the different data blocks of the most recent
version of the at least one version of the file to be
read with the different data blocks of an older version
of the at least one version of the file, and

sending a recreated version of the file to be read to the
requesting server system, and

indicating a file read-error to the requesting server system
if the requested version of the file does not exist.

13. A computer program product of data backup and
recovery based on linked file repositories with each of the
linked file repositories representing an individual file system
capable of storing at least one version of a file and being
connected to at least one server system, the computer
program product comprising a non-transitory computer
readable storage medium having computer-readable pro
gram code portions stored therein, the computer-readable
program code portions comprising:

an executable portion that places each of the linked file
repositories in one of a plurality of positions for storing
the at least one version of the file;

an executable portion that continuously numbers each of
the plurality of positions of each of the linked file
repositories;

an executable portion that determines a number of the at
least one version of the file by the one of a plurality of
positions of the one of the linked file repositories;

an executable portion that, for each of the linked file
repositories, performs at least one function operation
for each file stored in the linked file repositories match

US 9,588,986 B2
19

ing at least one rule, wherein the at least one function
operation includes at least one of a deduplication
function allowing deduplicating files based on the
version number, an indexing function allowing to index
the file and providing search and discovery capabilities,
and an expiration function for moved files determining
when a moved file expires and is being deleted time
based or event-based; wherein the at least one rule
includes a file extension matching a certain pattern, a
file name matching one of a plurality of patterns, a file
path name matching the one of a plurality of patterns,
a file owner matching the one of a plurality of patterns,
a file creation, and a modification or last access time
matching a specified date and a specified time range;
and

an executable portion that implements the version-recov
ery process on a block-differential basis by performing
one of:

receiving a write operation with a new one of the at least
one version of the file to be written from one of the at
least one server system and a preceding one of the
linked file repositories,

determining if the new one of the at least one version of
the file to be written exists in the one of the linked file
repositories,

if the new one of the at least one version of the file to be
written exists in the one of the linked file repositories
performing one of

comparing data of the new one of the at least one version
of the file to be written and an existing one of the at
least one version of the of the file to be written,
determining different data blocks,

moving the different data blocks from the existing one of
the at least one version of the of the file to be written
from the one of the linked file repositories to a subse
quent one of the linked file repositories if versioning
policies indicate a higher number of the at least one
version as compared to a position number of the one of
the linked file repositories, otherwise:
deleting the different data blocks of the existing one of

the at least one version in the one of the linked file
repositories, and

storing the different data blocks of the new one of the at
least one version of the file to be written from one of the
at least one server system and the preceding one of the
linked file repositories, and

if the at least one version of the file to be written does not
exist in the one of the linked file repositories:

storing the new one of the at least one version of the file
to be written from the one of the linked file repositories:

an executable portion that includes the version number
and a file name of the requested version of the file to be
read as part of the read operation, wherein the requested
version number is one of an integer number, a date
range, and a time range, and

an executable portion that sets the version number of the
requested version as a file attribute prior to the read
operation.

14. The computer program product of claim 13, further
including an executable portion that implements a version
movement process over each of the linked file repositories to
perform a read operation of the at least one version of the
file.

15. The computer program product of claim 13, further
including an executable portion that continuously numbers
each of the plurality of positions of each of the linked file
repositories beginning at a numerical value of 1, wherein a

20
first one of the linked file repositories is numbered as 1, and
a first version of the at least one version of the file repre
senting a most recent version of the file is stored.

16. The computer program product of claim 13, further
5 including an executable portion that implements the version

recovery process by performing one of:
receiving a write operation and a new one of the at least

one version of the file to be written from one of the at
least one server system and a preceding one of the
linked file repositories,

determining if the new one of the at least one version of
the file to be written exists in the one of the linked file
repositories,

if the new one of the at least one version of the file to be
written exists in the one of the linked file repositories
performing one of
Verifying versioning policies,

moving an existing one of the at least one version from the
corresponding one of the linked file repositories to a
subsequent one of the linked file repositories if the
versioning policies indicate a higher number of the at
least one version that are to be saved as compared to a
position number of the one of the linked file reposito
ries, otherwise:
deleting the existing one of the at least one version in

the one of the linked file repositories, and
storing the new one of the at least one version of the file

to be written from one of the at least one server system
and the preceding one of the linked file repositories,
and

if the new one of the at least one version of the file to be
written does not exist in the one of the linked file
repositories:

storing the new one of the at least one version of the file
to be written from the one of the linked file repositories.

17. The computer program product of claim 16, further
including an executable portion that implements the version
recovery process by performing one of:

receiving the read operation and a version number of a
requested version of the file to be read from the at least
one server system,

examining the version number of the file to be read,
determining if the requested version of the file to be read

exists in one of the linked file repositories having a
position number matching the received version num
ber, wherein if the requested version of the file to be
read exists:
reading and sending the file to a requesting server

system, otherwise
indicating a file read-error to the requesting server system

if the requested version of the file to be read does not
exist.

18. The computer program product of claim 13, further
55 including an executable portion that implements the version

recovery process on the block-differential basis by perform
ing one of

receiving a read operation and a version number of a
requested version of the file to be read from the at least
one server system,

examining the version number of the file to be read,
determining if the requested version of the file to be read

exists in one of the linked file repositories having the
position number matching the received version num
ber,

if the requested version of the file to be read exists,
recreating the requested version of the file to be read by

10

15

25

30

35

40

45

50

60

US 9,588,986 B2
21

determining if the requested version of the file to be
read is a most recent version of the at least one version
of the file to be read,

if the requested version of the file to be read is the most
recent version of the at least one version of the file to
be read,

reading and sending the most recent version of the at least
one version of the file to be read from a first one of the
linked file repositories to a requesting server system,
otherwise performing one of:
reading content of the linked file repositories having the

position number that is one of less than and equal to
the requested version number of the at least one
version of the file to be read,

replacing the different data blocks of the most recent
version of the at least one version of the file to be
read with the different data blocks of an older version
of the at least one version of the file, and

sending a recreated version of the file to be read to the
requesting server system, and

indicating a file read-error to the requesting server system
if the requested version of the file does not exists.

k k k k k

10

15

22

