
(12) United States Patent
Kimmel et al.

USOO957.1575B2

US 9,571,575 B2
Feb. 14, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

(56)

5,978,813 A *
6,209,032 B1*

GRANULAR SYNCASEM-SYNC
ARCHITECTURE

Applicant: NetApp., Inc., Sunnyvale, CA (US)

Inventors: Jeffrey S. Kimmel, Chapel Hill, NC
(US); Susan M. Coatney, Cupertino,
CA (US); Yuedong Mu, San Jose, CA
(US); Santosh Rao, Sunnyvale, CA
(US)

Assignee: NETAPP, INC., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 187 days.

Appl. No.: 14/473,621

Filed: Aug. 29, 2014

Prior Publication Data

US 2016/OO6567O A1 Mar. 3, 2016

Int. C.
G06F 5/16 (2006.01)
H04L 29/08 (2006.01)
G06F 7/30 (2006.01)
U.S. C.
CPC H04L 67/1095 (2013.01); G06F 17/30215

(2013.01); H04L 67/1097 (2013.01)
Field of Classification Search
CPC H04L 67/1095; H04L 67/1097: G06F

17/30215; G06F 17/30174–17/30176
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

11/1999 Foltz. GO6F 17,3OO67
3/2001 Dutcher HO4L 67/1095

TO9,208

(A) CHANGE Filesystern Request Generator REQUEST

103 (6): 13

(D): r

s 107
FER (E Change (E) Storage

- Propagator M Cluster

- - - , , , - . S X ync
i7 109A

N-FG Change
TRACKING- ---- Propagator

19

123

GROUPTHATNCUES (G).
PRIMARYLOGICAL
STORAGE OBJECT

102 --

6,269.406 B1* 7/2001 Dutcher G06F 21f41
707,999.2O1

7,039,661 B1* 5/2006 Ranade GO6F 17,30575
TO7/610

7,395,352 B1* 7/2008 Lam HO4L 67/1095
707,999.2O2

7,571,391 B2* 8/2009 Roessler GO6F 17,30905
715,764

8,381,217 B1 * 2/2013 Wijayaratne GO6F 9/50
709,223

8,381,271 B2 * 2/2013 Dingwall G06F 21/34
705/18

(Continued)

OTHER PUBLICATIONS

Int Search Report/Written Opinion cited in PCT Application No.
PCT/US2015/043159 dated Oct. 28, 2015, 18 pgs.

(Continued)

Primary Examiner — Tauqir Hussain
Assistant Examiner — Javier O Guzman
(74) Attorney, Agent, or Firm — Cooper Legal Group,
LLC

(57) ABSTRACT

Data consistency and availability can be provided at the
granularity of logical storage objects in storage solutions
that use storage virtualization in clustered storage environ
ments. To ensure consistency of data across different storage
elements, synchronization is performed across the different
storage elements. Changes to data are synchronized across
storage elements in different clusters by propagating the
changes from a primary logical storage object to a secondary
logical storage object. To satisfy the strictest RPOs while
maintaining performance, change requests are intercepted
prior to being sent to a filesystem that hosts the primary
logical storage object and propagated to a different manag
ing storage element associated with the secondary logical
storage object.

20 Claims, 14 Drawing Sheets

125
129 - Flesystem Request Generator

38 13t

Storage
Custer - Secondary
Sync - Writer

Engine - -------------------- :
SYNC,

35 TRACKING:

GROUP HANCLUES
SECONDARYOGCAL
SORAGEOBEC

127 ---,

US 9,571,575 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

8,452,856 B1* 5/2013 Lent GO6F 3,0647
TO9,219

8,495,250 B2 7/2013 Ananthanarayanan et al.
8,667.236 B2 * 3/2014 Phelps GO6F 11.2074

T11 162
8,868,492 B2 * 10/2014 Garin, Jr. GO6F 17,30575

TO7/610
2005. O193041 A1 9/2005 Bourbonnais et al.
2008.0005288 A1 1/2008 Kodama G06F 11, 2069

TO9.220
2011/0066592 A1 3/2011 Newport et al.
2014,0003396 A1* 1/2014 Yu HO4W 72/1247

370,335

OTHER PUBLICATIONS

"Sun Storage Tek Availability Suite 4.0 Remote Mirror Software
Administration Guide”, Apr. 2006, reprinted from the Internet at:
https://docs.oracle.com/cd/E19359-01/819-6148-10/819-6148-10.
pdf. 84 pgs.

* cited by examiner

571,575 B2 9 Sheet 1 of 14 US 9 Feb. 14, 2017 U.S. Patent

-- ?NDIOVH1

571,575 B2 9 Sheet 2 of 14 US 9 Feb. 14, 2017 U.S. Patent

US 9,571,575 B2 Sheet 3 of 14 Feb. 14, 2017 U.S. Patent

609

US 9,571,575 B2 Sheet 4 of 14 Feb. 14, 2017 U.S. Patent

609 IN?TO

U.S. Patent Feb. 14, 2017 Sheet S of 14 US 9,571,575 B2

501

Filesystem Request Generator

Logical Storage
Object Cluster

Sync
Engine

Secondary
Writer

FIG. 5

U.S. Patent Feb. 14, 2017 Sheet 6 of 14 US 9,571,575 B2

- TARGET OF REQUEST INA D-YES
SYNC RELATIONSHIP2-r

- -
^. --

READ OUTSYNCRELATIONSHIP
INFORMATION" i? 60

- READ OR
to- CHANGE - ---, CHANGE

FULL - Y. S. Full-sync - 607 as

614 - PASSREQUEST AND SYNCRELATIONSHIP
INFORMATION TO PROPOGATOR INSTANCE

NO SEM FOR PRIMARY ENDPOINT AND SECONDARY
ENDPOINT PAR INDICATED INSYNC

SYNC RELATIONSHIP

RECORD REQUES! RECORD REQUESTOR AND INDICATE
609 PROPAGATOR INSEANCE AS REQUESTOR

PASSREQUEST TO SEQUENCER -
INSTANCE FOR PRIMARY ENDPOINT 615 FULL SYNC 613
AND SECONDARY ENDPOINT PAIR (...
INDICATED INSYNCRELATIONSHIP A

RECORD DATA TO TRACK IN-FLIGHT REQUEST

SUPPLY REQUEST INDICATE REQUEST FOR
FILESYSTEM PERFORMING ON THE

SECONDARY ENDPOINT

U.S. Patent Feb. 14, 2017 Sheet 7 of 14 US 9,571,575 B2

(a)
SEMSYNC
V.

701 - RECORD DATA TO TRACKIN-FLIGHT REQUEST

SUPPLY REQUEST TO
FILESYSTEM

705
- BOUNDARY is

- FOR OPEN CHANGE SET c-YES
is LOGREACHED2

Y
Y

... -- 709

CLOSE LOG
NO ---------------------

PASSCLOSEDLOG
FOR PROCESSING

711

INDICATE REQUESTINOPEN
CHANGE SET LOG :

707

FIG. 7

U.S. Patent Feb. 14, 2017 Sheet 8 of 14 US 9,571,575 B2

DEERMINE ANY DEPENDENCES AMONG CHANGE RECUESS
801 - IN CLOSED CHANGE SET LOG AND INDICATE SEQUENCING IN

: ACCORDANCE WITH THE DEPENDENCES :

803 NDICAE CHANGESE INFORMATION IN EACH
: CHANGE REOUES OF THE CHANGE SET

808 - ELIMINATEREDUNDANT CHANGE REQUESTS

SUPPLYEACH CHANGEREQUEST AND ANY
807 - INDICATION OF SEQUENCING TO THE CLUSTER

SYNC ENGINE

FIG. 8

U.S. Patent Feb. 14, 2017 Sheet 9 of 14 US 9,571,575 B2

--

901 - RECEIVE RESPONSE FROM FILESYSTEM OF
PRIMARY ENDPOINT

as SUCCESSFUL cer 903
YES
- Y - 9 5

909 - UPDATE TRACKING DATA TOINDICATE f
-- | PRIMARY ENDPOINT CHANGE COMPLETE 4

WA

NO - b
- is 913

-SECONDARY COMPLETEDs -- s
911 rs THE REOUESED -No-TMEOUT -

is CHANGE? - S -
iss- 917

(. YES
YES ...u. Yu.

---------------Y.: INDICAE THAT :
INDICATE THAT REQUESTOR SECONDARY ENDPOINT

921 - CAN BE NOTIFIED THAT ISOUT OF SYNC WITH
REQUEST COMPLETED THE PRIMARY ENDPOINT

905 i? ran to ar. PROCESS OUT OF SYNC

7 REQUEST WITH CONFIGURATION
ABOR CHANGEO --

SECONDARY ENDPOINT gig

INDICATE THAT
REQUESTOR CAN BE
NOTED THA
REGUES FALED

FIG. 9

U.S. Patent Feb. 14, 2017 Sheet 10 of 14 US 9,571,575 B2

1001 - RECEIVE INDICATION OF CHANGEREQUEST TO
BE PERFORMED ON SECONDARY ENDPOINT

DETERMINE CLUSTERNODE ASSOCIATED
WITH SECONDARY ENDPOINT

- COMMUNICATION is
- SESSIONALREADYESTABLISHEDs too
is WITHSYNCENGINE AT THE -

is CLUSTER NODE? -

NO
w

ESTABLISH COMMUNICATION

SESSION WITH THE SYNC is 1007
ENGINE AT THE CLUSTER NODE

CREATE AREPLICATION REQUEST THAT TARGETS THE
SECONDARY ENDPOINT IN ACCORDANCE WITH THE

CHANGE RECUEST AND INDICATES THE PROPAGATOR
NSTANCE AS HEREOUESTOR

YES

COMMUNICATE THE REPLICATION REQUEST OVER THE
SESSION OTHE CLUSTER NODE ASSOCATED WITH THE 1011

SECONDARY ENDPON

1013 - RECEIVE RESPONSE TO REPLICATION RECRUEST

PASSREPLICATION RESPONSETO
1015 - PROPAGATOR INSTANCE INDICATED

: AS RECUESTOR

U.S. Patent Feb. 14, 2017 Sheet 11 of 14 US 9,571,575 B2

- SEM.SYNCOR to- r
FULL SYNC -SEM sync

- Y - NO
1103 - SUCCESSFUL is

1105 ---. 1113 -------

FULLSYNC2
--

...------- - PRIMARY - 1123
- SUCCESSFUL c-YES, ENDPOINT ALREADY). YES

------ is CHANGED? - NO

b - PRIMARY is
-- w - ENDPOINT CHANGED is

107 r N. s -
2. s UPDATE TRACKING SUCCESSFULLY
REQUESTED DATA TO INDICATE --

- CHANGE TO PRIMARY SECONDARY 1125
ENDPOINT ENDPOINT CHANGE ys

COMPLETED2- COMPLETE :

- - - -

YES

1115 CLEAR
ROLLBACK CHANGE SET
CHANGE TO LOG
PRIMARY
ENDPOINT

w

INDICATE THAT
1117 ruREQUESTORCAN

BE NOTIFIED
| THAT REQUEST

COMPLETED

ABORT CHANGE TO CLEAR TRACKING
PRIMARY ENDPOINT 'DTAFOREGUEST

INDICATE THAT
REQUESTORCAN BE

NOTFIED THAT
REQUES FAED

21

1111 FIG 11

U.S. Patent Feb. 14, 2017 Sheet 12 of 14 US 9,571,575 B2

RECEIVE REPLICATION RECUEST HA :
- - - - --> INDICATES A PRIMARY ENDPOINT AND A rs1201

SECONDARY ENDPON

SECONDARY,
/WRITER ALREADY\

YES (INSTANTIATED FOR NO
12O7 N PAIR OF / 1205

f ENDPOINTS2/ i

PASS REPLCAON RECQUEST N / INSTANATE SECONDARY
TO SECONDARY WRITER N/ WRITER BASED ON ENDPONT

INSTANCE PAR

STAGE is

a is ti 1209 LOG 7
RECORD DATA TO TRACK AREADY
REPLICATION REQUEST 1217 e - Y.

n

NCREATED FOR -
2- Y - NSTAGING2

INDICAE REPECATION Y -
SUPPLY REQUEST REQUEST IN LOG IN
TO STORAGE ACCORDANCE WITH SEQUENCE NO

ELEMENT MODULE --------------------------.
X - is CREATESTAGINGLOG

- CHANGE WITH REPLICATION
< SET LOG > REQUEST a

COMPLETE2.
- - Liais 1225
YES

... .Y-

- RAVERSE CHANGE SET LOG 1221

FIG. 12

U.S. Patent Feb. 14, 2017 Sheet 13 of 14 US 9,571,575 B2

4301 - RECEIVERESPONSE TO REQUEST FROM
FILESYSTEM

- ENTIRE 1304 ru, CHANGE SET --YES
COMPLETED? 317

NO GENERATE NOTIFICATION
NO -Y- THAT CHANGE SET COMPLETE

1319 - co-ES in ANDSUPPLY TOREQUESTING NODE VIASYNC ENGINE LOG NUUE VIASYN ENGINE

SELECT NEXT REQUEST IN
1321 - ACCORDANCE WITH

ORDERING INDICATED FOR
REQUESTS OF STAGINGLOG
AND SUPPLY TO FILESYSTEM

1305
Y "RECORD DATATO - RETRY? --NO-> INDICATECHANGE SET 181

- FAED

... . GENERATE NOTIFICATION THAT
; UPDATE RERY CHANGE SET FAILED AND is 1313

COUNTER SUPPLY TO REQUESTING NODE
WASYNC ENGINE

SUPPLY REQUEST .vil
TO FILESYSTEM MARKCHANGE SET LOG

1309

U.S. Patent Feb. 14, 2017 Sheet 14 of 14 US 9,571,575 B2

- 1405

140 vi- Network
..-...-...- "' interface

Processor

- Bus

| A X Storage Cluster Based

: K. Granular Full Sync And Semifi411
1407 rul Memory m) Sync Propagation Engine

--

1403

FIG. 14.

US 9,571,575 B2
1.

GRANULAR SYNCASEM-SYNC
ARCHITECTURE

BACKGROUND

Aspects of this disclosure generally relate to the field of
distributed Storage, and, more particularly, to an architecture
for synchronizing data across distributed storage.

Whether maintaining customer data or their own data,
businesses demand always available or highly available data
and protection of that data. To Support these demands, data
often resides across multiple storage systems in multiple
sites that are often great distances apart. One of the reasons
these sites are great distances apart is to avoid a single
catastrophe impacting data availability. Metrics used to
define the availability requirements include recovery point
objective (RPO) and recovery time objective (RTO). A
business specifies an RTO as the maximum amount of time
that the business tolerates lack of access to the business
data. A business specifies an RPO as the amount of data in
terms of time that can be lost due to an interruption. For
instance, a business can specify an RTO as 15 seconds. In
other words, the business will accept at most 15 seconds
from the time of a service interruption or failure to the time
of full recovery of their systems. For an RPO, a business can
specify 5 seconds. That means that the business will not
accept losing any more than the data written (e.g., new
writes, updates, etc.) in the 5 seconds that precede a failure
or interruption.

Storage features to Support the availability and protection
demands of businesses across storage systems have been
given various names, such as Snapshotting, mirroring, clon
ing, and replicating. Each of these storage features can also
vary by the provider of the storage feature and/or storage
product. Despite the variations, each storage feature pro
vides a consistent view of a business data.

BRIEF DESCRIPTION OF THE DRAWINGS

The present aspects of the disclosure may be better
understood by referencing the accompanying drawings.

FIGS. 1 and 2 depict example storage cluster synchroni
Zation engines coordinating a data change between primary
and secondary logical storage objects in different clusters
responsive to a change request.

FIGS. 3-4 depict example operations for a logical storage
object configured as secondary logical storage object in a
full sync relationship and configured as a primary logical
storage object in a semi-sync relationship.

FIG. 5 depicts an example architecture that that provides
both full synchronization and semi-synchronization at a
logical storage object granularity across nodes of a cluster or
clusters.

FIG. 6 depicts a flowchart of example operations for
handling receipt of a change request and handling a change
request that targets a primary endpoint in a full sync rela
tionship.

FIG. 7 depicts a flowchart of example operations
logical storage object granularity semi-sync operations.

FIG. 8 depicts a flowchart of example operations
processing a closed change set log.

FIG. 9 depicts a flowchart of example operations for
handling a response from a storage element module for a
primary endpoint in a sync relationship.

FIG. 10 depicts a flowchart of example operations for a
cluster based synchronization engine to process requests
from propagators and counterpart synchronization engines.

for

for

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 11 depicts a flowchart of example operations for a

propagator instance to handle a response to a change request
to a secondary endpoint.

FIG. 12 depicts a flowchart of example operations for a
secondary writer to handle replication requests.

FIG. 13 depicts a flowchart of example operations for a
secondary writer instance to handle responses from an
underlying storage element module.

FIG. 14 depicts an example computer system with a
storage cluster based granular full sync and semi Sync
propagation engine.

DESCRIPTION OF EXAMPLE
ILLUSTRATION(S)

The description that follows includes example systems,
methods, techniques, instruction sequences and computer
program products that embody techniques of the present
disclosure. However, it is understood that the described
aspects of the disclosure may be practiced without these
specific details. For instance, although examples refer to
disks and disk arrays, aspects of the disclosure are not so
limited. Aspects of the disclosure may be implemented on
storage systems that use solid state storage devices, optical
storage devices, federations of individual storage devices,
combinations of different types of storage devices, etc.
Furthermore, many example illustrations use a pair of logi
cal storage objects to illustrate operations. Aspects of the
disclosure are not limited to a primary and secondary logical
storage object pair and can be applied to a group of logical
storage objects. For instance, systems can be configured to
synchronize a primary logical storage object with multiple
secondary logical storage objects. Well-known instruction
instances, protocols, structures and techniques have not been
shown in detail in order not to obfuscate the description.

Terminology
This description uses the term “storage element to refer

to any entity within a storage system that hosts and/or
manages access to data. Storage elements referred to herein
can be categorized as managing storage elements and host
ing Storage elements. The distinction between a managing
storage element and a hosting storage element arises from
the primary functionality of the storage element. Managing
storage elements primarily manage access to hosting storage
elements. Managing storage elements process requests from
other devices (e.g., clients) and can originate requests to
perform operations (e.g., Snapshot operations). Regardless
of whether the request is from another device or originates
from the managing storage element, the managing storage
element transmits a request to a hosting storage element.
Examples of a managing storage element include a file
server and a storage controller. A hosting storage element
primarily performs operations that ultimately fulfill requests
from the perspective of the managing storage element. A
hosting storage element performs a read of or a write to a
location specified by a request from a managing Storage
element. This read or write may be performed on a disk or
multiple disks. In the case of multiple layers of virtualiza
tion, the read or write may be performed on what appears to
be a disk or disks from the perspective of the managing
storage element. Examples of a hosting storage element
include a disk drive, an optical drive, a storage array, and a
tape drive.
The terms managing storage element and hosting storage

element are used based on the primary functionality of a
storage element because functionality is not exclusive
between the elements. For instance, a storage controller may

US 9,571,575 B2
3

have data locally stored in cache to expedite handling of
access requests. Even though the storage controller can
fulfill access requests, the primary functionality of the
storage controller is not to read data from and write data to
local memory. Similarly, a hosting storage element can
include hardware that manages access to disks. For instance,
a redundant array of independent disks (RAID) controller
and an array of disks can be housed within a single enclo
Sure. Although the RAID controller manages access to the
array of disks, the primary functionality of the components
housed within that single enclosure is to fulfill requests
received from a managing storage element.
The description also uses the terms full synchronization

(“full sync') and semi-synchronization (“semi sync'). These
terms refer to different types of synchronization configura
tions. A “full Synchronization configuration, as used herein,
refers to a configuration that delays sending a reply con
firming a change request has been performed until the
change has been synchronized across a primary logical
storage object and a secondary logical storage object(s). A
'semi-synchronization' configuration, as used herein, refers
to a configuration that allows a reply confirming a change
request has been performed to be sent after the change has
been performed on a primary logical storage object while
synchronization with the secondary logical storage object(s)
may still be in progress.
The description uses the term “request to refer to a

communication between software entities or hardware enti
ties that requests something be done, and to avoid the
variation in names, data fields, etc., used in various proto
cols. A request can indicate a request for data to be read, data
to be written, or some other data processing request. A
request can indicate the type of operation (e.g., read, write),
a target of the request (e.g., a logical storage object identi
fier), and an identifier of a requestor. Additional information
may be indicated in a request depending upon the governing
protocol. But this description does not delve into the details
of the additional information. Further, a number of protocols
can form what is referred to as a protocol stack. A protocol
stack can be considered the series of processing modules
that a request passes through or traverses. At each layer of
the protocol stack, headers and/or trailers may be added or
removed from the request. For this description, at least some
stack processing is not described to avoid adding further
complexity to the description. This description will refer to
a request as a request regardless of associated headers or
trailers, and regardless of possible modifications to values in
the headers and/or trailers.

Introduction
Clustering generally refers to grouping hardware ele

ments together to reap the benefit of the group (“cluster') of
hardware elements (e.g., disk drives, storage arrays, file
servers, storage controllers, etc.) that cannot be gained from
individual hardware elements. Clustering can be used for
various storage features, examples of which include load
balancing, failover Support, increasing I/O bandwidth, and
data availability. To support these aspects of storage and
provide a consistent view of storage, data is synchronized
between the Supporting storage elements. The different
hardware storage elements are often referred to as primary
storage elements and secondary storage elements based on
which storage elements are initially and/or preferentially
used (e.g., by configuration) to Supply data to requestors and
to modify data for requestors. In addition, a cluster of
storage elements can be designated as a primary cluster and
a cluster of storage elements can be designated as a second
ary cluster.

5

10

15

25

30

35

40

45

50

55

60

65

4
Many storage system functionalities are deployed as

features of storage virtualization. Often, storage virtualiza
tion software/tools obfuscate the actual hardware elements
that constitute a storage system. Thus, requestors (some
times referred to herein as clients) often read from and write
to logical storage objects or logical storage containers,
examples of which include logical unit numbers (LUNs),
files, virtual machine disks (VMDKs), virtual volumes, and
logical partitions. Any number of layers of virtualization can
separate actual storage system hardware elements and a
client sending an access request. Each storage system hard
ware element may host numerous logical storage objects
and/or numerous parts of logical storage objects. Moreover,
a storage controller handling a request on behalf of a client
may communicate with a virtual storage array that appears
to be a physical storage array. Thus, a logical storage object,
which is presented as if a storage array, may be presented as
hosting multiple logical storage objects.

Overview
Data consistency and availability can be provided at the

granularity of logical storage objects in storage solutions
that use storage virtualization in clustered storage environ
ments. For availability, data is maintained on different
storage elements at different sites as previously mentioned.
To ensure consistency of data across the different storage
elements, synchronization is performed across the different
storage elements. At the granularity of logical storage
objects, data can be synchronized efficiently across the
different storage elements at distant sites because, at least
partly, the amount of data being synchronized is Smaller and
less Susceptible to negative incidents in a network that
carries the data. Changes to data are synchronized across
storage elements in different clusters by propagating the
changes from a node associated with a primary logical
storage object (i.e., the logical storage object specified in a
change request) to a secondary logical storage object (i.e., a
logical storage objected associated with the primary logical
storage object for synchronization). To satisfy the strictest
RPOs (e.g., RPO-0) and RTOs while maintaining perfor
mance, filesystem requests are intercepted prior to being
sent to a filesystem that hosts the primary logical storage
object ("primary filesystem’’) and propagated to a filesystem
of a node associated with the secondary logical storage
object ('secondary filesystem'). The logical storage objects
have immutable identifiers that are exclusive at least within
any associated clusters to allow efficient identification of the
logical storage objects across clusters. Intercepting a file
system request after it has been generated from a storage
protocol specific request and prior to the filesystem request
being sent to the primary filesystem avoids encumbering the
propagating operations with storage protocol specific and/or
application specific operations, which further reduces the
size of the change request being propagated as well as
number of processing operations. Having the entities that
handle the operations to Support synchronization directly
interface with the filesystem leverages mechanisms of the
filesystem for efficient conveyance of filesystem responses.

Example Illustrations
The example illustrations depicted in FIGS. 1-4 depict

different degrees of example details as an attempt to avoid
presenting an overwhelming amount of information about
the systems. Every possible data structure and every pos
sible modularization of functionality is not presented since
they are numerous and not necessary to understanding
aspects of the disclosure. For instance, data structures pre
sented as multiple data structures can be organized differ
ently with a variety of possible indexing/accessing schemes

US 9,571,575 B2
5

and arrangement of data. Similarly, the functionality pre
sented as individual modules/engines/units in the example
illustrations can also be organized differently in accordance
with any one of platform (operating system and/or hard
ware), application ecosystem, interfaces, programmer pref
erences, programming language, etc. In addition, some
functionality is described later in the description also as an
attempt to avoid presenting an overwhelming amount of
information. For instance, a Snapshot request from a man
aging entity or a semi-sync configuration can lead to
sequencing of multiple access requests at a primary man
aging storage element. Sequencing is not discussed in the
early example illustrations.

FIGS. 1 and 2 depict example storage cluster synchroni
Zation engines coordinating a data change between primary
and secondary logical storage objects in different clusters
responsive to a change request. FIG. 1 depicts propagation
of the change request from a primary managing Storage
element to a secondary managing storage element. Manag
ing storage elements will be referred to hereafter as nodes
for brevity. In FIG. 1, a first cluster includes a primary node
101 and a second cluster includes a secondary node 125.
Entire clusters are not depicted for simplification of the
figure and due to drawing space constraints. The primary
node 101 is communicatively coupled with hosting storage
elements that host a group 102 of logical storage objects.
The group 102 includes a primary logical storage object. The
primary node 101 includes a filesystem request generator
103, a change propagation engine 105, a storage cluster
synchronization engine 123, and a filesystem 111. The
filesystem request generator 103 generates a filesystem
request from a storage protocol based request. The change
propagation engine 105 includes an interceptor 107, a
change propagator 109A, and a change propagator 109N.
These modules in the primary node 101 access data depicted
in FIG. 1 as sync mappings 115, in-flight tracking data 117.
and in-flight tracking data 119. The sync mappings 115
indicate synchronization configurations among logical Stor
age objects (also referred to herein as Synchronization
relationships or sync relationships). For example, a primary
logical storage object can have a full sync relationship with
one secondary logical storage object and a semi-sync rela
tionship with another secondary logical storage object. In
flight tracking data tracks progress or state of requests from
the perspective of corresponding change propagators. In
other words, each change propagator instance maintains
in-flight tracking data for the corresponding logical storage
objects that have a sync relationship.
The secondary node 125 can include all of the same

modules/engines as the primary node 101. In FIG. 1, some
of the modules are not depicted to reduce repetition. The
secondary node 125 is depicted as including a filesystem
request generator 129, a storage cluster synchronization
engine 139, a change propagation engine 131, and a file
system 137. The change propagation engine 131 includes an
interceptor 133 and a secondary writer 135. The secondary
writer 135 of the secondary node 125 accesses data depicted
in FIG. 1 as Sync tracking data 134. The sync tracking data
134 indicates progress or state of requests from the perspec
tive of the secondary writer 135. The sync tracking data 134
is not necessarily contained within the change propagation
engine 131. The sync tracking data 134 is merely depicted
near the secondary writer 135 for this description. The
secondary node 125 is communicatively coupled with host
ing storage elements that host a group 127 of logical storage
objects. The group 127 includes a secondary storage object.

10

15

25

30

35

40

45

50

55

60

65

6
Although there may be some variation in functionality

across different nodes, the functionality of modules having
a same name will be generally the same in this illustration.
The filesystem request generators 103, 129 generate filesys
tem requests based on storage protocol input/output (I/O)
requests passed to the filesystem generators 103, 129. The
filesystem generators 103, 129 can receive storage protocol
I/O requests from a network Stack, a small computer system
interface (SCSI) stack, Internet SCSI (iSCSI) module, etc.
Examples of storage protocol I/O requests include storage
area network (SAN) requests and network attached storage
(NAS) requests. The filesystem generators 103,129 generate
the filesystem requests based on the filesystem implemented
on their node. The interceptors 107, 133 intercept requests
from the filesystem request generators 103,129. Intercepting
can be implemented differently. An application program
ming interface can be modified so that the underlying
functionality changes without changing the interface pre
sented to callers. As another example, a monitoring process
can monitor an execution queue and redirect a call when a
specified address occurs in the execution queue. The file
systems 111, 137 access the underlying hosting storage
element in accordance with filesystem requests. The storage
cluster synchronization engines 123, 139, process commu
nications in accordance with a protocol implemented via the
network 110. As examples, the protocols implemented by
the engines 123, 139 can be any one or more of Fibre
Channel (FC), Fibre Chanel over Ethernet (FCoE), Internet
Fibre Channel protocol (iFCP), and a tunneling protocol.
Regardless of the specific protocol, the engines 123, 139
implement a protocol that Supports an active connection that
can be perceived as a direct connection between machines
despite distance and hopsbetween the machines.

FIG. 1 depicts example operations with a series of stages
identified by the letters A-N. The suggested ordering of
operations by the letters is limited to this illustrated example
and should not be used to limit scope of the claims. At a
stage A, the primary node 101 receives a change request 113.
The change request 113 originates from a client that might
be at a managing node (e.g., cluster manager), at a user node
(e.g., a customer's server), etc. The filesystem request gen
erator 103 processes the change request 113, generates a
filesystem request based on the change request, and invokes
code to pass the filesystem request 113 to the filesystem 111.
As part of generating the filesystem request 113, the file
system request generator 103 translates the logical storage
object identifier indicated as a target in the change request
into filesystem location information of the logical storage
object (e.g., inode identifiers, offset, etc.). But the filesystem
request generator 103 also indicates the logical storage
object identifier to travel with the filesystem request. The
logical storage object identifier can travel with the filesystem
request in different manners. For example, a filesystem
generator can write the logical object identifier into metadata
of the filesystem request. As another example, a filesystem
generator creates a data structure and associates it with the
filesystem. Instead of the filesystem 111 receiving the file
system request, the interceptor 107 receives the filesystem
request at stage B. The request in its various forms (e.g.,
storage protocol I/O request, filesystem request, etc.) is no
longer identified with the label 113 since the change being
requested is the same despite the form of the request.
At stage C, the interceptor 107 accesses sync mappings

115 to determine any sync relationships relevant to the
filesystem request. The filesystem request indicates a logical
storage object in group 102 (in terms of the filesystem
location information) that is a target of the filesystem

US 9,571,575 B2
7

request. The interceptor 107 accesses the sync mappings 115
to determine any sync relationships defined for the filesys
tem request target. The target may have a single sync
relationship, multiple sync relationships, or no sync rela
tionships. If the target has no sync relationships, then the
filesystem request would be passed off to the filesystem 111.
For this illustration, the sync mappings 115 indicate that the
target has a full sync relationship with a logical storage
object in the group 127. Since the target of the filesystem
request has a sync relationship, the target of the filesystem
request can be considered the primary logical storage object.
As stated previously, the logical storage objects are identi
fied by immutable identifiers that are exclusive at least
across clusters that are associated with each other. The Sync
mappings, which may be indicated in one or more data
structures, map the sync relationships across the levels or
layers of the logical object or filesystem request target
depending upon the logical object (e.g., file, LUN, etc.) and
underlying filesystem. For example, the logical object may
be a file. The logical object identifier will initially be the file
identifier or file handle. The filesystem resolves a write
request targeting the file handle to impacted data blocks. The
filesystem may resolve through any number of Mode levels,
for example. When there is a sync relationship, the sync
mappings not only map the higher level identifier (i.e., the
logical object identifier) at the primary node to the higher
level identifier at the secondary node, but the sync mappings
also map the lower level identifiers (i.e., filesystem location
information). In this example case, the lower level identifiers
would be the Mode identifiers. The primary node Mode
identifiers for the part of the file being targeted would map
to Mode identifiers on the secondary node for the part of the
file being targeted.

At stage D, the interceptor 107 passes the filesystem
request and an indication of the sync relationship for the
target to the change propagator 109A. If the primary node
101 has not yet received a change request that targets the
same primary logical storage object as indicated in the
change request 113, then the interceptor 107 may invoke
code that instantiates the change propagator 109A. Although
not necessary, a change propagator is instantiated per pri
mary logical storage object in this illustration. The intercep
tor 107 can indicate the sync relationship for the primary
logical storage object to the change propagator in various
manners. For example, the interceptor 107 can call a func
tion that instantiates change propagators with the primary
logical storage object identifier as a parameter value and the
secondary logical storage object identifier as a parameter
value. As another example, the interceptor 107 can send an
inter-process communication to an already instantiated
change propagator 109A along with a reference to the
filesystem request stored in a local memory. To illustrate the
per primary logical storage object instantiations of change
propagators, the change propagator 109N is depicted with a
dashed line to the in-flight tracking data 119. The dashed line
is used to indicate that the change propagator 109N may be
accessing the in-flight tracking data 119 for a different
filesystem request.

At stage E, the change propagator 109A creates a filesys
tem request targeting the secondary logical storage object of
the sync relationship and updates the in-flight tracking data
117. If the change propagator 109A has just been instanti
ated, then there may not yet be a structure for tracking data
or there may be an empty structure. The change propagator
109A updates the in-flight tracking data 117 to indicate that
a filesystem request targeting the primary logical storage
object is in-flight (i.e., will be sent or is being sent). The

10

15

25

30

35

40

45

50

55

60

65

8
change propagator 109A updates the in-flight tracking data
117 to also indicate that a filesystem request targeting the
secondary logical storage object is in-flight. The change
propagator 109A then (or concurrently) creates the request
with an identifier of the secondary logical storage object that
has a full sync relationship with the primary logical storage
object. The change propagator 109A creates this filesystem
request with a different requestor as well. The change
propagator 109A indicates the change propagator 109A as
the requestor. The change propagator 109A can be identified
with various data that exclusively identifies the change
propagator 109A within any associated clusters. Such as a
combination of a process/thread identifier of the change
propagator 109A and a network address of the primary node
101. The change propagator 109A can also incorporate the
primary logical storage object identifier into the indication
of the requestor. The filesystem request targeting the primary
logical storage object sent from the change propagator 109A
will be referred to as the primary change request. The
filesystem request targeting the secondary logical storage
object sent from the change propagator 109A will be
referred to as the secondary change request.
At stage F, the change propagator 109A sends the file

system requests for servicing. Because the primary logical
storage object has a full sync relationship with the secondary
logical storage object, the primary node 101 will not respond
to the change request 113 until the change has been made at
both the primary and secondary logical storage objects.
Therefore, the change propagator 109A can send the primary
and secondary change requests in any order. The change
propagator 109A sends the primary change request to the
filesystem 111. The change propagator 109A sends the
secondary change request to the storage cluster sync engine
123. After the change requests are passed from the change
propagator 109A, timing of the operations can vary depend
ing on network conditions, differences in node capabilities,
etc.
At stage G, the filesystem 111 accesses the hosting storage

element. At stage H, the storage cluster sync engine 123
processes the secondary change request in accordance with
a protocol of a connection between the storage cluster sync
engine 123 and the storage cluster sync engine 139 that
traverses the network 110. The storage cluster sync engine
123 can construct a new request in accordance with the
connection protocol and populate the new request with the
relevant information from the secondary change request
(e.g., secondary logical storage object identifier, data to be
written, etc.). The storage cluster sync engine 123 may
encapsulate the secondary change request with a header
compliant with the connection protocol. For this illustration,
the sync mappings at the primary node map logical object
identifiers (e.g., file handles) between the primary node and
the secondary node as well as map the filesystem location
information (e.g., inode identifiers). The secondary change
request is constructed with the secondary node filesystem
location information of the data blocks impacted by the
change request. In some cases, the filesystem location infor
mation sync mappings will be separate from the logical
object identifier sync mappings. And the filesystem location
information sync mappings may be maintained at the sec
ondary node. In those cases, the secondary change request is
constructed with indications of the targeted logical object
and the filesystem location information of the primary node.
When received, the secondary node will access the sync
mappings and resolve the primary node filesystem location
information to the secondary node filesystem location infor
mation.

US 9,571,575 B2

At stage I, the storage cluster sync engine 139 processes
the received request in accordance with the connection
protocol and passes the secondary change request to the
secondary writer 135. The storage cluster sync engine 139
may reconstruct the secondary change request from the
received request or extract the secondary change request
from the received request. If no secondary change requests
have been received yet, the storage cluster sync engine 139
may invoke code to instantiate the secondary writer 135. The
storage cluster sync engine 139 can instantiate a secondary
writer to handle all secondary change requests received by
the storage cluster sync engine 139 or instantiate them per
primary logical storage object and secondary logical storage
objectpair.

FIG. 1 depicts dashed lines from the filesystem request
generator 129 and from the interceptor 133. The dashed line
from the filesystem request generator 129 indicates the
possibility that the filesystem request generator 129 is
receiving, processing, and passing other change requests to
the interceptor 133. The dashed line from the interceptor 133
to the ellipsis illustrates the possibility that the interceptor
133 is intercepting and passing change requests to change
propagators of the secondary node 125 that are not depicted.
These possibilities are illustrated to show that the secondary
node 125 is not limited to handling secondary change
requests.

At stage J, the secondary writer 135 updates sync tracking
data 134. The secondary writer 135 records indications of
the secondary change request that at least include the
targeted secondary logical storage object, the requestor (i.e.,
the change propagator 109A), and state of the secondary
change request. At this point, the secondary writer 135
records state as in-flight since the secondary change request
is being or will be sent. At stage K, the secondary writer 135
sends the secondary change request to the filesystem 137.
At stage L, the filesystem 137 accesses a hosting storage

element in accordance with the secondary change request.
FIG. 2 depicts responses to the primary and secondary

change requests processed in accordance with the full Sync
relationship defined in the sync mappings of FIG. 1. FIG. 2
depicts example operations with stage labels A-L. The stages
A-J are depicted as if the response from the hosting storage
element of the primary logical storage object responds
before the secondary node 125. However, that ordering is
not necessary. In some cases, the secondary node 125 may
be able to respond to the change propagator 109A before the
hosting storage element of the primary logical storage object
can respond to the primary node 101. Regardless of the
timing of responses, a response to the requestor is not
provided until changes at both the primary and secondary
logical storage objects have been confirmed by the change
propagator 109A. Some elements from FIG. 1 have been
removed to simplify FIG. 2.

Stages A-C illustrate a response traveling from the hosting
storage element of the primary logical storage object to the
change propagator 109A and a corresponding update of the
in-flight tracking data 117. At stage A, a hosting Storage
element that hosts the primary logical storage object Sup
plies a response to the filesystem 111. The filesystem 111
forwards the response to the change propagator 109A at
stage B. At stage C, the change propagator 109A updates the
in-flight tracking data 117 to indicate that the primary
change request has been performed in the primary logical
storage object.

Stages D-J illustrate a response traveling from the hosting
storage element of the secondary logical storage object to
the change propagator 109A and a corresponding update of

10

15

25

30

35

40

45

50

55

60

65

10
the in-flight tracking data 117. At stage D, a hosting storage
element that hosts the secondary logical storage object
supplies a response to the filesystem 137. The filesystem 137
forwards the response to the secondary writer 135 at stage E.
At stage F, the secondary writer 135 updates the sync
tracking data 134 to reflect the update to the secondary
logical storage object. For example, the secondary writer
135 uses a combination of the secondary logical storage
object identifier and the requestor of the forwarded response
to look up an entry in a structure that hosts the sync tracking
data 134. The secondary writer 135 sets a value or flag in the
entry to indicate that the change has been completed to the
secondary logical storage object. The secondary writer 135
then forwards the response to the storage cluster synchro
nization engine 139. The storage cluster synchronization
engine 139 determines that the response to the secondary
change request ('secondary response') is to be sent to the
primary node 101. The storage cluster synchronization
engine 139 processes the secondary response in accordance
with the connection protocol and sends the secondary
response over the connection via the network 110 at stage H.
At stage I, the storage cluster synchronization engine 123
processes the secondary response in accordance with the
connection protocol and forwards the secondary response to
the change propagator 109A. As part of processing the
secondary response, the storage cluster synchronization
engine 123 can determine that the secondary response
should be sent to the change propagator 109A based on the
requestor identifier that incorporates a process/thread iden
tifier of the change propagator 109A. At stage J, the change
propagator 109A updates the in-flight tracking data 117 to
indicate that the secondary change request has been per
formed in the secondary logical storage object.

After determining that all outstanding change requests
corresponding to the initial change request 113 have been
completed, the change propagator 109A Supplies a response
to the filesystem request generator 103. Each time the
change propagator 109A updates the in-flight tracking data
117, the change propagator 109A can read the entry to
determine whether all requests indicated in the entry have
been completed or are still in-flight, for example. For this
illustration, the filesystem request generator 103 maintains
data that indicates the requestor that corresponds to the
change request 113. When a request is initially received by
the filesystem request generator 103, the request can be
tagged with a request identifier that corresponds to the
requestor. This request identifier can travel with the request
and corresponding response. The request identifier indicates
an identity of the requestor and the request to distinguish it
from other requests from the same requestor. The change
propagation engine 105 can be programmed to also (or
instead of) maintain data that indicates the requestor of the
change request 113 and that indicates the change request 113
itself. At stage L, the filesystem request generator 103 forms
a change response 213 and Supplies the change response 213
to the corresponding requestor.
As an additional illustration of the combination of sync

relationships possible among logical storage objects, FIGS.
3-4 depict example operations for a logical storage object
configured as secondary logical storage object in a full Sync
relationship and configured as a primary logical storage
object in a semi sync relationship. To provide a different
perspective of logical storage objects, FIGS. 3-4 depict
logical storage objects in the context of clusters of hosting
storage elements. The logical storage objects are depicted
with dashed lines over hosting storage elements (e.g., Stor
age arrays). The logical storage objects are depicted in this

US 9,571,575 B2
11

manner to illustrate the possibilities of logical storage
objects spanning multiple hosting storage elements as well
as being hosted within a single hosting storage element. If
the hosting storage element is a collection of hosting storage
elements (e.g., disk array), a logical storage object may span
multiple disks within a disk array. FIG. 3 depicts a storage
cluster 303 associated with a node 301. FIGS. 3-4 depict a
storage cluster 325 associated with a node 311 and a storage
cluster 331 associated with a node 329. FIGS. 3-4 depict the
nodes communicating via a network 309. The node 301
operates similar to the node 101 of FIG. 1, so the operations
are not depicted at the same level of example details as in
FIG. 1. Likewise, the node 329 operates similar to the
secondary node 125 of FIGS. 1 and 2, so those example
operations are also not repeated in entirety for this example
illustration.

FIGS. 3-4 depict the node 311 with some of the modules
depicted in FIG.1. Again, all of the modules are not repeated
to avoid repetition. In FIGS. 3-4, the node 311, which is
identified as NODE 2, includes a secondary writer 315, a
filesystem 321, and a storage cluster sync engine 313. FIGS.
3-4 also depict sync mapping data in the node 311 as Sync
mappings 317 with example sync relationships. In addition,
the node 311 has tracking data 319. But the tracking data 319
indicates State of requests sent to a hosting storage element
from the node 311 and state of requests sent to another node
from the node 311. The tracking data 319 is similar to the
in-flight tracking data of FIGS. 1-2. Unlike the depiction of
a change propagator and a secondary writer in FIGS. 1-2,
FIGS. 3-4 depict the change propagator as having function
ality to respond to change requests from another change
propagator and to propagate changes to a secondary logical
storage object at another location. FIGS. 3-4 also depict
object location data 327. Although different example entries
are depicted in FIGS. 3-4, those entries are in object location
data that resolves a logical storage object identifier to a node
identifier. As in FIGS. 1-2, the stages in FIGS. 3-4 depict
example operations with stage identifiers. These stage iden
tifiers indicate a sequence in operations, but that depicted
order should not be used to limit the scope of the claims
because the order is for illustrative purposes.

Stages A-C are similar to stages C, H, and I in FIG. 1. At
stage A, the node 301 accesses sync mappings 305 after
receiving a change request, which is not depicted. With the
sync mappings 305, the node 301 determines that a logical
storage object identified as OBJ33 has a full sync relation
ship with an object identified as OBJ44. The logical storage
object OBJ33 is the primary logical storage object in the
relationship and hosted within the storage cluster 303, which
is associated with the node 301. The node 301 sends the
change request to a member of the storage cluster 303 that
hosts OBJ33 at stage B. At stage C, the node 301 accesses
object location data 307 and determines that OBJ44 is
associated with NODE 2, as well as an address for
NODE 2, which is the node 311. The node 301 then sends
a secondary change request, which indicates OBJ44 (in
terms of the filesystem) as a target and a change propagator
in node 301 as the requestor, to the node 311 over a
connection between the nodes via the network 309.

In stages D-G, the node 311 processes the secondary
request from the node 301. At stage D, the storage cluster
sync engine 313 processes the secondary request from the
node 301 in accordance with a protocol of the connection.
The storage cluster sync engine 313 then passes the second
ary change request to the secondary writer 315. The sec
ondary writer 315 accesses the sync mappings 317 at stage
E. The secondary writer 315 determines that the logical

5

10

15

25

30

35

40

45

50

55

60

65

12
storage object OBJ44 has a semi-sync relationship with a
logical storage object OBJ52. At stage F, the secondary
writer 315 updates the tracking data 319. The secondary
writer 315 updates the tracking data 319 for a secondary
change request that will be created based on the determined
semi-sync relationship and for the secondary change request
received from the node 301. The secondary writer 315
maintains in the tracking data 319 an indication of where to
route a response. In this example, the secondary writer 315
updates the tracking data 319 to indicate the objects OBJ44
and OBJ52 are in a semi-sync relationship. Each of the
logical storage object identifiers is associated with a state
indication. For this illustration, a value of “0” indicates
in-flight or waiting while a value of “1” indicates that a
change request has been performed to the target logical
storage object. At this point, both state indicators are set to
“0. The secondary writer 315 also updates the tracking data
319 to indicate a requestor as “NODE 1 OBJ33.” This
value is merely an example indication of a node and primary
logical storage object of a sync relationship. At stage G, the
secondary writer 315 creates an additional secondary change
request and passes the change requests to their correspond
ing handlers. The secondary writer 315 forwards the change
request targeting OBJ44 to the filesystem 321. The change
propagator 315 creates the additional change request with a
target as OBJ52 and a requestor identifier that indicates the
secondary writer 315 and the node 311. For instance, the
additional request may indicate the node 311 and a port or
socket bound to the secondary writer 315. The secondary
writer 315 passes the additional change request to the
storage cluster sync engine 313.
At stage H, the filesystem 321 accesses the hosting

storage element in the cluster 325 that hosts OBJ44 in
accordance with the secondary request.
At stage I, the storage cluster sync engine 313 determines

where to send the additional change request from the sec
ondary writer 315. The storage cluster sync engine 313
accesses the object location data 327 and finds an entry that
indicates OBJ52 is associated with NODE 3, which is the
node 329. The storage cluster sync engine 313 determines an
address of the node 329 from the object location data 327,
processes the additional change request in accordance with
the connection protocol, and sends the additional change
request at stage J to the node 329 via the network 309. At
stage K, the node 329 performs the additional change
request to OBJ52.

FIG. 4 depicts handling of the responses for the different
sync relationships by the node 311. Stages A-D depict
example operations for the node 311 to process a response
to the change request that targeted OBJ44. At stage A, the
hosting storage element that hosts OBJ44 sends a response
to the filesystem 321. At stage B, the filesystem 321 for
wards the response to the secondary writer 315 because the
response indicates the secondary writer 315 was the origi
nator of the change request. At stage C, the secondary writer
315 accesses the tracking data 319. The secondary writer
315 updates the tracking data 319 to indicate that the change
to OBJ44 has been performed. The secondary writer 315
determines that the entry for OBJ44 indicates a semi-sync
relationship and indicates a requestor NODE 1 OBJ33.
Since this is a semi-sync relationship, the change propagator
315 can proceed with providing a response to the requestor
NODE 1 OBJ44. The secondary writer 315 sends the
response to the storage cluster sync engine 313 at stage D
along with an indication of the requestor identifier.

Since the sync relationship between OBJ33 and OBJ44 is
a full sync relationship, the change to OBJ44 can be

US 9,571,575 B2
13

promptly communicated back to the node associated with
OBJ33. At stage E, the storage cluster sync engine 313
accesses the object location data 327 to determine the node
associated with OBJ33. The storage cluster sync engine 313
can be programmed to extract the object identifier from the
requestor identifier provided by the secondary writer 315.
However, the object identifier can be communicated in a
different manner For instance, the secondary writer 315 or
the storage cluster sync engine 313 could access Sync
mappings to determine the primary logical storage object for
OBJ33. Regardless of how the object identifier is deter
mined, the storage cluster sync engine 313 determines that
OBJ33 is associated with NODE 1, which is the node 301.
At stage F, a response is transmitted to the node 301. The

storage cluster sync engine 313 processes the response in
accordance with the connection protocol after determining
(or while determining) the destination as NODE 1 back in
stage E. The storage cluster sync engine 313 then transmits
the response through the connection that traverses the net
work 309. The node 301 then creates and sends a response
to the initial request 403 (“CLIENT) over a network 401.
This assumes that the requested change has been performed
at OBJ33 already since OBJ33 has a full sync relationship
with OBJ44.

In stages H-J, a response confirming a change to OBJ52
travels back to the secondary writer 315. At stage H, the
member of the storage cluster 331 that hosts OBJ52 provides
a response to the node 329 that the change has been
performed to OBJ52. Accordingly, the node 329 sends a
response to the storage cluster sync engine 313 at stage I.
Since the response indicates the secondary writer 315, the
storage cluster sync engine 313 passes the response to the
secondary writer 315 at Stage Jafter processing the response
in accordance with the connection protocol.

At stage K, the change propagator 315 updates the track
ing data 319 to indicate the update to OBJ52 has been
completed. This indication that synchronization has been
completed can be used for other aspects of consistency, Such
as sequencing, failover, and load balancing.

Although FIGS. 1-4 depict parts of an architecture to
illustrate example operations, FIG. 5 depicts an example
architecture that provides both full synchronization and
semi-synchronization at a logical storage object granularity
across nodes of a cluster or clusters. FIG. 5 depicts a
filesystem request generator 501, a change propagation
engine 503, a filesystem 505, and a storage cluster synchro
nization engine 507. The filesystem request generator 501 is
similar to the filesystem request generator 103 of FIGS. 1-4.
The filesystem request generator 501 processes storage
protocol specific I/O requests received from a module that
processes communications received over a network inter
face or serial interface (e.g., network module/stack or SCSI
module). The filesystem 505, which can be similar to the
filesystem 111 of FIG. 1, implements a filesystem or file
system layer, examples of which include the Write Any
where File Layout and the UNIX filesystem. The filesystem
505 Supplies requests to the underlying hosting Storage
element in accordance with a filesystem request. The storage
cluster synchronization engine 507 Supplies change requests
to a counterpart storage cluster synchronization engine at a
cluster node that hosts a secondary logical storage object of
a synchronization relationship.
The change propagation engine 503 includes an intercep

tor 509, a sequencer 511, a propagator 513, and a secondary
writer 515. The filesystem request generator 501 passes
filesystem requests to the change propagation engine 503
along with indication of the logical storage object target that

10

15

25

30

35

40

45

50

55

60

65

14
was indicated in the corresponding storage I/O request (e.g.,
SAN or NAS request). From the perspective of the filesys
tem request generator 501, the filesystem request generator
501 is passing the filesystem requests to the filesystem 505.
This can help avoid or minimize modifying the filesystem
request generator 501. But a function or procedure call
invoked by the filesystem request generator 501 actually
invokes the interceptor 509, thus allowing the interceptor
509 to “intercept a filesystem request. When a response is
received from the propagator 513, the interceptor 509 passes
the response back to the filesystem request generator 501,
which then creates a corresponding storage protocol I/O
response.
The filesystem requests first pass to the interceptor 509.

The interceptor 509 initially determines how filesystem
requests flow through the change propagation engine. If the
filesystem request is a change request (e.g., write, Zero, etc.),
then the interceptor 509 accesses synchronization relation
ship data that indicates logical storage objects in Synchro
nization relationships (logical storage objects that have a
synchronization relationship are hereinafter referred to as
endpoints). If the synchronization relationship data indicates
a full Sync relationship between a target of a change request
(i.e., a primary logical storage object, hereinafter referred to
as a "primary endpoint) and a secondary logical storage
object (i.e., a logical storage object that synchronizes with
the primary endpoint, hereinafter referred to as a “secondary
endpoint”), then the interceptor 509 passes the change
request, an indication of the sync relationship, and an
indication of the secondary endpoint to the propagator 513.
The interceptor 509 can pass this information by calling a
function resulting in instantiation of the propagator 513. If
the Sync relationship is a semi sync relationship, then the
interceptor 509 passes this information to the sequencer 511.
A change propagation engine 503 can be designed with an
interceptor that passes the filesystem requests and corre
sponding semi sync relationship information to both the
sequencer 511 and the propagator 513 concurrently or
proximate in time to each other. As with the propagator 513,
the interceptor 509 can pass this information to a sequencer
511 with a function call, which can instantiate the sequencer
511. A sequencer 511 and a propagator 513 are instantiated
for each pair of primary and secondary endpoints.
The sequencer 511 operates with filesystem requests for

endpoints in a semi-sync relationship or when certain Stor
age management operations are triggered, such as Snapshot
ting or deduplication. The sequencer 511 preserves order of
requests that have dependencies. Dependencies may arise
between overlapping writes, from a read request between
writes, specified dependencies, etc. The sequencer 511
tracks change requests within the limits of a configuration,
Such as a RPO. For instance, a sequencer may track requests
in 5 second intervals when the RPO is defined as 10 seconds.
Whatever the particular configuration, the sequencer 511
accumulates change requests within a configured boundary,
which can be in terms of time, number of requests, or both.
This description refers to the bounded, accumulated change
requests as a change set. The sequencer 511 determines
dependencies among the accumulated change requests and
indicates a sequence based on the dependencies. The
sequencer 511 has visibility of read requests, as well as
change requests, to determine dependencies among change
requests. In metadata of each request in a change set, the
sequencer 511 indicates sequencing and a total number of
requests within a change set. For instance, the sequencer 511
writes metadata for a first of five change requests in a change
set as "/s”. When a boundary for a change set is reached, the

US 9,571,575 B2
15

sequencer 511 begins accumulating requests for a next
change set and communicating the current change set to the
sync engine 507 for communicating to a node that hosts the
secondary endpoint. This description refers to this process as
closing the current change set or closing a current change set
log, and opening a next change set or change set log. The
sequencer 511 can launch another thread or process (e.g.,
background process) that traverses a change set log in the
indicated order and Submits each change request to the Sync
engine 507. The sequencer 511 (or thread/process invoked
by the sequencer 511) sends change requests in a change set
individually, which allows for the request to arrive at the
receiving node out of order. When a successful response is
received from the sync engine 507 for a change set, the
sequencer 511 marks the change set as completed. The
change set log can then be discarded or overwritten. When
a failed response is received or a timeout occurs, the
sequencer 511 can generate a notification that the synchro
nization failed or retry.
The propagator 513 maintains data to track state of

change requests, passes requests for a secondary endpoint to
the sync engine 507, and passes responses back to the
interceptor 509. When the propagator 513 receives a change
request from the interceptor 509, the propagator 513 records
an indication of the requestor and then modifies the change
request to indicate the propagator 513 as the requestor. This
facilitates the filesystem 505 returning responses to the
propagator, but is not necessary. An architecture can be
designed to intercept responses from the filesystem instead
of changing the identity of the requestor. In an architecture
that changes the identity of the requestor, the propagator 513
restores the identity of the requestor in responses from the
filesystem 505 before passing the response to the interceptor.
Returning to handling of change requests, the propagator
513 records data indicating change requests that have not
been completed (i.e., in-flight change requests). For full
Sync, the propagator 513 records data about change requests
for a primary endpoint and a secondary endpoint. The
propagator 513 uses this data to determine when both are
complete and a response can be provided to the requestor.
For semi sync, the propagator 513 records data for the
primary endpoints since the sequencer 511 handles requests
for secondary endpoints in a semi sync relationship. But the
propagator 513 notifies the sequencer 511 when changes are
completed on a primary endpoint. The sequencer 511 does
not send off a change set for a secondary endpoint until all
of those changes have been Successfully completed on the
primary endpoint.
The secondary writer 515 handles change requests that

target secondary endpoints. The secondary writer 515
receives change requests in the form of replication opera
tions from the sync engine 507. At a primary endpoint node,
the sync engine 507 generates a replication operation from
a change request that is Supplied from the propagator 513 or
the sequencer/sequencer spawned thread 511. A replication
operation indicates the primary endpoint node (e.g., a propa
gator instance on the primary endpoint node) as a source of
the replication operation and indicates the secondary end
point. The replication operation also indicates the type of
sync relationship. A replication operation may be a re
formed change request that indicates a different requestor
and a different target than a change request and conforms to
a protocol that is independent of the protocol of the filesys
tem 505. For example, a change request from a propagator
may indicate the propagator as the requestor and particular
filename and file region (e.g., blocks) as a target in a request
that complies with a write anywhere file layout (WAFL).

10

15

25

30

35

40

45

50

55

60

65

16
The replication operation may extract that information from
the change request and indicate it independent of a particular
file system or protocol. When the secondary writer 515
receives this information, the secondary writer 515 gener
ates an appropriate request in accordance with the protocol
implemented by the filesystem of the secondary endpoint
node. The secondary writer 515 tracks state of requests
submitted to the filesystem 505, and passes responses back
to the sync engine 507. For a semi sync relationship, the
secondary writer 515 accumulates (“stages') requests of a
change set until the change set is complete. The secondary
writer 515 reads metadata of requests to determine when to
create a change set and when a change set is complete. When
a change set is complete, the secondary writer 515 will
generate a notification for the primary endpoint node that the
change set has successfully completed instead of sending
individual notifications for each request in a change set. The
secondary writer 515 will also generate a notification for a
failed change set. In some cases, the secondary endpoint will
be a primary endpoint in another sync relationship (“cas
cading sync configuration'). When a secondary writer 515 is
instantiated, the secondary writer instance will access Syn
chronization relationship data to determine whether the
secondary endpoint is in a cascading sync configuration. If
so, then the secondary writer 515 will invoke a propagator
instance and/or a sequencer instance for the cascading
relationship. The secondary writer 515 will indicate itself
has the requestor of the change request.

Although FIG. 5 provides a general description for an
example logical object granularity full sync and semi sync
architecture, the following figures provide more illustrations
of example operations. FIGS. 6-13 depict flowcharts of
example full Sync and semi sync operations for endpoints in
cluster nodes. These figures are described with reference to
actors from the example architecture depicted in FIG. 5, but
the specified actors are to aid in understanding the opera
tions. As mentioned earlier, program structure or design can
vary and the examples that specify actors should not be used
to limit the scope of the claims.

FIGS. 6 depicts a flowchart of example operations for
handling receipt of a change request and handling a change
request that targets a primary endpoint in a full sync rela
tionship. An interceptor can perform the operations of
blocks 601, 603, 605, and 607, while a propagator can
perform the operations of blocks 608, 609, 611, and 613.
At block 601, an interceptor receives a filesystem request

(hereinafter “request') derived from a storage protocol I/O
request. For example, information has been extracted from
a storage protocol I/O request to generate the filesystem
request
At block 603, the interceptor determines whether the

target of the request is in a sync relationship. If the target of
the request is not in a sync relationship, then control flows
to block 617. If the target of the request is in a sync
relationship, then control flows to block 604.
At block 604, the interceptor reads out the sync relation

ship information. An interceptor can “read out' information
by copying the information into another data structure and
associating that data structure with the change request. An
interceptor can also “read out the information by recording
a reference (e.g., pointer, index, etc.) to an entry in a data
structure that contains the information. The sync relation
ship information can be maintained in a data structure that
is circulated among members of a cluster(s) that host end
points in synchronization relationships. This data structure

US 9,571,575 B2
17

can be configured at individual nodes. The configuration,
after being committed, can trigger updates across the nodes
in the cluster(s).

At block 605, the interceptor determines whether the
request is a change request or a read request. If the inter
ceptor determines that the request is a change request, then
control flows to block 611. Otherwise, control flows to block
6O7.
At block 607, the interceptor determines whether the

request the sync relationship is a full Sync or a semi Sync
relationship. If the relationship is a full sync relationship,
then control flows to block 617 because a read does not
trigger corresponding full sync operations. If the relation
ship is a semi sync relationship, then control flows to block
609 because the read may create a dependency among
change requests in a change set.

At block 609, the request is passed to the sequencer
instance for the primary endpoint and secondary endpoint
pair of the sync relationship. The sequencer may have
already been instantiated for the pair or may be instantiated
coincident with the passing of the request. For example, an
interceptor can check data that indicates instantiated
sequencer for each unique endpoint pairing. If the intercep
tor finds an entry, then the interceptor passes a reference to
the change request and the sync relationship information to
the thread using the thread identifier in that entry. If there is
no entry, then the interceptor calls a function with a refer
ence to the change request and the sync relationship infor
mation passed as parameters of the function call. Control
flows from block 609 to block 801 of FIG. 8.

If the interceptor determined that the request was a change
request at block 605, then control flowed to block 611. At
block 611, the request and sync relationship information is
passed to a propagator instance for the primary endpoint and
secondary endpoint pair indicated in the sync relationship
information. As with the sequencer, the propagator instance
may be instantiated coincident with the passing of the
request and sync relationship information. Also, either or
both of the change request and sync relationship information
can be passed referentially or literally.

At block 613, the propagator instance records an indica
tion of the requestor and indicates the propagator instance
itself as the requestor. The propagator instance indicates
itself as the requestor to cause the filesystem to return a
response to the propagator instance. This facilitates the
propagator interfacing with the existing file systems. The
propagator instance records the actual requestor, at least
from the perspective of the propagator instance, so that the
response from the underlying filesystem can be updated to
indicate the actual requestor. If the sync relationship is semi
sync, then control flows to block 609. If the relationship is
full sync, then control flows to block 615.

At block 615, the propagator instance records data to track
an in-flight request. Although referred to as an “in-flight'
request, the request is not yet in-flight since the propagator
instance does not pass on the request until after recording
this data. The propagator instance records at least an indi
cation of the request, the primary endpoint, the secondary
endpoint, and an indication of whether a response has been
received for either the primary endpoint or the secondary
endpoint. The propagator instance can record an identifier of
the request determined from metadata of the request. The
propagator instance can generate an identifier with the
primary endpoint and secondary endpoint identifiers. The
propagator instance records this data to determine when a
change has been Successfully performed at both the primary
endpoint and the second endpoint. After Success at both

10

15

25

30

35

40

45

50

55

60

65

18
endpoints, the response can be conveyed to the actual
requestor. After recording the data for tracking the request,
the propagator instance can perform blocks 617 and 619
concurrently or in sequence. If in sequence, the propagator
instance can perform either of the blocks in order.
At block 617, the propagator instance Supplies the request

to the underlying filesystem.
At block 619, the propagator instance indicates the

request for performing on the secondary endpoint. For
instance, the propagator instance passes the request and the
sync relationship information to a module that communi
cates the change to the node associated with the secondary
endpoint.

FIG. 7 depicts a flowchart of example operations for
logical storage object granularity semi sync operations. FIG.
7 continues from block 609 of FIG. 6.
At block 701, a propagator instance records data to track

an in-flight request. Although block 701 is expressed in
similar language as block 615, the example operation of
block 701 does not track state of a request sent to a node
associated with a secondary endpoint. The state of the
request sent to the secondary endpoint node is not tracked by
the propagator instance for a semi sync relationship because
tracking is handled by the sequencer. In a semi sync rela
tionship, the propagator instance can avoid tracking requests
sent to the underlying filesystem for the primary endpoint
and rely on management mechanisms of the underlying
filesystem. In this case, the propagator instance can pass on
the response of Success or failure from the underlying
filesystem. The propagator instance would just restore the
identity of the actual requestor in the response.
At block 703, the propagator instance supplies the request

to the filesystem.
At block 609 of FIG. 6, the sequencer was passed the

request and the sync relationship information. At block 705,
the sequencer determines whether a boundary for an open
change set has been log has been reached. For instance, a
boundary may be defined as a fraction of a configured RPO.
As an example, the sequencer manages change set logs on
a 4 second boundaries based on a 12 second RPO. When
change set log is opened, the change set log can be stamped
with a system time. Each time a boundary is reached, the
change set log is closed and Submitted for processing. In this
example of 4 second boundaries for a 12 second RPO, a total
of 3 change set logs span the RPO time period. One of the
change set logs will be open, and the other two will be
closed. If the change set boundary has been reached, then
control flows to block 709. If the change set boundary has
not been reached, then control flows to block 707.
At block 707, the sequencer indicates the request in the

open change set log. The sequencer can record an identifier
of the request, the type of request, and a reference to the
request. The sequencer can record a reference to the request.
At block 709, the change set log is closed because the

boundary was reached as determined at block 705. For
example, the sequencer can maintain an open change set log
pointer and one or more closed change set log pointers.
When a boundary is reached, the sequencer can update the
pointers to reflect open and closing of logs. The sequencer
can also maintain closed logs in a buffer even if the log is for
a failed change set. This may consume more memory since
the logs are not constrained to memory space Sufficient for
change sets that are still in process, both open and closed.
But the additional memory may allow for investigation of
failed change sets or facilitate faster retries of failed change
SetS.

US 9,571,575 B2
19

At block 711, the sequencer passes the closed log for
processing. For example, the sequencer can launch a thread
or process that processes the closed log while the sequencer
continues maintaining a new change set log. Processing the
closed log involves determines dependencies among change
requests to satisfy an expected sequence among requests in
a change set.

At block 713, the sequencer opens and initializes a
different change set log. To open a log, a sequencer can
allocate a different memory space or access memory space
of a closed log that has completed (Successfully or unsuc
cessfully). The sequencer initializes the open change set log
with an initial time stamp. The sequencer can also overwrite
any data to clear the change set log, or allow another process
to handling clearing a log before being opened.

At block 715, the sequencer indicates the request in the
initialized, open change set log.

FIG. 8 depicts a flowchart of example operations for
processing a closed change set log. The processing analyzes
the requests in a change set and determines any ordering to
maintain a correct and consistent view of data. The logical
storage object granularity maintains the change sets to
implement change sets in an atomic manner and comply
with a specified RPO. Although FIG. 7 example operations
described a spawned thread or process as processing a
closed change set log, FIG. 8 describes the sequencer as
processing a closed change set log.

At block 801, a sequencer determines any dependencies
among change requests in a closed change set log and
indicates sequencing in accordance with the dependencies.
The sequencer maintains data that indicates regions of
endpoints that are subject of a change request. For example,
a sequencer can maintain a bit map of regions for a file. A
first dimension of the bit map can represent blocks of X
bytes, depending upon the file system and/or storage proto
col. Another dimension of the bit map can represent each of
the change requests. With this bit map, the sequencer can
determine when change requests overlap. If change requests
overlap, then the sequencer determines that the change
requests are dependent upon each other and preserves their
sequence to satisfy this dependency. The sequencer also
determines whether any change requests that target a logical
storage object have an intervening read request that targets
the logical storage object. In that case, the sequencer deter
mines a dependency exists and preserves sequence or order
of the Surrounding update requests. The sequencer writes the
sequencing information into metadata of each of the change
requests. For example, the sequencer writes the sequencing
information into headers of the change requests.

At block 803, the sequencer indicates change set infor
mation in each change request of the change set. As with the
sequencing information, the sequencer indicates change set
information in metadata of each of the change requests. The
sequencing information includes an identifier of the change
set and a number of change requests in the change set. This
helps the secondary writer at the node associated with the
second endpoint determine when the secondary writer has
received all change requests of a change set. The sequencer
can also indicate the start time of the change set in metadata
of each of the change requests. This can help the secondary
writer determine when the RPO constraint has been violated.

At block 805, the sequencer eliminates redundant change
requests. The sequencer determines that a change request is
redundant if the change request targets a same primary
endpoint and same region or blocks that is also targeted by

10

15

25

30

35

40

45

50

55

60

65

20
a later change request. In other words, the sequencer deter
mines change requests that make changes that do not persist
beyond the change set.
At block 807, the sequencer Supplies each change request

along with the indications of sequencing and change set to
a cluster sync engine. The sequencer can pass references to
the change requests that have been modified with the indi
cations of sequencing and change set information. The
module responsible for communicating these changes to the
secondary endpoint node can obtain the actual data via the
passed reference.

FIG. 9 depicts a flowchart of example operations for
handling a response from a filesystem for a primary endpoint
in a sync relationship. These example operations are
described as if performed by a propagator instance.
At block 901, a propagator instance receives a response

from a filesystem of a primary endpoint. The propagator
instance has previously passed a change request to the
filesystem. The change request indicated a primary endpoint
(i.e., a logical storage object with filesystem location infor
mation such as file handle and file block numbers) and the
propagator instance as a source of the request. The filesys
tem now provides a response after servicing (or attempting
to service) the change request. The response will indicate
either Success or failure.
At block 903, the propagator instance determines whether

the response indicates Success or failure. If the response
indicates success, then control flows to block 909. If the
response indicates failure, then control flows to block 905.

In the case of failure, the propagator instance initiates an
abort of the corresponding change to the secondary endpoint
at block 905. Whether the primary endpoint is in a full sync
relationship or in a semi Sync relationship, the change to the
secondary endpoint should not complete Successfully to
avoid an out of sync state between the primary and second
ary endpoints. For a full sync relationship, the propagator
instance Submits a request to the Sync engine to abort the
change request communicated to the secondary endpoint
node. The sync engine will carry out operations to abort the
change to the secondary endpoint and preserve synchroni
Zation between the endpoints. For a semi sync relationship,
the propagator instance aborts the change set. Aborting the
change set can involve marking the change set log at the
primary endpoint node as failed or aborted as well as
requesting that the sync engine request the secondary end
point node to fail or abort the requests of the change set.
At block 907, the propagator instance indicates that the

requestor can be notified that the change request failed. The
propagator instance, for example, can change the failure
response from the filesystem of the primary endpoint, to
indicate the actual requestor and pass the changed response
to the network module. The network module can then
communicate the failure to the actual requestor.

If the change request was successful, then the propagator
instance updates tracking data to indicate the Success at
block 909. The propagator instance updates the tracking data
to indicates that the request has completed at the primary
endpoint.
At block 911, the propagator instance determines with the

tracking data whether the change to the secondary endpoint
has completed. If not, then control flows to block 913. If the
change to the secondary endpoint has completed Success
fully, then control flows to block 921.
At block 913, the propagator instance determines whether

a time out has been reached. A time out can be configured.
This time out presumes that a response should be received
before the time out expired. Otherwise, the request or

US 9,571,575 B2
21

response to the request from the secondary endpoint node
can be considered lost. If the time out has been reached, then
control flows to block 917. If the time out has not been
reached, then the propagator instance waits for a defined
wait period at block 915. Control flows from block 915 back
to block 911.

Blocks 917 and 919 depict operations in a time out
scenario. At block 917, the propagator instance indicates that
the secondary endpoint is out of sync with the primary
endpoint. At block 919, the out of sync state between the
endpoints is processed as configured. For example, an out of
sync state may cause a retry if retry is allowed. The out of
sync state may trigger a notification to an administrative
module.
When the update request at the secondary endpoint com

pletes Successfully, then the propagator instance indicates
that the actual requestor can be notified of Successful
completion of the change request at block 921. The propa
gator instance Supplies the response to the network module
for communicating to the actual requestor.

At block 923, the tracking data is cleared. The propagator
instance can clear this data, or mark the tracking data for
clearing by a garbage collection thread.

While FIG. 9 depicts the example operations for handling
a response for the change to the primary endpoint, FIG. 10
depicts a flowchart of example operations for a cluster based
synchronization engine to process requests from propagators
and counterpart sync engines. The description for FIG. 10
will refer to the actor as a sync engine.

At block 1001, a sync engine receives an indication of a
change request to be performed on a secondary endpoint.
The change request can be passed referentially or literally to
the sync engine. The change request may be a member of a
change set or a standalone change request for a full Sync
relationship. The sync engine can receive the indication of
the secondary endpoint in metadata of the change request or
in a separate structure associated with the change request.

At block 1003, the sync engine determines a cluster node
associated with the secondary endpoint. The sync engine
accesses data that is maintained across the cluster. The data
can be used as a directory for endpoints and nodes. The data
indicates which nodes are associated with (i.e., host and/or
manage access to) which logical storage objects. This data
can be implemented as a database. The sync engine reads the
data with the identity of the secondary endpoint, which is a
logical storage object identifier.

At block 1005, the sync engine determines whether a
communication session has already been established with a
sync engine at the secondary endpoint node. The sync
engines maintain communication sessions to avoid the over
head of establishing the communication sessions for each
request. However, this is not necessary. The sync engines
can establish a session or connection per endpoint pair. If not
session has already been established, then control flows to
block 1007. Otherwise, control flows to block 1009.

At block 1007, the sync engine establishes a communi
cation session with the sync engine at the cluster node
associated with the secondary endpoint.

At block 1009, the sync engine creates a replication
request that targets the secondary endpoint in accordance
with the change request and indicates the propagator
instance as the Source of the replication request. The Sync
engine creates a request that indicates the secondary end
point as the target of the request. The sync engine creates the
request with an indication of the data or the data to be written
to the secondary endpoint. The sync engine also creates the

5

10

15

25

30

35

40

45

50

55

60

65

22
request with an indication of the cluster node and metadata
of the received change request.
At block 1011, the sync engine communicates the repli

cation request over the session to the cluster node associated
with the secondary endpoint. A dashed line from block 1011
to block 1013 represents passage of time between sending
the replication request and receiving a response.
At block 1013, the sync engine receives a response to the

replication request from the cluster node associated with the
secondary node. The Sync engine determines a propagator
instance from the response, which indicates a propagator
instance as a requestor. The sync engine passes the replica
tion response to the appropriate propagator instance indi
cated in the response at block 1015. The sync engine can be
designed to determine a requestor by maintain data that
associated propagator instance identifiers with replication
request identifiers (e.g., an identifier generated based on
endpoint identifiers).

FIG. 11 depicts a flowchart of example operations for a
propagator instance to handle a response to a change request
to a secondary endpoint. FIG. 11 is described with reference
to a propagator instance as an actor of the example opera
tions. As described earlier, the propagator instance passes
change requests to be made to a secondary endpoint, which
have been referred to as replication requests, to a sync
engine. The sync engine communicates those changes to the
cluster node associated with the secondary endpoint.
At block 1101, a propagator instance receives a replica

tion response from a sync engine. The replication response
indicates that the response corresponds to the secondary
endpoint and the primary endpoint.
At block 1103, the propagator instance determines

whether the sync relationship between the endpoints was full
sync or semi sync. If the sync relationship is full Sync, then
control flows to block 1105. If the sync relationship is semi
sync, then control flows to block 1123.
At block 1105, the propagator instance determines

whether the change request to the secondary endpoint was
Successful based on the replication response. If successful,
then control flows to block 1113. Otherwise, control flows to
block 1107.
At block 1107, the propagator instance determines

whether the requested change to the primary endpoint was
completed Successfully. The propagator instance reads the
in-flight tracking data to determine whether the primary
endpoint change completed Successfully. If the change to the
primary endpoint completed Successfully and the change to
the secondary endpoint was not successful, then the end
points are out of sync. If the change the primary endpoint
completed successfully, then control flows to block 1121. If
the change to the primary endpoint did not complete Suc
cessfully, then control flows to block 1109.
At block 1121, the change to the primary endpoint is

rolled back. Rolling back the change to the primary endpoint
leads to the requestor being given a failed response. The
requestor can then request the change again. The propagator
can be programmed to indicate an out of sync state in
addition to or instead of rolling back changes to a primary
endpoint. Control flows from block 1121 to block 1127.
At block 1109, the change to the primary endpoint is

aborted. Although likely rare, the node associated with the
change to the secondary endpoint can service a change
request prior to the propagator instance receiving a response
from the underlying storage element for the primary end
point.
At block 1111, the propagator instance indicates that the

actual requestor can be notified that the change request

US 9,571,575 B2
23

failed. For example, the propagator instance creates a failure
response based on the response from the underlying storage
element for the primary endpoint. The propagator instance
creates the failure response with the requestor that was
previously recorded from the change request passed from
the interceptor.

If the change to the secondary endpoint was successful in
a full sync relationship, then the propagator instance deter
mines if the requested change has completed Successfully at
the primary endpoint at block 1113. The propagator instance
accesses the in-flight tracking data to determine whether the
primary endpoint change has already completed. If the
primary endpoint change has already completed, then con
trol flows to block 1117. If the primary endpoint change has
not yet completed, then control flows to block 1115.

At block 1115, the propagator instance updates the in
flight tracking data to indicate that the secondary endpoint
change has completed.

At block 1117, the propagator instance indicates that the
requestor can be notified that the request completed when
the change has succeeded at both endpoints. The propagator
instance generates a response based on the response from the
underlying storage element of the primary endpoint. The
response indicates Successful servicing of the request. The
propagator instance also replaces an indication of itself as
the requestor with an indication of the actual requestor. The
propagator instance then passes the response to an intercep
tor or a communications module.

At block 1119, the tracking data for the request is cleared.
The propagator instance can clear the tracking data or a
garbage collecting thread (or another data maintenance
thread) can clear the tracking data.

If the response is for a secondary endpoint in a semi Sync
relationship, then control flowed to block 1123. At block
1123, the propagator instance determines whether the rep
lication response indicates Successful completion of a
change set to the secondary endpoint. If so, then control
flows to block 1125. If not, then control flows to block 1127.
At block 1125, the propagator instance indicates that the

endpoints are out of sync. The propagator instance can
access the Sync relationship data that is circulated among
cluster nodes. This sync relationship data can include a
single bit field that can be set by the propagator instance to
indicate whether the corresponding endpoints are out of sync
or in Sync. A propagation engine will process requests that
involve out of sync endpoints as configured. For instance, a
propagation engine can be configured to fence all requests
that target a primary endpoint indicated as being out of sync
until synchronization is restored with the secondary end
point or an alternative secondary endpoint. The propagation
engine can be configured to respond with a failure or out of
service type of response when a targeted endpoint is indi
cated as out of sync. If the primary endpoint has changed
Successfully and the change set has completed Successfully
at the secondary endpoint, then control flows to block 1129.
Otherwise, control flows to block 1127.
At block 1129, the propagator instance clears the change

set log. Since the requestor was already notified of the
Successful change to the primary endpoint, the Successful
change to the secondary endpoint in a semi Sync relationship
does not trigger a notification to the requestor. Clearing the
change set log implies that the change set has completed
Successfully. The propagator instance can be programmed to
mark the change set log as Successfully completed prior to
clearing or removal.

FIG. 12 depicts a flowchart of example operations for a
secondary writer to handle replication requests. As described

10

15

25

30

35

40

45

50

55

60

65

24
earlier, a secondary writer receives a replication request
from a sync engine, both of which are running on a node
associated with a secondary endpoint. A sync engine running
on a node associated with a primary endpoint in a sync
relationship with the secondary endpoint communicated the
replication request to the sync engine at the secondary
endpoint node.
At block 1201, a sync engine at a cluster node associated

with a secondary endpoint receives a replication request.
The replication request indicates a primary endpoint and a
secondary endpoint. The primary endpoint or a propagator
instance at the primary endpoint node is indicated as a
Source of the replication request. The replication request can
also indicate the type of sync relationship.
At block 1203, the sync engine determines whether a

secondary writer has already been instantiated for the pri
mary and secondary endpoints. For instance, a secondary
writer for the endpoint pair may have been instantiated for
an earlier request of a change set. If a secondary writer has
already been instantiated, then control flows to block 1207.
If not, then control flows to block 1205.
At block 1207, the sync engine passes the replication

response and associated metadata, if any separately com
municated, to a secondary writer instance. The metadata
may be indicated in the replication request.
At block 1205, the sync engine instantiates a secondary

writer based on the indicated endpoint pair. Control flows
from either of blocks 1205 and 1207 to block 1209.
At block 1209, the secondary writer instance determines

whether the change request should be staged. Staging
change requests for a change set refers to accumulating the
change requests or indications of the change requests up to
a limit. The secondary writer can read metadata of the
change request to determine whether the change request is in
a change set. The metadata may indicate a change set. The
secondary writer instance can also proceed as if the change
request is in a change set based on an indication of semi Sync
instead of full Sync. If the change request is to be staged,
then control flows to block 1215. If not, then control flows
to block 1211.
At block 1211, the secondary writer instance records data

to track the replication request. The secondary writer
instance uses the tracking data to record that a request has
been passed to an underlying filesystem. The secondary
writer instance can rely on the underlying filesystem instead
of recording the data to track the replication request.
At block 1213, the secondary writer instance supplies the

replication request to the underlying storage element access
module. As with the propagator instance, the secondary
writer instance can record an indication of the requester and
replace it with an indication of the secondary writer instance
before Supplying the replication request to the underlying
filesystem.

If the secondary endpoint is in a semi sync relationship,
then the secondary writer instance will determine whether a
change set log has already been created for staging replica
tion requests for the endpoint pair at block 1215. If a change
set log has already been created, then control flows to block
1217. If a change set log has not already been created for the
endpoint pair, then control flows to block 1225.
At block 1225, the secondary writer instance creates a

staging log (i.e., change set log at Secondary endpoint node).
The secondary writer instance initializes the staging log with
the replication request.
At block 1217, the secondary writer instance indicates the

replication request in the already created Staging log.

US 9,571,575 B2
25

At block 1219, the secondary writer instance determines
whether the change set log is complete. The secondary
writer instance can access metadata of any of the replication
requests to determine a total number of replication requests
in a change set. The secondary writer instance can then
compare the number determined from the metadata against
the number of replication requests indicated in the change
set log or staging log. If the staging log is not complete, then
the secondary writer instance waits for additional replication
requests to be received.
Upon a determination that the staging log is complete, the

secondary writer instance traverses the staging log at block
1221. The secondary writer instance selects the first
unmarked replication request indicated in the staging log
and Supplies the selected replication request to the underly
ing filesystem. The secondary writer instance proceeds to the
next unmarked replication request in the staging log as
corresponding responses are received. The secondary writer
instance continues until this process until the staging log has
been traversed, which is described in more detail in FIG. 13.

FIG. 13 depicts a flowchart of example operations for a
secondary writer instance to handle responses from an
underlying filesystem. FIG. 13 only depicts example opera
tions for handling responses for requests in a change set. In
other words, FIG. 13 only depicts example operations for a
secondary endpoint in a semi Sync relationship. When
handling responses for a full sync relationship, the second
ary writer instance passes the response to the sync engine.
The secondary writer instance will first restore the indication
of the original requestor.

At block 1301, a secondary writer instance receives a
response to a replication request from an underlying file
system.
At block 1303, the secondary writer instance determines

whether the response indicates a successful change to a
secondary endpoint. If the response indicates a successful
change to the secondary endpoint, then control flows to
block 1304. If the response indicates a failed change to the
secondary endpoint, then control flows to block 1305.
At block 1305, the secondary writer instance determines

whether retry is configured. A secondary writer instance can
be configured to retry requests within a change set depend
ing upon RPO conformity configuration. For example, the
secondary writer instance can be configured to retry a
change set if a predefined amount of time still remains in a
RPO time period. If retry is configured and allowed, then
control flows to block 1307. Otherwise, control flows to
block 1311.

At block 1307, the secondary writer instance updates a
retry counter. To avoid possible waste of resources, retries
are limited to a configured number.

At block 1309, the secondary writer instance supplies the
request to the underlying filesystem again.

If the retry was not configured or not allowed, then the
secondary writer instance records data to indicate that the
change set failed at block 1311. The secondary writer
instance can write an indication of failure to metadata for the
staging log. The failure indication can be helpful to preserve
this failed State of the change set in case the failure cannot
or is not communicated back to the primary endpoint node.

At block 1313, the secondary writer instance generates a
notification that the change set failed. The secondary writer
instance can generate a response that identifies the change
set, and the indication of failure. The failure notification is
then Supplied to the requesting node (i.e., primary endpoint
node) via the sync engine. The dotted line from block 1313
to block 1315 indicates a passage of time. At a later time, the

5

10

15

25

30

35

40

45

50

55

60

65

26
secondary writer instance can mark the change set log for
discard. A secondary writer can be programmed to discard
change set logs with indications of failure.

If the replication request response indicated Success, then
the secondary writer instance determines whether the cor
responding change has completed at block 1304. If the entire
change set has completed, then control flows to block 1317.
If the entire change set has not completed, then control flows
to block 1319.
At block 1317, the secondary writer instance generates a

notification that the change set completed Successfully. The
secondary writer instance can generate a response that
identifies the change set, and the indication of Success. The
Success notification is then Supplied to the requesting node
(i.e., primary endpoint node) via the sync engine. A second
ary writer can be programmed to pass back a response to one
of the replication requests in a change set instead of gener
ating a change set Success notification. The secondary writer
can return to the requesting node the response to the last
request in the according to sequencing information for the
change set. This response for the last change request of the
change set can operate as a Success notification for the entire
change set to the propagator instance at the primary endpoint
node.
At block 1319, the secondary writer instance marks the

particular request in the staging log as completed Success
fully.
At block 1321, the secondary writer instance continues to

traverse the staging log. The secondary writer instance
selects a next unmarked request in the staging log in
accordance with the ordering indicated for the requests in
the staging log. The secondary writer instance supplies this
selected request to the underlying filesystem.

Variations from Example Illustrations
The flowcharts are provided to aid in understanding the

illustrations and are not to be used to limit scope of the
claims. The flowcharts depict example operations that can
vary among aspects of the disclosure. Additional operations
may be performed; fewer operations may be performed; the
operations may be performed in parallel; and the operations
may be performed in a different order. For example, the
interceptor may only pass requests to the propagator. The
propagator can be programmed to determine whether a
target of a change request is in a sync relationship. As
another example of variation, block 615 can be performed
regardless of the synchronization configuration. Instead of
the absence of tracking data implying a semi sync relation
ship and a response being Supplied back to a requestor,
tracking data for each request can be maintained. Some of
the operations of the flowcharts described determining
whether a thread or process was already instantiated for an
endpoint pair. An architecture can be designed that does not
use persistent threads. Instead, state data is stored per
endpoint pair. This state data persists until cleared after a
corresponding request(s) completes or fails. This avoids
threads in a wait state that consume resources. As another
example, the propagator instance can track State of requests
to secondary endpoint nodes instead of the sequencer or in
addition to the sequencer. Regardless of the particular actor
tracking state of a change set, state of individual requests in
a change set do not impede responding to a requestor after
a change has been performed at a primary endpoint. Thus,
state of individual requests in a change set need not be
tracked. In FIG. 7, block 711 describes passing a closed
change set log to a spawned thread of process. An architec
ture can be programmed or designed that processes an open
log. The architecture can process the change set log each

US 9,571,575 B2
27

time a request is added and update sequencing information,
eliminate redundant changes, etc. When the change set log
is closed, it is already ordered and ready for communicating
to a node associated with the secondary endpoint.

Communication of failures can be communicated in a
manner other than those depicted in the flowcharts. For
example, failure indications (e.g., block 1311) may not be
recorded since a failure notification is generated. For failed
change sets, a secondary writer instance can pass back a
failed response for one of the requests in a change set. The
propagator instance at the requesting node can determine
which closed, change set log corresponds to the failure
response and mark the change set log as failed.

In addition, additional operations can be performed that
are not depicted. For example, a monitoring thread can be
spawned that monitors change set logs. The monitoring
thread can evaluate lifetime of a change set against a defined
RPO. An active change set log or in process change set log
is a closed change set log that still awaits a response from
either the primary endpoint node or the secondary endpoint
node. The monitoring thread evaluates the change set start
time to determine whether the RPO time has elapsed. If so,
the monitoring thread can prompt the sequencer thread to
mark the change set as failed or mark the change set as failed
itself.

Although this description refers to individual logical
storage objects being paired for synchronization relation
ships, the “endpoints' of a synchronization relationship can
be groups of logical storage objects. A group of files or group
of LUNs, for example, can be in a synchronization relation
ship with another group of logical storage objects. The nodes
can maintain additional data to resolve group identifiers to
the logical storage objects that are members of the group.
As will be appreciated by one skilled in the art, aspects of

the disclosure may be implemented as a system, method or
computer program product. Accordingly, aspects of the
disclosure may take the form of a hardware aspect, a
Software aspect (including firmware, resident software,
micro-code, etc.) or an aspect combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module' or “system.” Furthermore, aspects
of the disclosure may take the form of a computer program
product embodied in one or more computer readable medi
um(s) having computer readable program code embodied
thereon.
Any combination of one or more computer readable

medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor system, apparatus, or device, or any Suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

10

15

25

30

35

40

45

50

55

60

65

28
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, an electro
magnetic signal, an optical signal, an infrared signal, or any
Suitable combination thereof. A computer readable signal
medium may be any computer readable medium that is not
a computer readable storage medium and that can commu
nicate, propagate, or transport a program for use by or in
connection with a computer. Program code embodied on a
computer readable signal medium may be transmitted using
any appropriate medium, including but not limited to wire
less, wireline, optical fiber cable, RF, etc., or any suitable
combination of the foregoing.
Computer program code for carrying out operations for

aspects of the disclosure may be written in any combination
of one or more programming languages, including an object
oriented programming language Such as the Java R program
ming language, C++ or the like; a dynamic programming
language Such as Python; a scripting language Such as Perl
programming language or PowerShell Script language; and
conventional procedural programming languages. Such as
the “C” programming language or similar programming
languages. The program code may execute entirely on a
stand-alone computer, may execute in a distributed manner
across multiple computers, and may execute on one com
puter while providing results and or accepting input on
another computer.

Aspects of the disclosure are described with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (Systems) and computer program products accord
ing to aspects of the disclosure. It will be understood that
each block of the flowchart illustrations and/or block dia
grams, and combinations of blocks in the flowchart illustra
tions and/or block diagrams, can be implemented by com
puter program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro
grammable data processing apparatus to produce a machine,
Such that the instructions, which execute via the processor of
the computer or other programmable data processing appa
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, Such that the
instructions stored in the computer readable medium pro
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

FIG. 14 depicts an example computer system with a
storage cluster based full Sync and semi sync propagation
engine. A computer system includes a processor unit 1401
(possibly including multiple processors, multiple cores,
multiple nodes, and/or implementing multi-threading, etc.).

US 9,571,575 B2
29

The computer system includes memory 1407. The memory
1407 may be system memory (e.g., one or more of cache,
SRAM, DRAM, Zero capacitor RAM, Twin Transistor
RAM, eDRAM, EDO RAM, DDR RAM, EEPROM,
NRAM, RRAM, SONOS, PRAM, etc.) or any one or more
of the above already described possible realizations of
machine-readable media. The computer system also
includes a bus 1403 (e.g., PCI, ISA, PCI-Express, Hyper
Transport(R) bus, InfiniBandR, bus, NuBus, etc.), and a
network interface 1405 (e.g., an ATM interface, an Ethernet
interface, a Frame Relay interface, SONET interface, wire
less interface, iSCSI, Fibre Channel, etc.). The computer
system also includes a storage cluster based granular full
sync and semi sync propagation engine 1411. The storage
cluster based granular full sync and semi sync propagation
engine 1411 handles requests and responses corresponding
to filesystem change requests that target endpoints in Sync
relationships as described above. Any one of these function
alities may be partially (or entirely) implemented in hard
ware and/or on the processing unit 1401. For example, the
functionality may be implemented with an application spe
cific integrated circuit, in logic implemented in the process
ing unit 1401, in a co-processor on a peripheral device or
card, etc. Further, realizations may include fewer or addi
tional components not illustrated in FIG. 14 (e.g., video
cards, audio cards, additional network interfaces, peripheral
devices, etc.). The processor unit 1401, the storage device(s)
1409, and the network interface 1405 are coupled to the bus
1403. Although illustrated as being coupled to the bus 1403,
the memory 1407 may be coupled to the processor unit
1401.

While the aspects of the disclosure are described with
reference to various implementations and exploitations, it
will be understood that these aspects of the disclosure are
illustrative and that the scope of the inventive subject matter
is not limited to them. In general, techniques for logical
storage object granularity synchronization across cluster
nodes as described herein may be implemented with facili
ties consistent with any hardware system or hardware sys
tems. Many variations, modifications, additions, and
improvements are possible.

Plural instances may be provided for components, opera
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera
tions are illustrated in the context of specific illustrative
configurations. Other allocations of functionality are envi
sioned and may fall within the scope of the inventive subject
matter. In general, structures and functionality presented as
separate components in the exemplary configurations may
be implemented as a combined structure or component.
Similarly, structures and functionality presented as a single
component may be implemented as separate components.
These and other variations, modifications, additions, and
improvements may fall within the scope of the inventive
Subject matter.

What is claimed is:
1. A method comprising:
receiving a filesystem request being generated from a

storage protocol input/output request targeting a first
local storage object, the filesystem request being inter
cepted prior to being sent to a filesystem;
determining from Synchronization configuration data

that the first logical storage object has a synchroni
Zation relationship with a second logical storage
object;

5

10

15

25

30

35

40

45

50

55

60

65

30
determining from the synchronization configuration data

a synchronization relationship type of the synchroni
Zation relationship from a plurality of synchronization
relationship types; and

where the synchronization relationship type is a semi
synchronous relationship type:
accumulating, during a time interval, filesystem

requests that target the first logical storage object,
wherein the filesystem requests include the filesys
tem request;

Supplying each of the filesystem requests to the file
system;

determining dependencies among accumulated filesys
tem requests that indicate changes to be made to the
first logical storage object;

recording sequencing information to preserve the
dependencies, the recording comprising recording
the sequencing information into accumulated file
system requests that have a dependency and that
indicate a change to be made to the first logical
storage object; and

Supplying, to a node associated with the second logical
storage object, the sequencing information and accu
mulated filesystem requests that indicate changes to
be made to the second logical storage object.

2. The method of claim 1 further comprising:
where the synchronization relationship type is a full

synchronization relationship type specifying that
responses are not to be returned to requesters until
changes are made to both primary logical storage
objects and secondary logical storage objects:
Supplying the filesystem request to the filesystem;
generating a request based on the filesystem request to

create a generated request indicating that the second
logical storage object is a target;

Supplying the generated request for transmission to the
node associated with the second logical storage
object; and

upon the storage input/output request Successfully
being implemented upon the first logical storage
object and the generated request Successfully being
implemented upon the second logical storage object,
Supplying a response to a requester of the storage
protocol input/output request that indicates Success
of the storage input/output request.

3. The method of claim 1 further comprising eliminating
redundant filesystem requests that indicate changes to be
made to the first logical storage object.

4. The method of claim 1 further comprising Supplying
metadata that indicates a total number of the accumulated
filesystem requests that indicate changes to be made to the
first logical storage object.

5. The method of claim 4 further comprising recording the
metadata into accumulated filesystem requests that will be
Supplied to the node associated with the second logical
storage object.

6. The method of claim 1, further comprising Supplying a
failure response to the requester that indicates failure of the
storage input/output request if a change indicated by the
storage input/output request is not successfully made to the
second logical storage object.

7. The method of claim 1, wherein the plurality of
synchronization relationship types comprise a cascading
relationship type.

8. The method of claim 1 further comprising Supplying a
failure response to the requester that indicates failure of the

US 9,571,575 B2
31

storage input/output request if a change indicated by the
storage input/output request is not successfully made to the
first logical storage object.

9. A non-transitory machine readable medium having
stored thereon instructions for performing a method com
prising program code which when executed by at least one
machine, causes a machine to:

receive a filesystem request being generated from a stor
age protocol input/output request targeting a first local
storage object, the filesystem request being intercepted
prior to being sent to a filesystem;
determine from Synchronization configuration data that

the first logical storage object has a synchronization
relationship with a second logical storage object;

determine from the synchronization configuration data a
synchronization relationship type of the synchroniza
tion relationship from a plurality of synchronization
relationship types; and

where the synchronization relationship type is a semi
synchronous relationship type:
accumulate, during a time interval, filesystem requests

that target the first logical storage object, wherein the
filesystem requests include the filesystem request;

Supply each of the filesystem requests to the filesystem;
determine dependencies among accumulated filesys
tem requests that indicate changes to be made to the
first logical storage object;

record sequencing information to preserve the depen
dencies, the recording comprising recording the
sequencing information into accumulated filesystem
requests that have a dependency and that indicate a
change to be made to the first logical storage object;
and

Supply, to a node associated with the second logical
storage object, the sequencing information and accu
mulated filesystem requests that indicate changes to
be made to the second logical storage object.

10. The non-transitory machine readable medium of claim
9 further comprising program code to:

where the synchronization relationship type is a full
synchronization relationship type specifying that
responses are not to be returned to requestors until
changes are made to both primary logical storage
objects and secondary logical storage objects:
Supply the filesystem request to the filesystem;
generate a request based on the filesystem request to

create a generated request indicating that the second
logical storage object is a target;

Supply the generated request for transmission to the
node associated with the second logical storage
object; and

upon the storage input/output request Successfully
being implemented upon the first logical storage
object and the generated request Successfully being
implemented upon the second logical storage object,
Supply a response to a requestor of the storage
protocol input/output request that indicates success
of the storage input/output request.

11. The non-transitory machine readable medium of claim
9 further comprising program code to eliminate redundant
filesystem requests that indicate changes to be made to the
first logical storage object.

12. The non-transitory machine readable medium of claim
9 further comprising program code to Supply metadata that
indicates a total number of the accumulated filesystem
requests that indicate changes to be made to the first logical
storage object.

10

15

25

30

35

40

45

50

55

60

65

32
13. The non-transitory machine readable medium of claim

12 further comprising program code to record the metadata
into accumulated filesystem requests that will be supplied to
the node associated with the second logical storage object.

14. The non-transitory machine readable medium of claim
9 further comprising program code to Supply a failure
response to the requester that indicates failure of the storage
input/output request if a change indicated by the storage
input/output request is not successfully made to the second
logical storage object.

15. The non-transitory machine readable medium of claim
9 further comprising program code to Supply a failure
response to the requester that indicates failure of the storage
input/output request if a change indicated by the storage
input/output request is not successfully made to the first
logical storage object.

16. A computing device comprising:
at least one processor; and
a memory coupled to the processor which is configured to

be capable of executing program code stored in the
memory to:
receive a filesystem request being generated from a

storage protocol input/output request targeting a first
local storage object, the filesystem request being
intercepted prior to being sent to a filesystem;
determine from Synchronization configuration data

that the first logical storage object has a synchro
nization relationship with a second logical storage
object;

determine from the synchronization configuration data
a synchronization relationship type of the synchro
nization relationship from a plurality of synchroni
Zation relationship types; and

where the synchronization relationship type is a semi
synchronous relationship type:
accumulate, during a time interval, filesystem

requests that target the first logical storage object,
wherein the filesystem requests include the file
system request;

Supply each of the filesystem requests to the filesys
tem;

determine dependencies among accumulated filesys
tem requests that indicate changes to be made to
the first logical storage object;

record sequencing information to preserve the
dependencies, the recording comprising recording
the sequencing information into accumulated file
system requests that have a dependency and that
indicate a change to be made to the first logical
storage object; and

Supply, to a node associated with the second logical
storage object, the sequencing information and
accumulated filesystem requests that indicate
changes to be made to the second logical storage
object.

17. The computing device of claim 16, wherein the
program code further causes the processor to:
where the synchronization relationship type is a full

synchronization relationship type specifying that
responses are not to be returned to requestors until
changes are made to both primary logical storage
objects and secondary logical storage objects:
Supply the filesystem request to the filesystem;
generate a request based on the filesystem request to

create a generated request indicating that the second
logical storage object is a target;

US 9,571,575 B2
33

Supply the generated request for transmission to the
node associated with the second logical storage
object; and

upon the storage input/output request Successfully
being implemented upon the first logical storage
object and the generated request Successfully being
implemented upon the second logical storage object,
Supply a response to a requestor of the storage
protocol input/output request that indicates success
of the storage input/output request.

18. The computing device of claim 16, wherein the
program code further causes the processor to eliminate
redundant filesystem requests that indicate changes to be
made to the first logical storage object.

19. The computing device of claim 16, wherein the
program code further causes the processor to Supply meta
data that indicates a total number of accumulated filesystem
requests that indicate changes to be made to the first logical
storage object.

20. The computing device of claim 16, wherein the
program code further causes the processor to Supply a failure
response to the requester that indicates failure of the storage
input/output request if a change indicated by the storage
input/output request is not successfully made to the first
logical storage object.

k k k k k

10

15

25

34

