
(12) United States Patent

USOO9575990B2

(10) Patent No.: US 9,575,990 B2
Thomsen et al. (45) Date of Patent: *Feb. 21, 2017

(54) PARTITIONING DATA WITHINA USPC .. 707/610
DISTRIBUTED DATA STORAGE SYSTEM See application file for complete search history.
USING VIRTUAL FILE LINKS

(56) References Cited
(75) Inventors: Dirk Thomsen, Heidelberg (DE); Ivan

Schreter, Malsch (DE) U.S. PATENT DOCUMENTS
ck

(73) Assignee: SAP SE, Walldorf (DE) 38883. A 35.88 ERA. O. , 6.
2011/0072059 A1 3f2011 Guarraci TO7 823

(*) Notice: Subject to any disclaimer, the term of this 2011/0099266 A1* 4/2011 Calder GO6F 8.65
patent is extended or adjusted under 35 TO9,224
U.S.C. 154(b) by 72 days. * cited by examiner

This patent is Subject to a terminal dis
claimer. Primary Examiner — Kris Andersen

(74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris
(21) Appl. No.: 13/324,826 Glovsky and Popeo, P.C.

(22) Filed: Dec. 13, 2011 (57) ABSTRACT
A record within a destination virtual file is generated on a

(65) Prior Publication Data destination node of a distributed data storage system. The
COC COSCS 1) a 1 1rected to a part1t1On OT a SOurce US 2013/O 117528A1 May 9, 2013 SN file E. S. inst t and E. R criteria

O O characterizing the partition. The source virtual file is mapped
Related U.S. Application Data to a chain of linked pages stored in a page buffer of the

(63) Continuation-in-part of application No. 13/290,835, distributed data storage system and the partitioning criteria
filed on Nov. 7, 2011. is used by at least one of the source node and the destination

s node to identify data associated with the partition. A request
(51) Int. Cl. is later received at the destination node to access data

G06F 7/30 (2006.01) defined by the destination virtual file. Data is provided, in
response to the request, from the partition of the source

(52) is: C. G06F 7/302.33 (2013.O1 virtual file stored on the source node using the link and the
."r r (.01) partitioning criteria. Related apparatus, Systems, techniques

(58) Field of Classification Search and articles are also described.
CPC G06F 17/30194; G06F 17/30233;

G06F 17/30079; G06F 17/30315 15 Claims, 4 Drawing Sheets

200

210

220

230

GENERATE RECORD WITHIN DESTINATION VIRTUAL FILEON
DESTINATION NODE INCLUDING LINK TO PARTITION OF SOURCE
VIRTUAL FILE ON SOURCE NODE AND PARTITIONING CRITERA

RECEIVE RECQUESTAT DESTINATION NODE TO ACCESS DATA
DEFINED BY DESTINATION VIRTUAL FILE

SOURCE NODE USING LINKIN RESPONSETO REQUEST
PROVIDE DATAFROM PARTITION OF SOURCE VIRTUAL FILEON

US 9,575,990 B2 Sheet 1 of 4 Feb. 21, 2017 U.S. Patent

||

?? |NEITO

US 9,575,990 B2 Sheet 2 of 4 Feb. 21, 2017 U.S. Patent

1SETTOEH OLESNO?SEH NI XNIT 9NIST ECON EO}}[\OS

00Z

US 9,575,990 B2 Sheet 4 of 4 Feb. 21, 2017 U.S. Patent

087 WIWO MEN

007

US 9,575,990 B2
1.

PARTITIONING DATA WTHINA
DISTRIBUTED DATA STORAGE SYSTEM

USING VIRTUAL FILE LINKS

RELATED APPLICATION

This application is a continuation-in-part of U.S. patent
application Ser. No. 13/290,835 filed on Nov. 7, 2011, the
contents of which are hereby fully incorporated by refer
CCC.

TECHNICAL FIELD

The subject matter described herein relates to techniques
for partitioning data and enabling access to partitioned data
within a distributed data storage system using virtual file
links.

BACKGROUND

In a distributed data storage system, data containers
Sometimes become so big that they must be partitioned/split
over several nodes due to memory limitations and/or per
formance issues. Partitioning a data container means split
ting a data container into several parts as well as combining
Smaller data containers into a single data container and
moving associated data to another node. With some con
ventional database systems, this requires not only moving
the data but also moving one or more logs tracking changes
to Such data container. These operations can be processor
intensive and can also consume additional storage.

SUMMARY

In one aspect, a record is generated within a destination
virtual file on a destination node of a distributed data storage
system. The record comprises (i) a link directed to a source
virtual file stored on a source node and (ii) partition criteria
characterizing a partition of the source virtual file. The
Source virtual file is mapped to a chain of linked pages stored
in a page buffer of the distributed data storage system. The
partitioning criteria is used by at least one of the Source node
and the destination node to identify data associated with the
partition. Thereafter, a request is received at the destination
node to access data defined by the destination virtual file. In
response to the request, data is provided from partition of the
Source virtual file stored on the source node using the link
and the partitioning criteria.

Data generated at the node Subsequent to the generation of
the record can be appended to the record. The appended data
can form a delta log at the destination node. The destination
virtual file and the delta log can be overwritten during a
columnar table merge operation with a new version of the
destination virtual file comprising data from the partition of
the source virtual file and the delta log. The link in the record
can be overwritten during the columnar table merge opera
tion. The new version of the destination virtual file can be
persisted to secondary data storage. The new version of the
destination virtual file can be persisted after a savepoint on
the destination node. The partition of the source virtual file
can be dropper after the new version of the destination
virtual file is persisted to the secondary data storage. Drop
ping the partition of the source virtual file can include
ceasing log operations relative to a portion of the Source
virtual file corresponding to the partition and/or deleting a
portion of the Source virtual file corresponding to the par
tition.

10

15

25

30

35

40

45

50

55

60

65

2
Articles of manufacture are also described that comprise

computer executable instructions permanently stored on
non-transitory computer readable media, which, when
executed by a computer, causes the computer to perform
operations herein. Similarly, computer systems are also
described that may include a processor and a memory
coupled to the processor. The memory may temporarily or
permanently store one or more programs that cause the
processor to perform one or more of the operations
described herein. In addition, operations specified by meth
ods can be implemented by one or more data processors
either within a single computing system or distributed
among two or more computing systems.
The subject matter described herein provides many

advantages. For example, the current techniques allow for
the partitioning of data among nodes within a distributed
data storage system (i.e., a database system comprising a
plurality of nodes, etc.) with little performance impact.
Using links to virtual files as described herein obviates the
need, during recovery from a log backup, for moving a
portion of a virtual file from one node to the other which in
turn requires writing a redo log on a destination node for all
moved data or explicit expensive synchronization of recov
ery on several nodes. Stated differently, the use of a link to
a virtual file requires a single operation (reading the linked
virtual file) as opposed to physically moving data which
requires at least three operations (writing data from the
virtual file to the destination node, writing a log from the
virtual file to the destination node, and reading data written
to the destination node).
The details of one or more variations of the subject matter

described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating a system including a data
storage application;

FIG. 2 is a process flow diagram illustrating partitioning
data within a distributed data storage system using virtual
file links;

FIG. 3 is a diagram illustrating details of the system of
FIG. 1; and

FIG. 4 is a diagram illustrating partitioning of data on a
source node to a destination node within a distributed data
Storage System.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 shows an example of a system 100 in which a
computing system 102, which can include one or more
programmable processors that can be collocated, linked over
one or more networks, etc., executes one or more modules,
Software components, or the like of a data storage applica
tion 104. The data storage application 104 can include one
or more of a database, an enterprise resource program, a
distributed storage system (e.g. NETAPP Filer available
from NETAPP of Sunnyvale, Calif.), or the like.
The one or more modules, Software components, or the

like can be accessible to local users of the computing system
102 as well as to remote users accessing the computing
system 102 from one or more client machines 106 over a
network connection 110. One or more user interface screens

US 9,575,990 B2
3

produced by the one or more first modules can be displayed
to a user, either via a local display or via a display associated
with one of the client machines 106. Data units of the data
storage application 104 can be transiently stored in a per
sistence layer 112 (e.g. a page buffer or other type of 5
temporary persistency layer), which can write the data, in
the form of storage pages, to one or more storages 114, for
example via an input/output component 116. The one or
more storages 114 can include one or more physical storage
media or devices (e.g. hard disk drives, persistent flash 10
memory, random access memory, optical media, magnetic
media, and the like) configured for writing data for longer
term storage. It should be noted that the storage 114 and the
input/output component 116 can be included in the comput
ing system 102 despite their being shown as external to the 15
computing system 102 in FIG. 1.

Data retained at the longer term storage 114 can be
organized in pages, each of which has allocated to it a
defined amount of storage space. In some implementations,
the amount of storage space allocated to each page can be 20
constant and fixed. However, other implementations in
which the amount of storage space allocated to each page
can vary are also within the scope of the current Subject
matter.

FIG. 2 is a process flow diagram 200 in which, at 210, a 25
record is generated on a destination node of a distributed
data storage system. The record can include (i) a link
directed to a source virtual file stored on a source node and
(ii) partition criteria characterizing a partition of the Source
virtual file. The source virtual file can be mapped to a chain 30
of linked pages stored in a page buffer of the distributed data
storage system, the partitioning criteria being used by at
least one of the Source node and the destination node to
identify data associated with the partition. Subsequently, at
220, a request is received at the destination node to access 35
data defined by the destination virtual file. In response to the
request, at 230, data is provided from the partition of the
Source virtual file stored on the source node using the link
and the partitioning criteria.

FIG. 3 shows a software architecture 300 consistent with 40
one or more features of the current subject matter. A data
storage application 104, which can be implemented in one or
more of hardware and Software, can include one or more of
a database application, a network-attached storage system,
or the like. According to at least some implementations of 45
the current Subject matter, Such a data storage application
104 can include or otherwise interface with a persistence
layer 112 or other type of memory buffer, for example via a
persistence interface 302. A page buffer 304 within the
persistence layer 112 can store one or more logical pages 50
306, and optionally can include shadow pages 311, active
pages 313, data pages of virtual files 315 and the like. The
logical pages 306 retained in the persistence layer 112 can be
written to a storage (e.g. a longer term storage, etc.) 114 via
an input/output component 116, which can be a software 55
module, a Sub-system implemented in one or more of
software and hardware, or the like. The storage 114 can
include one or more data volumes 310 where stored pages
312 are allocated at physical memory blocks.

In some implementations, the data storage application 104 60
can include a row store 303 and a column store 305. The row
store 303 can comprise or be otherwise in communication
with a page manager 314 and/or a savepoint manager 316.
The page manager 314 can communicate with a page
management module 320 at the persistence layer 112 that 65
can include a free block manager 322 that monitors page
status information 324, for example the status of physical

4
pages within the storage 114 and logical pages in the
persistence layer 112 (and optionally in the page buffer 304).
The savepoint manager 316 can communicate with a save
point coordinator 326 at the persistence layer 204 to handle
savepoints, which are used to create a consistent persistent
state of the database for restart after a possible crash. The
row store 303 can access the persistence interface 302 via an
absolute page API 307. The column store 305 which can
store columns in contiguous memory can access the persis
tence interface 302 via a virtual file API 3.09.

In some implementations of a data storage application
104, the page management module of the persistence layer
112 can implement shadow paging. The free block manager
322 within the page management module 320 can maintain
the status of physical pages. The page buffer 304 can
included a fixed page status buffer that operates as discussed
herein. A converter component 340, which can be part of or
in communication with the page management module 320,
can be responsible for mapping between logical and physical
pages written to the storage 114. The converter 340 can
maintain the current mapping of logical pages to the corre
sponding physical pages in a converter table 342. The
converter 340 can maintain a current mapping of logical
pages 306 to the corresponding physical pages in one or
more converter tables 342. When a logical page 306 is read
from storage 114, the storage page to be loaded can be
looked up from the one or more converter tables 342 using
the converter 340. When a logical page is written to storage
114 the first time after a savepoint, a new free physical page
is assigned to the logical page. The free block manager 322
marks the new physical page as “used’ and the new mapping
is stored in the one or more converter tables 342.
The persistence layer 112 can ensure that changes made in

the data storage application 104 are durable and that the data
storage application 104 can be restored to a most recent
committed State after a restart. Writing data to the storage
114 need not be synchronized with the end of the writing
transaction. As such, uncommitted changes can be written to
disk and committed changes may not yet be written to disk
when a writing transaction is finished. After a system crash,
changes made by transactions that were not finished can be
rolled back. Changes occurring by already committed trans
actions should not be lost in this process. A logger compo
nent 344 can also be included to store the changes made to
the data of the data storage application in a linear log. The
logger component 344 can be used during recovery to replay
operations since a last savepoint to ensure that all operations
are applied to the data and that transactions with a logged
“commit” record are committed before rolling back still
open transactions at the end of a recovery process.

With some data storage applications, writing data to a disk
is not necessarily synchronized with the end of the writing
transaction. Situations can occur in which uncommitted
changes are written to disk and while, at the same time,
committed changes are not yet written to disk when the
writing transaction is finished. After a system crash, changes
made by transactions that were not finished must be rolled
back and changes by committed transaction must not be lost.
To ensure that committed changes are not lost, redo log

information can be written by the logger component 344
whenever a change is made. This information can be written
to disk at latest when the transaction ends. The log entries
can be persisted in separate log volumes 317 while normal
data is written to data volumes 310. With a redo log,
committed changes can be restored even if the correspond
ing data pages were not written to disk. For undoing

US 9,575,990 B2
5

uncommitted changes, the persistence layer 112 can use a
combination of undo log entries (from one or more logs) and
shadow paging.
The persistence interface 302 can handle read and write

requests of stores (e.g., in-memory stores, etc.). The persis
tence interface 302 can also provide write methods for
writing data both with logging and without logging. If the
logged write operations are used, the persistence interface
302 invokes the logger 344. In addition, the logger 344
provides an interface that allows stores (e.g., in-memory
stores, etc.) to directly add log entries into a log queue. The
logger interface also provides methods to request that log
entries in the in-memory log queue are flushed to disk.
Log entries contain a log sequence number, the type of the

log entry and the identifier of the transaction. Depending on
the operation type additional information is logged by the
logger 344. For an entry of type “update', for example, this
would be the identification of the affected record and the
after image of the modified data.
When the data application 104 is restarted, the log entries

need to be processed. To speed up this process the redo log
is not always processed from the beginning. Instead, as
stated above, savepoints can be periodically performed that
write all changes to disk that were made (e.g., in memory,
etc.) since the last savepoint. When starting up the system,
only the logs created after the last savepoint need to be
processed. After the next backup operation the old log
entries before the savepoint position can be removed.
When the logger 344 is invoked for writing log entries, it

does not immediately write to disk. Instead it can put the log
entries into a log queue in memory. The entries in the log
queue can be written to disk at the latest when the corre
sponding transaction is finished (committed or aborted). To
guarantee that the committed changes are not lost, the
commit operation is not successfully finished before the
corresponding log entries are flushed to disk. Writing log
queue entries to disk can also be triggered by other events,
for example when log queue pages are full or when a
savepoint is performed.
The column store 305 can persist its tables to virtual files

provided by the persistence layer 112 via the virtual file API
307. Internally the persistence layer 112 can map a virtual
file to a chain of linked pages 315 stored in the page buffer
304. Data belonging to one columnar table can be stored in
multiple virtual files: one virtual file per column for a main
storage and one virtual file for a delta log. In addition, one
virtual file can optionally be stored per column for the main
storage of the history part of the table, and/or one virtual file
can optionally be stored per table for the delta of the history
part of the table. The persistence layer 112 can maintain a
directory that stores for each virtual file the start page and
additional information such as the size and the type of the
virtual file.
As stated above, virtual files can be used to store main and

delta parts of columnar tables. These files can be read on the
first access of the corresponding table into memory. With
Some implementations, while read accesses happen only on
the in-memory representation of data, updates, appends,
overwrites and truncates can also be written to the virtual file
on disk. After partitioning/moving of a virtual file from a
Source node to a destination node, the virtual file can be read
into memory on first access on the destination node. To
Support recovery from log backup, moving a virtual file from
one node to the other (if the techniques described below are
not incorporated) can either require writing a redo log on the
destination node for all partitioned/moved data or explicit

10

15

25

30

35

40

45

50

55

60

65

6
expensive synchronization of recovery on several nodes,
which is in both cases too big performance penalty.
The content of a main storage can only change when a

delta merge operation is performed. Therefore the main
virtual files can only be written when a merge is done. Note
that this does not mean that main data is written to disk
during a merge operation: when the column store 305 writes
to a virtual file, the data can be written into the page buffer
304 of the persistence layer 112. It is the responsibility of the
persistence layer 112 to determine when the data in the
virtual file is actually flushed to disk (e.g., during page
replacement or at latest when the next savepoint is written,
etc.).
A delta merge operation is unique to the column store 305

and is not synchronized with the savepoints of the persis
tence layer 112. Delta merge is primarily an optimization of
in-memory structures performed on the granularity of a
single table. The savepoint, on the other hand, works on the
whole database and its purpose is to persist changes to disk.

All changes executed on column store 305 data go into
delta storages in the data volumes 310. The delta storages
can exist only in memory as opposed to be written to disk.
However, the column store 305 can, via the logger 344, write
a persisted delta log that contains logical redo log entries for
all operations executed on the delta storages. Logical log, in
this context, means that the operation and its parameters are
logged but no physical images are stored. When a delta
merge operation is executed, the changes in the delta Storage
can be merged into the main storage and the delta log virtual
file can be truncated.

Despite of the name “delta log, the delta log virtual files
are not really logs from the persistence layer 112 point of
view. For the persistence layer 112 they are just data. The
actual redo log and undo entries can be written a log volume
317 in the persistence layer 112. The virtual files used for
delta logs can be configured as logged. Whenever column
store 305 writes to the delta log virtual file, the persistence
layer interface 302 invokes the logger 344 and an undo
manager to write redo log entries and undo information. This
ensures that the delta log virtual files can be restored after a
restart just like any other data. After the delta log virtual
files are restored they are ready to be processed by column
store 305 to rebuild the in-memory delta storages from the
logical delta log entries.

During a delta merge operation the main files for the
affected table(s) can be rewritten and the delta log file can be
truncated. For all these operations no log is written by the
persistence layer 112. This is possible, because all opera
tions executed on the tables were already logged when the
delta files were written as part of the original change
operation. The merge operation does not change, create or
delete any information in the database. It is just a reorga
nization of the way existing information is stored. To
prevent that logs are written for a merge operation, the
virtual main files are configured as not logged and a special
not logged operation is used for delta log truncation.

During restart, the persistence layer 112 can restore the
main virtual files from the last savepoint. The delta log
virtual files can be restored from the last savepoint and from
the redo log. When the persistence layer 112 has finished its
part, the main storage of the columns can be loaded from the
virtual files into column-store memory. This involves
memory copy operations between data cache in the page
buffer 304 of the persistence layer 112 and the contiguous
memory areas in column store 305. The column store 305
can then execute the logical redo entries from delta log
virtual files and rebuild the in-memory delta storages.

US 9,575,990 B2
7

As mentioned above, there is metadata that allows to
define for each columnar table whether it is to be loaded
during system startup. If a table is configured for loading on
demand, the restore sequence for that table is executed on
first access.

In some situations, it can be necessary to partition data
within a virtual file among two or more nodes. With refer
ence to the diagram 400 of FIG. 4, a virtual file 414 on a
Source node 410 within a distributed data storage system can
be partitioned by creating a new file 424 (e.g., an empty
object, etc.) on a destination node 420 containing a special
record 426 with (i) a link to the original virtual file 414 on
the source node 410; and (ii) partitioning criteria 428 that
characterizes a corresponding partition on the original vir
tual file 414. This operation can be logged by the logger 344.
The original virtual file 414 can be kept unchanged on the
source node. When the virtual file is read on the destination
node, the link 426 is encountered which with the partitioning
criteria 428, in turn, results in the data from the partition of
the original virtual file 410 being accessed on the source
node 420. New data 430 can be appended after the link
record 426 on the destination node 420, thus always all data
of the file can be read. As used in this context, nodes can
refer to servers having their own persistency.
When performing columnar table merge operation, virtual

files containing compressed data of a corresponding table
can be overwritten completely with the new version and the
virtual file for deltas will be truncated. These operations can
automatically overwrite the link 426 to the source node 410.
During a link cleanup operation after commit, the original
files can be scheduled for removal. After a savepoint on the
destination node 420 has persisted the new versions of the
files to secondary storage, old files on the source node 410
can be dropped (non-logged). At this time, files can be
completely moved to the destination node 420, without
unnecessary performance penalty by logging whole contents
on the destination node 420.

During recovery from log, link record 426 can be recov
ered as well as all new data 430 appended to the file. The
portion of the old virtual file 414 corresponding to the
partition on the source node 410 can be kept because
dropping of the virtual file 414 on the source node 410 need
not be logged. If the portion of the virtual file 414 corre
sponding to the partition is deleted during recovery, the
deletion can schedule dropping the portion of the original
file 414 corresponding to the partition on the source node
410 after recovery ends. Otherwise, there would be a file 424
with the link 426 to old data on the source node 420
corresponding to the partition (or even a chain of links, if the
virtual file 414 has been moved several times).
The subject matter described above can be extended to

enable a virtual file to be repartitioned from n partitions to
m partitions and/or to join in partitions to a single partition.
With Such variations, instead of writing a single link on each
destination node 420, several links can be written on the
destination node 420 which refer to all original n partitions
where to read the source data (which can be from a plurality
of different nodes). Such an arrangement can be further
optimized if a new partition of the source node 410 only a
Subset of the data of Some of the original partitions (e.g.,
previous partition criteria was partition key module 2 while
the new criteria is partition key modulo 4, etc.).

Aspects of the subject matter described herein can be
embodied in Systems, apparatus, methods, and/or articles
depending on the desired configuration. In particular, Vari
ous implementations of the subject matter described herein
can be realized in digital electronic circuitry, integrated

10

15

25

30

35

40

45

50

55

60

65

8
circuitry, specially designed application specific integrated
circuits (ASICs), computer hardware, firmware, software,
and/or combinations thereof. These various implementations
can include implementation in one or more computer pro
grams that are executable and/or interpretable on a program
mable system including at least one programmable proces
Sor, which can be special or general purpose, coupled to
receive data and instructions from, and to transmit data and
instructions to, a storage system, at least one input device,
and at least one output device.

These computer programs, which can also be referred to
programs, Software, Software applications, applications,
components, or code, include machine instructions for a
programmable processor, and can be implemented in a
high-level procedural and/or object-oriented programming
language, and/or in assembly/machine language. As used
herein, the term “machine-readable medium” refers to any
computer program product, apparatus and/or device. Such as
for example magnetic discs, optical disks, memory, and
Programmable Logic Devices (PLDs), used to provide
machine instructions and/or data to a programmable proces
Sor, including a machine-readable medium that receives
machine instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to
provide machine instructions and/or data to a programmable
processor. The machine-readable medium can store Such
machine instructions non-transitorily, such as for example as
would a non-transient Solid state memory or a magnetic hard
drive or any equivalent storage medium. The machine
readable medium can alternatively or additionally store such
machine instructions in a transient manner, such as for
example as would a processor cache or other random access
memory associated with one or more physical processor
COCS.

The subject matter described herein can be implemented
in a computing system that includes a back-end component,
Such as for example one or more data servers, or that
includes a middleware component, Such as for example one
or more application servers, or that includes a front-end
component, such as for example one or more client com
puters having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described herein, or any combination of
Such back-end, middleware, or front-end components. A
client and server are generally, but not exclusively, remote
from each other and typically interact through a communi
cation network, although the components of the system can
be interconnected by any form or medium of digital data
communication. Examples of communication networks
include, but are not limited to, a local area network
(“LAN”), a wide area network (“WAN”), and the Internet.
The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.
The implementations set forth in the foregoing description

do not represent all implementations consistent with the
subject matter described herein. Instead, they are merely
Some examples consistent with aspects related to the
described subject matter. Although a few variations have
been described in detail herein, other modifications or addi
tions are possible. In particular, further features and/or
variations can be provided in addition to those set forth
herein. For example, the implementations described above
can be directed to various combinations and Sub-combina
tions of the disclosed features and/or combinations and
sub-combinations of one or more features further to those
disclosed herein. In addition, the logic flows depicted in the

US 9,575,990 B2
9

accompanying figures and/or described herein do not nec
essarily require the particular order shown, or sequential
order, to achieve desirable results. The scope of the follow
ing claims may include other implementations or embodi
mentS.

What is claimed is:
1. A non-transitory computer program product storing

instructions that, when executed by at least one program
mable processor forming part of at least one computing
system, cause the at least one programmable processor to
perform operations comprising:

partitioning data in a file, Stored on a source node of a
distributed data storage system comprising a plurality
of nodes including the Source node and a destination
node, into a source virtual file corresponding to one or
more source partitions on the source node and a des
tination virtual file corresponding to one or more des
tination partitions on the destination node;

generating, on the destination node, a destination record
within the destination virtual file, the destination record
comprising (i) a link directed to the source virtual file
stored on the source node and (ii) partition criteria
characterizing the one or more source partitions corre
sponding to the source virtual file, the source virtual file
being mapped to a chain of linked pages stored in a
page buffer of the distributed data storage system, the
page buffer being a temporary persistency layer;

appending, Subsequent to the generation of the destination
record, data generated at the destination node to the
destination record, the appended data forming a delta
log at the destination node:

receiving, at the destination node from a requesting
device, a request to access data defined by the desti
nation virtual file;

determining, at the destination node using the destination
virtual file, that the data, requested by the requesting
device, is stored in the one or more source partitions
corresponding to the source virtual file;

providing the data, requested by the requesting device,
from the one or more source partitions corresponding to
the source virtual file stored on the source node to the
requesting device through the destination node using
the link and the partition criteria:

initiating a columnar table merge operation;
overwriting, as part of the columnar table merge opera

tion, (i) the link, in the destination record, directed to
the source virtual file stored on the source node, and (ii)
the destination virtual file and the delta log with a new
version of the destination virtual file comprising data
from the one or more source partitions corresponding to
the source virtual file and the delta log;

persisting, as part of the columnar table merge operation,
the destination virtual file to a secondary storage; and

dropping, from a logging schedule and as part of the
columnar table merge operation, the source virtual file
stored on the Source node.

2. The computer program product as in claim 1, wherein
the new version of the destination virtual file is persisted
after a savepoint on the destination node.

3. The computer program product as in claim 2, wherein
dropping the Source virtual file comprises ceasing log opera
tions relative to a portion of the source virtual file corre
sponding to the one or more source partitions Subject to the
columnar table merge operation.

4. The computer program product as in claim 3, wherein
dropping the Source virtual file comprises deleting the

10

15

25

30

35

40

45

50

55

60

65

10
portion of the Source virtual file corresponding to the one or
more source partitions subject to the columnar table merge
operation.

5. The computer program product as in claim 1, wherein
the operations further comprise:

partitioning the source virtual file into a different number
of partitions; and

writing, in the destination record, links to each of the
different number of partitions.

6. The computer program product as in claim 5, wherein
the different number of partitions refer to source data on the
Source node and on a node other than the source node and
the destination node.

7. The computer program product as in claim 1, wherein
each virtual file is flushed to physical storage during page
replacement or when a next savepoint is written.

8. The computer program product as in claim 1, further
comprising a partition map, wherein the partition map
includes a mapping of the one or more partitions corre
sponding with the source virtual file stored on the source
node to the destination node.

9. A method comprising:
partitioning data in a file stored in a source node, of a

distributed data storage system comprising a plurality
of nodes including a source node and a destination
node, into a source virtual file corresponding to one or
more source partitions on the source node and a des
tination virtual file corresponding to one or more des
tination partitions on the destination node;

generating, on the destination node, a destination record
within the destination virtual file, the destination record
comprising (i) a link directed to the source virtual file
stored on the source node and (ii) partition criteria
characterizing the one or more source partitions that
correspond with the source virtual file, the source
virtual file being mapped to a chain of linked pages
stored in a page buffer of the distributed data storage
system, the page buffer being a temporary persistency
layer;

appending, Subsequent to the generation of the destination
record, data generated at the destination node to the
destination record, the appended data forming a delta
log at the destination node:

receiving, at the destination node from a requesting
device, a request to access data defined by the desti
nation virtual file;

determining, at the destination node using the destination
virtual file, that the data, requested by the requesting
device, is stored in the one or more source partitions
corresponding to the source virtual file;

providing the data, requested by the requesting device,
from the one or more source partitions corresponding to
the source virtual file stored on the source node to the
requesting device through the destination node using
the link and the partitioning criteria;

initiating a columnar table merge operation;
overwriting, as part of the columnar table merge opera

tion, (i) the link, in the destination record, directed to
the source virtual file stored on the source node, and (ii)
the destination virtual file and the delta log with a new
version of the destination virtual file comprising data
from the one or more source partitions corresponding to
the source virtual file and the delta log;

persisting, as part of the columnar table merge operation,
the destination virtual file to a secondary storage; and,

US 9,575,990 B2
11

dropping, from a logging schedule and as part of the
columnar table merge operation, the source virtual file
stored on the source node.

10. The method as in claim 9, wherein the new version of
the destination virtual file is persisted after a savepoint on
the destination node.

11. The method as in claim 10, wherein dropping the
Source virtual file comprises ceasing log operations relative
to a portion of the source virtual file corresponding to the
one or more source partitions subject to the columnar table
merge operation.

12. The method as in claim 11, wherein dropping the
source virtual file comprises deleting the portion of the
Source virtual file corresponding to the one or more source
partitions subject to the columnar table merge.

13. The method as in claim 9, wherein each virtual file is
flushed to physical storage during page replacement or when
a next savepoint is written.

14. A system comprising:
at least one data processor; and
memory coupled to the at least one data processor, the
memory storing instructions, which when executed,
cause the at least one data processor to perform opera
tions comprising:
partitioning data in a file stored on a source node, of a

distributed data storage system comprising a plural
ity of nodes including a source node and a destina
tion node, into a source virtual file corresponding to
one or more source portions on the source node and
a destination virtual file corresponding to one or
more destination portions on the destination node:

generating, on the destination node, a destination
record within the destination virtual file, the desti
nation record comprising (i) a link directed to the
Source virtual file stored on at least two source nodes
and (ii) partition criteria characterizing the one or
more source partitions corresponding with the source
virtual file on one of the source nodes, the source
Virtual file being mapped to a chain of linked pages

5

10

25

30

35

12
stored in a page buffer of the distributed data storage
system, the page buffer being a temporary persis
tency layer;

appending, subsequent to the generation of the desti
nation record, data generated at the destination node
to the destination record, the appended data forming
a delta log at the destination node:

receiving, at the destination node from a requesting
device, a request to access data defined by the
destination virtual file;

determining, at the destination node using the destina
tion virtual file, that the data, requested by the
requesting device, is stored in the one or more source
partitions corresponding to the source virtual file;

providing the data, requested by the requesting device.
from the one or more source partitions corresponding
to the source virtual file stored on the corresponding
source node to the requesting device through the
destination node using the link and the partitioning
criteria;

initiating a columnar table merge operation;
overwriting, as part of the columnar table merge opera

tion, (i) the link, in the destination record, directed to
the source virtual file stored on the source node, and
(ii) the destination virtual file and truncating the delta
log with a new version of the destination virtual file
comprising data from the one or more source parti
tions corresponding with the source virtual file and
the delta log;

persisting, as part of the columnar table merge opera
tion, the destination virtual file to a secondary stor
age; and,

dropping, from a logging schedule and as part of the
columnar table merge operation, the source virtual
file stored on the source node.

15. The system as in claim 14, wherein each virtual file is
flushed to physical storage during page replacement or when
a next savepoint is written.

