
USOO9569236B2

(12) United States Patent (10) Patent No.: US 9,569.236 B2
Birke et al. (45) Date of Patent: *Feb. 14, 2017

(54) OPTIMIZATION OF VIRTUAL MACHINE (58) Field of Classification Search
SZING AND CONSOLIDATION None

See application file for complete search history.
(71) Applicant: International Business Machines

Corporation, Armonk, NY (US) (56) References Cited

(72) Inventors: Robert Birke, Kilchberg (CH): Yiyu L. U.S. PATENT DOCUMENTS
Chen, Rueschlikon (CH); Martin L. 7,007.270 B2 2/2006 Martin et all WW artin et al.
Schmatz, Rueschlikon (CH) 7.925,711 B1 4/2011 Gopalan et al.

8,046.425 B1 10/2011 Gopalan et al.
(73) Assignee: INTERNATIONAL BUSINESS 2004/0010785 A1 1/2004 Chauvel et al.

MACHINES CORPORATION, 2009/0037164 A1 2/2009 Gaither et al.
Armonk, NY (US) 2010.0005173 A1 1/2010 Baskaran et al. TO9,226

(Continued)
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 111 days.
This patent is Subject to a terminal dis
claimer.

Anh Vu Do, “Profiling Applications for Virtual Machine Placement
in Clouds”, Jul. 4, 2011, IEEE, 978-0-7695-4460-1/11.*

(Continued)
(21) Appl. No.: 14/023,861

Primary Examiner — Lewis A Bullock, Jr.
(22) Filed: Sep. 11, 2013 Assistant Examiner — Wynuel Aquino

(74) Attorney, Agent, or Firm — Cantor Colburn LLP:
(65) Prior Publication Data Daniel Morris

US 2014/0215464 A1 Jul. 31, 2014
(57) ABSTRACT

Related U.S. Application Data The sizing of virtual machines is optimized based on pro
(63) Continuation of application No. 13/755,557, filed on jected performance metrics. All virtual machine configura

Jan. 31, 2013. tion resources are normalized by a processing device. The
normalized resources for the virtual machine configurations

(51) Int. Cl. are then stored in a catalogue. An application is then profiled
G06F 9/455 (2006.01) to obtain resource demand estimates for each virtual
G06F 9/50 (2006.01) machine configuration and a base performance is calculated
G06F II/34 (2006.01) for the application. The base performance is used to predict

(52) U.S. Cl. performance estimates on all virtual machine configurations
CPC G06F 9/45533 (2013.01); G06F 9/5027 in the catalogue. Accordingly, a virtual machine configura

(2013.01); G06F II/34 (2013.01); G06F tion having a lowest response time is selected.
2009/4557 (2013.01); G06F 2209/501

(2013.01) 8 Claims, 5 Drawing Sheets

WM

490
User Interface 40

WM Catalogue 420

WM W
Consolidator Sizer

WM 430 440

491 Performance
w Predictor

A60

-

W

492

US 9,569.236 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2010.0082322 A1* 4/2010 Cherkasova. G06F 11.3414
703/22

2010/0162257 A1* 6, 2010 Hiltunen et al. T18, 104
2010/0281482 A1* 11/2010 Pike et al. T18, 102
2011 0191461 A1 8/2011 Dasgupta et al.
2011/0302580 A1* 12/2011 Iikura G06F 8.63

T18, 1
2012fO185851 A1 7/2012 Zhang et al.

OTHER PUBLICATIONS

Isci, Canturk, et al. "Runtime Demand Estimation for effective
dynamic resource management.” Network Operations and Manage
ment Symposium (NOMS), 2010 IEEE: pp. 381-388.
Y. Koh et al., “An Analysis of Performance Interference Effects in
Virtual Environments.” In Proceedings of the 2007 IEEE Interna
tional Symposium on Performance Analysis of Systems & Soft
ware, ISPASS 2007, pp. 200-209.
L. Lu et al.: “Untangling Mixed Information to Calibrate Resource
Utilization in Virtual Machines.” In Proceedings of the 8th ACM

International Conference on Autonomic Computing, ICAC 2011,
pp. 151-160.
E. Mera et al. “Towards Execution Time Estimationin Abstract
Machine-Based Languages.” Proceedings of the 10th International
ACM SIGPLAN Conference on Principles and Practice of Declara
tive Programming; ACM 2008; pp. 174-184.
E. Rosti et al.; "Queueing Network Models with Two Classes of
Customers.” In Proceedings of the Fifth International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecom
munication Systems, Mascots 1997, pp. 229-234.
A. A. Soror et al.; “Automatic Virtual Machine Configuration for
Database Workloads.” ACM Transactions on Database Systems,
vol. 35, No. 1, Article 7, Feb. 2010; pp. 1-47.
O. Tickoo, et al. “Modeling virtual machine performance: chal
lenges and approaches.” ACM SIGMETRICS Performance Evalu
ation Review 37.3 (2010): pp.55-60.
T. Wood et al.; “Black-box and Gray-box Strategies for Virtual
Machine Migration.” In Proceedings of the 4th USENIX Sympo
sium on Networked Systems Design & Implementation, NSDI
2007, pp. 229-242.
T. Wood et al.; “Profiling and Modeling Resource Usage of Virtu
alized Applications.” In Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, Middleware 2008, pp.
366-387.

* cited by examiner

US 9,569.236 B2 Sheet 1 of 5 Feb. 14, 2017 U.S. Patent

************ *.

US 9,569.236 B2 Sheet 2 of 5 Feb. 14, 2017 U.S. Patent

: sasasasasasas

US 9,569.236 B2 Sheet 3 of 5 Feb. 14, 2017 U.S. Patent

3.
} ? ? ? ? ? ? ? ? ? ? ?

-- assasssssss

'''''''''

US 9,569.236 B2 Sheet 4 of 5 Feb. 14, 2017 U.S. Patent

† “?INH

U.S. Patent Feb. 14, 2017 Sheet 5 of 5 US 9,569.236 B2

? 550

Normalize resource Profile an
: 555

metrics for all VM application in
configurations in isolation
VM catalogue

P d Store normalized Compute deman 560
51() : metrics for

reSOurce retricS in 8 licati
VM catalogue application

Profile applications Collect user-defined 565
515 to obtain resource performance metrics

demand estimates
for each VM
configuration

invoke performance
predictor 570

520 Obtain base
performance metrics

Select optimal VM 575
Project performance consolidation

525 of all VM
configurations in
VM catalogue

Move VM according
580 to optimal VM

consolidation Select VM
configuration with

lowest response time

F.G. 5A FIG.SB

US 9,569,236 B2
1.

OPTIMIZATION OF VIRTUAL MACHINE
SZING AND CONSOLIDATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica
tion Ser. No. 13/755,557, filed Jan. 31, 2013, the disclosure
of which is incorporated by reference herein in its entirety.

BACKGROUND

The present invention relates to virtual machine optimi
Zation, and more specifically, to optimizing the use of
available resources through sizing and consolidating virtual
machines based on projected performance metrics.
A contemporary virtual machine (VM) is a software

implementation of a machine (i.e., a computer) that executes
programs like a physical machine. The VM typically emu
lates a physical computing environment, but requests for
central processing unit (CPU), memory, hard disk, network
and other hardware resources are managed by a virtualiza
tion layer which translates these requests to the underlying
physical hardware. VMs are created within a virtualization
layer, Such as a hypervisor or a virtualization platform that
runs on top of a client or server operating system. The
virtualization layer is typically used to create many indi
vidual, isolated VMs within a single, physical machine.
Multiple VMs are typically used in server consolidation,
where different services that were previously run on indi
vidual machines are instead run in isolated VMs on the same
physical machine. Contemporary VMs may be moved, cop
ied, and reassigned between host servers to improve hard
ware resource utilization.

Contemporary cloud computing providers allow a VM to
be managed over the Internet across a number of hardware
devices while only allocating as much space as needed at
any one time. Typically, cloud computing providers offer a
tiered pricing subscription plan for users to rent VMs on
which to run their own computer applications. Users typi
cally choose from a number of different VM configurations
to meet their computing needs. For example, at each increas
ing price tier, the CPU cores, memory, disk space, and
network bandwidth of the VM configuration are generally
increased to minor the increased resources provided. This
allows a user to select and pay for a VM configuration that
meets the user's target resource demands.

SUMMARY

According to an embodiment, a computer-implemented
method for optimizing the use of available resources through
the sizing of virtual machines is disclosed. The computer
implemented method includes normalizing, with a process
ing device, resources for all virtual machine configurations.
The normalized resources for the virtual machine configu
rations are then stored in a catalogue. An application is
profiled to obtain resource demand estimates for each virtual
machine configuration and a base performance is calculated
for the application. The base performance is used to predict
performance estimates on all virtual machine configurations
in the catalogue. Accordingly, a virtual machine configura
tion having a lowest response time is selected.

According to another embodiment, a computer system for
optimizing the use of available resources through the sizing
of virtual machines is disclosed. The computer system is
configured to perform a method including normalizing, with

10

15

25

30

35

40

45

50

55

60

65

2
a processing device, resources for all virtual machine con
figurations. The normalized resources for the virtual
machine configurations are then stored in a catalogue. An
application is profiled to obtain resource demand estimates
for each virtual machine configuration and a base perfor
mance is calculated for the application. The base perfor
mance is used to predict performance estimates on all virtual
machine configurations in the catalogue. Accordingly, a
virtual machine configuration having a lowest response time
is selected.

According to another embodiment, a computer system for
optimizing the use of available resources through the con
solidation of virtual machines is disclosed. The computer
system is configured to perform a method including execut
ing, with a processing device, an instance of an application
in isolation. The resource demands of the application are
profiled and the resource demand inputs from a profiler and
user-defined performance inputs from a user interface are
collected. Performance metrics for the application instance
are predicted with a queuing model using a mean value
analysis. A minimum required number of virtual machine
configurations for a consolidation set are calculated and all
the possible combinations of virtual machine configurations
for the consolidation set are predicted. From the set of all
possible combinations of virtual machine configurations, an
optimal consolidation set according to the user-defined
performance inputs is selected. Accordingly, the virtual
machine configuration is moved to the optimal consolidation
Set.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein
and are considered a part of the claimed invention. For a
better understanding of the invention with the advantages
and the features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a cloud computing node according to an
embodiment of the present invention;

FIG. 2 depicts a cloud computing environment according
to an embodiment of the present invention;

FIG. 3 depicts abstraction model layers according to an
embodiment of the present invention;

FIG. 4 depicts a flow diagram a VM optimizer for
providing optimized use of available compute resources
through sizing and consolidating of VMS based on projected
performance metrics according to an embodiment;

FIG. 5A depicts a VM sizing operation for selecting an
optimized VM configuration size that meets a user's perfor
mance targets according to an embodiment; and

FIG. 5B depicts a user-centric VM consolidation opera
tion for consolidating workloads on a same physical
machine to maximize resource utilization without violating
user-specified performance objectives according to an
embodiment.

DETAILED DESCRIPTION

Embodiments disclosed herein optimize the use of avail
able compute resources through sizing and consolidating
virtual machines based on projected performance metrics.

US 9,569,236 B2
3

Embodiments provide a catalogue-based VM sizing
engine that selects an optimized VM configuration size that
meets a particular user's application performance targets.
The catalogue-based VM sizing engine normalizes and
stores compute resources for all VM configuration sizes in
the catalogue. A given application is then profiled to obtain
demand estimates for a VM configuration size. A base
performance response time is obtained for the given appli
cation and then the performance is projected on all possible
VM configuration sizes in the VM catalogue. A VM sizer
compares the performance response times and selects the
VM configuration size which has lowest response time.

Embodiments also provide a user-centric VM consolida
tor that consolidates workloads on a same physical machine
in order to maximize resource utilization without violating
user-specified performance objectives. A profiler aggregates
demand metrics based on executing a single VM in isolation.
A VM consolidator collects the demand inputs from the
profiler along with user-defined performance priorities and
invokes a performance predictor to obtain projected perfor
mance metrics for all possible combinations of VM types.
The VM consolidator then identifies feasible VM consoli
dation sets and selects an optimal set according to the
user-defined performance priorities. The VM workload is
moved to the optimal set according to an embodiment.

Contemporary data center administrators can create a
large number of virtual VMs for different workload requests.
Each VM is provisioned with an amount of computing
resources commensurate with workload requirements. The
administrators can then consolidate all the VMs into a
Smaller number of physical servers, with the goal of mini
mizing the total number of physical servers required.
Administrators of large data centers and cloud computing
platforms often struggle to consolidate workloads on the
same physical machine in order to maximize resource uti
lization without violating user-defined performance priori
ties. This issue is challenging because performance interfer
ence between consolidated workloads may significantly
affect their execution time. Embodiments disclosed herein
reduce costs by providing precise predictions of VM work
load execution times to consolidate VMs such that user
specified performance metrics are achieved and system
performance metrics are maintained.

Additionally, when a user migrates an application to a
contemporary cloud computing provider, the calculation of
cost for a VM configuration size to host the application may
be daunting due to the difficulty in calculating how much of
each resource will be required by the user's application.
Published performance statistics and trial and error may
generally provide an estimate of resource usage, but when it
comes to calculating resource usage and VM configuration
size, many users will find be uncertain of which size of VM
configuration to deploy based on resource requirements.
Embodiments disclosed herein provide a catalogue-based
VM sizing engine that selects an optimized VM configura
tion size that meets a particular user's application perfor
mance targets.

It is understood in advance that although this invention
includes a detailed description on cloud computing, imple
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
invention are capable of being implemented in conjunction
with any other type of computing environment now known
or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,

5

10

15

25

30

35

40

45

50

55

60

65

4
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:
On-demand self-service: a cloud consumer can unilater

ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service's provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider's computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:
Software as a Service (SaaS): the capability provided to

the consumer is to use the provider's applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface Such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
Settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools Supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, net
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, Stor
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

US 9,569,236 B2
5

Deployment Models are as follows:
Private cloud: the cloud infrastructure is operated solely

for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.
Community cloud: the cloud infrastructure is shared by

several organizations and Supports a specific community that
has shared concerns (e.g., mission, Security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard
ized or proprietary technology that enables data and appli
cation portability (e.g., cloud bursting for load-balancing
between clouds).
A cloud computing environment is service oriented with

a focus on Statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 1, a block diagram of a cloud
computing node for collectively aggregating digital record
ings of an event of an embodiment is shown. Cloud com
puting node 10 is only one example of a suitable cloud
computing node and is not intended to suggest any limitation
as to the scope of use or functionality of embodiments
described herein. Regardless, cloud computing node 10 is
capable of being implemented and/or performing any of the
functionality set forth hereinabove.

In cloud computing node 10 there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys
tems, environments, and/or configurations that may be suit
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the
general context of computer system-executable instructions,
Such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.
As shown in FIG. 1, computer system/server 12 in cloud

computing node 10 is shown in the form of a general
purpose computing device. The components of computer
system/server 12 may include, but are not limited to, one or
more processors or processing units 16, a system memory
28, and a bus 18 that couples various system components
including system memory 28 to processor 16.

10

15

25

30

35

40

45

50

55

60

65

6
Bus 18 represents one or more of any of several types of

bus structures, including a memory bus or memory control
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi
tectures. By way of example, and not limitation, Such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.
Computer system/server 12 may include a variety of

computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of Volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. Com
puter system/server 12 may further include other removable/
non-removable, Volatile/non-volatile computer system Stor
age media. By way of example only, storage system 34 can
be provided for reading from and writing to a non-remov
able, non-volatile magnetic media (not shown and typically
called a "hard drive”). Although not shown, a magnetic disk
drive for reading from and writing to a removable, non
Volatile magnetic disk (e.g., a "floppy disk’), and an optical
disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In Such instances, each
can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below,
memory 28 may include at least one program product having
a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple
mentation of a networking environment. Program modules
42 generally carry out the functions and/or methodologies of
embodiments as described herein.
Computer system/server 12 may also communicate with

one or more external devices 14 Such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/O) interfaces 22. Still yet, com
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under
stood that although not shown, other hardware and/or soft
ware components could be used in conjunction with com
puter system/server 12. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

Referring now to FIG. 2, illustrative cloud computing
environment 50 is depicted. As shown, cloud computing
environment 50 comprises one or more cloud computing

US 9,569,236 B2
7

nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 54A, desktop computer 54B,
laptop computer 54C, digital video camera 54D, digital
audio recording device 54E, and/or digital still camera 54N
may communicate. Nodes 10 may communicate with one
another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or
Software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
is understood that the types of computing devices 54A-N
shown in FIG. 2 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
2) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 3 are
intended to be illustrative only and embodiments are not
limited thereto. As depicted, the following layers and cor
responding functions are provided:

Hardware and software layer 60 includes hardware and
Software components. Examples of hardware components
include mainframes, in one example IBM(R) zSeries(R) sys
tems: RISC (Reduced Instruction Set Computer) architec
ture based servers, in one example IBM pSeries(R) systems:
IBM xSeries(R systems; IBM BladeCenterR) systems; stor
age devices; networks and networking components.
Examples of Software components include network appli
cation server software, in one example IBM WebSphere(R)
application server Software; and database software, in one
example IBM DB2(R) database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide).

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com
prise application Software licenses. Security provides iden
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provides pre
arrangement for, and procurement of cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 66 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro

10

15

25

30

35

40

45

50

55

60

65

8
vided from this layer include: mapping and navigation;
Software development and lifecycle management; virtual
classroom education delivery; data analytics processing:
transaction processing; and virtual machine (VM) optimi
Zation processing.

With reference now to FIG. 4, an embodiment of a VM
optimizer 400 for providing optimized use of available
compute resources through sizing and consolidating of VMS
based on projected performance metrics is shown. Accord
ing to an embodiment, the VM optimizer 400 may be
implemented as a dedicated hardware, an accelerator, or a
VM module. The VM optimizer 400 includes a user inter
face 410, a VM catalogue 420, a VM consolidator 430, a VM
sizer 440, a profiler 450, a performance predictor 460, an
operating system 470, and computer hardware 480.
The user interface of an embodiment provides an interface

for users to characterize user-defined performance priorities
and to select VM configuration sizes and VM consolidations
that optimize compute resources according to the user
defined performance priorities. According to an embodi
ment, users may visualize all the collected values, derived
metrics, and projected execution times as detailed charts,
figures, and tables on the user interface.
The VM catalogue 420 of an embodiment stores resource

and performance metrics for all possible VM configuration
types 490, 491, 492. The VM consolidator 430 of an
embodiment consolidates VMs on a same physical machine
in order to maximize resource utilization without violating
user-specified performance objectives. The VM sizer 440 of
an embodiment selects an optimized VM configuration size
from the VM catalogue 420 that meets a particular user's
application performance targets. The profiler 450 of an
embodiment aggregates demand metric estimates based on
execution of an application in a VM configuration.
The performance predictor 460 of an embodiment pre

dicts and projects performance metrics for an application
running on each VM configuration type. According to an
embodiment, the performance predictor 460 may execute an
application on a closed, three-station queuing network
model which is parameterized by a profiling of the applica
tions CPU, disk and network demands. The performance
metrics are calculated using a mean value analysis (MVA)
algorithm known to those of skill in the art. The operating
system 470 of the VM optimizer 400 acts as an intermediary
between the VM optimizer programs and the computer
hardware 480 according to an embodiment.

In FIG. 5A, a VM sizing operation 500 for selecting an
optimized VM configuration size that meets a user's perfor
mance targets is shown. When a user sends an execution
request to a public or private cloud, the request is forwarded
to the profiler 450 of the VM optimizer 400. According to an
embodiment, a base profiler server is divided into a small
partition and a big partition, each having CPU speed,
memory size, storage I/O speed, and network speed
resources, for performing a profiling of a given application.

In block 505, resource metrics for all available VM
configuration sizes are normalized with respect to the base
profiler server. That is, R=r', r", rs", r is computed for
all j, wherein R is a resource metric measurement, j is a VM
configuration size, r is CPU speed, r is memory size, r is
storage I/O speed, and r is network speed. According to an
embodiment, a resource specification is computed on the
Small partitions, R=r, r. r. r. Such that the computed
resource metrics for all VM configuration sizes may be
normalized with respect to the profiler server.

In block 510, the VM catalogue 420 of an embodiment is
populated to store all the VM configuration sizes whose

US 9,569,236 B2

CPU, memory, disk, and network resources are normalized
with respect to the base profiler server. According to an
embodiment, applications are then profiled to obtain
resource demand estimates for each VM configuration size,
as shown in block 515. When a user sends an execution 5
request to the public or private cloud, the request is imme
diately forwarded to the profiler server and executed on both
partitions to obtain a demand-resource (D-R) function,
D. a+b,R, wherein D is a demand metric measurement.
Demand D, is defined as the execution time on each resource 10
R, using two settings on the resources, for I-1, 3, 4, wherein
D is CPU busy time, D is disk busy time, Da is network
busy time. A memory demand, D, is defined by a passive
measurement (i.e., a memory footprint size). D. a+bR.
Applications are executed on both partitions of the profiler 15
server for a given application, that is, D is computed using
R for all j, to obtain demand estimates for each VM
configuration size.
The D-R function is a linear function with two unknown

coefficients, a, b, which are obtained from the resource 20
execution times (i.e., busy times) and resources, based on
two partitions. Essentially, for four resources r, r, rs, ra.
there are four corresponding D-R functions. According to an
embodiment, the D-R function is used to estimate the
resource demands for each VM configuration size and 25
further performance metrics. To get estimated resource
demands for all VM configuration sizes stored in the VM
catalogue 420, the normalized resource measurements are
plugged into the D-R function using two executions accord
ing to an embodiment. The obtained D-R coefficients, a, b, 30
may be stored in memory as (a, b) (a, b) (als, ba) (a.a.
b)) for each resource type.

In block 520, a base performance metric is obtained by the
performance predictor 460 of an embodiment for a given
application. To get the estimated performance metrics (i.e., 35
response time), an embodiment uses a queuing network
model consisting of a CPU, a memory, a disk, and a network.
According to an embodiment, the estimated resource
demands are applied to all VM configuration sizes using an
MVA algorithm. More specifically, if D-R, the MVA 40
algorithm is run with demand metric measurement D to
obtain response times for all VM configuration sizes j. If
D>R, this VM configuration is not valid according to an
embodiment.

In block 525, predicted response times are projected on all 45
possible VM configuration sizes in the VM catalogue 420 by
the performance predictor 460 according to an embodiment.
That is, the estimated resource demands are applied for all
VM configuration sizes. AVM sizer 440 of an embodiment
then compares the response times and recommends the 50
optimal VM configuration size that satisfies a user's
performance targets, as shown in block 530. In other words,
the VM sizer 440 may select a VM configuration size which
has the lowest response time.

In FIG. 5B, a user-centric VM consolidation operation 55
550 for consolidating workloads on a same physical
machine to maximize resource utilization without violating
user-specified performance objectives is shown.

In block 555, the profiler 450 aggregates demand metrics
based on executing a single VM in isolation according to an 60
embodiment. The CPU system utilization when executing
one instance, Ucs1, and the average CPU utilization when
executing one instance, Uc1, are collected using a known
program Such as Vmstat. The average disk operations per
second, WA, the average service time, S, the average queue 65
size, q, the total number of disk operations per second, Oqd,
and the disk queued operations per second, Otd, are col

10
lected using a known program Such as iostat. The average
transmission rate per link, R, and the average rate of the
network sending and receiving bytes per second, WN, are
collected using a known program Such as netStat.

In block 560, the profiler 450 computes the CPU demand,
the disk demand, and the network demand for the execution
in VMs according to an embodiment. The average CPU
demand of n VMS, DC, is computed by applying
Dc=TUcs1 min{n, S/n, wherein T is the time to complete
one iteration and S is the saturation point 1/Uc1. The average
disk demand of n VMS, Dd, is computed by applying
Dd1=ads/(q) and Dd={Dd1/n (Oqd/Otd)}/n. The average
network demand, DN, is computed by applying
DN=N-T-min{N.Rn.

In block 565, an embodiment collects the demand inputs
from the profiler 450 along with user-defined performance
priorities. According to an embodiment, the performance
predictor 460 is invoked to obtain projected performance
metrics for all possible combinations of VM configuration
types, as shown in block 570. In block 575, the VM
consolidator 430 then identifies all feasible VM consolida
tion sets and selects an optimal set according to the user
defined performance priorities according to an embodiment.
In block 580, the VM workload is moved to an optimal VM
set taking the user-defined performance priorities into
account according to an embodiment.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.
Any combination of one or more computer readable

medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor system, apparatus, or device, or any Suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro
magnetic, optical, or any Suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage

US 9,569,236 B2
11

medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any Suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language Such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the 'C' programming
language or similar programming languages. The program
code may execute entirely on the user's computer, partly on
the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments. It will be understood that
each block of the flowchart illustrations and/or block dia
grams, and combinations of blocks in the flowchart illustra
tions and/or block diagrams, can be implemented by com
puter program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro
grammable data processing apparatus to produce a machine,
Such that the instructions, which execute via the processor of
the computer or other programmable data processing appa
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro
gram products according to various embodiments. In this
regard, each block in the flowchart or block diagrams may
represent a module, segment, or portion of code, which
comprises one or more executable instructions for imple
menting the specified logical function(s). It should also be
noted that, in Some alternative implementations, the func
tions noted in the block may occur out of the order noted in

10

15

25

30

35

40

45

50

55

60

65

12
the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
The terminology used herein is for the purpose of describ

ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an and “the are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, element components, and/or groups thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
Suited to the particular use contemplated.
The flow diagrams depicted herein are just one example.

There may be many variations to this diagram or the steps
(or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be
performed in a differing order or steps may be added, deleted
or modified. All of these variations are considered a part of
the claimed invention.

While the preferred embodiment to the invention had
been described, it will be understood that those skilled in the
art, both now and in the future, may make various improve
ments and enhancements which fall within the scope of the
claims which follow. These claims should be construed to
maintain the proper protection for the invention first
described.
What is claimed is:
1. A computer system, comprising: a processor, a system

memory, and a bus that couples various system components
including the system memory to the processor, the system
configured to perform a method comprising: normalizing,
with a processing device, resource metrics (R) for a plurality
of virtual machine configuration sizes with respect to pro
filed metrics, wherein each virtual machine configuration
size is normalized as R =r', ri', rs", r.), j is a virtual
machine configuration size, r is central processing unit
speed, ri' is memory size, rs' is input/output speed, and r is
network speed and the profiled metrics are observed values
of r, r, rs, and ra; storing the normalized resource metrics
associated with each of the virtual machine configuration
sizes in a catalogue; calculating and storing a demand metric
measurement (D) for each resource in the virtual machine

US 9,569,236 B2
13

configuration size of a plurality of virtual machine configu
ration sizes to obtain resource demand estimates for each of
the resources of a respective virtual machine configuration
size; wherein the calculating comprises: profiling an appli
cation for each of the virtual machine configuration sizes:
executing the application on a first partition of a memory and
a second partition of a memory; calculating the demand
metric measurement (D) for an execution time of each of the
resources associated with a respective virtual machine con
figuration size by using a demand metric measurement
(D, a--b.R.) for each of the resources (R); the each D, is a
demand metric calculation for a respective resource (R) of
a calculation under an execution time, the a, corresponds to
the first partition and the b, corresponds to the second
partition; storing the a, and the b, coefficients of the demand
resource function for each of the respective resources (R) for
each virtual machine configuration size; calculating a base
performance for the application; predicting performance
estimates on each of the virtual machine configuration sizes
in the catalogue by applying the demand metric measure
ments (D) of the resources associated with each of the
respective virtual machine configuration sizes; selecting,
based on the predicting, a virtual machine configuration size
in the catalogue having a lowest response time that meets the
application performance objectives; invoking the selected
virtual machine configuration size; and migrating the appli
cation to the selected virtual machine configuration size.

2. The computer system of claim 1, wherein the resources
for a virtual machine configuration include central process
ing unit resources, memory resources, disk resources, and
network resources.

5

10

15

25

14
3. The computer system of claim 1, further comprising a

base profiler server, the base profiler server being partitioned
into a small partition and a big partition, each having central
processing unit resources, memory resources, disk
resources, and network resources.

4. The computer system of claim 3, wherein all virtual
machine configurations are normalized with respect to a
resource specification on the Small partition.

5. The computer system of claim 3, wherein the applica
tion is executed on both the small partition and the big
partition of the base profiler server for each virtual machine
configuration to obtain a demand-resource function.

6. The computer system of claim 5, wherein the normal
ized resources for each virtual machine configuration are
plugged into the demand-resource function to obtain the
resource demand estimates for each virtual machine con
figuration.

7. The computer system of claim 1, wherein the predicting
of performance estimates further comprises running a mean
value analysis to obtain a response time for all virtual
machine configurations in response to a memory demand
being less than a resource demand.

8. The computer system of claim 1, wherein the predicting
of performance estimates further comprises running a mean
value analysis with a partitioned memory demand to obtain
a response time for all virtual machine configurations in
response to a memory demand being more than a resource
demand.

