
(12) United States Patent
Pavlov et al.

USO09569328B2

US 9,569,328 B2
*Feb. 14, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

MANAGING APPLICATION LOG LEVELS IN
CLOUD ENVIRONMENT

Applicant: SAP SE, Walldorf (DE)

Inventors: Vladimir Pavlov, Sofia (BG); Hristo
Kostov, Sofia (BG): Hristo Iliev, Sofia
(BG); Petar Zhechev, Sofia (BG);
Verzhiniya Noeva, Sofia (BG)

Assignee: SAP SE, Walldorf (DE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 541 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 13/688,266

Filed: Nov. 29, 2012

Prior Publication Data

US 2014/0149576 A1 May 29, 2014

Int. C.
G06F 5/73 (2006.01)
G6F II/3) (2006.01)
H04L 12/24 (2006.01)
G06F II/07 (2006.01)
U.S. C.
CPC G06F II/302 (2013.01); G06F II/0709

(2013.01); G06F II/0718 (2013.01); G06F
II/0748 (2013.01); G06F II/0781 (2013.01);

H04L 4I/0896 (2013.01)
Field of Classification Search
CPC H04L 41/0896; G06F 17/30185
USPC .. 709/224, 223
See application file for complete search history.

500 N

INSTANTIATEANINTERFACE TO REMOTELY
MANAGE RECUESS

(56) References Cited

U.S. PATENT DOCUMENTS

2009, 0240698 A1* 9, 2009 Shukla GO6F 17,30286
2010/0115614 A1* 5, 2010 Barile GO6F 21,552

726/22
2010/0223378 A1* 9, 2010 Wei..................... HO4L 41,0896

TO9,224
2012/0246303 A1* 9, 2012 Petersen GO6F 17,30185

TO9,224
2013,017945.0 A1* 7, 2013 Chitiveli G06F 21,6218

707f737
2013/0298.183 A1* 11/2013 McGrath GO6F 9/455

T26.1
2014/0059226 A1 2/2014 Messerli GO6F 9/5072

TO9,226

* cited by examiner

Primary Examiner — Dustin Nguyen
Assistant Examiner — Joel Mesa

(57) ABSTRACT
Applications and their application components run on a
cloud platform and an underlying cloud runtime infrastruc
ture. The cloud platform provides a service that exposes an
interface to remotely change log levels of logger objects
defined in application components. The application logs are
generated and stored for the application components on the
cloud runtime infrastructure of the cloud platform. Log
levels affect the content stored in the application logs. The
exposed interface is instantiated to process remote requests
for managing application logs and log levels for a specified
application component. The application component is
deployed on the cloud platform. The requested change in the
log levels is performed based on the implementation of the
interface. The change in the log levels is performed in the
configuration data on the cloud runtime infrastructure pro
vided by the cloud platform.

14 Claims, 7 Drawing Sheets

510

RECEIVEAFIRST REMOTEREQUEST FROMA
CLIENT TO REMOTELY CHANGECURRENT

ApplicATION LOGLEWELS to reuSTEDOG 520
LEWELSDEFINED FOR LOGGER OBJECTSN

ApplicATION COMPONNTSPLOYDONTH
CLOUDPLATFORM

IS THE CENT
AUTHORIZED TO CHANGETH

LOGSLEWELS

SEND SECOND RECUSTS TO THE RUNTIME
INFRASTRUCTURESTO CHANGE THE LOGLEWELS

CANGETHCURRNT LOGWLS TO TH
RCUESTED LOGLEWELS INTHE

CONFIGURATION DATA STORED CN THE RUNTIME
INFRASTRUCTURES PROVIDED FROMTH COU

PLATFORM

US 9,569,328 B2 Sheet 1 of 7

09 d.

Feb. 14, 2017 U.S. Patent

~) 00:

569,328 B2 U.S. Patent

569,328 B2 9 U.S. Patent

328 B2 U.S. Patent

U.S. Patent Feb. 14, 2017 Sheet S of 7 US 9,569,328 B2

500
N START

INSTANTIATE AN INTERFACE TO REMOTELY 510
MANAGE REOUESTS

RECEIVE A FIRST REMOTEREOUEST FROMA
CLIENT TO REMOTELY CHANGE CURRENT

APPLICATION LOGLEVELS TO REOUESTED LOG 520
LEVELS DEFINED FOR LOGGER OBJECTS IN

APPLICATION COMPONENTS DEPLOYED ON THE
CLOUD PLATFORM

530

IS THE CLIENT
AUTHORIZED TO CHANGE THE

LOGS LEVELS

SEND SECOND REOUESTS TO THE RUNTIME
INFRASTRUCTURES TO CHANGE THE LOGLEVELS

CHANGE THE CURRENT LOGLEVELS TO THE
REOUESTED LOGLEVELS IN THE

CONFIGURATION DATA STORED ON THE RUNTIME
INFRASTRUCTURES PROVIDED FROM THE CLOUD

PLATFORM

END

FIG. 5

U.S. Patent Feb. 14, 2017 Sheet 6 of 7 US 9,569,328 B2

600 N
Console Client
Usage: neo command command arguments)
C:\neo-sodk-1.5.2\tools\bindneo
Available commands:

--- deploy--
list-applications ListS applications

620 list-components Lists components

--- logging---
get-log Downloads log file
list-loggers List all application loggers
list-logs List all log files of the application
set-log-level Set log level for a logger

-p, -password, -password Password for your user
-c, -Component, --component Component

630 properties file All Command arguments can be
Supplied as properties file

-a, -acCount, -account ACCOUnt
-U, -USer, -USer User of the platform

-h, -host, --host Platform host
-b, -application, -application Application

610 NC:\neo-sdk-1.5.2\tools\bin-neo list-loggers-a sap-blogcmd-u i012345-h
netweaver.Ondemand.Com

Password for your SDN user:

list-loggers operation is successful.

Level Logger

ERROR /
ERROR (Applications

635.
ERROR com.mycompany.superapp.ui. Utils

ERROR
com.sap.core.connectivity.httpdestination.client. DefaultHttpClientExtender
ERROR
com.sap.core.connectivity.httpdestination.client. RequestDirectorExtender

C:\neo-Sok-1.5.2\tools\binaneo set-log-level -a sap -blogcmd -u i012345
640-h netweaver.ondemand.com

-g Com.myCompany. Superapp. ui. Utils - INFO
FIG. 6

US 9,569,328 B2 Sheet 7 Of 7 Feb. 14, 2017

Os)
09

U.S. Patent

00/

07.J.

?GI XXJONALEN
09 98

Z

US 9,569,328 B2
1.

MANAGING APPLICATION LOGLEVELS IN
CLOUD ENVIRONMENT

BACKGROUND

Cloud computing refers to the hardware, system software,
and applications delivered as services over the Internet.
Cloud computing can be defined as data centers plus a layer
of system software services designed to support creating and
scalable deployment of application services. The Software
as-a-Service (SaaS) model represents applications that are
accessible from various client devices through a thin client
interface such as a web browser. Platform-as-a-Service
(PaaS) is another category of cloud computing Solutions that
gives developers the tools to build and host web applica
tions. Another level of cloud-computing Solution is Infra
structure-as-a-Service (IaaS), which offers web-based access
to storage and computing power. The consumer does not
need to manage or control the underlying cloud infrastruc
ture but has control over the operating system, storage, and
deployed applications. To deliver highly available and flex
ible services (i.e., computation as a service), and owing to
the maturity of virtual technology, Virtual Machines (VMs)
are used as a standard for object deployment in the cloud.
When an application is built on top of a PaaS offering, the
application developers that maintain the application need
access to the underlying infrastructure. Direct access to the
underlying infrastructure in a PaaS environment is usually
given to a defined number of users, such as platform
operators. Monitoring systems help administrators to iden
tify resource bottlenecks or problems and take the required
action.

During the development phase, it is a common practice to
insert logging statements within the code to produce infor
mative logs at runtime that can be helpful for troubleshoot
ing or for analysis purposes. Logging is a process of creating
and storing permanent records of events for a particular
system or Software application that can be reviewed, printed,
and analyzed. These records can contain short messages, the
Source of the records, timestamps of the events, log levels
specifying the importance of the records, etc. Log messages
can include a detailed sequence of Statements that describe
the events happening during an operation as they are
executed. Logger objects may have predefined levels that
specify the granularity that will be applied when logging
messages in log files. A logging configuration can be defined
for a particular software application or a component. The
logging configuration may define the log levels that will be
applied, while the Software application or component is
running.

Since version 1.4, Java R itself comes with the capable
logging package, java. utillogging (Java R Logging frame
work), which enables a Java R Virtual Machine (JVM)-wide
logging configuration shared by all applications running in
the JVM. The Java R logging framework is a logging pack
age for the Java R Platform that defines some log levels, e.g.,
fatal, error, warning, info, debug, trace, others. Based on the
log level and the events that occur during the execution of
the application, log messages are generated and stored as
logged data (e.g. in log files). Log messages can be used not
only by application developers, but also by the system
administrators that identify problems in the system opera
tions.

Logging relevant application details at runtime is a prac
tice that has been followed since the early days of program
ming It is essential to keep logs during the whole execution
of a given Software application or a system. Log messages

10

15

25

30

35

40

45

50

55

60

65

2
are very helpful during the maintenance process of an
application. The log levels defined for logger objects denote
the level of importance or relevance of a certain message.
This is also applicable to SaaS solutions. To retrieve the
logged data for an application deployed on a PaaS solution,
the underlying cloud infrastructure needs to be accessed.
When an event has occurred and troubleshooted is neces
sary, the log messages can be reviewed. If the information
received from the log messages is not enough for the
troubleshooting tasks, the log level for the logger object may
be changed accordingly. This way, when the event occurs
again, a large portion of log messages will be logged in the
log file with detailed information that can help for the
resolution of the issue.

BRIEF DESCRIPTION OF THE DRAWINGS

The claims set forth the embodiments with particularity.
The embodiments are illustrated by way of examples and not
by way of limitation in the figures of the accompanying
drawings in which like references indicate similar elements.
The embodiments, together with its advantages, may be best
understood from the following detailed description taken in
conjunction with the accompanying drawings.

FIG. 1 is a block diagram illustrating an embodiment of
an environment for remotely managing application log lev
els for logger objects in application components deployed on
a cloud platform.

FIG. 2 is an exemplary Screenshot, depicting an embodi
ment of a development environment of an application com
ponent that applies logging functionality.

FIG. 3 is a block diagram illustrating an embodiment of
an environment for remotely managing application log lev
els in application components using interfaces provided by
a cloud platform.

FIG. 4 is an exemplary Screenshot, depicting an embodi
ment of an environment of a client for sending requests for
changing log levels of logger objects in application compo
nents deployed on a cloud platform.

FIG. 5 is a flow diagram illustrating an embodiment of a
method for remotely managing application log levels for
logger objects in application components deployed on a
cloud platform.

FIG. 6 is an exemplary Screenshot, depicting an embodi
ment of an environment of a console client for sending
requests to an instantiated interface provided by a cloud
platform.

FIG. 7 is a block diagram illustrating an embodiment of
a computing environment in which the techniques described
for remotely managing application log levels for logger
objects in application components deployed on a cloud
platform can be implemented.

DETAILED DESCRIPTION

Embodiments of techniques for managing application log
levels in cloud environment are described herein. In the
following description, numerous specific details are set forth
to provide a thorough understanding of the embodiments.
One skilled in the relevant art will recognize, however, that
the embodiments can be practiced without one or more of
the specific details, or with other methods, components,
materials, etc. In other instances, well-known structures,
materials, or operations are not shown or described in detail.

Reference throughout this specification to “one embodi
ment”, “this embodiment and similar phrases, means that a
particular feature, structure, or characteristic described in

US 9,569,328 B2
3

connection with the embodiment is included in at least one
of the one or more embodiments. Thus, the appearances of
these phrases in various places throughout this specification
are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or charac
teristics may be combined in any suitable manner in one or
more embodiments.

Monitoring application servers and application compo
nents that run on top of an application server is a process that
is important for on-premise and on-demand solutions. When
troubleshooting problems (e.g. reported by customers),
application developers need to monitor the behavior of
applications and their application components during run
time to effectively manage the performance of the applica
tion. Therefore, they need access to the stored application
logs and the log configuration. However, when an applica
tion is deployed on a cloud platform, the cloud runtime
infrastructure may not be directly accessed by the applica
tion developer. Access to the logging information should be
offered without the assistance of a platform operator. Thus,
application developers should be enabled to remotely man
age relevant application logs and log configuration to easily
analyze the behavior of running applications. Developers
should be enabled to remotely change the log levels defined
for logger objects in the log configuration on the cloud
platform. The log configuration can be defined on the
runtime environment provided by the cloud platform pro
vider. As a result, developers will be able to retrieve log files
with different level of details and will be able to manage the
logs according to their preference and development needs.

FIG. 1 is a block diagram illustrating an embodiment of
an environment 100 for remotely managing application log
levels for logger objects in application components deployed
on a cloud platform 102. In one embodiment, the application
components that are deployed on the cloud platform 102 are
Application Component 1 135. Application Component 2
140, Application Component N 150, etc. A client 105 may
access a Cloud Platform Monitoring System 110 with a
request to remotely change the currently defined log levels
for logger objects defined in the application components
deployed on the cloud platform 102. In one embodiment, the
Cloud Platform Monitoring System 110 may provide a
service to retrieve application logs for platform-deployed
components on the cloud platform 102. In another embodi
ment, the Cloud Platform Monitoring System 110 may
provide a service to remotely manage and change the
defined log levels for logger objects in the application
components. The Cloud Platform Monitoring System 110
can be associated with the runtime platform infrastructure
that is used for running the application components (and
Software applications that include these application compo
nents) on top of the cloud platform 102.

In one embodiment, the runtime platform infrastructure
may include virtual machines (VMs) that are used for
running the deployed application components. In one
embodiment, the VMs represent the cloud runtime infra
structure provided by the cloud platform provider to the
customers. For example, customers may be development
organizations that develop and provide Software applica
tions to end users. The Software applications may be pro
vided as services, when defined, deployed, and started on top
of PaaS offerings, such as the cloud platform 102. The VMs
can be such as Virtual Machine 1 115, Virtual Machine 2
120, Virtual Machine N125, etc. Different applications with
their application components can be deployed and started on
the VMs. For example, Application 1 130 includes two
components—Application Component 1 135 and Applica

10

15

25

30

35

40

45

50

55

60

65

4
tion Component 2 140. The Application Component 1 135
and Application Component 2 140 are deployed and started
on the Virtual Machine 1 115 and the Virtual Machine 2
120. Furthermore, there may be an application, such as
Application K145, that includes only one application com
ponent—Application Component N 150, which runs on the
Virtual Machine N 125.
The application components run on servers that are

installed on the VMs. In one embodiment, the server can be
an application server which may be a Java R application
server for executing Java R-based applications. Application
components, such as Application Component 1 135. Appli
cation Component 2 140, Application Component N 150,
can be developed in Such a manner that they include logging
functionality. In the programming code for the application
components, logger objects may be defined. During the
execution of tasks through the application components,
logger objects may be used to write log messages. The
servers may store the log messages in log files. The log
messages that are stored may depend on the log levels that
are defined for logger object in a log configuration for the
application components. The log messages that are stored
may also depend on the behavior of the application com
ponents, while tasks are executed through the application
components. The log messages can be monitored to deter
mine critical issues in the execution of an application
component. In addition, log messages help application
developers to distinguish the particular problem that is
causing the issues.
When an issue appears, the stored logs with the log

messages can be displayed and the performance of the
software application or components can be analyzed with
the assistance of the log messages to specify the problem
area in the Software application. If the problem area cannot
be specified and resolved using the log messages that are
stored, the log levels for the logger objects may be changed
in the log configuration. As a result, more log messages can
be generated when the problem occurs and these additional
log messages may describe better the performance of the
application components. The details may be helpful during
the resolution steps that have to be performed. If additional
data is needed for the resolution of a problem, the logging
configuration can be changed. Thus, after changing the
logging configuration and performing a particular task with
the Software application, the recorded logs will contain
different amounts of log messages reflecting the new con
figuration. In one aspect, the performed task may be the task
that was performed when the issue appeared. This way, the
problem will be reproduced and new amount of log mes
sages will be stored based on the changed configuration of
the log levels.

In one embodiment, the request sent from the client 105
can specify which application components are monitored
and can request provision of the stored logged data and the
defined logger objects for the monitored application com
ponents. For example, the client 105 can be a web applica
tion for providing information about deployed application
components on the cloud platform 102. The client 105 may
be provided as a part of the cloud platform 102. Additionally,
the client 105 may provide remote management capabilities
for the logged data, for example, changing the log levels
defined for logger objects in the application components.
Another example of the client 105 can be an Integrated
Development Environment (IDE) that provides the option of
a software developer to access the Cloud Platform Moni
toring System 110 and deploy application components on
top of the provided runtime infrastructure. The IDE can be

US 9,569,328 B2
5

the Eclipse R development environment which could be used
to develop applications in various programming languages,
such as, but not limited to, Java R, Perl (R), C(R), C++(R),
PHPR, etc. Yet another example of the client 105 may be a
command-line console client into which a user may enter
commands. The command-line console client can be
designed to communicate with the Cloud Platform Moni
toring System 110. In one embodiment, the cloud platform
102 can provide platform accounts to be used by clients,
such as the client 105. An account can be a logical entity for
separation which a customer may receive and use to authen
ticate on the cloud platform 102. Authenticated customers
can use a cloud-provided space for their own business needs
and create different cloud-based applications. The cloud
provided space may be a repository or storage. One account
may use one cloud-provided space for a number of appli
cations deployed on the cloud platform.
The request from the client 105 can be received over a

remote communication channel 160. For example, the
remote communication channel 160 can be based on Hyper
text Transfer Protocol (HTTP). The Cloud Platform Moni
toring System 110 can remotely manage application log
levels for requested logger objects defined in a set of
application components from the application components
deployed and started on VMs Virtual Machine 1 115,
Virtual Machine 2 120, Virtual Machine N 125, and other
VMs, provided by the cloud platform. In one embodiment,
the execution of the application components, such as Appli
cation Component 1 135, may record log messages corre
sponding to defined logger objects in the programming code
for the Application Component 1 135. In another embodi
ment, the recorded log messages may be interpreted as
logged data describing the behavior of a running software
component, a software application, or a software system.
The logged data can be stored on a server running on a VM,
such as the Virtual Machine 1 115, Virtual machine 2 120,
etc. Logger objects have defined log levels in the configu
ration data defined for the running Application Compo
nent 1 135 on the corresponding VM Virtual Machine 1
115. After processing a request from the client 105 to change
the log levels to requested log levels defined for logger
objects in application components, the Cloud Platform
Monitoring System 110 makes the changes in configuration
information for the application components. The change of
the log levels may be accomplished in the configuration data
stored for the application components on the cloud runtime
infrastructure which includes Virtual Machine 1 115, Vir
tual Machine 2 120, Virtual Machine Nf, and other VMs,
provided by the cloud platform. In one embodiment, the
configuration data may be stored on an application server
installed on the VMs.

FIG. 2 is an exemplary Screenshot, depicting an embodi
ment of a development environment 200 of an application
component that applies logging functionality. The applica
tion component represents a web application “AgeCalcula
tor” that calculates the digits in the age of a given person.
The application may run on a cloud platform, such as the
cloud platform 102 in FIG. 1. Screen 210 represents part of
the Java R programming code of the application “AgeCal
culator that implements Java R logging functionality. The
web application may use a logger object—"logger', which
is defined in line 220. The logger object is used in for the
AgeCalculatorServlet.class and may be displayed with the
name “AgeCalculatorServlet in the log configuration. The
logger object may record log messages in the logged data
based on the defined log level for the logger object. The
logged data may be stored on a cloud runtime infrastructure

10

15

25

30

35

40

45

50

55

60

65

6
provided by the cloud platform, for example on an applica
tion server installed on VMs. A trace method and a debug
method may be called for the logger object in line 230 and
line 240 respectively. The arguments for these methods may
be strings that will be stored in the logged data if an event
happens in the execution of the application and a required
log level is defined for the logger object “logger in the
configuration data.
The Java R Logging framework may define a number of

log levels that are arranged in order according to the level of
importance or relevance of a certain message stored in the
logged data. For example, the increasing order of the log
levels may be: all, debug, info, warn, error, fatal, off. This
means that the “all” log level is with the lowest severity and
means that all messages will be stored in the log data
regardless of log level. Another example is log level “warn'.
If the log level is “warn' for a given logger object, the log
messages that will be stored in the logged data will come
from method calls with “warn' or higher log levels, e.g.
error and fatal.

FIG. 3 is a block diagram illustrating an embodiment of
an environment 300 for remotely managing application log
levels in application components using interfaces provided
by a cloud platform 305. Application Component 360 may
be deployed and started on the cloud platform 305. The
Application Component 360 may be installed on an Appli
cation Server 370 on a Virtual Machine 1380 provided by
the cloud platform 305. In one embodiment, the implemen
tation of the Application Component 360 may include
logging functionality, Such as logging messages for logger
objects defined in the component that are stored in Logs 390.
For example, Logs 390 may include application log data
stored since the last start of the Application Component 360.
These messages may be stored during the execution of the
application that contains the component. In another embodi
ment, the Logs 390 may include application log data stored
since the first start of the Application Component 360 on the
cloud platform 305. The logged data may be configured and
stored on the Application Server 370. Log Configuration 350
may define the log levels for the logger objects defined in the
Application Component 360.

In one embodiment, the cloud platform 305 can provide
a Log Management Service 335. The Log Management
Service 335 can expose an API (Application Programming
Interface) 325 which can be accessed by external units, such
as a client 310, through communication channel 315. The
API 325 may represent a specification that defines the
communication between Software components. In one
embodiment, the API can provide interfaces that allow
operations like listing available log files for deployed appli
cation components, listing of all logger objects for a given
application component, providing the current log level of a
given logger object, changing the log level of a given logger
object, etc. The Log Management Service 335 may com
municate with the cloud runtime infrastructure to allow the
above mentioned operations that are offered from the API
325. In one embodiment, the Log Management Service 335
communicated with the Virtual Machine 1 380 through a
communication channel 345. The management and moni
toring of the Application Component 360 can be designed
and developed using a Java R technology Such as Java
Management Extensions (JMX).

In one embodiment, the operations that are allowed from
the API 325 may support authentication and authorization
features. The Log Management Service 335 may expose the
API 325 and instantiate the interfaces that are included in the
API 325. The API 325 may include an interface, which can

US 9,569,328 B2
7

be a programming interface. In one embodiment, the API
325 may include one or more interfaces that can serve the
requests from the client 310. The client 310 may request
displaying of the logged data stored for a given component,
for example, Application Component 360. The communica
tion between the client 310 and the Log Management
Service can be based on HTTP. Also, the client 310 may
request displaying the logger objects that are defined in the
programming code for the component together with the log
levels that are defined for the logger objects. Therefore, to
serve this request, the implementation of the interfaces may
request the required information from the underlying cloud
runtime infrastructure. For example, through the communi
cation channel 345, a second call can be performed to
request data regarding the logger objects and the log levels
for logger objects for Application Component 360 that are
stored in the Log Configuration 350. In another embodi
ment, the client 310 may request from the Log Management
Service 335 to change the log levels for defined logger
objects for a specified application component. The imple
mentation of an interface, provided by the API 325, may use
the communication channel 345 and request changing the
log level for the logger object in the Log Configuration 350.
In one embodiment, the change in the log levels stored in the
Log Configuration 350 is accomplished during runtime. In
one embodiment, the underlying cloud runtime infrastruc
ture can be designed in such a manner that even if a VM is
restarted, the last log levels defined for the logger objects for
applications running on the VM can be persisted.

In one embodiment, the implementation of the interfaces
provided by the API 325 exposed by the Log Management
Service 335 can be based on Representational State Transfer
(REST) architecture style. REST defines a set of architec
tural principles by which one can design a service (web
service) that is concentrated on resources that are transferred
over HTTP. REST principles can be applied with a wide
range of clients written in different programming languages.
Web services that are based on the REST architecture style
(also called RESTful Web services) use HTTP method
explicitly and in a way consistent with the protocol defini
tion. There is a one-to-one mapping between “CREATE,
“READ”, “UPDATE, and “DELETE operations and
HTTP methods. For example, when retrieving a resource, a
GET method is used. Another example is when an entity is
stored on a specified place, and a PUT method is used.
RESTful Web services expose directly structure-like Uni
form Resource Identifiers (URIs). The Log Management
Service 335 can be designed as a REST service. The exposed
API (API 325) can be used for the purpose of building
various clients that can present application logged data,
defined logger objects in application components, defined
log levels for the logger objects, etc. to end users (e.g.
application developers). In addition, the API 325 may fur
ther be operable to apply changes in the log configuration.
This functionality may be very useful when troubleshooting
the performance of an application or an application compo
nent. In one embodiment, an end user may request from the
cloud platform 305 to display logged data or to list logger
objects within a web browser. In another embodiment, a web
application can be developed to allow end users and appli
cation developers to request changes in the log configuration
defined for applications deployed and running on a cloud
platform. In another embodiment, a custom application or a
mobile application may be developed in Such a manner that
they use the logging functionality provided by the Log
Management Service 335 and the exposed API 325.

10

15

25

30

35

40

45

50

55

60

65

8
The API specification may define methods that can be

used. If the API is a REST API, the REST API specification
may provide description of the HTTP methods that are
available and a path that can be used for a Uniform Resource
Location (URL)-based request. Table 1 presents an example
specification for the API 325 which is presented as a REST
API. The specification defines the name of the method, the
request paths that can be used, a description of the operation,
and a possible HTTP response code. In the request path, an
account is specified, together with the name of the applica
tion and the application component.

TABLE 1.

Possible
HTTP

HTTP Response
Method Request Path Description Codes

GET f:account: Returns all logger objects 200, 401,
application: for a given application 403, 404
component component identified

by f:account:application:
component

GET f:account: Returns the current log 200, 401,
application: level of a given logger 403, 404
component?: object within a given
logger application
object component

PUT f:account: Change the log level of a 200, 400,
application: given logger object 401, 403,
component?: within a given 404
logger application component
object

Table 2 presents description of the used parameters in the
request path. For example, a URL that is used when using
the methods presented in Table 1 can be "https://<moni
toring system/log/api/logger/<path'.

TABLE 2

Parameter Type Possible Values Description

:account String Valid and existing Name of the account
account for which log levels

are to be managed
:application String Valid and existing Name of the

application application for
which log levels are
to be managed

:component String Valid and existing Name of the component
component for which log levels

are to be managed
:logger String Valid name of a Name of the logger
object logger object location,

object location,
e.g. com.Sap.core.
js.confagent.
MetaConfiguration
or Applications
Common Failover

whose log level is
to be managed

Table 3 presents a sample output result that can be
returned (displayed) to the client after requesting logger
objects from an application component to be displayed by
using the GET method and applying it to a provided URL.
The request can be made in the following form: “https://
<monitoring system/log/api/loggers/company A/applica
tionl/web”, which represents a request for account “compa
ny A, for application “application), and for application
component “web”. In one embodiment, the output may be
provided in JavaScript Object Notation (JSON) format. The

US 9,569,328 B2
9

output includes the names of the logger objects that are
defined in component “web' in “application) with their
corresponding log levels.

TABLE 3

“component:“web',
“logger objects:

name:"com.acme..primgmt.web.controller,
level:ERROR

{
name:"com. Sap.core.alerting,
level:INFO

FIG. 4 is an exemplary Screenshot, depicting an embodi
ment of an environment of a client 400 for sending requests
for changing log levels of logger objects in application
components deployed on a cloud platform. In one embodi
ment, the cloud platform can be the cloud platform 305 as
depicted in FIG. 3. The client 400 may be an Integrated
Development Environment (IDE). Through the IDE a
request for changing the log level of a logger object can be
accomplished. For example. In the IDE, a web application
such as the “AgeCalculator described in FIG. 2 can be
developed. For the application, a screen 410 with all logger
objects that are defined in the programming code can be
displayed. They can be retrieved by calling the REST API
(for example, API 325, FIG. 3). Block 420 displays a section
of all the logger objects defined in the application “AgeCal
culator. The log level for the logger object “com. sap.te
St. AgeCalculatorServlet 430 is displayed and it is “Error.
If an end user or application developer wants to change the
log level, this can be accomplished from the IDE. For
example, the change can be completed by using the second
ary mouse button or a drop-down list of possible log levels
for the logger object in Block 420. In another embodiment,
change in the log levels can be achieved by using the
keyboard, with a voice command, etc.

FIG. 5 is a flow diagram illustrating an embodiment of a
method 500 for remotely managing application log levels for
logger objects in application components deployed on a
cloud platform. At process step 510, an interface is instan
tiated to remotely manage requests. The interface may be
provided by the cloud platform. The interface may be
provided as part of an API that may be exposed by a
monitoring system such as the Cloud Platform Monitoring
System 110 in FIG. 1. At process step 520, a first remote
request is received from a client. The remote request can be
received over a remote communication channel based on an
application protocol, such as HTTP. The first request may
specify account, application, application component, etc. In
one embodiment, the first remote request may request a
change in the current application log levels to requested
application log levels defined for logger objects in an
application component. The application component may be
part of an application that is deployed and is running on a
cloud platform (e.g. cloud platform 102, FIG. 1). The remote
request is received by the instantiated interface. At decision
block 530, it is determined whether an account that is used
by the client has access rights to the logged data for the
requested application components or application.

10

15

25

30

35

40

45

50

55

60

65

10
The client may use a user that is member of an account to

authenticate into the cloud platform. For a given application,
there can be a set of users that are allowed to perform certain
operations. The implementation of the interface may further
verify whether the user is authorized to perform the
requested operation. If the client cannot be authenticated or
is not authorized, the request for changing log levels cannot
be handled by the interface. If the client is authenticated and
authorized at block 530, then at process step 540, a second
request is sent to the runtime infrastructure to change the log
levels for the requested application component and specified
logger objects. The implementation of the interface may
access a location storing the requested application logs and
a location storing the defined log configuration for logger
objects used in the application component. In one embodi
ment, the log configuration can be stored on the cloud
runtime infrastructure. At process step 550, the requested
change of the current log levels to the requested log levels
is performed and the changes are stored on the runtime
infrastructure provided by the cloud platform.

FIG. 6 is an exemplary Screenshot, depicting an embodi
ment of an environment 600 of a console client 602 for
sending requests to an instantiated interface provided by a
cloud platform. The console client 602 can be used when
requesting a list of applications (e.g. with their names)
deployed on the cloud platform, and a list of components
part of the deployed application. In addition, the console
client can be used to request the stored logged data. For
example, the requests may include requests to list all of the
log files stored for an application and to download a given
log file. Also, lists of all the application logger objects that
are defined in an application component can be requested.
Moreover, log levels defined for logger objects can be
changed with a request provided by the console client 602.
A user (e.g. application developer) may use the console
client 602 to request stored logged data. When the logged
data is reviewed by the end user, he/she may want to change
the log levels of specific logger objects in order to gain more
information about the performance and behavior of the
application components during runtime. The Console client
602 provides available commands 620 and commands argu
ments 630 to be used by a requester (e.g. user). The
commands may specify a manner of defining requests. For
example, the syntax in Table 4 may be used.

TABLE 4

<command name> -a <accounts -b <application name> -c <component
name> -u <user ID -h <host name>

In one embodiment, the arguments that are used in a
command can be given a default value, for example, if a
component name is not specified in the request, it may be
supposed that the requested component is “web'. The end
user can change the log level for a given logger object,
defined in an application component part of an application,
by using a command 610 "C:\neo-sdk-1.5.2\tools\bindneo
list-loggers-a sap-b log.cnd-u i012345-h netweaver.onde
mand.com'. In one embodiment, the console client can be
used as an alternative to an IDE, such as the client 400 in
FIG.4, which also provides similar functionality. The result
that is accomplished when using both of these clients can be
one and the same. A list of the logger objects may be
provided within the console client screen, for example, the
list of loggers 635.

In one embodiment, a command 640 can be used to
change the log level of a logger object “com.mycompany

US 9,569,328 B2
11

Superapp.ui. Utils' for an account "sap', and an application
“logcmd” to a level “INFO. A user “i012345” that was used
to authenticate may be checked for authorization to perform
the requested operation. If the requested operation is suc
cessfully finished, the log level will be changed. In one
embodiment, the application “logcmd” does not need to be
stopped during the performance of the request.

In another embodiment, the application “logcrmd does
not need to be restarted in order to apply the newly defined
log level. After the change to a new log level “INFO,
tasks may be performed with the application, and the logged
data that is stored for the application and the application
components will contain log messages based on the changed
log level. The stored logged data after the change may be
more detailed and contain Sufficient information that can be
used by application developer, system administrators, etc.
during the maintenance of the application.
Some embodiments may include the above-described

methods being written as one or more Software components.
These components, and the functionality associated with
each, may be used by client, server, distributed, or peer
computer systems. These components may be written in a
computer language corresponding to one or more program
ming languages such as, functional, declarative, procedural,
object-oriented, lower level languages and the like. They
may be linked to other components via various application
programming interfaces and then compiled into one com
plete application for a server or a client. Alternatively, the
components maybe implemented in server and client appli
cations. Further, these components may be linked together
via various distributed programming protocols. Some
example embodiments may include remote procedure calls
being used to implement one or more of these components
across a distributed programming environment. For
example, a logic level may reside on a first computer system
that is located remotely from a second computer system
containing an interface level (e.g., a graphical user inter
face). These first and second computer systems can be
configured in a server-client, peer-to-peer, or some other
configuration. The clients can vary in complexity from
mobile and handheld devices, to thin clients and on to thick
clients or even other servers.
The above-illustrated software components are tangibly

stored on a computer readable storage medium as instruc
tions. The term “computer readable storage medium’ should
be taken to include a single medium or multiple media that
stores one or more sets of instructions. The term “computer
readable storage medium’ should be taken to include any
physical article that is capable of undergoing a set of
physical changes to physically store, encode, or otherwise
carry a set of instructions for execution by a computer
system which causes the computer system to perform any of
the methods or process steps described, represented, or
illustrated herein. A computer readable storage medium may
be a non-transitory computer readable storage medium.
Examples of non-transitory computer readable storage
media include, but are not limited to: magnetic media, Such
as hard disks, floppy disks, and magnetic tape; optical media
such as CD-ROMs, DVDs and holographic devices; mag
neto-optical media; and hardware devices that are specially
configured to store and execute, Such as application-specific
integrated circuits (ASICs'), programmable logic devices
(“PLDs) and ROM and RAM devices. Examples of com
puter readable instructions include machine code, Such as
produced by a compiler, and files containing higher-level
code that are executed by a computer using an interpreter.
For example, an embodiment may be implemented using

10

15

25

30

35

40

45

50

55

60

65

12
Java, C++, or other object-oriented programming language
and development tools. Another embodiment may be imple
mented in hard-wired circuitry in place of, or in combination
with machine readable software instructions.

FIG. 7 is a block diagram of an exemplary computer
system 700. The computer system 700 includes a processor
705 that executes software instructions or code stored on a
computer readable storage medium 755 to perform the
above-illustrated methods of the invention. The computer
system 700 includes a media reader 740 to read the instruc
tions from the computer readable storage medium 755 and
store the instructions in storage 710 or in random access
memory (RAM) 715. The storage 710 provides a large space
for keeping static data where at least Some instructions could
be stored for later execution. The stored instructions may be
further compiled to generate other representations of the
instructions and dynamically stored in the RAM 715. The
processor 705 reads instructions from the RAM 715 and
performs actions as instructed. According to one embodi
ment of the invention, the computer system 700 further
includes an output device 725 (e.g., a display) to provide at
least some of the results of the execution as output including,
but not limited to, visual information to users and an input
device 730 to provide a user or another device with means
for entering data and/or otherwise interact with the computer
system 700. Each of these output devices 725 and input
devices 730 could be joined by one or more additional
peripherals to further expand the capabilities of the com
puter system 700. A network communicator 735 may be
provided to connect the computer system 700 to a network
750 and in turn to other devices connected to the network
750 including other clients, servers, data stores, and inter
faces, for instance. The modules of the computer system 700
are interconnected via a bus 745. Computer system 700
includes a data source interface 720 to access data source
760. The data source 760 can be accessed via one or more
abstraction layers implemented in hardware or software. For
example, the data source 760 may be accessed by network
750. In some embodiments the data source 760 may be
accessed via an abstraction layer, Such as, a semantic layer.
A data Source is an information resource. Data sources

include Sources of data that enable data storage and retrieval.
Data sources may include databases, such as, relational,
transactional, hierarchical, multi-dimensional (e.g., OLAP),
object oriented databases, and the like. Further data sources
include tabular data (e.g., spreadsheets, delimited text files),
data tagged with a markup language (e.g., XML data),
transactional data, unstructured data (e.g., text files, Screen
scrapings), hierarchical data (e.g., data in a file system, XML
data), files, a plurality of reports, and any other data source
accessible through an established protocol. Such as, Open
DataBase Connectivity (ODBC), produced by an underlying
software system (e.g., ERP system), and the like. Data
Sources may also include a data source where the data is not
tangibly stored or otherwise ephemeral Such as data streams,
broadcast data, and the like. These data sources can include
associated data foundations, semantic layers, management
systems, security systems and so on.

In the above description, numerous specific details are set
forth to provide a thorough understanding of embodiments.
One skilled in the relevant art will recognize, however that
the embodiments can be practiced without one or more of
the specific details or with other methods, components,
techniques, etc. In other instances, well-known operations or
structures are not shown or described in details.

Although the processes illustrated and described herein
include series of steps, it will be appreciated that the

US 9,569,328 B2
13

different embodiments are not limited by the illustrated
ordering of steps, as some steps may occur in different
orders, some concurrently with other steps apart from that
shown and described herein. In addition, not all illustrated
steps may be required to implement a methodology in
accordance with the one or more embodiments. Moreover, it
will be appreciated that the processes may be implemented
in association with the apparatus and systems illustrated and
described herein as well as in association with other systems
not illustrated.
The above descriptions and illustrations of embodiments,

including what is described in the Abstract, is not intended
to be exhaustive or to limit the one or more embodiments to
the precise forms disclosed. While specific embodiments of
and examples for, the invention are described herein for
illustrative purposes, various equivalent modifications are
possible within the scope of the invention, as those skilled
in the relevant art will recognize. These modifications can be
made in light of the above detailed description. Rather, the
scope is to be determined by the following claims, which are
to be interpreted in accordance with established doctrines of
claim construction.
What is claimed is:
1. A computer implemented method to remotely manage

one or more current log levels defined for one or more logger
objects in one or more application components running on
one or more cloud runtime infrastructures provided by a
cloud platform, the method comprising:

instantiating an interface to remotely manage requests,
wherein the interface is provided by the cloud platform;

at the instantiated interface, receiving a first request from
a client to remotely change the one or more current log
levels to one or more requested log levels defined for
the one or more logger objects in the one or more
applications, wherein the one or more current log levels
are defined in configuration data on the one or more
cloud runtime infrastructures, and wherein log data
granularity associated with the one or more requested
log levels differs from log level granularity associated
with the one or more current log levels; and changing,
according to an implementation of the interface, the
one or more current log levels in the configuration data
to the one or more requested log levels during runtime
of the one or more application components, wherein
changing the one or more current log levels to the one
or more requested log levels further comprises sending
one or more second requests to the one or more cloud
runtime infrastructures to change the one or more
current log levels; and

receiving a third request to retrieve new application logs
generated during the runtime of the one or more
application components over a remote communication
channel, wherein the third request is received after a
task is performed through the one or more application
components, and wherein the third request is received
during the runtime of the one or more application
components, and wherein the one or more current log
levels are changed in the configuration data.

2. The method of claim 1, wherein the first request from
the client is received through a development environment
provided by the cloud platform.

3. The method of claim 1, wherein the first request from
the client is received over a remote communication channel
based on Hypertext Transfer Protocol (HTTP).

4. The method of claim 1, wherein the instantiated inter
face is based on a Representation State Transfer (REST)
architecture style.

5

10

15

25

30

35

40

45

50

55

60

65

14
5. The method of claim 1, further comprising:
receiving a fourth request to present at least one requested

logger object with at least one log level, wherein the at
least one requested logger object is selected from the
one or more logger objects in the one or more appli
cation components.

6. A computer system to remotely manage one or more
current log levels defined for one or more logger objects in
one or more application components running on one or more
cloud runtime infrastructures provided by a cloud platform,
the system comprising:

a processor; and
a memory in association with the processor storing

instructions related to a log management service mod
ule operable to :

instantiate an interface for remotely managing requests,
wherein the interface is provided by the cloud platform;

at the instantiated interface, receive a first request from a
client to remotely change the one or more current log
levels to one or more requested log levels defined for
the one or more logger objects in the one or more
applications, wherein the one or more current log levels
are defined in configuration data on the one or more
cloud runtime infrastructures, and wherein log data
granularity associated with the one or more requested
log levels differs from log level granularity associated
with the one or more current log levels;

send one or more second requests to the one or more cloud
runtime infrastructures to change the one or more
current log levels to the one or more requested log
levels in the configuration data;

change, according to an implementation of the interface,
the one or more current log levels in the configuration
data to the one or more requested log levels during
runtime of the one or more application components;
and

receive a third request to retrieve new application logs
generated during the runtime of the one or more
application components over a remote communication
channel based on Hypertext Transfer Protocol (HTTP),
wherein the third request is received after a task is
performed through the one or more application com
ponents, and wherein the third request is received
during the runtime of the one or more application
components, and wherein the one or more current log
levels are changed in the configuration data.

7. The system of claim 6, wherein the first request from
the client is received through a development environment
provided by the cloud platform.

8. The system of claim 6, wherein the instantiated inter
face from the log management service module is based on a
Representation State Transfer (REST) architecture style.

9. The system of claim 6, wherein the log management
service module is further operable to receive a fourth request
to present at least one requested logger object with at least
one log level, wherein the at least one requested logger
object is selected from the one or more logger objects in the
one or more application components.

10. An article of manufacture to remotely manage one or
more current log levels defined for one or more logger
objects in one or more application components running on
one or more cloud runtime infrastructures provided by a
cloud platform, comprising a non-transitory computer read
able storage medium including executable instructions,
which when executed by a computer, cause the computer to:

instantiate an interface to remotely manage requests,
wherein the interface is provided by the cloud platform;

US 9,569,328 B2
15

at the instantiated interface, receive a first request from a
client to remotely change the one or more current log
levels to one or more requested log levels defined for
the one or more logger objects in the one or more
applications, wherein the one or more current log levels 5
are defined in configuration data on the one or more
cloud runtime infrastructures, and wherein log data
granularity associated with the one or more requested
log levels differs from log level granularity associated
with the one or more current log levels;

change, according to an implementation of the interface,
the one or more current log levels in the configuration
data to the one or more requested log levels during
runtime of the one or more application components,
wherein changing the one or more current log levels to
the one or more requested log levels further comprises
sending one or more second requests to the one or more
cloud runtime infrastructures to change the one or more
current log levels; and receive a third request to retrieve
new application logs generated during the runtime of '
the one or more application components over a remote
communication channel, wherein the third request is
received after a task is performed through the one or

10

15

16
more application components, and wherein the third
request is received during the runtime of the one or
more application components, and wherein the one or
more current log levels are changed in the configuration
data.

11. The article of manufacture of claim 10, wherein the
first request from the client is received through a develop
ment environment provided by the cloud platform.

12. The article of manufacture of claim 10, wherein the
first request from the client is received over a remote
communication channel based on Hypertext Transfer Pro
tocol (HTTP).

13. The article of manufacture of claim 10, wherein the
instantiated interface is based on a Representation State
Transfer (REST) architecture style.

14. The article of manufacture of claim 10, further com
prising instructions, which when executed by a computer,
cause the computer to receive a fourth request to present at
least one requested logger object with at least one log level,
wherein the at least one requested logger object is selected
from the one or more logger objects in the one or more
application components.

