
(12) United States Patent

USOO9575895B2

(10) Patent No.: US 9,575,895 B2
Liu et al. (45) Date of Patent: *Feb. 21, 2017

(54) PROVIDING COMMON CACHINGAGENT (52) U.S. Cl.
FOR CORE AND INTEGRATED CPC G06F 12/084 (2013.01); G06F 12/0815

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

INPUT/OUTPUT (IO) MODULE

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Yen-Cheng Liu, Portland, OR (US);
Robert G. Blankenship, Tacoma, WA
(US); Geeyarpuram N.
Santhanakrishnan, Mercer Island, WA
(US); Ganapati N. Srinivasa, Portland,
OR (US); Kenneth C. Creta, Gig
Harbor, WA (US); Sridhar
Muthrasanalur, Bangalore (IN);
Bahaa Fahim, San Jose, CA (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 69 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 14/609,620

Filed: Jan. 30, 2015

Prior Publication Data

US 2015/O143051 A1 May 21, 2015

Related U.S. Application Data
Continuation of application No. 13/324,053, filed on
Dec. 13, 2011, now Pat. No. 8,984,228.

Int. C.
G06F 2/08 (2016.01)

700

(2013.01); G06F 12/0831 (2013.01); G06F
2212/452 (2013.01); G06F 221 2/621
(2013.01); Y02B 60/1225 (2013.01)

Field of Classification Search
CPC G06F 12/0831; G06F 12/0815; G06F 12/084;

G06F 2212/452: G06F 2212/621
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

6,009,488 A 12/1999 Kavipurapu
7,165,131 B2 1/2007 Creta
7,210,000 B2 4/2007 Creta
7,689,778 B2 3/2010 Liu et al.
7,937,534 B2 5/2011 Madukkarumukumana

(Continued)

OTHER PUBLICATIONS

Intel Corporation, “An Introduction to the Intel QuickPath Inter
connect.” Jan. 2009, pp. 1-22.

(Continued)

Primary Examiner — Edward Dudek, Jr.
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.

(57) ABSTRACT

In one embodiment, the present invention includes a mul
ticore processor having a plurality of cores, a shared cache
memory, an integrated input/output (IIO) module to inter
face between the multicore processor and at least one IO
device coupled to the multicore processor, and a caching
agent to perform cache coherency operations for the plural
ity of cores and the IIO module. Other embodiments are
described and claimed.

17 Claims, 7 Drawing Sheets

US 9,575,895 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

8,984.228 B2 * 3/2015 Liu G06F 12,0831
T11 130

2004/O139283 A1* 7, 2004 Armilli GO6F 12,0835
711.146

2006.00532.58 A1 3, 2006 Liu
2006, OO856O2 A1 4/2006 Huggahalli et al.
2007. O150664 A1 6, 2007 Dombrowski et al.
2008/0320236 A1* 12/2008 Ueda G06F 12,0831

711.146
2010/0274975 A1 10, 2010 Sista et al.
2011 O153924 A1 6, 2011 Vash et al.
2011 0191542 A1 8, 2011 Vash et al.

OTHER PUBLICATIONS

International Searching Authority, “Notification of Transmittal of
the International Search Report and the Written Opinion of the
International Searching Authority,” mailed May 1, 2013, in Inter
national application No. PCT/US2012/069018.

* cited by examiner

US 9,575,895 B2 U.S. Patent

US 9,575,895 B2 Sheet 2 of 7 Feb. 21, 2017 U.S. Patent

U.S. Patent

Send Data To Memory

Feb. 21, 2017 Sheet 3 of 7

Receive Allocation Transaction in
Integrated IO Module From IO Device

310

Forward Allocation Transaction
To CPU Caching Agent

320

Directly Store Coherent Data
Of Allocation Transaction into

Last Level Cache 330

Read/Write Coherent Data
With COre And/Or O Device

340

360

FIG. 3

US 9,575,895 B2

U.S. Patent Feb. 21, 2017 Sheet 4 of 7

Receive
Snoop Request in

CPU Caching Agent For
Cache Line Owned By

Integrated IO
Module?

380

Send Drop Ownership indicator
To Integrated IO Module To Drop

Ownership Of Cache Line 385

Grant Ownership To Snoop Initiator

390

FIG. 4

US 9,575,895 B2

US 9,575,895 B2 U.S. Patent

U.S. Patent Feb. 21, 2017 Sheet 6 of 7 US 9,575,895 B2

F.G. 6

U.S. Patent Feb. 21, 2017 Sheet 7 Of 7 US 9,575,895 B2

FIG. 7

US 9,575,895 B2
1.

PROVIDING COMMON CACHINGAGENT
FOR CORE AND INTEGRATED

INPUT/OUTPUT (IO) MODULE

This application is a continuation of U.S. patent applica
tion Ser. No. 13/324,053, filed Dec. 13, 2011, the content of
which is hereby incorporated by reference.

BACKGROUND

In modern multiprocessor (MP)-socket computer sys
tems, various topologies are possible. Such systems often
include many different semiconductor components realized
as integrated circuits (ICs). The ICs include processors,
memories, chipsets, input/output hubs (IOHs) and so forth.
As process nodes advance, greater amounts of function

ality can be incorporated into a single semiconductor die.
One integration trend is to integrate an IO component Such
as functionality of an IOH into a central processing unit
(CPU) die. The main motivation for doing so is to reduce the
bill of material (BOM) cost of a computer system, and
enable small form factors while reducing overall power
consumption.

But problems arise once an IO component is integrated on
the same chip with a multiprocessor. Traditional IO integra
tion treats the IO component as a separate caching agent,
meaning that dedicated logic is associated with the IO
component to handle cache coherency operations. When an
IO agent is performing read/write operations to main
memory, it has to Snoop the CPU side cache to maintain
cache coherency. In MP systems, this becomes a major
Scaling problem. For example, in an 8 Socket system, there
are effectively 16 caching agents in the system, which can
degrade performance. And the efforts to Scale up a system to
Support these many caching agents are not trivial.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a portion of a multiprocessor
system in accordance with an embodiment of the present
invention.

FIG. 2 is a block diagram of a caching agent in accordance
with an embodiment of the present invention.

FIG. 3 is a flow diagram of a method in accordance with
an embodiment of the present invention.

FIG. 4 is a flow diagram of a method in accordance with
another embodiment of the present invention.

FIG. 5 is a block diagram of an example of a possible
deadlock scenario that can be avoided according to various
embodiments.

FIG. 6 is a block diagram of a multicore processor in
accordance with an embodiment of the present invention.

FIG. 7 is a block diagram of a multiprocessor system in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

In various embodiments, an IO agent can be integrated
into a multiprocessor Socket such as a multicore processor
for use in a MP server system, while avoiding scaling issues.
More specifically, a CPU caching agent can be configured to
support both CPU traffic and IO traffic as well, thereby
resolving the Scaling issue. Performance can be enhanced by
bringing the IO agent and CPU core(s) closer. This IO agent
includes functionality to provide an interface between one or
more peripheral devices coupled to the processor by off-chip

5

10

15

25

30

35

40

45

50

55

60

65

2
links such as Peripheral Component Interconnect Express
(PCIeTM) links, and may take the place of a separate chipset
component Such as an IOH.

Referring to FIG. 1, shown is a block diagram of a portion
of a multiprocessor System in accordance with an embodi
ment of the present invention. As shown in FIG. 1, system
100 includes a pair of processor sockets 110 and 110. In
the embodiment shown, each socket 110 (generally) corre
sponds to a multicore processor. For ease of discussion,
reference will be made to the components within socket
110. In the embodiment of FIG. 1, socket 110 may be
identically configured. However, understand that in other
embodiments, heterogeneous processor Sockets may be
present.
As seen, Socket 110 includes a plurality of cores 120

120. As examples, socket 110 can include 4, 8, or another
Such number of cores. Each of the cores can include various
components including a processor pipeline having multiple
stages such as a front end unit, one or more execution units,
and a back end unit. In addition, one or more levels of cache
memories can be present within the cores. Each of cores 120
may be coupled to a shared cache memory 130, which may
be a last level cache (LLC). As seen, LLC 130 can include
a caching agent 135. In various embodiments, this caching
agent may be a combined caching agent both for the CPU as
well as for an integrated IO agent. More specifically, socket
110 may include an IO module (hereafter an integrated IO
module or IIO module). This IIO module may act as an
interface to one or more off-chip peripheral or IO devices
(not shown in FIG. 1) coupled to the processor, e.g., via
PCIeTM links Examples of such IO devices include storage
devices, network interfaces, graphics cards, and so forth.
As further seen, socket 110 may include an integrated

memory controller (IMC) 145 to provide an interface to a
system memory (not shown for ease of illustration) via a
memory interconnect. Socket 110 includes similar compo
nents and can be coupled to Socket 110 via an interconnect
150, which in one embodiment can be a point-to-point (PtP)
link in accordance with a Intel(R) Quick Path Interconnect
(QPI) protocol.

Referring now to FIG. 2, shown is a block diagram of a
caching agent in accordance with an embodiment of the
present invention. As shown in FIG. 2, caching agent 200
may be logic interposed between one or more cores of a
processor and a LLC 230. In addition, caching agent 200
may also provide an interface between an IIO module within
a multicore processor and the LLC. As seen, caching agent
200 can include an ingress port 210 that includes multiple
ingress queues 211-213. As seen, ingress port 210 may be
coupled to an arbiter 215 which can arbitrate amongst
incoming requests and provide them to a table of requests
(TOR) 220. As seen, TOR 220 may be a buffer or other
temporary storage for holding incoming requests. In the
embodiment shown, TOR 220 may include at least one
dedicated resource 225 for posted transactions. In one
embodiment, dedicated resource 225 may be a single entry
of the queue, although the scope of the present invention is
not limited in this regard.

Still referring to FIG. 2, TOR 220 interfaces with LLC
230. More specifically, this LLC may be a bank or other
portion of the LLC associated with the caching agent. To
provide access to other locations within the processor via a
ring interconnect 260, an ingress queue 240 and an egress
queue 250 may be provided. Thus via caching agent 200,
cores of the processor and an IIO module can maintain
coherency without the need for additional caching agents.
Although not shown for ease of illustration, understand that

US 9,575,895 B2
3

caching agent 200 may further include various coherency
logic to perform cache coherency operations on behalf of the
cores and IIO module, and to enable coherent access with
regard to both the core transactions and IO device transac
tions as described herein.

Note that although a single structure is shown in FIG. 2
for ease of illustration, understand that a caching agent can
be distributed such that each of different portions of the
caching agent can be associated with a corresponding core
and LLC bank or slice.

With this approach, the IIO module proxies through the
CPU caching agent to access memory or other IO devices,
therefore reducing the overhead of allocating dedicated
resources for an integrated IO caching agent. This also
reduces the amount of Snoop traffic needed since a reduced
number of caching agents per system can be realized. Thus
in various embodiments, a system can include a single
caching agent per multicore processor Socket, where each
Socket includes multiple cores and an IIO module.

Embodiments also provide an IO performance enhance
ment. More specifically, since this IIO module is much
closer to an internal CPU cache such as a LLC, an IO device
supported by the IIO module can directly “push” coherent
data into this cache where any processor core within the
same Socket can have a very fast path to access the data. This
is opposed to the conventional approach where an off-chip
IO device must issue a direct cache access (DCA) hint to a
processor core to cause a cache line to be brought into the
LLC. To this end, an IO device coupled to an IIO module in
accordance with an embodiment of the present invention can
generate an allocating transaction that can lodge data
directly into the LLC.

In this way IO data can be brought closer to the CPU
cache, providing a more efficient mechanism to lodge data
from an IO device directly into a LLC of a processor and
without the need for first storing the data in a system
memory, reducing bandwidth consumption. Still further, the
need for a direct cache hint from the IO device to a core to
cause a read request to obtain the data can be avoided.

Referring now to FIG. 3, shown is a flow diagram of a
method in accordance with an embodiment of the present
invention. As shown in FIG. 3, method 300 may be used to
perform allocation of data from an IO device coupled to a
multicore processor directly into a cache memory of the
processor. More specifically, method 300 of FIG. 3 can be
used to insert data into the cache in a manner that avoids
both: first providing the data to a system memory coupled to
the processor (Such as a dynamic random access memory
(DRAM)) via an integrated memory controller of the pro
cessor, and the need for sending a hint to a core of the
processor to cause the data to be requested and stored into
the cache.
As seen in FIG. 3, method 300 may begin by receiving an

allocation transaction in an IIO module from an IO device
(block 310). For example, this allocation transaction can be
a request to write data directly into a cache memory, e.g., a
LLC of the processor, and it can be received from an IO
device Such as a peripheral device coupled to the processor
via a PCIeTM link, for example. As seen, this allocation
transaction can be forwarded from the IIO to a CPU caching
agent (block 320). Because in various embodiments there is
no separate caching agent for the IIO, this transaction can be
directed to a common caching agent that performs caching
agent functionality both for processor cores and the IIO.

Responsive to this request, control passes to block 330
where the data can be directly stored into the LLC. In one
embodiment, a least recently used (LRU) algorithm can be

10

15

25

30

35

40

45

50

55

60

65

4
used to place the data, along with a way mask to restrict the
LLC ways that can be allocated to IIO data. More specifi
cally the data can be stored coherently in accordance with a
given cache coherency protocol (e.g., a modified exclusive
shared invalid (MESI) protocol).
With the data now present in the LLC, it can be accessed

a number of times for read and write operations by any of the
cores of the processor as well as the initiating IO device or
other IO devices coupled to the processor (block 340).
Conventional cache coherency protocol operations and com
pliance with ordering rules can be performed when access
ing this data to maintain coherency. During normal cache
operation, it can be determined whether the data of this
cache line is to be evicted (diamond 350). If so, the data can
be written back to memory (block 360). Using method 300
in this way, embodiments provide the ability to efficiently
load data from an IO device directly into a processor cache,
without the need for consuming any memory bandwidth.
Instead it is only upon an eviction from the cache that the
data is written to system memory. Although shown with this
particular implementation in the embodiment of FIG. 3,
understand the scope of the present invention is not limited
in this regard.

Various elements both within an IIO module and CPU
caching agent can be configured to avoid deadlocks and
ensure reasonable performance. First, for PCIeTM ordering
rule compliance and in order to Sustain performance, a drop
ownership indication can be provided by a CPU caching
agent to send an indication back to the IIO to drop ownership
of a cache line in the case that an external Snoop request to
an existing ownership request is detected. In contrast, con
ventional IIO implementation prefetches ownership of a
cache line long prior to when the IIO device is read to retire
and meet write ordering. Thus the way a conventional IIO
works, ownership of a line is acquired before the write of the
cache line is ready to commit to the system. Only when write
ordering is met will a write to the system occur. During this
time, any incoming Snoops to the same line will cause the
IIO to lose ownership of the line and a request for ownership
must be re-issued to obtain the ownership again.

Referring now to FIG. 4, shown is a flow diagram of a
method in accordance with another embodiment of the
present invention. As shown in FIG. 4, method 375 can be
used to prevent deadlocks by causing an IIO to drop own
ership of a given cache line when a conflicting request is
received. Specifically as shown in FIG. 4, method 375 may
begin by determining that a Snoop request is received in a
caching agent for a cache line that is owned by an IIO
module (diamond 380). This ownership can be based on
state information associated with the cache line, e.g., an
ownership indicator as well as cache coherency state infor
mation, in Some embodiments. When such request is
received, the caching agent can send a drop ownership
indication to the IO module to cause the module to drop
ownership of the cache line (block 385). Note that this
indication may be because it is likely that the ownership of
the cache line by the IIO module is responsive to a prefetch
by a coupled IO device and thus the data with regard to the
IO device is of a speculative nature and is not yet needed.
As further shown in FIG. 4, control next passes to block

390 where the ownership of the cache line can be granted to
the initiator of the Snoop. In this way, this requestor can
perform desired operations on the data. Then the data may
later be accessed by the IO device. Although shown with this
particular implementation in the embodiment of FIG. 4,
understand the scope of the present invention is not limited
in this regard.

US 9,575,895 B2
5

Thus by using the above-described mechanism to relin
quish the ownership, deadlocks can be avoided. Instead in a
conventional system, one can easily imagine that two IOS
in the system may both acquire ownership for the non-oldest
transaction and both are bidding for the oldest transaction in
order to retire. Unless either side relinquishes the ownership,
the system will result in a deadlock.

There are two types of IIO traffic that will be seen by CPU
agents, namely posted and non-posted requests, according to
a PCIeTM specification, e.g., the PCI ExpressTM Specification
Base Specification version 2.0 (published Jan. 17, 2007)
(hereafter the PCIeTM specification). Generally, a posted
transaction is a transaction which when sent by a source is
considered complete by the Source and the source does not
receive a completion or other confirmation message regard
ing the transaction. One such example of a posted transac
tion may be a write transaction. In contrast, a non-posted
transaction is not considered completed by the source until
a return message is received, namely a completion. One
example of a non-posted transaction is a read transaction in
which the Source agent requests a read of data. Accordingly,
the completion message provides the requested data. Posted
requests must not be blocked by non-posted requests in the
fabrics otherwise a deadlock concern exists. For example, if
IIO posted requests that are proxying through the CPU
caching agent cannot obtain access to a requested resource
to send requests to memory or to a remote IIO, it will prevent
any non-posted requests either from the core or IIO from
completing, thus creating a deadlock.

Referring now to FIG. 5, shown is a block diagram of an
example of a possible deadlock scenario that can be avoided
according to various embodiments. As seen in FIG. 5,
system 400 includes a first multicore processor 410 coupled
to a second multicore processor 410. As seen, each pro
cessor includes a corresponding core 420 and an IIO module
430. Of course, multiple cores can be present in different
embodiments. In addition, each processor includes a caching
agent 440, which acts as the caching agent for both the core
and the IIO module. As seen, core 420 may be issuing
non-posted requests, such as core memory mapped IO
(MMIO) read requests from a non-posted queue 422 to a
TOR 444 of caching agent 440. If these non-posted reads
are in front of posted requests, deadlocks may occur.
As further seen, IIO module 430 includes a posted queue

432 used to store pending posted requests such as inbound
(inbound to the processor) memory write requests as well as
a non-posted queue 434 which may store non-posted
requests such as outbound non-posted read requests, e.g.,
from the processor or another IO agent to the IO device.
Thus as seen transactions in write queue 434 may be
ordered after transactions in write queue 432. By providing
a dedicated posted resource within TOR 444, a deadlock
situation can be avoided. Note that the PCIeTM ordering rules
dictate that posted requests are not blocked by non-posted
requests and thus in general write transactions proceed
ahead of read transactions.

To avoid such deadlocks, embodiments can configure
CPU caching agents appropriately. This configuration
includes enabling the CPU caching agent to perform
resource reservation and ordering, conflict bypass, and arbi
tration policy in accordance with an embodiment of the
present invention. To this end the CPU caching agent
preserves dedicated resources for posted requests, e.g.,
reserving at least one resource such as an entry of a TOR for
a posted request. Embodiments may also ensure the reserved
resource is consumed by the "oldest posted request from
the IIO, otherwise a younger request may take up the

10

15

25

30

35

40

45

50

55

60

65

6
resource but cannot retire while waiting for the oldest
request, which may be stuck in a fabric.
A CPU caching agent in accordance with an embodiment

of the present invention can also detect and bypass address
conflicts if a posted request were to match an older non
posted request that has the same address, thus providing a
conflict bypass. Embodiments may further provide an arbi
tration policy Such that where there is an anti-starvation
mechanism in the arbitration scheme within the CPU cach
ing agent, it ensures that the oldest posted request still can
make it through the arbitration to avoid a deadlock.

With the above-mentioned configuration of a CPU cach
ing agent, an IIO can be coupled behind a CPU caching
agent and benefit from reduced complexity and component
count. That is by proxying IIO-related transactions through
a CPU caching agent as opposed to having separate dedi
cated IO agents coupled to a socket via an off-chip link, a
better Scaling profiling and performance advantages can be
realized. Embodiments also potentially increase the possi
bility of more platform configurations that can be supported.
This integration along with low latency route-through (using
ring resources) can accommodate various platform configu
rations.
By reducing the number of caching agents, much less

resource division in the system such as home agent tracker
entries etc. occurs, and by reducing the amount of Snoop
overhead due to the number of caching agents in a system,
improved scaling/performance can be achieved.

Referring now to FIG. 6, shown is a block diagram of a
multicore processor in accordance with an embodiment of
the present invention. As shown in the embodiment of FIG.
6, processor 700 includes a distributed configuration having
partitions or slices each including a core 710 and a partition
of a caching agent 715 and a LLC 720. Note that while
distributed caching agents are shown, understand that these
distributed portions form a single caching agent, and which
is configured to handle cache coherency operations both for
the cores as well as an IIO module 750.

In general, each core 710-710, may include low level
caches in addition to various execution units and additional
processing elements. In turn, the various cores may be
coupled to each other and to a shared cache memory formed
of a plurality of units of a LLC 740–740, via caching agent
715-715. In various embodiments, LLC 740 may be
shared amongst the cores and IIO module 750. As seen, a
ring interconnect 730 thus couples the cores together, and
provides interconnection between the cores, caching agent
715 and IIO module 750.
As seen in FIG. 6, IIO module 750 can provide an

interface to various off-chip IO/peripheral devices (not
shown for ease of illustration in FIG. 6). To this end, IIO
module 750 can include various interfaces including mul
tiple PCIeTM interfaces 752-752, a direct media interface
(DMI) 754, and an IO advance programmable interrupt
controller (IO APIC) 755. As seen, IIO module 750 also can
be coupled to a power control unit (PCU) 760.
To provide communications with other components of a

system, ring interconnect 730 may couple to a home agent
770 that in turn guards an integrated memory controller
(IMC) 775. In turn, IMC 775 can communicate, e.g., via
DDR links, to a system memory coupled to the processor.
Furthermore, a Intel(R) Quick Path Interconnect (QPI) inter
face 780 can couple to ring interconnect 730 to act as an
interface to another agent (such as another processor in a
multiprocessor system) coupled to the processor via a QPITM
link. Although shown with this particular configuration in

US 9,575,895 B2
7

the embodiment of FIG. 6, understand the scope of the
present invention is not limited in this regard.

FIG. 7 is a block diagram of a multiprocessor system 800
coupled with point-to-point (PtP) system interconnects in
accordance with an embodiment of the present invention. In
the embodiment shown, each processor 810 includes one
instance of an integrated memory controller 815 that in turn
is coupled to a corresponding local portion of a system
memory 820, e.g., via various memory links Such as double
data rate (DDR) channels. As seen, one of the processors is
connected to a peripheral controller hub (PCH) 830 via, e.g.,
DMI and PCIeTM links. In the embodiment shown, a QPITM
link 825 is used to connect the two processors. Note that
each of the processors can include an IIO module to provide
an interface to one or more off-chip peripheral devices and
a single caching agent shared by the IIO module and the
cores of the processor. As further seen in FIG. 7, PCH 830
may communicate with various devices including a basic
input/output system (BIOS) storage 835 such as a flash
memory, a serial advanced technology attach (SATA) device
840 such as a disk drive, and a network interface 850, e.g.,
an Ethernet device.

Embodiments may be implemented in code and may be
stored on a non-transitory storage medium having stored
thereon instructions which can be used to program a system
to perform the instructions. The storage medium may
include, but is not limited to, any type of disk including
floppy disks, optical disks, solid state drives (SSDs), com
pact disk read-only memories (CD-ROMs), compact disk
rewritables (CD-RWs), and magneto-optical disks, semicon
ductor devices such as read-only memories (ROMs), ran
dom access memories (RAMs) such as dynamic random
access memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program
mable read-only memories (EEPROMs), magnetic or optical
cards, or any other type of media Suitable for storing
electronic instructions.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and varia
tions therefrom. It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention.

What is claimed is:
1. A processor comprising:
a plurality of cores, a shared cache memory, a memory

controller to interface with a memory coupled to the
processor, an integrated input/output (IO) module to
interface between the processor and an IO device
coupled to the processor and a caching agent to perform
cache coherency operations for the plurality of cores
and the IIO module, wherein the processor is to receive
an allocation transaction from the IO device and
directly store data of the allocation transaction into the
shared cache memory, wherein the caching agent is a
single caching agent for the processor and includes a
plurality of distributed portions each associated with a
corresponding one of the plurality of cores.

2. The processor of claim 1, wherein the plurality of
distributed portions of the caching agent are coupled via a
ring interconnect.

3. The processor of claim 1, wherein the caching agent
includes a table of requests to store pending requests for the
plurality of cores and the IIO module.

10

15

25

30

35

40

45

50

55

60

65

8
4. The processor of claim 3, wherein the table of requests

includes at least one dedicated entry to store a posted
transaction.

5. The processor of claim 1, wherein the shared cache
memory comprises a last level cache (LLC) including a
plurality of distributed portions each associated with a
corresponding one of the plurality of cores.

6. The processor of claim 1, wherein the processor is to
directly store the data of the allocation transaction into the
shared cache memory without initiation of a memory trans
action to the memory.

7. The processor of claim 6, wherein the processor is to
write the data of the allocation transaction to the memory
responsive to eviction of a cache line including the data.

8. The processor of claim 1, wherein the caching agent is
to send a drop ownership indication to the IIO module for a
cache line owned by the IIO module for the IO device
responsive to receipt of a Snoop request in the caching agent
for the cache line from another agent.

9. The processor of claim 8, wherein the IO device
prefetched the cache line, and another agent is one of the
plurality of cores.

10. The processor of claim 1, further comprising a ring
interconnect to couple the plurality of cores and the shared
cache memory via a caching agent.

11. A non-transitory machine-readable medium having
stored thereon instructions, which if performed by a
machine cause the machine to perform a method compris
ing:

receiving an allocation transaction in an integrated input/
output (IIO) module of a multicore processor from an
IO device coupled to the multicore processor;

forwarding the allocation transaction to a caching agent of
the multicore processor to cause the data to be stored
into a shared cache memory of the multicore processor,
the caching agent shared by a plurality of cores of the
multicore processor and the IIO module, wherein the
caching agent is a single caching agent for the multi
core processor and includes a plurality of distributed
portions each associated with a corresponding one of
the plurality of cores; and

directly storing the data of the allocation transaction into
the shared cache memory of the multicore processor
without sending the data to a system memory coupled
to the multicore processor.

12. The non-transitory machine-readable medium of
claim 11, wherein the method further comprises accessing
the data in the shared cache memory via at least one of the
plurality of cores of the multicore processor a number of
times, without sending a transaction to the system memory.

13. The non-transitory machine-readable medium of
claim 11, wherein the method further comprises sending the
data to the system memory from the shared cache memory
if a cache line including the data is evicted from the shared
cache memory, when the cache line includes modified data.

14. The non-transitory machine-readable medium of
claim 11, wherein the method further comprises sending a
drop ownership indication to the IIO module for a cache line
owned by the IIO module responsive to receipt of a Snoop
request in the caching agent for the cache line from another
agent.

15. A system comprising:
a first multicore processor including a first plurality of

cores, a first shared cache memory, a first integrated
input/output (IIO) module to interface between the first
multicore processor and a first plurality of IO devices
coupled to the first multicore processor, and a first

US 9,575,895 B2
9 10

caching agent to perform cache coherency operations ing agent to perform cache coherency operations for the
for the first plurality of cores and the first IIO module, second plurality of cores and the second IIO module:
wherein the first caching agent is to receive an alloca- and
tion transaction from the first IIO module and directly a peripheral controller coupled to at least one of the first
store data of the allocation transaction into the first 5 and second multicore processors.
shared cache memory, wherein the first caching agent
is a single caching agent for the first multicore proces
sor and includes a plurality of distributed portions each
associated with a corresponding one of the first plural
ity of cores, and the first shared cache memory com- 10
prises a last level cache (LLC) including a plurality of
distributed portions each associated with a correspond
ing one of the first plurality of cores;

a second multicore processor including a second plurality
of cores, a second shared cache memory, a second IIO 15
module to interface between the second multicore
processor and a second plurality of IO devices coupled
to the second multicore processor, and a second cach- k

16. The system of claim 15, wherein the first caching
agent includes a table of requests having a plurality of
entries each to store a pending request for one of the first
plurality of cores or the first IIO module, including at least
one dedicated entry to store a pending request corresponding
to a posted transaction.

17. The system of claim 15, wherein the data in the shared
cache memory is to be accessed via at least one of the first
plurality of cores a number of times, without sending a
transaction to a system memory coupled to the first multi
core processor.

