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(57) ABSTRACT 

Data consistency and availability can be provided at the 
granularity of logical storage objects in storage solutions 
that use storage virtualization in clustered storage environ 
ments. To ensure consistency of data across different storage 
elements, synchronization is performed across the different 
storage elements. Changes to data are synchronized across 
storage elements in different clusters by propagating the 
changes from a primary logical storage object to a secondary 
logical storage object. To satisfy the strictest RPOs while 
maintaining performance, change requests are intercepted 
prior to being sent to a filesystem that hosts the primary 
logical storage object and propagated to a different manag 
ing storage element associated with the secondary logical 
storage object. 
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GRANULAR SYNCASEM-SYNC 
ARCHITECTURE 

BACKGROUND 

Aspects of this disclosure generally relate to the field of 
distributed Storage, and, more particularly, to an architecture 
for synchronizing data across distributed storage. 

Whether maintaining customer data or their own data, 
businesses demand always available or highly available data 
and protection of that data. To Support these demands, data 
often resides across multiple storage systems in multiple 
sites that are often great distances apart. One of the reasons 
these sites are great distances apart is to avoid a single 
catastrophe impacting data availability. Metrics used to 
define the availability requirements include recovery point 
objective (RPO) and recovery time objective (RTO). A 
business specifies an RTO as the maximum amount of time 
that the business tolerates lack of access to the business 
data. A business specifies an RPO as the amount of data in 
terms of time that can be lost due to an interruption. For 
instance, a business can specify an RTO as 15 seconds. In 
other words, the business will accept at most 15 seconds 
from the time of a service interruption or failure to the time 
of full recovery of their systems. For an RPO, a business can 
specify 5 seconds. That means that the business will not 
accept losing any more than the data written (e.g., new 
writes, updates, etc.) in the 5 seconds that precede a failure 
or interruption. 

Storage features to Support the availability and protection 
demands of businesses across storage systems have been 
given various names, such as Snapshotting, mirroring, clon 
ing, and replicating. Each of these storage features can also 
vary by the provider of the storage feature and/or storage 
product. Despite the variations, each storage feature pro 
vides a consistent view of a business data. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present aspects of the disclosure may be better 
understood by referencing the accompanying drawings. 

FIGS. 1 and 2 depict example storage cluster synchroni 
Zation engines coordinating a data change between primary 
and secondary logical storage objects in different clusters 
responsive to a change request. 

FIGS. 3-4 depict example operations for a logical storage 
object configured as secondary logical storage object in a 
full sync relationship and configured as a primary logical 
storage object in a semi-sync relationship. 

FIG. 5 depicts an example architecture that that provides 
both full synchronization and semi-synchronization at a 
logical storage object granularity across nodes of a cluster or 
clusters. 

FIG. 6 depicts a flowchart of example operations for 
handling receipt of a change request and handling a change 
request that targets a primary endpoint in a full sync rela 
tionship. 

FIG. 7 depicts a flowchart of example operations 
logical storage object granularity semi-sync operations. 

FIG. 8 depicts a flowchart of example operations 
processing a closed change set log. 

FIG. 9 depicts a flowchart of example operations for 
handling a response from a storage element module for a 
primary endpoint in a sync relationship. 

FIG. 10 depicts a flowchart of example operations for a 
cluster based synchronization engine to process requests 
from propagators and counterpart synchronization engines. 
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2 
FIG. 11 depicts a flowchart of example operations for a 

propagator instance to handle a response to a change request 
to a secondary endpoint. 

FIG. 12 depicts a flowchart of example operations for a 
secondary writer to handle replication requests. 

FIG. 13 depicts a flowchart of example operations for a 
secondary writer instance to handle responses from an 
underlying storage element module. 

FIG. 14 depicts an example computer system with a 
storage cluster based granular full sync and semi Sync 
propagation engine. 

DESCRIPTION OF EXAMPLE 
ILLUSTRATION(S) 

The description that follows includes example systems, 
methods, techniques, instruction sequences and computer 
program products that embody techniques of the present 
disclosure. However, it is understood that the described 
aspects of the disclosure may be practiced without these 
specific details. For instance, although examples refer to 
disks and disk arrays, aspects of the disclosure are not so 
limited. Aspects of the disclosure may be implemented on 
storage systems that use solid state storage devices, optical 
storage devices, federations of individual storage devices, 
combinations of different types of storage devices, etc. 
Furthermore, many example illustrations use a pair of logi 
cal storage objects to illustrate operations. Aspects of the 
disclosure are not limited to a primary and secondary logical 
storage object pair and can be applied to a group of logical 
storage objects. For instance, systems can be configured to 
synchronize a primary logical storage object with multiple 
secondary logical storage objects. Well-known instruction 
instances, protocols, structures and techniques have not been 
shown in detail in order not to obfuscate the description. 

Terminology 
This description uses the term “storage element to refer 

to any entity within a storage system that hosts and/or 
manages access to data. Storage elements referred to herein 
can be categorized as managing storage elements and host 
ing Storage elements. The distinction between a managing 
storage element and a hosting storage element arises from 
the primary functionality of the storage element. Managing 
storage elements primarily manage access to hosting storage 
elements. Managing storage elements process requests from 
other devices (e.g., clients) and can originate requests to 
perform operations (e.g., Snapshot operations). Regardless 
of whether the request is from another device or originates 
from the managing storage element, the managing storage 
element transmits a request to a hosting storage element. 
Examples of a managing storage element include a file 
server and a storage controller. A hosting storage element 
primarily performs operations that ultimately fulfill requests 
from the perspective of the managing storage element. A 
hosting storage element performs a read of or a write to a 
location specified by a request from a managing Storage 
element. This read or write may be performed on a disk or 
multiple disks. In the case of multiple layers of virtualiza 
tion, the read or write may be performed on what appears to 
be a disk or disks from the perspective of the managing 
storage element. Examples of a hosting storage element 
include a disk drive, an optical drive, a storage array, and a 
tape drive. 
The terms managing storage element and hosting storage 

element are used based on the primary functionality of a 
storage element because functionality is not exclusive 
between the elements. For instance, a storage controller may 
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have data locally stored in cache to expedite handling of 
access requests. Even though the storage controller can 
fulfill access requests, the primary functionality of the 
storage controller is not to read data from and write data to 
local memory. Similarly, a hosting storage element can 
include hardware that manages access to disks. For instance, 
a redundant array of independent disks (RAID) controller 
and an array of disks can be housed within a single enclo 
Sure. Although the RAID controller manages access to the 
array of disks, the primary functionality of the components 
housed within that single enclosure is to fulfill requests 
received from a managing storage element. 
The description also uses the terms full synchronization 

(“full sync') and semi-synchronization (“semi sync'). These 
terms refer to different types of synchronization configura 
tions. A “full Synchronization configuration, as used herein, 
refers to a configuration that delays sending a reply con 
firming a change request has been performed until the 
change has been synchronized across a primary logical 
storage object and a secondary logical storage object(s). A 
'semi-synchronization' configuration, as used herein, refers 
to a configuration that allows a reply confirming a change 
request has been performed to be sent after the change has 
been performed on a primary logical storage object while 
synchronization with the secondary logical storage object(s) 
may still be in progress. 
The description uses the term “request to refer to a 

communication between software entities or hardware enti 
ties that requests something be done, and to avoid the 
variation in names, data fields, etc., used in various proto 
cols. A request can indicate a request for data to be read, data 
to be written, or some other data processing request. A 
request can indicate the type of operation (e.g., read, write), 
a target of the request (e.g., a logical storage object identi 
fier), and an identifier of a requestor. Additional information 
may be indicated in a request depending upon the governing 
protocol. But this description does not delve into the details 
of the additional information. Further, a number of protocols 
can form what is referred to as a protocol stack. A protocol 
stack can be considered the series of processing modules 
that a request passes through or traverses. At each layer of 
the protocol stack, headers and/or trailers may be added or 
removed from the request. For this description, at least some 
stack processing is not described to avoid adding further 
complexity to the description. This description will refer to 
a request as a request regardless of associated headers or 
trailers, and regardless of possible modifications to values in 
the headers and/or trailers. 

Introduction 
Clustering generally refers to grouping hardware ele 

ments together to reap the benefit of the group (“cluster') of 
hardware elements (e.g., disk drives, storage arrays, file 
servers, storage controllers, etc.) that cannot be gained from 
individual hardware elements. Clustering can be used for 
various storage features, examples of which include load 
balancing, failover Support, increasing I/O bandwidth, and 
data availability. To support these aspects of storage and 
provide a consistent view of storage, data is synchronized 
between the Supporting storage elements. The different 
hardware storage elements are often referred to as primary 
storage elements and secondary storage elements based on 
which storage elements are initially and/or preferentially 
used (e.g., by configuration) to Supply data to requestors and 
to modify data for requestors. In addition, a cluster of 
storage elements can be designated as a primary cluster and 
a cluster of storage elements can be designated as a second 
ary cluster. 
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4 
Many storage system functionalities are deployed as 

features of storage virtualization. Often, storage virtualiza 
tion software/tools obfuscate the actual hardware elements 
that constitute a storage system. Thus, requestors (some 
times referred to herein as clients) often read from and write 
to logical storage objects or logical storage containers, 
examples of which include logical unit numbers (LUNs), 
files, virtual machine disks (VMDKs), virtual volumes, and 
logical partitions. Any number of layers of virtualization can 
separate actual storage system hardware elements and a 
client sending an access request. Each storage system hard 
ware element may host numerous logical storage objects 
and/or numerous parts of logical storage objects. Moreover, 
a storage controller handling a request on behalf of a client 
may communicate with a virtual storage array that appears 
to be a physical storage array. Thus, a logical storage object, 
which is presented as if a storage array, may be presented as 
hosting multiple logical storage objects. 

Overview 
Data consistency and availability can be provided at the 

granularity of logical storage objects in storage solutions 
that use storage virtualization in clustered storage environ 
ments. For availability, data is maintained on different 
storage elements at different sites as previously mentioned. 
To ensure consistency of data across the different storage 
elements, synchronization is performed across the different 
storage elements. At the granularity of logical storage 
objects, data can be synchronized efficiently across the 
different storage elements at distant sites because, at least 
partly, the amount of data being synchronized is Smaller and 
less Susceptible to negative incidents in a network that 
carries the data. Changes to data are synchronized across 
storage elements in different clusters by propagating the 
changes from a node associated with a primary logical 
storage object (i.e., the logical storage object specified in a 
change request) to a secondary logical storage object (i.e., a 
logical storage objected associated with the primary logical 
storage object for synchronization). To satisfy the strictest 
RPOs (e.g., RPO-0) and RTOs while maintaining perfor 
mance, filesystem requests are intercepted prior to being 
sent to a filesystem that hosts the primary logical storage 
object ("primary filesystem’’) and propagated to a filesystem 
of a node associated with the secondary logical storage 
object ('secondary filesystem'). The logical storage objects 
have immutable identifiers that are exclusive at least within 
any associated clusters to allow efficient identification of the 
logical storage objects across clusters. Intercepting a file 
system request after it has been generated from a storage 
protocol specific request and prior to the filesystem request 
being sent to the primary filesystem avoids encumbering the 
propagating operations with storage protocol specific and/or 
application specific operations, which further reduces the 
size of the change request being propagated as well as 
number of processing operations. Having the entities that 
handle the operations to Support synchronization directly 
interface with the filesystem leverages mechanisms of the 
filesystem for efficient conveyance of filesystem responses. 

Example Illustrations 
The example illustrations depicted in FIGS. 1-4 depict 

different degrees of example details as an attempt to avoid 
presenting an overwhelming amount of information about 
the systems. Every possible data structure and every pos 
sible modularization of functionality is not presented since 
they are numerous and not necessary to understanding 
aspects of the disclosure. For instance, data structures pre 
sented as multiple data structures can be organized differ 
ently with a variety of possible indexing/accessing schemes 
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and arrangement of data. Similarly, the functionality pre 
sented as individual modules/engines/units in the example 
illustrations can also be organized differently in accordance 
with any one of platform (operating system and/or hard 
ware), application ecosystem, interfaces, programmer pref 
erences, programming language, etc. In addition, some 
functionality is described later in the description also as an 
attempt to avoid presenting an overwhelming amount of 
information. For instance, a Snapshot request from a man 
aging entity or a semi-sync configuration can lead to 
sequencing of multiple access requests at a primary man 
aging storage element. Sequencing is not discussed in the 
early example illustrations. 

FIGS. 1 and 2 depict example storage cluster synchroni 
Zation engines coordinating a data change between primary 
and secondary logical storage objects in different clusters 
responsive to a change request. FIG. 1 depicts propagation 
of the change request from a primary managing Storage 
element to a secondary managing storage element. Manag 
ing storage elements will be referred to hereafter as nodes 
for brevity. In FIG. 1, a first cluster includes a primary node 
101 and a second cluster includes a secondary node 125. 
Entire clusters are not depicted for simplification of the 
figure and due to drawing space constraints. The primary 
node 101 is communicatively coupled with hosting storage 
elements that host a group 102 of logical storage objects. 
The group 102 includes a primary logical storage object. The 
primary node 101 includes a filesystem request generator 
103, a change propagation engine 105, a storage cluster 
synchronization engine 123, and a filesystem 111. The 
filesystem request generator 103 generates a filesystem 
request from a storage protocol based request. The change 
propagation engine 105 includes an interceptor 107, a 
change propagator 109A, and a change propagator 109N. 
These modules in the primary node 101 access data depicted 
in FIG. 1 as sync mappings 115, in-flight tracking data 117. 
and in-flight tracking data 119. The sync mappings 115 
indicate synchronization configurations among logical Stor 
age objects (also referred to herein as Synchronization 
relationships or sync relationships). For example, a primary 
logical storage object can have a full sync relationship with 
one secondary logical storage object and a semi-sync rela 
tionship with another secondary logical storage object. In 
flight tracking data tracks progress or state of requests from 
the perspective of corresponding change propagators. In 
other words, each change propagator instance maintains 
in-flight tracking data for the corresponding logical storage 
objects that have a sync relationship. 
The secondary node 125 can include all of the same 

modules/engines as the primary node 101. In FIG. 1, some 
of the modules are not depicted to reduce repetition. The 
secondary node 125 is depicted as including a filesystem 
request generator 129, a storage cluster synchronization 
engine 139, a change propagation engine 131, and a file 
system 137. The change propagation engine 131 includes an 
interceptor 133 and a secondary writer 135. The secondary 
writer 135 of the secondary node 125 accesses data depicted 
in FIG. 1 as Sync tracking data 134. The sync tracking data 
134 indicates progress or state of requests from the perspec 
tive of the secondary writer 135. The sync tracking data 134 
is not necessarily contained within the change propagation 
engine 131. The sync tracking data 134 is merely depicted 
near the secondary writer 135 for this description. The 
secondary node 125 is communicatively coupled with host 
ing storage elements that host a group 127 of logical storage 
objects. The group 127 includes a secondary storage object. 
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6 
Although there may be some variation in functionality 

across different nodes, the functionality of modules having 
a same name will be generally the same in this illustration. 
The filesystem request generators 103, 129 generate filesys 
tem requests based on storage protocol input/output (I/O) 
requests passed to the filesystem generators 103, 129. The 
filesystem generators 103, 129 can receive storage protocol 
I/O requests from a network Stack, a small computer system 
interface (SCSI) stack, Internet SCSI (iSCSI) module, etc. 
Examples of storage protocol I/O requests include storage 
area network (SAN) requests and network attached storage 
(NAS) requests. The filesystem generators 103,129 generate 
the filesystem requests based on the filesystem implemented 
on their node. The interceptors 107, 133 intercept requests 
from the filesystem request generators 103,129. Intercepting 
can be implemented differently. An application program 
ming interface can be modified so that the underlying 
functionality changes without changing the interface pre 
sented to callers. As another example, a monitoring process 
can monitor an execution queue and redirect a call when a 
specified address occurs in the execution queue. The file 
systems 111, 137 access the underlying hosting storage 
element in accordance with filesystem requests. The storage 
cluster synchronization engines 123, 139, process commu 
nications in accordance with a protocol implemented via the 
network 110. As examples, the protocols implemented by 
the engines 123, 139 can be any one or more of Fibre 
Channel (FC), Fibre Chanel over Ethernet (FCoE), Internet 
Fibre Channel protocol (iFCP), and a tunneling protocol. 
Regardless of the specific protocol, the engines 123, 139 
implement a protocol that Supports an active connection that 
can be perceived as a direct connection between machines 
despite distance and hopsbetween the machines. 

FIG. 1 depicts example operations with a series of stages 
identified by the letters A-N. The suggested ordering of 
operations by the letters is limited to this illustrated example 
and should not be used to limit scope of the claims. At a 
stage A, the primary node 101 receives a change request 113. 
The change request 113 originates from a client that might 
be at a managing node (e.g., cluster manager), at a user node 
(e.g., a customer's server), etc. The filesystem request gen 
erator 103 processes the change request 113, generates a 
filesystem request based on the change request, and invokes 
code to pass the filesystem request 113 to the filesystem 111. 
As part of generating the filesystem request 113, the file 
system request generator 103 translates the logical storage 
object identifier indicated as a target in the change request 
into filesystem location information of the logical storage 
object (e.g., inode identifiers, offset, etc.). But the filesystem 
request generator 103 also indicates the logical storage 
object identifier to travel with the filesystem request. The 
logical storage object identifier can travel with the filesystem 
request in different manners. For example, a filesystem 
generator can write the logical object identifier into metadata 
of the filesystem request. As another example, a filesystem 
generator creates a data structure and associates it with the 
filesystem. Instead of the filesystem 111 receiving the file 
system request, the interceptor 107 receives the filesystem 
request at stage B. The request in its various forms (e.g., 
storage protocol I/O request, filesystem request, etc.) is no 
longer identified with the label 113 since the change being 
requested is the same despite the form of the request. 
At stage C, the interceptor 107 accesses sync mappings 

115 to determine any sync relationships relevant to the 
filesystem request. The filesystem request indicates a logical 
storage object in group 102 (in terms of the filesystem 
location information) that is a target of the filesystem 
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request. The interceptor 107 accesses the sync mappings 115 
to determine any sync relationships defined for the filesys 
tem request target. The target may have a single sync 
relationship, multiple sync relationships, or no sync rela 
tionships. If the target has no sync relationships, then the 
filesystem request would be passed off to the filesystem 111. 
For this illustration, the sync mappings 115 indicate that the 
target has a full sync relationship with a logical storage 
object in the group 127. Since the target of the filesystem 
request has a sync relationship, the target of the filesystem 
request can be considered the primary logical storage object. 
As stated previously, the logical storage objects are identi 
fied by immutable identifiers that are exclusive at least 
across clusters that are associated with each other. The Sync 
mappings, which may be indicated in one or more data 
structures, map the sync relationships across the levels or 
layers of the logical object or filesystem request target 
depending upon the logical object (e.g., file, LUN, etc.) and 
underlying filesystem. For example, the logical object may 
be a file. The logical object identifier will initially be the file 
identifier or file handle. The filesystem resolves a write 
request targeting the file handle to impacted data blocks. The 
filesystem may resolve through any number of Mode levels, 
for example. When there is a sync relationship, the sync 
mappings not only map the higher level identifier (i.e., the 
logical object identifier) at the primary node to the higher 
level identifier at the secondary node, but the sync mappings 
also map the lower level identifiers (i.e., filesystem location 
information). In this example case, the lower level identifiers 
would be the Mode identifiers. The primary node Mode 
identifiers for the part of the file being targeted would map 
to Mode identifiers on the secondary node for the part of the 
file being targeted. 

At stage D, the interceptor 107 passes the filesystem 
request and an indication of the sync relationship for the 
target to the change propagator 109A. If the primary node 
101 has not yet received a change request that targets the 
same primary logical storage object as indicated in the 
change request 113, then the interceptor 107 may invoke 
code that instantiates the change propagator 109A. Although 
not necessary, a change propagator is instantiated per pri 
mary logical storage object in this illustration. The intercep 
tor 107 can indicate the sync relationship for the primary 
logical storage object to the change propagator in various 
manners. For example, the interceptor 107 can call a func 
tion that instantiates change propagators with the primary 
logical storage object identifier as a parameter value and the 
secondary logical storage object identifier as a parameter 
value. As another example, the interceptor 107 can send an 
inter-process communication to an already instantiated 
change propagator 109A along with a reference to the 
filesystem request stored in a local memory. To illustrate the 
per primary logical storage object instantiations of change 
propagators, the change propagator 109N is depicted with a 
dashed line to the in-flight tracking data 119. The dashed line 
is used to indicate that the change propagator 109N may be 
accessing the in-flight tracking data 119 for a different 
filesystem request. 

At stage E, the change propagator 109A creates a filesys 
tem request targeting the secondary logical storage object of 
the sync relationship and updates the in-flight tracking data 
117. If the change propagator 109A has just been instanti 
ated, then there may not yet be a structure for tracking data 
or there may be an empty structure. The change propagator 
109A updates the in-flight tracking data 117 to indicate that 
a filesystem request targeting the primary logical storage 
object is in-flight (i.e., will be sent or is being sent). The 
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change propagator 109A updates the in-flight tracking data 
117 to also indicate that a filesystem request targeting the 
secondary logical storage object is in-flight. The change 
propagator 109A then (or concurrently) creates the request 
with an identifier of the secondary logical storage object that 
has a full sync relationship with the primary logical storage 
object. The change propagator 109A creates this filesystem 
request with a different requestor as well. The change 
propagator 109A indicates the change propagator 109A as 
the requestor. The change propagator 109A can be identified 
with various data that exclusively identifies the change 
propagator 109A within any associated clusters. Such as a 
combination of a process/thread identifier of the change 
propagator 109A and a network address of the primary node 
101. The change propagator 109A can also incorporate the 
primary logical storage object identifier into the indication 
of the requestor. The filesystem request targeting the primary 
logical storage object sent from the change propagator 109A 
will be referred to as the primary change request. The 
filesystem request targeting the secondary logical storage 
object sent from the change propagator 109A will be 
referred to as the secondary change request. 
At stage F, the change propagator 109A sends the file 

system requests for servicing. Because the primary logical 
storage object has a full sync relationship with the secondary 
logical storage object, the primary node 101 will not respond 
to the change request 113 until the change has been made at 
both the primary and secondary logical storage objects. 
Therefore, the change propagator 109A can send the primary 
and secondary change requests in any order. The change 
propagator 109A sends the primary change request to the 
filesystem 111. The change propagator 109A sends the 
secondary change request to the storage cluster sync engine 
123. After the change requests are passed from the change 
propagator 109A, timing of the operations can vary depend 
ing on network conditions, differences in node capabilities, 
etc. 
At stage G, the filesystem 111 accesses the hosting storage 

element. At stage H, the storage cluster sync engine 123 
processes the secondary change request in accordance with 
a protocol of a connection between the storage cluster sync 
engine 123 and the storage cluster sync engine 139 that 
traverses the network 110. The storage cluster sync engine 
123 can construct a new request in accordance with the 
connection protocol and populate the new request with the 
relevant information from the secondary change request 
(e.g., secondary logical storage object identifier, data to be 
written, etc.). The storage cluster sync engine 123 may 
encapsulate the secondary change request with a header 
compliant with the connection protocol. For this illustration, 
the sync mappings at the primary node map logical object 
identifiers (e.g., file handles) between the primary node and 
the secondary node as well as map the filesystem location 
information (e.g., inode identifiers). The secondary change 
request is constructed with the secondary node filesystem 
location information of the data blocks impacted by the 
change request. In some cases, the filesystem location infor 
mation sync mappings will be separate from the logical 
object identifier sync mappings. And the filesystem location 
information sync mappings may be maintained at the sec 
ondary node. In those cases, the secondary change request is 
constructed with indications of the targeted logical object 
and the filesystem location information of the primary node. 
When received, the secondary node will access the sync 
mappings and resolve the primary node filesystem location 
information to the secondary node filesystem location infor 
mation. 
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At stage I, the storage cluster sync engine 139 processes 
the received request in accordance with the connection 
protocol and passes the secondary change request to the 
secondary writer 135. The storage cluster sync engine 139 
may reconstruct the secondary change request from the 
received request or extract the secondary change request 
from the received request. If no secondary change requests 
have been received yet, the storage cluster sync engine 139 
may invoke code to instantiate the secondary writer 135. The 
storage cluster sync engine 139 can instantiate a secondary 
writer to handle all secondary change requests received by 
the storage cluster sync engine 139 or instantiate them per 
primary logical storage object and secondary logical storage 
objectpair. 

FIG. 1 depicts dashed lines from the filesystem request 
generator 129 and from the interceptor 133. The dashed line 
from the filesystem request generator 129 indicates the 
possibility that the filesystem request generator 129 is 
receiving, processing, and passing other change requests to 
the interceptor 133. The dashed line from the interceptor 133 
to the ellipsis illustrates the possibility that the interceptor 
133 is intercepting and passing change requests to change 
propagators of the secondary node 125 that are not depicted. 
These possibilities are illustrated to show that the secondary 
node 125 is not limited to handling secondary change 
requests. 

At stage J, the secondary writer 135 updates sync tracking 
data 134. The secondary writer 135 records indications of 
the secondary change request that at least include the 
targeted secondary logical storage object, the requestor (i.e., 
the change propagator 109A), and state of the secondary 
change request. At this point, the secondary writer 135 
records state as in-flight since the secondary change request 
is being or will be sent. At stage K, the secondary writer 135 
sends the secondary change request to the filesystem 137. 
At stage L, the filesystem 137 accesses a hosting storage 

element in accordance with the secondary change request. 
FIG. 2 depicts responses to the primary and secondary 

change requests processed in accordance with the full Sync 
relationship defined in the sync mappings of FIG. 1. FIG. 2 
depicts example operations with stage labels A-L. The stages 
A-J are depicted as if the response from the hosting storage 
element of the primary logical storage object responds 
before the secondary node 125. However, that ordering is 
not necessary. In some cases, the secondary node 125 may 
be able to respond to the change propagator 109A before the 
hosting storage element of the primary logical storage object 
can respond to the primary node 101. Regardless of the 
timing of responses, a response to the requestor is not 
provided until changes at both the primary and secondary 
logical storage objects have been confirmed by the change 
propagator 109A. Some elements from FIG. 1 have been 
removed to simplify FIG. 2. 

Stages A-C illustrate a response traveling from the hosting 
storage element of the primary logical storage object to the 
change propagator 109A and a corresponding update of the 
in-flight tracking data 117. At stage A, a hosting Storage 
element that hosts the primary logical storage object Sup 
plies a response to the filesystem 111. The filesystem 111 
forwards the response to the change propagator 109A at 
stage B. At stage C, the change propagator 109A updates the 
in-flight tracking data 117 to indicate that the primary 
change request has been performed in the primary logical 
storage object. 

Stages D-J illustrate a response traveling from the hosting 
storage element of the secondary logical storage object to 
the change propagator 109A and a corresponding update of 
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10 
the in-flight tracking data 117. At stage D, a hosting storage 
element that hosts the secondary logical storage object 
supplies a response to the filesystem 137. The filesystem 137 
forwards the response to the secondary writer 135 at stage E. 
At stage F, the secondary writer 135 updates the sync 
tracking data 134 to reflect the update to the secondary 
logical storage object. For example, the secondary writer 
135 uses a combination of the secondary logical storage 
object identifier and the requestor of the forwarded response 
to look up an entry in a structure that hosts the sync tracking 
data 134. The secondary writer 135 sets a value or flag in the 
entry to indicate that the change has been completed to the 
secondary logical storage object. The secondary writer 135 
then forwards the response to the storage cluster synchro 
nization engine 139. The storage cluster synchronization 
engine 139 determines that the response to the secondary 
change request ('secondary response') is to be sent to the 
primary node 101. The storage cluster synchronization 
engine 139 processes the secondary response in accordance 
with the connection protocol and sends the secondary 
response over the connection via the network 110 at stage H. 
At stage I, the storage cluster synchronization engine 123 
processes the secondary response in accordance with the 
connection protocol and forwards the secondary response to 
the change propagator 109A. As part of processing the 
secondary response, the storage cluster synchronization 
engine 123 can determine that the secondary response 
should be sent to the change propagator 109A based on the 
requestor identifier that incorporates a process/thread iden 
tifier of the change propagator 109A. At stage J, the change 
propagator 109A updates the in-flight tracking data 117 to 
indicate that the secondary change request has been per 
formed in the secondary logical storage object. 

After determining that all outstanding change requests 
corresponding to the initial change request 113 have been 
completed, the change propagator 109A Supplies a response 
to the filesystem request generator 103. Each time the 
change propagator 109A updates the in-flight tracking data 
117, the change propagator 109A can read the entry to 
determine whether all requests indicated in the entry have 
been completed or are still in-flight, for example. For this 
illustration, the filesystem request generator 103 maintains 
data that indicates the requestor that corresponds to the 
change request 113. When a request is initially received by 
the filesystem request generator 103, the request can be 
tagged with a request identifier that corresponds to the 
requestor. This request identifier can travel with the request 
and corresponding response. The request identifier indicates 
an identity of the requestor and the request to distinguish it 
from other requests from the same requestor. The change 
propagation engine 105 can be programmed to also (or 
instead of) maintain data that indicates the requestor of the 
change request 113 and that indicates the change request 113 
itself. At stage L, the filesystem request generator 103 forms 
a change response 213 and Supplies the change response 213 
to the corresponding requestor. 
As an additional illustration of the combination of sync 

relationships possible among logical storage objects, FIGS. 
3-4 depict example operations for a logical storage object 
configured as secondary logical storage object in a full Sync 
relationship and configured as a primary logical storage 
object in a semi sync relationship. To provide a different 
perspective of logical storage objects, FIGS. 3-4 depict 
logical storage objects in the context of clusters of hosting 
storage elements. The logical storage objects are depicted 
with dashed lines over hosting storage elements (e.g., Stor 
age arrays). The logical storage objects are depicted in this 
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manner to illustrate the possibilities of logical storage 
objects spanning multiple hosting storage elements as well 
as being hosted within a single hosting storage element. If 
the hosting storage element is a collection of hosting storage 
elements (e.g., disk array), a logical storage object may span 
multiple disks within a disk array. FIG. 3 depicts a storage 
cluster 303 associated with a node 301. FIGS. 3-4 depict a 
storage cluster 325 associated with a node 311 and a storage 
cluster 331 associated with a node 329. FIGS. 3-4 depict the 
nodes communicating via a network 309. The node 301 
operates similar to the node 101 of FIG. 1, so the operations 
are not depicted at the same level of example details as in 
FIG. 1. Likewise, the node 329 operates similar to the 
secondary node 125 of FIGS. 1 and 2, so those example 
operations are also not repeated in entirety for this example 
illustration. 

FIGS. 3-4 depict the node 311 with some of the modules 
depicted in FIG.1. Again, all of the modules are not repeated 
to avoid repetition. In FIGS. 3-4, the node 311, which is 
identified as NODE 2, includes a secondary writer 315, a 
filesystem 321, and a storage cluster sync engine 313. FIGS. 
3-4 also depict sync mapping data in the node 311 as Sync 
mappings 317 with example sync relationships. In addition, 
the node 311 has tracking data 319. But the tracking data 319 
indicates State of requests sent to a hosting storage element 
from the node 311 and state of requests sent to another node 
from the node 311. The tracking data 319 is similar to the 
in-flight tracking data of FIGS. 1-2. Unlike the depiction of 
a change propagator and a secondary writer in FIGS. 1-2, 
FIGS. 3-4 depict the change propagator as having function 
ality to respond to change requests from another change 
propagator and to propagate changes to a secondary logical 
storage object at another location. FIGS. 3-4 also depict 
object location data 327. Although different example entries 
are depicted in FIGS. 3-4, those entries are in object location 
data that resolves a logical storage object identifier to a node 
identifier. As in FIGS. 1-2, the stages in FIGS. 3-4 depict 
example operations with stage identifiers. These stage iden 
tifiers indicate a sequence in operations, but that depicted 
order should not be used to limit the scope of the claims 
because the order is for illustrative purposes. 

Stages A-C are similar to stages C, H, and I in FIG. 1. At 
stage A, the node 301 accesses sync mappings 305 after 
receiving a change request, which is not depicted. With the 
sync mappings 305, the node 301 determines that a logical 
storage object identified as OBJ33 has a full sync relation 
ship with an object identified as OBJ44. The logical storage 
object OBJ33 is the primary logical storage object in the 
relationship and hosted within the storage cluster 303, which 
is associated with the node 301. The node 301 sends the 
change request to a member of the storage cluster 303 that 
hosts OBJ33 at stage B. At stage C, the node 301 accesses 
object location data 307 and determines that OBJ44 is 
associated with NODE 2, as well as an address for 
NODE 2, which is the node 311. The node 301 then sends 
a secondary change request, which indicates OBJ44 (in 
terms of the filesystem) as a target and a change propagator 
in node 301 as the requestor, to the node 311 over a 
connection between the nodes via the network 309. 

In stages D-G, the node 311 processes the secondary 
request from the node 301. At stage D, the storage cluster 
sync engine 313 processes the secondary request from the 
node 301 in accordance with a protocol of the connection. 
The storage cluster sync engine 313 then passes the second 
ary change request to the secondary writer 315. The sec 
ondary writer 315 accesses the sync mappings 317 at stage 
E. The secondary writer 315 determines that the logical 
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12 
storage object OBJ44 has a semi-sync relationship with a 
logical storage object OBJ52. At stage F, the secondary 
writer 315 updates the tracking data 319. The secondary 
writer 315 updates the tracking data 319 for a secondary 
change request that will be created based on the determined 
semi-sync relationship and for the secondary change request 
received from the node 301. The secondary writer 315 
maintains in the tracking data 319 an indication of where to 
route a response. In this example, the secondary writer 315 
updates the tracking data 319 to indicate the objects OBJ44 
and OBJ52 are in a semi-sync relationship. Each of the 
logical storage object identifiers is associated with a state 
indication. For this illustration, a value of “0” indicates 
in-flight or waiting while a value of “1” indicates that a 
change request has been performed to the target logical 
storage object. At this point, both state indicators are set to 
“0. The secondary writer 315 also updates the tracking data 
319 to indicate a requestor as “NODE 1 OBJ33.” This 
value is merely an example indication of a node and primary 
logical storage object of a sync relationship. At stage G, the 
secondary writer 315 creates an additional secondary change 
request and passes the change requests to their correspond 
ing handlers. The secondary writer 315 forwards the change 
request targeting OBJ44 to the filesystem 321. The change 
propagator 315 creates the additional change request with a 
target as OBJ52 and a requestor identifier that indicates the 
secondary writer 315 and the node 311. For instance, the 
additional request may indicate the node 311 and a port or 
socket bound to the secondary writer 315. The secondary 
writer 315 passes the additional change request to the 
storage cluster sync engine 313. 
At stage H, the filesystem 321 accesses the hosting 

storage element in the cluster 325 that hosts OBJ44 in 
accordance with the secondary request. 
At stage I, the storage cluster sync engine 313 determines 

where to send the additional change request from the sec 
ondary writer 315. The storage cluster sync engine 313 
accesses the object location data 327 and finds an entry that 
indicates OBJ52 is associated with NODE 3, which is the 
node 329. The storage cluster sync engine 313 determines an 
address of the node 329 from the object location data 327, 
processes the additional change request in accordance with 
the connection protocol, and sends the additional change 
request at stage J to the node 329 via the network 309. At 
stage K, the node 329 performs the additional change 
request to OBJ52. 

FIG. 4 depicts handling of the responses for the different 
sync relationships by the node 311. Stages A-D depict 
example operations for the node 311 to process a response 
to the change request that targeted OBJ44. At stage A, the 
hosting storage element that hosts OBJ44 sends a response 
to the filesystem 321. At stage B, the filesystem 321 for 
wards the response to the secondary writer 315 because the 
response indicates the secondary writer 315 was the origi 
nator of the change request. At stage C, the secondary writer 
315 accesses the tracking data 319. The secondary writer 
315 updates the tracking data 319 to indicate that the change 
to OBJ44 has been performed. The secondary writer 315 
determines that the entry for OBJ44 indicates a semi-sync 
relationship and indicates a requestor NODE 1 OBJ33. 
Since this is a semi-sync relationship, the change propagator 
315 can proceed with providing a response to the requestor 
NODE 1 OBJ44. The secondary writer 315 sends the 
response to the storage cluster sync engine 313 at stage D 
along with an indication of the requestor identifier. 

Since the sync relationship between OBJ33 and OBJ44 is 
a full sync relationship, the change to OBJ44 can be 
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promptly communicated back to the node associated with 
OBJ33. At stage E, the storage cluster sync engine 313 
accesses the object location data 327 to determine the node 
associated with OBJ33. The storage cluster sync engine 313 
can be programmed to extract the object identifier from the 
requestor identifier provided by the secondary writer 315. 
However, the object identifier can be communicated in a 
different manner For instance, the secondary writer 315 or 
the storage cluster sync engine 313 could access Sync 
mappings to determine the primary logical storage object for 
OBJ33. Regardless of how the object identifier is deter 
mined, the storage cluster sync engine 313 determines that 
OBJ33 is associated with NODE 1, which is the node 301. 
At stage F, a response is transmitted to the node 301. The 

storage cluster sync engine 313 processes the response in 
accordance with the connection protocol after determining 
(or while determining) the destination as NODE 1 back in 
stage E. The storage cluster sync engine 313 then transmits 
the response through the connection that traverses the net 
work 309. The node 301 then creates and sends a response 
to the initial request 403 (“CLIENT) over a network 401. 
This assumes that the requested change has been performed 
at OBJ33 already since OBJ33 has a full sync relationship 
with OBJ44. 

In stages H-J, a response confirming a change to OBJ52 
travels back to the secondary writer 315. At stage H, the 
member of the storage cluster 331 that hosts OBJ52 provides 
a response to the node 329 that the change has been 
performed to OBJ52. Accordingly, the node 329 sends a 
response to the storage cluster sync engine 313 at stage I. 
Since the response indicates the secondary writer 315, the 
storage cluster sync engine 313 passes the response to the 
secondary writer 315 at Stage Jafter processing the response 
in accordance with the connection protocol. 

At stage K, the change propagator 315 updates the track 
ing data 319 to indicate the update to OBJ52 has been 
completed. This indication that synchronization has been 
completed can be used for other aspects of consistency, Such 
as sequencing, failover, and load balancing. 

Although FIGS. 1-4 depict parts of an architecture to 
illustrate example operations, FIG. 5 depicts an example 
architecture that provides both full synchronization and 
semi-synchronization at a logical storage object granularity 
across nodes of a cluster or clusters. FIG. 5 depicts a 
filesystem request generator 501, a change propagation 
engine 503, a filesystem 505, and a storage cluster synchro 
nization engine 507. The filesystem request generator 501 is 
similar to the filesystem request generator 103 of FIGS. 1-4. 
The filesystem request generator 501 processes storage 
protocol specific I/O requests received from a module that 
processes communications received over a network inter 
face or serial interface (e.g., network module/stack or SCSI 
module). The filesystem 505, which can be similar to the 
filesystem 111 of FIG. 1, implements a filesystem or file 
system layer, examples of which include the Write Any 
where File Layout and the UNIX filesystem. The filesystem 
505 Supplies requests to the underlying hosting Storage 
element in accordance with a filesystem request. The storage 
cluster synchronization engine 507 Supplies change requests 
to a counterpart storage cluster synchronization engine at a 
cluster node that hosts a secondary logical storage object of 
a synchronization relationship. 
The change propagation engine 503 includes an intercep 

tor 509, a sequencer 511, a propagator 513, and a secondary 
writer 515. The filesystem request generator 501 passes 
filesystem requests to the change propagation engine 503 
along with indication of the logical storage object target that 
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was indicated in the corresponding storage I/O request (e.g., 
SAN or NAS request). From the perspective of the filesys 
tem request generator 501, the filesystem request generator 
501 is passing the filesystem requests to the filesystem 505. 
This can help avoid or minimize modifying the filesystem 
request generator 501. But a function or procedure call 
invoked by the filesystem request generator 501 actually 
invokes the interceptor 509, thus allowing the interceptor 
509 to “intercept a filesystem request. When a response is 
received from the propagator 513, the interceptor 509 passes 
the response back to the filesystem request generator 501, 
which then creates a corresponding storage protocol I/O 
response. 
The filesystem requests first pass to the interceptor 509. 

The interceptor 509 initially determines how filesystem 
requests flow through the change propagation engine. If the 
filesystem request is a change request (e.g., write, Zero, etc.), 
then the interceptor 509 accesses synchronization relation 
ship data that indicates logical storage objects in Synchro 
nization relationships (logical storage objects that have a 
synchronization relationship are hereinafter referred to as 
endpoints). If the synchronization relationship data indicates 
a full Sync relationship between a target of a change request 
(i.e., a primary logical storage object, hereinafter referred to 
as a "primary endpoint) and a secondary logical storage 
object (i.e., a logical storage object that synchronizes with 
the primary endpoint, hereinafter referred to as a “secondary 
endpoint”), then the interceptor 509 passes the change 
request, an indication of the sync relationship, and an 
indication of the secondary endpoint to the propagator 513. 
The interceptor 509 can pass this information by calling a 
function resulting in instantiation of the propagator 513. If 
the Sync relationship is a semi sync relationship, then the 
interceptor 509 passes this information to the sequencer 511. 
A change propagation engine 503 can be designed with an 
interceptor that passes the filesystem requests and corre 
sponding semi sync relationship information to both the 
sequencer 511 and the propagator 513 concurrently or 
proximate in time to each other. As with the propagator 513, 
the interceptor 509 can pass this information to a sequencer 
511 with a function call, which can instantiate the sequencer 
511. A sequencer 511 and a propagator 513 are instantiated 
for each pair of primary and secondary endpoints. 
The sequencer 511 operates with filesystem requests for 

endpoints in a semi-sync relationship or when certain Stor 
age management operations are triggered, such as Snapshot 
ting or deduplication. The sequencer 511 preserves order of 
requests that have dependencies. Dependencies may arise 
between overlapping writes, from a read request between 
writes, specified dependencies, etc. The sequencer 511 
tracks change requests within the limits of a configuration, 
Such as a RPO. For instance, a sequencer may track requests 
in 5 second intervals when the RPO is defined as 10 seconds. 
Whatever the particular configuration, the sequencer 511 
accumulates change requests within a configured boundary, 
which can be in terms of time, number of requests, or both. 
This description refers to the bounded, accumulated change 
requests as a change set. The sequencer 511 determines 
dependencies among the accumulated change requests and 
indicates a sequence based on the dependencies. The 
sequencer 511 has visibility of read requests, as well as 
change requests, to determine dependencies among change 
requests. In metadata of each request in a change set, the 
sequencer 511 indicates sequencing and a total number of 
requests within a change set. For instance, the sequencer 511 
writes metadata for a first of five change requests in a change 
set as "/s”. When a boundary for a change set is reached, the 
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sequencer 511 begins accumulating requests for a next 
change set and communicating the current change set to the 
sync engine 507 for communicating to a node that hosts the 
secondary endpoint. This description refers to this process as 
closing the current change set or closing a current change set 
log, and opening a next change set or change set log. The 
sequencer 511 can launch another thread or process (e.g., 
background process) that traverses a change set log in the 
indicated order and Submits each change request to the Sync 
engine 507. The sequencer 511 (or thread/process invoked 
by the sequencer 511) sends change requests in a change set 
individually, which allows for the request to arrive at the 
receiving node out of order. When a successful response is 
received from the sync engine 507 for a change set, the 
sequencer 511 marks the change set as completed. The 
change set log can then be discarded or overwritten. When 
a failed response is received or a timeout occurs, the 
sequencer 511 can generate a notification that the synchro 
nization failed or retry. 
The propagator 513 maintains data to track state of 

change requests, passes requests for a secondary endpoint to 
the sync engine 507, and passes responses back to the 
interceptor 509. When the propagator 513 receives a change 
request from the interceptor 509, the propagator 513 records 
an indication of the requestor and then modifies the change 
request to indicate the propagator 513 as the requestor. This 
facilitates the filesystem 505 returning responses to the 
propagator, but is not necessary. An architecture can be 
designed to intercept responses from the filesystem instead 
of changing the identity of the requestor. In an architecture 
that changes the identity of the requestor, the propagator 513 
restores the identity of the requestor in responses from the 
filesystem 505 before passing the response to the interceptor. 
Returning to handling of change requests, the propagator 
513 records data indicating change requests that have not 
been completed (i.e., in-flight change requests). For full 
Sync, the propagator 513 records data about change requests 
for a primary endpoint and a secondary endpoint. The 
propagator 513 uses this data to determine when both are 
complete and a response can be provided to the requestor. 
For semi sync, the propagator 513 records data for the 
primary endpoints since the sequencer 511 handles requests 
for secondary endpoints in a semi sync relationship. But the 
propagator 513 notifies the sequencer 511 when changes are 
completed on a primary endpoint. The sequencer 511 does 
not send off a change set for a secondary endpoint until all 
of those changes have been Successfully completed on the 
primary endpoint. 
The secondary writer 515 handles change requests that 

target secondary endpoints. The secondary writer 515 
receives change requests in the form of replication opera 
tions from the sync engine 507. At a primary endpoint node, 
the sync engine 507 generates a replication operation from 
a change request that is Supplied from the propagator 513 or 
the sequencer/sequencer spawned thread 511. A replication 
operation indicates the primary endpoint node (e.g., a propa 
gator instance on the primary endpoint node) as a source of 
the replication operation and indicates the secondary end 
point. The replication operation also indicates the type of 
sync relationship. A replication operation may be a re 
formed change request that indicates a different requestor 
and a different target than a change request and conforms to 
a protocol that is independent of the protocol of the filesys 
tem 505. For example, a change request from a propagator 
may indicate the propagator as the requestor and particular 
filename and file region (e.g., blocks) as a target in a request 
that complies with a write anywhere file layout (WAFL). 
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The replication operation may extract that information from 
the change request and indicate it independent of a particular 
file system or protocol. When the secondary writer 515 
receives this information, the secondary writer 515 gener 
ates an appropriate request in accordance with the protocol 
implemented by the filesystem of the secondary endpoint 
node. The secondary writer 515 tracks state of requests 
submitted to the filesystem 505, and passes responses back 
to the sync engine 507. For a semi sync relationship, the 
secondary writer 515 accumulates (“stages') requests of a 
change set until the change set is complete. The secondary 
writer 515 reads metadata of requests to determine when to 
create a change set and when a change set is complete. When 
a change set is complete, the secondary writer 515 will 
generate a notification for the primary endpoint node that the 
change set has successfully completed instead of sending 
individual notifications for each request in a change set. The 
secondary writer 515 will also generate a notification for a 
failed change set. In some cases, the secondary endpoint will 
be a primary endpoint in another sync relationship (“cas 
cading sync configuration'). When a secondary writer 515 is 
instantiated, the secondary writer instance will access Syn 
chronization relationship data to determine whether the 
secondary endpoint is in a cascading sync configuration. If 
so, then the secondary writer 515 will invoke a propagator 
instance and/or a sequencer instance for the cascading 
relationship. The secondary writer 515 will indicate itself 
has the requestor of the change request. 

Although FIG. 5 provides a general description for an 
example logical object granularity full sync and semi sync 
architecture, the following figures provide more illustrations 
of example operations. FIGS. 6-13 depict flowcharts of 
example full Sync and semi sync operations for endpoints in 
cluster nodes. These figures are described with reference to 
actors from the example architecture depicted in FIG. 5, but 
the specified actors are to aid in understanding the opera 
tions. As mentioned earlier, program structure or design can 
vary and the examples that specify actors should not be used 
to limit the scope of the claims. 

FIGS. 6 depicts a flowchart of example operations for 
handling receipt of a change request and handling a change 
request that targets a primary endpoint in a full sync rela 
tionship. An interceptor can perform the operations of 
blocks 601, 603, 605, and 607, while a propagator can 
perform the operations of blocks 608, 609, 611, and 613. 
At block 601, an interceptor receives a filesystem request 

(hereinafter “request') derived from a storage protocol I/O 
request. For example, information has been extracted from 
a storage protocol I/O request to generate the filesystem 
request 
At block 603, the interceptor determines whether the 

target of the request is in a sync relationship. If the target of 
the request is not in a sync relationship, then control flows 
to block 617. If the target of the request is in a sync 
relationship, then control flows to block 604. 
At block 604, the interceptor reads out the sync relation 

ship information. An interceptor can “read out' information 
by copying the information into another data structure and 
associating that data structure with the change request. An 
interceptor can also “read out the information by recording 
a reference (e.g., pointer, index, etc.) to an entry in a data 
structure that contains the information. The sync relation 
ship information can be maintained in a data structure that 
is circulated among members of a cluster(s) that host end 
points in synchronization relationships. This data structure 
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can be configured at individual nodes. The configuration, 
after being committed, can trigger updates across the nodes 
in the cluster(s). 

At block 605, the interceptor determines whether the 
request is a change request or a read request. If the inter 
ceptor determines that the request is a change request, then 
control flows to block 611. Otherwise, control flows to block 
6O7. 
At block 607, the interceptor determines whether the 

request the sync relationship is a full Sync or a semi Sync 
relationship. If the relationship is a full sync relationship, 
then control flows to block 617 because a read does not 
trigger corresponding full sync operations. If the relation 
ship is a semi sync relationship, then control flows to block 
609 because the read may create a dependency among 
change requests in a change set. 

At block 609, the request is passed to the sequencer 
instance for the primary endpoint and secondary endpoint 
pair of the sync relationship. The sequencer may have 
already been instantiated for the pair or may be instantiated 
coincident with the passing of the request. For example, an 
interceptor can check data that indicates instantiated 
sequencer for each unique endpoint pairing. If the intercep 
tor finds an entry, then the interceptor passes a reference to 
the change request and the sync relationship information to 
the thread using the thread identifier in that entry. If there is 
no entry, then the interceptor calls a function with a refer 
ence to the change request and the sync relationship infor 
mation passed as parameters of the function call. Control 
flows from block 609 to block 801 of FIG. 8. 

If the interceptor determined that the request was a change 
request at block 605, then control flowed to block 611. At 
block 611, the request and sync relationship information is 
passed to a propagator instance for the primary endpoint and 
secondary endpoint pair indicated in the sync relationship 
information. As with the sequencer, the propagator instance 
may be instantiated coincident with the passing of the 
request and sync relationship information. Also, either or 
both of the change request and sync relationship information 
can be passed referentially or literally. 

At block 613, the propagator instance records an indica 
tion of the requestor and indicates the propagator instance 
itself as the requestor. The propagator instance indicates 
itself as the requestor to cause the filesystem to return a 
response to the propagator instance. This facilitates the 
propagator interfacing with the existing file systems. The 
propagator instance records the actual requestor, at least 
from the perspective of the propagator instance, so that the 
response from the underlying filesystem can be updated to 
indicate the actual requestor. If the sync relationship is semi 
sync, then control flows to block 609. If the relationship is 
full sync, then control flows to block 615. 

At block 615, the propagator instance records data to track 
an in-flight request. Although referred to as an “in-flight' 
request, the request is not yet in-flight since the propagator 
instance does not pass on the request until after recording 
this data. The propagator instance records at least an indi 
cation of the request, the primary endpoint, the secondary 
endpoint, and an indication of whether a response has been 
received for either the primary endpoint or the secondary 
endpoint. The propagator instance can record an identifier of 
the request determined from metadata of the request. The 
propagator instance can generate an identifier with the 
primary endpoint and secondary endpoint identifiers. The 
propagator instance records this data to determine when a 
change has been Successfully performed at both the primary 
endpoint and the second endpoint. After Success at both 
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endpoints, the response can be conveyed to the actual 
requestor. After recording the data for tracking the request, 
the propagator instance can perform blocks 617 and 619 
concurrently or in sequence. If in sequence, the propagator 
instance can perform either of the blocks in order. 
At block 617, the propagator instance Supplies the request 

to the underlying filesystem. 
At block 619, the propagator instance indicates the 

request for performing on the secondary endpoint. For 
instance, the propagator instance passes the request and the 
sync relationship information to a module that communi 
cates the change to the node associated with the secondary 
endpoint. 

FIG. 7 depicts a flowchart of example operations for 
logical storage object granularity semi sync operations. FIG. 
7 continues from block 609 of FIG. 6. 
At block 701, a propagator instance records data to track 

an in-flight request. Although block 701 is expressed in 
similar language as block 615, the example operation of 
block 701 does not track state of a request sent to a node 
associated with a secondary endpoint. The state of the 
request sent to the secondary endpoint node is not tracked by 
the propagator instance for a semi sync relationship because 
tracking is handled by the sequencer. In a semi sync rela 
tionship, the propagator instance can avoid tracking requests 
sent to the underlying filesystem for the primary endpoint 
and rely on management mechanisms of the underlying 
filesystem. In this case, the propagator instance can pass on 
the response of Success or failure from the underlying 
filesystem. The propagator instance would just restore the 
identity of the actual requestor in the response. 
At block 703, the propagator instance supplies the request 

to the filesystem. 
At block 609 of FIG. 6, the sequencer was passed the 

request and the sync relationship information. At block 705, 
the sequencer determines whether a boundary for an open 
change set has been log has been reached. For instance, a 
boundary may be defined as a fraction of a configured RPO. 
As an example, the sequencer manages change set logs on 
a 4 second boundaries based on a 12 second RPO. When 
change set log is opened, the change set log can be stamped 
with a system time. Each time a boundary is reached, the 
change set log is closed and Submitted for processing. In this 
example of 4 second boundaries for a 12 second RPO, a total 
of 3 change set logs span the RPO time period. One of the 
change set logs will be open, and the other two will be 
closed. If the change set boundary has been reached, then 
control flows to block 709. If the change set boundary has 
not been reached, then control flows to block 707. 
At block 707, the sequencer indicates the request in the 

open change set log. The sequencer can record an identifier 
of the request, the type of request, and a reference to the 
request. The sequencer can record a reference to the request. 
At block 709, the change set log is closed because the 

boundary was reached as determined at block 705. For 
example, the sequencer can maintain an open change set log 
pointer and one or more closed change set log pointers. 
When a boundary is reached, the sequencer can update the 
pointers to reflect open and closing of logs. The sequencer 
can also maintain closed logs in a buffer even if the log is for 
a failed change set. This may consume more memory since 
the logs are not constrained to memory space Sufficient for 
change sets that are still in process, both open and closed. 
But the additional memory may allow for investigation of 
failed change sets or facilitate faster retries of failed change 
SetS. 
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At block 711, the sequencer passes the closed log for 
processing. For example, the sequencer can launch a thread 
or process that processes the closed log while the sequencer 
continues maintaining a new change set log. Processing the 
closed log involves determines dependencies among change 
requests to satisfy an expected sequence among requests in 
a change set. 

At block 713, the sequencer opens and initializes a 
different change set log. To open a log, a sequencer can 
allocate a different memory space or access memory space 
of a closed log that has completed (Successfully or unsuc 
cessfully). The sequencer initializes the open change set log 
with an initial time stamp. The sequencer can also overwrite 
any data to clear the change set log, or allow another process 
to handling clearing a log before being opened. 

At block 715, the sequencer indicates the request in the 
initialized, open change set log. 

FIG. 8 depicts a flowchart of example operations for 
processing a closed change set log. The processing analyzes 
the requests in a change set and determines any ordering to 
maintain a correct and consistent view of data. The logical 
storage object granularity maintains the change sets to 
implement change sets in an atomic manner and comply 
with a specified RPO. Although FIG. 7 example operations 
described a spawned thread or process as processing a 
closed change set log, FIG. 8 describes the sequencer as 
processing a closed change set log. 

At block 801, a sequencer determines any dependencies 
among change requests in a closed change set log and 
indicates sequencing in accordance with the dependencies. 
The sequencer maintains data that indicates regions of 
endpoints that are subject of a change request. For example, 
a sequencer can maintain a bit map of regions for a file. A 
first dimension of the bit map can represent blocks of X 
bytes, depending upon the file system and/or storage proto 
col. Another dimension of the bit map can represent each of 
the change requests. With this bit map, the sequencer can 
determine when change requests overlap. If change requests 
overlap, then the sequencer determines that the change 
requests are dependent upon each other and preserves their 
sequence to satisfy this dependency. The sequencer also 
determines whether any change requests that target a logical 
storage object have an intervening read request that targets 
the logical storage object. In that case, the sequencer deter 
mines a dependency exists and preserves sequence or order 
of the Surrounding update requests. The sequencer writes the 
sequencing information into metadata of each of the change 
requests. For example, the sequencer writes the sequencing 
information into headers of the change requests. 

At block 803, the sequencer indicates change set infor 
mation in each change request of the change set. As with the 
sequencing information, the sequencer indicates change set 
information in metadata of each of the change requests. The 
sequencing information includes an identifier of the change 
set and a number of change requests in the change set. This 
helps the secondary writer at the node associated with the 
second endpoint determine when the secondary writer has 
received all change requests of a change set. The sequencer 
can also indicate the start time of the change set in metadata 
of each of the change requests. This can help the secondary 
writer determine when the RPO constraint has been violated. 

At block 805, the sequencer eliminates redundant change 
requests. The sequencer determines that a change request is 
redundant if the change request targets a same primary 
endpoint and same region or blocks that is also targeted by 
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a later change request. In other words, the sequencer deter 
mines change requests that make changes that do not persist 
beyond the change set. 
At block 807, the sequencer Supplies each change request 

along with the indications of sequencing and change set to 
a cluster sync engine. The sequencer can pass references to 
the change requests that have been modified with the indi 
cations of sequencing and change set information. The 
module responsible for communicating these changes to the 
secondary endpoint node can obtain the actual data via the 
passed reference. 

FIG. 9 depicts a flowchart of example operations for 
handling a response from a filesystem for a primary endpoint 
in a sync relationship. These example operations are 
described as if performed by a propagator instance. 
At block 901, a propagator instance receives a response 

from a filesystem of a primary endpoint. The propagator 
instance has previously passed a change request to the 
filesystem. The change request indicated a primary endpoint 
(i.e., a logical storage object with filesystem location infor 
mation such as file handle and file block numbers) and the 
propagator instance as a source of the request. The filesys 
tem now provides a response after servicing (or attempting 
to service) the change request. The response will indicate 
either Success or failure. 
At block 903, the propagator instance determines whether 

the response indicates Success or failure. If the response 
indicates success, then control flows to block 909. If the 
response indicates failure, then control flows to block 905. 

In the case of failure, the propagator instance initiates an 
abort of the corresponding change to the secondary endpoint 
at block 905. Whether the primary endpoint is in a full sync 
relationship or in a semi Sync relationship, the change to the 
secondary endpoint should not complete Successfully to 
avoid an out of sync state between the primary and second 
ary endpoints. For a full sync relationship, the propagator 
instance Submits a request to the Sync engine to abort the 
change request communicated to the secondary endpoint 
node. The sync engine will carry out operations to abort the 
change to the secondary endpoint and preserve synchroni 
Zation between the endpoints. For a semi sync relationship, 
the propagator instance aborts the change set. Aborting the 
change set can involve marking the change set log at the 
primary endpoint node as failed or aborted as well as 
requesting that the sync engine request the secondary end 
point node to fail or abort the requests of the change set. 
At block 907, the propagator instance indicates that the 

requestor can be notified that the change request failed. The 
propagator instance, for example, can change the failure 
response from the filesystem of the primary endpoint, to 
indicate the actual requestor and pass the changed response 
to the network module. The network module can then 
communicate the failure to the actual requestor. 

If the change request was successful, then the propagator 
instance updates tracking data to indicate the Success at 
block 909. The propagator instance updates the tracking data 
to indicates that the request has completed at the primary 
endpoint. 
At block 911, the propagator instance determines with the 

tracking data whether the change to the secondary endpoint 
has completed. If not, then control flows to block 913. If the 
change to the secondary endpoint has completed Success 
fully, then control flows to block 921. 
At block 913, the propagator instance determines whether 

a time out has been reached. A time out can be configured. 
This time out presumes that a response should be received 
before the time out expired. Otherwise, the request or 
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response to the request from the secondary endpoint node 
can be considered lost. If the time out has been reached, then 
control flows to block 917. If the time out has not been 
reached, then the propagator instance waits for a defined 
wait period at block 915. Control flows from block 915 back 
to block 911. 

Blocks 917 and 919 depict operations in a time out 
scenario. At block 917, the propagator instance indicates that 
the secondary endpoint is out of sync with the primary 
endpoint. At block 919, the out of sync state between the 
endpoints is processed as configured. For example, an out of 
sync state may cause a retry if retry is allowed. The out of 
sync state may trigger a notification to an administrative 
module. 
When the update request at the secondary endpoint com 

pletes Successfully, then the propagator instance indicates 
that the actual requestor can be notified of Successful 
completion of the change request at block 921. The propa 
gator instance Supplies the response to the network module 
for communicating to the actual requestor. 

At block 923, the tracking data is cleared. The propagator 
instance can clear this data, or mark the tracking data for 
clearing by a garbage collection thread. 

While FIG. 9 depicts the example operations for handling 
a response for the change to the primary endpoint, FIG. 10 
depicts a flowchart of example operations for a cluster based 
synchronization engine to process requests from propagators 
and counterpart sync engines. The description for FIG. 10 
will refer to the actor as a sync engine. 

At block 1001, a sync engine receives an indication of a 
change request to be performed on a secondary endpoint. 
The change request can be passed referentially or literally to 
the sync engine. The change request may be a member of a 
change set or a standalone change request for a full Sync 
relationship. The sync engine can receive the indication of 
the secondary endpoint in metadata of the change request or 
in a separate structure associated with the change request. 

At block 1003, the sync engine determines a cluster node 
associated with the secondary endpoint. The sync engine 
accesses data that is maintained across the cluster. The data 
can be used as a directory for endpoints and nodes. The data 
indicates which nodes are associated with (i.e., host and/or 
manage access to) which logical storage objects. This data 
can be implemented as a database. The sync engine reads the 
data with the identity of the secondary endpoint, which is a 
logical storage object identifier. 

At block 1005, the sync engine determines whether a 
communication session has already been established with a 
sync engine at the secondary endpoint node. The sync 
engines maintain communication sessions to avoid the over 
head of establishing the communication sessions for each 
request. However, this is not necessary. The sync engines 
can establish a session or connection per endpoint pair. If not 
session has already been established, then control flows to 
block 1007. Otherwise, control flows to block 1009. 

At block 1007, the sync engine establishes a communi 
cation session with the sync engine at the cluster node 
associated with the secondary endpoint. 

At block 1009, the sync engine creates a replication 
request that targets the secondary endpoint in accordance 
with the change request and indicates the propagator 
instance as the Source of the replication request. The Sync 
engine creates a request that indicates the secondary end 
point as the target of the request. The sync engine creates the 
request with an indication of the data or the data to be written 
to the secondary endpoint. The sync engine also creates the 
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request with an indication of the cluster node and metadata 
of the received change request. 
At block 1011, the sync engine communicates the repli 

cation request over the session to the cluster node associated 
with the secondary endpoint. A dashed line from block 1011 
to block 1013 represents passage of time between sending 
the replication request and receiving a response. 
At block 1013, the sync engine receives a response to the 

replication request from the cluster node associated with the 
secondary node. The Sync engine determines a propagator 
instance from the response, which indicates a propagator 
instance as a requestor. The sync engine passes the replica 
tion response to the appropriate propagator instance indi 
cated in the response at block 1015. The sync engine can be 
designed to determine a requestor by maintain data that 
associated propagator instance identifiers with replication 
request identifiers (e.g., an identifier generated based on 
endpoint identifiers). 

FIG. 11 depicts a flowchart of example operations for a 
propagator instance to handle a response to a change request 
to a secondary endpoint. FIG. 11 is described with reference 
to a propagator instance as an actor of the example opera 
tions. As described earlier, the propagator instance passes 
change requests to be made to a secondary endpoint, which 
have been referred to as replication requests, to a sync 
engine. The sync engine communicates those changes to the 
cluster node associated with the secondary endpoint. 
At block 1101, a propagator instance receives a replica 

tion response from a sync engine. The replication response 
indicates that the response corresponds to the secondary 
endpoint and the primary endpoint. 
At block 1103, the propagator instance determines 

whether the sync relationship between the endpoints was full 
sync or semi sync. If the sync relationship is full Sync, then 
control flows to block 1105. If the sync relationship is semi 
sync, then control flows to block 1123. 
At block 1105, the propagator instance determines 

whether the change request to the secondary endpoint was 
Successful based on the replication response. If successful, 
then control flows to block 1113. Otherwise, control flows to 
block 1107. 
At block 1107, the propagator instance determines 

whether the requested change to the primary endpoint was 
completed Successfully. The propagator instance reads the 
in-flight tracking data to determine whether the primary 
endpoint change completed Successfully. If the change to the 
primary endpoint completed Successfully and the change to 
the secondary endpoint was not successful, then the end 
points are out of sync. If the change the primary endpoint 
completed successfully, then control flows to block 1121. If 
the change to the primary endpoint did not complete Suc 
cessfully, then control flows to block 1109. 
At block 1121, the change to the primary endpoint is 

rolled back. Rolling back the change to the primary endpoint 
leads to the requestor being given a failed response. The 
requestor can then request the change again. The propagator 
can be programmed to indicate an out of sync state in 
addition to or instead of rolling back changes to a primary 
endpoint. Control flows from block 1121 to block 1127. 
At block 1109, the change to the primary endpoint is 

aborted. Although likely rare, the node associated with the 
change to the secondary endpoint can service a change 
request prior to the propagator instance receiving a response 
from the underlying storage element for the primary end 
point. 
At block 1111, the propagator instance indicates that the 

actual requestor can be notified that the change request 
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failed. For example, the propagator instance creates a failure 
response based on the response from the underlying storage 
element for the primary endpoint. The propagator instance 
creates the failure response with the requestor that was 
previously recorded from the change request passed from 
the interceptor. 

If the change to the secondary endpoint was successful in 
a full sync relationship, then the propagator instance deter 
mines if the requested change has completed Successfully at 
the primary endpoint at block 1113. The propagator instance 
accesses the in-flight tracking data to determine whether the 
primary endpoint change has already completed. If the 
primary endpoint change has already completed, then con 
trol flows to block 1117. If the primary endpoint change has 
not yet completed, then control flows to block 1115. 

At block 1115, the propagator instance updates the in 
flight tracking data to indicate that the secondary endpoint 
change has completed. 

At block 1117, the propagator instance indicates that the 
requestor can be notified that the request completed when 
the change has succeeded at both endpoints. The propagator 
instance generates a response based on the response from the 
underlying storage element of the primary endpoint. The 
response indicates Successful servicing of the request. The 
propagator instance also replaces an indication of itself as 
the requestor with an indication of the actual requestor. The 
propagator instance then passes the response to an intercep 
tor or a communications module. 

At block 1119, the tracking data for the request is cleared. 
The propagator instance can clear the tracking data or a 
garbage collecting thread (or another data maintenance 
thread) can clear the tracking data. 

If the response is for a secondary endpoint in a semi Sync 
relationship, then control flowed to block 1123. At block 
1123, the propagator instance determines whether the rep 
lication response indicates Successful completion of a 
change set to the secondary endpoint. If so, then control 
flows to block 1125. If not, then control flows to block 1127. 
At block 1125, the propagator instance indicates that the 

endpoints are out of sync. The propagator instance can 
access the Sync relationship data that is circulated among 
cluster nodes. This sync relationship data can include a 
single bit field that can be set by the propagator instance to 
indicate whether the corresponding endpoints are out of sync 
or in Sync. A propagation engine will process requests that 
involve out of sync endpoints as configured. For instance, a 
propagation engine can be configured to fence all requests 
that target a primary endpoint indicated as being out of sync 
until synchronization is restored with the secondary end 
point or an alternative secondary endpoint. The propagation 
engine can be configured to respond with a failure or out of 
service type of response when a targeted endpoint is indi 
cated as out of sync. If the primary endpoint has changed 
Successfully and the change set has completed Successfully 
at the secondary endpoint, then control flows to block 1129. 
Otherwise, control flows to block 1127. 
At block 1129, the propagator instance clears the change 

set log. Since the requestor was already notified of the 
Successful change to the primary endpoint, the Successful 
change to the secondary endpoint in a semi Sync relationship 
does not trigger a notification to the requestor. Clearing the 
change set log implies that the change set has completed 
Successfully. The propagator instance can be programmed to 
mark the change set log as Successfully completed prior to 
clearing or removal. 

FIG. 12 depicts a flowchart of example operations for a 
secondary writer to handle replication requests. As described 
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earlier, a secondary writer receives a replication request 
from a sync engine, both of which are running on a node 
associated with a secondary endpoint. A sync engine running 
on a node associated with a primary endpoint in a sync 
relationship with the secondary endpoint communicated the 
replication request to the sync engine at the secondary 
endpoint node. 
At block 1201, a sync engine at a cluster node associated 

with a secondary endpoint receives a replication request. 
The replication request indicates a primary endpoint and a 
secondary endpoint. The primary endpoint or a propagator 
instance at the primary endpoint node is indicated as a 
Source of the replication request. The replication request can 
also indicate the type of sync relationship. 
At block 1203, the sync engine determines whether a 

secondary writer has already been instantiated for the pri 
mary and secondary endpoints. For instance, a secondary 
writer for the endpoint pair may have been instantiated for 
an earlier request of a change set. If a secondary writer has 
already been instantiated, then control flows to block 1207. 
If not, then control flows to block 1205. 
At block 1207, the sync engine passes the replication 

response and associated metadata, if any separately com 
municated, to a secondary writer instance. The metadata 
may be indicated in the replication request. 
At block 1205, the sync engine instantiates a secondary 

writer based on the indicated endpoint pair. Control flows 
from either of blocks 1205 and 1207 to block 1209. 
At block 1209, the secondary writer instance determines 

whether the change request should be staged. Staging 
change requests for a change set refers to accumulating the 
change requests or indications of the change requests up to 
a limit. The secondary writer can read metadata of the 
change request to determine whether the change request is in 
a change set. The metadata may indicate a change set. The 
secondary writer instance can also proceed as if the change 
request is in a change set based on an indication of semi Sync 
instead of full Sync. If the change request is to be staged, 
then control flows to block 1215. If not, then control flows 
to block 1211. 
At block 1211, the secondary writer instance records data 

to track the replication request. The secondary writer 
instance uses the tracking data to record that a request has 
been passed to an underlying filesystem. The secondary 
writer instance can rely on the underlying filesystem instead 
of recording the data to track the replication request. 
At block 1213, the secondary writer instance supplies the 

replication request to the underlying storage element access 
module. As with the propagator instance, the secondary 
writer instance can record an indication of the requester and 
replace it with an indication of the secondary writer instance 
before Supplying the replication request to the underlying 
filesystem. 

If the secondary endpoint is in a semi sync relationship, 
then the secondary writer instance will determine whether a 
change set log has already been created for staging replica 
tion requests for the endpoint pair at block 1215. If a change 
set log has already been created, then control flows to block 
1217. If a change set log has not already been created for the 
endpoint pair, then control flows to block 1225. 
At block 1225, the secondary writer instance creates a 

staging log (i.e., change set log at Secondary endpoint node). 
The secondary writer instance initializes the staging log with 
the replication request. 
At block 1217, the secondary writer instance indicates the 

replication request in the already created Staging log. 
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At block 1219, the secondary writer instance determines 
whether the change set log is complete. The secondary 
writer instance can access metadata of any of the replication 
requests to determine a total number of replication requests 
in a change set. The secondary writer instance can then 
compare the number determined from the metadata against 
the number of replication requests indicated in the change 
set log or staging log. If the staging log is not complete, then 
the secondary writer instance waits for additional replication 
requests to be received. 
Upon a determination that the staging log is complete, the 

secondary writer instance traverses the staging log at block 
1221. The secondary writer instance selects the first 
unmarked replication request indicated in the staging log 
and Supplies the selected replication request to the underly 
ing filesystem. The secondary writer instance proceeds to the 
next unmarked replication request in the staging log as 
corresponding responses are received. The secondary writer 
instance continues until this process until the staging log has 
been traversed, which is described in more detail in FIG. 13. 

FIG. 13 depicts a flowchart of example operations for a 
secondary writer instance to handle responses from an 
underlying filesystem. FIG. 13 only depicts example opera 
tions for handling responses for requests in a change set. In 
other words, FIG. 13 only depicts example operations for a 
secondary endpoint in a semi Sync relationship. When 
handling responses for a full sync relationship, the second 
ary writer instance passes the response to the sync engine. 
The secondary writer instance will first restore the indication 
of the original requestor. 

At block 1301, a secondary writer instance receives a 
response to a replication request from an underlying file 
system. 
At block 1303, the secondary writer instance determines 

whether the response indicates a successful change to a 
secondary endpoint. If the response indicates a successful 
change to the secondary endpoint, then control flows to 
block 1304. If the response indicates a failed change to the 
secondary endpoint, then control flows to block 1305. 
At block 1305, the secondary writer instance determines 

whether retry is configured. A secondary writer instance can 
be configured to retry requests within a change set depend 
ing upon RPO conformity configuration. For example, the 
secondary writer instance can be configured to retry a 
change set if a predefined amount of time still remains in a 
RPO time period. If retry is configured and allowed, then 
control flows to block 1307. Otherwise, control flows to 
block 1311. 

At block 1307, the secondary writer instance updates a 
retry counter. To avoid possible waste of resources, retries 
are limited to a configured number. 

At block 1309, the secondary writer instance supplies the 
request to the underlying filesystem again. 

If the retry was not configured or not allowed, then the 
secondary writer instance records data to indicate that the 
change set failed at block 1311. The secondary writer 
instance can write an indication of failure to metadata for the 
staging log. The failure indication can be helpful to preserve 
this failed State of the change set in case the failure cannot 
or is not communicated back to the primary endpoint node. 

At block 1313, the secondary writer instance generates a 
notification that the change set failed. The secondary writer 
instance can generate a response that identifies the change 
set, and the indication of failure. The failure notification is 
then Supplied to the requesting node (i.e., primary endpoint 
node) via the sync engine. The dotted line from block 1313 
to block 1315 indicates a passage of time. At a later time, the 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

26 
secondary writer instance can mark the change set log for 
discard. A secondary writer can be programmed to discard 
change set logs with indications of failure. 

If the replication request response indicated Success, then 
the secondary writer instance determines whether the cor 
responding change has completed at block 1304. If the entire 
change set has completed, then control flows to block 1317. 
If the entire change set has not completed, then control flows 
to block 1319. 
At block 1317, the secondary writer instance generates a 

notification that the change set completed Successfully. The 
secondary writer instance can generate a response that 
identifies the change set, and the indication of Success. The 
Success notification is then Supplied to the requesting node 
(i.e., primary endpoint node) via the sync engine. A second 
ary writer can be programmed to pass back a response to one 
of the replication requests in a change set instead of gener 
ating a change set Success notification. The secondary writer 
can return to the requesting node the response to the last 
request in the according to sequencing information for the 
change set. This response for the last change request of the 
change set can operate as a Success notification for the entire 
change set to the propagator instance at the primary endpoint 
node. 
At block 1319, the secondary writer instance marks the 

particular request in the staging log as completed Success 
fully. 
At block 1321, the secondary writer instance continues to 

traverse the staging log. The secondary writer instance 
selects a next unmarked request in the staging log in 
accordance with the ordering indicated for the requests in 
the staging log. The secondary writer instance supplies this 
selected request to the underlying filesystem. 

Variations from Example Illustrations 
The flowcharts are provided to aid in understanding the 

illustrations and are not to be used to limit scope of the 
claims. The flowcharts depict example operations that can 
vary among aspects of the disclosure. Additional operations 
may be performed; fewer operations may be performed; the 
operations may be performed in parallel; and the operations 
may be performed in a different order. For example, the 
interceptor may only pass requests to the propagator. The 
propagator can be programmed to determine whether a 
target of a change request is in a sync relationship. As 
another example of variation, block 615 can be performed 
regardless of the synchronization configuration. Instead of 
the absence of tracking data implying a semi sync relation 
ship and a response being Supplied back to a requestor, 
tracking data for each request can be maintained. Some of 
the operations of the flowcharts described determining 
whether a thread or process was already instantiated for an 
endpoint pair. An architecture can be designed that does not 
use persistent threads. Instead, state data is stored per 
endpoint pair. This state data persists until cleared after a 
corresponding request(s) completes or fails. This avoids 
threads in a wait state that consume resources. As another 
example, the propagator instance can track State of requests 
to secondary endpoint nodes instead of the sequencer or in 
addition to the sequencer. Regardless of the particular actor 
tracking state of a change set, state of individual requests in 
a change set do not impede responding to a requestor after 
a change has been performed at a primary endpoint. Thus, 
state of individual requests in a change set need not be 
tracked. In FIG. 7, block 711 describes passing a closed 
change set log to a spawned thread of process. An architec 
ture can be programmed or designed that processes an open 
log. The architecture can process the change set log each 
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time a request is added and update sequencing information, 
eliminate redundant changes, etc. When the change set log 
is closed, it is already ordered and ready for communicating 
to a node associated with the secondary endpoint. 

Communication of failures can be communicated in a 
manner other than those depicted in the flowcharts. For 
example, failure indications (e.g., block 1311) may not be 
recorded since a failure notification is generated. For failed 
change sets, a secondary writer instance can pass back a 
failed response for one of the requests in a change set. The 
propagator instance at the requesting node can determine 
which closed, change set log corresponds to the failure 
response and mark the change set log as failed. 

In addition, additional operations can be performed that 
are not depicted. For example, a monitoring thread can be 
spawned that monitors change set logs. The monitoring 
thread can evaluate lifetime of a change set against a defined 
RPO. An active change set log or in process change set log 
is a closed change set log that still awaits a response from 
either the primary endpoint node or the secondary endpoint 
node. The monitoring thread evaluates the change set start 
time to determine whether the RPO time has elapsed. If so, 
the monitoring thread can prompt the sequencer thread to 
mark the change set as failed or mark the change set as failed 
itself. 

Although this description refers to individual logical 
storage objects being paired for synchronization relation 
ships, the “endpoints' of a synchronization relationship can 
be groups of logical storage objects. A group of files or group 
of LUNs, for example, can be in a synchronization relation 
ship with another group of logical storage objects. The nodes 
can maintain additional data to resolve group identifiers to 
the logical storage objects that are members of the group. 
As will be appreciated by one skilled in the art, aspects of 

the disclosure may be implemented as a system, method or 
computer program product. Accordingly, aspects of the 
disclosure may take the form of a hardware aspect, a 
Software aspect (including firmware, resident software, 
micro-code, etc.) or an aspect combining software and 
hardware aspects that may all generally be referred to herein 
as a “circuit,” “module' or “system.” Furthermore, aspects 
of the disclosure may take the form of a computer program 
product embodied in one or more computer readable medi 
um(s) having computer readable program code embodied 
thereon. 
Any combination of one or more computer readable 

medium(s) may be utilized. The computer readable medium 
may be a computer readable signal medium or a computer 
readable storage medium. A computer readable storage 
medium may be, for example, but not limited to, an elec 
tronic, magnetic, optical, electromagnetic, infrared, or semi 
conductor system, apparatus, or device, or any Suitable 
combination of the foregoing. More specific examples (a 
non-exhaustive list) of the computer readable storage 
medium would include the following: an electrical connec 
tion having one or more wires, a portable computer diskette, 
a hard disk, a random access memory (RAM), a read-only 
memory (ROM), an erasable programmable read-only 
memory (EPROM or Flash memory), an optical fiber, a 
portable compact disc read-only memory (CD-ROM), an 
optical storage device, a magnetic storage device, or any 
suitable combination of the foregoing. In the context of this 
document, a computer readable storage medium may be any 
tangible medium that can contain, or store a program for use 
by or in connection with an instruction execution system, 
apparatus, or device. 
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A computer readable signal medium may include a propa 

gated data signal with computer readable program code 
embodied therein, for example, in baseband or as part of a 
carrier wave. Such a propagated signal may take any of a 
variety of forms, including, but not limited to, an electro 
magnetic signal, an optical signal, an infrared signal, or any 
Suitable combination thereof. A computer readable signal 
medium may be any computer readable medium that is not 
a computer readable storage medium and that can commu 
nicate, propagate, or transport a program for use by or in 
connection with a computer. Program code embodied on a 
computer readable signal medium may be transmitted using 
any appropriate medium, including but not limited to wire 
less, wireline, optical fiber cable, RF, etc., or any suitable 
combination of the foregoing. 
Computer program code for carrying out operations for 

aspects of the disclosure may be written in any combination 
of one or more programming languages, including an object 
oriented programming language Such as the Java R program 
ming language, C++ or the like; a dynamic programming 
language Such as Python; a scripting language Such as Perl 
programming language or PowerShell Script language; and 
conventional procedural programming languages. Such as 
the “C” programming language or similar programming 
languages. The program code may execute entirely on a 
stand-alone computer, may execute in a distributed manner 
across multiple computers, and may execute on one com 
puter while providing results and or accepting input on 
another computer. 

Aspects of the disclosure are described with reference to 
flowchart illustrations and/or block diagrams of methods, 
apparatus (Systems) and computer program products accord 
ing to aspects of the disclosure. It will be understood that 
each block of the flowchart illustrations and/or block dia 
grams, and combinations of blocks in the flowchart illustra 
tions and/or block diagrams, can be implemented by com 
puter program instructions. These computer program 
instructions may be provided to a processor of a general 
purpose computer, special purpose computer, or other pro 
grammable data processing apparatus to produce a machine, 
Such that the instructions, which execute via the processor of 
the computer or other programmable data processing appa 
ratus, create means for implementing the functions/acts 
specified in the flowchart and/or block diagram block or 
blocks. 

These computer program instructions may also be stored 
in a computer readable medium that can direct a computer, 
other programmable data processing apparatus, or other 
devices to function in a particular manner, Such that the 
instructions stored in the computer readable medium pro 
duce an article of manufacture including instructions which 
implement the function/act specified in the flowchart and/or 
block diagram block or blocks. 
The computer program instructions may also be loaded 

onto a computer, other programmable data processing appa 
ratus, or other devices to cause a series of operational steps 
to be performed on the computer, other programmable 
apparatus or other devices to produce a computer imple 
mented process such that the instructions which execute on 
the computer or other programmable apparatus provide 
processes for implementing the functions/acts specified in 
the flowchart and/or block diagram block or blocks. 

FIG. 14 depicts an example computer system with a 
storage cluster based full Sync and semi sync propagation 
engine. A computer system includes a processor unit 1401 
(possibly including multiple processors, multiple cores, 
multiple nodes, and/or implementing multi-threading, etc.). 
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The computer system includes memory 1407. The memory 
1407 may be system memory (e.g., one or more of cache, 
SRAM, DRAM, Zero capacitor RAM, Twin Transistor 
RAM, eDRAM, EDO RAM, DDR RAM, EEPROM, 
NRAM, RRAM, SONOS, PRAM, etc.) or any one or more 
of the above already described possible realizations of 
machine-readable media. The computer system also 
includes a bus 1403 (e.g., PCI, ISA, PCI-Express, Hyper 
Transport(R) bus, InfiniBandR, bus, NuBus, etc.), and a 
network interface 1405 (e.g., an ATM interface, an Ethernet 
interface, a Frame Relay interface, SONET interface, wire 
less interface, iSCSI, Fibre Channel, etc.). The computer 
system also includes a storage cluster based granular full 
sync and semi sync propagation engine 1411. The storage 
cluster based granular full sync and semi sync propagation 
engine 1411 handles requests and responses corresponding 
to filesystem change requests that target endpoints in Sync 
relationships as described above. Any one of these function 
alities may be partially (or entirely) implemented in hard 
ware and/or on the processing unit 1401. For example, the 
functionality may be implemented with an application spe 
cific integrated circuit, in logic implemented in the process 
ing unit 1401, in a co-processor on a peripheral device or 
card, etc. Further, realizations may include fewer or addi 
tional components not illustrated in FIG. 14 (e.g., video 
cards, audio cards, additional network interfaces, peripheral 
devices, etc.). The processor unit 1401, the storage device(s) 
1409, and the network interface 1405 are coupled to the bus 
1403. Although illustrated as being coupled to the bus 1403, 
the memory 1407 may be coupled to the processor unit 
1401. 

While the aspects of the disclosure are described with 
reference to various implementations and exploitations, it 
will be understood that these aspects of the disclosure are 
illustrative and that the scope of the inventive subject matter 
is not limited to them. In general, techniques for logical 
storage object granularity synchronization across cluster 
nodes as described herein may be implemented with facili 
ties consistent with any hardware system or hardware sys 
tems. Many variations, modifications, additions, and 
improvements are possible. 

Plural instances may be provided for components, opera 
tions or structures described herein as a single instance. 
Finally, boundaries between various components, operations 
and data stores are somewhat arbitrary, and particular opera 
tions are illustrated in the context of specific illustrative 
configurations. Other allocations of functionality are envi 
sioned and may fall within the scope of the inventive subject 
matter. In general, structures and functionality presented as 
separate components in the exemplary configurations may 
be implemented as a combined structure or component. 
Similarly, structures and functionality presented as a single 
component may be implemented as separate components. 
These and other variations, modifications, additions, and 
improvements may fall within the scope of the inventive 
Subject matter. 

What is claimed is: 
1. A method comprising: 
receiving a filesystem request being generated from a 

storage protocol input/output request targeting a first 
local storage object, the filesystem request being inter 
cepted prior to being sent to a filesystem; 
determining from Synchronization configuration data 

that the first logical storage object has a synchroni 
Zation relationship with a second logical storage 
object; 
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determining from the synchronization configuration data 

a synchronization relationship type of the synchroni 
Zation relationship from a plurality of synchronization 
relationship types; and 

where the synchronization relationship type is a semi 
synchronous relationship type: 
accumulating, during a time interval, filesystem 

requests that target the first logical storage object, 
wherein the filesystem requests include the filesys 
tem request; 

Supplying each of the filesystem requests to the file 
system; 

determining dependencies among accumulated filesys 
tem requests that indicate changes to be made to the 
first logical storage object; 

recording sequencing information to preserve the 
dependencies, the recording comprising recording 
the sequencing information into accumulated file 
system requests that have a dependency and that 
indicate a change to be made to the first logical 
storage object; and 

Supplying, to a node associated with the second logical 
storage object, the sequencing information and accu 
mulated filesystem requests that indicate changes to 
be made to the second logical storage object. 

2. The method of claim 1 further comprising: 
where the synchronization relationship type is a full 

synchronization relationship type specifying that 
responses are not to be returned to requesters until 
changes are made to both primary logical storage 
objects and secondary logical storage objects: 
Supplying the filesystem request to the filesystem; 
generating a request based on the filesystem request to 

create a generated request indicating that the second 
logical storage object is a target; 

Supplying the generated request for transmission to the 
node associated with the second logical storage 
object; and 

upon the storage input/output request Successfully 
being implemented upon the first logical storage 
object and the generated request Successfully being 
implemented upon the second logical storage object, 
Supplying a response to a requester of the storage 
protocol input/output request that indicates Success 
of the storage input/output request. 

3. The method of claim 1 further comprising eliminating 
redundant filesystem requests that indicate changes to be 
made to the first logical storage object. 

4. The method of claim 1 further comprising Supplying 
metadata that indicates a total number of the accumulated 
filesystem requests that indicate changes to be made to the 
first logical storage object. 

5. The method of claim 4 further comprising recording the 
metadata into accumulated filesystem requests that will be 
Supplied to the node associated with the second logical 
storage object. 

6. The method of claim 1, further comprising Supplying a 
failure response to the requester that indicates failure of the 
storage input/output request if a change indicated by the 
storage input/output request is not successfully made to the 
second logical storage object. 

7. The method of claim 1, wherein the plurality of 
synchronization relationship types comprise a cascading 
relationship type. 

8. The method of claim 1 further comprising Supplying a 
failure response to the requester that indicates failure of the 
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storage input/output request if a change indicated by the 
storage input/output request is not successfully made to the 
first logical storage object. 

9. A non-transitory machine readable medium having 
stored thereon instructions for performing a method com 
prising program code which when executed by at least one 
machine, causes a machine to: 

receive a filesystem request being generated from a stor 
age protocol input/output request targeting a first local 
storage object, the filesystem request being intercepted 
prior to being sent to a filesystem; 
determine from Synchronization configuration data that 

the first logical storage object has a synchronization 
relationship with a second logical storage object; 

determine from the synchronization configuration data a 
synchronization relationship type of the synchroniza 
tion relationship from a plurality of synchronization 
relationship types; and 

where the synchronization relationship type is a semi 
synchronous relationship type: 
accumulate, during a time interval, filesystem requests 

that target the first logical storage object, wherein the 
filesystem requests include the filesystem request; 

Supply each of the filesystem requests to the filesystem; 
determine dependencies among accumulated filesys 
tem requests that indicate changes to be made to the 
first logical storage object; 

record sequencing information to preserve the depen 
dencies, the recording comprising recording the 
sequencing information into accumulated filesystem 
requests that have a dependency and that indicate a 
change to be made to the first logical storage object; 
and 

Supply, to a node associated with the second logical 
storage object, the sequencing information and accu 
mulated filesystem requests that indicate changes to 
be made to the second logical storage object. 

10. The non-transitory machine readable medium of claim 
9 further comprising program code to: 

where the synchronization relationship type is a full 
synchronization relationship type specifying that 
responses are not to be returned to requestors until 
changes are made to both primary logical storage 
objects and secondary logical storage objects: 
Supply the filesystem request to the filesystem; 
generate a request based on the filesystem request to 

create a generated request indicating that the second 
logical storage object is a target; 

Supply the generated request for transmission to the 
node associated with the second logical storage 
object; and 

upon the storage input/output request Successfully 
being implemented upon the first logical storage 
object and the generated request Successfully being 
implemented upon the second logical storage object, 
Supply a response to a requestor of the storage 
protocol input/output request that indicates success 
of the storage input/output request. 

11. The non-transitory machine readable medium of claim 
9 further comprising program code to eliminate redundant 
filesystem requests that indicate changes to be made to the 
first logical storage object. 

12. The non-transitory machine readable medium of claim 
9 further comprising program code to Supply metadata that 
indicates a total number of the accumulated filesystem 
requests that indicate changes to be made to the first logical 
storage object. 
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13. The non-transitory machine readable medium of claim 

12 further comprising program code to record the metadata 
into accumulated filesystem requests that will be supplied to 
the node associated with the second logical storage object. 

14. The non-transitory machine readable medium of claim 
9 further comprising program code to Supply a failure 
response to the requester that indicates failure of the storage 
input/output request if a change indicated by the storage 
input/output request is not successfully made to the second 
logical storage object. 

15. The non-transitory machine readable medium of claim 
9 further comprising program code to Supply a failure 
response to the requester that indicates failure of the storage 
input/output request if a change indicated by the storage 
input/output request is not successfully made to the first 
logical storage object. 

16. A computing device comprising: 
at least one processor; and 
a memory coupled to the processor which is configured to 

be capable of executing program code stored in the 
memory to: 
receive a filesystem request being generated from a 

storage protocol input/output request targeting a first 
local storage object, the filesystem request being 
intercepted prior to being sent to a filesystem; 
determine from Synchronization configuration data 

that the first logical storage object has a synchro 
nization relationship with a second logical storage 
object; 

determine from the synchronization configuration data 
a synchronization relationship type of the synchro 
nization relationship from a plurality of synchroni 
Zation relationship types; and 

where the synchronization relationship type is a semi 
synchronous relationship type: 
accumulate, during a time interval, filesystem 

requests that target the first logical storage object, 
wherein the filesystem requests include the file 
system request; 

Supply each of the filesystem requests to the filesys 
tem; 

determine dependencies among accumulated filesys 
tem requests that indicate changes to be made to 
the first logical storage object; 

record sequencing information to preserve the 
dependencies, the recording comprising recording 
the sequencing information into accumulated file 
system requests that have a dependency and that 
indicate a change to be made to the first logical 
storage object; and 

Supply, to a node associated with the second logical 
storage object, the sequencing information and 
accumulated filesystem requests that indicate 
changes to be made to the second logical storage 
object. 

17. The computing device of claim 16, wherein the 
program code further causes the processor to: 
where the synchronization relationship type is a full 

synchronization relationship type specifying that 
responses are not to be returned to requestors until 
changes are made to both primary logical storage 
objects and secondary logical storage objects: 
Supply the filesystem request to the filesystem; 
generate a request based on the filesystem request to 

create a generated request indicating that the second 
logical storage object is a target; 
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Supply the generated request for transmission to the 
node associated with the second logical storage 
object; and 

upon the storage input/output request Successfully 
being implemented upon the first logical storage 
object and the generated request Successfully being 
implemented upon the second logical storage object, 
Supply a response to a requestor of the storage 
protocol input/output request that indicates success 
of the storage input/output request. 

18. The computing device of claim 16, wherein the 
program code further causes the processor to eliminate 
redundant filesystem requests that indicate changes to be 
made to the first logical storage object. 

19. The computing device of claim 16, wherein the 
program code further causes the processor to Supply meta 
data that indicates a total number of accumulated filesystem 
requests that indicate changes to be made to the first logical 
storage object. 

20. The computing device of claim 16, wherein the 
program code further causes the processor to Supply a failure 
response to the requester that indicates failure of the storage 
input/output request if a change indicated by the storage 
input/output request is not successfully made to the first 
logical storage object. 
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