
USO0955415OB2

(12) United States Patent (10) Patent No.: US 9,554,150 B2
Zhang et al. (45) Date of Patent: Jan. 24, 2017

(54) COMBINED BI-PREDICTIVE MERGING (58) Field of Classification Search
CANDDATES FOR 3D VIDEO CODING CPC H04N 19/52; H04N 19/136; H04N 19/50:

HO4N 1977O
(71) Applicant: QUALCOMM Incorporated, San See application file for complete search history.

Diego, CA (US)
(56) References Cited

(72) Inventors: Li Zhang, San Diego, CA (US); Ying
Chen, San Diego, CA (US) U.S. PATENT DOCUMENTS

(73) Assignee: QUALCOMM Incorporated, San 8,917,772 B2* 12/2014. Oh HO4N 19,463
Diego, CA (US) 375,240.16

2012/0230408 A1* 9, 2012 Zhou HO4N 19,105

(*) Notice: Subject to any disclaimer, the term of this 375,240.15
(Continued) patent is extended or adjusted under 35

U.S.C. 154(b) by 198 days.
OTHER PUBLICATIONS

(21) Appl. No.: 14/489,679
Tech Get al: “3D-HEVC Draft Text 1.5. JCT-3V Meeting; Jul. 27.

(22) Filed: Sep. 18, 2014 2013—Aug. 2, 2013; Vienna; (The Joint Collaborative Team on 3D
Video Coding Extension Development of ISO/IEC JTC1/SC29/

(65) Prior Publication Data WG 11 and ITU-TSG.16); URL: http://phenix.int-evry.fr/jct2/. No.
US 2015/OO8593O A1 Mar. 26, 2015 JCT3V-E 1001-v3, Sep. 11, 2013 (Sep. 11, 2013), XP03013 1378.*

(Continued) Related U.S. Application Data
(60) Provisional application No. 61/880,737, filed on Sep. Primary Examiner — Leron Beck

20, 2013. Assistant Examiner — Tsion B Owens
(74) Attorney, Agent, or Firm — Shumaker & Sieffert,

(51) Int. Cl. P.A.
H04N 7/2 (2006.01)
H04N I5/00 (2006.01) (57) ABSTRACT
H04N 9/52 (2014.01) A video coder generates a list of merging candidates for
H04N 9/36 (2014.01) coding a video block of the 3D video. A maximum number
H04N 9/44 (2014.01) of merging candidates in the list of merging candidates may
H04N 9/50 (2014.01) be equal to 6. As part of generating the list of merging
HO)4N 19/597 (2014.01) candidates, the video coder determines whether a number of

(Continued) merging candidates in the list of merging candidates is less
(52) U.S. Cl. than 5. If so, the video coder derives one or more combined

CPC H04N 19/52 (2014.11); H04N 19/136 bi-predictive merging candidates. The video coder includes
(2014.11); H04N 19/44 (2014.11); H04N the one or more combined bi-predictive merging candidates
19/50 (2014.11); H04N 19/56 (2014.11); in the list of merging candidates.
H04N 19/577 (2014.11); H04N 19/597

(2014.11); H04N 19/70 (2014.11) 24 Claims, 14 Drawing Sheets

START
40

current slice is Slice?

YS 402
NUM3ER OF ERGING

CANDEDATESINLISTISESS
ANS

8.

404

SET colNANEXT

406
NTION WECTORS

&O CORRESPONDING TO
COMBINATIONNEX

AWAILABLE

YES 48
INCLUDEB-PREDICTwe
MERGING CANDATE
ASSOCATED WITH

CCMBINATION INDEX NLST

41)
COMBINATON DEX

ISERJALO
rumorigiMergecand

(aumariglergeCand - 13?
412

ToTALMeRGING
CANDID3AES INIS ISEOUAL

To MaxNumMergecand?

YES

414
INCRENT COMBINATION

INEX

US 9,554,150 B2
Page 2

(51) Int. Cl.
H04N 9/56 (2014.01)
HO)4N 19/70 (2014.01)
HO)4N 19/577 (2014.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2016/0057453 A1* 2/2016 Chang HO4N 19,597
375,240.12

2016/0134891 A1* 5, 2016 Lee HO4N 19,597
375,240.08

OTHER PUBLICATIONS

Wiegand et al., “WD1: Working Draft 1 of High-Efficiency Video
Coding.” JCTVC-C403, 3rd Meeting: Guangzhou, CN, Oct. 7-15.
2010, 137 pp.
Wiegand et al., “WD2: Working Draft 2 of High-Efficiency Video
Coding.” JCTVC-D503, 4th Meeting: Daegu, KR, Jan. 20-28, 2011,
153 pp.
Wiegand et al., “WD3: Working Draft 3 of High-Efficiency Video
Coding.” Document JCTVC-E603, 5th Meeting: Geneva, CH, Mar.
16-23, 2011, 193 pp.
Bross et al., “WD4: Working Draft 4 of High-Efficiency Video
Coding.” 6th Meeting. JCTVC-F803 d2, Torino, IT, Jul. 14-22,
2011, 226 pp.
Bross et al., “WD5: Working Draft 5 of High-Efficiency Video
Coding.” 7th Meeting: Geneva, CH, Nov. 21-30, 2011, JCTVC
G1103 d2, 214 pp.
Bross et al., “High efficiency video coding (HEVC) text specifica
tion draft 6.” 8th Meeting: San Jose, CA, USA, Feb. 1-10, 2012,
JCTVC-H 1003, 259 pp.
Bross et al., “High efficiency video coding (HEVC) text specifica
tion draft 7.” 9th Meeting: Geneva, CH, Apr. 27-May 7, 2012,
JCTVC-I1003 d2, 290 pp.
Bross et al., “High efficiency video coding (HEVC) text specifica
tion draft 8, 10th Meeting: Stockholm, SE, Jul. 11-20, 2012,
JCTVC-J1003 d7, 261 pp.
Bross et al., “High Efficiency Video Coding (HEVC) text specifi
cation draft 9,' 11th Meeting: Shanghai, CN, Oct. 10-19, 2012,
JCTVC-K1003 v7, 290 pp.
Bross et al., “High Efficiency Video Coding (HEVC) text specifi
cation draft 10 (for FDIS & Last Call),' 12th Meeting: Geneva, CH,
Jan. 14-23, 2013, JCTVC-L1003 v34, 310 pp.
ITU-T H.264, Series H. Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter
national Telecommunication Union. Jun. 2011, 674 pp.
ITU-T H.265, Series H. Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter
national Telecommunication Union. Apr. 2013, 317 pp.
ITU-T H.265, Series H. Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter
national Telecommunication Union. Oct. 2014, 540 pp.
ITU-T H.265, Series H. Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter
national Telecommunication Union. Apr. 2015, 634 pp.
Bross et al., “Editors' proposed corrections to HEVC version 1.”
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG 11, 13th Meeting,
Incheon, KR, Apr. 18-26, 2013, JCTVC-MO432 v3,
XP030057924, 310 pp.
Kim et al., “High Efficiency Video Coding (HEVC) Test Model 11
(HM11) Encoder Description.” JCT-VC Meeting; MPEG Meeting:
Apr. 18-26, 2013; Incheon, KR: (Joint Collaborative Team on Video
Coding of ISO/IEC JTC1/SC29/WG 11 and ITU-T SG.16);
XP030114426, 36 pp.

Tech et al.,"3D-HEVC Draft Text 1.” JCT-3V Meeting; Jul. 27-Aug.
2, 2013; Vienna, AT: (The Joint Collaborative Team on 3D Video
Coding Extension Development of ISO/IEC JTC1/SC29/WG 11 and
ITU-T SG.16); URL: http://phenix.int-evry.fr/jct2/, No. JCT3V
E1001-v3, XP03013 1378, 89 pp.
Zhang et al., "CE3 related: combined bi-predictive merging candi
dates for 3D-HEVC.” JCT-3V Meeting; Oct. 25-Nov. 1, 2013;
Geneva, CH; (The Joint Collaborative Team on 3D Video Coding
Extension Development of ISO/IEC JTC1/SC29/WG 11 and ITU-T
SG.16); URL: http://phenix.int-evry.fr/jct2/, No. JCT3V-F0129.
XP03013 1555, 5 pp.
Zhang et al., “3D-HEVC Test Model 5.' JCT-3V Meeting; Jul.
27-Aug. 2, 2013; Vienna, AT: (The Joint Collaborative Team on 3D
Video Coding Extension Development of ISO/IEC JTC1/SC29/
WG 11 and ITU-T SG.16); URL: http://phenix.int-evry.fr/jct2, No.
JCT3V-E 1005, XP03013 1385, 50 pp.
Zhang et al., “CE5.h: Disparity vector generation results,” JCT2
AO097, JCT-3V Meeting; MPEG Meeting; Jul. 16-20, 2012; Stock
holm, SE: (The Joint Collaborative Team on 3D Video Coding
Extension Development of ISO/IEC JTC1/SC29/WG 11 and ITU-T
SG.16); URL: http://phenix.int-evry.fr/jct2/, XP030 130096, 5 pp.
Tian et al..."CE1.h: Backward View Synthesis Prediction using
Neighbouring Blocks,” JCT-3V Meeting; MPEG Meeting; Jan.
16-23, 2013; Geneva, CH; (The Joint Collaborative Team on 3D
Video Coding Extension Development of ISO/IEC JTC1/SC29/
WG 11 and ITU-T SG.16); URL: http://phenix.int-evry.fr/jct2, No.
JCT3V-C0152, XP030 130568, 5 pp.
Tian et al..."CE1.h: Backward View Synthesis Prediction using
Neighbouring Blocks,” JCT-3V Meeting; MPEG Meeting; Jan.
17-23, 2013; Geneva, CH; (The Joint Collaborative Team on 3D
Video Coding Extension Development of ISO/IEC JTC1/SC29/
WG 11 and ITU-T SG.16); URL: http://phenix.int-evry.fr/jct2, No.
JCT3V-CO152, XPO30 130568, 5 pp.
Tech et al., “3D-HEVC Test Model 2,” JCT-3V Meeting; MPEG
Meeting; Oct. 13-19, 2012; (The Joint Collaborative Team on 3D
Video Coding Extension Development of ISO/IEC JTC1/SC29/
WG 11 and ITU-T SG.16); Document: JCT3V-B1005 d0, 70 pp.
Tech et al., “3D-HEVC Test Model 2,” JCT-3V Meeting; MPEG
Meeting; Oct. 13-19, 2012; (The Joint Collaborative Team on 3D
Video Coding Extension Development of ISO/IEC JTC1/SC29/
WG 11 and ITU-T SG.16); Document: JCT3V-B1005 d0 r1, 126
pp.
Tech et al., “3D-HEVC Test Model 3.” JCT-3V Meeting; MPEG
Meeting; Jan. 17-23, 2013; (The Joint Collaborative Team on 3D
Video Coding Extension Development of ISO/IEC JTC1/SC29/
WG 11 and ITU-T SG.16); Document: JCT3V-C1005 d0, 51 pp.
Tech et al., “3D-HEVC Test Model 3.” JCT-3V Meeting; MPEG
Meeting; Jan. 17-23, 2013; Geneva, CH; (The Joint Collaborative
Team on 3D Video Coding Extension Development of ISO/IEC
JTC1/SC29/WG 11 and ITU-T SG.16); Document: JCT3V-C1005
spec d1, 91 pp.
Chang et al., “3D-CE2.h related: Simplified DV derivation for
DoNBDV and BVSP.” MPEG Meeting; Apr. 20-26, 2013; (The
Joint Collaborative Team on 3D Video Coding Extension Develop
ment of ISO/IEC JTC1/SC29/WG 11 and ITU-T SG.16); Docu
ment: JCT3V-D0138, 4 pp.
Thirumalai et al., “CE3.h: Merge candidates derivation from vector
shifting.” MPEG Meeting; Jul. 27-Aug. 2, 2013; , Vienna, AT: (The
Joint Collaborative Team on 3D Video Coding Extension Develop
ment of ISO/IEC JTC1/SC29/WG 11 and ITU-T SG.16); Docu
ment: JCT3V-EO 126, 5 pp.
Thirumalai et al., “Proposed text for JCT3V-E0126 based on
3D-HEVC Test Model.” MPEG Meeting; Jul. 27-Aug. 2, 2013;
Vienna, AT: (The Joint Collaborative Team on 3D Video Coding
Extension Development of ISO/IEC JTC1/SC29/WG 11 and ITU-T
SG.16); Document: JCT3V-E0126 proposed text, 5 pp.
International Search Report and Written Opinion from International
Application No. PCT/US2014/056557, dated Dec. 1, 2014, 11 pp.
Response to Written Opinion dated Dec. 1, 2014, from International
Application No. PCT/US2014/056557, filed on Jan. 27, 2015, 7 pp.
Second Written Opinion from International Application No. PCT/
US2014/056557, dated Aug. 6, 2015, 5 pp.

US 9,554,150 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Response to Second Written Opinion dated Aug. 6, 2015 from
International Application No. PCT/US2014/056557, filed on Oct. 6,
2015, 6 pp.
International Preliminary Report on Patentability from International
Application No. PCT/US2014/056557, dated Dec. 18, 2015, 8 pp.

* cited by examiner

U.S. Patent Jan. 24, 2017 Sheet 1 of 14 US 9,554,150 B2

10

-1
SOURCE DEVICE DESTNATON DEVICE

12 14

VIDEO SOURCE DISPLAY DEVICE
18 32

WDEO WDEO
ENCODER DECODER

20 30

OUTPUT
NTERFACE

22

NPUT INTERFACE
28

FIG. 1

U.S. Patent Jan. 24, 2017 Sheet 2 of 14 US 9,554,150 B2

A1

AO

FIG. 2

U.S. Patent Jan. 24, 2017 Sheet 3 of 14 US 9,554,150 B2

patial neighboring block

Temporal neighboring block

FIG. 3

US 9,554,150 B2 Sheet 4 of 14 Jan. 24, 2017 U.S. Patent

?A

8

AA?A

US 9,554,150 B2 U.S. Patent

U.S. Patent Jan. 24, 2017 Sheet 6 of 14 US 9,554,150 B2

FIG. 6

US 9,554,150 B2 U.S. Patent

US 9,554,150 B2 Sheet 9 of 14 Jan. 24, 2017 U.S. Patent

LINT) ©NHClOOEG ÅdOÀI LNE ?IECIO OBCI OBCHA

U.S. Patent Jan. 24, 2017

200
GENERATE LST OF

MERGING CANODATES

202

SELECT CANDDATE IN
LST

204

ENCODE WIDEO BLOCK
BASED ON SELECTED

CANODATE

FIG. 10A

Sheet 10 of 14

220
GENERATE LIST OF

MERGING CANDDATES

222

DETERMNE SELECTED
CANDDATE NLST

224

DECODE WIDEO BLOCK
BASED ON SELECTED

CANODATE

FIG. 1 OB

US 9,554,150 B2

U.S. Patent

FIG. 11

Jan. 24, 2017 Sheet 11 of 14

302

DETERMNE PMVC

304
NO

IPMVC AVAILABLE

YES 306

NSERT IPMVC N MERGE
CANDDATE LIST

3
CHECKSPATAL
NEGHBORNG PUs

3
YES

A MATCHES IPMVC?

NO 3

INSERTAIN MERGE
CANDDATE LIST

08

10

2 1

314

B. MATCHESA OR NYES
PMVC?

INSERT B N MERGE
CANDDATE LIST

318
NO

Bo AVAILABLE

YES 3

INSERT B N MERGE
CANDDATE LIST

20

332

DMVC AVAILABLE NO
AND DOES NOT MATCH

A OR B?

NSERT DMVC IN MERGE
CANDDATE LIST

US 9,554,150 B2

-so

U.S. Patent Jan. 24, 2017

33,
BVSP ENABLED

YES 3

NSERT BVSP
CANODATE IN MERGE
CANDDATE LIST

3

A AVAILABLE2

YES 3

INSERT A N MERGE
CANDDATE LIST

NO

42

344
NO

B2 AVAILABLE

NSERT B N MERGE
CANDOATE LIST

FIG. 12

Sheet 12 of 14

-so

348

INTER-VIEW MOTION NO
PREDCTION APPLED2

DETERMINE SHIFTED
CANODATE

SHIFTED CANDDATE
AVAILABLE

NCLUDE SHFTED
CANDDATE N MERGE
CANODAE LIST

NCLUDE TEMPORAL
MERGING CANDDATE IN
MERGE CANDDATE LIST

358

PERFORM DERVATION
PROCESS FOR
COMEBINED B

PREDCTIVE MERGING
CANDDATES

360
PERFORM DERVATION
PROCESS FOR ZERO
MOTON VECTOR

MERGING CANDDATES

US 9,554,150 B2

U.S. Patent Jan. 24, 2017 Sheet 13 of 14 US 9,554,150 B2

START

40

CURRENT SLCE IS B SLCE

YES 40
NUMBER OF MERGENG

CANODATES IN LST S LESS
THAN 5?

YES 40

SET COMBINATION NOEX TO O

40
MOTON VECTORS

CORRESPONDING TO
COMBINATON INDEX

AVALABLE

O

2

NCLUDEBPREDCTIVE
MERGING CANODATE
ASSOCATED WITH

COMBINATION INDEX IN LIST

COMBINATION INDEX
SECUAL TO

numOrigiMergeCand *
(numOrigiMergeCand - 1)?

TOTAL MERGING
CANDDATES IN LIST IS EQUAL

TO MaxNumMergeCand?

NO 414

NCREMENT COMBINATON
NDEX

FIG. 13

U.S. Patent Jan. 24, 2017

GENERATE LIST OF MERGE
CANODATES

NUMBER OF MERGINGV No
CANODATES IN LIST

LESS THAN 5

DEREVE ONE OR MORE
B-PREDCTIVE MERGENG

CANODATES

NCLUDE ONE OR MORE
B-PREDCTIVE MERGNG
CANDDATES IN LIST

DO NOT INCLUDE ANY
B-PREDCTIVE MERGENG
CANDDATES IN LIST

SELECT MERGING
CANODATE FROM LIST

SGNAL POSTONN
LIST OF SELECTED
MERGING CANDDATE

ENCODE WIDEO BLOCK
BASED ON SELECTED

CANDDATE

FIG. 14A

Sheet 14 of 14

GENERATE LIST OF MERGE
CANOIDATES

NUMBER OF MERGINGV No
CANDDATES IN LST IS

LESS THAN 5?

DERVE ONE OR MORE
B-PREDCTIVE MERGING

CANDDATES

INCLUDE ONE OR MORE
B-PREDCTIVE MERGING
CANODATES N LIST

DO NOT INCLUDE ANY
B-PREDCTEVE MERGING
CANOIDATES EN LIST

OETERMNE SELECTED
CANOIDATE IN LST

DECODE WIDEO BLOCK
BASED ON SELECTED

CANODATE

FIG. 14B

US 9,554,150 B2

US 9,554,150 B2
1.

COMBINED B-PREDICTIVE MERGING
CANDDATES FOR 3D VIDEO CODING

This application claims the benefit of U.S. Provisional
Patent Application No. 61/880,737, filed Sep. 20, 2013, the
entire content of which is incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates to video coding and compression,
and more specifically, coding techniques that may be used in
coding three-dimensional (3D) video.

BACKGROUND

Digital video capabilities can be incorporated into a wide
range of devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal
digital assistants (PDAs), laptop or desktop computers,
digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellu
lar or satellite radio telephones, video teleconferencing
devices, and the like. Digital video devices implement video
compression techniques, such as those described in the
standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding
(AVC), the High Efficiency Video Coding (HEVC) standard,
and extensions of Such standards, to transmit, receive and
store digital video information more efficiently.

Video compression techniques perform spatial (intra
picture) prediction and/or temporal (inter-picture) prediction
to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice may
be partitioned into video blocks, which may also be referred
to as treeblocks, coding units (CUs) and/or coding nodes.
Video blocks in an intra-coded (I) slice of a picture are
encoded using spatial prediction with respect to reference
samples in neighboring blocks in the same picture. Video
blocks in an inter-coded (P or B) slice of a picture may use
spatial prediction with respect to reference samples in neigh
boring blocks in the same picture or temporal prediction
with respect to reference samples in other reference pictures.
Pictures may be referred to as frames, and reference pictures
may be referred to as reference frames.
A multi-view coding bitstream may be generated by

encoding views, e.g., from multiple perspectives. Multi
view coding may allow a decoder to choose between dif
ferent views, or possibly render multiple views. Moreover,
Some three-dimensional (3D) video techniques and stan
dards that have been developed, or are under development,
make use of multi-view coding aspects. Three dimensional
video is also referred to as “3DV.

For example, different views may transmit left and right
eye views to support 3D video. Alternatively, some 3D video
coding processes may apply So-called multi-view plus depth
coding. In multi-view plus depth coding, a 3D video bit
stream may contain not only texture view components, but
also depth view components. For example, each view may
comprise one texture view component and one depth view
component.

Currently, a Joint Collaboration Team on 3D Video Cod
ing (JCT-3C) of VCEG and MPEG is developing a 3D video
standard based on the emerging standard referred to as “high
efficiency video coding (HEVC), for which part of the
standardization efforts includes the standardization of the
multi-view video codec based on HEVC (MV-HEVC) and
another part for 3D Video coding based on HEVC (3D

10

15

25

30

35

40

45

50

55

60

65

2
HEVC). 3D-HEVC may include and support new coding
tools, including those in coding unit/prediction unit level, for
both texture and depth views.

SUMMARY

In general, this disclosure relates to three-dimensional
(3D) video coding based on advanced codecs, including the
coding of two or more views with the 3D-High Efficiency
Video Coding (HEVC) codec. For instance, some examples
of this disclosure describe techniques related to combined
bi-predictive merging candidates. In some such examples, as
part of generating a list of merging candidates, a video coder
determines whether a number of merging candidates in the
list is less than 5. If so, the video coder derives one or more
combined bi-predictive merging candidates. The video
coder includes the one or more combined bi-predictive
merging candidates in the list of merging candidates.

In one aspect, this disclosure describes a method of
coding 3D video data. The method comprises generating a
list of merging candidates for coding a video block of the 3D
Video data. A maximum number of merging candidates in
the list of merging candidates is equal to 6 and generating the
list of merging candidates comprises: determining whether a
number of merging candidates in the list of merging candi
dates is less than 5; and in response to determining that the
number of merging candidates in the list of merging candi
dates is less than 5: deriving one or more combined bi
predictive merging candidates, wherein each respective
combined bi-predictive merging candidate of the one or
more combined bi-predictive merging candidates corre
sponds to a respective pair of merging candidates already in
the list of merging candidates, wherein the respective com
bined bi-predictive merging candidate is a combination of a
motion vector of a first merging candidate of the respective
pair and a motion vector of a second merging candidate of
the respective pair, wherein the motion vector of the first
merging candidate and the motion vector of the second
merging candidate refer to pictures in different reference
picture lists. The method also comprises including the one or
more combined bi-predictive merging candidates in the list
of merging candidates.

In another aspect, this disclosure describes a video coding
device comprising: a data storage medium configured to
store 3D video data; and one or more processors configured
to: generate a list of merging candidates for coding a video
block of the 3D video data, wherein a maximum number of
merging candidates in the list of merging candidates is equal
to 6 and as part of generating the list of merging candidates,
the one or more processors: determine whether a number of
merging candidates in the list of merging candidates is less
than 5; and in response to determining that the number of
merging candidates in the list of merging candidates is less
than 5: derive one or more combined bi-predictive merging
candidates, wherein each respective combined bi-predictive
merging candidate of the one or more combined bi-predic
tive merging candidates corresponds to a respective pair of
merging candidates already in the list of merging candidates,
wherein the respective combined bi-predictive merging can
didate is a combination of a motion vector of a first merging
candidate of the respective pair and a motion vector of a
second merging candidate of the respective pair, wherein the
motion vector of the first merging candidate and the motion
vector of the second merging candidate refer to pictures in
different reference picture lists. The one or more processors

US 9,554,150 B2
3

are configured to include the one or more combined bi
predictive merging candidates in the list of merging candi
dates.

In another aspect, this disclosure describes a video coding
device comprising: means for generating a list of merging
candidates for coding a video block of 3D video data. A
maximum number of merging candidates in the list of
merging candidates is equal to 6 and the means for gener
ating the list of merging candidates comprises: means for
determining whether a number of merging candidates in the
list of merging candidates is less than 5; means for deriving,
in response to determining that the number of merging
candidates in the list of merging candidates is less than 5,
one or more combined bi-predictive merging candidates,
wherein each respective combined bi-predictive merging
candidate of the one or more combined bi-predictive merg
ing candidates corresponds to a respective pair of merging
candidates already in the list of merging candidates, wherein
the respective combined bi-predictive merging candidate is
a combination of a motion vector of a first merging candi
date of the respective pair and a motion vector of a second
merging candidate of the respective pair, wherein the motion
vector of the first merging candidate and the motion vector
of the second merging candidate refer to pictures in different
reference picture lists. The video coding device also com
prises means for including the one or more combined
bi-predictive merging candidates in the list of merging
candidates.

In another aspect, this disclosure describes a computer
readable data storage medium having instructions stored
thereon that when executed cause a video coding device to
3D video data, the instructions causing the video coding
device to: generate a list of merging candidates for coding a
video block of the 3D video data. A maximum number of
merging candidates in the list of merging candidates is equal
to 6. Generating the list of merging candidates comprises:
determining whether a number of merging candidates in the
list of merging candidates is less than 5; and in response to
determining that the number of merging candidates in the list
of merging candidates is less than 5: deriving one or more
combined bi-predictive merging candidates, wherein each
respective combined bi-predictive merging candidate of the
one or more combined bi-predictive merging candidates
corresponds to a respective pair of merging candidates
already in the list of merging candidates, wherein the
respective combined bi-predictive merging candidate is a
combination of a motion vector of a first merging candidate
of the respective pair and a motion vector of a second
merging candidate of the respective pair, wherein the motion
vector of the first merging candidate and the motion vector
of the second merging candidate refer to pictures in different
reference picture lists; and including the one or more com
bined bi-predictive merging candidates in the list of merging
candidates.
The details of one or more examples are set forth in the

accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example video
coding system that may utilize the techniques of this dis
closure.

FIG. 2 is a conceptual illustration showing spatial neigh
bors which are the potential candidates for a merge list.

5

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 3 is a conceptual diagram illustrating spatial and

temporal neighboring blocks relative to a current coding
unit.

FIG. 4 shows an example of a derivation process of an
inter-view predicted motion vector candidate.

FIG. 5 is a conceptual diagram illustrating depth block
derivation from a reference view to perform backward
warping view synthesis prediction (BVSP).

FIG. 6 is a conceptual diagram illustrating four corner
pixels of one 8x8 depth block.

FIG. 7 is a table providing an example specification of
10Cand Idx and 11 Cand Idx in 3D-HEVC.

FIG. 8 is a block diagram illustrating an example video
encoder that may implement the techniques of this disclo
SUC.

FIG. 9 is a block diagram illustrating an example video
decoder that may implement the techniques of this disclo
SUC.

FIG. 10A is a flowchart illustrating an example operation
of a video encoder to encode data associated with 3D video,
in accordance with one or more techniques of this disclo
SUC.

FIG. 10B is a flowchart illustrating an example operation
of a video decoder to decode data associated with 3D video,
in accordance with one or more techniques of this disclo
SUC.

FIG. 11 is a flowchart illustrating a first portion of an
example operation to construct a merge candidate list for a
current block, in accordance with one or more techniques of
this disclosure.

FIG. 12 is a flowchart illustrating a second portion of the
example operation of FIG. 11 to construct a merge candidate
list for a current block, in accordance with one or more
techniques of this disclosure.

FIG. 13 is a flowchart illustrating an example derivation
process for combined bi-predictive merging candidates, in
accordance with one or more techniques of this disclosure.

FIG. 14A is a flowchart illustrating an example operation
of a video encoder to encode a video block, in accordance
with one or more techniques of this disclosure.

FIG. 14B is a flowchart illustrating an example operation
of a video decoder to decode a video block, in accordance
with one or more techniques of this disclosure.

DETAILED DESCRIPTION

Video encoding is a process of transforming video data
into encoded video data. In general, video decoding reverses
the transformation, thereby reconstructing the video data.
Video encoding and video decoding may both be referred to
as video coding. Block-based video coding is a type of video
coding that operates, at least in part, on blocks of video data
within pictures.

Inter prediction is a video coding technique in which a
Video encoder determines, based on samples of a reference
picture, a predictive block for a current block (i.e., a block
that the video encoder is currently coding). The reference
picture is a picture other than the picture that the video
encoder is currently coding. The video encoder may include,
in a bitstream, data representing residual data for the block.
The residual data for the block indicates differences between
the current block and the predictive block. A motion vector
for the block may indicate a spatial displacement between
the current block and the predictive block. A reference index
may indicate the location of the reference picture within a
list of reference pictures available for use in coding the
current picture. Reference indices may also be referred to as

US 9,554,150 B2
5

“reference picture indices.” A video decoder may use a
motion vector of the current block to determine the predic
tive block for the current block. Furthermore, the video
decoder may combine the predictive block with the residual
data for the current block to reconstruct the current block.

In bi-directional inter prediction, the video encoder deter
mines two predictive blocks for a current block. Accord
ingly, the video encoder also determines two motion vectors
for the current block. The two predictive blocks for the
current block may be in different reference pictures. Hence,
in bi-directional inter prediction, the video encoder may
determine two reference indices for the current block (i.e., a
first reference index and a second reference index). The first
and second reference indices indicate the locations of ref
erence pictures within a first and a second reference picture
list, respectively. The residual data for the current block may
indicate differences between the current block and a syn
thesized predictive block that is based on the two predictive
blocks for the current block.

The motion vectors of a current block may be similar to
the motion vectors of blocks that spatially or temporally
neighbor the current block (i.e., neighbor blocks). Hence, it
may be unnecessary for a video encoder to explicitly signal
the motion vectors and reference indices of the current
block. Rather, the video encoder may determine a list of
merging candidates for the current block (i.e., a “merging
candidate list” or a “merge candidate list'). Each of the
merging candidates specifies a set of motion information
(e.g., one or more motion vectors, one or more reference
indices, etc.). The list of merging candidates may include
one or more merging candidates that respectively specify
motion information of different ones of the neighboring
blocks. Neighboring blocks may include spatial neighboring
blocks and/or temporal neighboring blocks. This disclosure
may refer to merging candidates based on spatial neighbor
ing blocks as spatial merging candidates. This disclosure
may refer to merging candidates based on temporal neigh
boring blocks as temporal merging candidates. In some
examples, two merging candidates in the list of merging
candidates may have identical motion information. The
Video encoder may select one of the merging candidates and
may signal a syntax element that indicates a position within
the merging candidate list of the selected merging candidate.

The video decoder may generate the same merging can
didate list (i.e., a merge candidate list duplicative of the
merging candidate list determined by the video encoder) and
may determine, based on receipt of the signaled syntax
element, the selected merging candidate. The video decoder
may then use the motion information of the selected merging
candidate as the motion information of the current block. In
this way, the current block may inherit the motion informa
tion of one of the neighboring blocks.

In some circumstances, the motion information of a
neighboring block may be unavailable. For example, the
neighboring block may be coded using intra prediction, the
neighboring block may be in a different slice, or the neigh
boring block may simply not exist. Hence, there may be
fewer than a required number of merging candidates (e.g.,
the maximum number of merging candidates, which may be
indicated in a slice header) in the merging candidate list for
the current block. Accordingly, when a video coder (e.g., a
Video encoder or a video decoder) generates the merging
candidate list for the current block, the video coder may
ensure that the merging candidate list for the current block
includes the desired number of merging candidates by
including one or more artificial merging candidates in the
merging candidate list for the current block. The artificial

10

15

25

30

35

40

45

50

55

60

65

6
merging candidates are merging candidates that do not
necessarily specify the motion information of any spatial or
temporal neighboring block.
The artificial merging candidates may include one or

more combined bi-predictive merging candidates. As indi
cated above, a merging candidate may specify two motion
vectors and two reference indices. A combined bi-predictive
merging candidate corresponds to a respective pair of merg
ing candidates already in the list of merging candidates for
the current block. Specifically, the combined bi-predictive
merging candidate is a combination of a motion vector and
reference index of a first merging candidate of the respective
pair, if available, and a motion vector and reference index of
a second merging candidate of the respective pair, if avail
able. The motion vector of the first merging candidate and
the motion vector of the second merging candidate refer to
pictures in different reference picture lists. Thus, combined
bi-predictive merging candidates may correspond to differ
ent combinations of motion vectors/reference indices from
different existing merging candidates (e.g., merging candi
dates other than combined bi-predictive merging candidates,
Such as spatial or temporal merging candidates). For
example, when the ReflicList0 motion information of a first
merging candidate and a ReflicIlist1 motion information of
a second merging candidate are both available and not
identical (i.e., either reference pictures are different or
motion vectors are different), one combined bi-predictive
merging candidate is constructed. Otherwise, a next respec
tive pair is checked.

In some versions of the HEVC specification, the maxi
mum value of the required number of merging candidates in
a list of merging candidates is 5. Furthermore, in some
instances, the desired number of merging candidates in a list
of merging candidates is 5. Hence, if there are fewer than 5
merging candidates in the merging candidate list prior to
including combined bi-predictive merging candidates in the
merging candidate list, there are up to twelve (i.e., 43)
possible combinations of motion vectors usable in combined
bi-predictive merging candidates. The selection of a respec
tive pair (i.e., which candidate is the first candidate and
which candidate is the second candidate) is pre-defined in
HEVC as shown in the following table:

combdx O 1 2 3 4 S 6 7 8 9

IOCandIdx O 1 O 2 1 2 O 3 1 3 2 3
1CandIdx 1 O 2 O 2 1 3 O 3 1 3 2

In the table above, 10Cand Idx represents the index of the
selected first existing merging candidate, 11 Cand Idx repre
sents the index of the selected second existing merging
candidate, and combdx represents the constructed com
bined bi-predictive candidate index.

Multi-layer video coding allows video coding across
multiple layers. Multi-layer video coding may be used to
implement Scalable video coding, multi-view video coding,
and 3-dimensional (3D) video coding. In multi-view video
coding and 3D video coding, each of the layers may corre
spond to a different viewpoint. In some video coding stan
dards, the required number of merging candidates in a
merging candidate list is greater when using multi-layer
Video coding than when using single layer video coding. The
greater number of merging candidates may be allowed in
order to accommodate merging candidates specifying
motion information of blocks in different views.

US 9,554,150 B2
7

As in the case of single layer video coding, when a video
coder is using multi-layer coding and the number of merging
candidates in a merging candidate list is less than a desired
number of merging candidates, the video coder may gener
ate one or more combined bi-predictive merging candidates.
However, due to the larger number of merging candidates
when using multi-layer coding, there is a greater number of
combinations of motions vectors usable in the combined
bi-predictive merging candidates. For example, if the
required number of merging candidates is 6, there are up to
twenty (5*4) possible combinations of motion vectors
usable in combined bi-predictive merging candidates.
A video coder may not be able to generate a combined

bi-predictive merging candidate from particular pairs of
merging candidates. For example, the video coder may not
be able to generate a combined bi-predictive merging can
didate if one of the merging candidates only has a single
motion vector and a single reference index. In order to
determine whether a combined bi-predictive merging can
didate can be generated from motion information of a
particular pair of merging candidates, the video coder may
need to retrieve information about the pair of merging
candidates from a memory.

Retrieving information from memory may be a compara
tively slow process relative to other coding processes. More
over, access to memory requires power. Therefore, limiting
the number of accesses to memory may be desirable. As the
number of combinations of motion vectors usable in com
bined bi-predictive merging candidates increases, the
amount of information that needs to be retrieved from
memory increases. Thus, the increase in the required number
of merging candidates associated with multi-view video
coding may significantly slow the video coding process and
may use more power than would otherwise be used.

Hence, in accordance with an example of this disclosure,
a video coder may generate a list of merging candidates for
coding a video block of 3D video in a way that can limit the
accesses to memory. Furthermore, in this example, as part of
generating the list of merging candidates, the video coder
may determine whether a number of merging candidates in
the list is less than 5. In response to determining that the
number of merging candidates in the list is less than 5, the
video coder may derive one or more combined bi-predictive
merging candidates. In this example, each respective com
bined bi-predictive merging candidate of the one or more
combined bi-predictive merging candidates corresponds to a
respective pair of merging candidates already in the list.
Furthermore, in this example, the respective combined bi
predictive merging candidate is a combination of a motion
vector of a first merging candidate of the respective pair and
a motion vector of a second merging candidate of the
respective pair. In this example, the motion vector of the first
merging candidate and the motion vector of the second
merging candidate refer to pictures in different reference
picture lists. The video coder may include the one or more
combined bi-predictive merging candidates in the list. In
Some examples, a maximum number of merging candidates
in the list is greater than 5 (e.g., equal to 6). An effect of the
process of this example is that the number of combinations
remains limited to 12, even though the maximum number of
merging candidates in the list is 6 or more. This may help
accelerate the coding process by reducing the amount of
information retrieved from memory and may also save
power.

FIG. 1 is a block diagram illustrating an example video
coding system 10 that may utilize the techniques of this
disclosure. As described herein, the term “video coder'

10

15

25

30

35

40

45

50

55

60

65

8
refers generically to both video encoders and video decod
ers. In this disclosure, the terms “video coding or “coding
may refer generically to video encoding or video decoding.
As shown in FIG. 1, video coding system 10 includes a

source device 12 and a destination device 14. Source device
12 generates encoded video data. Accordingly, source device
12 may be referred to as a video encoding device or a video
encoding apparatus. Destination device 14 may decode the
encoded video data generated by Source device 12. Accord
ingly, destination device 14 may be referred to as a video
decoding device or a video decoding apparatus. Source
device 12 and destination device 14 may be examples of
Video coding devices or video coding apparatuses.

Source device 12 and destination device 14 may comprise
a wide range of devices, including desktop computers,
mobile computing devices, notebook (e.g., laptop) comput
ers, tablet computers, set-top boxes, telephone handsets Such
as so-called “smart” phones, televisions, cameras, display
devices, digital media players, video gaming consoles, in
car computers, or the like.

Destination device 14 may receive encoded video data
from source device 12 via a channel 16. Channel 16 may
comprise one or more media or devices capable of moving
the encoded video data from source device 12 to destination
device 14. In one example, channel 16 may comprise one or
more communication media that enable source device 12 to
transmit encoded video data directly to destination device 14
in real-time. In this example, source device 12 may modu
late the encoded video data according to a communication
standard, Such as a wireless communication protocol, and
may transmit the modulated video data to destination device
14. The one or more communication media may include
wireless and/or wired communication media, Such as a radio
frequency (RF) spectrum or one or more physical transmis
sion lines. The one or more communication media may form
part of a packet-based network, Such as a local area network,
a wide-area network, or a global network (e.g., the Internet).
Channel 16 may include various types of devices, such as
routers, Switches, base stations, or other equipment that
facilitate communication from source device 12 to destina
tion device 14.

In another example, channel 16 may include a storage
medium that stores encoded video data generated by source
device 12. In this example, destination device 14 may access
the storage medium via disk access or card access. The
storage medium may include a variety of locally-accessed
data storage media such as Blu-ray discs, DVDs, CD
ROMs, flash memory, or other suitable digital storage media
for storing encoded video data.

In a further example, channel 16 may include a file server
or another intermediate storage device that stores encoded
Video data generated by Source device 12. In this example,
destination device 14 may access encoded video data stored
at the file server or other intermediate storage device via
streaming or download. The file server may be a type of
server capable of storing encoded video data and transmit
ting the encoded video data to destination device 14.
Example file servers include web servers (e.g., for a web
site), file transfer protocol (FTP) servers, network attached
storage (NAS) devices, and local disk drives.

Destination device 14 may access the encoded video data
through a standard data connection, such as an Internet
connection. Example types of data connections may include
wireless channels (e.g., Wi-Fi connections), wired connec
tions (e.g., DSL, cable modem, etc.), or combinations of
both that are Suitable for accessing encoded video data
stored on a file server. The transmission of encoded video

US 9,554,150 B2
9

data from the file server may be a streaming transmission, a
download transmission, or a combination of both.
The techniques of this disclosure are not limited to

wireless applications or settings. The techniques may be
applied to video coding in Support of a variety of multimedia
applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmis
sions, streaming video transmissions, e.g., via the Internet,
encoding of video data for storage on a data storage medium,
decoding of video data stored on a data storage medium, or
other applications. In some examples, video coding system
10 may be configured to Support one-way or two-way video
transmission to Support applications such as video stream
ing, video playback, video broadcasting, and/or video tele
phony.

In the example of FIG. 1, source device 12 includes a
video source 18, a video encoder 20, and an output interface
22. In some examples, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. Video
Source 18 may include a video capture device, e.g., a video
camera, a video archive containing previously-captured
video data, a video feed interface to receive video data from
a video content provider, and/or a computer graphics system
for generating video data, or a combination of Such sources
of video data.

Video encoder 20 may encode video data from video
source 18. In some examples, source device 12 directly
transmits the encoded video data to destination device 14 via
output interface 22. In other examples, the encoded video
data may also be stored onto a storage medium or a file
server for later access by destination device 14 for decoding
and/or playback.

In the example of FIG. 1, destination device 14 includes
an input interface 28, a video decoder 30, and a display
device 32. In some examples, input interface 28 includes a
receiver and/or a modem. Input interface 28 may receive
encoded video data over channel 16. Display device 32 may
be integrated with or may be external to destination device
14. In general, display device 32 displays decoded video
data. Display device 32 may comprise a variety of display
devices, such as a liquid crystal display (LCD), a plasma
display, an organic light emitting diode (OLED) display, or
another type of display device. In accordance with this
disclosure, video encoder 20 and video decoder 30 may
perform one or more techniques described herein as part of
a video coding process (e.g., video encoding or video
decoding).

FIG. 1 is merely an example and the techniques of this
disclosure may apply to video coding settings (e.g., video
encoding or video decoding) that do not necessarily include
any data communication between the video encoding device
and the video decoding device. In other examples, data is
retrieved from a local memory, streamed over a network, or
the like. A video encoding device may encode and store data
to memory, and/or a video decoding device may retrieve and
decode data from memory. In many examples, the video
encoding and decoding is performed by devices that do not
communicate with one another, but simply encode data to
memory and/or retrieve and decode data from memory.

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable circuitry. Such as
one or more microprocessors, digital signal processors
(DSPs), application-specific integrated circuits (ASICs),
field-programmable gate arrays (FPGAs), discrete logic,
hardware, or any combinations thereof. If the techniques are
implemented partially in Software, a device may store
instructions for the Software in a suitable, non-transitory

10

15

25

30

35

40

45

50

55

60

65

10
computer-readable storage medium and may execute the
instructions in hardware using one or more processors to
perform the techniques of this disclosure. Any of the fore
going (including hardware, Software, a combination of hard
ware and Software, etc.) may be considered to be one or
more processors. Each of video encoder 20 and video
decoder 30 may be included in one or more encoders or
decoders, either of which may be integrated as part of a
combined encoder/decoder (CODEC) in a respective device.

This disclosure may generally refer to video encoder 20
“signaling certain information. The term “signaling may
generally refer to the communication of syntax elements
and/or other data used to decode the compressed video data.
Such communication may occur in real- or near-real-time.
Alternately, Such communication may occur over a span of
time. Such as might occur when storing syntax elements to
a computer-readable storage medium in an encoded bit
stream at the time of encoding, which a video decoding
device may then retrieve at any time after being stored to this
medium. In some examples, from an encoder perspective,
signaling may include generating an encoded bitstream, and
from a decoder perspective, signaling may include receiving
and parsing a coded bitstream.

In some examples, video encoder 20 and video decoder 30
operate according to a video compression standard, Such as
ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as
ISO/IEC MPEG-4 AVC), including its Scalable Video Cod
ing (SVC) and Multiview Video Coding (MVC) extensions.
The latest joint draft of MVC is described in “Advanced
video coding for generic audiovisual services.” ITU-T Rec
ommendation H.264, March 2010. In other examples, video
encoder 20 and video decoder 30 may operate according to
other video coding standards including ITU-T H.261, ISO/
IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2
Visual, ITU-T H.263, and so on. The techniques of this
disclosure, however, are not limited to any particular coding
standard or technique.

In other examples, video encoder 20 and video decoder 30
may operate according to other video compression stan
dards, including the High Efficiency Video Coding (HEVC)
standard developed by the Joint Collaboration Team on
Video Coding (JCT-VC) of ITU-T Video Coding Experts
Group (VCEG) and ISO/IEC Motion Picture Experts Group
(MPEG). A draft of the HEVC standard, referred to as
“HEVC Working Draft 9,” is described in Bross et al., “High
Efficiency Video Coding (HEVC) text specification draft 9.
Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG 11, 11th
Meeting: Shanghai, China, October, 2012, is downloadable
from http://phenix.int-evry.fr/ict/doc end user/documents/
11 Shanghai/wg11/JCTVC-K1003-v8.zip. Another recent
draft of the HEVC standard, referred to as “HEVC Working
Draft 10 or “WD10, is described in document JCTVC
L1003v34, Bross et al., “High efficiency video coding
(HEVC) text specification draft 10 (for FDIS & Last Call).”
Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG 11, 12th
Meeting: Geneva, CH, 14-23 Jan. 2013, which is download
able from http://phenix.int-evry.fr/ict/doc end user/docu
ments/12 Geneva/wg11/JCTVC-L1003-v34.zip. Yet
another draft of the HEVC standard, is referred to herein as
“WD10 revisions' described in Bross et al., “Editors pro
posed corrections to HEVC version 1. Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG 11, 13' Meeting, Incheon, KR,

US 9,554,150 B2
11

April 2013, which is available from http://phenix.int-evry.fr/
jct/doc end user/documents/13 Incheon/wg11/JCTVC
M0432-v3.zip.

Currently, a Joint Collaboration Team on 3D Video Cod
ing (JCT-3C) of VCEG and MPEG is developing a 3DV
standard based on HEVC, for which part of the standard
ization efforts includes the standardization of the multi-view
video codec based on HEVC (MV-HEVC) and another part
for 3D Video coding based on HEVC (3D-HEVC). For
3D-HEVC, new coding tools, including those at the coding
unit/prediction unit level, for both texture and depth views
may be included and supported. Software for 3D-HEVC
(i.e., 3D-HTM) can be downloaded from the following link:
3D-HTM version 8.0: https://hevchhi-fraunhofer.de/svn/
SVn 3DVCSoftware/tags/HTM-8.0/ A working draft of
3D-HEVC (i.e., Tech et al., “3D-HEVC Draft Text 1.” Joint
Collaborative Team on 3D Video Coding Extension Devel
opment of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 5' Meeting, Vienna, AT 27 Jul-2 Aug. 2013,
document number: JCT3V-E 1001-v2 (hereinafter, “JCT3V
E1001” or “3D-HEVC Draft Text 1)) is available from:
http://phenix.it-Sudparis.eu/jct2/doc end user/documents/
5Vienna/wg11/JCT3V-E 1001-v3.zip. A software description
of 3D-HEVC (Zhanget al., “3D-HEVC Test Model3.” Joint
Collaborative Team on 3D Video Coding Extension Devel
opment of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 3" Meeting, Geneva, CH, 17-23 Jan. 2013,
document number: JCT3V-C1005 d0 (hereinafter, “JCT3V
C1005” or “3D-HEVC Test Model 3)) is available from:
http://phenix.int-evry.fr/ct3V/doc end user/documents/
3Geneva/wg11/JCT3V-C1005-v2.zip. Another software
description of 3D-HEVC (Zhang et al., “3D-HEVC Test
Model 5.' Joint Collaborative Team on 3D Video Coding
Extension Development of ITU-TSG 16 WP3 and ISO/IEC
JTC 1/SC 29/WG 11, 5' Meeting, Vienna, AT 27 Jul-2
Aug. 2013, document number: JCT3V-E 1005 (hereinafter,
“JCT3V-E 1005') is available from: http://phenix.it-sudpari
s.eu/jct2/doc end user/current document.php?id=1360.
As mentioned briefly above, video encoder 20 encodes

Video data. The video data may comprise one or more
pictures. Each of the pictures is a still image forming part of
a video. When video encoder 20 encodes the video data,
video encoder 20 may generate a bitstream. The bitstream
may include a sequence of bits that form a coded represen
tation of the video data. The bitstream may include coded
pictures and associated data. A coded picture is an encoded
representation of a picture. The associated data may include
sequence parameter sets (SPSS), picture parameter sets
(PPSs), video parameter sets (VPSs), adaptive parameter
sets (APSs), slice headers, block headers, and other syntax
Structures.
A picture may include three sample arrays, denoted St.

S, and S. S. is a two-dimensional array (i.e., a block) of
luma samples. Luma samples may also be referred to herein
as “Y” samples. S., is a two-dimensional array of Cb
chrominance samples. S is a two-dimensional array of Cr
chrominance samples. Chrominance samples may also be
referred to herein as "chroma samples. Cb chrominance
samples may be referred to herein as “U samples.” Cr
chrominance samples may be referred to herein as “V
samples.”

In some examples, video encoder 20 may down-sample
the chroma arrays of a picture (i.e., S., and S). For
example, video encoder 20 may use a YUV 4:2:0 video
format, a YUV 4:2:2 video format, or a 4:4:4 video format.
In the YUV 4:2:0 video format, video encoder 20 may
down-sample the chroma arrays Such that the chroma arrays

10

15

25

30

35

40

45

50

55

60

65

12
are /2 the height and /2 the width of the luma array. In the
YUV 4:2:2 video format, video encoder 20 may down
sample the chroma arrays Such that the chroma arrays are /2
the width and the same height as the luma array. In the YUV
4:4:4 video format, video encoder 20 does not down-sample
the chroma arrays.
To generate an encoded representation of a picture, video

encoder 20 may generate a set of coding tree units (CTUs).
Each of the CTUs may be a coding tree block of luma
samples, two corresponding coding tree blocks of chroma
samples, and syntax structures used to code the samples of
the coding tree blocks. In a monochrome picture or a picture
that has three separate color planes, a CTU may comprise a
single coding tree block and syntax structures used to code
the samples of the coding tree block. A coding tree block
(CTB) may be an NXN block of samples. ACTU may also
be referred to as a “tree block” or a “largest coding unit
(LCU). The CTUs of HEVC may be broadly analogous to
the macroblocks of other standards, such as H.264/AVC.
However, a CTU is not necessarily limited to a particular
size and may include one or more coding units (CUs).
As part of encoding a picture, video encoder 20 may

generate encoded representations of each slice of the picture
(i.e., coded slices). To generate a coded slice, video encoder
20 may encode a series of CTUs. This disclosure may refer
to an encoded representation of a CTU as a coded CTU. In
Some examples, each of the slices includes an integer
number of coded CTUs.
To generate a coded CTU, video encoder 20 may recur

sively perform quad-tree partitioning on the coding tree
blocks of a CTU to divide the coding tree blocks into coding
blocks, hence the name "coding tree units.” A coding block
is an NxN block of samples. ACU may be a coding block
of luma samples and two corresponding coding blocks of
chroma samples of a picture that has a luma sample array, a
Cb sample array and a Crsample array, and syntax structures
used to code the samples of the coding blocks. In a mono
chrome picture or a picture that has three separate color
planes, a CU may comprise a single coding block and syntax
structures used to code the samples of the coding block.

Video encoder 20 may partition a coding block of a CU
into one or more prediction blocks. A prediction block may
be a rectangular (i.e., square or non-square) block of samples
on which the same prediction is applied. A prediction unit
(PU) of a CU may be a prediction block of luma samples,
two corresponding prediction blocks of chroma Samples of
a picture, and syntax structures used to predict the prediction
block samples. In a monochrome picture or a picture that
have three separate color planes, a PU may comprise a single
prediction block and syntax structures used to predict the
prediction block samples. Video encoder 20 may generate a
predictive block for each prediction block of a PU. For
example, video encoder 20 may generate predictive luma,
Cb and Crblocks for luma, Cb and Cr prediction blocks of
each PU of the CU. Predictive blocks may also be referred
to as predictive sample blocks.

Video encoder 20 may use intra prediction or inter pre
diction to generate the predictive blocks for a PU. If video
encoder 20 uses intra prediction to generate the predictive
blocks of a PU, video encoder 20 may generate the predic
tive blocks of the PU based on decoded samples of the
picture associated with the PU.

If video encoder 20 uses inter prediction to generate the
predictive blocks of a PU, video encoder 20 may generate
the predictive blocks of the PU based on decoded samples of
one or more pictures other than the picture associated with
the PU. Video encoder 20 may use uni-prediction or bi

US 9,554,150 B2
13

prediction to generate the predictive blocks of a PU. When
Video encoder 20 uses uni-prediction to generate the pre
dictive blocks for a PU, the PU may have a single motion
vector. When video encoder 20 uses uni-prediction to gen
erate the predictive blocks for a PU, the PU may have two
motion vectors.

After video encoder 20 generates predictive blocks (e.g.,
predictive luma, Cb and Cr blocks) for one or more PUs of
a CU, video encoder 20 may generate one or more residual
blocks for the CU. Each sample in a residual block for the
CU may indicate a difference between a sample in a pre
dictive block of a PU of the CU and a corresponding sample
in a coding block of the CU. For example, video encoder 20
may generate a luma residual block for the CU. Each sample
in a luma residual block of a CU may indicate a difference
between a luma sample in a predictive luma block of a PU
of the CU and a corresponding sample in an original luma
coding block of the CU. In addition, video encoder 20 may
generate a Cb residual block for the CU. Each sample in a
Cb residual block of a CU may indicate a difference between
a Cb sample in one of a predictive Cb block of a PU of the
CU and a corresponding sample in an original Cb coding
block of the CU. Video encoder 20 may also generate a Cr
residual block for the CU. Each sample in a Cr residual
block of the CU may indicate a difference between a Cr
sample in a predictive Cr block of a PU of the CU and a
corresponding sample in an original Cr coding block of the
CU.

Furthermore, video encoder 20 may use quad-tree parti
tioning to decompose the residual blocks (e.g., luma, Cb and
Cr residual blocks) of a CU into one or more transform
blocks (e.g., luma, Cb and Cr transform blocks). A transform
block may be a rectangular block of samples on which the
same transform is applied. A transform unit (TU) of a CU
may be a transform block of luma samples, two correspond
ing transform blocks of chroma samples, and syntax struc
tures used to transform the transform block samples. Thus,
each TU of a CU may be associated with a luma transform
block, a Cb transform block, and a Cr transform block. In a
monochrome picture or a picture that have three separate
color planes, a TU may comprise a single transform block
and syntax structures used to transform the transform block
samples. The luma transform block of (i.e., associated with)
a TU of a CU may be a sub-block of a luma residual block
of the CU. The Cb transform block of a TU of a CU may be
a sub-block of a Cb residual block of the CU. The Cr
transform block of a TU of a CU may be a sub-block of a
Cr residual block of the CU.

For 3D coding, depth values in depth blocks may likewise
be represented as sample values (e.g., luma values), each
indicating a level of depth associated with a given pixel
location. One or more of the techniques of this disclosure are
applicable to the coding of depth blocks, particularly in
modes Such as skip mode or merge mode where a list of
candidates is generated for inheriting or using motion infor
mation of a selected candidate, in coding the depth block.

Video encoder 20 may apply one or more transforms to a
transform block of a TU to generate a coefficient block for
the TU. A coefficient block may be a two-dimensional array
of transform coefficients. A transform coefficient may be a
Scalar quantity. For example, video encoder 20 may apply
one or more transforms to a luma transform block of a TU
to generate a luma coefficient block for the TU. Video
encoder 20 may apply one or more transforms to a Cb
transform block of a TU to generate a Cb coefficient block

10

15

25

30

35

40

45

50

55

60

65

14
for the TU. Video encoder 20 may apply one or more
transforms to a Cr transform block of a TU to generate a Cr
coefficient block for the TU.

After generating a coefficient block (e.g., a luma coeffi
cient block, a Cb coefficient block or a Cr coefficient block),
video encoder 20 may quantize the coefficient block. Quan
tization generally refers to a process in which transform
coefficients are quantized to possibly reduce the amount of
data used to represent the transform coefficients, providing
further compression. After video encoder 20 quantizes a
coefficient block, video encoder 20 may entropy encode
Syntax elements indicating the quantized transform coeffi
cients. For example, video encoder 20 may perform Con
text-Adaptive Binary Arithmetic Coding (CABAC) on the
Syntax elements indicating the quantized transform coeffi
cients. Video encoder 20 may output the entropy-encoded
Syntax elements in a bitstream. The bitstream may also
include syntax elements that are not entropy encoded.

Video decoder 30 may receive a bitstream generated by
video encoder 20. In addition, video decoder 30 may parse
the bitstream to obtain (e.g., decode) syntax elements from
the bitstream. Video decoder 30 may reconstruct the pictures
of the video databased at least in part on the syntax elements
decoded (or otherwise obtained) from the bitstream. The
process to reconstruct the video data may be generally
reciprocal to the process performed by video encoder 20. For
instance, video decoder 30 may use motion vectors of PUs
to determine predictive blocks for the PUs of a current CU.
In addition, video decoder 30 may inverse quantize trans
form coefficient blocks associated with TUs of the current
CU. Video decoder 30 may perform inverse transforms on
the transform coefficient blocks to reconstruct transform
blocks associated with the TUs of the current CU. In some
examples, video decoder 30 may reconstruct the coding
blocks of the current CU by adding the samples of the
predictive blocks for PUs of the current CU to correspond
ing samples of the transform blocks of the TUs of the current
CU. By reconstructing the coding blocks for each CU of a
picture, video decoder 30 may reconstruct the picture.

In some cases, video encoder 20 may signal the motion
information of a PU using merge mode or skip mode, or
possibly an advanced motion vector prediction (AMVP)
mode. In other words, in the HEVC standard, there are two
inter prediction modes for a PU, named merge (skip is
considered as a special case of merge) mode and AMVP
mode, respectively. In either merge mode or AMVP mode,
a video coder maintains a motion vector candidate list for
multiple motion vector predictors. For ease of explanation,
this disclosure may refer to a motion vector candidate list for
the merge mode as a “merge candidate list' or a "merging
candidate list.” Similarly, this disclosure may refer to a
motion vector candidate list for AMVP mode as an AMVP
candidate list. The motion information of a PU may include
motion vector(s) of the PU and reference index(s) of the PU.
When video encoder 20 signals the motion information of

a current PU using merge mode, video encoder 20 generates
a merge candidate list. The merge candidate list includes a
set of candidates. Candidates in a merge candidate list may
be referred to as "merge candidates' or “merging candi
dates.” The candidates may indicate the motion information
of PUs that spatially or temporally neighbor the current PU.
PUs that spatially neighbor the current PU may have pre
dictive blocks adjacent to a predictive block of the current
PU in the same picture as the current PU. PUs that tempo
rally neighbor the current PU may be in a different picture
than the current PU. Video encoder 20 may then select a
candidate from the candidate list and may use the motion

US 9,554,150 B2
15

information indicated by the selected candidate as the
motion information of the current PU. Furthermore, in
merge mode, video encoder 20 may signal the position in the
candidate list of the selected candidate. For instance, video
encoder 20 may signal a merge index (e.g., merge idx) that
indicates a position in the merging candidate list of the
selected merging candidate. Video decoder 30 may generate
the same candidate list and may determine, based on the
indication of the position of the selected candidate (e.g., the
position indicated by the merge index), the selected candi
date. Video decoder 30 may then use the motion information
of the selected candidate to generate one or more predictive
blocks (e.g., predictive samples) for the current PU. Video
decoder 30 may reconstruct samples based on the predictive
blocks (e.g., predictive samples) for the current PU and a
residual signal. In this way, a video coder may generate
motion vector(s), as well as reference indices in the merge
mode, of the current PU by taking one candidate from the
motion vector candidate list.

Skip mode is similar to merge mode in that video encoder
20 generates a candidate list and selects a candidate from the
list of candidates. However, when video encoder 20 signals
the motion information of a current PU (e.g. a depth block)
using skip mode, video encoder 20 may avoid generation of
any residual signal. Because skip mode has the same motion
vector derivation process as merge mode, techniques
described in this document may apply to both merge and
skip modes. One or more aspects of this disclosure may also
be used for AMVP mode or other modes that make use of
candidate lists.
AMVP mode is similar to merge mode in that video

encoder 20 generates a candidate list and selects a candidate
from the list of candidates. However, when video encoder 20
signals the motion information of a current PU (e.g. a depth
block) using AMVP mode, video encoder 20 may signal a
motion vector difference (MVD) for the current PU and a
reference index in addition to signaling a position of the
selected candidate in the candidate list. An MVD for the
current PU may indicate a difference between a motion
vector of the current PU and a motion vector of the selected
motion vector candidate. In uni-prediction, video encoder 20
may signal one MVD and one reference indices for the
current PU. In bi-prediction, video encoder 20 may signal
two MVDs and two reference indices for the current PU. In
Some examples, video encoder 20 may typically signal one
MVD and one reference indices for the current PU, although
depth block prediction could also use techniques similar to
bi-prediction where two MVDs and two reference indices
are signaled.

Furthermore, when the motion information of a current
PU is signaled using AMVP mode, video decoder 30 may
generate the same candidate list and may determine, based
on the indication of the position of the selected candidate,
the selected candidate. Video decoder 30 may recover a
motion vector of the current PU by adding a MVD to the
motion vector of the selected candidate. Video decoder 30
may then use the recovered motion vector or motion vectors
of the current PU to generate predictive blocks for the
current PU.

In some examples, the motion vector candidate list con
tains up to five candidates for the merge mode and only two
candidates for the AMVP mode. In other words, a merge
candidate list may include up to five candidates while an
AMVP candidate list may only include two candidates. A
merge candidate (i.e., a candidate in a motion vector can
didate list for merge mode) may contain motion vectors
corresponding to both reference picture lists (list 0 and list

10

15

25

30

35

40

45

50

55

60

65

16
1) and the reference indices. If a merge candidate is iden
tified by a merge index, the reference pictures used for the
prediction of the current blocks, as well as the associated
motion vectors are determined. However, under AMVP
mode for each potential prediction direction from either list
0 or list 1, a reference index is explicitly signaled, together
with a motion vector predictor index to the motion vector
candidate list since the AMVP candidate contains only a
motion vector. In AMVP mode, the predicted motion vectors
can be further refined.
As indicated above, a video coder may derive candidates

for the merge mode from spatial and temporal neighboring
blocks. The video coder may derive the maximum number
of candidates from the coded syntax element five minus
max num merge cand, which is included in a slice header
for a slice. The syntax element five minus max num
merge cand specifies the maximum number of merging
candidates supported in the slice, subtracted from 5. The
Video coder may derive the maximum number of merging
candidates, MaxNumMergecand as follows:

MaxNumMergeCand=5-five minus max num
merge cand (7-39)

The value of MaxNumMergeCand is in the range of 1 to 5,
inclusive.
A video coder may construct the merge candidate list with

the following steps. First, the video coder may derive up to
four spatial motion vector candidates from five spatial
neighboring blocks shown in FIG. 1. FIG. 2 is a conceptual
illustration showing spatial neighbors which are the poten
tial candidates for the merge list. Arrows indicate which
spatial candidate(s) are to be compared. The video coder
may derive the spatial motion vector candidates in the
following order: left (A1), above (B1), above right (BO),
below left (AO), and above left (B2), as shown in FIG. 2.
Furthermore, the video coder may apply a pruning process
to remove identical spatial motion vector candidates. For
example, the video coder may compare B1 to A1, compare
B0 to B1, compare A0 to A1 and compare B2 to both B1 and
A1. If there are already four merge candidates available after
the pruning process, the video coder does not insert B2 into
the merge candidate list.

Second, the video coder may determine temporal merging
candidates. For instance, the video coder may add a tempo
ral motion vector predictor (TMVP) candidate from a co
located reference picture (if enabled and available) into the
merge candidate list (i.e., the motion vector candidate list)
after spatial motion vector candidates.

Third, if the merge candidate list (i.e., motion vector
candidate list) is not complete, the video coder may generate
and insert artificial motion vector candidates at the end of the
merge candidate list until the merge candidate list has all
candidates (i.e., all candidates indicated by MaxNumMerge
Cand). In other words, the video coder may insert artificial
motion vector candidate into the merge candidate list if the
number of merge candidate in the merge candidate list is less
than MaxNumMergeCand. There are two types of artificial
motion vector candidates: combined bi-predictive merging
candidates (which are derived only for B-slices) and Zero
motion vector merging candidates. The merging candidate
list may include one or more Zero motion vector merging
candidates if the first type (i.e., combined bi-predictive
merging candidates) does not provide enough artificial can
didates.
When a current slice (i.e., a slice that a video coder is

currently coding) is a B slice, the video coder may invoke a
derivation process for combined bi-predictive merging can

US 9,554,150 B2
17

didates. In at least some examples, a B slice is a slice in
which intra prediction, uni-directional inter prediction, and
bi-directional inter prediction are allowed. When the deri
Vation process is invoked, the video coder may, for each pair
of merge candidates that are already in the merge candidate
list and have the necessary motion information, derive
combined bi-predictive motion vector candidates (with
index denoted by combIdx) by a combination of the motion
vector (and, in some instances, reference index) of the first
merge candidate of the pair (with merge candidate index
equal to 10Cand Idx) referring to a picture in the list 0 (if
available) and the motion vector (and, in Some instances,
reference index) of a second merge candidate of the pair
(with merge candidate index equal to 11 Candidx) referring
to a picture in the list 1 (if available and either reference
picture or motion vector is different from the first candidate).
The pair of merge candidate may be an ordered pair in the
sense that different orders of the same two merge candidates
are considered different pairs. The definitions of 10Cand Idx
and 11Candidx corresponding to combdx are illustrated in
Table 1, below.

TABLE 1.

Specification of IOCandidx and Il Candidx

combdx O 1 2 3 4 S 6 7 8 9

IOCandIdx O 1 O 2 1 2 O 3 1 3 2 3
1CandIdx 1 O 2 O 2 1 3 O 3 1 3 2

In Table 1, the row for 10Candidx indicates indices of
merge candidates from which to draw ReflicList0 motion
information (e.g., motion vectors, reference indices). Simi
larly, in Table 1, the row for 11 Cand Idx indicates indices of
merge candidates from which to draw ReflicList1 motion
information. Thus, the column for combination 0 (i.e.,
combidx=0) indicates that a combined bi-predictive motion
vector candidate specifies the ReflicList0 motion informa
tion of merge candidate 0 and specifies the ReflicList1
motion information of merge candidate 1. Because not all
merge candidates necessarily have the applicable motion
information for a combination (e.g., merge candidate 1 may
not have ReflicList1 motion information) or the motion
information of ReflicList0 associated with merge candidate
0 and ReflicList1 associated with merge candidate 1 are
identical, a video coder may process the combinations of
Table 1 in order of combIdx until there are no remaining
combinations available or the video coder has generated a
sufficient number of combined bi-predictive motion vector
candidates.

For combdx being 0 . . . 11, the generation process of
combined bi-predictive motion vector candidates is termi
nated when one the following conditions is true:

combIdx is equal to (numOrigMergecand(numOrig
Mergecand-1)) wherein numOrigMergecand denotes
the number of candidates in the merge list before
invoking this process.

Number of total candidates (including newly generated
combined bi-predictive merging candidates) in the
merge list is equal to MaxNumMergeCand.

As indicated above, a video encoder may include one or
more Zero motion vector merging candidates in a merging
candidate list. For each respective Zero motion vector merg
ing candidate, a motion vector of the respective Zero motion
vector merging candidate is set to 0 and a reference index for
the respective Zero motion vector merging candidate is set
from 0 to the number of available reference indexes minus

10

15

25

30

35

40

45

50

55

60

65

18
1. If the number of merge candidates in the merge candidate
list is still less than MaxNumMergeCand, the video coder
may insert one or more Zero motion vector candidates (e.g.,
Zero reference indices and motion vectors) until the total
number of merge candidates in the merge candidate list is
equal to MaxNumMergeCand.
The following sub-sections of this disclosure review

AVC-based and HEVC-based 3D video coding techniques
related to this disclosure. In multi-view coding (e.g., 3D
Video coding), there may be multiple views of the same
scene from different viewpoints. The term “access unit may
be used to refer to the set of pictures that correspond to the
same time instance. In other words, an access unit may
include coded pictures of all of the views for one output time
instance. A "view component may be a coded representa
tion of a view in a single access unit. In some examples, a
view component may contain a texture view component and
a depth view component. In this disclosure, a “view” may
refer to a sequence of view components associated with the
same view identifier. Thus, when a view includes both coded
texture and depth representations, a view component may
comprise (e.g., consist of) a texture view component and a
depth view component. In some examples, a texture view
component is a coded representation of the texture of a view
in a single access unit. Furthermore, in some examples, a
depth view component is a coded representation of the depth
of a view in a single access unit. A depth view component
may also be referred to as a depth picture.

Each texture view component includes actual image con
tent to be displayed. For example, a texture view component
may include luma (Y) and chroma (Cb and Cr) components.
Each depth view component may indicate relative depths of
the pixels in its corresponding texture view component. In
Some examples, depth view components are gray scale
images that include only luma values. In other words, depth
view components may not convey any image content, but
rather may provide measures of the relative depths of the
pixels in corresponding texture view components.

For example, a purely white pixel in a depth view
component may indicate that the pixel’s corresponding pixel
or pixels in the corresponding texture view component are
closer, from the perspective of the viewer. In this example,
a purely black pixel in the depth view component indicates
that the pixel’s corresponding pixel or pixels in the corre
sponding texture view component are further away, from the
perspective of the viewer. The various shades of gray in
between black and white indicate different depth levels. For
instance, a dark gray pixel in a depth view component
indicates that the pixel’s corresponding pixel in the texture
view component is further away than a light gray pixel in the
depth view component. In this example, because only gray
scale is needed to identify the depth of pixels, depth view
components do not need to include chroma components, as
the chroma components for the depth view components may
not serve any purpose. This disclosure provides the example
of depth view components using only luma values (e.g.,
intensity values) to identify depth for illustration purposes
and should not be considered limiting. In other examples,
other techniques may be utilized to indicate relative depths
of the pixels in texture view components.

In multi-view coding, a bitstream may have a plurality of
layers. Each of the layers may correspond to a different view.
In multi-view coding, a view may be referred to as a “base
view if a video decoder (e.g., video decoder 30) can decode
pictures in the view without reference to pictures in any
other view. A view may be referred to as a non-base view if
decoding of the view is dependent on decoding of pictures

US 9,554,150 B2
19

in one or more other views. When coding a picture in one of
the non-base views, a video coder (such as video encoder 20
or video decoder 30) may add a picture into a reference
picture list if the picture is in a different view but within a
same time instance (i.e., access unit) as the picture that the
Video coder is currently coding. Like other inter prediction
reference pictures, the video coder may insert an inter-view
prediction reference picture at any position of a reference
picture list.

In 3D-HEVC, a disparity vector (DV) may be used as an
estimator of the displacement between two views. Because
neighboring blocks share almost the same motion/disparity
information in video coding, the current block can use the
motion vector information in neighboring blocks as a good
predictor. Following this idea, the neighboring block based
disparity vector derivation (NBDV) process uses the neigh
boring motion vector information for estimating the dispar
ity vector in different views. 3D-HEVC firstly adopted the
Neighboring Block (based) Disparity Vector (NBDV)
method proposed in the following document: Zhang et al.,
"3D-CE5.h: Disparity vector generation results.' Joint Col
laborative Team on 3D Video Coding Extension Develop
ment of ITU-T SG 16 WP3 and ISO/IEC JTC 1/SC 29/WG
11, 1st Meeting: Stockholm, SE, 16-20 Jul. 2012, document
JCT3V-AO097 (hereinafter, “JCT3V-A0097).

Several spatial and temporal neighboring blocks are
defined in the NBDV process. A video coder performing the
NBDV process may check each of the spatial and temporal
neighboring blocks in a pre-defined order determined by the
priority of the correlation between a current block and the
candidate block (i.e., spatial or temporal neighboring block).
Thus, in the NBDV process, the video coder utilizes two sets
of neighboring blocks. One set of neighboring blocks is from
spatial neighboring blocks and the other set is from temporal
neighboring blocks. When the video coder checks a neigh
boring block, the video coder may determine whether the
neighboring block has a disparity motion vector (i.e., the
motion vector points to an inter-view reference picture).
Once the video coder finds a disparity motion vector, the
Video coder may convert the disparity motion vector to a
disparity vector. For example, to convert the disparity
motion vector to the disparity vector, the video coder may
set the disparity vector equal to the disparity motion vector.
Meanwhile, the associated reference view order index is also
returned. In other words, as part of performing the NBDV
process, the video coder may also determine a reference
view order index.

In some versions of 3D-HEVC, the video coder uses two
spatial neighboring blocks in the NBDV process for the
disparity vector derivation. The two spatial neighboring
blocks are the left and above of current CU, as denoted by
A1. B1 as shown in FIG. 3. FIG. 3 is a conceptual diagram
illustrating spatial and temporal neighboring blocks relative
to the current coding unit. It should be noted that the spatial
neighboring blocks used in the NBDV process are the same
as those used in the merge mode in HEVC. Therefore, at
least in some examples, no additional memory access is
required when processing the spatial neighboring blocks in
the NBDV process.

In some examples, to check temporal neighboring blocks
in the NBDV process, the video coder may first perform a
construction process to generate a candidate picture list. Up
to two reference pictures from the current view (i.e., the
view that includes the picture currently being coded) may be
treated as candidate pictures. A co-located reference picture
(i.e., a co-located picture) is first inserted to the candidate
picture list, followed by the rest of the candidate pictures

5

10

15

25

30

35

40

45

50

55

60

65

20
(i.e., all of the reference pictures in ReflicList.0 and Refli
cList1) in the ascending order of reference index.

If the current slice of the current picture is a B slice (i.e.,
a slice that is allowed to include bi-directionally inter
predicted PUs), video encoder 20 may signal, in a slice
header, a syntax element (e.g., collocated from 10 flag) that
indicates whether the co-located picture is from RefDicList0
or RefDicList1. In other words, when the use of TMVPs is
enabled for a current slice, and the current slice is a B slice
(e.g., a slice that is allowed to include bi-directionally inter
predicted PUs), video encoder 20 may signal a syntax
element (e.g., collocated from 10 flag) in a slice header to
indicate whether the co-located picture is in ReflicList0 or
ReflicList1. If the current slice is not a B slice, it may be
unnecessary for video encoder 20 to signal the syntax
element to indicate whether the co-located picture is in
RefpicList0 or ReflPicList1 because if the current slice is an
I slice, not interprediction is allowed, and if the current slice
is a P slice, there is only one reference picture list for the
slice. After video decoder 30 identifies the reference picture
list that includes the co-located picture, video decoder 30
may use another syntax element (e.g., collocated ref idx),
which may be signaled in a slice header, to identify a picture
(i.e., the co-located picture) in the identified reference pic
ture list. That is, after a reference picture list is identified,
collocated ref idx, which is signaled in a slice header, may
be used to identify the picture in the reference picture list.
When two reference pictures with the same reference

index in both reference picture lists are available, the ref
erence picture in the same reference picture list of the
co-located picture precedes the other reference picture. For
each candidate picture in the candidate picture list, the video
coder may determine the block of the co-located region
covering the center position as the temporal neighboring
block.
When a block is coded with inter-view motion prediction,

the video coder may need to derive a disparity vector for
selecting a corresponding block in a different view. An
implicit disparity vector (IDV or a.k.a. derived disparity
vector) may be referred to as a disparity vector derived in the
inter-view motion prediction. Even though the block is
coded with motion prediction, the derived disparity vector is
not discarded for the purpose of coding a following block.

In at least some designs of the 3D-HTM, the NBDV
process checks disparity motion vectors in the temporal
neighboring blocks, disparity motion vectors in the spatial
neighboring blocks, and then the IDVs in order. Once the
video coder finds a disparity motion vector or IDV, the video
coder terminates the NBDV process.

In some examples, when a video coder derives a disparity
vector from the NBDV process, the video coder further
refines the disparity vector by retrieving depth data from a
depth map (i.e., a depth view component) of the reference
view. The refinement process is named depth-oriented
NBDV (DoNBDV) and may include the following two
steps. First, locate a corresponding depth block by the
derived disparity vector in the previously coded reference
depth view, such as the base view; the size of the corre
sponding depth block is the same as that of the current PU.
Second, select one depth value from four corner pixels of the
corresponding depth block (due to the adoption of Chang et
al., “3D-CE2.h related: Simplified DV derivation for DoN
BDV and BVSP, Joint Collaborative Team on 3D Video
Coding Extensions of ITU-T SG 16 WP3 and ISO/IEC JTC
1/SC 29/WG 11, 4" Meeting, Incheon, KR 20-26 Apr. 2013,
document no. JCT3V-D0138 (hereinafter, “JCT3V
D0138)) and convert the selected depth value to the hori

US 9,554,150 B2
21

Zontal component of the refined disparity vector. The verti
cal component of the disparity vector is unchanged. JCT3V
D0138 is available at http://phenix.it-sudparis.eu/jct3V/
doc end user/current document.php?id=823.

In 3D-HEVC, the construction process for merge candi
date lists differs from the construction process for merge
candidate lists used in HEVC. For instance, based on the
derived disparity vector from the NBDV process or DoN
BDV, the video coder may add a new motion vector candi
date (i.e., an Inter-view Predicted Motion Vector Candidate
(IPMVC)), if available, to AMVP and skip/merge modes. In
other words, the video coder may include an IPMVC in a
merge candidate list or an AMVP candidate list. The IPMVC
may specify the motion information of a reference block in
a reference view. For instance, an IPMVC may specify one
or more temporal motion vectors, as well as prediction
direction indicators and reference indices.

For the merge? skip mode, the video coder may derive an
inter-view predicted motion vector by the following steps.
First, the video coder may locate a corresponding block of
current PU/CU in a reference view of the same access unit
by the disparity vector. Second, if the corresponding block
is not intra-coded and not inter-view predicted and its
reference picture has a picture order count (POC) value
equal to that of one entry in the same reference picture list
of the current PU/CU, the video coder may derive its motion
information (prediction direction, reference pictures, and
motion vectors), after converting the reference index based
on POC, to be the inter-view predicted motion vector.

FIG. 4 shows an example of the derivation process of the
inter-view predicted motion vector candidate. In particular,
FIG. 4 is a conceptual illustration showing derivation of an
inter-view predicted motion vector candidate for merge/skip
mode. In the example of FIG. 4, a current PU 40 occurs in
view V1 at a time instance T1. A reference PU 42 for current
PU 40 occurs in a different view than current PU 40 (i.e.,
view VO) and at the same time instance as current PU 40
(i.e., time instance T1). In the example of FIG. 4, reference
PU 42 is bi-directionally inter predicted. Hence, reference
PU 42 has a first motion vector 44 and a second motion
vector 46. Motion vector 44 indicates a position in a
reference picture 48. Reference picture 48 occurs in view V0
and in time instance T0. Motion vector 46 indicates a
position in reference picture 50. Reference picture 50 occurs
in view V0 and in time instance T3.
The video coder may generate, based on the motion

information of reference PU 42, an IPMVC for inclusion in
a merge candidate list of current PU 40. The IPMVC may
have a first motion vector 52 and a second motion vector 54.
Motion vector 52 matches motion vector 44 and motion
vector 54 matches motion vector 46. The video coder
generates the IPMVC such that a first reference index of the
IPMVC indicates a position in RefDicList0 for current PU
40 of a reference picture (i.e., reference picture 56) occur
ring in the same time instance as reference picture 48 (i.e.,
time instance TO). In the example of FIG. 4, reference
picture 56 occurs in the first position (i.e., RefD) in Refli
cList0 for current PU 40. Furthermore, the video coder
generates the IPMVC such that a second reference index of
the IPMVC indicates a position in ReflicList1 for current
PU 40 of a reference picture (i.e., reference picture 58)
occurring in the same time instance as reference picture 50.
Thus, in the example of FIG. 4, the ReflicListO reference
index of the IPMVC may be equal to 0. In the example of
FIG. 4, a reference picture 59 occurs in the first position (i.e.,
Ref)) in RefpicList1 for current PU40 and reference picture
58 occurs in the second position (i.e., Refl) in ReflicList1

5

10

15

25

30

35

40

45

50

55

60

65

22
for current PU 40. Accordingly, the ReflicList1 reference
index of the IPMVC may be equal to 1.

Thus, In the example of FIG. 4, a disparity vector is
calculated by finding corresponding block 42 in a different
view (e.g., view 0 or VO) to current PU 40 in the currently
coded view (view 1 or V1). If corresponding block 42 is not
intra-coded and not inter-view predicted, and its reference
picture has a POC value that is in the reference picture list
of current PU 40 (e.g., Ref), List 0; Reft), List1; Ref1, List
1, as shown in FIG. 4), then the motion information for
corresponding block 42 is used as an inter-view predicted
motion vector. The video coder may scale the reference
index based on the POC.

Furthermore, when generating a merging candidate list
(or in some examples, AMVP candidate list) for a block
(e.g., PU), the video coder may convert a disparity vector of
the block into an inter-view disparity motion vector candi
date (IDMVC). The IDMVC may specify the disparity
vector of the block. The video coder may add the IDMVC
into the merge candidate list (or in some examples, AMVP
candidate list) in a different position from IPMVC. Alter
natively, in Some examples, the video coder may add the
IDMVC into the merge candidate list (or in some examples,
AMVP candidate list) in the same position as the IPMVC,
when the IDMVC is available. In this context, either an
IPMVC or an IDMVC may be called an “inter-view candi
date.” In some examples, in the merge/skip mode, the video
coder always inserts the IPMVC, if available, before all
spatial and temporal merging candidates to the merge can
didate list. In some such examples, the video coder may
insert the IDMVC before the spatial merging candidate
derived from A.

Thirumalai et al., “Merge candidates derivation from
vector shifting.” Joint Collaborative Team on 3D Video
Coding Extensions of ITU-T SG 16 WP3 and ISO/IEC JTC
1/SC 29/WG 11, 5* Meeting, Vienna, AU, Jul. 27-Aug. 2,
2013, document no. JCT3V-E0126 (hereinafter, “JCT3V
E0126’) describes merge candidate derivation from vector
shifting. JCT3V-E0126 is available at http://phenix.it-Sud
paris.eu/jct3V/doc end user/current document.ph
p?id=1140. Due to the adoption of JCT3V-E0126, one more
candidate, named a “shifted candidate' or “shifted IvMVC.'
may be derived with a shifted disparity vector. Such a
candidate could be an IPMVC derived from a reference
block in a reference view with shifted disparity vectors or
derived from the first available spatial merging candidate
including a disparity motion vector or IDMVC. Detailed
steps for generating the additional candidate and insertion to
the merge candidate list are described as follows.

First, a video coder shifts the disparity vector DV by
((PuWidth/2*4+4), (Puheight/2*4+4)). The video coder
uses the DV to derive a shifted IvMC candidate from the
reference view. Here, the size of the current PU is PuWidth:X
Puheight. If the shifted IvMVC is available, the video coder
may skip step 2 (i.e., the second step described below) and
if this shifted IVMC is not identical to the IvMC without
disparity vector shifting, the video coder inserts the shifted
IvMC into the merge candidate list just before the temporal
merging candidate.

Second, the video coder may derive a candidate, denoted
as Disparity Shifted Motion Vector (DSMV). The video
coder may set the DSMV to be the additional candidate. If
the DSMV is available, the video coder may directly insert
the DSMV into the merge candidate list in the same position
as a shifted IvMC. The video coder may derive the DSMV
as follows. First, the video coder identifies the first available
disparity motion vector (DMV) corresponding to the Ref

US 9,554,150 B2
23

PicList0 from the spatial neighboring blocks. Second, if the
DMV is available, the video coder sets the horizontal
component of the motion vector in List 0 to DMV shifted by
4 and the video coder keeps the vertical component of the
motion vector unchanged or resets the vertical component of
the motion vector to 0, depending on whether or not BVSP
is enabled. The reference indices and motion vectors in List
1 are directly inherited. Otherwise (i.e., if the DMV is not
available), the video coder sets the horizontal component of
the motion vector in List 0 and List 1 to the DV shifted by
4 and the video coder sets both vertical components of
motion vectors in List 0 and List 1 to 0.

Tian et al., “CE1.h: Backward View Synthesis Prediction
using Neighbouring Blocks. Joint Collaborative Team on
3D Video Coding Extension Development of ITU-TSG 16
WP 3 and ISO/IEC JCT 1/SC 29/WG 11, 3 Meeting,
Geneva, CH, 17-23 Jan. 2013, document no. JCT3V-00152
(hereinafter, “JCT3V-00152) describes backward view syn
thesis prediction using neighboring blocks. JCT3V-00152 is
available at: http://phenix.it-Sudparis.eu/jct2/doc end user/
current document.php?id=594. The backward-warping
VSP approach as proposed in JCT3V-00152 was adopted in
the third JCT-3V meeting. The basic idea of this backward
warping VSP as proposed in JCT3V-00152 is the same as the
block-based VSP in 3D-AVC. Both of these two techniques
use the backward-warping and block-based VSP to avoid
transmitting the motion vector differences and use more
precise motion vectors. Implementation details are different
due to different platforms. The following paragraphs use the
term “BVSP” to indicate the backward-warping VSP
approach in 3D-HEVC.

In some designs of the 3D-HTM, the BVSP mode is only
Supported for an inter-code block in either skip or merge
mode. BVSP mode is not allowed for a block coded in
AMVP mode. Instead of transmitting a flag to indicate the
usage of BVSP mode, one additional merging candidate
(i.e., BVSP merging candidate) is introduced and each
candidate is associated with one BVSP flag. As indicated
above, video encoder 20 may signal a merge index (e.g.,
merge idx) in a bitstream and video decoder 30 may obtain
the merge index from the bitstream. When the decoded
merge index corresponds to a BVSP merging candidate, the
current PU uses the BVSP mode. Furthermore, when the
decoded merge index corresponds to the BVSP merging
candidate, for each sub-block within the current PU, the
video coder may derive a disparity motion vector for the
sub-block by converting a depth value in a depth reference
V1eW.

The setting of BVSP flags may be defined as follows.
When a spatial neighboring block used for deriving a spatial
merging candidate is coded with BVSP mode, the associated
motion information is inherited by the current block as in
conventional merging mode. In addition, this spatial merg
ing candidate is tagged with a BVSP flag equal to 1. For the
newly introduced BVSP merging candidate, the BVSP flag
is set to 1. For all the other merging candidates, the asso
ciated BVSP flags are set to 0.
As indicated above, in 3D-HEVC, a video coder may

derive a new candidate (i.e., a BVSP merging candidate) and
may insert the BVSP merging candidate into the merge
candidate list. The video coder may set the corresponding
reference indices and motion vectors for the BVSP merging
candidate by the following method. First, the video coder
may obtain the view index (denoted by refVIdxLX) of the
derived disparity vector from NBDV. Second, the video
coder may obtain the reference picture list ReflicListX
(either ReflicList0 or ReflicList1) that is associated with

5

10

15

25

30

35

40

45

50

55

60

65

24
the reference picture with the view order index equal to
refVIdxLX. The video coder may use the corresponding
reference index and the disparity vector from the NBDV
process as the motion information of the BVSP merging
candidate in ReflPicListX.

Third, if the current slice is a B slice, the video coder may
check the availability of an inter-view reference picture with
a view order index (denoted by refVIdxLY) unequal to
refVIdxLX in the reference picture list other than Refli
cListX, (i.e., ReflicListY with Y being 1-X). If such a
different inter-view reference picture is found, the video
coder applies bi-predictive VSP. Meanwhile, the video coder
uses the corresponding reference index of the different
inter-view reference picture and the scaled disparity vector
from a NBDV process as the motion information of the
BVSP merging candidate in ReflicListY. The video coder
may use the depth block from the view with view order
index equal to refVIdxLX as the current block's depth
information (in the case of texture-first coding order), and
the video coder may access the two different inter-view
reference pictures (each from one reference picture list) via
a backward warping process and further weighted to achieve
the final backward VSP predictor. Otherwise, the video
coder applies uni-predictive VSP with ReflicListX as the
reference picture list for prediction.

In the 3D-HTM, texture first coding is applied in common
test conditions. Therefore, the corresponding non-base depth
view is unavailable when decoding one non-base texture
view. Therefore, the depth information is estimated and used
to perform BVSP. In order to estimate the depth information
for a block, a video coder may first derive a disparity vector
from the neighboring blocks, and then use the derived
disparity vector to obtain a depth block from a reference
view. In the 3D-HTM 8.0 test model, there exists a process
to derive a disparity vector predictor, known as a NBDV
(Neighboring Block Disparity Vector). Let (dv, dv) denote
the disparity vector identified from the NBDV function, and
the current block position is (block, block).

In some examples of uni-predictive BVSP, a video coder
fetches a depth block with the top-left position (block,+dv,
block,+dv,) in the depth image of the reference view. The
current block is firstly split into several sub-blocks, each
having the same size of W*H. For each sub-block with the
size equal to W*H, the video coder uses a corresponding
depth sub-block within the fetched depth block and converts
the maximum depth value from the four corner pixels of the
depth sub-block to a disparity motion vector. The video
coder then uses the derived disparity motion vector for each
sub-block for motion compensation. FIG. 5 illustrates the
three steps of how a depth block from the reference view is
located and then used for BVSP (also called “BVSP predic
tion').

In particular, FIG. 5 is a conceptual diagram illustrating
depth block derivation from a reference view to perform
BVSP prediction. In some examples of bi-prediction BVSP
when there are multiple inter-view reference pictures from
different views in RefPicList0 and RefPicList1, the video
coder applies bi-predictive VSP. That is, the video coder
may generate two VSP predictors from each reference list,
as described above. The video coder may then average the
two VSP predictors to obtain the final VSP predictor.

In the example of FIG. 5, a video coder is coding a current
texture picture 60. Current texture picture 60 is labeled a
“dependent texture picture' because current texture picture
60 is dependent on a synthesized reference texture picture
62. In other words, the video coder may need to synthesize
reference texture picture 62 (or portions thereof) in order to

US 9,554,150 B2
25

decode current texture picture 60. Reference texture picture
62 and current texture picture 60 are in the same access unit
but are in different views.

In order to synthesize reference texture picture 62 (or
portions thereof), the video coder may process blocks (i.e.,
video units) of current texture picture 60. In the example of
FIG. 5, the video coder is processing a current block 64.
When the video coder processes current block 64, the video
coder may perform the NBDV derivation process to derive
a disparity vector for current block 64. For instance, in the
example of FIG. 5, the video coder identifies a disparity
vector 66 of a block 68 that neighbors current block 64. The
identification of disparity vector 66 is shown as Step 1 of
FIG. 5. Furthermore, in the example of FIG. 5, the video
coder determines, based on disparity vector 66, a disparity
vector 69 of current block 64. For instance, disparity vector
69 may be a copy of disparity vector 66. Copying disparity
vector 66 is shown as Step 2 of FIG. 5.

The video coder may identify, based on disparity vector
69 of current block 64, a reference block 70 in a reference
depth picture 72. Reference depth picture 72, current texture
picture 60, and reference texture picture 62 may each be in
the same access unit. Reference depth picture 72 and refer
ence texture picture 62 may be in the same view. The video
coder may determine, based on texture sample values of
current block 64 and depth sample values of reference block
70, texture sample values of reference texture picture 62.
The process of determining the texture sample values may
be referred to as backward warping. Section H.8.5.2.2.7 of
3D-HEVC Test Model 3 describes the process of backward
warping. Backward warping is shown as Step 3 of FIG. 5.
In this way, FIG. 5 illustrates the three steps of how a depth
block from the reference view is located and then used for
BVSP prediction.
The motion compensation size (i.e., WH as described

above) used in BVSP could be either 8x4 or 4x8. To
determine the motion compensation size, the following rule
is applied. For each 8x8 block, the video coder checks four
corners of corresponding depth 8x8 block and:

if (vdepth.TL) < volepth BR20 : 1) = (vdepth TR) < volepthBL20 : 1)
use 4x8 partition (W = 4, H = 8)

else
use 8x4 partition (W = 8, H = 4)

FIG. 6 is a conceptual diagram illustrating four corner pixels
of one 8x8 depth block.
The maximum number of merge candidates and the merge

list construction process for 3D-HEVC are described in the
following paragraphs. In some versions of 3D-HEVC, the
total number of candidates in the merge list is up to six and
five minus max num merge cand is signaled in a slice
header to specify the maximum number of the merge can
didates Subtracted from five. five minus max num merge
cand is in the range of 0 to 5, inclusive. five minus max
num merge cand specifies the maximum number of merg
ing motion vector predictor (MVP) candidates (i.e., merging
candidates) supported in the slice subtracted from 5. A video
coder may compute the maximum number of merging MVP
candidates (i.e., MaxNumMerge(Cand) as:

MaxNumMergeCand=5-five minus max num
merge cand+iv mV pred flagnuh layer id (H-1)

In such versions of 3D-HEVC, the value of five minus
max num merge cand shall be limited Such that MaxNum
Merge(Cand is in the range of 0 to (5+iv mV pred flag
nuh layer id), inclusive.

5

10

15

25

30

35

40

45

55

60

65

26
Furthermore, in such versions of 3D-HEVC, an iv m

V pred flag layerId Syntax element indicates whether inter
view motion parameter prediction is used in the decoding
process of the layer with nuh layer id equal to layerId.
iv mV pred flag layerIdequal to 0 specifies that inter-view
motion parameter prediction is not used for the layer with
nuh layer id equal to layerId. iV mv pred flag layerId
equal to 1 specifies that inter-view motion parameter pre
diction may be used for the layer with nuh layer id equal to
layerId. When not present, the value of iV mV pred flag
layerId shall be inferred to be equal to 0.
The merging candidate list construction process in

3D-HEVC can be defined as follows:
1. IPMVC insertion: When inter-view motion prediction

is applied, the video coder derives an IPMVC by the
procedure described above. If the IPMVC is available,
the video coder inserts the IPMVC into the merge list
(i.e., the merge candidate list).

2. Derivation process for spatial merging candidates and
IDMVC insertion in 3D-HEVC
The video coder checks the motion information of

spatial neighboring PUs in the following order: A,
B. Bo Ao, or B. Furthermore, the video coder may
perform constrained pruning by the following pro
cedures:
If A (i.e., a merge candidate derived from spatial

neighboring PUA) and IPMVC have the same
motion vectors and the same reference indices, the
video coder does not insert A into the candidate
list (i.e., the merge candidate list). Otherwise, the
video coder inserts A into the list (i.e., the merge
candidate list).

If B and A/IPMVC have the same motion vectors
and the same reference indices, the video coder
does not insert B (i.e., a merge candidate derived
from spatial neighboring PUB) into the candi
date list (i.e., the merge candidate list). Otherwise,
the video coder inserts B into the list (i.e., the
merge candidate list).

If Bo (i.e., a merge candidate derived from spatial
neighboring PU Bo) is available, the video coder
adds Bo to the candidate list (i.e., the merge
candidate list).

When inter-view motion prediction is applied, the
video coder derives an IDMVC by the procedure
described above. If the IDMVC is available and
the IDMVC is different from the candidates
derived from A and B, the video coder inserts the
IDMVC into the candidate list (i.e., the merge
candidate list).

If BVSP is enabled for the whole picture or for the
current slice, then the video coder inserts the
BVSP merging candidate into the merge candidate
list.

If A (i.e., a merge candidate derived from spatial
neighboring PUA) is available, the video coder
adds Ao to the candidate list (i.e., the merge
candidate list).

If B (i.e., a merge candidate derived from spatial
neighboring PUB) is available, the video coder
adds B to the candidate list (i.e., the merge
candidate list).

When inter-view motion prediction is applied, the
video coder inserts a shifted candidate (i.e.,
DSMV), if available, as described above.

US 9,554,150 B2
27

3. Derivation process for temporal merging candidate
The derivation process for the temporal merging can

didates is similar to the temporal merging candidate
derivation process in HEVC where the motion infor
mation of the co-located PU is utilized. However, a
target reference index of the temporal merging can
didate may be changed instead of being fixed to be
0. The target reference index of the temporal merg
ing candidate is the reference index of a reference
picture on which the video coder bases the temporal
merging candidate. When the target reference index
equal to 0 corresponds to a temporal reference pic
ture (i.e., a reference picture in the same view as the
current PU) while the motion vector of the co
located PU points to an inter-view reference picture,
the video coder changes the target reference index to
an index that corresponds to the first entry of an
inter-view reference picture in the reference picture
list. In other words, the video coder changes the
target reference index Such that the target reference
index indicates the first inter-view reference picture
in the reference picture list. However, when the
target reference index equal to 0 corresponds to an
inter-view reference picture while the motion vector
of the co-located PU points to a temporal reference
picture, the video coder changes the target reference
index to another index that corresponds to the first
entry of a temporal reference picture in the reference
picture list. In other words, the video coder changes
the target reference index such that the target refer
ence index indicates the first temporal reference
picture in the reference picture list.

4. Derivation process for combined bi-predictive merging
candidates in 3D-HEVC
If the total number of candidates derived from the
above three steps is less than the maximum number
of candidates, the video coder performs the same
process as defined in HEVC with two changes:
First, the conditions of obtaining a combined bi

predictive merging candidate are changed by add
ing the check of BVSP flags associated with the
first/second candidate.

Second, the specification of 10Cand Idx and
11Cand Idx is modified. The relationship among
combdx, 10Cand Idx and 11 Cand Idx are defined in
FIG. 7, which is a table providing a specification
of 10Cand Idx and 11 Cand Idx in 3D-HEVC.

5. Derivation process for Zero motion vector merging
candidates
The video coder performs the same procedure as

defined in HEVC (and described above) to derive the
Zero motion vector merging candidates.

The design of the derivation process of combined bi
predictive merging candidates in 3D-HEVC may have one
or more potential problems. For example, the current design
of the derivation process of combined bi-predictive merging
candidates in 3D-HEVC may require additional logic units
to be added to check the BVSP flags of the first and second
existing merge candidates used to construct a combined
bi-predictive merging candidate. However, the additional
check of the BVSP flags does not help in terms of coding
efficiency. Thus, the additional check of the BVSP flags
increases complexity.

In another example of the potential problems associated
with the derivation process of combined bi-predicted merg
ing candidates in 3D-HEVC, directly reusing the HEVC
derivation process of combined bi-predictive merging can

10

15

25

30

35

40

45

50

55

60

65

28
didates may result in an unpredictable decoding process. The
HEVC derivation process of combined bi-predictive merg
ing candidates can only take up to four merge candidates to
generate new candidates. However, if this process is used in
3D-HEVC directly, there can be a case that five merge
candidates are used as an input for this process. When there
are up to four merge candidates, only twelve possible
combinations are available, thus they are defined in this
process in a table. However, when five merge candidates are
available, there can be twenty possible combinations, while
the current table (i.e., Table 1, above) does not support that
many combinations.
One or more of the techniques of this disclosure relate to

the derivation process of combined bi-predictive merging
candidates in 3D-HEVC. In accordance with an example
technique of this disclosure, the design of the derivation
process of combined bi-predictive merging candidates in
3D-HEVC is replaced by that used in HEVC. Therefore,
there is no need to check the BVSP flags in the combined
bi-predictive merging candidate derivation process. In other
words, the process of generating the list of merging candi
dates occurs without checking any BVSP flags. Not check
ing the BVSP flags in the combined bi-predictive merging
candidate derivation process may reduce complexity of the
encoding/decoding process without making a significant
negative impact on coding efficiency.

In this way, this disclosure may provide for a method of
coding data associated with 3D video. This method may
comprise generating a list of merge candidates for coding a
Video block associated with 3D video according to a merg
ing list derivation process. The list includes one or more
bi-predictive merge candidates. The merging list derivation
process for 3D video corresponds to a same merging list
derivation process that is associated with non-3D video.

Furthermore, in accordance with one or more techniques
of this disclosure, when invoking the derivation process of
combined bi-predictive merging candidates in HEVC,
instead of just checking that the slice type is equal to B slice,
another condition shall be also satisfied, that is, the number
of available merging candidates inserted to the merge can
didate list should be less than five.

Thus, in some examples, a video coder may code data
associated with 3D video. As part of coding the data, the
Video coder may generate a list of merging candidates for
coding a video block (e.g. a PU) of the 3D video. As part of
generating the list of merging candidates, the video coder
may determine whether a number of merging candidates in
the list is less than 5. In response to determining that the
number of merging candidates in the list is less than 5, the
video coder may derive one or more combined bi-predictive
merging candidates. In this example, each respective com
bined bi-predictive merging candidate of the one or more
combined bi-predictive merging candidates corresponds to a
respective pair (e.g., an ordered pair) of merging candidates
already in the list. The respective combined bi-predictive
merging candidate is a combination of a motion vector of a
first merging candidate of the respective pair and a motion
vector of a second merging candidate of the respective pair.
The motion vector of the first merging candidate and the
motion vector of the second merging candidate refer to
pictures in different reference picture lists. The video coder
may include the one or more combined bi-predictive merg
ing candidates in the list of merging candidates.

Alternatively, in some examples, before the derivation
process of combined bi-predictive merging candidates is
invoked, the maximum number of merging MVP candidates,
MaxNumMergeCand is reset as follows: MaxNumMerge

US 9,554,150 B2
29

Cand 5-five minus max num merge cand. After the
derivation process of combined bi-predictive merging can
didates is invoked, the MaxNumMergecand is set back to
the value as in 3D-HEVC: MaxNumMergeCand=5-five
minus max num merge cand+iv mV pred flag nuh lay
er id. nuh layer id is a syntax element specifying a layer
identifier. Thus, in Some Such examples, before deriving the
one or more combined bi-predictive merging candidates, a
Video coder may reset a maximum number of merging
candidates to be equal to 5 minus a value of a first syntax
element. The first syntax element specifies the maximum
number of merging candidates Supported in a slice Sub
tracted from 5. After deriving the one or more combined
bi-predictive merging candidates, the video coder may set
the maximum number of merging candidates to 5 minus the
value of the first syntax element plus a value of a second
Syntax element, wherein the second syntax element indicates
whether inter-view motion parameter prediction is used in a
decoding process of a layer.
When MaxNumMergeCand is equal to 6 and there are five

candidates before the derivation process of combined bi
predictive merging candidates in HEVC is invoked, a Zero
candidate (with reference index and motion vector compo
nents all being 0) is always generated and inserted into the
merging candidate list, as specified in Sub-clause 8.5.3.2.4 of
HEVC Working Draft 10.

Alternatively, the video coder sets MaxNumMergeCand
to 5 before the invocation of the process to determine
bi-predictive merging candidates and the video coder only
considers the first four candidates as input of this process.
After the video coder invokes the process to determine
bi-predictive merging candidates, the video coder puts the
newly generated bi-predictive merging candidate, if avail
able at the end of the merging candidate list. Thus, the
newly-generated bi-predictive merging candidate follows
the 4" candidate in the merging candidate list, which the
video coder did not consider as part of the input of the
process to determine bi-predictive merging candidates.
Afterwards, in this example, the MaxNumMerge(Cand is set
back to 6. When the process to determine bi-predictive
merging candidates does not provide a new bi-predictive
merging candidate, the video coder generates a Zero candi
date and inserts the Zero candidate into the merging candi
date list, as specified in sub-clause 8.5.3.2.4 of HEVC
Working Draft 10. Sub-clause 8.5.3.2.4 of HEVC Working
Draft 10 is reproduced below.
8.5.3.2.4 Derivation Process for Zero Motion Vector Merg
ing Candidates
Inputs to this process are:

a merging candidate list mergecandList,
the reference indices refldxLON and refldxL1N of every

candidate N in mergeCandList,
the prediction list utilization flags predFlag|LON and

predFlag|L1N of every candidate N in merge(CandList,
the motion vectors mVLON and mvL1N of every candi

date N in mergecandList,
the number of elements numCurrMerge(Cand within

mergecandList.
Outputs of this process are:

the merging candidate list merge(CandList,
the number of elements numCurrMerge(Cand within

mergecandList,
the reference indices refldxLOzeroCand, and

refldxL10ZeroCand of every new candidate Zero
Cand added into mergeCandList during the invoka
tion of this process,

10

15

25

30

35

40

45

50

55

60

65

30
the prediction list utilization flags predFlag 0ZeroCand,

and predFlagL10ZeroCand of every new candidate
ZeroCand added into mergeCandList during the
invokation of this process,

the motion Vectors mvL0ZeroCand, and
myL10ZeroCand of every new candidate ZeroCand,
added into mergeCandList during the invokation of this
process.

The variable numRefldx is derived as follows:
If slice type is equal to P. numRefldx is set equal to
num ref idx 10 active minus 1+1.

Otherwise (slice type is equal to B), numRefIdx is set
equal to Min(num ref idx 10 active minus 1+1,
num ref idx 11 active minus 1+1).

When numCurrMergeCand is less than MaxNumMerge
Cand, the variable numInputMergeCand is set equal to
numCurrMergecand, the variable Zeroldx is set equal to 0.
and the following steps are repeated until numCurrMerge
Cand is equal to MaxNumMergeCand:

1. For the derivation of the reference indices, the predic
tion list utilization flags and the motion vectors of the
Zero motion vector merging candidate, the following
applies:
If slice type is equal to P, the candidate ZeroCand, with
m equal to (numCurrMerge(Cand-numInputMerge
Cand) is added at the end of merge(CandList, i.e.
mergecandList numCurrMerge(Cand is set equal to
ZeroCand, and the reference indices, the prediction
list utilization flags, and the motion vectors of Zero
Cand are derived as follows and numCurrMerge
Cand is incremented by 1:

refldxLOzeroCand-(zeroIdx<numRefIdx)?zeroIdx:0 (8-122)

refldxL1zeroCand–-1 (8-123)

predFlagLOzeroCand 1 (8-124)

predFlagL1ZeroCand, O (8-125)

mvLOzeroCand, O=0 (8-126)

mvLOzeroCand 1=0 (8-127)

mvL1zeroCand, O=0 (8-128)

mvL1zeroCand 1=0 (8-129)

numCurrMergeCand=numCurrMergeCand+1 (8-130)

Otherwise (slice type is equal to B), the candidate
ZeroCand, with m equal to (numCurrMerge(Cand
numInputMerge(Cand) is added at the end of merge
CandList, i.e. merge(CandList numCurrMergeCand
is set equal to ZeroCand, and the reference indices,
the prediction list utilization flags, and the motion
vectors of ZeroCand are derived as follows and
numCurrMergeCand is incremented by 1:

refldxLOzeroCand F(zeroIdx<numRefIdx)?zeroIdx:0 (8-131)

refldxL1zeroCand F(zeroIdx<numRefIdx)?zeroIdx:0 (8-132)

predFlagLOzeroCand 1 (8-133)

predFlagL1ZeroCand 1 (8-134)

mvLOzeroCand, O=0 (8-135)

mvLOzeroCand 1=0 (8-136)

US 9,554,150 B2

mvL1zeroCand, O=0 (8-137)

mvL1zeroCand 1=0 (8-138)

numCurrMergeCand=numCurrMergeCand+1 (8-139)

2. The variable Zeroldx is incremented by 1.
Thus, in some examples where the maximum number of

merging candidates (e.g., MaxNumMerge(Cand) is equal to
6, a video coder may, in response to determining that there
are 5 merging candidates in the list of merging candidates
prior to adding any of the one or more bi-predictive merging
candidates to the list, the video coder may include a Zero
candidate in the list. Motion vector components of the Zero
candidate are equal to 0 and a reference index of the Zero
candidate is equal to 0.
The following section of this disclosure describes some

exemplary implementation details consistent with the tech
niques of this disclosure in the context of HEVC. Changes
to sections of 3D-HEVC Draft Text 1 are shown below.
Various parts shown between <insertd. . . </insert may
correspond to additions to HEVC sections, and parts shown
between <deleted... </deleted may correspond to deletions.
Techniques of this disclosure may correspond, in some
examples to the additions shown between <insertd. . .
</insert and the deletions shown between <deleted. . .
</deleted.
H.8.5.3.2.1 Derivation Process for Luma Motion Vectors for
Merge Mode

This process is only invoked when merge flagxPbyPb
is equal to 1, where (XPb, yPb) specify the top-left sample
of the current luma prediction block relative to the top-left
luma sample of the current picture.
Inputs to this process are:

a luma location (XCb, yCb) of the top-left sample of the
current luma coding block relative to the top-left luma
sample of the current picture,

a luma location (XPb, yPb) of the top-left sample of the
current luma prediction block relative to the top-left
luma sample of the current picture,

a variable nCbS specifying the size of the current luma
coding block,

two variables nPbW and nPbH specifying the width and
the height of the luma prediction block,

a variable part Idx specifying the index of the current
prediction unit within the current coding unit.

Outputs of this process are:
the luma motion vectors mvL0 and mvL1,
the reference indices refldxL0 and refldxL1,
the prediction list utilization flags predFlag L0 and pred

Flag 1,
the disparity vector availability flags ivpMVFlag L0 and

ivpMVFlag|L1,
the flag vspModeFlag, specifying, whether the current PU

is coded using view synthesis prediction,
The location (XOrigP, yOrigP) and the variables nGrigPbW
and nGrigPbH are derived to store the values of (xPb, yPb),
nPbW, and nPbH as follows:

(xOrigPyOrigP) is set equal to (xPbyPb) (H-81)

norigPbW=nPbW (H-82)

norigPbH=nPbH (H-83)

5

10

15

25

30

35

40

45

50

55

60

65

32
When Log 2 ParMrgLevel is greater than 2 and nGbS is
equal to 8, (xPb, yPb), nPb.W. nPbH, and part Idx are
modified as follows:

(xPbyPb)=(xCbCb) (H-84)

4PbW= CbS (H-85)

4PbH=4CbS (H-86)

partIdx=0 (H-87)

NOTE: When Log 2 ParMrgLevel is greater than 2 and
nCbS is equal to 8, all the prediction units of the current
coding unit share a single merge candidate list, which
is identical to the merge candidate list of the 2Nx2N
prediction unit.

The motion vectors mvL0 and mvL1, the reference indices
refldxL0 and refldxL1, and the prediction utilization flags
predFlag|L0 and predFlagL1 are derived by the following
ordered steps:

1. The derivation process for merging candidates from
neighboring prediction unit partitions in Subclause
8.5.3.2.2 is invoked with the luma coding block loca
tion (XCb, yCb), the coding block size nGbS, the luma
prediction block location (XPb, yPb), the luma predic
tion block width nPbW, the luma prediction block
height nPbH, and the partition index part Idx as inputs,
and the output being the availability flags availableF
lag Ao availableFlagA, availableFlagBo, availableF
lagB, and availableFlagB, the reference indices
refldxLXA, refldxLXA, refldxLXB, refldxLXB,
and refldxLXB, the prediction list utilization flags
predFlag|LXA predFlag LXA, predFlag XB, pred
Flag|LXB, and predFlag LXB, and the motion vectors
mvLXA, mVLXA, mVLXBo, mVLXB, and
mvLXB, with X being 0 or 1.

2. The reference indices for the temporal merging candi
date, refldxLXCol, with X being 0 or 1, are set equal
to 0.

3. The derivation process for temporal luma motion vector
prediction in subclause H.8.5.3.2.7 is invoked with the
luma location (XPb, yPb), the luma prediction block
width nPbW, the luma prediction block height nPbH,
and the variable refldxLOCol as inputs, and the output
being the availability flag availableFlag|LOCol and the
temporal motion vectormvLOCol. The variables avail
ableFlagCol, predFlag LOCol and predFlag|L1 Col are
derived as follows:

availableFlagCol=availableFlagLOCol (H-88)

predFlag LOCol=availableFlagLOCol (H-89)

predFlagL1Col=0 (H-90)

4. When slice type is equal to B, the derivation process
for temporal luma motion vector prediction in Sub
clause H.8.5.3.2.7 is invoked with the luma location
(xPb, yPb), the luma prediction block width nPbW, the
luma prediction block height nPbH, and the variable
refldxL1 Col as inputs, and the output being the avail
ability flag availableFlagL1Col and the temporal
motion vector mVL1Col. The variables availableFlag
Col and predFlag L1Col are derived as follows:
availableFlagCol=availableFlagLOCollavailableFlagL1Col (H-91)

predFlagL1Col=availableFlagL1Col (H-92)

US 9,554,150 B2
33

5. Depending on iV mV pred flag nuh layer id., the fol
lowing applies.
If iv mV pred flag nuh layer id is equal to 0, the

flags availableFlag IVMC, availableIVMCShift and
availableFlag IVDC are set equal to 0.

Otherwise (iv mV pred flagnuh layer id is equal to
1), the derivation process for the inter-view merge
candidates as specified in subclause H.8.5.3.2.10 is
invoked with the luma location (XPb, yPb), the
variables nPbW and nPbH, as the inputs and the
output is assigned to the availability flags availableF
lagIvMC, availableIvMCShift and availableFla
gIvDC, the reference indices refldxLXIVMC, refldx
LXIvMCShift and refldxLXIvDC, the prediction list
utilization flags predFlag|LXIVMC, predFlag LX
ivMCShift and predFlag LXIvDC, and the motion
vectors mvLXIvMC, mvLXIvMCShift and mvLX
IvDC (with X being 0 or 1, respectively).

6. Depending on view synthesis pred flagnuh lay
er id., the following applies.
If view synthesis pred flag nuh layer id is equal to

0, the flag availableFlagVSP is set equal to 0.
Otherwise (view synthesis pred flag nuh layer id is

equal to 1), the derivation process for a view syn
thesis prediction merge candidate as specified in
subclause H.8.5.3.2.13 is invoked with the luma
locations (XCb, yCb) as input and the outputs are the
availability flag availableFlagVSP, the reference
indices refldxLOVSP and refldxL1VSP, the predic
tion list utilization flags predFlag LOVSP and
predFlag|L1VSP, and the motion vectors mvLOVSP
and mv 1 VSP

7. Depending on DepthFlag, the following applies.
If Depth Flag is equal to 0, the variable availableFlag.T

is set equal to 0.
Otherwise (Depth Flag is equal to 1), the derivation

process for the texture merging candidate as speci
fied in subclause H.8.5.3.2.14 is invoked with the
luma location (xPb, yPb), the variables nPbW and
nPbH as the inputs and the outputs are the flag
availableFlagT, the prediction utilization flags
predFlag|LOT and predFlagL1T, the reference indices
refldxLOT and refldxL1T, and the motion vectors
mvLOT and mvL1T.

8. The merge candidate lists mergeCandList and merge
Cand IsVspFlag are constructed as specified by the
following ordered steps:
a. The variable numMergecand is set equal to 0.
b. When availableFlagT is equal to 1, the entry merge

CandList numMerge(Cand is set equal to T, the entry
mergeCand IsVspFlagnum Merge(Cand is set equal
to 0 and the variable numMergecand is increased by
1.

c. When availableFlag IVMC is equal to 1, the entry
mergeCandList numMergeCand is set equal to
IvMC, the entry mergecandIsVspFlagnum Merge
Cand is set equal to 0 and the variable numMerge
Cand is increased by 1.

d. When availableFlagA is equal to 1, the following
applies:
When the following condition is true,

availableFlagT=0 && availableFlag IVMC=0,
or one or more of the following conditions are true,

with N being replaced by T and IvMC:
availableFlagN=1 && predFlag|LXN = pred
FlagLXA, (with X being replaced by 0 and 1),

5

10

15

25

30

35

40

45

50

55

60

65

34
availableFlagN=1 && mvLXN = mvLXA

(with X being replaced by 0 and 1),
availableFlagN=1 && refldxLXN =refldx
LXA (with X being replaced by 0 and 1),

the entry mergeCandList numMerge(and is set
equal to A, the entry mergeCand IsV spFlagnum
Mergecand is set equal to VspModeFlagxPb-1
yPb+nPbH-1 and the variable numMergeCand
is increased by 1.

e. When availableFlagB is equal to 1, the following
applies:
When the following condition is true,

availableFlagT=0 && availableFlag IVMC=0,
or one or more of the following conditions is true,

with N being replaced by T and IvMC:
availableFlagN=1 && predFlag|LXN = pred
FlagLXB, (with X being replaced by 0 and 1),

availableFlagN=1 && mvLXN = mvLXB
(with X being replaced by 0 and 1),

availableFlagN=1 && refldxLXN =refldx
LXB (with X being replaced by 0 and 1),

the entry mergeCandList numMerge(and is set
equal to B, the entry merge(Cand IsV spFlagnum
Mergecand is set equal to VspModeFlagxPb-i-
nPbW-1yPb-1 and the variable numMerge
Cand is increased by 1.

f. When availableFlagBo is equal to 1, the entry merge
CandList numMergeCand is set equal to Bo, the
entry mergeCandsVspFlagnum MergeCand is set
equal to VspModeFlagxPb-i-nPbWyPb-1 and the
variable numMergecand is increased by 1.

g. When availableFlaglvl)C is equal to 1, and one or
more of the following conditions is true,
availableFlagA1 =0,
predFlag|LXA1 = predFlag|LXIvDC, (with X being

replaced by 0 and 1),
mvLXA =mvLXIvDC (with X being replaced by 0

and 1),
refldxLXA =refldxLXIvDC (with X being

replaced by 0 and 1), and one or more of the
following conditions is true,

availableFlagB=0,
predFlag|LXB = predFlag LXIvDC, (with X being

replaced by 0 and 1),
mvLXB =mvLXIvDC (with X being replaced by 0

and 1),
refldxLXB =refldxLXIvDC (with X being

replaced by 0 and 1), the entry merge(CandList
numMergeCand is set equal to IvoC, the entry
mergeCandsVspFlagnum MergeCand is set
equal to 0 and the variable numMergeCand is
increased by 1.

h. When availableFlagVSP is equal to 1, the entry
mergeCandList numMergeCand is set equal to VSP
the entry merge(Cand IsV spFlagnum Merge(Cand is
set equal 1 and the variable numMerge(Cand is
increased by 1.

i. When availableFlag Ao is equal to 1, the entry merge
CandList numMergeCand is set equal to Ao, the
entry mergeCandsVspFlagnum MergeCand is set
equal to VspModeFlagxPb-1yPb--nPbH and the
variable numMergecand is increased by 1.

j. When availableFlagB is equal to 1 and numMerge
Cand is less than 4+iv mV pred flagnuh lay
er id+Depth Flag, the entry merge(CandList num
MergeCand is set equal to B, the entry
mergecandis Vsplagnum Merge(Cand is set equal

US 9,554,150 B2
35

to VspModeFlagxPb-1yPb-1 and the variable
numMerge(Cand is increased by 1.

k. When availableFlag IVMCShift is equal to 1 and
numMerge(Cand is less than 6, and one or more of the
following conditions are true,
availableFlaglvMC=0,
predFlag|LXMC - predFlagLXMCShift (with X

being replaced by 0 and 1),
mvLXMC =mvLXIvMCShift (with X being

replaced by 0 and 1),
refldxLXMC !-refldxLXMCShift (with X being

replaced by 0 and 1), the entry merge(CandList
numMergeCand is set equal to IvMCShift, the
entry mergeCandsV spFlag numMerge(Cand is
set equal to 0 and the variable numMergecand is
increased by 1.

1. A variable availableFlag IVDCShift is set to 0 and
when all of the following conditions are true
Depth Flag is equal to 0.
availableFlag IVMCShift is equal to 0.
numMerge(Cand is less than 6,
the derivation process for the shifted disparity merg

ing candidate as specified in Subclause
H.8.5.3.2.15 is invoked with the availability flags
availableFlagN, the reference indices refldxLON
and reflaxL1N, the prediction list utilization flags
predFlag|LON and predFlag L1N, the motion vec
tors mVLON and mvL1N, of every candidate N
being in merge(CandList, mergeCandList, merge
Cand IsV spFlag, and numMerge(Cand as the inputs
and the outputs are the flag availableFlagIvDC
Shift, the prediction utilization flags predFla
gLOIvDCShift and predFlag|LllvDCShift, the ref
CC indices refdxLOIVDCShift and
refldxL1 Iv)CShift, and the motion vectors
mvLOIVDCShift and mVIL1 Iv)CShift. When
availableFlaglvDCShift is equal to 1, the entry
mergecandList numMerge(Cand is set equal to
IvDCShift, the entry merge(Cand IsVspFlagnum
Mergecand is set equal to 0 and the variable
numMergeCand is increased by 1.

m. When availableFlagCol is equal to 1 and num
MergeCand is less than 5+iv mV pred flag
nuh layer id+DepthFlag, the entry merge(CandList
numMergeCand is set equal to Col, the entry
mergeCand IsVspFlagnum Merge(Cand is set equal
to 0 and the variable numMergecand is increased by
1.

9. The variable numOrigMergecand is set equal to num
Mergecand.

10. When slice type is equal to B <insert and num
Mergecand is less than 5</insertd, the derivation pro
cess for combined bi-predictive merging candidates
specified in subclause <insert 8.5.3.2.3
</insert-deleted H.8.5.3.2.3 </deleted is invoked
with mergeCandList, <deleted mergecandIsVspFlag
</deleted the reference indices refldxLON and
refldxL1N, the prediction list utilization flags
predFlag|LON and predFlag|L1N, the motion vectors
mvLON and mvL1N of every candidate N in merge
CandList, numCurrMergeCand, and numOrigMerge
Cand as inputs, and the output is assigned to merge
CandList, numCurrMergeCand, the reference indices
refldxL0combCand and reflaxL1 combCand, the pre
diction list utilization flags predFlag|L0combCand and
predFlag 1 combCand, and the motion vectors
mvL0combCand and mvL1 combCand of every new

10

15

25

30

35

40

45

50

55

60

65

36
candidate combCand being added into mergeCan
dList. The number of candidates being added, num
CombMergeCand, is set equal to (numCurrMerge
Cand-numOrigMergeCand). When
numCombMergecand is greater than 0, k ranges from
0 to numCombMerge(Cand-1, inclusive <deleted, and
mergecandIsVspFlag numOrigMerge(Cand+k is set
equal to 0.

11. The derivation process for Zero motion vector merging
candidates specified in subclause 8.5.3.2.4 is invoked
with the mergeCandList, the reference indices
refldxLON and refldxL1N, the prediction list utilization
flags predFlagLON and predFlag L1N, the motion vec
tors mvLON and mvL1N of every candidate N in
mergecandList, and numCurrMerge(Cand as inputs,
and the output is assigned to mergeCandList, numCur
rMergeCand, the reference indices refldxLOzeroCand
and refldxL1zeroCand the prediction list utilization
flags predFlag 0ZeroCand and
predFlag|L1ZeroCand, and the motion vectors
mvL0ZeroCand, and mVIL1ZeroCand of every new
candidate ZeroCand, being added into merge(Cand List.
The number of candidates being added, numZer
oMergeCand, is set equal to (numCurrMerge(Cand
numOrigMergecand-numCombMergeCand). When
numZeroMergeCand is greater than 0, m ranges from 0
to numZeroMergeCand-1, inclusive <insertd, and
mergecandIsVspFlag numOrigMerge(Cand+num
CombMergeCand+m is set equal to 0 </insertd.
<deleted H. 8.5.3.2.3 Derivation process for combined
bi-predictive merging candidates Inputs to this process
a.

a merging candidate list mergeCandList.
a list merge(CandlsV spFlag,
the reference indices refldxLON and refldxL1N of every

candidate N in mergeCandList,
the prediction list utilization flags predFlag LON and

predFlag|L1N of every candidate N in mergeCan
dList,

the motion vectors mvLON and mvL1N of every can
didate N in merge(CandList,

the number of elements numCurrMergeCand within
mergecandList,

the number of elements numOrigMergeCand within the
mergecandList after the spatial and temporal merge
candidate derivation process.

Outputs of this process are:
the merging candidate list mergeCandList,
the number of elements numCurrMergeCand within

mergecandList,
the reference indices refldxL0combCandk and

refldxL1 combCandk of every new candidate comb
Candk added into merge(CandList during the invoka
tion of this process,

the prediction list utilization flags
predFlag|L0combCandk and predFlagL1 combCandk
of every new candidate combCandk added into
mergecandList during the invokation of this process,

the motion vectors mvL0combCandk and
mvL1 combCandk of every new candidate comb
Candk added into merge(CandList during the invoka
tion of this process.

When numOrigMergecand is greater than 1 and less than
MaxNumMergeCand, the variable numInputMerge
Cand is set equal to numCurrMergeCand, the variable
combIdx is set equal to 0, the variable combStop is set

US 9,554,150 B2
37

equal to FALSE, and the following steps are repeated
until combStop is equal to TRUE:
1. The variables 10Cand Idx and 11 Cand Idx are derived
using combIdx as specified in Table 8-6.

2. The following assignments are made, with 10Cand
being the candidate at position 10Cand Idx and
11Cand being the candidate at position 11 Cand Idx in
the merging candidate list merge(CandList:
10Cand-mergeCandList10Cand Idx
11Cand-mergeCandList11 Cand Idx

3. When all of the following conditions are true:
mergeCand IsVspFlag 10Cand Idx=0,
mergeCand IsVspFlag 11 Cand Idx=0,
predFlag|L010Cand=
predFlag|L111Cand=
(DiffPicOrderCnt(RefpicList0refldxL010Cand,

RefPicList1 refldxL111C and) =0)
(mvL010Cand -mvL111Cand)

the candidate combCand with k equal to (numCur
rMergecand-numInputMergecand) is added at the
end of merge(CandList, i.e. mergeCandList numCur
rMerge(Cand is set equal to combCand, and the
reference indices, the prediction list utilization flags,
and the motion vectors of combCand are derived as
follows and numCurrMergeCand is incremented by
1:

refldxL0combCand refldxLOIOCand (H-101)

refldxL1 combCand refldxL111Cand (H-102)

predFlagL0combCand (H-103)

predFlagL1 combCand (H-104)

mvLO.combCand O=mvLOIOCand O (H-105)

mvLO.combCand 1=mvLOIOCand 1 (H-106)

mvL1 combCand O=mvL111Cand O (H-107)

mvL1 combCand 1=mvL111Cand 1 (H-108)

numCurrMergeCand=numCurrMergeCand+1 (H-109)

4. The variable combidx is incremented by 1.
When combIdx is equal to (numOrigMergeCand (num

OrigMergeCand-1)) or numCurrMergeCand is equal
to MaxNumMergeCand, combStop is set equal to
TRUE. </deleted

As shown above, “mergecandIsVspFlag” is any array of
BVSP flags defined in section H.8.5.3.2.1 of 3D-HEVC
Draft Text 1. Each value in the “mergecandIsVspFlag”
array corresponds to a merging candidate in the list and
indicates whether the corresponding merging candidate is
based on BVSP. In step 10 of section H.8.5.3.2.1 “merge
Cand IsVspFlag” is deleted, such that “mergeCand IsVisp
Flag” is not provided as an input to the derivation process for
combined bi-predictive merging candidates. Furthermore, in
accordance with one or more techniques of this disclosure,
Section H.8.5.3.2.3 is deleted from 3D-HEVC Draft Text 1
because the derivation process for combined bi-predictive
merging candidates is the same in 3D-HEVC as that defined
in HEVC (i.e., section 8.5.3.2.3 of HEVC Working Draft
10). Additionally, in accordance with one or more tech
niques of this disclosure, as shown in the text above,
mergecandis Vsplagnum OrigMergeCand+k is not set
equal to 0 because it is no longer necessary to do so.

5

10

15

25

30

35

40

45

50

55

60

65

38
FIG. 8 is a block diagram illustrating an example video

encoder 20 that may implement the techniques of this
disclosure. FIG. 8 is provided for purposes of explanation
and should not be considered limiting of the techniques as
broadly exemplified and described in this disclosure. For
purposes of explanation, this disclosure describes video
encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other
coding standards or methods.

In the example of FIG. 8, video encoder 20 includes a
prediction processing unit 100, a video data memory 101, a
residual generation unit 102, a transform processing unit
104, a quantization unit 106, an inverse quantization unit
108, an inverse transform processing unit 110, a reconstruc
tion unit 112, a filter unit 114, a decoded picture buffer 116,
and an entropy encoding unit 118. Prediction processing unit
100 includes an inter-prediction processing unit 120 and an
intra-prediction processing unit 126. Inter-prediction pro
cessing unit 120 includes a motion estimation unit 122 and
a motion compensation unit 124. In other examples, video
encoder 20 may include more, fewer, or different functional
components.

Video encoder 20 may receive video data. Video data
memory 101 may store video data to be encoded by the
components of video encoder 20. The video data stored in
video data memory 101 may be obtained, for example, from
video source 18. Decoded picture buffer 116 may be a
reference picture memory that stores reference video data
for use in encoding video data by video encoder 20, e.g., in
intra- or inter-coding modes. Video data memory 101 and
decoded picture buffer 116 may be formed by any of a
variety of memory devices, such as dynamic random access
memory (DRAM), including synchronous DRAM
(SDRAM), magnetoresistive RAM (MRAM), resistive
RAM (RRAM), or other types of memory devices. Video
data memory 101 and decoded picture buffer 116 may be
provided by the same memory device or separate memory
devices. In various examples, video data memory 101 may
be on-chip with other components of video encoder 20, or
off-chip relative to those components.

Video encoder 20 may encode each CTU in a slice of a
picture of the video data. Each of the CTUs may be
associated with equally-sized luma coding tree blocks
(CTBs) and corresponding CTBs of the picture. As part of
encoding a CTU, prediction processing unit 100 may per
form quad-tree partitioning to divide the CTBs of the CTU
into progressively-smaller blocks. The smaller block may be
coding blocks of CUs. For example, prediction processing
unit 100 may partition a CTB associated with a CTU into
four equally-sized Sub-blocks, partition one or more of the
Sub-blocks into four equally-sized Sub-Sub-blocks, and so
O.

Video encoder 20 may encode CUs of a CTU to generate
encoded representations of the CUs (i.e., coded CUs). As
part of encoding a CU, prediction processing unit 100 may
partition the coding blocks associated with the CU among
one or more PUs of the CU. Thus, in some examples, each
PU may be associated with a luma prediction block and
corresponding chroma prediction blocks. Video encoder 20
and video decoder 30 may support PUs having various sizes.
As indicated above, the size of a CU may refer to the size
of the luma coding block of the CU and the size of a PU may
refer to the size of a luma prediction block of the PU.
Assuming that the size of a particular CU is 2Nx2N, video
encoder 20 and video decoder 30 may support PU sizes of
2NX2N or NxN for intra prediction, and symmetric PUsizes
of 2Nx2N, 2NxN, NX2N, NXN, or similar for inter predic

US 9,554,150 B2
39

tion. Video encoder 20 and video decoder 30 may also
support asymmetric partitioning for PU sizes of 2NxnU.
2NxnD, nLX2N, and nRX2N for inter prediction.

Inter-prediction processing unit 120 may generate predic
tive data for a PU by performing interprediction on each PU
of a CU. The predictive data for the PU may include
predictive blocks of the PU and motion information for the
PU. Inter-prediction processing unit 120 may perform dif
ferent operations for a PU of a CU depending on whether the
PU is in an Islice, a Pslice, or a B slice. In an Islice, all PUs
may be intra predicted. Hence, if the PU is in an I slice,
inter-prediction processing unit 120 does not perform inter
prediction on the PU. Thus, for blocks encoded in I-mode,
the predicted block is formed using spatial prediction from
previously-encoded neighboring blocks within the same
frame.

If a PU is in a P slice, motion estimation unit 122 may
search the reference pictures in a list of reference pictures
(e.g., “ReflicListO) for a reference region for the PU. The
reference region for the PU may be a region, within a
reference picture, that contains sample blocks that most
closely correspond to the sample blocks of the PU. Motion
estimation unit 122 may generate a reference index that
indicates a position in ReflicList0 of the reference picture
containing the reference region for the PU. In addition,
motion estimation unit 122 may generate a motion vector
that indicates a spatial displacement between a coding block
of the PU and a reference location associated with the
reference region. For instance, the motion vector may be a
two-dimensional vector that provides an offset from the
coordinates in the current picture to coordinates in a refer
ence picture. Motion estimation unit 122 may output the
reference index and the motion vector as the motion infor
mation of the PU. Motion compensation unit 124 may
generate the predictive blocks (i.e., predictive blocks) of the
PU based on actual or interpolated samples associated with
the reference location indicated by the motion vector of the
PU.

If a PU is in a B slice, motion estimation unit 122 may
perform uni-prediction or bi-prediction for the PU. To
perform uni-prediction for the PU, motion estimation unit
122 may search the reference pictures of ReflicList0 or a
second reference picture list (“ReflicList1) for a reference
region for the PU. Motion estimation unit 122 may output,
as the motion information of the PU, a reference index that
indicates a position in ReflicList0 or ReflicList1 of the
reference picture that contains the reference region, a motion
vector that indicates a spatial displacement between a
sample block of the PU and a reference location associated
with the reference region, and one or more prediction
direction indicators that indicate whether the reference pic
ture is in ReflicList0 or ReflicList1. Motion compensation
unit 124 may generate the predictive blocks of the PU based
at least in part on actual or interpolated samples associated
with the reference location indicated by the motion vector of
the PU.

To perform bi-directional inter prediction for a PU,
motion estimation unit 122 may search the reference pic
tures in ReflicList0 for a reference region for the PU and
may also search the reference pictures in ReflicList1 for
another reference region for the PU. Motion estimation unit
122 may generate reference indices that indicate positions in
RefRicList.0 and ReflicList1 of the reference pictures that
contain the reference regions. In addition, motion estimation
unit 122 may generate motion vectors that indicate spatial
displacements between the reference locations associated
with the reference regions and a prediction block (e.g., a

10

15

25

30

35

40

45

50

55

60

65

40
sample block) of the PU. The motion information of the PU
may include the reference indices and the motion vectors of
the PU. Motion compensation unit 124 may generate the
predictive blocks of the PU based at least in part on actual
or interpolated samples associated with the reference region
indicated by the motion vectors of the PU.

In accordance with one or more techniques of this dis
closure, motion estimation unit 122 may generate a list of
merging candidates for coding a video block of 3D video. As
part of generating the list of merging candidates, motion
estimation unit 122 may determine whether a number of
merging candidates in the list of merging candidates is less
than 5. In response to determining that the number of
merging candidates in the list of merging candidates is less
than 5, motion estimation unit 122 may derive one or more
combined bi-predictive merging candidates. Motion estima
tion unit 122 may include the one or more combined
bi-predictive merging candidates in the list of merging
candidates. Furthermore, in Some examples, motion estima
tion unit 122 may select a merging candidate in the list of
merging candidates. Video encoder 20 may signal a position
in the list of merging candidates of the selected merging
candidate. In some examples, the maximum number of
merging candidates in the list of merging candidates is equal
greater than 5 (e.g., 6).

Continued reference is now made to the example of FIG.
8. Intra-prediction processing unit 126 may generate pre
dictive data for a PU by performing intra prediction on the
PU. The predictive data for the PU may include predictive
blocks for the PU and various syntax elements. Intra
prediction processing unit 126 may perform intra prediction
on PUs in I slices, Pslices, and B slices.
To perform intra prediction on a PU, intra-prediction

processing unit 126 may use multiple intra prediction modes
to generate multiple sets of predictive data for the PU. To use
Some intra prediction modes to generate a set of predictive
data for the PU, intra-prediction processing unit 126 may
extend samples from neighboring blocks across the predic
tive block of the PU in a direction associated with the intra
prediction mode. The neighboring PUs may be above, above
and to the right, above and to the left, or to the left of the PU,
assuming a left-to-right, top-to-bottom encoding order for
PUs, CUs, and CTUs. Intra-prediction processing unit 126
may use various numbers of intra prediction modes, e.g., 33
directional intra prediction modes. In some examples, the
number of intra prediction modes may depend on the size of
the region associated with the PU.

Prediction processing unit 100 may select the predictive
data for PUs of a CU from among the predictive data
generated by inter-prediction processing unit 120 for the
PUs or the predictive data generated by intra-prediction
processing unit 126 for the PUs. In some examples, predic
tion processing unit 100 selects the predictive data for the
PUs of the CU based on rate? distortion metrics of the sets of
predictive data. The predictive blocks of the selected pre
dictive data may be referred to herein as the selected
predictive blocks.

Residual generation unit 102 may generate, based on the
coding blocks (e.g., luma, Cb and Crcoding blocks) of a CU
and the selected predictive blocks (e.g., predictive luma, Cb
and Cr blocks) of the PUs of the CU, residual blocks (e.g.,
residual luma, Cb and Cr residual blocks) of the CU. In other
words, residual generation unit 102 may generate a residual
signal for the CU. For instance, residual generation unit 102
may generate the residual blocks of the CU such that each
sample in the residual blocks has a value equal to a differ

US 9,554,150 B2
41

ence between a sample in a coding block of the CU and a
corresponding sample in a corresponding selected predictive
block of a PU of the CU.

Transform processing unit 104 may perform quad-tree
partitioning to partition the residual blocks associated with
a CU into transform blocks corresponding to (i.e., associated
with) TUs of the CU. Thus, a TU may be associated with a
luma transform block and two chroma transform blocks. The
sizes and positions of the transform blocks (e.g., luma and
chroma transform blocks) of TUs of a CU may or may not
be based on the sizes and positions of prediction blocks of
the PUs of the CU. A quad-tree structure known as a
“residual quad-tree' (RQT) may include nodes associated
with each of the TUs. The TUs of a CU may correspond to
leaf nodes of the RQT.

Transform processing unit 104 may generate transform
coefficient blocks for each TU of a CU by applying one or
more transforms to the transform blocks of the TU. Trans
form processing unit 104 may apply various transforms to a
transform block associated with a TU. For example, trans
form processing unit 104 may apply a discrete cosine
transform (DCT), a directional transform, or a conceptually
similar transform to a transform block. In some examples,
transform processing unit 104 does not apply transforms to
a transform block. In Such examples, the transform block
may be treated as a transform coefficient block.

Quantization unit 106 may quantize the transform coef
ficients in a transform coefficient block. The quantization
process may reduce the bit depth associated with some or all
of the transform coefficients of a transform coefficient block.
For example, an n-bit transform coefficient may be rounded
down to an m-bit transform coefficient during quantization,
where n is greater than m. Quantization unit 106 may
quantize a transform coefficient block associated with a TU
of a CU based on a quantization parameter (QP) value
associated with the CU. Video encoder 20 may adjust the
degree of quantization applied to the transform coefficient
blocks associated with a CU by adjusting the QP value
associated with the CU. Quantization may introduce loss of
information, thus quantized transform coefficients may have
lower precision than the original ones.

Inverse quantization unit 108 and inverse transform pro
cessing unit 110 may apply inverse quantization and inverse
transforms to a transform coefficient block, respectively, to
reconstruct a residual block (i.e., a transform block) from the
transform coefficient block. Reconstruction unit 112 may
reconstruct a coding block of a CU Such that each sample of
the coding block is equal to a Sum of a sample of a predictive
block of a PU of the CU and a corresponding sample of a
transform block of a TU of the CU. For example, recon
struction unit 112 may add reconstructed residual blocks of
TUs of a CU to corresponding samples from one or more
predictive blocks of PUs of the CU generated by prediction
processing unit 100 to produce a reconstructed coding
blocks of the CU. Thus, by reconstructing transform blocks
for each TU of a CU in this way, video encoder 20 may
reconstruct the coding blocks of the CU.

Filter unit 114 may perform one or more deblocking
operations to reduce blocking artifacts in the coding blocks
associated with a CU. Decoded picture buffer 116 may store
the reconstructed coding blocks after filter unit 114 performs
the one or more deblocking operations on the reconstructed
coding blocks. Thus, decoded picture buffer 116 may be a
memory configured to store video data. Inter-prediction
processing unit 120 may use a reference picture that contains
the reconstructed coding blocks to perform inter prediction
on PUs of other pictures. In addition, intra-prediction pro

10

15

25

30

35

40

45

50

55

60

65

42
cessing unit 126 may use reconstructed coding blocks in
decoded picture buffer 116 to perform intra prediction on
other PUs in the same picture as the CU.

Entropy encoding unit 118 may receive data from other
functional components of video encoder 20. For example,
entropy encoding unit 118 may receive coefficient blocks
from quantization unit 106 and may receive syntax elements
from prediction processing unit 100. Entropy encoding unit
118 may perform one or more entropy encoding operations
on the data to generate entropy-encoded data. For example,
entropy encoding unit 118 may perform a CABAC opera
tion, a context-adaptive variable length coding (CAVLC)
operation, a variable-to-variable (V2V) length coding opera
tion, a syntax-based context-adaptive binary arithmetic cod
ing (SBAC) operation, a Probability Interval Partitioning
Entropy (PIPE) coding operation, an Exponential-Golomb
encoding operation, or another type of entropy encoding
operation on the data. Video encoder 20 may output a
bitstream that includes entropy-encoded data generated by
entropy encoding unit 118. For instance, the bitstream may
include data that represents a RQT for a CU. The bitstream
may include data that is not entropy encoded.

FIG. 9 is a block diagram illustrating an example video
decoder 30 that is configured to implement the techniques of
this disclosure. FIG. 9 is provided for purposes of explana
tion and is not limiting on the techniques as broadly exem
plified and described in this disclosure. For purposes of
explanation, this disclosure describes video decoder 30 in
the context of HEVC coding. However, the techniques of
this disclosure may be applicable to other coding standards
or methods.

In the example of FIG. 9, video decoder 30 includes an
entropy decoding unit 150, a video data memory 151, a
prediction processing unit 152, an inverse quantization unit
154, an inverse transform processing unit 156, a reconstruc
tion unit 158, a filter unit 160, and a decoded picture buffer
162. Prediction processing unit 152 includes a motion com
pensation unit 164 and an intra-prediction processing unit
166. In other examples, video decoder 30 may include more,
fewer, or different functional components.

Video decoder 30 may receive a bitstream. Video data
memory 151 may store video data, such as an encoded video
bitstream, to be decoded by the components of video
decoder 30. The video data stored in video data memory 151
may be obtained, for example, from channel 16, e.g., from
a local video source. Such as a camera, via wired or wireless
network communication of video data, or by accessing
physical data storage media. Video data memory 151 may
form a coded picture buffer (CPB) that stores encoded video
data from an encoded video bitstream. Decoded picture
buffer 162 may be a reference picture memory that stores
reference video data for use in decoding video data by video
decoder 30, e.g., in intra- or inter-coding modes. Video data
memory 151 and decoded picture buffer 162 may be formed
by any of a variety of memory devices, such as dynamic
random access memory (DRAM), including synchronous
DRAM (SDRAM), magnetoresistive RAM (MRAM), resis
tive RAM (RRAM), or other types of memory devices.
Video data memory 151 and decoded picture buffer 162 may
be provided by the same memory device or separate memory
devices. In various examples, video data memory 151 may
be on-chip with other components of video decoder 30, or
off-chip relative to those components.

Entropy decoding unit 150 may parse the bitstream to
decode syntax elements from the bitstream. Entropy decod
ing unit 150 may entropy decode entropy-encoded syntax
elements in the bitstream. Prediction processing unit 152,

US 9,554,150 B2
43

inverse quantization unit 154, inverse transform processing
unit 156, reconstruction unit 158, and filter unit 160 may
generate decoded video data based on the syntax elements
obtained (e.g., extracted) from the bitstream.
The bitstream may comprise a series of NAL units. The

NAL units of the bitstream may include coded slice NAL
units. As part of decoding the bitstream, entropy decoding
unit 150 may obtain (e.g., extract) and entropy decode
syntax elements from the coded slice NAL units. Each of the
coded slices may include a slice header and slice data. The
slice header may contain syntax elements pertaining to a
slice. The syntax elements in the slice header may include a
syntax element that identifies a PPS associated with a picture
that contains the slice.

In addition to obtaining (e.g., decoding) syntax elements
from the bitstream, video decoder 30 may perform a recon
struction operation on CUs. To perform the reconstruction
operation on a CU (e.g., a non-partitioned CU), video
decoder 30 may perform a reconstruction operation on each
TU of the CU. By performing the reconstruction operation
for each TU of the CU, video decoder 30 may reconstruct
residual blocks (i.e., transform blocks) of the TUs of the CU.
As part of performing a reconstruction operation on a TU

of a CU, inverse quantization unit 154 may inverse quantize,
i.e., de-quantize, coefficient blocks of (i.e., associated with)
the TU. Inverse quantization unit 154 may use a QP value
associated with the CU of the TU to determine a degree of
quantization and, likewise, a degree of inverse quantization
for inverse quantization unit 154 to apply. That is, the
compression ratio, i.e., the ratio of the number of bits used
to represent original sequence and the compressed one, may
be controlled by adjusting the value of the QP used when
quantizing transform coefficients. The compression ratio
may also depend on the method of entropy coding
employed.

After inverse quantization unit 154 inverse quantizes a
coefficient block, inverse transform processing unit 156 may
apply one or more inverse transforms to the coefficient block
in order to generate a residual block associated with the TU.
For example, inverse transform processing unit 156 may
apply an inverse DCT, an inverse integer transform, an
inverse Karhunen-Loeve transform (KLT), an inverse rota
tional transform, an inverse directional transform, or another
inverse transform to the coefficient block.

If a PU is encoded using intra prediction, intra-prediction
processing unit 166 may perform intra prediction to generate
predictive blocks for the PU. For instance, intra-prediction
processing unit 166 may use an intra prediction mode to
generate the predictive luma, Cb and Cr blocks for the PU
based on the prediction blocks of spatially-neighboring PUs.
Intra-prediction processing unit 166 may determine the intra
prediction mode for the PU based on one or more syntax
elements decoded from the bitstream.

Prediction processing unit 152 may construct a first
reference picture list (RefPicListO) and a second reference
picture list (RefDicList1) based on syntax elements obtained
from the bitstream. Furthermore, if a PU is encoded using
inter prediction, entropy decoding unit 150 may determine
(e.g., extract) motion information for the PU. Motion com
pensation unit 164 may determine, based on the motion
information of the PU, one or more reference blocks for the
PU. Motion compensation unit 164 may generate, based on
samples blocks at the one or more reference blocks for the
PU, predictive blocks (e.g., predictive luma, Cb and Cr
blocks) for the PU.
As indicated above, video encoder 20 may signal the

motion information of a PU using merge mode, skip mode

10

15

25

30

35

40

45

50

55

60

65

44
or AMVP mode. When video encoder 20 signals the motion
information of a current PU using AMVP mode, entropy
decoding unit 150 may decode, from the bitstream, a refer
ence index, a MVD for the current PU, and a candidate
index. Furthermore, motion compensation unit 164 may
generate an AMVP candidate list for the current PU. The
AMVP candidate list includes one or more motion vector
predictor candidates. Each of the motion vector predictor
candidates specifies a motion vector of a PU that spatially or
temporally neighbors the current PU. Motion compensation
unit 164 may determine, based at least in part on the
candidate index, a selected motion vector predictor candi
date in the AMVP candidate list. Motion compensation unit
164 may then determine the motion vector of the current PU
by adding the MVD to the motion vector specified by the
selected motion vector predictor candidate. In other words,
for AMVP, the motion vector is calculated as motion vector
(MV)—MVP+MVD, wherein the index of the motion vector
predictor (MVP) is signaled and the MVP is one of the
motion vector candidates (spatial or temporal) from the
AMVP list, and the MVD is signaled to the decoder side.

If the current PU is bi-predicted and the motion informa
tion of the PU is signaled in AMVP mode, entropy decoding
unit 150 may decode an additional reference index, MVD,
and candidate index from the bitstream. Motion compensa
tion unit 162 may repeat the process described above using
the additional reference index, MVD, and candidate index to
derive a second motion vector for the current PU. In this
way, motion compensation unit 162 may derive a motion
vector for ReflicList.0 (i.e., a ReflpicList0 motion vector)
and a motion vector for ReflicList1 (i.e., a ReflicList1
motion vector).

In accordance with one or more techniques of this dis
closure, motion compensation unit 164 may generate a list
of merging candidates for coding a video block of 3D video.
As part of generating the list of merging candidates, motion
compensation unit 164 may determine whether a number of
merging candidates in the list of merging candidates is less
than 5. In response to determining that the number of
merging candidates in the list of merging candidates is less
than 5, motion compensation unit 164 may derive one or
more combined bi-predictive merging candidates. Motion
compensation unit 164 may include the one or more com
bined bi-predictive merging candidates in the list of merging
candidates. Furthermore, in Some examples, video decoder
30 may obtain, from a bitstream, a syntax element indicating
a selected merging candidate in the list of merging candi
dates. Motion compensation unit 164 may use motion infor
mation of the selected candidate to generate predictive
samples of the current PU. In some examples, the maximum
number of merging candidates in the list of merging candi
dates is equal greater than 5 (e.g., 6).

Continuing reference is now made to FIG. 9. Reconstruc
tion unit 158 may use the transform blocks (e.g., luma, Cb
and Cr transform blocks) of TUs of a CU and the predictive
blocks (e.g., predictive luma, Cb and Cr blocks) of the PUs
of the CU, i.e., either intra-prediction data or inter-prediction
data, as applicable, to reconstruct the coding blocks (e.g.,
luma, Cb and Cr coding blocks) of the CU. For example,
reconstruction unit 158 may add samples of the transform
blocks (e.g., luma, Cb and Cr transform blocks) to corre
sponding samples of the predictive blocks (e.g., predictive
luma, Cb and Cr blocks) to reconstruct the coding blocks
(e.g., luma, Cb and Cr coding blocks) of the CU.

Filter unit 160 may perform a deblocking operation to
reduce blocking artifacts associated with the coding blocks
(e.g., luma, Cb and Cr coding blocks) of the CU. Video

US 9,554,150 B2
45

decoder 30 may store the coding blocks (e.g., luma, Cb and
Cr coding blocks) of the CU in decoded picture buffer 162.
Decoded picture buffer 162 may provide reference pictures
for Subsequent motion compensation, intra prediction, and
presentation on a display device, such as display device 32 5
of FIG. 1. For instance, video decoder 30 may perform,
based on the blocks (e.g., luma, Cb and Cr blocks) in
decoded picture buffer 162, intra prediction or inter predic
tion operations on PUs of other CUs. In this way, video
decoder 30 may obtain, from the bitstream, transform coef- 10
ficient levels of the significant luma coefficient block,
inverse quantize the transform coefficient levels, apply a
transform to the transform coefficient levels to generate a
transform block, generate, based at least in part on the
transform block, a coding block, and output the coding block 15
for display.

FIG. 10A is a flowchart illustrating an example operation
of video encoder 20 to encode data associated with 3D
Video, in accordance with one or more techniques of this
disclosure. The operation of FIG. 10A, along with opera- 20
tions illustrated in other flowcharts of this disclosure, are
examples. Other example operations in accordance with the
techniques of this disclosure may include more, fewer, or
different actions.

In the example of FIG. 10A, video encoder 20 may 25
generate a list of merging candidates (200). In other words,
video encoder 20 may generate a merge candidate list. FIGS.
11 and 12, described elsewhere in this disclosure, illustrate
an example operation for generating the list of merging
candidates. In some examples, video encoder 20 may gen- 30
erate the merge candidate list in the same manner as video
decoder 30. In accordance with one or more techniques of
this disclosure, when video encoder 20 generates the merge
candidate list, video encoder 20 may determine whether a
number of merge candidates in the merge candidate list is 35
less than 5. In response to determining that the number of
merge candidates in the merge candidate list is less than 5,
video encoder 20 may derive one or more bi-predictive
merging candidates. Video encoder 20 may include the one
or more bi-predictive merging candidates in the merge 40
candidate list. In some examples, the maximum number of
merging candidates in the merge candidate list is equal to 6.

Furthermore, in the example of FIG. 10A, video encoder
20 may select a candidate in the list of merging candidates
(202). In some examples, video encoder 20 may signal the 45
selected candidate in a bitstream. For instance, video
encoder 20 may include a merge index syntax element in the
bitstream. Video encoder 20 may encode a video block
based on the selected candidate (204). For example, the
video block may be a CU. In this example, video encoder 20 50
may use the motion information (e.g., motion vectors,
reference indices, etc.) of the selected candidate to deter
mine a predictive block for a PU of the CU. Furthermore, in
this example, video encoder 20 may determine values of at
least Some samples of a transform block (e.g., a residual 55
block) based on samples of the predictive block and corre
sponding samples of a coding block of the CU. For instance,
video encoder 20 may determine values of at least some of
the samples of the transform block such that the samples are
equal to differences between samples of the predictive block 60
and corresponding samples of a coding block of the CU.

FIG. 10B is a flowchart illustrating an example operation
of video decoder 30 to decode data associated with 3D
Video, in accordance with one or more techniques of this
disclosure. In the example of FIG. 10B, video decoder 30 65
may generate a list of merging candidates (220). In other
words, video decoder 30 may generate a merge candidate

46
list. FIGS. 11 and 12, described elsewhere in this disclosure,
illustrate an example operation for generating the list of
merging candidates. In some examples, video decoder 30
may generate the merging candidate list in the same manner
as video encoder 20. In accordance with one or more
techniques of this disclosure, when video decoder 30 gen
erates the merging candidate list, video decoder 30 may
determine whether a number of merging candidates in the
merging candidate list is less than 5. In response to deter
mining that the number of merging candidates in the merg
ing candidate list is less than 5, video decoder 30 may derive
one or more bi-predictive merging candidates. Video
decoder 30 may include the one or more bi-predictive
merging candidates in the merging candidate list. In some
examples, the maximum number of merging candidates in
the merging candidate list is equal to 6.

Furthermore, in the example of FIG. 10B, video decoder
30 may determine a selected candidate in the list of merging
candidates (222). In some examples, video decoder 30 may
determine the selected candidate based on a value indicated
by a syntax element signaled in a bitstream. Video decoder
30 may decode a video block based on the selected candidate
(224). For example, the video block may be a CU. In this
example, video decoder 30 may use the motion information
(e.g., motion vectors, reference indices, etc.) of the selected
candidate to determine a predictive block for a PU of the
CU. Furthermore, in this example, video decoder 30 may
determine values of at least some of the samples of a coding
block of the CU based on the predictive block. For instance,
video decoder 30 may determine values of at least some of
the samples of the coding block Such that the samples are
equal to sums of samples of the predictive block and
corresponding samples of a transform block of a TU of the
CU.

FIG. 11 is a flowchart illustrating a first portion of an
example operation 300 to construct a merge candidate list
for a current block, in accordance with one or more tech
niques of this disclosure. In the example operation of FIG.
11, one or more actions may be rearranged or omitted. In
other examples, similar operations may include additional
actions.

In the example of FIG. 11, a video coder (e.g., video
encoder 20 or video decoder 30) may determine an IPMVC
(302). In some examples, the video coder may determine the
IPMVC by using a disparity vector for the current block to
identify a corresponding block in an inter-view reference
picture. In Such examples, if the corresponding block is not
intra predicted and not inter-view predicted and has a
temporal motion vector (i.e., a motion vector that indicates
a location in a reference picture associated with a different
time instance than the corresponding block), the IPMVC
may specify the motion vectors of the corresponding block,
prediction direction indicators of the corresponding block,
and converted reference indices of the corresponding block.
Subsequently, the video coder may determine whether the
IPMVC is available (304). In some examples, the IPMVC is
unavailable if the corresponding block in the inter-view
reference picture is intra predicted or outside the boundaries
of the inter-view reference picture. Responsive to determin
ing that the IPMVC is available (“YES” of 304), the video
coder may insert the IPMVC in the merge candidate list
(306).

After inserting the IPMVC in the merge candidate list or
in response to determining that the IPMVC is not available
(“NO” of 304), the video coder may check spatial neigh
boring PUs to determine whether the spatial neighboring
PUs have available motion vectors (308). In some examples,

US 9,554,150 B2
47

the spatial neighboring PUs cover the locations indicated Ao
A, B, B, and B in FIG. 2. For ease of explanation, this
disclosure may refer to the motion information of PUs
covering the locations Ao A, Bo, B, and B2 as Ao A. Bo
B, and B, respectively.

In the example of FIG. 11, the video coder may determine
whether A matches the IPMVC (310). Responsive to deter
mining that A does not match the IPMVC (“NO” of 310),
the video coder may insert A into the merge candidate list
(312). Otherwise, responsive to determining that A matches
the IPMVC (“YES” of 310) or after inserting A into the
merge candidate list, the video coder may determine whether
B matches A or the IPMVC (314). Responsive to deter
mining that B does not match A or the IPMVC (“NO” of
314), the video coder may insert B into the merge candidate
list (316). On the other hand, responsive to determining that
B matches A or the IPMVC (“YES” of 314) or after
inserting B into the merge candidate list, the video coder
may determine whether Bo is available (318). Responsive to
determining that Bo is available (“YES” of 318), the video
coder may insert Bo into the merge candidate list (320). If Bo
is not available (“NO” of 318) or after inserting Bo into the
merge candidate list, the video coder may determine whether
the IDMVC is available and does not match A or B (332).
The IDMVC may specify the disparity vector for the current
PU. The IDMVC may be unavailable if the IDMVC indi
cates a location that is outside the boundaries of an inter
view reference picture. Responsive to determining that the
IDMVC is available and does not match A or B (“YES” of
332), the video coder may insert the IDMVC into the merge
candidate list (334). If the IDMVC is not available or the
IDMVC matches A or B (“NO” of 332) or after inserting
the IDMVC into the merge candidate list, the video coder
may perform the portion of operation 300 shown in FIG. 12
(denoted by “A”).

FIG. 12 is a flowchart illustrating a second portion of the
example operation 300 of FIG. 11 to construct a merge
candidate list for a current block, in accordance with one or
more techniques of this disclosure. As indicated above, the
video coder may perform the portion of operation 300
shown in FIG. 12 if the IDMVC is not available or the
IDMVC matches A or B (“NO” of 332) or after inserting
the IDMVC into the merge candidate list. Hence, if the
IDMVC is not available or the IDMVC matches A or B
(“NO” of 332) or after inserting the IDMVC into the merge
candidate list, the video coder may determine whether
BVSP is enabled (336). If BVSP is enabled (“YES” of 336),
the video coder may insert a BVSP candidate into the merge
candidate list (338). If BVSP is not enabled (“NO” of 336)
or after inserting the BVSP candidate into the merge can
didate list, the video coder may determine whether A is
available (340). If A is available (“YES” of 340), the video
coder may insert Ao into the merge candidate list (342).
Otherwise, if A is not available (“NO” of 340) or after
inserting Ao into the merge candidate list, the video coder
may determine whether B is available (344). If B is
available (“YES of 344), the video coder may insert B into
the merge candidate list (346).

If B is not available (“NO” of 344) or after inserting B
into the merge candidate list, the video coder may determine
whether inter-view motion prediction is applied (348). In
other words, the video coder may determine whether the
current block may be coded using inter-view motion pre
diction. In response to determining that inter-view motion
prediction is applied (“YES of 348), the video coder may
determine a shifted candidate (350). In other words, the
video coder may determine a DSMV candidate, as described

10

15

25

30

35

40

45

50

55

60

65

48
elsewhere in this disclosure. After determining the shifted
candidate, the video coder may determine whether the
shifted candidate is available (352). If the shifted candidate
is available (“YES” of 352), the video coder may include the
shifted candidate in the merge candidate list (354). If inter
view motion prediction is not applied (“NO” of 348), the
shifted candidate is not available (“NO” of 352), or after
including the shifted candidate in the merge candidate list,
the video coder may include a temporal merging candidate
in the merge candidate list (356).

Furthermore, the video coder may perform a derivation
process for combined bi-predictive merging candidates
(358). An example derivation process for combined bi
predictive merging candidates in accordance with one or
more techniques of this disclosure is described below with
regard to FIG. 13. In addition, the video coder may perform
a derivation process for Zero motion vector candidates (360).
An example derivation process for Zero motion vector
candidates is described in Section 8.5.3.2.4 of HEVC WD
10.

FIG. 13 is a flowchart illustrating an example derivation
process for combined bi-predictive merging candidates, in
accordance with one or more techniques of this disclosure.
The derivation process of FIG. 13 may be performed without
checking any BVSP flags. For instance, the derivation
process of FIG. 13 may be performed without providing
mergecandIsVspFlag as input to the derivation process for
combined bi-predictive merging candidates, as is done in
section H.8.5.3.2.1 of 3D-HEVC Draft Text 1. Furthermore,
the derivation process of FIG. 13 may be performed without
using merge(Cand IsV spFlag in the derivation process for
combined bi-predictive merging candidates, as is done in
Section H.8.5.3.2.3 of 3D-HEVC Draft Text 1.

In the example of FIG. 13, a video coder (e.g., video
encoder 20 or video decoder 30) may determine whether a
current slice (i.e., a slice that the video coder is currently
coding) is a B slice (400). If the current slice is not a B slice
(“NO” of 400), the video coder may end the derivation
process for combined bi-predictive merging candidates.
However, in response to determining that the current slice is
a B slice (“YES” of 400), the video coder may determine
whether the number of merging candidates in the list of
merging candidates (i.e., the merge candidate list) is less
than 5 (402). If the number of merging candidates in the list
of merging candidates is not less than 5, the video coder may
end the derivation process for combined bi-predictive merg
ing candidates.
On the other hand, in response to determining that the

number of merging candidates in the list of merging candi
dates is less than 5 (“YES of 402), the video coder may set
a value of a combination index (e.g., combidx) to 0 (404).
The video coder may then determine whether motion vectors
corresponding to the current value of the combination index
are available (406).

In response to determining that the motion vectors cor
responding to the current value of the combination index are
available (“YES” of 406), the video coder may include a
combined bi-predictive merging candidate associated with
the current value of the combination index in the list of
merging candidates (408). The combined bi-predictive
merging candidate associated with the current value of the
combination index may specify ReflicList0 motion infor
mation and ReflicList1 motion information in accordance
with Table 1.

Furthermore, the video coder may determine whether the
current value of the combination index is equal to (numOr
igMergeCand (numOrigMergeCand-1)), where numOrig

US 9,554,150 B2
49

Merge(Cand denotes the number of merging candidates in the
list of merging candidates before invoking the derivation
process of FIG. 13 (410). If the current value of the
combination index is equal to (numOrigMergeCand (num
OrigMergeCand-1)) (“YES of 410), the video coder may
end the derivation process for combined bi-predictive merg
ing candidates. On the other hand, if the current value of the
combination index is not equal to (numOrigMerge(Cand
(numOrigMergecand-1)) (“NO” of 410), the video coder
may determine whether a total number of merging candi
dates in the list of merging candidates is equal to MaxNum
Mergecand (412). As indicated elsewhere in this disclosure,
MaxNumMergecand indicates a maximum number of
merging candidates in the list of merging candidates. If the
total number of merging candidates in the list of merging
candidates is equal to MaxNumMergecand (“YES of 412),
the video coder may end the derivation process for com
bined bi-predictive merging candidates.

However, in response to determining that the total number
of merging candidates in the list of merging candidates is not
equal to MaxNumMergeCand (“NO” of 412) or in response
to determining that the motion vectors corresponding to the
current value of the combination index are not available
(“NO” of 406), the video coder may increment the current
value of the combination index (414). The video coder may
then perform actions (406)-(414) with regard to the incre
mented value of the combination index. In this way, the
Video coder may continue deriving combined bi-predictive
merging candidates until the current value of the combina
tion index is equal to (numOrigMerge(Cand (numOrig
Mergecand-1)) or the number of total candidates (including
newly generated combined bi-predictive merging candi
dates) in the merge list is equal to MaxNumMergeCand.

FIG. 14A is a flowchart illustrating an example operation
of video encoder 20 to encode a video block, in accordance
with one or more techniques of this disclosure. In the
example of FIG. 14A, video encoder 20 may generate a list
of merging candidates (450). In other words, video encoder
20 may generate a merge candidate list. In the example of
FIG. 14A, video encoder 20 may determine whether a
number of merging candidates in the list is less than 5 (452).
In some examples, video encoder 20 may, in this step,
determine whether the number of merging candidates in the
list is less than 5 and the maximum number of merging
candidates in the list is greater than 5 (e.g., equal to 6). In
response to determining that the number of merging candi
dates in the list is less than 5 (“YES” of 452), video encoder
20 may derive one or more combined bi-predictive merging
candidates (454) and include the one or more combined
bi-predictive merging candidates in the list of merging
candidates (456). Each respective combined bi-predictive
merging candidate of the one or more combined bi-predic
tive merging candidates may correspond to a respective pair
of merging candidates already in the list. The respective
combined bi-predictive merging candidate may be a com
bination of a motion vector of a first merging candidate of
the respective pair and a motion vector of a second merging
candidate of the respective pair. The motion vector of the
first merging candidate and the motion vector of the second
merging candidate refer to pictures in different reference
picture lists (e.g., list 0 and list 1). On the other hand, in
Some examples, if the number of merging candidates in the
list is not less than 5 (“NO” of 452), video encoder 20 does
not include any combined bi-predictive merging candidates
in the list (458).

In some examples, video encoder 20 may derive the one
or more combined bi-predictive merging candidates after

10

15

25

30

35

40

45

50

55

60

65

50
inserting an IPMVC, if available, in the list of merging
candidates, after performing a derivation process for spatial
merging candidates, and after performing a derivation pro
cess for a temporal merging candidate. The derivation
process for spatial merging candidates may derive and insert
up to four spatial motion vector candidates in the list of
merging candidates. The derivation process for the temporal
merging candidate may add a temporal motion vector pre
dictor (TMVP) candidate, if available, to the list of merging
candidates.

Furthermore, in the example of FIG. 14A, video encoder
20 may select a candidate in the list of merging candidates
(460). In some examples, video encoder 20 may determine
the selected candidate based on a value indicated by a syntax
element signaled in a bitstream. In addition, video encoder
20 may signal a position in the list of merging candidates of
the selected merging candidate (462). Video encoder 20 may
encode a video block based on the selected candidate (464).
Video encoder 20 may encode the video block in accordance
with one or more of the examples provided elsewhere in this
disclosure.

FIG. 14B is a flowchart illustrating an example operation
of video decoder 30 to decode a video block, in accordance
with one or more techniques of this disclosure. In the
example of FIG. 14B, video decoder 30 may generate a list
of merging candidates (480). In the example of FIG. 14B,
video decoder 30 may determine whether a number of
merging candidates in the list is less than 5 (482). In some
examples, video decoder 30 may, in this step, determine
whether the number of merging candidates in the list is less
than 5 and the maximum number of merging candidates in
the list is greater than 5 (e.g., equal to 6). In response to
determining that the number of merging candidates in the list
is less than 5 (“YES” of 452), video decoder 30 may derive
one or more combined bi-predictive merging candidates
(484). Each respective combined bi-predictive merging can
didate of the one or more combined bi-predictive merging
candidates may correspond to a respective pair of merging
candidates already in the list. The respective combined
bi-predictive merging candidate may be a combination of a
motion vector of a first merging candidate of the respective
pair and a motion vector of a second merging candidate of
the respective pair. The motion vector of the first merging
candidate and the motion vector of the second merging
candidate refer to pictures in different reference picture lists
(e.g., list 0 and list 1). Video decoder 30 may include the one
or more combined bi-predictive merging candidates in the
list (486). On the other hand, in some examples, if the
number of merging candidates in the list is not less than 5
(“NO” of 482), video decoder 30 does not include any
combined bi-predictive merging candidates in the list (488).

In some examples, video decoder 30 may derive the one
or more combined bi-predictive merging candidates after
inserting an IPMVC, if available, in the list of merging
candidates, after performing a derivation process for spatial
merging candidates, and after performing a derivation pro
cess for a temporal merging candidate. The derivation
process for spatial merging candidates may derive and insert
up to four spatial motion vector candidates in the list of
merging candidates. The derivation process for the temporal
merging candidate may add a temporal motion vector pre
dictor (TMVP) candidate, if available, to the list of merging
candidates.

Furthermore, in the example of FIG. 14B, video decoder
30 may determine a selected candidate in the list of merging
candidates (490). In some examples, video decoder 30 may
determine the selected candidate based on a value indicated

US 9,554,150 B2
51

by a syntax element signaled in a bitstream. For instance,
video decoder 30 may obtain, from a bitstream, a syntax
element indicating a selected merging candidate in the list of
merging candidates. Video decoder 30 may decode a video
block based on the selected candidate (492). For instance,
video decoder 30 may use motion information of the
selected candidate to generate predictive samples of a cur
rent PU. The video decoder 30 may decode the video block
(e.g., a CU, PU, etc.) in accordance with one or more of the
examples provided elsewhere in this disclosure.
The following paragraphs provide additional examples of

this disclosure

Example 1

A method of coding video data, the method comprising:
generating a first list of merging candidates according to a
first process for coding a video block that is not associated
with three-dimensional video data, wherein the first list
includes one or more bi-predictive merging candidates; and
generating a second list of merging candidates according to
a second process for coding a video block that is associated
with three-dimensional video data, wherein the second list
includes one or more bi-predictive merging candidates,
wherein the first process and the second process are the
SaC.

Example 2

The method of example 1, wherein generating the first list
and generating the second list occurs only when the follow
ing condition is satisfied: a number of available merging
candidates is less than 5.

Example 3

The method of any of examples 1 or 2, further comprising
defining a maximum number of merging MVP candidates
prior to invoking a derivation process for generating any
merge list.

Example 4

The method of example 4, wherein the maximum number
of merging MVP candiddates is defined subsantially as
follows: MaxNumMergecand=5-five minus max num
merge cand, and then after this process is inovked, the
MaxNumMergecand is set back to: MaxNumMerge
Cand 5-five minus max num merge cand+iv mV pred
flagnu h layer id.

Example 5

A method of coding data associated with three-dimen
sional (3D) video, the method comprising: generating a list
of merging candidates for coding a video block associated
with 3D video, wherein the list includes one or more
bi-predictive merging candidates and wherein when a maxi
mum number of merging candidates is equal to 6 and there
are 5 candidates defined before a derivation process of
combined bi-predictive merging candidates is invoked, a
Zero candidate is generated and included in the list, wherein
the Zero candidate defines a reference index and motion
vector components as 0.

Example 6

A method of coding data associated with three-dimen
sional (3D) video, the method comprising: generating a list

10

15

25

30

35

40

45

50

55

60

65

52
of merging candidates for coding a video block associated
with 3D video, wherein the list includes one or more
bi-predictive merging candidates and wherein before gen
erating the list, a maximum number of merging candidates
is set to five, four of the candidates are input to a merge list
derivation process, and one candidate is newly generated
during the merge list derivation process.

Example 7

The method of example 6, wherein the newly generated
candidate is ordered as a fifth candidate in the list.

Example 8

The method of example 6, wherein if the merge list
derivation process is unable to generate a non-Zero newly
generated candidate, the merge list derivation process gen
erates a Zero value candidate as the newly generated candi
date.

In one or more examples, the functions described herein
may be implemented in hardware, software, firmware, or
any combination thereof. If implemented in software, the
functions may be stored on or transmitted over, as one or
more instructions or code, a computer-readable medium and
executed by a hardware-based processing unit. Computer
readable media may include computer-readable storage
media, which corresponds to a tangible medium Such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication
medium Such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the techniques described in this disclosure. A computer
program product may include a computer-readable medium.
By way of example, and not limitation, Such computer

readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies Such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor
age media and data storage media do not include connec
tions, carrier waves, signals, or other transient media, but are
instead directed to non-transient, tangible storage media.
Disk and disc, as used herein, includes compact disc (CD),
laser disc, optical disc, digital versatile disc (DVD), floppy
disk and Blu-ray disc, where disks usually reproduce data
magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

Instructions may be executed by one or more processors,
Such as one or more digital signal processors (DSPs),

US 9,554,150 B2
53

general purpose microprocessors, application specific inte
grated circuits (ASICs), field programmable gate arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the term “processor, as used herein
may refer to any of the foregoing structure or any other
structure Suitable for implementation of the techniques
described herein. In addition, in Some aspects, the function
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated in a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.
The techniques of this disclosure may be implemented in

a wide variety of devices or apparatuses, including a wire
less handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are
described in this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard
ware units. Rather, as described above, various units may be
combined in a codec hardware unit or provided by a col
lection of interoperative hardware units, including one or
more processors as described above, in conjunction with
suitable software and/or firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.
What is claimed is:
1. A method of coding three-dimensional (3D) video data,

the method comprising:
generating a current list of merging candidates for coding

a video block of the 3D video data, wherein a maxi
mum number of merging candidates in the current list
of merging candidates is equal to 6, there are 20
possible combinations of list 0 and list 1 motion vectors
of different bi-predictive merging candidates in lists of
merging candidates having 5 bi-predictive merging
candidates, and generating the current list of merging
candidates comprises:
determining that a number of merging candidates ini

tially in the current list of merging candidates is less
than 5, wherein each respective value of a combina
tion index from 0 to 11 corresponds to a respective
pre-defined combination of values from 0 to 3; and

in response to determining that the number of merging
candidates in the current list of merging candidates is
less than 5, performing the following for each
respective value of the combination index from 0 to
11 until at least one of the following conditions is
true: the respective value of the combination index is
equal to the number of merging candidates initially
in the current list of merging candidates multiplied
by one less than the number of merging candidates
initially in the current list of merging candidates, and
the current list of merging candidates has 6 merging
candidates:
determining whether a first merging candidate in the

current list of merging candidates has a list 0
motion vector and whether a second merging
candidate in the current list of merging candidates
has a list 1 motion vector, wherein the first merg
ing candidate and the second merging candidate
are at positions in the current list of merging
candidates indicated by the pre-defined combina
tion of values corresponding to the respective
value of the combination index;

responsive to determining the first merging candi
date has a list 0 motion vector and the second

5

10

15

25

30

35

40

45

50

55

60

65

54
merging candidate has a list 1 motion vector,
deriving a respective combined bi-predictive
merging candidate, wherein the respective com
bined bi-predictive merging candidate is a com
bination of the list 0 motion vector of the first
merging candidate and the list 1 motion vector of
the second merging candidate, wherein the motion
vector of the first merging candidate and the
motion vector of the second merging candidate
refer to pictures in different reference picture lists;
and

including the respective combined bi-predictive
merging candidate in the current list of merging
candidates.

2. The method of claim 1, wherein generating the current
list of merging candidates further comprises:

in response to determining that there are 5 merging
candidates in the current list of merging candidates
prior to adding any of the one or more bi-predictive
merging candidates to the current list of merging can
didates, including a Zero candidate in the current list of
merging candidates, wherein motion vector compo
nents of the Zero candidate are equal to 0 and a
reference index of the Zero candidate is equal to 0, the
reference index indicating a location of a reference
picture in a reference picture list.

3. The method of claim 1, wherein generating the current
list of merging candidates occurs without checking any
backward warping view synthesis (BVSP) flags.

4. The method of claim 1, wherein the method of coding
the 3D video data comprises a method of decoding the 3D
video data and the video block is a prediction unit (PU), the
method further comprising:

obtaining, from a bitstream, a syntax element indicating a
Selected merging candidate in the current list of merg
ing candidates; and

using motion information of the selected candidate to
generate predictive samples of the PU.

5. The method of claim 1, wherein the method of coding
the 3D video data comprises a method of encoding the 3D
Video data, the method comprising:

selecting a merging candidate in the current list of merg
ing candidates; and

signaling a position in the current list of merging candi
dates of the selected merging candidate.

6. The method of claim 1, wherein:
generating the current list of merging candidates com

prises deriving the one or more combined bi-predictive
merging candidates after inserting an inter-view pre
diction motion vector candidate (IPMVC), if available,
in the current list of merging candidates, after perform
ing a derivation process for spatial merging candidates,
and after performing a derivation process for a tempo
ral merging candidate,

the derivation process for spatial merging candidates
derives and inserts up to four spatial motion vector
candidates in the current list of merging candidates, and

the derivation process for the temporal merging candidate
adds a temporal motion vector predictor (TMVP) can
didate, if available, to the current list of merging
candidates.

7. A video coding device comprising:
a data storage medium configured to store three-dimen

sional (3D) video data; and
one or more processors configured to:

generate a current list of merging candidates for coding
a video block of the 3D video data, wherein a

US 9,554,150 B2
55

maximum number of merging candidates in the
current list of merging candidates is equal to 6, there
are 20 possible combinations of list 0 and list 1
motion vectors of different bi-predictive merging
candidates in lists of merging candidates having 5
bi-predictive merging candidates, and as part of
generating the current list of merging candidates, the
one or more processors:

determine that a number of merging candidates initially
in the current list of merging candidates is less than
5, wherein each respective value of a combination
index from 0 to 11 corresponds to a respective
pre-defined combination of values from 0 to 3; and

in response to determining that the number of merging
candidates in the current list of merging candidates is
less than 5, perform the following for each respective
value of the combination index from 0 to 11 until at
least one of the following conditions is true: the
respective value of the combination index is equal to
the number of merging candidates initially in the
current list of merging candidates multiplied by one
less than the number of merging candidates initially
in the current list of merging candidates, and the
current list of merging candidates has 6 merging
candidates:
determine whether a first mer in candidate in the

current list of merging candidates has a list 0
motion vector and whether a second merging
candidate in the current list of merging candidates
has a list 1 motion vector, wherein the first merg
ing candidate and the second merging candidate
are at positions in the current list of merging
candidates indicated by the pre-defined combina
tion of values corresponding to the respective
value of the combination index;

responsive to determining the first merging candi
date has a list 0 motion vector and the second
merging candidate has a list 1 motion vector,
derive a respective combined bi-predictive merg
ing candidate, wherein the respective combined
bi-predictive merging candidate is a combination
of the list 0 motion vector of the first merging
candidate and the list 1 motion vector of the
second merging candidate, wherein the motion
vector of the first merging candidate and the
motion vector of the second merging candidate
refer to pictures in different reference picture lists;
and

include the respective combined bi-predictive merg
ing candidate in the current list of merging can
didates.

8. The video coding device of claim 7, wherein as part of
generating the current list of merging candidates, the one or
more processors:

include, in response to determining that there are 5
merging candidates in the current list of merging can
didates prior to adding any of the one or more bi
predictive merging candidates to the current list of
merging candidates, a Zero candidate in the current list
of merging candidates, wherein motion vector compo
nents of the Zero candidate are equal to 0 and a
reference index of the Zero candidate is equal to 0, the
reference index indicating a location of a reference
picture in a reference picture list.

5

10

15

25

35

40

45

50

60

65

56
9. The video coding device of claim 7, wherein the one or

more processors generate the current list of merging candi
dates without checking any backward warping view synthe
sis (BVSP) flags.

10. The video coding device of claim 7, wherein the one
or more processors are configured to decode the 3D video
data and the video block is a prediction unit (PU), the one
or more processors being configured to:

obtain, from a bitstream, a syntax element indicating a
Selected merging candidate in the current list of merg
ing candidates; and

use motion information of the selected candidate to gen
erate predictive samples of the PU.

11. The video coding device of claim 7, wherein the one
or more processors are configured to encode the 3D video
data, the one or more processors being configured to:

select a merging candidate in the current list of merging
candidates; and

signal a position in the current list of merging candidates
of the selected merging candidate.

12. The video coding device of claim 7, wherein:
the one or more processors are configured to derive the

one or more combined bi-predictive merging candi
dates after inserting an inter-view prediction motion
vector candidate (IPMVC), if available, in the current
list of merging candidates, after performing a deriva
tion process for spatial merging candidates, and after
performing a derivation process for a temporal merging
candidate,

the derivation process for spatial merging candidates
derives and inserts up to four spatial motion vector
candidates in the current list of merging candidates, and

the derivation process for the temporal merging candidate
adds a temporal motion vector predictor (TMVP) can
didate, if available, to the current list of merging
candidates.

13. A video coding device comprising:
means for storing three-dimensional (3D) video data; and
means for generating a current list of merging candidates

for coding a video block of the 3D video data, wherein
a maximum number of merging candidates in the
current list of merging candidates is equal to 6, there are
20 possible combinations of list 0 and list 1 motion
vectors of different bi-predictive merging candidates in
lists of mer in candidates having 5 bi-predictive merg
ing candidates, and the means for generating the cur
rent list of merging candidates comprises:
means for determining that a number of merging can

didates initially in the current list of merging candi
dates is less than 5, wherein each respective value of
a combination index from 0 to 11 corresponds to a
respective pre-defined combination of values from 0
to 3; and

means for performing the following for each respective
value of the combination index from 0 to 11 until at
least one of the following conditions is true: the
respective value of the combination index is equal to
the number of merging candidates initially in the
current list of merging candidates multiplied by one
less than the number of merging candidates initially
in the current list of merging candidates, and the
current list of merging candidates has 6 merging
candidates in response to determining that the num
ber of merging candidates in the current list of
merging candidates is less than 5:
determine whether a first merging candidate in the

current list of merging candidates has a list 0

US 9,554,150 B2
57

motion vector and whether a second merging
candidate in the current list of merging candidates
has a list 1 motion vector, wherein the first mer in
candidate and the second merging candidate are at
positions in the current list of merging candidates
indicated by the pre-defined combination of val
ues corresponding to the respective value of the
combination index;

responsive to determining the first merging candi

5

58
the derivation process for spatial merging candidates

derives and inserts up to four spatial motion vector
candidates in the current list of merging candidates, and

the derivation process for the temporal merging candidate
adds a temporal motion vector predictor (TMVP) can
didate, if available, to the current list of merging
candidates.

19. A non-transitory computer-readable data storage
medium having instructions stored thereon that when

date has a list 0 motion vector and the second " executed cause a video coding device to code three-dimen
merging candidate has a list 1 motion vector, a sional (3D) video data, the instructions causing the video
respective combined bi-predictive merging candi- coding device to:
date, wherein the respective combined bi-predic- generate a current list of merging candidates for coding a
tive merging candidate is a combination of the list is video block of the 3D video data, wherein a maximum
0 motion vector of the first merging candidate and number of merging candidates in the current list of
the list 1 motion vector of the second merging merging candidates is equal to 6, there are 20 possible
candidate, wherein the motion vector of the first combinations of list 0 and list 1 motion vectors of
merging candidate and the motion vector of the different bi-predictive merging candidates in lists of
second merging candidate refer to pictures in 20 merging candidates having 5 bi-predictive merging
different reference picture lists; and candidates, and as part of generating the current list of

include the respective combined bi-predictive merg- merging candidates, the one or more processors:
ing candidate in the current list of merging can- determine that a number of merging candidates initially
didates. in the current list of merging candidates is less than

14. The video coding device of claim 13, wherein the 25 5, wherein each respective value of a combination
means for generating the current list of merging candidates index from 0 to 11 corresponds to a respective
further comprises: pre-defined combination of values from 0 to 3: and

means for including, in response to determining that there in response to determining that the number of merging
candidates in the current list of merging candidates is

30 less than 5, performing the following for each
respective value of the combination index from 0 to
11 until at least one of the following conditions is
true: the respective value of the combination index is
equal to the number of merging candidates initially

35 in the current list of merging candidates multiplied
by one less than the number of merging candidates
initially in the current list of merging candidates, and

are 5 merging candidates in the current list of merging
candidates prior to adding any of the one or more
bi-predictive merging candidates to the current list of
merging candidates, a Zero candidate in the current list
of merging candidates, wherein motion vector compo
nents of the Zero candidate are equal to 0 and a
reference index of the Zero candidate is equal to 0, the
reference index indicating a location of a reference
picture in a reference picture list. the current list of merging candidates has 6 merging

15. The video coding device of claim 13, wherein gen- candidates:
erating the current list of merging candidates occurs without 40 determine whether a first merging candidate in the
checking any backward warping view synthesis (BVSP) current list of merging candidates has a list 0
flags. motion vector and whether a second merging

16. The video coding device of claim 13, wherein the candidate in the current list of merging candidates
video coding device decodes the 3D video data and the video has a list 1 motion vector, wherein the first merg
block is a prediction unit (PU), the video coding device 45 ing candidate and the second merging candidate
further comprising: are at positions in the current list of merging

means for obtaining, from a bitstream, a syntax element candidates indicated by the pre-defined combina
indicating a selected merging candidate in the current tion of values corresponding to the respective
list of merging candidates; and value of the combination index;

means for using motion information of the selected can- 50 responsive to determining the first merging candi
didate to generate predictive samples of the PU. date has a list 0 motion vector and the second

17. The video coding device of claim 13, wherein the merging candidate has a list 1 motion vector,
video coding device encodes the 3D video data and the video derive a respective combined bi-predictive merg
coding device comprises: ing candidate, wherein the respective combined

means for selecting a merging candidate in the current list 55 bi-predictive merging candidate is a combination
of merging candidates; and of the list 0 motion vector of the first merging

means for signaling a position in the current list of candidate and the list 1 motion vector of the
merging candidates of the selected merging candidate. second merging candidate, wherein the motion

18. The video coding device of claim 13, wherein: vector of the first merging candidate and the
generating the current list of merging candidates com- 60 motion vector of the second merging candidate

prises deriving the one or more combined bi-predictive
merging candidates after inserting an inter-view pre
diction motion vector candidate (IPMVC), if available,
in the current list of merging candidates, after perform
ing a derivation process for spatial merging candidates,
and after performing a derivation process for a tempo
ral merging candidate,

65

refer to pictures in different reference picture lists;
and

include the respective combined bi-predictive merg
ing candidate in the current list of merging can
didates.

20. The non-transitory computer-readable data storage
medium of claim 19, wherein as part of causing the video

US 9,554,150 B2
59

coding device to generate the current list of merging can
didates, the instructions cause the video coding device to:

in response to determining that there are 5 merging
candidates in the current list of merging candidates
prior to adding any of the one or more bi-predictive
merging candidates to the current list of merging can
didates, include a zero candidate in the current list of
merging candidates, wherein motion vector compo
nents of the Zero candidate are equal to 0 and a
reference index of the Zero candidate is equal to 0, the
reference index indicating a location of a reference
picture in a reference picture list.

21. The non-transitory computer-readable data storage
medium of claim 19, wherein the instructions cause the
Video coding device to generate the current list of merging
candidates without checking any backward warping view
synthesis (BVSP) flags.

22. The non-transitory computer-readable data storage
medium of claim 19, wherein the video block is a prediction
unit (PU), the instructions further causing the video coding
device to:

obtain, from a bitstream, a syntax element indicating a
Selected merging candidate in the current list of merg
ing candidates; and

use motion information of the selected candidate to gen
erate predictive samples of the PU.

5

10

15

60
23. The non-transitory computer-readable data storage

medium of claim 19, wherein the instructions further cause
the video coding device to:

select a merging candidate in the current list of merging
candidates; and

signal a position in the current list of merging candidates
of the selected merging candidate.

24. The non-transitory computer-readable data storage
medium of claim 19, wherein the instructions cause the
video coding device to derive the one or more combined
bi-predictive merging candidates after inserting an inter
view prediction motion vector candidate (IPMVC), if avail
able, in the current list of merging candidates, after perform
ing a derivation process for spatial merging candidates, and
after performing a derivation process for a temporal merging
candidate,

wherein the derivation process for spatial merging can
didates derives and inserts up to four spatial motion
vector candidates in the current list of merging candi
dates, and

wherein the derivation process for the temporal merging
candidate adds a temporal motion vector predictor
(TMVP) candidate, if available, to the current list of
merging candidates.

k k k k k

