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COMBINED B-PREDICTIVE MERGING 
CANDDATES FOR 3D VIDEO CODING 

This application claims the benefit of U.S. Provisional 
Patent Application No. 61/880,737, filed Sep. 20, 2013, the 
entire content of which is incorporated herein by reference. 

TECHNICAL FIELD 

This disclosure relates to video coding and compression, 
and more specifically, coding techniques that may be used in 
coding three-dimensional (3D) video. 

BACKGROUND 

Digital video capabilities can be incorporated into a wide 
range of devices, including digital televisions, digital direct 
broadcast systems, wireless broadcast systems, personal 
digital assistants (PDAs), laptop or desktop computers, 
digital cameras, digital recording devices, digital media 
players, video gaming devices, video game consoles, cellu 
lar or satellite radio telephones, video teleconferencing 
devices, and the like. Digital video devices implement video 
compression techniques, such as those described in the 
standards defined by MPEG-2, MPEG-4, ITU-T H.263, 
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding 
(AVC), the High Efficiency Video Coding (HEVC) standard, 
and extensions of Such standards, to transmit, receive and 
store digital video information more efficiently. 

Video compression techniques perform spatial (intra 
picture) prediction and/or temporal (inter-picture) prediction 
to reduce or remove redundancy inherent in video 
sequences. For block-based video coding, a video slice may 
be partitioned into video blocks, which may also be referred 
to as treeblocks, coding units (CUs) and/or coding nodes. 
Video blocks in an intra-coded (I) slice of a picture are 
encoded using spatial prediction with respect to reference 
samples in neighboring blocks in the same picture. Video 
blocks in an inter-coded (P or B) slice of a picture may use 
spatial prediction with respect to reference samples in neigh 
boring blocks in the same picture or temporal prediction 
with respect to reference samples in other reference pictures. 
Pictures may be referred to as frames, and reference pictures 
may be referred to as reference frames. 
A multi-view coding bitstream may be generated by 

encoding views, e.g., from multiple perspectives. Multi 
view coding may allow a decoder to choose between dif 
ferent views, or possibly render multiple views. Moreover, 
Some three-dimensional (3D) video techniques and stan 
dards that have been developed, or are under development, 
make use of multi-view coding aspects. Three dimensional 
video is also referred to as “3DV. 

For example, different views may transmit left and right 
eye views to support 3D video. Alternatively, some 3D video 
coding processes may apply So-called multi-view plus depth 
coding. In multi-view plus depth coding, a 3D video bit 
stream may contain not only texture view components, but 
also depth view components. For example, each view may 
comprise one texture view component and one depth view 
component. 

Currently, a Joint Collaboration Team on 3D Video Cod 
ing (JCT-3C) of VCEG and MPEG is developing a 3D video 
standard based on the emerging standard referred to as “high 
efficiency video coding (HEVC), for which part of the 
standardization efforts includes the standardization of the 
multi-view video codec based on HEVC (MV-HEVC) and 
another part for 3D Video coding based on HEVC (3D 
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2 
HEVC). 3D-HEVC may include and support new coding 
tools, including those in coding unit/prediction unit level, for 
both texture and depth views. 

SUMMARY 

In general, this disclosure relates to three-dimensional 
(3D) video coding based on advanced codecs, including the 
coding of two or more views with the 3D-High Efficiency 
Video Coding (HEVC) codec. For instance, some examples 
of this disclosure describe techniques related to combined 
bi-predictive merging candidates. In some such examples, as 
part of generating a list of merging candidates, a video coder 
determines whether a number of merging candidates in the 
list is less than 5. If so, the video coder derives one or more 
combined bi-predictive merging candidates. The video 
coder includes the one or more combined bi-predictive 
merging candidates in the list of merging candidates. 

In one aspect, this disclosure describes a method of 
coding 3D video data. The method comprises generating a 
list of merging candidates for coding a video block of the 3D 
Video data. A maximum number of merging candidates in 
the list of merging candidates is equal to 6 and generating the 
list of merging candidates comprises: determining whether a 
number of merging candidates in the list of merging candi 
dates is less than 5; and in response to determining that the 
number of merging candidates in the list of merging candi 
dates is less than 5: deriving one or more combined bi 
predictive merging candidates, wherein each respective 
combined bi-predictive merging candidate of the one or 
more combined bi-predictive merging candidates corre 
sponds to a respective pair of merging candidates already in 
the list of merging candidates, wherein the respective com 
bined bi-predictive merging candidate is a combination of a 
motion vector of a first merging candidate of the respective 
pair and a motion vector of a second merging candidate of 
the respective pair, wherein the motion vector of the first 
merging candidate and the motion vector of the second 
merging candidate refer to pictures in different reference 
picture lists. The method also comprises including the one or 
more combined bi-predictive merging candidates in the list 
of merging candidates. 

In another aspect, this disclosure describes a video coding 
device comprising: a data storage medium configured to 
store 3D video data; and one or more processors configured 
to: generate a list of merging candidates for coding a video 
block of the 3D video data, wherein a maximum number of 
merging candidates in the list of merging candidates is equal 
to 6 and as part of generating the list of merging candidates, 
the one or more processors: determine whether a number of 
merging candidates in the list of merging candidates is less 
than 5; and in response to determining that the number of 
merging candidates in the list of merging candidates is less 
than 5: derive one or more combined bi-predictive merging 
candidates, wherein each respective combined bi-predictive 
merging candidate of the one or more combined bi-predic 
tive merging candidates corresponds to a respective pair of 
merging candidates already in the list of merging candidates, 
wherein the respective combined bi-predictive merging can 
didate is a combination of a motion vector of a first merging 
candidate of the respective pair and a motion vector of a 
second merging candidate of the respective pair, wherein the 
motion vector of the first merging candidate and the motion 
vector of the second merging candidate refer to pictures in 
different reference picture lists. The one or more processors 
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are configured to include the one or more combined bi 
predictive merging candidates in the list of merging candi 
dates. 

In another aspect, this disclosure describes a video coding 
device comprising: means for generating a list of merging 
candidates for coding a video block of 3D video data. A 
maximum number of merging candidates in the list of 
merging candidates is equal to 6 and the means for gener 
ating the list of merging candidates comprises: means for 
determining whether a number of merging candidates in the 
list of merging candidates is less than 5; means for deriving, 
in response to determining that the number of merging 
candidates in the list of merging candidates is less than 5, 
one or more combined bi-predictive merging candidates, 
wherein each respective combined bi-predictive merging 
candidate of the one or more combined bi-predictive merg 
ing candidates corresponds to a respective pair of merging 
candidates already in the list of merging candidates, wherein 
the respective combined bi-predictive merging candidate is 
a combination of a motion vector of a first merging candi 
date of the respective pair and a motion vector of a second 
merging candidate of the respective pair, wherein the motion 
vector of the first merging candidate and the motion vector 
of the second merging candidate refer to pictures in different 
reference picture lists. The video coding device also com 
prises means for including the one or more combined 
bi-predictive merging candidates in the list of merging 
candidates. 

In another aspect, this disclosure describes a computer 
readable data storage medium having instructions stored 
thereon that when executed cause a video coding device to 
3D video data, the instructions causing the video coding 
device to: generate a list of merging candidates for coding a 
video block of the 3D video data. A maximum number of 
merging candidates in the list of merging candidates is equal 
to 6. Generating the list of merging candidates comprises: 
determining whether a number of merging candidates in the 
list of merging candidates is less than 5; and in response to 
determining that the number of merging candidates in the list 
of merging candidates is less than 5: deriving one or more 
combined bi-predictive merging candidates, wherein each 
respective combined bi-predictive merging candidate of the 
one or more combined bi-predictive merging candidates 
corresponds to a respective pair of merging candidates 
already in the list of merging candidates, wherein the 
respective combined bi-predictive merging candidate is a 
combination of a motion vector of a first merging candidate 
of the respective pair and a motion vector of a second 
merging candidate of the respective pair, wherein the motion 
vector of the first merging candidate and the motion vector 
of the second merging candidate refer to pictures in different 
reference picture lists; and including the one or more com 
bined bi-predictive merging candidates in the list of merging 
candidates. 
The details of one or more examples are set forth in the 

accompanying drawings and the description below. Other 
features, objects, and advantages will be apparent from the 
description, drawings, and claims. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 is a block diagram illustrating an example video 
coding system that may utilize the techniques of this dis 
closure. 

FIG. 2 is a conceptual illustration showing spatial neigh 
bors which are the potential candidates for a merge list. 
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FIG. 3 is a conceptual diagram illustrating spatial and 

temporal neighboring blocks relative to a current coding 
unit. 

FIG. 4 shows an example of a derivation process of an 
inter-view predicted motion vector candidate. 

FIG. 5 is a conceptual diagram illustrating depth block 
derivation from a reference view to perform backward 
warping view synthesis prediction (BVSP). 

FIG. 6 is a conceptual diagram illustrating four corner 
pixels of one 8x8 depth block. 

FIG. 7 is a table providing an example specification of 
10Cand Idx and 11 Cand Idx in 3D-HEVC. 

FIG. 8 is a block diagram illustrating an example video 
encoder that may implement the techniques of this disclo 
SUC. 

FIG. 9 is a block diagram illustrating an example video 
decoder that may implement the techniques of this disclo 
SUC. 

FIG. 10A is a flowchart illustrating an example operation 
of a video encoder to encode data associated with 3D video, 
in accordance with one or more techniques of this disclo 
SUC. 

FIG. 10B is a flowchart illustrating an example operation 
of a video decoder to decode data associated with 3D video, 
in accordance with one or more techniques of this disclo 
SUC. 

FIG. 11 is a flowchart illustrating a first portion of an 
example operation to construct a merge candidate list for a 
current block, in accordance with one or more techniques of 
this disclosure. 

FIG. 12 is a flowchart illustrating a second portion of the 
example operation of FIG. 11 to construct a merge candidate 
list for a current block, in accordance with one or more 
techniques of this disclosure. 

FIG. 13 is a flowchart illustrating an example derivation 
process for combined bi-predictive merging candidates, in 
accordance with one or more techniques of this disclosure. 

FIG. 14A is a flowchart illustrating an example operation 
of a video encoder to encode a video block, in accordance 
with one or more techniques of this disclosure. 

FIG. 14B is a flowchart illustrating an example operation 
of a video decoder to decode a video block, in accordance 
with one or more techniques of this disclosure. 

DETAILED DESCRIPTION 

Video encoding is a process of transforming video data 
into encoded video data. In general, video decoding reverses 
the transformation, thereby reconstructing the video data. 
Video encoding and video decoding may both be referred to 
as video coding. Block-based video coding is a type of video 
coding that operates, at least in part, on blocks of video data 
within pictures. 

Inter prediction is a video coding technique in which a 
Video encoder determines, based on samples of a reference 
picture, a predictive block for a current block (i.e., a block 
that the video encoder is currently coding). The reference 
picture is a picture other than the picture that the video 
encoder is currently coding. The video encoder may include, 
in a bitstream, data representing residual data for the block. 
The residual data for the block indicates differences between 
the current block and the predictive block. A motion vector 
for the block may indicate a spatial displacement between 
the current block and the predictive block. A reference index 
may indicate the location of the reference picture within a 
list of reference pictures available for use in coding the 
current picture. Reference indices may also be referred to as 
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“reference picture indices.” A video decoder may use a 
motion vector of the current block to determine the predic 
tive block for the current block. Furthermore, the video 
decoder may combine the predictive block with the residual 
data for the current block to reconstruct the current block. 

In bi-directional inter prediction, the video encoder deter 
mines two predictive blocks for a current block. Accord 
ingly, the video encoder also determines two motion vectors 
for the current block. The two predictive blocks for the 
current block may be in different reference pictures. Hence, 
in bi-directional inter prediction, the video encoder may 
determine two reference indices for the current block (i.e., a 
first reference index and a second reference index). The first 
and second reference indices indicate the locations of ref 
erence pictures within a first and a second reference picture 
list, respectively. The residual data for the current block may 
indicate differences between the current block and a syn 
thesized predictive block that is based on the two predictive 
blocks for the current block. 

The motion vectors of a current block may be similar to 
the motion vectors of blocks that spatially or temporally 
neighbor the current block (i.e., neighbor blocks). Hence, it 
may be unnecessary for a video encoder to explicitly signal 
the motion vectors and reference indices of the current 
block. Rather, the video encoder may determine a list of 
merging candidates for the current block (i.e., a “merging 
candidate list” or a “merge candidate list'). Each of the 
merging candidates specifies a set of motion information 
(e.g., one or more motion vectors, one or more reference 
indices, etc.). The list of merging candidates may include 
one or more merging candidates that respectively specify 
motion information of different ones of the neighboring 
blocks. Neighboring blocks may include spatial neighboring 
blocks and/or temporal neighboring blocks. This disclosure 
may refer to merging candidates based on spatial neighbor 
ing blocks as spatial merging candidates. This disclosure 
may refer to merging candidates based on temporal neigh 
boring blocks as temporal merging candidates. In some 
examples, two merging candidates in the list of merging 
candidates may have identical motion information. The 
Video encoder may select one of the merging candidates and 
may signal a syntax element that indicates a position within 
the merging candidate list of the selected merging candidate. 

The video decoder may generate the same merging can 
didate list (i.e., a merge candidate list duplicative of the 
merging candidate list determined by the video encoder) and 
may determine, based on receipt of the signaled syntax 
element, the selected merging candidate. The video decoder 
may then use the motion information of the selected merging 
candidate as the motion information of the current block. In 
this way, the current block may inherit the motion informa 
tion of one of the neighboring blocks. 

In some circumstances, the motion information of a 
neighboring block may be unavailable. For example, the 
neighboring block may be coded using intra prediction, the 
neighboring block may be in a different slice, or the neigh 
boring block may simply not exist. Hence, there may be 
fewer than a required number of merging candidates (e.g., 
the maximum number of merging candidates, which may be 
indicated in a slice header) in the merging candidate list for 
the current block. Accordingly, when a video coder (e.g., a 
Video encoder or a video decoder) generates the merging 
candidate list for the current block, the video coder may 
ensure that the merging candidate list for the current block 
includes the desired number of merging candidates by 
including one or more artificial merging candidates in the 
merging candidate list for the current block. The artificial 
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6 
merging candidates are merging candidates that do not 
necessarily specify the motion information of any spatial or 
temporal neighboring block. 
The artificial merging candidates may include one or 

more combined bi-predictive merging candidates. As indi 
cated above, a merging candidate may specify two motion 
vectors and two reference indices. A combined bi-predictive 
merging candidate corresponds to a respective pair of merg 
ing candidates already in the list of merging candidates for 
the current block. Specifically, the combined bi-predictive 
merging candidate is a combination of a motion vector and 
reference index of a first merging candidate of the respective 
pair, if available, and a motion vector and reference index of 
a second merging candidate of the respective pair, if avail 
able. The motion vector of the first merging candidate and 
the motion vector of the second merging candidate refer to 
pictures in different reference picture lists. Thus, combined 
bi-predictive merging candidates may correspond to differ 
ent combinations of motion vectors/reference indices from 
different existing merging candidates (e.g., merging candi 
dates other than combined bi-predictive merging candidates, 
Such as spatial or temporal merging candidates). For 
example, when the ReflicList0 motion information of a first 
merging candidate and a ReflicIlist1 motion information of 
a second merging candidate are both available and not 
identical (i.e., either reference pictures are different or 
motion vectors are different), one combined bi-predictive 
merging candidate is constructed. Otherwise, a next respec 
tive pair is checked. 

In some versions of the HEVC specification, the maxi 
mum value of the required number of merging candidates in 
a list of merging candidates is 5. Furthermore, in some 
instances, the desired number of merging candidates in a list 
of merging candidates is 5. Hence, if there are fewer than 5 
merging candidates in the merging candidate list prior to 
including combined bi-predictive merging candidates in the 
merging candidate list, there are up to twelve (i.e., 43) 
possible combinations of motion vectors usable in combined 
bi-predictive merging candidates. The selection of a respec 
tive pair (i.e., which candidate is the first candidate and 
which candidate is the second candidate) is pre-defined in 
HEVC as shown in the following table: 

combdx O 1 2 3 4 S 6 7 8 9 

IOCandIdx O 1 O 2 1 2 O 3 1 3 2 3 
1CandIdx 1 O 2 O 2 1 3 O 3 1 3 2 

In the table above, 10Cand Idx represents the index of the 
selected first existing merging candidate, 11 Cand Idx repre 
sents the index of the selected second existing merging 
candidate, and combdx represents the constructed com 
bined bi-predictive candidate index. 

Multi-layer video coding allows video coding across 
multiple layers. Multi-layer video coding may be used to 
implement Scalable video coding, multi-view video coding, 
and 3-dimensional (3D) video coding. In multi-view video 
coding and 3D video coding, each of the layers may corre 
spond to a different viewpoint. In some video coding stan 
dards, the required number of merging candidates in a 
merging candidate list is greater when using multi-layer 
Video coding than when using single layer video coding. The 
greater number of merging candidates may be allowed in 
order to accommodate merging candidates specifying 
motion information of blocks in different views. 
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As in the case of single layer video coding, when a video 
coder is using multi-layer coding and the number of merging 
candidates in a merging candidate list is less than a desired 
number of merging candidates, the video coder may gener 
ate one or more combined bi-predictive merging candidates. 
However, due to the larger number of merging candidates 
when using multi-layer coding, there is a greater number of 
combinations of motions vectors usable in the combined 
bi-predictive merging candidates. For example, if the 
required number of merging candidates is 6, there are up to 
twenty (5*4) possible combinations of motion vectors 
usable in combined bi-predictive merging candidates. 
A video coder may not be able to generate a combined 

bi-predictive merging candidate from particular pairs of 
merging candidates. For example, the video coder may not 
be able to generate a combined bi-predictive merging can 
didate if one of the merging candidates only has a single 
motion vector and a single reference index. In order to 
determine whether a combined bi-predictive merging can 
didate can be generated from motion information of a 
particular pair of merging candidates, the video coder may 
need to retrieve information about the pair of merging 
candidates from a memory. 

Retrieving information from memory may be a compara 
tively slow process relative to other coding processes. More 
over, access to memory requires power. Therefore, limiting 
the number of accesses to memory may be desirable. As the 
number of combinations of motion vectors usable in com 
bined bi-predictive merging candidates increases, the 
amount of information that needs to be retrieved from 
memory increases. Thus, the increase in the required number 
of merging candidates associated with multi-view video 
coding may significantly slow the video coding process and 
may use more power than would otherwise be used. 

Hence, in accordance with an example of this disclosure, 
a video coder may generate a list of merging candidates for 
coding a video block of 3D video in a way that can limit the 
accesses to memory. Furthermore, in this example, as part of 
generating the list of merging candidates, the video coder 
may determine whether a number of merging candidates in 
the list is less than 5. In response to determining that the 
number of merging candidates in the list is less than 5, the 
video coder may derive one or more combined bi-predictive 
merging candidates. In this example, each respective com 
bined bi-predictive merging candidate of the one or more 
combined bi-predictive merging candidates corresponds to a 
respective pair of merging candidates already in the list. 
Furthermore, in this example, the respective combined bi 
predictive merging candidate is a combination of a motion 
vector of a first merging candidate of the respective pair and 
a motion vector of a second merging candidate of the 
respective pair. In this example, the motion vector of the first 
merging candidate and the motion vector of the second 
merging candidate refer to pictures in different reference 
picture lists. The video coder may include the one or more 
combined bi-predictive merging candidates in the list. In 
Some examples, a maximum number of merging candidates 
in the list is greater than 5 (e.g., equal to 6). An effect of the 
process of this example is that the number of combinations 
remains limited to 12, even though the maximum number of 
merging candidates in the list is 6 or more. This may help 
accelerate the coding process by reducing the amount of 
information retrieved from memory and may also save 
power. 

FIG. 1 is a block diagram illustrating an example video 
coding system 10 that may utilize the techniques of this 
disclosure. As described herein, the term “video coder' 
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refers generically to both video encoders and video decod 
ers. In this disclosure, the terms “video coding or “coding 
may refer generically to video encoding or video decoding. 
As shown in FIG. 1, video coding system 10 includes a 

source device 12 and a destination device 14. Source device 
12 generates encoded video data. Accordingly, source device 
12 may be referred to as a video encoding device or a video 
encoding apparatus. Destination device 14 may decode the 
encoded video data generated by Source device 12. Accord 
ingly, destination device 14 may be referred to as a video 
decoding device or a video decoding apparatus. Source 
device 12 and destination device 14 may be examples of 
Video coding devices or video coding apparatuses. 

Source device 12 and destination device 14 may comprise 
a wide range of devices, including desktop computers, 
mobile computing devices, notebook (e.g., laptop) comput 
ers, tablet computers, set-top boxes, telephone handsets Such 
as so-called “smart” phones, televisions, cameras, display 
devices, digital media players, video gaming consoles, in 
car computers, or the like. 

Destination device 14 may receive encoded video data 
from source device 12 via a channel 16. Channel 16 may 
comprise one or more media or devices capable of moving 
the encoded video data from source device 12 to destination 
device 14. In one example, channel 16 may comprise one or 
more communication media that enable source device 12 to 
transmit encoded video data directly to destination device 14 
in real-time. In this example, source device 12 may modu 
late the encoded video data according to a communication 
standard, Such as a wireless communication protocol, and 
may transmit the modulated video data to destination device 
14. The one or more communication media may include 
wireless and/or wired communication media, Such as a radio 
frequency (RF) spectrum or one or more physical transmis 
sion lines. The one or more communication media may form 
part of a packet-based network, Such as a local area network, 
a wide-area network, or a global network (e.g., the Internet). 
Channel 16 may include various types of devices, such as 
routers, Switches, base stations, or other equipment that 
facilitate communication from source device 12 to destina 
tion device 14. 

In another example, channel 16 may include a storage 
medium that stores encoded video data generated by source 
device 12. In this example, destination device 14 may access 
the storage medium via disk access or card access. The 
storage medium may include a variety of locally-accessed 
data storage media such as Blu-ray discs, DVDs, CD 
ROMs, flash memory, or other suitable digital storage media 
for storing encoded video data. 

In a further example, channel 16 may include a file server 
or another intermediate storage device that stores encoded 
Video data generated by Source device 12. In this example, 
destination device 14 may access encoded video data stored 
at the file server or other intermediate storage device via 
streaming or download. The file server may be a type of 
server capable of storing encoded video data and transmit 
ting the encoded video data to destination device 14. 
Example file servers include web servers (e.g., for a web 
site), file transfer protocol (FTP) servers, network attached 
storage (NAS) devices, and local disk drives. 

Destination device 14 may access the encoded video data 
through a standard data connection, such as an Internet 
connection. Example types of data connections may include 
wireless channels (e.g., Wi-Fi connections), wired connec 
tions (e.g., DSL, cable modem, etc.), or combinations of 
both that are Suitable for accessing encoded video data 
stored on a file server. The transmission of encoded video 
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data from the file server may be a streaming transmission, a 
download transmission, or a combination of both. 
The techniques of this disclosure are not limited to 

wireless applications or settings. The techniques may be 
applied to video coding in Support of a variety of multimedia 
applications, such as over-the-air television broadcasts, 
cable television transmissions, satellite television transmis 
sions, streaming video transmissions, e.g., via the Internet, 
encoding of video data for storage on a data storage medium, 
decoding of video data stored on a data storage medium, or 
other applications. In some examples, video coding system 
10 may be configured to Support one-way or two-way video 
transmission to Support applications such as video stream 
ing, video playback, video broadcasting, and/or video tele 
phony. 

In the example of FIG. 1, source device 12 includes a 
video source 18, a video encoder 20, and an output interface 
22. In some examples, output interface 22 may include a 
modulator/demodulator (modem) and/or a transmitter. Video 
Source 18 may include a video capture device, e.g., a video 
camera, a video archive containing previously-captured 
video data, a video feed interface to receive video data from 
a video content provider, and/or a computer graphics system 
for generating video data, or a combination of Such sources 
of video data. 

Video encoder 20 may encode video data from video 
source 18. In some examples, source device 12 directly 
transmits the encoded video data to destination device 14 via 
output interface 22. In other examples, the encoded video 
data may also be stored onto a storage medium or a file 
server for later access by destination device 14 for decoding 
and/or playback. 

In the example of FIG. 1, destination device 14 includes 
an input interface 28, a video decoder 30, and a display 
device 32. In some examples, input interface 28 includes a 
receiver and/or a modem. Input interface 28 may receive 
encoded video data over channel 16. Display device 32 may 
be integrated with or may be external to destination device 
14. In general, display device 32 displays decoded video 
data. Display device 32 may comprise a variety of display 
devices, such as a liquid crystal display (LCD), a plasma 
display, an organic light emitting diode (OLED) display, or 
another type of display device. In accordance with this 
disclosure, video encoder 20 and video decoder 30 may 
perform one or more techniques described herein as part of 
a video coding process (e.g., video encoding or video 
decoding). 

FIG. 1 is merely an example and the techniques of this 
disclosure may apply to video coding settings (e.g., video 
encoding or video decoding) that do not necessarily include 
any data communication between the video encoding device 
and the video decoding device. In other examples, data is 
retrieved from a local memory, streamed over a network, or 
the like. A video encoding device may encode and store data 
to memory, and/or a video decoding device may retrieve and 
decode data from memory. In many examples, the video 
encoding and decoding is performed by devices that do not 
communicate with one another, but simply encode data to 
memory and/or retrieve and decode data from memory. 

Video encoder 20 and video decoder 30 each may be 
implemented as any of a variety of suitable circuitry. Such as 
one or more microprocessors, digital signal processors 
(DSPs), application-specific integrated circuits (ASICs), 
field-programmable gate arrays (FPGAs), discrete logic, 
hardware, or any combinations thereof. If the techniques are 
implemented partially in Software, a device may store 
instructions for the Software in a suitable, non-transitory 
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computer-readable storage medium and may execute the 
instructions in hardware using one or more processors to 
perform the techniques of this disclosure. Any of the fore 
going (including hardware, Software, a combination of hard 
ware and Software, etc.) may be considered to be one or 
more processors. Each of video encoder 20 and video 
decoder 30 may be included in one or more encoders or 
decoders, either of which may be integrated as part of a 
combined encoder/decoder (CODEC) in a respective device. 

This disclosure may generally refer to video encoder 20 
“signaling certain information. The term “signaling may 
generally refer to the communication of syntax elements 
and/or other data used to decode the compressed video data. 
Such communication may occur in real- or near-real-time. 
Alternately, Such communication may occur over a span of 
time. Such as might occur when storing syntax elements to 
a computer-readable storage medium in an encoded bit 
stream at the time of encoding, which a video decoding 
device may then retrieve at any time after being stored to this 
medium. In some examples, from an encoder perspective, 
signaling may include generating an encoded bitstream, and 
from a decoder perspective, signaling may include receiving 
and parsing a coded bitstream. 

In some examples, video encoder 20 and video decoder 30 
operate according to a video compression standard, Such as 
ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as 
ISO/IEC MPEG-4 AVC), including its Scalable Video Cod 
ing (SVC) and Multiview Video Coding (MVC) extensions. 
The latest joint draft of MVC is described in “Advanced 
video coding for generic audiovisual services.” ITU-T Rec 
ommendation H.264, March 2010. In other examples, video 
encoder 20 and video decoder 30 may operate according to 
other video coding standards including ITU-T H.261, ISO/ 
IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 
Visual, ITU-T H.263, and so on. The techniques of this 
disclosure, however, are not limited to any particular coding 
standard or technique. 

In other examples, video encoder 20 and video decoder 30 
may operate according to other video compression stan 
dards, including the High Efficiency Video Coding (HEVC) 
standard developed by the Joint Collaboration Team on 
Video Coding (JCT-VC) of ITU-T Video Coding Experts 
Group (VCEG) and ISO/IEC Motion Picture Experts Group 
(MPEG). A draft of the HEVC standard, referred to as 
“HEVC Working Draft 9,” is described in Bross et al., “High 
Efficiency Video Coding (HEVC) text specification draft 9. 
Joint Collaborative Team on Video Coding (JCT-VC) of 
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG 11, 11th 
Meeting: Shanghai, China, October, 2012, is downloadable 
from http://phenix.int-evry.fr/ict/doc end user/documents/ 
11 Shanghai/wg11/JCTVC-K1003-v8.zip. Another recent 
draft of the HEVC standard, referred to as “HEVC Working 
Draft 10 or “WD10, is described in document JCTVC 
L1003v34, Bross et al., “High efficiency video coding 
(HEVC) text specification draft 10 (for FDIS & Last Call).” 
Joint Collaborative Team on Video Coding (JCT-VC) of 
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG 11, 12th 
Meeting: Geneva, CH, 14-23 Jan. 2013, which is download 
able from http://phenix.int-evry.fr/ict/doc end user/docu 
ments/12 Geneva/wg11/JCTVC-L1003-v34.zip. Yet 
another draft of the HEVC standard, is referred to herein as 
“WD10 revisions' described in Bross et al., “Editors pro 
posed corrections to HEVC version 1. Joint Collaborative 
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and 
ISO/IEC JTC1/SC29/WG 11, 13' Meeting, Incheon, KR, 
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April 2013, which is available from http://phenix.int-evry.fr/ 
jct/doc end user/documents/13 Incheon/wg11/JCTVC 
M0432-v3.zip. 

Currently, a Joint Collaboration Team on 3D Video Cod 
ing (JCT-3C) of VCEG and MPEG is developing a 3DV 
standard based on HEVC, for which part of the standard 
ization efforts includes the standardization of the multi-view 
video codec based on HEVC (MV-HEVC) and another part 
for 3D Video coding based on HEVC (3D-HEVC). For 
3D-HEVC, new coding tools, including those at the coding 
unit/prediction unit level, for both texture and depth views 
may be included and supported. Software for 3D-HEVC 
(i.e., 3D-HTM) can be downloaded from the following link: 
3D-HTM version 8.0: https://hevchhi-fraunhofer.de/svn/ 
SVn 3DVCSoftware/tags/HTM-8.0/ A working draft of 
3D-HEVC (i.e., Tech et al., “3D-HEVC Draft Text 1.” Joint 
Collaborative Team on 3D Video Coding Extension Devel 
opment of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 
29/WG 11, 5' Meeting, Vienna, AT 27 Jul-2 Aug. 2013, 
document number: JCT3V-E 1001-v2 (hereinafter, “JCT3V 
E1001” or “3D-HEVC Draft Text 1)) is available from: 
http://phenix.it-Sudparis.eu/jct2/doc end user/documents/ 
5Vienna/wg11/JCT3V-E 1001-v3.zip. A software description 
of 3D-HEVC (Zhanget al., “3D-HEVC Test Model3.” Joint 
Collaborative Team on 3D Video Coding Extension Devel 
opment of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 
29/WG 11, 3" Meeting, Geneva, CH, 17-23 Jan. 2013, 
document number: JCT3V-C1005 d0 (hereinafter, “JCT3V 
C1005” or “3D-HEVC Test Model 3)) is available from: 
http://phenix.int-evry.fr/ct3V/doc end user/documents/ 
3Geneva/wg11/JCT3V-C1005-v2.zip. Another software 
description of 3D-HEVC (Zhang et al., “3D-HEVC Test 
Model 5.' Joint Collaborative Team on 3D Video Coding 
Extension Development of ITU-TSG 16 WP3 and ISO/IEC 
JTC 1/SC 29/WG 11, 5' Meeting, Vienna, AT 27 Jul-2 
Aug. 2013, document number: JCT3V-E 1005 (hereinafter, 
“JCT3V-E 1005') is available from: http://phenix.it-sudpari 
s.eu/jct2/doc end user/current document.php?id=1360. 
As mentioned briefly above, video encoder 20 encodes 

Video data. The video data may comprise one or more 
pictures. Each of the pictures is a still image forming part of 
a video. When video encoder 20 encodes the video data, 
video encoder 20 may generate a bitstream. The bitstream 
may include a sequence of bits that form a coded represen 
tation of the video data. The bitstream may include coded 
pictures and associated data. A coded picture is an encoded 
representation of a picture. The associated data may include 
sequence parameter sets (SPSS), picture parameter sets 
(PPSs), video parameter sets (VPSs), adaptive parameter 
sets (APSs), slice headers, block headers, and other syntax 
Structures. 
A picture may include three sample arrays, denoted St. 

S, and S. S. is a two-dimensional array (i.e., a block) of 
luma samples. Luma samples may also be referred to herein 
as “Y” samples. S., is a two-dimensional array of Cb 
chrominance samples. S is a two-dimensional array of Cr 
chrominance samples. Chrominance samples may also be 
referred to herein as "chroma samples. Cb chrominance 
samples may be referred to herein as “U samples.” Cr 
chrominance samples may be referred to herein as “V 
samples.” 

In some examples, video encoder 20 may down-sample 
the chroma arrays of a picture (i.e., S., and S). For 
example, video encoder 20 may use a YUV 4:2:0 video 
format, a YUV 4:2:2 video format, or a 4:4:4 video format. 
In the YUV 4:2:0 video format, video encoder 20 may 
down-sample the chroma arrays Such that the chroma arrays 
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are /2 the height and /2 the width of the luma array. In the 
YUV 4:2:2 video format, video encoder 20 may down 
sample the chroma arrays Such that the chroma arrays are /2 
the width and the same height as the luma array. In the YUV 
4:4:4 video format, video encoder 20 does not down-sample 
the chroma arrays. 
To generate an encoded representation of a picture, video 

encoder 20 may generate a set of coding tree units (CTUs). 
Each of the CTUs may be a coding tree block of luma 
samples, two corresponding coding tree blocks of chroma 
samples, and syntax structures used to code the samples of 
the coding tree blocks. In a monochrome picture or a picture 
that has three separate color planes, a CTU may comprise a 
single coding tree block and syntax structures used to code 
the samples of the coding tree block. A coding tree block 
(CTB) may be an NXN block of samples. ACTU may also 
be referred to as a “tree block” or a “largest coding unit 
(LCU). The CTUs of HEVC may be broadly analogous to 
the macroblocks of other standards, such as H.264/AVC. 
However, a CTU is not necessarily limited to a particular 
size and may include one or more coding units (CUs). 
As part of encoding a picture, video encoder 20 may 

generate encoded representations of each slice of the picture 
(i.e., coded slices). To generate a coded slice, video encoder 
20 may encode a series of CTUs. This disclosure may refer 
to an encoded representation of a CTU as a coded CTU. In 
Some examples, each of the slices includes an integer 
number of coded CTUs. 
To generate a coded CTU, video encoder 20 may recur 

sively perform quad-tree partitioning on the coding tree 
blocks of a CTU to divide the coding tree blocks into coding 
blocks, hence the name "coding tree units.” A coding block 
is an NxN block of samples. ACU may be a coding block 
of luma samples and two corresponding coding blocks of 
chroma samples of a picture that has a luma sample array, a 
Cb sample array and a Crsample array, and syntax structures 
used to code the samples of the coding blocks. In a mono 
chrome picture or a picture that has three separate color 
planes, a CU may comprise a single coding block and syntax 
structures used to code the samples of the coding block. 

Video encoder 20 may partition a coding block of a CU 
into one or more prediction blocks. A prediction block may 
be a rectangular (i.e., square or non-square) block of samples 
on which the same prediction is applied. A prediction unit 
(PU) of a CU may be a prediction block of luma samples, 
two corresponding prediction blocks of chroma Samples of 
a picture, and syntax structures used to predict the prediction 
block samples. In a monochrome picture or a picture that 
have three separate color planes, a PU may comprise a single 
prediction block and syntax structures used to predict the 
prediction block samples. Video encoder 20 may generate a 
predictive block for each prediction block of a PU. For 
example, video encoder 20 may generate predictive luma, 
Cb and Crblocks for luma, Cb and Cr prediction blocks of 
each PU of the CU. Predictive blocks may also be referred 
to as predictive sample blocks. 

Video encoder 20 may use intra prediction or inter pre 
diction to generate the predictive blocks for a PU. If video 
encoder 20 uses intra prediction to generate the predictive 
blocks of a PU, video encoder 20 may generate the predic 
tive blocks of the PU based on decoded samples of the 
picture associated with the PU. 

If video encoder 20 uses inter prediction to generate the 
predictive blocks of a PU, video encoder 20 may generate 
the predictive blocks of the PU based on decoded samples of 
one or more pictures other than the picture associated with 
the PU. Video encoder 20 may use uni-prediction or bi 
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prediction to generate the predictive blocks of a PU. When 
Video encoder 20 uses uni-prediction to generate the pre 
dictive blocks for a PU, the PU may have a single motion 
vector. When video encoder 20 uses uni-prediction to gen 
erate the predictive blocks for a PU, the PU may have two 
motion vectors. 

After video encoder 20 generates predictive blocks (e.g., 
predictive luma, Cb and Cr blocks) for one or more PUs of 
a CU, video encoder 20 may generate one or more residual 
blocks for the CU. Each sample in a residual block for the 
CU may indicate a difference between a sample in a pre 
dictive block of a PU of the CU and a corresponding sample 
in a coding block of the CU. For example, video encoder 20 
may generate a luma residual block for the CU. Each sample 
in a luma residual block of a CU may indicate a difference 
between a luma sample in a predictive luma block of a PU 
of the CU and a corresponding sample in an original luma 
coding block of the CU. In addition, video encoder 20 may 
generate a Cb residual block for the CU. Each sample in a 
Cb residual block of a CU may indicate a difference between 
a Cb sample in one of a predictive Cb block of a PU of the 
CU and a corresponding sample in an original Cb coding 
block of the CU. Video encoder 20 may also generate a Cr 
residual block for the CU. Each sample in a Cr residual 
block of the CU may indicate a difference between a Cr 
sample in a predictive Cr block of a PU of the CU and a 
corresponding sample in an original Cr coding block of the 
CU. 

Furthermore, video encoder 20 may use quad-tree parti 
tioning to decompose the residual blocks (e.g., luma, Cb and 
Cr residual blocks) of a CU into one or more transform 
blocks (e.g., luma, Cb and Cr transform blocks). A transform 
block may be a rectangular block of samples on which the 
same transform is applied. A transform unit (TU) of a CU 
may be a transform block of luma samples, two correspond 
ing transform blocks of chroma samples, and syntax struc 
tures used to transform the transform block samples. Thus, 
each TU of a CU may be associated with a luma transform 
block, a Cb transform block, and a Cr transform block. In a 
monochrome picture or a picture that have three separate 
color planes, a TU may comprise a single transform block 
and syntax structures used to transform the transform block 
samples. The luma transform block of (i.e., associated with) 
a TU of a CU may be a sub-block of a luma residual block 
of the CU. The Cb transform block of a TU of a CU may be 
a sub-block of a Cb residual block of the CU. The Cr 
transform block of a TU of a CU may be a sub-block of a 
Cr residual block of the CU. 

For 3D coding, depth values in depth blocks may likewise 
be represented as sample values (e.g., luma values), each 
indicating a level of depth associated with a given pixel 
location. One or more of the techniques of this disclosure are 
applicable to the coding of depth blocks, particularly in 
modes Such as skip mode or merge mode where a list of 
candidates is generated for inheriting or using motion infor 
mation of a selected candidate, in coding the depth block. 

Video encoder 20 may apply one or more transforms to a 
transform block of a TU to generate a coefficient block for 
the TU. A coefficient block may be a two-dimensional array 
of transform coefficients. A transform coefficient may be a 
Scalar quantity. For example, video encoder 20 may apply 
one or more transforms to a luma transform block of a TU 
to generate a luma coefficient block for the TU. Video 
encoder 20 may apply one or more transforms to a Cb 
transform block of a TU to generate a Cb coefficient block 
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14 
for the TU. Video encoder 20 may apply one or more 
transforms to a Cr transform block of a TU to generate a Cr 
coefficient block for the TU. 

After generating a coefficient block (e.g., a luma coeffi 
cient block, a Cb coefficient block or a Cr coefficient block), 
video encoder 20 may quantize the coefficient block. Quan 
tization generally refers to a process in which transform 
coefficients are quantized to possibly reduce the amount of 
data used to represent the transform coefficients, providing 
further compression. After video encoder 20 quantizes a 
coefficient block, video encoder 20 may entropy encode 
Syntax elements indicating the quantized transform coeffi 
cients. For example, video encoder 20 may perform Con 
text-Adaptive Binary Arithmetic Coding (CABAC) on the 
Syntax elements indicating the quantized transform coeffi 
cients. Video encoder 20 may output the entropy-encoded 
Syntax elements in a bitstream. The bitstream may also 
include syntax elements that are not entropy encoded. 

Video decoder 30 may receive a bitstream generated by 
video encoder 20. In addition, video decoder 30 may parse 
the bitstream to obtain (e.g., decode) syntax elements from 
the bitstream. Video decoder 30 may reconstruct the pictures 
of the video databased at least in part on the syntax elements 
decoded (or otherwise obtained) from the bitstream. The 
process to reconstruct the video data may be generally 
reciprocal to the process performed by video encoder 20. For 
instance, video decoder 30 may use motion vectors of PUs 
to determine predictive blocks for the PUs of a current CU. 
In addition, video decoder 30 may inverse quantize trans 
form coefficient blocks associated with TUs of the current 
CU. Video decoder 30 may perform inverse transforms on 
the transform coefficient blocks to reconstruct transform 
blocks associated with the TUs of the current CU. In some 
examples, video decoder 30 may reconstruct the coding 
blocks of the current CU by adding the samples of the 
predictive blocks for PUs of the current CU to correspond 
ing samples of the transform blocks of the TUs of the current 
CU. By reconstructing the coding blocks for each CU of a 
picture, video decoder 30 may reconstruct the picture. 

In some cases, video encoder 20 may signal the motion 
information of a PU using merge mode or skip mode, or 
possibly an advanced motion vector prediction (AMVP) 
mode. In other words, in the HEVC standard, there are two 
inter prediction modes for a PU, named merge (skip is 
considered as a special case of merge) mode and AMVP 
mode, respectively. In either merge mode or AMVP mode, 
a video coder maintains a motion vector candidate list for 
multiple motion vector predictors. For ease of explanation, 
this disclosure may refer to a motion vector candidate list for 
the merge mode as a “merge candidate list' or a "merging 
candidate list.” Similarly, this disclosure may refer to a 
motion vector candidate list for AMVP mode as an AMVP 
candidate list. The motion information of a PU may include 
motion vector(s) of the PU and reference index(s) of the PU. 
When video encoder 20 signals the motion information of 

a current PU using merge mode, video encoder 20 generates 
a merge candidate list. The merge candidate list includes a 
set of candidates. Candidates in a merge candidate list may 
be referred to as "merge candidates' or “merging candi 
dates.” The candidates may indicate the motion information 
of PUs that spatially or temporally neighbor the current PU. 
PUs that spatially neighbor the current PU may have pre 
dictive blocks adjacent to a predictive block of the current 
PU in the same picture as the current PU. PUs that tempo 
rally neighbor the current PU may be in a different picture 
than the current PU. Video encoder 20 may then select a 
candidate from the candidate list and may use the motion 
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information indicated by the selected candidate as the 
motion information of the current PU. Furthermore, in 
merge mode, video encoder 20 may signal the position in the 
candidate list of the selected candidate. For instance, video 
encoder 20 may signal a merge index (e.g., merge idx) that 
indicates a position in the merging candidate list of the 
selected merging candidate. Video decoder 30 may generate 
the same candidate list and may determine, based on the 
indication of the position of the selected candidate (e.g., the 
position indicated by the merge index), the selected candi 
date. Video decoder 30 may then use the motion information 
of the selected candidate to generate one or more predictive 
blocks (e.g., predictive samples) for the current PU. Video 
decoder 30 may reconstruct samples based on the predictive 
blocks (e.g., predictive samples) for the current PU and a 
residual signal. In this way, a video coder may generate 
motion vector(s), as well as reference indices in the merge 
mode, of the current PU by taking one candidate from the 
motion vector candidate list. 

Skip mode is similar to merge mode in that video encoder 
20 generates a candidate list and selects a candidate from the 
list of candidates. However, when video encoder 20 signals 
the motion information of a current PU (e.g. a depth block) 
using skip mode, video encoder 20 may avoid generation of 
any residual signal. Because skip mode has the same motion 
vector derivation process as merge mode, techniques 
described in this document may apply to both merge and 
skip modes. One or more aspects of this disclosure may also 
be used for AMVP mode or other modes that make use of 
candidate lists. 
AMVP mode is similar to merge mode in that video 

encoder 20 generates a candidate list and selects a candidate 
from the list of candidates. However, when video encoder 20 
signals the motion information of a current PU (e.g. a depth 
block) using AMVP mode, video encoder 20 may signal a 
motion vector difference (MVD) for the current PU and a 
reference index in addition to signaling a position of the 
selected candidate in the candidate list. An MVD for the 
current PU may indicate a difference between a motion 
vector of the current PU and a motion vector of the selected 
motion vector candidate. In uni-prediction, video encoder 20 
may signal one MVD and one reference indices for the 
current PU. In bi-prediction, video encoder 20 may signal 
two MVDs and two reference indices for the current PU. In 
Some examples, video encoder 20 may typically signal one 
MVD and one reference indices for the current PU, although 
depth block prediction could also use techniques similar to 
bi-prediction where two MVDs and two reference indices 
are signaled. 

Furthermore, when the motion information of a current 
PU is signaled using AMVP mode, video decoder 30 may 
generate the same candidate list and may determine, based 
on the indication of the position of the selected candidate, 
the selected candidate. Video decoder 30 may recover a 
motion vector of the current PU by adding a MVD to the 
motion vector of the selected candidate. Video decoder 30 
may then use the recovered motion vector or motion vectors 
of the current PU to generate predictive blocks for the 
current PU. 

In some examples, the motion vector candidate list con 
tains up to five candidates for the merge mode and only two 
candidates for the AMVP mode. In other words, a merge 
candidate list may include up to five candidates while an 
AMVP candidate list may only include two candidates. A 
merge candidate (i.e., a candidate in a motion vector can 
didate list for merge mode) may contain motion vectors 
corresponding to both reference picture lists (list 0 and list 
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1) and the reference indices. If a merge candidate is iden 
tified by a merge index, the reference pictures used for the 
prediction of the current blocks, as well as the associated 
motion vectors are determined. However, under AMVP 
mode for each potential prediction direction from either list 
0 or list 1, a reference index is explicitly signaled, together 
with a motion vector predictor index to the motion vector 
candidate list since the AMVP candidate contains only a 
motion vector. In AMVP mode, the predicted motion vectors 
can be further refined. 
As indicated above, a video coder may derive candidates 

for the merge mode from spatial and temporal neighboring 
blocks. The video coder may derive the maximum number 
of candidates from the coded syntax element five minus 
max num merge cand, which is included in a slice header 
for a slice. The syntax element five minus max num 
merge cand specifies the maximum number of merging 
candidates supported in the slice, subtracted from 5. The 
Video coder may derive the maximum number of merging 
candidates, MaxNumMergecand as follows: 

MaxNumMergeCand=5-five minus max num 
merge cand (7-39) 

The value of MaxNumMergeCand is in the range of 1 to 5, 
inclusive. 
A video coder may construct the merge candidate list with 

the following steps. First, the video coder may derive up to 
four spatial motion vector candidates from five spatial 
neighboring blocks shown in FIG. 1. FIG. 2 is a conceptual 
illustration showing spatial neighbors which are the poten 
tial candidates for the merge list. Arrows indicate which 
spatial candidate(s) are to be compared. The video coder 
may derive the spatial motion vector candidates in the 
following order: left (A1), above (B1), above right (BO), 
below left (AO), and above left (B2), as shown in FIG. 2. 
Furthermore, the video coder may apply a pruning process 
to remove identical spatial motion vector candidates. For 
example, the video coder may compare B1 to A1, compare 
B0 to B1, compare A0 to A1 and compare B2 to both B1 and 
A1. If there are already four merge candidates available after 
the pruning process, the video coder does not insert B2 into 
the merge candidate list. 

Second, the video coder may determine temporal merging 
candidates. For instance, the video coder may add a tempo 
ral motion vector predictor (TMVP) candidate from a co 
located reference picture (if enabled and available) into the 
merge candidate list (i.e., the motion vector candidate list) 
after spatial motion vector candidates. 

Third, if the merge candidate list (i.e., motion vector 
candidate list) is not complete, the video coder may generate 
and insert artificial motion vector candidates at the end of the 
merge candidate list until the merge candidate list has all 
candidates (i.e., all candidates indicated by MaxNumMerge 
Cand). In other words, the video coder may insert artificial 
motion vector candidate into the merge candidate list if the 
number of merge candidate in the merge candidate list is less 
than MaxNumMergeCand. There are two types of artificial 
motion vector candidates: combined bi-predictive merging 
candidates (which are derived only for B-slices) and Zero 
motion vector merging candidates. The merging candidate 
list may include one or more Zero motion vector merging 
candidates if the first type (i.e., combined bi-predictive 
merging candidates) does not provide enough artificial can 
didates. 
When a current slice (i.e., a slice that a video coder is 

currently coding) is a B slice, the video coder may invoke a 
derivation process for combined bi-predictive merging can 
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didates. In at least some examples, a B slice is a slice in 
which intra prediction, uni-directional inter prediction, and 
bi-directional inter prediction are allowed. When the deri 
Vation process is invoked, the video coder may, for each pair 
of merge candidates that are already in the merge candidate 
list and have the necessary motion information, derive 
combined bi-predictive motion vector candidates (with 
index denoted by combIdx) by a combination of the motion 
vector (and, in some instances, reference index) of the first 
merge candidate of the pair (with merge candidate index 
equal to 10Cand Idx) referring to a picture in the list 0 (if 
available) and the motion vector (and, in Some instances, 
reference index) of a second merge candidate of the pair 
(with merge candidate index equal to 11 Candidx) referring 
to a picture in the list 1 (if available and either reference 
picture or motion vector is different from the first candidate). 
The pair of merge candidate may be an ordered pair in the 
sense that different orders of the same two merge candidates 
are considered different pairs. The definitions of 10Cand Idx 
and 11Candidx corresponding to combdx are illustrated in 
Table 1, below. 

TABLE 1. 

Specification of IOCandidx and Il Candidx 

combdx O 1 2 3 4 S 6 7 8 9 

IOCandIdx O 1 O 2 1 2 O 3 1 3 2 3 
1CandIdx 1 O 2 O 2 1 3 O 3 1 3 2 

In Table 1, the row for 10Candidx indicates indices of 
merge candidates from which to draw ReflicList0 motion 
information (e.g., motion vectors, reference indices). Simi 
larly, in Table 1, the row for 11 Cand Idx indicates indices of 
merge candidates from which to draw ReflicList1 motion 
information. Thus, the column for combination 0 (i.e., 
combidx=0) indicates that a combined bi-predictive motion 
vector candidate specifies the ReflicList0 motion informa 
tion of merge candidate 0 and specifies the ReflicList1 
motion information of merge candidate 1. Because not all 
merge candidates necessarily have the applicable motion 
information for a combination (e.g., merge candidate 1 may 
not have ReflicList1 motion information) or the motion 
information of ReflicList0 associated with merge candidate 
0 and ReflicList1 associated with merge candidate 1 are 
identical, a video coder may process the combinations of 
Table 1 in order of combIdx until there are no remaining 
combinations available or the video coder has generated a 
sufficient number of combined bi-predictive motion vector 
candidates. 

For combdx being 0 . . . 11, the generation process of 
combined bi-predictive motion vector candidates is termi 
nated when one the following conditions is true: 

combIdx is equal to (numOrigMergecand(numOrig 
Mergecand-1)) wherein numOrigMergecand denotes 
the number of candidates in the merge list before 
invoking this process. 

Number of total candidates (including newly generated 
combined bi-predictive merging candidates) in the 
merge list is equal to MaxNumMergeCand. 

As indicated above, a video encoder may include one or 
more Zero motion vector merging candidates in a merging 
candidate list. For each respective Zero motion vector merg 
ing candidate, a motion vector of the respective Zero motion 
vector merging candidate is set to 0 and a reference index for 
the respective Zero motion vector merging candidate is set 
from 0 to the number of available reference indexes minus 
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1. If the number of merge candidates in the merge candidate 
list is still less than MaxNumMergeCand, the video coder 
may insert one or more Zero motion vector candidates (e.g., 
Zero reference indices and motion vectors) until the total 
number of merge candidates in the merge candidate list is 
equal to MaxNumMergeCand. 
The following sub-sections of this disclosure review 

AVC-based and HEVC-based 3D video coding techniques 
related to this disclosure. In multi-view coding (e.g., 3D 
Video coding), there may be multiple views of the same 
scene from different viewpoints. The term “access unit may 
be used to refer to the set of pictures that correspond to the 
same time instance. In other words, an access unit may 
include coded pictures of all of the views for one output time 
instance. A "view component may be a coded representa 
tion of a view in a single access unit. In some examples, a 
view component may contain a texture view component and 
a depth view component. In this disclosure, a “view” may 
refer to a sequence of view components associated with the 
same view identifier. Thus, when a view includes both coded 
texture and depth representations, a view component may 
comprise (e.g., consist of) a texture view component and a 
depth view component. In some examples, a texture view 
component is a coded representation of the texture of a view 
in a single access unit. Furthermore, in some examples, a 
depth view component is a coded representation of the depth 
of a view in a single access unit. A depth view component 
may also be referred to as a depth picture. 

Each texture view component includes actual image con 
tent to be displayed. For example, a texture view component 
may include luma (Y) and chroma (Cb and Cr) components. 
Each depth view component may indicate relative depths of 
the pixels in its corresponding texture view component. In 
Some examples, depth view components are gray scale 
images that include only luma values. In other words, depth 
view components may not convey any image content, but 
rather may provide measures of the relative depths of the 
pixels in corresponding texture view components. 

For example, a purely white pixel in a depth view 
component may indicate that the pixel’s corresponding pixel 
or pixels in the corresponding texture view component are 
closer, from the perspective of the viewer. In this example, 
a purely black pixel in the depth view component indicates 
that the pixel’s corresponding pixel or pixels in the corre 
sponding texture view component are further away, from the 
perspective of the viewer. The various shades of gray in 
between black and white indicate different depth levels. For 
instance, a dark gray pixel in a depth view component 
indicates that the pixel’s corresponding pixel in the texture 
view component is further away than a light gray pixel in the 
depth view component. In this example, because only gray 
scale is needed to identify the depth of pixels, depth view 
components do not need to include chroma components, as 
the chroma components for the depth view components may 
not serve any purpose. This disclosure provides the example 
of depth view components using only luma values (e.g., 
intensity values) to identify depth for illustration purposes 
and should not be considered limiting. In other examples, 
other techniques may be utilized to indicate relative depths 
of the pixels in texture view components. 

In multi-view coding, a bitstream may have a plurality of 
layers. Each of the layers may correspond to a different view. 
In multi-view coding, a view may be referred to as a “base 
view if a video decoder (e.g., video decoder 30) can decode 
pictures in the view without reference to pictures in any 
other view. A view may be referred to as a non-base view if 
decoding of the view is dependent on decoding of pictures 
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in one or more other views. When coding a picture in one of 
the non-base views, a video coder (such as video encoder 20 
or video decoder 30) may add a picture into a reference 
picture list if the picture is in a different view but within a 
same time instance (i.e., access unit) as the picture that the 
Video coder is currently coding. Like other inter prediction 
reference pictures, the video coder may insert an inter-view 
prediction reference picture at any position of a reference 
picture list. 

In 3D-HEVC, a disparity vector (DV) may be used as an 
estimator of the displacement between two views. Because 
neighboring blocks share almost the same motion/disparity 
information in video coding, the current block can use the 
motion vector information in neighboring blocks as a good 
predictor. Following this idea, the neighboring block based 
disparity vector derivation (NBDV) process uses the neigh 
boring motion vector information for estimating the dispar 
ity vector in different views. 3D-HEVC firstly adopted the 
Neighboring Block (based) Disparity Vector (NBDV) 
method proposed in the following document: Zhang et al., 
"3D-CE5.h: Disparity vector generation results.' Joint Col 
laborative Team on 3D Video Coding Extension Develop 
ment of ITU-T SG 16 WP3 and ISO/IEC JTC 1/SC 29/WG 
11, 1st Meeting: Stockholm, SE, 16-20 Jul. 2012, document 
JCT3V-AO097 (hereinafter, “JCT3V-A0097). 

Several spatial and temporal neighboring blocks are 
defined in the NBDV process. A video coder performing the 
NBDV process may check each of the spatial and temporal 
neighboring blocks in a pre-defined order determined by the 
priority of the correlation between a current block and the 
candidate block (i.e., spatial or temporal neighboring block). 
Thus, in the NBDV process, the video coder utilizes two sets 
of neighboring blocks. One set of neighboring blocks is from 
spatial neighboring blocks and the other set is from temporal 
neighboring blocks. When the video coder checks a neigh 
boring block, the video coder may determine whether the 
neighboring block has a disparity motion vector (i.e., the 
motion vector points to an inter-view reference picture). 
Once the video coder finds a disparity motion vector, the 
Video coder may convert the disparity motion vector to a 
disparity vector. For example, to convert the disparity 
motion vector to the disparity vector, the video coder may 
set the disparity vector equal to the disparity motion vector. 
Meanwhile, the associated reference view order index is also 
returned. In other words, as part of performing the NBDV 
process, the video coder may also determine a reference 
view order index. 

In some versions of 3D-HEVC, the video coder uses two 
spatial neighboring blocks in the NBDV process for the 
disparity vector derivation. The two spatial neighboring 
blocks are the left and above of current CU, as denoted by 
A1. B1 as shown in FIG. 3. FIG. 3 is a conceptual diagram 
illustrating spatial and temporal neighboring blocks relative 
to the current coding unit. It should be noted that the spatial 
neighboring blocks used in the NBDV process are the same 
as those used in the merge mode in HEVC. Therefore, at 
least in some examples, no additional memory access is 
required when processing the spatial neighboring blocks in 
the NBDV process. 

In some examples, to check temporal neighboring blocks 
in the NBDV process, the video coder may first perform a 
construction process to generate a candidate picture list. Up 
to two reference pictures from the current view (i.e., the 
view that includes the picture currently being coded) may be 
treated as candidate pictures. A co-located reference picture 
(i.e., a co-located picture) is first inserted to the candidate 
picture list, followed by the rest of the candidate pictures 
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(i.e., all of the reference pictures in ReflicList.0 and Refli 
cList1) in the ascending order of reference index. 

If the current slice of the current picture is a B slice (i.e., 
a slice that is allowed to include bi-directionally inter 
predicted PUs), video encoder 20 may signal, in a slice 
header, a syntax element (e.g., collocated from 10 flag) that 
indicates whether the co-located picture is from RefDicList0 
or RefDicList1. In other words, when the use of TMVPs is 
enabled for a current slice, and the current slice is a B slice 
(e.g., a slice that is allowed to include bi-directionally inter 
predicted PUs), video encoder 20 may signal a syntax 
element (e.g., collocated from 10 flag) in a slice header to 
indicate whether the co-located picture is in ReflicList0 or 
ReflicList1. If the current slice is not a B slice, it may be 
unnecessary for video encoder 20 to signal the syntax 
element to indicate whether the co-located picture is in 
RefpicList0 or ReflPicList1 because if the current slice is an 
I slice, not interprediction is allowed, and if the current slice 
is a P slice, there is only one reference picture list for the 
slice. After video decoder 30 identifies the reference picture 
list that includes the co-located picture, video decoder 30 
may use another syntax element (e.g., collocated ref idx), 
which may be signaled in a slice header, to identify a picture 
(i.e., the co-located picture) in the identified reference pic 
ture list. That is, after a reference picture list is identified, 
collocated ref idx, which is signaled in a slice header, may 
be used to identify the picture in the reference picture list. 
When two reference pictures with the same reference 

index in both reference picture lists are available, the ref 
erence picture in the same reference picture list of the 
co-located picture precedes the other reference picture. For 
each candidate picture in the candidate picture list, the video 
coder may determine the block of the co-located region 
covering the center position as the temporal neighboring 
block. 
When a block is coded with inter-view motion prediction, 

the video coder may need to derive a disparity vector for 
selecting a corresponding block in a different view. An 
implicit disparity vector (IDV or a.k.a. derived disparity 
vector) may be referred to as a disparity vector derived in the 
inter-view motion prediction. Even though the block is 
coded with motion prediction, the derived disparity vector is 
not discarded for the purpose of coding a following block. 

In at least some designs of the 3D-HTM, the NBDV 
process checks disparity motion vectors in the temporal 
neighboring blocks, disparity motion vectors in the spatial 
neighboring blocks, and then the IDVs in order. Once the 
video coder finds a disparity motion vector or IDV, the video 
coder terminates the NBDV process. 

In some examples, when a video coder derives a disparity 
vector from the NBDV process, the video coder further 
refines the disparity vector by retrieving depth data from a 
depth map (i.e., a depth view component) of the reference 
view. The refinement process is named depth-oriented 
NBDV (DoNBDV) and may include the following two 
steps. First, locate a corresponding depth block by the 
derived disparity vector in the previously coded reference 
depth view, such as the base view; the size of the corre 
sponding depth block is the same as that of the current PU. 
Second, select one depth value from four corner pixels of the 
corresponding depth block (due to the adoption of Chang et 
al., “3D-CE2.h related: Simplified DV derivation for DoN 
BDV and BVSP, Joint Collaborative Team on 3D Video 
Coding Extensions of ITU-T SG 16 WP3 and ISO/IEC JTC 
1/SC 29/WG 11, 4" Meeting, Incheon, KR 20-26 Apr. 2013, 
document no. JCT3V-D0138 (hereinafter, “JCT3V 
D0138)) and convert the selected depth value to the hori 
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Zontal component of the refined disparity vector. The verti 
cal component of the disparity vector is unchanged. JCT3V 
D0138 is available at http://phenix.it-sudparis.eu/jct3V/ 
doc end user/current document.php?id=823. 

In 3D-HEVC, the construction process for merge candi 
date lists differs from the construction process for merge 
candidate lists used in HEVC. For instance, based on the 
derived disparity vector from the NBDV process or DoN 
BDV, the video coder may add a new motion vector candi 
date (i.e., an Inter-view Predicted Motion Vector Candidate 
(IPMVC)), if available, to AMVP and skip/merge modes. In 
other words, the video coder may include an IPMVC in a 
merge candidate list or an AMVP candidate list. The IPMVC 
may specify the motion information of a reference block in 
a reference view. For instance, an IPMVC may specify one 
or more temporal motion vectors, as well as prediction 
direction indicators and reference indices. 

For the merge? skip mode, the video coder may derive an 
inter-view predicted motion vector by the following steps. 
First, the video coder may locate a corresponding block of 
current PU/CU in a reference view of the same access unit 
by the disparity vector. Second, if the corresponding block 
is not intra-coded and not inter-view predicted and its 
reference picture has a picture order count (POC) value 
equal to that of one entry in the same reference picture list 
of the current PU/CU, the video coder may derive its motion 
information (prediction direction, reference pictures, and 
motion vectors), after converting the reference index based 
on POC, to be the inter-view predicted motion vector. 

FIG. 4 shows an example of the derivation process of the 
inter-view predicted motion vector candidate. In particular, 
FIG. 4 is a conceptual illustration showing derivation of an 
inter-view predicted motion vector candidate for merge/skip 
mode. In the example of FIG. 4, a current PU 40 occurs in 
view V1 at a time instance T1. A reference PU 42 for current 
PU 40 occurs in a different view than current PU 40 (i.e., 
view VO) and at the same time instance as current PU 40 
(i.e., time instance T1). In the example of FIG. 4, reference 
PU 42 is bi-directionally inter predicted. Hence, reference 
PU 42 has a first motion vector 44 and a second motion 
vector 46. Motion vector 44 indicates a position in a 
reference picture 48. Reference picture 48 occurs in view V0 
and in time instance T0. Motion vector 46 indicates a 
position in reference picture 50. Reference picture 50 occurs 
in view V0 and in time instance T3. 
The video coder may generate, based on the motion 

information of reference PU 42, an IPMVC for inclusion in 
a merge candidate list of current PU 40. The IPMVC may 
have a first motion vector 52 and a second motion vector 54. 
Motion vector 52 matches motion vector 44 and motion 
vector 54 matches motion vector 46. The video coder 
generates the IPMVC such that a first reference index of the 
IPMVC indicates a position in RefDicList0 for current PU 
40 of a reference picture (i.e., reference picture 56) occur 
ring in the same time instance as reference picture 48 (i.e., 
time instance TO). In the example of FIG. 4, reference 
picture 56 occurs in the first position (i.e., RefD) in Refli 
cList0 for current PU 40. Furthermore, the video coder 
generates the IPMVC such that a second reference index of 
the IPMVC indicates a position in ReflicList1 for current 
PU 40 of a reference picture (i.e., reference picture 58) 
occurring in the same time instance as reference picture 50. 
Thus, in the example of FIG. 4, the ReflicListO reference 
index of the IPMVC may be equal to 0. In the example of 
FIG. 4, a reference picture 59 occurs in the first position (i.e., 
Ref)) in RefpicList1 for current PU40 and reference picture 
58 occurs in the second position (i.e., Refl) in ReflicList1 
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for current PU 40. Accordingly, the ReflicList1 reference 
index of the IPMVC may be equal to 1. 

Thus, In the example of FIG. 4, a disparity vector is 
calculated by finding corresponding block 42 in a different 
view (e.g., view 0 or VO) to current PU 40 in the currently 
coded view (view 1 or V1). If corresponding block 42 is not 
intra-coded and not inter-view predicted, and its reference 
picture has a POC value that is in the reference picture list 
of current PU 40 (e.g., Ref), List 0; Reft), List1; Ref1, List 
1, as shown in FIG. 4), then the motion information for 
corresponding block 42 is used as an inter-view predicted 
motion vector. The video coder may scale the reference 
index based on the POC. 

Furthermore, when generating a merging candidate list 
(or in some examples, AMVP candidate list) for a block 
(e.g., PU), the video coder may convert a disparity vector of 
the block into an inter-view disparity motion vector candi 
date (IDMVC). The IDMVC may specify the disparity 
vector of the block. The video coder may add the IDMVC 
into the merge candidate list (or in some examples, AMVP 
candidate list) in a different position from IPMVC. Alter 
natively, in Some examples, the video coder may add the 
IDMVC into the merge candidate list (or in some examples, 
AMVP candidate list) in the same position as the IPMVC, 
when the IDMVC is available. In this context, either an 
IPMVC or an IDMVC may be called an “inter-view candi 
date.” In some examples, in the merge/skip mode, the video 
coder always inserts the IPMVC, if available, before all 
spatial and temporal merging candidates to the merge can 
didate list. In some such examples, the video coder may 
insert the IDMVC before the spatial merging candidate 
derived from A. 

Thirumalai et al., “Merge candidates derivation from 
vector shifting.” Joint Collaborative Team on 3D Video 
Coding Extensions of ITU-T SG 16 WP3 and ISO/IEC JTC 
1/SC 29/WG 11, 5* Meeting, Vienna, AU, Jul. 27-Aug. 2, 
2013, document no. JCT3V-E0126 (hereinafter, “JCT3V 
E0126’) describes merge candidate derivation from vector 
shifting. JCT3V-E0126 is available at http://phenix.it-Sud 
paris.eu/jct3V/doc end user/current document.ph 
p?id=1140. Due to the adoption of JCT3V-E0126, one more 
candidate, named a “shifted candidate' or “shifted IvMVC.' 
may be derived with a shifted disparity vector. Such a 
candidate could be an IPMVC derived from a reference 
block in a reference view with shifted disparity vectors or 
derived from the first available spatial merging candidate 
including a disparity motion vector or IDMVC. Detailed 
steps for generating the additional candidate and insertion to 
the merge candidate list are described as follows. 

First, a video coder shifts the disparity vector DV by 
((PuWidth/2*4+4), (Puheight/2*4+4)). The video coder 
uses the DV to derive a shifted IvMC candidate from the 
reference view. Here, the size of the current PU is PuWidth:X 
Puheight. If the shifted IvMVC is available, the video coder 
may skip step 2 (i.e., the second step described below) and 
if this shifted IVMC is not identical to the IvMC without 
disparity vector shifting, the video coder inserts the shifted 
IvMC into the merge candidate list just before the temporal 
merging candidate. 

Second, the video coder may derive a candidate, denoted 
as Disparity Shifted Motion Vector (DSMV). The video 
coder may set the DSMV to be the additional candidate. If 
the DSMV is available, the video coder may directly insert 
the DSMV into the merge candidate list in the same position 
as a shifted IvMC. The video coder may derive the DSMV 
as follows. First, the video coder identifies the first available 
disparity motion vector (DMV) corresponding to the Ref 
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PicList0 from the spatial neighboring blocks. Second, if the 
DMV is available, the video coder sets the horizontal 
component of the motion vector in List 0 to DMV shifted by 
4 and the video coder keeps the vertical component of the 
motion vector unchanged or resets the vertical component of 
the motion vector to 0, depending on whether or not BVSP 
is enabled. The reference indices and motion vectors in List 
1 are directly inherited. Otherwise (i.e., if the DMV is not 
available), the video coder sets the horizontal component of 
the motion vector in List 0 and List 1 to the DV shifted by 
4 and the video coder sets both vertical components of 
motion vectors in List 0 and List 1 to 0. 

Tian et al., “CE1.h: Backward View Synthesis Prediction 
using Neighbouring Blocks. Joint Collaborative Team on 
3D Video Coding Extension Development of ITU-TSG 16 
WP 3 and ISO/IEC JCT 1/SC 29/WG 11, 3 Meeting, 
Geneva, CH, 17-23 Jan. 2013, document no. JCT3V-00152 
(hereinafter, “JCT3V-00152) describes backward view syn 
thesis prediction using neighboring blocks. JCT3V-00152 is 
available at: http://phenix.it-Sudparis.eu/jct2/doc end user/ 
current document.php?id=594. The backward-warping 
VSP approach as proposed in JCT3V-00152 was adopted in 
the third JCT-3V meeting. The basic idea of this backward 
warping VSP as proposed in JCT3V-00152 is the same as the 
block-based VSP in 3D-AVC. Both of these two techniques 
use the backward-warping and block-based VSP to avoid 
transmitting the motion vector differences and use more 
precise motion vectors. Implementation details are different 
due to different platforms. The following paragraphs use the 
term “BVSP” to indicate the backward-warping VSP 
approach in 3D-HEVC. 

In some designs of the 3D-HTM, the BVSP mode is only 
Supported for an inter-code block in either skip or merge 
mode. BVSP mode is not allowed for a block coded in 
AMVP mode. Instead of transmitting a flag to indicate the 
usage of BVSP mode, one additional merging candidate 
(i.e., BVSP merging candidate) is introduced and each 
candidate is associated with one BVSP flag. As indicated 
above, video encoder 20 may signal a merge index (e.g., 
merge idx) in a bitstream and video decoder 30 may obtain 
the merge index from the bitstream. When the decoded 
merge index corresponds to a BVSP merging candidate, the 
current PU uses the BVSP mode. Furthermore, when the 
decoded merge index corresponds to the BVSP merging 
candidate, for each sub-block within the current PU, the 
video coder may derive a disparity motion vector for the 
sub-block by converting a depth value in a depth reference 
V1eW. 

The setting of BVSP flags may be defined as follows. 
When a spatial neighboring block used for deriving a spatial 
merging candidate is coded with BVSP mode, the associated 
motion information is inherited by the current block as in 
conventional merging mode. In addition, this spatial merg 
ing candidate is tagged with a BVSP flag equal to 1. For the 
newly introduced BVSP merging candidate, the BVSP flag 
is set to 1. For all the other merging candidates, the asso 
ciated BVSP flags are set to 0. 
As indicated above, in 3D-HEVC, a video coder may 

derive a new candidate (i.e., a BVSP merging candidate) and 
may insert the BVSP merging candidate into the merge 
candidate list. The video coder may set the corresponding 
reference indices and motion vectors for the BVSP merging 
candidate by the following method. First, the video coder 
may obtain the view index (denoted by refVIdxLX) of the 
derived disparity vector from NBDV. Second, the video 
coder may obtain the reference picture list ReflicListX 
(either ReflicList0 or ReflicList1) that is associated with 
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the reference picture with the view order index equal to 
refVIdxLX. The video coder may use the corresponding 
reference index and the disparity vector from the NBDV 
process as the motion information of the BVSP merging 
candidate in ReflPicListX. 

Third, if the current slice is a B slice, the video coder may 
check the availability of an inter-view reference picture with 
a view order index (denoted by refVIdxLY) unequal to 
refVIdxLX in the reference picture list other than Refli 
cListX, (i.e., ReflicListY with Y being 1-X). If such a 
different inter-view reference picture is found, the video 
coder applies bi-predictive VSP. Meanwhile, the video coder 
uses the corresponding reference index of the different 
inter-view reference picture and the scaled disparity vector 
from a NBDV process as the motion information of the 
BVSP merging candidate in ReflicListY. The video coder 
may use the depth block from the view with view order 
index equal to refVIdxLX as the current block's depth 
information (in the case of texture-first coding order), and 
the video coder may access the two different inter-view 
reference pictures (each from one reference picture list) via 
a backward warping process and further weighted to achieve 
the final backward VSP predictor. Otherwise, the video 
coder applies uni-predictive VSP with ReflicListX as the 
reference picture list for prediction. 

In the 3D-HTM, texture first coding is applied in common 
test conditions. Therefore, the corresponding non-base depth 
view is unavailable when decoding one non-base texture 
view. Therefore, the depth information is estimated and used 
to perform BVSP. In order to estimate the depth information 
for a block, a video coder may first derive a disparity vector 
from the neighboring blocks, and then use the derived 
disparity vector to obtain a depth block from a reference 
view. In the 3D-HTM 8.0 test model, there exists a process 
to derive a disparity vector predictor, known as a NBDV 
(Neighboring Block Disparity Vector). Let (dv, dv) denote 
the disparity vector identified from the NBDV function, and 
the current block position is (block, block). 

In some examples of uni-predictive BVSP, a video coder 
fetches a depth block with the top-left position (block,+dv, 
block,+dv,) in the depth image of the reference view. The 
current block is firstly split into several sub-blocks, each 
having the same size of W*H. For each sub-block with the 
size equal to W*H, the video coder uses a corresponding 
depth sub-block within the fetched depth block and converts 
the maximum depth value from the four corner pixels of the 
depth sub-block to a disparity motion vector. The video 
coder then uses the derived disparity motion vector for each 
sub-block for motion compensation. FIG. 5 illustrates the 
three steps of how a depth block from the reference view is 
located and then used for BVSP (also called “BVSP predic 
tion'). 

In particular, FIG. 5 is a conceptual diagram illustrating 
depth block derivation from a reference view to perform 
BVSP prediction. In some examples of bi-prediction BVSP 
when there are multiple inter-view reference pictures from 
different views in RefPicList0 and RefPicList1, the video 
coder applies bi-predictive VSP. That is, the video coder 
may generate two VSP predictors from each reference list, 
as described above. The video coder may then average the 
two VSP predictors to obtain the final VSP predictor. 

In the example of FIG. 5, a video coder is coding a current 
texture picture 60. Current texture picture 60 is labeled a 
“dependent texture picture' because current texture picture 
60 is dependent on a synthesized reference texture picture 
62. In other words, the video coder may need to synthesize 
reference texture picture 62 (or portions thereof) in order to 
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decode current texture picture 60. Reference texture picture 
62 and current texture picture 60 are in the same access unit 
but are in different views. 

In order to synthesize reference texture picture 62 (or 
portions thereof), the video coder may process blocks (i.e., 
video units) of current texture picture 60. In the example of 
FIG. 5, the video coder is processing a current block 64. 
When the video coder processes current block 64, the video 
coder may perform the NBDV derivation process to derive 
a disparity vector for current block 64. For instance, in the 
example of FIG. 5, the video coder identifies a disparity 
vector 66 of a block 68 that neighbors current block 64. The 
identification of disparity vector 66 is shown as Step 1 of 
FIG. 5. Furthermore, in the example of FIG. 5, the video 
coder determines, based on disparity vector 66, a disparity 
vector 69 of current block 64. For instance, disparity vector 
69 may be a copy of disparity vector 66. Copying disparity 
vector 66 is shown as Step 2 of FIG. 5. 

The video coder may identify, based on disparity vector 
69 of current block 64, a reference block 70 in a reference 
depth picture 72. Reference depth picture 72, current texture 
picture 60, and reference texture picture 62 may each be in 
the same access unit. Reference depth picture 72 and refer 
ence texture picture 62 may be in the same view. The video 
coder may determine, based on texture sample values of 
current block 64 and depth sample values of reference block 
70, texture sample values of reference texture picture 62. 
The process of determining the texture sample values may 
be referred to as backward warping. Section H.8.5.2.2.7 of 
3D-HEVC Test Model 3 describes the process of backward 
warping. Backward warping is shown as Step 3 of FIG. 5. 
In this way, FIG. 5 illustrates the three steps of how a depth 
block from the reference view is located and then used for 
BVSP prediction. 
The motion compensation size (i.e., WH as described 

above) used in BVSP could be either 8x4 or 4x8. To 
determine the motion compensation size, the following rule 
is applied. For each 8x8 block, the video coder checks four 
corners of corresponding depth 8x8 block and: 

if (vdepth.TL) < volepth BR20 : 1) = (vdepth TR) < volepthBL20 : 1) 
use 4x8 partition (W = 4, H = 8 ) 

else 
use 8x4 partition (W = 8, H = 4) 

FIG. 6 is a conceptual diagram illustrating four corner pixels 
of one 8x8 depth block. 
The maximum number of merge candidates and the merge 

list construction process for 3D-HEVC are described in the 
following paragraphs. In some versions of 3D-HEVC, the 
total number of candidates in the merge list is up to six and 
five minus max num merge cand is signaled in a slice 
header to specify the maximum number of the merge can 
didates Subtracted from five. five minus max num merge 
cand is in the range of 0 to 5, inclusive. five minus max 
num merge cand specifies the maximum number of merg 
ing motion vector predictor (MVP) candidates (i.e., merging 
candidates) supported in the slice subtracted from 5. A video 
coder may compute the maximum number of merging MVP 
candidates (i.e., MaxNumMerge(Cand) as: 

MaxNumMergeCand=5-five minus max num 
merge cand+iv mV pred flagnuh layer id (H-1) 

In such versions of 3D-HEVC, the value of five minus 
max num merge cand shall be limited Such that MaxNum 
Merge(Cand is in the range of 0 to (5+iv mV pred flag 
nuh layer id), inclusive. 
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Furthermore, in such versions of 3D-HEVC, an iv m 

V pred flag layerId Syntax element indicates whether inter 
view motion parameter prediction is used in the decoding 
process of the layer with nuh layer id equal to layerId. 
iv mV pred flag layerIdequal to 0 specifies that inter-view 
motion parameter prediction is not used for the layer with 
nuh layer id equal to layerId. iV mv pred flag layerId 
equal to 1 specifies that inter-view motion parameter pre 
diction may be used for the layer with nuh layer id equal to 
layerId. When not present, the value of iV mV pred flag 
layerId shall be inferred to be equal to 0. 
The merging candidate list construction process in 

3D-HEVC can be defined as follows: 
1. IPMVC insertion: When inter-view motion prediction 

is applied, the video coder derives an IPMVC by the 
procedure described above. If the IPMVC is available, 
the video coder inserts the IPMVC into the merge list 
(i.e., the merge candidate list). 

2. Derivation process for spatial merging candidates and 
IDMVC insertion in 3D-HEVC 
The video coder checks the motion information of 

spatial neighboring PUs in the following order: A, 
B. Bo Ao, or B. Furthermore, the video coder may 
perform constrained pruning by the following pro 
cedures: 
If A (i.e., a merge candidate derived from spatial 

neighboring PUA) and IPMVC have the same 
motion vectors and the same reference indices, the 
video coder does not insert A into the candidate 
list (i.e., the merge candidate list). Otherwise, the 
video coder inserts A into the list (i.e., the merge 
candidate list). 

If B and A/IPMVC have the same motion vectors 
and the same reference indices, the video coder 
does not insert B (i.e., a merge candidate derived 
from spatial neighboring PUB) into the candi 
date list (i.e., the merge candidate list). Otherwise, 
the video coder inserts B into the list (i.e., the 
merge candidate list). 

If Bo (i.e., a merge candidate derived from spatial 
neighboring PU Bo) is available, the video coder 
adds Bo to the candidate list (i.e., the merge 
candidate list). 

When inter-view motion prediction is applied, the 
video coder derives an IDMVC by the procedure 
described above. If the IDMVC is available and 
the IDMVC is different from the candidates 
derived from A and B, the video coder inserts the 
IDMVC into the candidate list (i.e., the merge 
candidate list). 

If BVSP is enabled for the whole picture or for the 
current slice, then the video coder inserts the 
BVSP merging candidate into the merge candidate 
list. 

If A (i.e., a merge candidate derived from spatial 
neighboring PUA) is available, the video coder 
adds Ao to the candidate list (i.e., the merge 
candidate list). 

If B (i.e., a merge candidate derived from spatial 
neighboring PUB) is available, the video coder 
adds B to the candidate list (i.e., the merge 
candidate list). 

When inter-view motion prediction is applied, the 
video coder inserts a shifted candidate (i.e., 
DSMV), if available, as described above. 
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3. Derivation process for temporal merging candidate 
The derivation process for the temporal merging can 

didates is similar to the temporal merging candidate 
derivation process in HEVC where the motion infor 
mation of the co-located PU is utilized. However, a 
target reference index of the temporal merging can 
didate may be changed instead of being fixed to be 
0. The target reference index of the temporal merg 
ing candidate is the reference index of a reference 
picture on which the video coder bases the temporal 
merging candidate. When the target reference index 
equal to 0 corresponds to a temporal reference pic 
ture (i.e., a reference picture in the same view as the 
current PU) while the motion vector of the co 
located PU points to an inter-view reference picture, 
the video coder changes the target reference index to 
an index that corresponds to the first entry of an 
inter-view reference picture in the reference picture 
list. In other words, the video coder changes the 
target reference index Such that the target reference 
index indicates the first inter-view reference picture 
in the reference picture list. However, when the 
target reference index equal to 0 corresponds to an 
inter-view reference picture while the motion vector 
of the co-located PU points to a temporal reference 
picture, the video coder changes the target reference 
index to another index that corresponds to the first 
entry of a temporal reference picture in the reference 
picture list. In other words, the video coder changes 
the target reference index such that the target refer 
ence index indicates the first temporal reference 
picture in the reference picture list. 

4. Derivation process for combined bi-predictive merging 
candidates in 3D-HEVC 
If the total number of candidates derived from the 
above three steps is less than the maximum number 
of candidates, the video coder performs the same 
process as defined in HEVC with two changes: 
First, the conditions of obtaining a combined bi 

predictive merging candidate are changed by add 
ing the check of BVSP flags associated with the 
first/second candidate. 

Second, the specification of 10Cand Idx and 
11Cand Idx is modified. The relationship among 
combdx, 10Cand Idx and 11 Cand Idx are defined in 
FIG. 7, which is a table providing a specification 
of 10Cand Idx and 11 Cand Idx in 3D-HEVC. 

5. Derivation process for Zero motion vector merging 
candidates 
The video coder performs the same procedure as 

defined in HEVC (and described above) to derive the 
Zero motion vector merging candidates. 

The design of the derivation process of combined bi 
predictive merging candidates in 3D-HEVC may have one 
or more potential problems. For example, the current design 
of the derivation process of combined bi-predictive merging 
candidates in 3D-HEVC may require additional logic units 
to be added to check the BVSP flags of the first and second 
existing merge candidates used to construct a combined 
bi-predictive merging candidate. However, the additional 
check of the BVSP flags does not help in terms of coding 
efficiency. Thus, the additional check of the BVSP flags 
increases complexity. 

In another example of the potential problems associated 
with the derivation process of combined bi-predicted merg 
ing candidates in 3D-HEVC, directly reusing the HEVC 
derivation process of combined bi-predictive merging can 
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didates may result in an unpredictable decoding process. The 
HEVC derivation process of combined bi-predictive merg 
ing candidates can only take up to four merge candidates to 
generate new candidates. However, if this process is used in 
3D-HEVC directly, there can be a case that five merge 
candidates are used as an input for this process. When there 
are up to four merge candidates, only twelve possible 
combinations are available, thus they are defined in this 
process in a table. However, when five merge candidates are 
available, there can be twenty possible combinations, while 
the current table (i.e., Table 1, above) does not support that 
many combinations. 
One or more of the techniques of this disclosure relate to 

the derivation process of combined bi-predictive merging 
candidates in 3D-HEVC. In accordance with an example 
technique of this disclosure, the design of the derivation 
process of combined bi-predictive merging candidates in 
3D-HEVC is replaced by that used in HEVC. Therefore, 
there is no need to check the BVSP flags in the combined 
bi-predictive merging candidate derivation process. In other 
words, the process of generating the list of merging candi 
dates occurs without checking any BVSP flags. Not check 
ing the BVSP flags in the combined bi-predictive merging 
candidate derivation process may reduce complexity of the 
encoding/decoding process without making a significant 
negative impact on coding efficiency. 

In this way, this disclosure may provide for a method of 
coding data associated with 3D video. This method may 
comprise generating a list of merge candidates for coding a 
Video block associated with 3D video according to a merg 
ing list derivation process. The list includes one or more 
bi-predictive merge candidates. The merging list derivation 
process for 3D video corresponds to a same merging list 
derivation process that is associated with non-3D video. 

Furthermore, in accordance with one or more techniques 
of this disclosure, when invoking the derivation process of 
combined bi-predictive merging candidates in HEVC, 
instead of just checking that the slice type is equal to B slice, 
another condition shall be also satisfied, that is, the number 
of available merging candidates inserted to the merge can 
didate list should be less than five. 

Thus, in some examples, a video coder may code data 
associated with 3D video. As part of coding the data, the 
Video coder may generate a list of merging candidates for 
coding a video block (e.g. a PU) of the 3D video. As part of 
generating the list of merging candidates, the video coder 
may determine whether a number of merging candidates in 
the list is less than 5. In response to determining that the 
number of merging candidates in the list is less than 5, the 
video coder may derive one or more combined bi-predictive 
merging candidates. In this example, each respective com 
bined bi-predictive merging candidate of the one or more 
combined bi-predictive merging candidates corresponds to a 
respective pair (e.g., an ordered pair) of merging candidates 
already in the list. The respective combined bi-predictive 
merging candidate is a combination of a motion vector of a 
first merging candidate of the respective pair and a motion 
vector of a second merging candidate of the respective pair. 
The motion vector of the first merging candidate and the 
motion vector of the second merging candidate refer to 
pictures in different reference picture lists. The video coder 
may include the one or more combined bi-predictive merg 
ing candidates in the list of merging candidates. 

Alternatively, in some examples, before the derivation 
process of combined bi-predictive merging candidates is 
invoked, the maximum number of merging MVP candidates, 
MaxNumMergeCand is reset as follows: MaxNumMerge 
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Cand 5-five minus max num merge cand. After the 
derivation process of combined bi-predictive merging can 
didates is invoked, the MaxNumMergecand is set back to 
the value as in 3D-HEVC: MaxNumMergeCand=5-five 
minus max num merge cand+iv mV pred flag nuh lay 
er id. nuh layer id is a syntax element specifying a layer 
identifier. Thus, in Some Such examples, before deriving the 
one or more combined bi-predictive merging candidates, a 
Video coder may reset a maximum number of merging 
candidates to be equal to 5 minus a value of a first syntax 
element. The first syntax element specifies the maximum 
number of merging candidates Supported in a slice Sub 
tracted from 5. After deriving the one or more combined 
bi-predictive merging candidates, the video coder may set 
the maximum number of merging candidates to 5 minus the 
value of the first syntax element plus a value of a second 
Syntax element, wherein the second syntax element indicates 
whether inter-view motion parameter prediction is used in a 
decoding process of a layer. 
When MaxNumMergeCand is equal to 6 and there are five 

candidates before the derivation process of combined bi 
predictive merging candidates in HEVC is invoked, a Zero 
candidate (with reference index and motion vector compo 
nents all being 0) is always generated and inserted into the 
merging candidate list, as specified in Sub-clause 8.5.3.2.4 of 
HEVC Working Draft 10. 

Alternatively, the video coder sets MaxNumMergeCand 
to 5 before the invocation of the process to determine 
bi-predictive merging candidates and the video coder only 
considers the first four candidates as input of this process. 
After the video coder invokes the process to determine 
bi-predictive merging candidates, the video coder puts the 
newly generated bi-predictive merging candidate, if avail 
able at the end of the merging candidate list. Thus, the 
newly-generated bi-predictive merging candidate follows 
the 4" candidate in the merging candidate list, which the 
video coder did not consider as part of the input of the 
process to determine bi-predictive merging candidates. 
Afterwards, in this example, the MaxNumMerge(Cand is set 
back to 6. When the process to determine bi-predictive 
merging candidates does not provide a new bi-predictive 
merging candidate, the video coder generates a Zero candi 
date and inserts the Zero candidate into the merging candi 
date list, as specified in sub-clause 8.5.3.2.4 of HEVC 
Working Draft 10. Sub-clause 8.5.3.2.4 of HEVC Working 
Draft 10 is reproduced below. 
8.5.3.2.4 Derivation Process for Zero Motion Vector Merg 
ing Candidates 
Inputs to this process are: 

a merging candidate list mergecandList, 
the reference indices refldxLON and refldxL1N of every 

candidate N in mergeCandList, 
the prediction list utilization flags predFlag|LON and 

predFlag|L1N of every candidate N in merge(CandList, 
the motion vectors mVLON and mvL1N of every candi 

date N in mergecandList, 
the number of elements numCurrMerge(Cand within 

mergecandList. 
Outputs of this process are: 

the merging candidate list merge(CandList, 
the number of elements numCurrMerge(Cand within 

mergecandList, 
the reference indices refldxLOzeroCand, and 

refldxL10ZeroCand of every new candidate Zero 
Cand added into mergeCandList during the invoka 
tion of this process, 
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30 
the prediction list utilization flags predFlag 0ZeroCand, 

and predFlagL10ZeroCand of every new candidate 
ZeroCand added into mergeCandList during the 
invokation of this process, 

the motion Vectors mvL0ZeroCand, and 
myL10ZeroCand of every new candidate ZeroCand, 
added into mergeCandList during the invokation of this 
process. 

The variable numRefldx is derived as follows: 
If slice type is equal to P. numRefldx is set equal to 
num ref idx 10 active minus 1+1. 

Otherwise (slice type is equal to B), numRefIdx is set 
equal to Min(num ref idx 10 active minus 1+1, 
num ref idx 11 active minus 1+1). 

When numCurrMergeCand is less than MaxNumMerge 
Cand, the variable numInputMergeCand is set equal to 
numCurrMergecand, the variable Zeroldx is set equal to 0. 
and the following steps are repeated until numCurrMerge 
Cand is equal to MaxNumMergeCand: 

1. For the derivation of the reference indices, the predic 
tion list utilization flags and the motion vectors of the 
Zero motion vector merging candidate, the following 
applies: 
If slice type is equal to P, the candidate ZeroCand, with 
m equal to (numCurrMerge(Cand-numInputMerge 
Cand) is added at the end of merge(CandList, i.e. 
mergecandList numCurrMerge(Cand is set equal to 
ZeroCand, and the reference indices, the prediction 
list utilization flags, and the motion vectors of Zero 
Cand are derived as follows and numCurrMerge 
Cand is incremented by 1: 

refldxLOzeroCand-(zeroIdx<numRefIdx)?zeroIdx:0 (8-122) 

refldxL1zeroCand–-1 (8-123) 

predFlagLOzeroCand 1 (8-124) 

predFlagL1ZeroCand, O (8-125) 

mvLOzeroCand, O=0 (8-126) 

mvLOzeroCand 1=0 (8-127) 

mvL1zeroCand, O=0 (8-128) 

mvL1zeroCand 1=0 (8-129) 

numCurrMergeCand=numCurrMergeCand+1 (8-130) 

Otherwise (slice type is equal to B), the candidate 
ZeroCand, with m equal to (numCurrMerge(Cand 
numInputMerge(Cand) is added at the end of merge 
CandList, i.e. merge(CandList numCurrMergeCand 
is set equal to ZeroCand, and the reference indices, 
the prediction list utilization flags, and the motion 
vectors of ZeroCand are derived as follows and 
numCurrMergeCand is incremented by 1: 

refldxLOzeroCand F(zeroIdx<numRefIdx)?zeroIdx:0 (8-131) 

refldxL1zeroCand F(zeroIdx<numRefIdx)?zeroIdx:0 (8-132) 

predFlagLOzeroCand 1 (8-133) 

predFlagL1ZeroCand 1 (8-134) 

mvLOzeroCand, O=0 (8-135) 

mvLOzeroCand 1=0 (8-136) 
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mvL1zeroCand, O=0 (8-137) 

mvL1zeroCand 1=0 (8-138) 

numCurrMergeCand=numCurrMergeCand+1 (8-139) 

2. The variable Zeroldx is incremented by 1. 
Thus, in some examples where the maximum number of 

merging candidates (e.g., MaxNumMerge(Cand) is equal to 
6, a video coder may, in response to determining that there 
are 5 merging candidates in the list of merging candidates 
prior to adding any of the one or more bi-predictive merging 
candidates to the list, the video coder may include a Zero 
candidate in the list. Motion vector components of the Zero 
candidate are equal to 0 and a reference index of the Zero 
candidate is equal to 0. 
The following section of this disclosure describes some 

exemplary implementation details consistent with the tech 
niques of this disclosure in the context of HEVC. Changes 
to sections of 3D-HEVC Draft Text 1 are shown below. 
Various parts shown between <insertd. . . </insert may 
correspond to additions to HEVC sections, and parts shown 
between <deleted... </deleted may correspond to deletions. 
Techniques of this disclosure may correspond, in some 
examples to the additions shown between <insertd. . . 
</insert and the deletions shown between <deleted. . . 
</deleted. 
H.8.5.3.2.1 Derivation Process for Luma Motion Vectors for 
Merge Mode 

This process is only invoked when merge flagxPbyPb 
is equal to 1, where (XPb, yPb) specify the top-left sample 
of the current luma prediction block relative to the top-left 
luma sample of the current picture. 
Inputs to this process are: 

a luma location (XCb, yCb) of the top-left sample of the 
current luma coding block relative to the top-left luma 
sample of the current picture, 

a luma location (XPb, yPb) of the top-left sample of the 
current luma prediction block relative to the top-left 
luma sample of the current picture, 

a variable nCbS specifying the size of the current luma 
coding block, 

two variables nPbW and nPbH specifying the width and 
the height of the luma prediction block, 

a variable part Idx specifying the index of the current 
prediction unit within the current coding unit. 

Outputs of this process are: 
the luma motion vectors mvL0 and mvL1, 
the reference indices refldxL0 and refldxL1, 
the prediction list utilization flags predFlag L0 and pred 

Flag 1, 
the disparity vector availability flags ivpMVFlag L0 and 

ivpMVFlag|L1, 
the flag vspModeFlag, specifying, whether the current PU 

is coded using view synthesis prediction, 
The location (XOrigP, yOrigP) and the variables nGrigPbW 
and nGrigPbH are derived to store the values of (xPb, yPb), 
nPbW, and nPbH as follows: 

(xOrigPyOrigP) is set equal to (xPbyPb) (H-81) 

norigPbW=nPbW (H-82) 

norigPbH=nPbH (H-83) 
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When Log 2 ParMrgLevel is greater than 2 and nGbS is 
equal to 8, (xPb, yPb), nPb.W. nPbH, and part Idx are 
modified as follows: 

(xPbyPb)=(xCbCb) (H-84) 

4PbW= CbS (H-85) 

4PbH=4CbS (H-86) 

partIdx=0 (H-87) 

NOTE: When Log 2 ParMrgLevel is greater than 2 and 
nCbS is equal to 8, all the prediction units of the current 
coding unit share a single merge candidate list, which 
is identical to the merge candidate list of the 2Nx2N 
prediction unit. 

The motion vectors mvL0 and mvL1, the reference indices 
refldxL0 and refldxL1, and the prediction utilization flags 
predFlag|L0 and predFlagL1 are derived by the following 
ordered steps: 

1. The derivation process for merging candidates from 
neighboring prediction unit partitions in Subclause 
8.5.3.2.2 is invoked with the luma coding block loca 
tion (XCb, yCb), the coding block size nGbS, the luma 
prediction block location (XPb, yPb), the luma predic 
tion block width nPbW, the luma prediction block 
height nPbH, and the partition index part Idx as inputs, 
and the output being the availability flags availableF 
lag Ao availableFlagA, availableFlagBo, availableF 
lagB, and availableFlagB, the reference indices 
refldxLXA, refldxLXA, refldxLXB, refldxLXB, 
and refldxLXB, the prediction list utilization flags 
predFlag|LXA predFlag LXA, predFlag XB, pred 
Flag|LXB, and predFlag LXB, and the motion vectors 
mvLXA, mVLXA, mVLXBo, mVLXB, and 
mvLXB, with X being 0 or 1. 

2. The reference indices for the temporal merging candi 
date, refldxLXCol, with X being 0 or 1, are set equal 
to 0. 

3. The derivation process for temporal luma motion vector 
prediction in subclause H.8.5.3.2.7 is invoked with the 
luma location (XPb, yPb), the luma prediction block 
width nPbW, the luma prediction block height nPbH, 
and the variable refldxLOCol as inputs, and the output 
being the availability flag availableFlag|LOCol and the 
temporal motion vectormvLOCol. The variables avail 
ableFlagCol, predFlag LOCol and predFlag|L1 Col are 
derived as follows: 

availableFlagCol=availableFlagLOCol (H-88) 

predFlag LOCol=availableFlagLOCol (H-89) 

predFlagL1Col=0 (H-90) 

4. When slice type is equal to B, the derivation process 
for temporal luma motion vector prediction in Sub 
clause H.8.5.3.2.7 is invoked with the luma location 
(xPb, yPb), the luma prediction block width nPbW, the 
luma prediction block height nPbH, and the variable 
refldxL1 Col as inputs, and the output being the avail 
ability flag availableFlagL1Col and the temporal 
motion vector mVL1Col. The variables availableFlag 
Col and predFlag L1Col are derived as follows: 
availableFlagCol=availableFlagLOCollavailableFlagL1Col (H-91) 

predFlagL1Col=availableFlagL1Col (H-92) 
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5. Depending on iV mV pred flag nuh layer id., the fol 
lowing applies. 
If iv mV pred flag nuh layer id is equal to 0, the 

flags availableFlag IVMC, availableIVMCShift and 
availableFlag IVDC are set equal to 0. 

Otherwise (iv mV pred flagnuh layer id is equal to 
1), the derivation process for the inter-view merge 
candidates as specified in subclause H.8.5.3.2.10 is 
invoked with the luma location (XPb, yPb), the 
variables nPbW and nPbH, as the inputs and the 
output is assigned to the availability flags availableF 
lagIvMC, availableIvMCShift and availableFla 
gIvDC, the reference indices refldxLXIVMC, refldx 
LXIvMCShift and refldxLXIvDC, the prediction list 
utilization flags predFlag|LXIVMC, predFlag LX 
ivMCShift and predFlag LXIvDC, and the motion 
vectors mvLXIvMC, mvLXIvMCShift and mvLX 
IvDC (with X being 0 or 1, respectively). 

6. Depending on view synthesis pred flagnuh lay 
er id., the following applies. 
If view synthesis pred flag nuh layer id is equal to 

0, the flag availableFlagVSP is set equal to 0. 
Otherwise (view synthesis pred flag nuh layer id is 

equal to 1), the derivation process for a view syn 
thesis prediction merge candidate as specified in 
subclause H.8.5.3.2.13 is invoked with the luma 
locations (XCb, yCb) as input and the outputs are the 
availability flag availableFlagVSP, the reference 
indices refldxLOVSP and refldxL1VSP, the predic 
tion list utilization flags predFlag LOVSP and 
predFlag|L1VSP, and the motion vectors mvLOVSP 
and mv 1 VSP 

7. Depending on DepthFlag, the following applies. 
If Depth Flag is equal to 0, the variable availableFlag.T 

is set equal to 0. 
Otherwise (Depth Flag is equal to 1), the derivation 

process for the texture merging candidate as speci 
fied in subclause H.8.5.3.2.14 is invoked with the 
luma location (xPb, yPb), the variables nPbW and 
nPbH as the inputs and the outputs are the flag 
availableFlagT, the prediction utilization flags 
predFlag|LOT and predFlagL1T, the reference indices 
refldxLOT and refldxL1T, and the motion vectors 
mvLOT and mvL1T. 

8. The merge candidate lists mergeCandList and merge 
Cand IsVspFlag are constructed as specified by the 
following ordered steps: 
a. The variable numMergecand is set equal to 0. 
b. When availableFlagT is equal to 1, the entry merge 

CandList numMerge(Cand is set equal to T, the entry 
mergeCand IsVspFlagnum Merge(Cand is set equal 
to 0 and the variable numMergecand is increased by 
1. 

c. When availableFlag IVMC is equal to 1, the entry 
mergeCandList numMergeCand is set equal to 
IvMC, the entry mergecandIsVspFlagnum Merge 
Cand is set equal to 0 and the variable numMerge 
Cand is increased by 1. 

d. When availableFlagA is equal to 1, the following 
applies: 
When the following condition is true, 

availableFlagT=0 && availableFlag IVMC=0, 
or one or more of the following conditions are true, 

with N being replaced by T and IvMC: 
availableFlagN=1 && predFlag|LXN = pred 
FlagLXA, (with X being replaced by 0 and 1), 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

34 
availableFlagN=1 && mvLXN = mvLXA 

(with X being replaced by 0 and 1), 
availableFlagN=1 && refldxLXN =refldx 
LXA (with X being replaced by 0 and 1), 

the entry mergeCandList numMerge(and is set 
equal to A, the entry mergeCand IsV spFlagnum 
Mergecand is set equal to VspModeFlagxPb-1 
yPb+nPbH-1 and the variable numMergeCand 
is increased by 1. 

e. When availableFlagB is equal to 1, the following 
applies: 
When the following condition is true, 

availableFlagT=0 && availableFlag IVMC=0, 
or one or more of the following conditions is true, 

with N being replaced by T and IvMC: 
availableFlagN=1 && predFlag|LXN = pred 
FlagLXB, (with X being replaced by 0 and 1), 

availableFlagN=1 && mvLXN = mvLXB 
(with X being replaced by 0 and 1), 

availableFlagN=1 && refldxLXN =refldx 
LXB (with X being replaced by 0 and 1), 

the entry mergeCandList numMerge(and is set 
equal to B, the entry merge(Cand IsV spFlagnum 
Mergecand is set equal to VspModeFlagxPb-i- 
nPbW-1yPb-1 and the variable numMerge 
Cand is increased by 1. 

f. When availableFlagBo is equal to 1, the entry merge 
CandList numMergeCand is set equal to Bo, the 
entry mergeCandsVspFlagnum MergeCand is set 
equal to VspModeFlagxPb-i-nPbWyPb-1 and the 
variable numMergecand is increased by 1. 

g. When availableFlaglvl)C is equal to 1, and one or 
more of the following conditions is true, 
availableFlagA1 =0, 
predFlag|LXA1 = predFlag|LXIvDC, (with X being 

replaced by 0 and 1), 
mvLXA =mvLXIvDC (with X being replaced by 0 

and 1), 
refldxLXA =refldxLXIvDC (with X being 

replaced by 0 and 1), and one or more of the 
following conditions is true, 

availableFlagB=0, 
predFlag|LXB = predFlag LXIvDC, (with X being 

replaced by 0 and 1), 
mvLXB =mvLXIvDC (with X being replaced by 0 

and 1), 
refldxLXB =refldxLXIvDC (with X being 

replaced by 0 and 1), the entry merge(CandList 
numMergeCand is set equal to IvoC, the entry 
mergeCandsVspFlagnum MergeCand is set 
equal to 0 and the variable numMergeCand is 
increased by 1. 

h. When availableFlagVSP is equal to 1, the entry 
mergeCandList numMergeCand is set equal to VSP 
the entry merge(Cand IsV spFlagnum Merge(Cand is 
set equal 1 and the variable numMerge(Cand is 
increased by 1. 

i. When availableFlag Ao is equal to 1, the entry merge 
CandList numMergeCand is set equal to Ao, the 
entry mergeCandsVspFlagnum MergeCand is set 
equal to VspModeFlagxPb-1yPb--nPbH and the 
variable numMergecand is increased by 1. 

j. When availableFlagB is equal to 1 and numMerge 
Cand is less than 4+iv mV pred flagnuh lay 
er id+Depth Flag, the entry merge(CandList num 
MergeCand is set equal to B, the entry 
mergecandis Vsplagnum Merge(Cand is set equal 
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to VspModeFlagxPb-1yPb-1 and the variable 
numMerge(Cand is increased by 1. 

k. When availableFlag IVMCShift is equal to 1 and 
numMerge(Cand is less than 6, and one or more of the 
following conditions are true, 
availableFlaglvMC=0, 
predFlag|LXMC - predFlagLXMCShift (with X 

being replaced by 0 and 1), 
mvLXMC =mvLXIvMCShift (with X being 

replaced by 0 and 1), 
refldxLXMC !-refldxLXMCShift (with X being 

replaced by 0 and 1), the entry merge(CandList 
numMergeCand is set equal to IvMCShift, the 
entry mergeCandsV spFlag numMerge(Cand is 
set equal to 0 and the variable numMergecand is 
increased by 1. 

1. A variable availableFlag IVDCShift is set to 0 and 
when all of the following conditions are true 
Depth Flag is equal to 0. 
availableFlag IVMCShift is equal to 0. 
numMerge(Cand is less than 6, 
the derivation process for the shifted disparity merg 

ing candidate as specified in Subclause 
H.8.5.3.2.15 is invoked with the availability flags 
availableFlagN, the reference indices refldxLON 
and reflaxL1N, the prediction list utilization flags 
predFlag|LON and predFlag L1N, the motion vec 
tors mVLON and mvL1N, of every candidate N 
being in merge(CandList, mergeCandList, merge 
Cand IsV spFlag, and numMerge(Cand as the inputs 
and the outputs are the flag availableFlagIvDC 
Shift, the prediction utilization flags predFla 
gLOIvDCShift and predFlag|LllvDCShift, the ref 
CC indices refdxLOIVDCShift and 
refldxL1 Iv)CShift, and the motion vectors 
mvLOIVDCShift and mVIL1 Iv)CShift. When 
availableFlaglvDCShift is equal to 1, the entry 
mergecandList numMerge(Cand is set equal to 
IvDCShift, the entry merge(Cand IsVspFlagnum 
Mergecand is set equal to 0 and the variable 
numMergeCand is increased by 1. 

m. When availableFlagCol is equal to 1 and num 
MergeCand is less than 5+iv mV pred flag 
nuh layer id+DepthFlag, the entry merge(CandList 
numMergeCand is set equal to Col, the entry 
mergeCand IsVspFlagnum Merge(Cand is set equal 
to 0 and the variable numMergecand is increased by 
1. 

9. The variable numOrigMergecand is set equal to num 
Mergecand. 

10. When slice type is equal to B <insert and num 
Mergecand is less than 5</insertd, the derivation pro 
cess for combined bi-predictive merging candidates 
specified in subclause <insert 8.5.3.2.3 
</insert-deleted H.8.5.3.2.3 </deleted is invoked 
with mergeCandList, <deleted mergecandIsVspFlag 
</deleted the reference indices refldxLON and 
refldxL1N, the prediction list utilization flags 
predFlag|LON and predFlag|L1N, the motion vectors 
mvLON and mvL1N of every candidate N in merge 
CandList, numCurrMergeCand, and numOrigMerge 
Cand as inputs, and the output is assigned to merge 
CandList, numCurrMergeCand, the reference indices 
refldxL0combCand and reflaxL1 combCand, the pre 
diction list utilization flags predFlag|L0combCand and 
predFlag 1 combCand, and the motion vectors 
mvL0combCand and mvL1 combCand of every new 
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candidate combCand being added into mergeCan 
dList. The number of candidates being added, num 
CombMergeCand, is set equal to (numCurrMerge 
Cand-numOrigMergeCand). When 
numCombMergecand is greater than 0, k ranges from 
0 to numCombMerge(Cand-1, inclusive <deleted, and 
mergecandIsVspFlag numOrigMerge(Cand+k is set 
equal to 0. 

11. The derivation process for Zero motion vector merging 
candidates specified in subclause 8.5.3.2.4 is invoked 
with the mergeCandList, the reference indices 
refldxLON and refldxL1N, the prediction list utilization 
flags predFlagLON and predFlag L1N, the motion vec 
tors mvLON and mvL1N of every candidate N in 
mergecandList, and numCurrMerge(Cand as inputs, 
and the output is assigned to mergeCandList, numCur 
rMergeCand, the reference indices refldxLOzeroCand 
and refldxL1zeroCand the prediction list utilization 
flags predFlag 0ZeroCand and 
predFlag|L1ZeroCand, and the motion vectors 
mvL0ZeroCand, and mVIL1ZeroCand of every new 
candidate ZeroCand, being added into merge(Cand List. 
The number of candidates being added, numZer 
oMergeCand, is set equal to (numCurrMerge(Cand 
numOrigMergecand-numCombMergeCand). When 
numZeroMergeCand is greater than 0, m ranges from 0 
to numZeroMergeCand-1, inclusive <insertd, and 
mergecandIsVspFlag numOrigMerge(Cand+num 
CombMergeCand+m is set equal to 0 </insertd. 
<deleted H. 8.5.3.2.3 Derivation process for combined 
bi-predictive merging candidates Inputs to this process 
a. 

a merging candidate list mergeCandList. 
a list merge(CandlsV spFlag, 
the reference indices refldxLON and refldxL1N of every 

candidate N in mergeCandList, 
the prediction list utilization flags predFlag LON and 

predFlag|L1N of every candidate N in mergeCan 
dList, 

the motion vectors mvLON and mvL1N of every can 
didate N in merge(CandList, 

the number of elements numCurrMergeCand within 
mergecandList, 

the number of elements numOrigMergeCand within the 
mergecandList after the spatial and temporal merge 
candidate derivation process. 

Outputs of this process are: 
the merging candidate list mergeCandList, 
the number of elements numCurrMergeCand within 

mergecandList, 
the reference indices refldxL0combCandk and 

refldxL1 combCandk of every new candidate comb 
Candk added into merge(CandList during the invoka 
tion of this process, 

the prediction list utilization flags 
predFlag|L0combCandk and predFlagL1 combCandk 
of every new candidate combCandk added into 
mergecandList during the invokation of this process, 

the motion vectors mvL0combCandk and 
mvL1 combCandk of every new candidate comb 
Candk added into merge(CandList during the invoka 
tion of this process. 

When numOrigMergecand is greater than 1 and less than 
MaxNumMergeCand, the variable numInputMerge 
Cand is set equal to numCurrMergeCand, the variable 
combIdx is set equal to 0, the variable combStop is set 
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equal to FALSE, and the following steps are repeated 
until combStop is equal to TRUE: 
1. The variables 10Cand Idx and 11 Cand Idx are derived 
using combIdx as specified in Table 8-6. 

2. The following assignments are made, with 10Cand 
being the candidate at position 10Cand Idx and 
11Cand being the candidate at position 11 Cand Idx in 
the merging candidate list merge(CandList: 
10Cand-mergeCandList10Cand Idx 
11Cand-mergeCandList11 Cand Idx 

3. When all of the following conditions are true: 
mergeCand IsVspFlag 10Cand Idx=0, 
mergeCand IsVspFlag 11 Cand Idx=0, 
predFlag|L010Cand= 
predFlag|L111Cand= 
(DiffPicOrderCnt(RefpicList0refldxL010Cand, 

RefPicList1 refldxL111C and) =0) 
(mvL010Cand -mvL111Cand) 

the candidate combCand with k equal to (numCur 
rMergecand-numInputMergecand) is added at the 
end of merge(CandList, i.e. mergeCandList numCur 
rMerge(Cand is set equal to combCand, and the 
reference indices, the prediction list utilization flags, 
and the motion vectors of combCand are derived as 
follows and numCurrMergeCand is incremented by 
1: 

refldxL0combCand refldxLOIOCand (H-101) 

refldxL1 combCand refldxL111Cand (H-102) 

predFlagL0combCand (H-103) 

predFlagL1 combCand (H-104) 

mvLO.combCand O=mvLOIOCand O (H-105) 

mvLO.combCand 1=mvLOIOCand 1 (H-106) 

mvL1 combCand O=mvL111Cand O (H-107) 

mvL1 combCand 1=mvL111Cand 1 (H-108) 

numCurrMergeCand=numCurrMergeCand+1 (H-109) 

4. The variable combidx is incremented by 1. 
When combIdx is equal to (numOrigMergeCand (num 

OrigMergeCand-1)) or numCurrMergeCand is equal 
to MaxNumMergeCand, combStop is set equal to 
TRUE. </deleted 

As shown above, “mergecandIsVspFlag” is any array of 
BVSP flags defined in section H.8.5.3.2.1 of 3D-HEVC 
Draft Text 1. Each value in the “mergecandIsVspFlag” 
array corresponds to a merging candidate in the list and 
indicates whether the corresponding merging candidate is 
based on BVSP. In step 10 of section H.8.5.3.2.1 “merge 
Cand IsVspFlag” is deleted, such that “mergeCand IsVisp 
Flag” is not provided as an input to the derivation process for 
combined bi-predictive merging candidates. Furthermore, in 
accordance with one or more techniques of this disclosure, 
Section H.8.5.3.2.3 is deleted from 3D-HEVC Draft Text 1 
because the derivation process for combined bi-predictive 
merging candidates is the same in 3D-HEVC as that defined 
in HEVC (i.e., section 8.5.3.2.3 of HEVC Working Draft 
10). Additionally, in accordance with one or more tech 
niques of this disclosure, as shown in the text above, 
mergecandis Vsplagnum OrigMergeCand+k is not set 
equal to 0 because it is no longer necessary to do so. 
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FIG. 8 is a block diagram illustrating an example video 

encoder 20 that may implement the techniques of this 
disclosure. FIG. 8 is provided for purposes of explanation 
and should not be considered limiting of the techniques as 
broadly exemplified and described in this disclosure. For 
purposes of explanation, this disclosure describes video 
encoder 20 in the context of HEVC coding. However, the 
techniques of this disclosure may be applicable to other 
coding standards or methods. 

In the example of FIG. 8, video encoder 20 includes a 
prediction processing unit 100, a video data memory 101, a 
residual generation unit 102, a transform processing unit 
104, a quantization unit 106, an inverse quantization unit 
108, an inverse transform processing unit 110, a reconstruc 
tion unit 112, a filter unit 114, a decoded picture buffer 116, 
and an entropy encoding unit 118. Prediction processing unit 
100 includes an inter-prediction processing unit 120 and an 
intra-prediction processing unit 126. Inter-prediction pro 
cessing unit 120 includes a motion estimation unit 122 and 
a motion compensation unit 124. In other examples, video 
encoder 20 may include more, fewer, or different functional 
components. 

Video encoder 20 may receive video data. Video data 
memory 101 may store video data to be encoded by the 
components of video encoder 20. The video data stored in 
video data memory 101 may be obtained, for example, from 
video source 18. Decoded picture buffer 116 may be a 
reference picture memory that stores reference video data 
for use in encoding video data by video encoder 20, e.g., in 
intra- or inter-coding modes. Video data memory 101 and 
decoded picture buffer 116 may be formed by any of a 
variety of memory devices, such as dynamic random access 
memory (DRAM), including synchronous DRAM 
(SDRAM), magnetoresistive RAM (MRAM), resistive 
RAM (RRAM), or other types of memory devices. Video 
data memory 101 and decoded picture buffer 116 may be 
provided by the same memory device or separate memory 
devices. In various examples, video data memory 101 may 
be on-chip with other components of video encoder 20, or 
off-chip relative to those components. 

Video encoder 20 may encode each CTU in a slice of a 
picture of the video data. Each of the CTUs may be 
associated with equally-sized luma coding tree blocks 
(CTBs) and corresponding CTBs of the picture. As part of 
encoding a CTU, prediction processing unit 100 may per 
form quad-tree partitioning to divide the CTBs of the CTU 
into progressively-smaller blocks. The smaller block may be 
coding blocks of CUs. For example, prediction processing 
unit 100 may partition a CTB associated with a CTU into 
four equally-sized Sub-blocks, partition one or more of the 
Sub-blocks into four equally-sized Sub-Sub-blocks, and so 
O. 

Video encoder 20 may encode CUs of a CTU to generate 
encoded representations of the CUs (i.e., coded CUs). As 
part of encoding a CU, prediction processing unit 100 may 
partition the coding blocks associated with the CU among 
one or more PUs of the CU. Thus, in some examples, each 
PU may be associated with a luma prediction block and 
corresponding chroma prediction blocks. Video encoder 20 
and video decoder 30 may support PUs having various sizes. 
As indicated above, the size of a CU may refer to the size 
of the luma coding block of the CU and the size of a PU may 
refer to the size of a luma prediction block of the PU. 
Assuming that the size of a particular CU is 2Nx2N, video 
encoder 20 and video decoder 30 may support PU sizes of 
2NX2N or NxN for intra prediction, and symmetric PUsizes 
of 2Nx2N, 2NxN, NX2N, NXN, or similar for inter predic 
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tion. Video encoder 20 and video decoder 30 may also 
support asymmetric partitioning for PU sizes of 2NxnU. 
2NxnD, nLX2N, and nRX2N for inter prediction. 

Inter-prediction processing unit 120 may generate predic 
tive data for a PU by performing interprediction on each PU 
of a CU. The predictive data for the PU may include 
predictive blocks of the PU and motion information for the 
PU. Inter-prediction processing unit 120 may perform dif 
ferent operations for a PU of a CU depending on whether the 
PU is in an Islice, a Pslice, or a B slice. In an Islice, all PUs 
may be intra predicted. Hence, if the PU is in an I slice, 
inter-prediction processing unit 120 does not perform inter 
prediction on the PU. Thus, for blocks encoded in I-mode, 
the predicted block is formed using spatial prediction from 
previously-encoded neighboring blocks within the same 
frame. 

If a PU is in a P slice, motion estimation unit 122 may 
search the reference pictures in a list of reference pictures 
(e.g., “ReflicListO) for a reference region for the PU. The 
reference region for the PU may be a region, within a 
reference picture, that contains sample blocks that most 
closely correspond to the sample blocks of the PU. Motion 
estimation unit 122 may generate a reference index that 
indicates a position in ReflicList0 of the reference picture 
containing the reference region for the PU. In addition, 
motion estimation unit 122 may generate a motion vector 
that indicates a spatial displacement between a coding block 
of the PU and a reference location associated with the 
reference region. For instance, the motion vector may be a 
two-dimensional vector that provides an offset from the 
coordinates in the current picture to coordinates in a refer 
ence picture. Motion estimation unit 122 may output the 
reference index and the motion vector as the motion infor 
mation of the PU. Motion compensation unit 124 may 
generate the predictive blocks (i.e., predictive blocks) of the 
PU based on actual or interpolated samples associated with 
the reference location indicated by the motion vector of the 
PU. 

If a PU is in a B slice, motion estimation unit 122 may 
perform uni-prediction or bi-prediction for the PU. To 
perform uni-prediction for the PU, motion estimation unit 
122 may search the reference pictures of ReflicList0 or a 
second reference picture list (“ReflicList1) for a reference 
region for the PU. Motion estimation unit 122 may output, 
as the motion information of the PU, a reference index that 
indicates a position in ReflicList0 or ReflicList1 of the 
reference picture that contains the reference region, a motion 
vector that indicates a spatial displacement between a 
sample block of the PU and a reference location associated 
with the reference region, and one or more prediction 
direction indicators that indicate whether the reference pic 
ture is in ReflicList0 or ReflicList1. Motion compensation 
unit 124 may generate the predictive blocks of the PU based 
at least in part on actual or interpolated samples associated 
with the reference location indicated by the motion vector of 
the PU. 

To perform bi-directional inter prediction for a PU, 
motion estimation unit 122 may search the reference pic 
tures in ReflicList0 for a reference region for the PU and 
may also search the reference pictures in ReflicList1 for 
another reference region for the PU. Motion estimation unit 
122 may generate reference indices that indicate positions in 
RefRicList.0 and ReflicList1 of the reference pictures that 
contain the reference regions. In addition, motion estimation 
unit 122 may generate motion vectors that indicate spatial 
displacements between the reference locations associated 
with the reference regions and a prediction block (e.g., a 
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sample block) of the PU. The motion information of the PU 
may include the reference indices and the motion vectors of 
the PU. Motion compensation unit 124 may generate the 
predictive blocks of the PU based at least in part on actual 
or interpolated samples associated with the reference region 
indicated by the motion vectors of the PU. 

In accordance with one or more techniques of this dis 
closure, motion estimation unit 122 may generate a list of 
merging candidates for coding a video block of 3D video. As 
part of generating the list of merging candidates, motion 
estimation unit 122 may determine whether a number of 
merging candidates in the list of merging candidates is less 
than 5. In response to determining that the number of 
merging candidates in the list of merging candidates is less 
than 5, motion estimation unit 122 may derive one or more 
combined bi-predictive merging candidates. Motion estima 
tion unit 122 may include the one or more combined 
bi-predictive merging candidates in the list of merging 
candidates. Furthermore, in Some examples, motion estima 
tion unit 122 may select a merging candidate in the list of 
merging candidates. Video encoder 20 may signal a position 
in the list of merging candidates of the selected merging 
candidate. In some examples, the maximum number of 
merging candidates in the list of merging candidates is equal 
greater than 5 (e.g., 6). 

Continued reference is now made to the example of FIG. 
8. Intra-prediction processing unit 126 may generate pre 
dictive data for a PU by performing intra prediction on the 
PU. The predictive data for the PU may include predictive 
blocks for the PU and various syntax elements. Intra 
prediction processing unit 126 may perform intra prediction 
on PUs in I slices, Pslices, and B slices. 
To perform intra prediction on a PU, intra-prediction 

processing unit 126 may use multiple intra prediction modes 
to generate multiple sets of predictive data for the PU. To use 
Some intra prediction modes to generate a set of predictive 
data for the PU, intra-prediction processing unit 126 may 
extend samples from neighboring blocks across the predic 
tive block of the PU in a direction associated with the intra 
prediction mode. The neighboring PUs may be above, above 
and to the right, above and to the left, or to the left of the PU, 
assuming a left-to-right, top-to-bottom encoding order for 
PUs, CUs, and CTUs. Intra-prediction processing unit 126 
may use various numbers of intra prediction modes, e.g., 33 
directional intra prediction modes. In some examples, the 
number of intra prediction modes may depend on the size of 
the region associated with the PU. 

Prediction processing unit 100 may select the predictive 
data for PUs of a CU from among the predictive data 
generated by inter-prediction processing unit 120 for the 
PUs or the predictive data generated by intra-prediction 
processing unit 126 for the PUs. In some examples, predic 
tion processing unit 100 selects the predictive data for the 
PUs of the CU based on rate? distortion metrics of the sets of 
predictive data. The predictive blocks of the selected pre 
dictive data may be referred to herein as the selected 
predictive blocks. 

Residual generation unit 102 may generate, based on the 
coding blocks (e.g., luma, Cb and Crcoding blocks) of a CU 
and the selected predictive blocks (e.g., predictive luma, Cb 
and Cr blocks) of the PUs of the CU, residual blocks (e.g., 
residual luma, Cb and Cr residual blocks) of the CU. In other 
words, residual generation unit 102 may generate a residual 
signal for the CU. For instance, residual generation unit 102 
may generate the residual blocks of the CU such that each 
sample in the residual blocks has a value equal to a differ 
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ence between a sample in a coding block of the CU and a 
corresponding sample in a corresponding selected predictive 
block of a PU of the CU. 

Transform processing unit 104 may perform quad-tree 
partitioning to partition the residual blocks associated with 
a CU into transform blocks corresponding to (i.e., associated 
with) TUs of the CU. Thus, a TU may be associated with a 
luma transform block and two chroma transform blocks. The 
sizes and positions of the transform blocks (e.g., luma and 
chroma transform blocks) of TUs of a CU may or may not 
be based on the sizes and positions of prediction blocks of 
the PUs of the CU. A quad-tree structure known as a 
“residual quad-tree' (RQT) may include nodes associated 
with each of the TUs. The TUs of a CU may correspond to 
leaf nodes of the RQT. 

Transform processing unit 104 may generate transform 
coefficient blocks for each TU of a CU by applying one or 
more transforms to the transform blocks of the TU. Trans 
form processing unit 104 may apply various transforms to a 
transform block associated with a TU. For example, trans 
form processing unit 104 may apply a discrete cosine 
transform (DCT), a directional transform, or a conceptually 
similar transform to a transform block. In some examples, 
transform processing unit 104 does not apply transforms to 
a transform block. In Such examples, the transform block 
may be treated as a transform coefficient block. 

Quantization unit 106 may quantize the transform coef 
ficients in a transform coefficient block. The quantization 
process may reduce the bit depth associated with some or all 
of the transform coefficients of a transform coefficient block. 
For example, an n-bit transform coefficient may be rounded 
down to an m-bit transform coefficient during quantization, 
where n is greater than m. Quantization unit 106 may 
quantize a transform coefficient block associated with a TU 
of a CU based on a quantization parameter (QP) value 
associated with the CU. Video encoder 20 may adjust the 
degree of quantization applied to the transform coefficient 
blocks associated with a CU by adjusting the QP value 
associated with the CU. Quantization may introduce loss of 
information, thus quantized transform coefficients may have 
lower precision than the original ones. 

Inverse quantization unit 108 and inverse transform pro 
cessing unit 110 may apply inverse quantization and inverse 
transforms to a transform coefficient block, respectively, to 
reconstruct a residual block (i.e., a transform block) from the 
transform coefficient block. Reconstruction unit 112 may 
reconstruct a coding block of a CU Such that each sample of 
the coding block is equal to a Sum of a sample of a predictive 
block of a PU of the CU and a corresponding sample of a 
transform block of a TU of the CU. For example, recon 
struction unit 112 may add reconstructed residual blocks of 
TUs of a CU to corresponding samples from one or more 
predictive blocks of PUs of the CU generated by prediction 
processing unit 100 to produce a reconstructed coding 
blocks of the CU. Thus, by reconstructing transform blocks 
for each TU of a CU in this way, video encoder 20 may 
reconstruct the coding blocks of the CU. 

Filter unit 114 may perform one or more deblocking 
operations to reduce blocking artifacts in the coding blocks 
associated with a CU. Decoded picture buffer 116 may store 
the reconstructed coding blocks after filter unit 114 performs 
the one or more deblocking operations on the reconstructed 
coding blocks. Thus, decoded picture buffer 116 may be a 
memory configured to store video data. Inter-prediction 
processing unit 120 may use a reference picture that contains 
the reconstructed coding blocks to perform inter prediction 
on PUs of other pictures. In addition, intra-prediction pro 
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cessing unit 126 may use reconstructed coding blocks in 
decoded picture buffer 116 to perform intra prediction on 
other PUs in the same picture as the CU. 

Entropy encoding unit 118 may receive data from other 
functional components of video encoder 20. For example, 
entropy encoding unit 118 may receive coefficient blocks 
from quantization unit 106 and may receive syntax elements 
from prediction processing unit 100. Entropy encoding unit 
118 may perform one or more entropy encoding operations 
on the data to generate entropy-encoded data. For example, 
entropy encoding unit 118 may perform a CABAC opera 
tion, a context-adaptive variable length coding (CAVLC) 
operation, a variable-to-variable (V2V) length coding opera 
tion, a syntax-based context-adaptive binary arithmetic cod 
ing (SBAC) operation, a Probability Interval Partitioning 
Entropy (PIPE) coding operation, an Exponential-Golomb 
encoding operation, or another type of entropy encoding 
operation on the data. Video encoder 20 may output a 
bitstream that includes entropy-encoded data generated by 
entropy encoding unit 118. For instance, the bitstream may 
include data that represents a RQT for a CU. The bitstream 
may include data that is not entropy encoded. 

FIG. 9 is a block diagram illustrating an example video 
decoder 30 that is configured to implement the techniques of 
this disclosure. FIG. 9 is provided for purposes of explana 
tion and is not limiting on the techniques as broadly exem 
plified and described in this disclosure. For purposes of 
explanation, this disclosure describes video decoder 30 in 
the context of HEVC coding. However, the techniques of 
this disclosure may be applicable to other coding standards 
or methods. 

In the example of FIG. 9, video decoder 30 includes an 
entropy decoding unit 150, a video data memory 151, a 
prediction processing unit 152, an inverse quantization unit 
154, an inverse transform processing unit 156, a reconstruc 
tion unit 158, a filter unit 160, and a decoded picture buffer 
162. Prediction processing unit 152 includes a motion com 
pensation unit 164 and an intra-prediction processing unit 
166. In other examples, video decoder 30 may include more, 
fewer, or different functional components. 

Video decoder 30 may receive a bitstream. Video data 
memory 151 may store video data, such as an encoded video 
bitstream, to be decoded by the components of video 
decoder 30. The video data stored in video data memory 151 
may be obtained, for example, from channel 16, e.g., from 
a local video source. Such as a camera, via wired or wireless 
network communication of video data, or by accessing 
physical data storage media. Video data memory 151 may 
form a coded picture buffer (CPB) that stores encoded video 
data from an encoded video bitstream. Decoded picture 
buffer 162 may be a reference picture memory that stores 
reference video data for use in decoding video data by video 
decoder 30, e.g., in intra- or inter-coding modes. Video data 
memory 151 and decoded picture buffer 162 may be formed 
by any of a variety of memory devices, such as dynamic 
random access memory (DRAM), including synchronous 
DRAM (SDRAM), magnetoresistive RAM (MRAM), resis 
tive RAM (RRAM), or other types of memory devices. 
Video data memory 151 and decoded picture buffer 162 may 
be provided by the same memory device or separate memory 
devices. In various examples, video data memory 151 may 
be on-chip with other components of video decoder 30, or 
off-chip relative to those components. 

Entropy decoding unit 150 may parse the bitstream to 
decode syntax elements from the bitstream. Entropy decod 
ing unit 150 may entropy decode entropy-encoded syntax 
elements in the bitstream. Prediction processing unit 152, 
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inverse quantization unit 154, inverse transform processing 
unit 156, reconstruction unit 158, and filter unit 160 may 
generate decoded video data based on the syntax elements 
obtained (e.g., extracted) from the bitstream. 
The bitstream may comprise a series of NAL units. The 

NAL units of the bitstream may include coded slice NAL 
units. As part of decoding the bitstream, entropy decoding 
unit 150 may obtain (e.g., extract) and entropy decode 
syntax elements from the coded slice NAL units. Each of the 
coded slices may include a slice header and slice data. The 
slice header may contain syntax elements pertaining to a 
slice. The syntax elements in the slice header may include a 
syntax element that identifies a PPS associated with a picture 
that contains the slice. 

In addition to obtaining (e.g., decoding) syntax elements 
from the bitstream, video decoder 30 may perform a recon 
struction operation on CUs. To perform the reconstruction 
operation on a CU (e.g., a non-partitioned CU), video 
decoder 30 may perform a reconstruction operation on each 
TU of the CU. By performing the reconstruction operation 
for each TU of the CU, video decoder 30 may reconstruct 
residual blocks (i.e., transform blocks) of the TUs of the CU. 
As part of performing a reconstruction operation on a TU 

of a CU, inverse quantization unit 154 may inverse quantize, 
i.e., de-quantize, coefficient blocks of (i.e., associated with) 
the TU. Inverse quantization unit 154 may use a QP value 
associated with the CU of the TU to determine a degree of 
quantization and, likewise, a degree of inverse quantization 
for inverse quantization unit 154 to apply. That is, the 
compression ratio, i.e., the ratio of the number of bits used 
to represent original sequence and the compressed one, may 
be controlled by adjusting the value of the QP used when 
quantizing transform coefficients. The compression ratio 
may also depend on the method of entropy coding 
employed. 

After inverse quantization unit 154 inverse quantizes a 
coefficient block, inverse transform processing unit 156 may 
apply one or more inverse transforms to the coefficient block 
in order to generate a residual block associated with the TU. 
For example, inverse transform processing unit 156 may 
apply an inverse DCT, an inverse integer transform, an 
inverse Karhunen-Loeve transform (KLT), an inverse rota 
tional transform, an inverse directional transform, or another 
inverse transform to the coefficient block. 

If a PU is encoded using intra prediction, intra-prediction 
processing unit 166 may perform intra prediction to generate 
predictive blocks for the PU. For instance, intra-prediction 
processing unit 166 may use an intra prediction mode to 
generate the predictive luma, Cb and Cr blocks for the PU 
based on the prediction blocks of spatially-neighboring PUs. 
Intra-prediction processing unit 166 may determine the intra 
prediction mode for the PU based on one or more syntax 
elements decoded from the bitstream. 

Prediction processing unit 152 may construct a first 
reference picture list (RefPicListO) and a second reference 
picture list (RefDicList1) based on syntax elements obtained 
from the bitstream. Furthermore, if a PU is encoded using 
inter prediction, entropy decoding unit 150 may determine 
(e.g., extract) motion information for the PU. Motion com 
pensation unit 164 may determine, based on the motion 
information of the PU, one or more reference blocks for the 
PU. Motion compensation unit 164 may generate, based on 
samples blocks at the one or more reference blocks for the 
PU, predictive blocks (e.g., predictive luma, Cb and Cr 
blocks) for the PU. 
As indicated above, video encoder 20 may signal the 

motion information of a PU using merge mode, skip mode 
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or AMVP mode. When video encoder 20 signals the motion 
information of a current PU using AMVP mode, entropy 
decoding unit 150 may decode, from the bitstream, a refer 
ence index, a MVD for the current PU, and a candidate 
index. Furthermore, motion compensation unit 164 may 
generate an AMVP candidate list for the current PU. The 
AMVP candidate list includes one or more motion vector 
predictor candidates. Each of the motion vector predictor 
candidates specifies a motion vector of a PU that spatially or 
temporally neighbors the current PU. Motion compensation 
unit 164 may determine, based at least in part on the 
candidate index, a selected motion vector predictor candi 
date in the AMVP candidate list. Motion compensation unit 
164 may then determine the motion vector of the current PU 
by adding the MVD to the motion vector specified by the 
selected motion vector predictor candidate. In other words, 
for AMVP, the motion vector is calculated as motion vector 
(MV)—MVP+MVD, wherein the index of the motion vector 
predictor (MVP) is signaled and the MVP is one of the 
motion vector candidates (spatial or temporal) from the 
AMVP list, and the MVD is signaled to the decoder side. 

If the current PU is bi-predicted and the motion informa 
tion of the PU is signaled in AMVP mode, entropy decoding 
unit 150 may decode an additional reference index, MVD, 
and candidate index from the bitstream. Motion compensa 
tion unit 162 may repeat the process described above using 
the additional reference index, MVD, and candidate index to 
derive a second motion vector for the current PU. In this 
way, motion compensation unit 162 may derive a motion 
vector for ReflicList.0 (i.e., a ReflpicList0 motion vector) 
and a motion vector for ReflicList1 (i.e., a ReflicList1 
motion vector). 

In accordance with one or more techniques of this dis 
closure, motion compensation unit 164 may generate a list 
of merging candidates for coding a video block of 3D video. 
As part of generating the list of merging candidates, motion 
compensation unit 164 may determine whether a number of 
merging candidates in the list of merging candidates is less 
than 5. In response to determining that the number of 
merging candidates in the list of merging candidates is less 
than 5, motion compensation unit 164 may derive one or 
more combined bi-predictive merging candidates. Motion 
compensation unit 164 may include the one or more com 
bined bi-predictive merging candidates in the list of merging 
candidates. Furthermore, in Some examples, video decoder 
30 may obtain, from a bitstream, a syntax element indicating 
a selected merging candidate in the list of merging candi 
dates. Motion compensation unit 164 may use motion infor 
mation of the selected candidate to generate predictive 
samples of the current PU. In some examples, the maximum 
number of merging candidates in the list of merging candi 
dates is equal greater than 5 (e.g., 6). 

Continuing reference is now made to FIG. 9. Reconstruc 
tion unit 158 may use the transform blocks (e.g., luma, Cb 
and Cr transform blocks) of TUs of a CU and the predictive 
blocks (e.g., predictive luma, Cb and Cr blocks) of the PUs 
of the CU, i.e., either intra-prediction data or inter-prediction 
data, as applicable, to reconstruct the coding blocks (e.g., 
luma, Cb and Cr coding blocks) of the CU. For example, 
reconstruction unit 158 may add samples of the transform 
blocks (e.g., luma, Cb and Cr transform blocks) to corre 
sponding samples of the predictive blocks (e.g., predictive 
luma, Cb and Cr blocks) to reconstruct the coding blocks 
(e.g., luma, Cb and Cr coding blocks) of the CU. 

Filter unit 160 may perform a deblocking operation to 
reduce blocking artifacts associated with the coding blocks 
(e.g., luma, Cb and Cr coding blocks) of the CU. Video 
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decoder 30 may store the coding blocks (e.g., luma, Cb and 
Cr coding blocks) of the CU in decoded picture buffer 162. 
Decoded picture buffer 162 may provide reference pictures 
for Subsequent motion compensation, intra prediction, and 
presentation on a display device, such as display device 32 5 
of FIG. 1. For instance, video decoder 30 may perform, 
based on the blocks (e.g., luma, Cb and Cr blocks) in 
decoded picture buffer 162, intra prediction or inter predic 
tion operations on PUs of other CUs. In this way, video 
decoder 30 may obtain, from the bitstream, transform coef- 10 
ficient levels of the significant luma coefficient block, 
inverse quantize the transform coefficient levels, apply a 
transform to the transform coefficient levels to generate a 
transform block, generate, based at least in part on the 
transform block, a coding block, and output the coding block 15 
for display. 

FIG. 10A is a flowchart illustrating an example operation 
of video encoder 20 to encode data associated with 3D 
Video, in accordance with one or more techniques of this 
disclosure. The operation of FIG. 10A, along with opera- 20 
tions illustrated in other flowcharts of this disclosure, are 
examples. Other example operations in accordance with the 
techniques of this disclosure may include more, fewer, or 
different actions. 

In the example of FIG. 10A, video encoder 20 may 25 
generate a list of merging candidates (200). In other words, 
video encoder 20 may generate a merge candidate list. FIGS. 
11 and 12, described elsewhere in this disclosure, illustrate 
an example operation for generating the list of merging 
candidates. In some examples, video encoder 20 may gen- 30 
erate the merge candidate list in the same manner as video 
decoder 30. In accordance with one or more techniques of 
this disclosure, when video encoder 20 generates the merge 
candidate list, video encoder 20 may determine whether a 
number of merge candidates in the merge candidate list is 35 
less than 5. In response to determining that the number of 
merge candidates in the merge candidate list is less than 5, 
video encoder 20 may derive one or more bi-predictive 
merging candidates. Video encoder 20 may include the one 
or more bi-predictive merging candidates in the merge 40 
candidate list. In some examples, the maximum number of 
merging candidates in the merge candidate list is equal to 6. 

Furthermore, in the example of FIG. 10A, video encoder 
20 may select a candidate in the list of merging candidates 
(202). In some examples, video encoder 20 may signal the 45 
selected candidate in a bitstream. For instance, video 
encoder 20 may include a merge index syntax element in the 
bitstream. Video encoder 20 may encode a video block 
based on the selected candidate (204). For example, the 
video block may be a CU. In this example, video encoder 20 50 
may use the motion information (e.g., motion vectors, 
reference indices, etc.) of the selected candidate to deter 
mine a predictive block for a PU of the CU. Furthermore, in 
this example, video encoder 20 may determine values of at 
least Some samples of a transform block (e.g., a residual 55 
block) based on samples of the predictive block and corre 
sponding samples of a coding block of the CU. For instance, 
video encoder 20 may determine values of at least some of 
the samples of the transform block such that the samples are 
equal to differences between samples of the predictive block 60 
and corresponding samples of a coding block of the CU. 

FIG. 10B is a flowchart illustrating an example operation 
of video decoder 30 to decode data associated with 3D 
Video, in accordance with one or more techniques of this 
disclosure. In the example of FIG. 10B, video decoder 30 65 
may generate a list of merging candidates (220). In other 
words, video decoder 30 may generate a merge candidate 
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list. FIGS. 11 and 12, described elsewhere in this disclosure, 
illustrate an example operation for generating the list of 
merging candidates. In some examples, video decoder 30 
may generate the merging candidate list in the same manner 
as video encoder 20. In accordance with one or more 
techniques of this disclosure, when video decoder 30 gen 
erates the merging candidate list, video decoder 30 may 
determine whether a number of merging candidates in the 
merging candidate list is less than 5. In response to deter 
mining that the number of merging candidates in the merg 
ing candidate list is less than 5, video decoder 30 may derive 
one or more bi-predictive merging candidates. Video 
decoder 30 may include the one or more bi-predictive 
merging candidates in the merging candidate list. In some 
examples, the maximum number of merging candidates in 
the merging candidate list is equal to 6. 

Furthermore, in the example of FIG. 10B, video decoder 
30 may determine a selected candidate in the list of merging 
candidates (222). In some examples, video decoder 30 may 
determine the selected candidate based on a value indicated 
by a syntax element signaled in a bitstream. Video decoder 
30 may decode a video block based on the selected candidate 
(224). For example, the video block may be a CU. In this 
example, video decoder 30 may use the motion information 
(e.g., motion vectors, reference indices, etc.) of the selected 
candidate to determine a predictive block for a PU of the 
CU. Furthermore, in this example, video decoder 30 may 
determine values of at least some of the samples of a coding 
block of the CU based on the predictive block. For instance, 
video decoder 30 may determine values of at least some of 
the samples of the coding block Such that the samples are 
equal to sums of samples of the predictive block and 
corresponding samples of a transform block of a TU of the 
CU. 

FIG. 11 is a flowchart illustrating a first portion of an 
example operation 300 to construct a merge candidate list 
for a current block, in accordance with one or more tech 
niques of this disclosure. In the example operation of FIG. 
11, one or more actions may be rearranged or omitted. In 
other examples, similar operations may include additional 
actions. 

In the example of FIG. 11, a video coder (e.g., video 
encoder 20 or video decoder 30) may determine an IPMVC 
(302). In some examples, the video coder may determine the 
IPMVC by using a disparity vector for the current block to 
identify a corresponding block in an inter-view reference 
picture. In Such examples, if the corresponding block is not 
intra predicted and not inter-view predicted and has a 
temporal motion vector (i.e., a motion vector that indicates 
a location in a reference picture associated with a different 
time instance than the corresponding block), the IPMVC 
may specify the motion vectors of the corresponding block, 
prediction direction indicators of the corresponding block, 
and converted reference indices of the corresponding block. 
Subsequently, the video coder may determine whether the 
IPMVC is available (304). In some examples, the IPMVC is 
unavailable if the corresponding block in the inter-view 
reference picture is intra predicted or outside the boundaries 
of the inter-view reference picture. Responsive to determin 
ing that the IPMVC is available (“YES” of 304), the video 
coder may insert the IPMVC in the merge candidate list 
(306). 

After inserting the IPMVC in the merge candidate list or 
in response to determining that the IPMVC is not available 
(“NO” of 304), the video coder may check spatial neigh 
boring PUs to determine whether the spatial neighboring 
PUs have available motion vectors (308). In some examples, 
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the spatial neighboring PUs cover the locations indicated Ao 
A, B, B, and B in FIG. 2. For ease of explanation, this 
disclosure may refer to the motion information of PUs 
covering the locations Ao A, Bo, B, and B2 as Ao A. Bo 
B, and B, respectively. 

In the example of FIG. 11, the video coder may determine 
whether A matches the IPMVC (310). Responsive to deter 
mining that A does not match the IPMVC (“NO” of 310), 
the video coder may insert A into the merge candidate list 
(312). Otherwise, responsive to determining that A matches 
the IPMVC (“YES” of 310) or after inserting A into the 
merge candidate list, the video coder may determine whether 
B matches A or the IPMVC (314). Responsive to deter 
mining that B does not match A or the IPMVC (“NO” of 
314), the video coder may insert B into the merge candidate 
list (316). On the other hand, responsive to determining that 
B matches A or the IPMVC (“YES” of 314) or after 
inserting B into the merge candidate list, the video coder 
may determine whether Bo is available (318). Responsive to 
determining that Bo is available (“YES” of 318), the video 
coder may insert Bo into the merge candidate list (320). If Bo 
is not available (“NO” of 318) or after inserting Bo into the 
merge candidate list, the video coder may determine whether 
the IDMVC is available and does not match A or B (332). 
The IDMVC may specify the disparity vector for the current 
PU. The IDMVC may be unavailable if the IDMVC indi 
cates a location that is outside the boundaries of an inter 
view reference picture. Responsive to determining that the 
IDMVC is available and does not match A or B (“YES” of 
332), the video coder may insert the IDMVC into the merge 
candidate list (334). If the IDMVC is not available or the 
IDMVC matches A or B (“NO” of 332) or after inserting 
the IDMVC into the merge candidate list, the video coder 
may perform the portion of operation 300 shown in FIG. 12 
(denoted by “A”). 

FIG. 12 is a flowchart illustrating a second portion of the 
example operation 300 of FIG. 11 to construct a merge 
candidate list for a current block, in accordance with one or 
more techniques of this disclosure. As indicated above, the 
video coder may perform the portion of operation 300 
shown in FIG. 12 if the IDMVC is not available or the 
IDMVC matches A or B (“NO” of 332) or after inserting 
the IDMVC into the merge candidate list. Hence, if the 
IDMVC is not available or the IDMVC matches A or B 
(“NO” of 332) or after inserting the IDMVC into the merge 
candidate list, the video coder may determine whether 
BVSP is enabled (336). If BVSP is enabled (“YES” of 336), 
the video coder may insert a BVSP candidate into the merge 
candidate list (338). If BVSP is not enabled (“NO” of 336) 
or after inserting the BVSP candidate into the merge can 
didate list, the video coder may determine whether A is 
available (340). If A is available (“YES” of 340), the video 
coder may insert Ao into the merge candidate list (342). 
Otherwise, if A is not available (“NO” of 340) or after 
inserting Ao into the merge candidate list, the video coder 
may determine whether B is available (344). If B is 
available (“YES of 344), the video coder may insert B into 
the merge candidate list (346). 

If B is not available (“NO” of 344) or after inserting B 
into the merge candidate list, the video coder may determine 
whether inter-view motion prediction is applied (348). In 
other words, the video coder may determine whether the 
current block may be coded using inter-view motion pre 
diction. In response to determining that inter-view motion 
prediction is applied (“YES of 348), the video coder may 
determine a shifted candidate (350). In other words, the 
video coder may determine a DSMV candidate, as described 
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elsewhere in this disclosure. After determining the shifted 
candidate, the video coder may determine whether the 
shifted candidate is available (352). If the shifted candidate 
is available (“YES” of 352), the video coder may include the 
shifted candidate in the merge candidate list (354). If inter 
view motion prediction is not applied (“NO” of 348), the 
shifted candidate is not available (“NO” of 352), or after 
including the shifted candidate in the merge candidate list, 
the video coder may include a temporal merging candidate 
in the merge candidate list (356). 

Furthermore, the video coder may perform a derivation 
process for combined bi-predictive merging candidates 
(358). An example derivation process for combined bi 
predictive merging candidates in accordance with one or 
more techniques of this disclosure is described below with 
regard to FIG. 13. In addition, the video coder may perform 
a derivation process for Zero motion vector candidates (360). 
An example derivation process for Zero motion vector 
candidates is described in Section 8.5.3.2.4 of HEVC WD 
10. 

FIG. 13 is a flowchart illustrating an example derivation 
process for combined bi-predictive merging candidates, in 
accordance with one or more techniques of this disclosure. 
The derivation process of FIG. 13 may be performed without 
checking any BVSP flags. For instance, the derivation 
process of FIG. 13 may be performed without providing 
mergecandIsVspFlag as input to the derivation process for 
combined bi-predictive merging candidates, as is done in 
section H.8.5.3.2.1 of 3D-HEVC Draft Text 1. Furthermore, 
the derivation process of FIG. 13 may be performed without 
using merge(Cand IsV spFlag in the derivation process for 
combined bi-predictive merging candidates, as is done in 
Section H.8.5.3.2.3 of 3D-HEVC Draft Text 1. 

In the example of FIG. 13, a video coder (e.g., video 
encoder 20 or video decoder 30) may determine whether a 
current slice (i.e., a slice that the video coder is currently 
coding) is a B slice (400). If the current slice is not a B slice 
(“NO” of 400), the video coder may end the derivation 
process for combined bi-predictive merging candidates. 
However, in response to determining that the current slice is 
a B slice (“YES” of 400), the video coder may determine 
whether the number of merging candidates in the list of 
merging candidates (i.e., the merge candidate list) is less 
than 5 (402). If the number of merging candidates in the list 
of merging candidates is not less than 5, the video coder may 
end the derivation process for combined bi-predictive merg 
ing candidates. 
On the other hand, in response to determining that the 

number of merging candidates in the list of merging candi 
dates is less than 5 (“YES of 402), the video coder may set 
a value of a combination index (e.g., combidx) to 0 (404). 
The video coder may then determine whether motion vectors 
corresponding to the current value of the combination index 
are available (406). 

In response to determining that the motion vectors cor 
responding to the current value of the combination index are 
available (“YES” of 406), the video coder may include a 
combined bi-predictive merging candidate associated with 
the current value of the combination index in the list of 
merging candidates (408). The combined bi-predictive 
merging candidate associated with the current value of the 
combination index may specify ReflicList0 motion infor 
mation and ReflicList1 motion information in accordance 
with Table 1. 

Furthermore, the video coder may determine whether the 
current value of the combination index is equal to (numOr 
igMergeCand (numOrigMergeCand-1)), where numOrig 
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Merge(Cand denotes the number of merging candidates in the 
list of merging candidates before invoking the derivation 
process of FIG. 13 (410). If the current value of the 
combination index is equal to (numOrigMergeCand (num 
OrigMergeCand-1)) (“YES of 410), the video coder may 
end the derivation process for combined bi-predictive merg 
ing candidates. On the other hand, if the current value of the 
combination index is not equal to (numOrigMerge(Cand 
(numOrigMergecand-1)) (“NO” of 410), the video coder 
may determine whether a total number of merging candi 
dates in the list of merging candidates is equal to MaxNum 
Mergecand (412). As indicated elsewhere in this disclosure, 
MaxNumMergecand indicates a maximum number of 
merging candidates in the list of merging candidates. If the 
total number of merging candidates in the list of merging 
candidates is equal to MaxNumMergecand (“YES of 412), 
the video coder may end the derivation process for com 
bined bi-predictive merging candidates. 

However, in response to determining that the total number 
of merging candidates in the list of merging candidates is not 
equal to MaxNumMergeCand (“NO” of 412) or in response 
to determining that the motion vectors corresponding to the 
current value of the combination index are not available 
(“NO” of 406), the video coder may increment the current 
value of the combination index (414). The video coder may 
then perform actions (406)-(414) with regard to the incre 
mented value of the combination index. In this way, the 
Video coder may continue deriving combined bi-predictive 
merging candidates until the current value of the combina 
tion index is equal to (numOrigMerge(Cand (numOrig 
Mergecand-1)) or the number of total candidates (including 
newly generated combined bi-predictive merging candi 
dates) in the merge list is equal to MaxNumMergeCand. 

FIG. 14A is a flowchart illustrating an example operation 
of video encoder 20 to encode a video block, in accordance 
with one or more techniques of this disclosure. In the 
example of FIG. 14A, video encoder 20 may generate a list 
of merging candidates (450). In other words, video encoder 
20 may generate a merge candidate list. In the example of 
FIG. 14A, video encoder 20 may determine whether a 
number of merging candidates in the list is less than 5 (452). 
In some examples, video encoder 20 may, in this step, 
determine whether the number of merging candidates in the 
list is less than 5 and the maximum number of merging 
candidates in the list is greater than 5 (e.g., equal to 6). In 
response to determining that the number of merging candi 
dates in the list is less than 5 (“YES” of 452), video encoder 
20 may derive one or more combined bi-predictive merging 
candidates (454) and include the one or more combined 
bi-predictive merging candidates in the list of merging 
candidates (456). Each respective combined bi-predictive 
merging candidate of the one or more combined bi-predic 
tive merging candidates may correspond to a respective pair 
of merging candidates already in the list. The respective 
combined bi-predictive merging candidate may be a com 
bination of a motion vector of a first merging candidate of 
the respective pair and a motion vector of a second merging 
candidate of the respective pair. The motion vector of the 
first merging candidate and the motion vector of the second 
merging candidate refer to pictures in different reference 
picture lists (e.g., list 0 and list 1). On the other hand, in 
Some examples, if the number of merging candidates in the 
list is not less than 5 (“NO” of 452), video encoder 20 does 
not include any combined bi-predictive merging candidates 
in the list (458). 

In some examples, video encoder 20 may derive the one 
or more combined bi-predictive merging candidates after 
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inserting an IPMVC, if available, in the list of merging 
candidates, after performing a derivation process for spatial 
merging candidates, and after performing a derivation pro 
cess for a temporal merging candidate. The derivation 
process for spatial merging candidates may derive and insert 
up to four spatial motion vector candidates in the list of 
merging candidates. The derivation process for the temporal 
merging candidate may add a temporal motion vector pre 
dictor (TMVP) candidate, if available, to the list of merging 
candidates. 

Furthermore, in the example of FIG. 14A, video encoder 
20 may select a candidate in the list of merging candidates 
(460). In some examples, video encoder 20 may determine 
the selected candidate based on a value indicated by a syntax 
element signaled in a bitstream. In addition, video encoder 
20 may signal a position in the list of merging candidates of 
the selected merging candidate (462). Video encoder 20 may 
encode a video block based on the selected candidate (464). 
Video encoder 20 may encode the video block in accordance 
with one or more of the examples provided elsewhere in this 
disclosure. 

FIG. 14B is a flowchart illustrating an example operation 
of video decoder 30 to decode a video block, in accordance 
with one or more techniques of this disclosure. In the 
example of FIG. 14B, video decoder 30 may generate a list 
of merging candidates (480). In the example of FIG. 14B, 
video decoder 30 may determine whether a number of 
merging candidates in the list is less than 5 (482). In some 
examples, video decoder 30 may, in this step, determine 
whether the number of merging candidates in the list is less 
than 5 and the maximum number of merging candidates in 
the list is greater than 5 (e.g., equal to 6). In response to 
determining that the number of merging candidates in the list 
is less than 5 (“YES” of 452), video decoder 30 may derive 
one or more combined bi-predictive merging candidates 
(484). Each respective combined bi-predictive merging can 
didate of the one or more combined bi-predictive merging 
candidates may correspond to a respective pair of merging 
candidates already in the list. The respective combined 
bi-predictive merging candidate may be a combination of a 
motion vector of a first merging candidate of the respective 
pair and a motion vector of a second merging candidate of 
the respective pair. The motion vector of the first merging 
candidate and the motion vector of the second merging 
candidate refer to pictures in different reference picture lists 
(e.g., list 0 and list 1). Video decoder 30 may include the one 
or more combined bi-predictive merging candidates in the 
list (486). On the other hand, in some examples, if the 
number of merging candidates in the list is not less than 5 
(“NO” of 482), video decoder 30 does not include any 
combined bi-predictive merging candidates in the list (488). 

In some examples, video decoder 30 may derive the one 
or more combined bi-predictive merging candidates after 
inserting an IPMVC, if available, in the list of merging 
candidates, after performing a derivation process for spatial 
merging candidates, and after performing a derivation pro 
cess for a temporal merging candidate. The derivation 
process for spatial merging candidates may derive and insert 
up to four spatial motion vector candidates in the list of 
merging candidates. The derivation process for the temporal 
merging candidate may add a temporal motion vector pre 
dictor (TMVP) candidate, if available, to the list of merging 
candidates. 

Furthermore, in the example of FIG. 14B, video decoder 
30 may determine a selected candidate in the list of merging 
candidates (490). In some examples, video decoder 30 may 
determine the selected candidate based on a value indicated 
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by a syntax element signaled in a bitstream. For instance, 
video decoder 30 may obtain, from a bitstream, a syntax 
element indicating a selected merging candidate in the list of 
merging candidates. Video decoder 30 may decode a video 
block based on the selected candidate (492). For instance, 
video decoder 30 may use motion information of the 
selected candidate to generate predictive samples of a cur 
rent PU. The video decoder 30 may decode the video block 
(e.g., a CU, PU, etc.) in accordance with one or more of the 
examples provided elsewhere in this disclosure. 
The following paragraphs provide additional examples of 

this disclosure 

Example 1 

A method of coding video data, the method comprising: 
generating a first list of merging candidates according to a 
first process for coding a video block that is not associated 
with three-dimensional video data, wherein the first list 
includes one or more bi-predictive merging candidates; and 
generating a second list of merging candidates according to 
a second process for coding a video block that is associated 
with three-dimensional video data, wherein the second list 
includes one or more bi-predictive merging candidates, 
wherein the first process and the second process are the 
SaC. 

Example 2 

The method of example 1, wherein generating the first list 
and generating the second list occurs only when the follow 
ing condition is satisfied: a number of available merging 
candidates is less than 5. 

Example 3 

The method of any of examples 1 or 2, further comprising 
defining a maximum number of merging MVP candidates 
prior to invoking a derivation process for generating any 
merge list. 

Example 4 

The method of example 4, wherein the maximum number 
of merging MVP candiddates is defined subsantially as 
follows: MaxNumMergecand=5-five minus max num 
merge cand, and then after this process is inovked, the 
MaxNumMergecand is set back to: MaxNumMerge 
Cand 5-five minus max num merge cand+iv mV pred 
flagnu h layer id. 

Example 5 

A method of coding data associated with three-dimen 
sional (3D) video, the method comprising: generating a list 
of merging candidates for coding a video block associated 
with 3D video, wherein the list includes one or more 
bi-predictive merging candidates and wherein when a maxi 
mum number of merging candidates is equal to 6 and there 
are 5 candidates defined before a derivation process of 
combined bi-predictive merging candidates is invoked, a 
Zero candidate is generated and included in the list, wherein 
the Zero candidate defines a reference index and motion 
vector components as 0. 

Example 6 

A method of coding data associated with three-dimen 
sional (3D) video, the method comprising: generating a list 
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of merging candidates for coding a video block associated 
with 3D video, wherein the list includes one or more 
bi-predictive merging candidates and wherein before gen 
erating the list, a maximum number of merging candidates 
is set to five, four of the candidates are input to a merge list 
derivation process, and one candidate is newly generated 
during the merge list derivation process. 

Example 7 

The method of example 6, wherein the newly generated 
candidate is ordered as a fifth candidate in the list. 

Example 8 

The method of example 6, wherein if the merge list 
derivation process is unable to generate a non-Zero newly 
generated candidate, the merge list derivation process gen 
erates a Zero value candidate as the newly generated candi 
date. 

In one or more examples, the functions described herein 
may be implemented in hardware, software, firmware, or 
any combination thereof. If implemented in software, the 
functions may be stored on or transmitted over, as one or 
more instructions or code, a computer-readable medium and 
executed by a hardware-based processing unit. Computer 
readable media may include computer-readable storage 
media, which corresponds to a tangible medium Such as data 
storage media, or communication media including any 
medium that facilitates transfer of a computer program from 
one place to another, e.g., according to a communication 
protocol. In this manner, computer-readable media generally 
may correspond to (1) tangible computer-readable storage 
media which is non-transitory or (2) a communication 
medium Such as a signal or carrier wave. Data storage media 
may be any available media that can be accessed by one or 
more computers or one or more processors to retrieve 
instructions, code and/or data structures for implementation 
of the techniques described in this disclosure. A computer 
program product may include a computer-readable medium. 
By way of example, and not limitation, Such computer 

readable storage media can comprise RAM, ROM, 
EEPROM, CD-ROM or other optical disk storage, magnetic 
disk storage, or other magnetic storage devices, flash 
memory, or any other medium that can be used to store 
desired program code in the form of instructions or data 
structures and that can be accessed by a computer. Also, any 
connection is properly termed a computer-readable medium. 
For example, if instructions are transmitted from a website, 
server, or other remote source using a coaxial cable, fiber 
optic cable, twisted pair, digital subscriber line (DSL), or 
wireless technologies such as infrared, radio, and micro 
wave, then the coaxial cable, fiber optic cable, twisted pair, 
DSL, or wireless technologies Such as infrared, radio, and 
microwave are included in the definition of medium. It 
should be understood, however, that computer-readable stor 
age media and data storage media do not include connec 
tions, carrier waves, signals, or other transient media, but are 
instead directed to non-transient, tangible storage media. 
Disk and disc, as used herein, includes compact disc (CD), 
laser disc, optical disc, digital versatile disc (DVD), floppy 
disk and Blu-ray disc, where disks usually reproduce data 
magnetically, while discs reproduce data optically with 
lasers. Combinations of the above should also be included 
within the scope of computer-readable media. 

Instructions may be executed by one or more processors, 
Such as one or more digital signal processors (DSPs), 
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general purpose microprocessors, application specific inte 
grated circuits (ASICs), field programmable gate arrays 
(FPGAs), or other equivalent integrated or discrete logic 
circuitry. Accordingly, the term “processor, as used herein 
may refer to any of the foregoing structure or any other 
structure Suitable for implementation of the techniques 
described herein. In addition, in Some aspects, the function 
ality described herein may be provided within dedicated 
hardware and/or software modules configured for encoding 
and decoding, or incorporated in a combined codec. Also, 
the techniques could be fully implemented in one or more 
circuits or logic elements. 
The techniques of this disclosure may be implemented in 

a wide variety of devices or apparatuses, including a wire 
less handset, an integrated circuit (IC) or a set of ICs (e.g., 
a chip set). Various components, modules, or units are 
described in this disclosure to emphasize functional aspects 
of devices configured to perform the disclosed techniques, 
but do not necessarily require realization by different hard 
ware units. Rather, as described above, various units may be 
combined in a codec hardware unit or provided by a col 
lection of interoperative hardware units, including one or 
more processors as described above, in conjunction with 
suitable software and/or firmware. 

Various examples have been described. These and other 
examples are within the scope of the following claims. 
What is claimed is: 
1. A method of coding three-dimensional (3D) video data, 

the method comprising: 
generating a current list of merging candidates for coding 

a video block of the 3D video data, wherein a maxi 
mum number of merging candidates in the current list 
of merging candidates is equal to 6, there are 20 
possible combinations of list 0 and list 1 motion vectors 
of different bi-predictive merging candidates in lists of 
merging candidates having 5 bi-predictive merging 
candidates, and generating the current list of merging 
candidates comprises: 
determining that a number of merging candidates ini 

tially in the current list of merging candidates is less 
than 5, wherein each respective value of a combina 
tion index from 0 to 11 corresponds to a respective 
pre-defined combination of values from 0 to 3; and 

in response to determining that the number of merging 
candidates in the current list of merging candidates is 
less than 5, performing the following for each 
respective value of the combination index from 0 to 
11 until at least one of the following conditions is 
true: the respective value of the combination index is 
equal to the number of merging candidates initially 
in the current list of merging candidates multiplied 
by one less than the number of merging candidates 
initially in the current list of merging candidates, and 
the current list of merging candidates has 6 merging 
candidates: 
determining whether a first merging candidate in the 

current list of merging candidates has a list 0 
motion vector and whether a second merging 
candidate in the current list of merging candidates 
has a list 1 motion vector, wherein the first merg 
ing candidate and the second merging candidate 
are at positions in the current list of merging 
candidates indicated by the pre-defined combina 
tion of values corresponding to the respective 
value of the combination index; 

responsive to determining the first merging candi 
date has a list 0 motion vector and the second 
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merging candidate has a list 1 motion vector, 
deriving a respective combined bi-predictive 
merging candidate, wherein the respective com 
bined bi-predictive merging candidate is a com 
bination of the list 0 motion vector of the first 
merging candidate and the list 1 motion vector of 
the second merging candidate, wherein the motion 
vector of the first merging candidate and the 
motion vector of the second merging candidate 
refer to pictures in different reference picture lists; 
and 

including the respective combined bi-predictive 
merging candidate in the current list of merging 
candidates. 

2. The method of claim 1, wherein generating the current 
list of merging candidates further comprises: 

in response to determining that there are 5 merging 
candidates in the current list of merging candidates 
prior to adding any of the one or more bi-predictive 
merging candidates to the current list of merging can 
didates, including a Zero candidate in the current list of 
merging candidates, wherein motion vector compo 
nents of the Zero candidate are equal to 0 and a 
reference index of the Zero candidate is equal to 0, the 
reference index indicating a location of a reference 
picture in a reference picture list. 

3. The method of claim 1, wherein generating the current 
list of merging candidates occurs without checking any 
backward warping view synthesis (BVSP) flags. 

4. The method of claim 1, wherein the method of coding 
the 3D video data comprises a method of decoding the 3D 
video data and the video block is a prediction unit (PU), the 
method further comprising: 

obtaining, from a bitstream, a syntax element indicating a 
Selected merging candidate in the current list of merg 
ing candidates; and 

using motion information of the selected candidate to 
generate predictive samples of the PU. 

5. The method of claim 1, wherein the method of coding 
the 3D video data comprises a method of encoding the 3D 
Video data, the method comprising: 

selecting a merging candidate in the current list of merg 
ing candidates; and 

signaling a position in the current list of merging candi 
dates of the selected merging candidate. 

6. The method of claim 1, wherein: 
generating the current list of merging candidates com 

prises deriving the one or more combined bi-predictive 
merging candidates after inserting an inter-view pre 
diction motion vector candidate (IPMVC), if available, 
in the current list of merging candidates, after perform 
ing a derivation process for spatial merging candidates, 
and after performing a derivation process for a tempo 
ral merging candidate, 

the derivation process for spatial merging candidates 
derives and inserts up to four spatial motion vector 
candidates in the current list of merging candidates, and 

the derivation process for the temporal merging candidate 
adds a temporal motion vector predictor (TMVP) can 
didate, if available, to the current list of merging 
candidates. 

7. A video coding device comprising: 
a data storage medium configured to store three-dimen 

sional (3D) video data; and 
one or more processors configured to: 

generate a current list of merging candidates for coding 
a video block of the 3D video data, wherein a 
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maximum number of merging candidates in the 
current list of merging candidates is equal to 6, there 
are 20 possible combinations of list 0 and list 1 
motion vectors of different bi-predictive merging 
candidates in lists of merging candidates having 5 
bi-predictive merging candidates, and as part of 
generating the current list of merging candidates, the 
one or more processors: 

determine that a number of merging candidates initially 
in the current list of merging candidates is less than 
5, wherein each respective value of a combination 
index from 0 to 11 corresponds to a respective 
pre-defined combination of values from 0 to 3; and 

in response to determining that the number of merging 
candidates in the current list of merging candidates is 
less than 5, perform the following for each respective 
value of the combination index from 0 to 11 until at 
least one of the following conditions is true: the 
respective value of the combination index is equal to 
the number of merging candidates initially in the 
current list of merging candidates multiplied by one 
less than the number of merging candidates initially 
in the current list of merging candidates, and the 
current list of merging candidates has 6 merging 
candidates: 
determine whether a first mer in candidate in the 

current list of merging candidates has a list 0 
motion vector and whether a second merging 
candidate in the current list of merging candidates 
has a list 1 motion vector, wherein the first merg 
ing candidate and the second merging candidate 
are at positions in the current list of merging 
candidates indicated by the pre-defined combina 
tion of values corresponding to the respective 
value of the combination index; 

responsive to determining the first merging candi 
date has a list 0 motion vector and the second 
merging candidate has a list 1 motion vector, 
derive a respective combined bi-predictive merg 
ing candidate, wherein the respective combined 
bi-predictive merging candidate is a combination 
of the list 0 motion vector of the first merging 
candidate and the list 1 motion vector of the 
second merging candidate, wherein the motion 
vector of the first merging candidate and the 
motion vector of the second merging candidate 
refer to pictures in different reference picture lists; 
and 

include the respective combined bi-predictive merg 
ing candidate in the current list of merging can 
didates. 

8. The video coding device of claim 7, wherein as part of 
generating the current list of merging candidates, the one or 
more processors: 

include, in response to determining that there are 5 
merging candidates in the current list of merging can 
didates prior to adding any of the one or more bi 
predictive merging candidates to the current list of 
merging candidates, a Zero candidate in the current list 
of merging candidates, wherein motion vector compo 
nents of the Zero candidate are equal to 0 and a 
reference index of the Zero candidate is equal to 0, the 
reference index indicating a location of a reference 
picture in a reference picture list. 
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9. The video coding device of claim 7, wherein the one or 

more processors generate the current list of merging candi 
dates without checking any backward warping view synthe 
sis (BVSP) flags. 

10. The video coding device of claim 7, wherein the one 
or more processors are configured to decode the 3D video 
data and the video block is a prediction unit (PU), the one 
or more processors being configured to: 

obtain, from a bitstream, a syntax element indicating a 
Selected merging candidate in the current list of merg 
ing candidates; and 

use motion information of the selected candidate to gen 
erate predictive samples of the PU. 

11. The video coding device of claim 7, wherein the one 
or more processors are configured to encode the 3D video 
data, the one or more processors being configured to: 

select a merging candidate in the current list of merging 
candidates; and 

signal a position in the current list of merging candidates 
of the selected merging candidate. 

12. The video coding device of claim 7, wherein: 
the one or more processors are configured to derive the 

one or more combined bi-predictive merging candi 
dates after inserting an inter-view prediction motion 
vector candidate (IPMVC), if available, in the current 
list of merging candidates, after performing a deriva 
tion process for spatial merging candidates, and after 
performing a derivation process for a temporal merging 
candidate, 

the derivation process for spatial merging candidates 
derives and inserts up to four spatial motion vector 
candidates in the current list of merging candidates, and 

the derivation process for the temporal merging candidate 
adds a temporal motion vector predictor (TMVP) can 
didate, if available, to the current list of merging 
candidates. 

13. A video coding device comprising: 
means for storing three-dimensional (3D) video data; and 
means for generating a current list of merging candidates 

for coding a video block of the 3D video data, wherein 
a maximum number of merging candidates in the 
current list of merging candidates is equal to 6, there are 
20 possible combinations of list 0 and list 1 motion 
vectors of different bi-predictive merging candidates in 
lists of mer in candidates having 5 bi-predictive merg 
ing candidates, and the means for generating the cur 
rent list of merging candidates comprises: 
means for determining that a number of merging can 

didates initially in the current list of merging candi 
dates is less than 5, wherein each respective value of 
a combination index from 0 to 11 corresponds to a 
respective pre-defined combination of values from 0 
to 3; and 

means for performing the following for each respective 
value of the combination index from 0 to 11 until at 
least one of the following conditions is true: the 
respective value of the combination index is equal to 
the number of merging candidates initially in the 
current list of merging candidates multiplied by one 
less than the number of merging candidates initially 
in the current list of merging candidates, and the 
current list of merging candidates has 6 merging 
candidates in response to determining that the num 
ber of merging candidates in the current list of 
merging candidates is less than 5: 
determine whether a first merging candidate in the 

current list of merging candidates has a list 0 



US 9,554,150 B2 
57 

motion vector and whether a second merging 
candidate in the current list of merging candidates 
has a list 1 motion vector, wherein the first mer in 
candidate and the second merging candidate are at 
positions in the current list of merging candidates 
indicated by the pre-defined combination of val 
ues corresponding to the respective value of the 
combination index; 

responsive to determining the first merging candi 

5 

58 
the derivation process for spatial merging candidates 

derives and inserts up to four spatial motion vector 
candidates in the current list of merging candidates, and 

the derivation process for the temporal merging candidate 
adds a temporal motion vector predictor (TMVP) can 
didate, if available, to the current list of merging 
candidates. 

19. A non-transitory computer-readable data storage 
medium having instructions stored thereon that when 

date has a list 0 motion vector and the second " executed cause a video coding device to code three-dimen 
merging candidate has a list 1 motion vector, a sional (3D) video data, the instructions causing the video 
respective combined bi-predictive merging candi- coding device to: 
date, wherein the respective combined bi-predic- generate a current list of merging candidates for coding a 
tive merging candidate is a combination of the list is video block of the 3D video data, wherein a maximum 
0 motion vector of the first merging candidate and number of merging candidates in the current list of 
the list 1 motion vector of the second merging merging candidates is equal to 6, there are 20 possible 
candidate, wherein the motion vector of the first combinations of list 0 and list 1 motion vectors of 
merging candidate and the motion vector of the different bi-predictive merging candidates in lists of 
second merging candidate refer to pictures in 20 merging candidates having 5 bi-predictive merging 
different reference picture lists; and candidates, and as part of generating the current list of 

include the respective combined bi-predictive merg- merging candidates, the one or more processors: 
ing candidate in the current list of merging can- determine that a number of merging candidates initially 
didates. in the current list of merging candidates is less than 

14. The video coding device of claim 13, wherein the 25 5, wherein each respective value of a combination 
means for generating the current list of merging candidates index from 0 to 11 corresponds to a respective 
further comprises: pre-defined combination of values from 0 to 3: and 

means for including, in response to determining that there in response to determining that the number of merging 
candidates in the current list of merging candidates is 

30 less than 5, performing the following for each 
respective value of the combination index from 0 to 
11 until at least one of the following conditions is 
true: the respective value of the combination index is 
equal to the number of merging candidates initially 

35 in the current list of merging candidates multiplied 
by one less than the number of merging candidates 
initially in the current list of merging candidates, and 

are 5 merging candidates in the current list of merging 
candidates prior to adding any of the one or more 
bi-predictive merging candidates to the current list of 
merging candidates, a Zero candidate in the current list 
of merging candidates, wherein motion vector compo 
nents of the Zero candidate are equal to 0 and a 
reference index of the Zero candidate is equal to 0, the 
reference index indicating a location of a reference 
picture in a reference picture list. the current list of merging candidates has 6 merging 

15. The video coding device of claim 13, wherein gen- candidates: 
erating the current list of merging candidates occurs without 40 determine whether a first merging candidate in the 
checking any backward warping view synthesis (BVSP) current list of merging candidates has a list 0 
flags. motion vector and whether a second merging 

16. The video coding device of claim 13, wherein the candidate in the current list of merging candidates 
video coding device decodes the 3D video data and the video has a list 1 motion vector, wherein the first merg 
block is a prediction unit (PU), the video coding device 45 ing candidate and the second merging candidate 
further comprising: are at positions in the current list of merging 

means for obtaining, from a bitstream, a syntax element candidates indicated by the pre-defined combina 
indicating a selected merging candidate in the current tion of values corresponding to the respective 
list of merging candidates; and value of the combination index; 

means for using motion information of the selected can- 50 responsive to determining the first merging candi 
didate to generate predictive samples of the PU. date has a list 0 motion vector and the second 

17. The video coding device of claim 13, wherein the merging candidate has a list 1 motion vector, 
video coding device encodes the 3D video data and the video derive a respective combined bi-predictive merg 
coding device comprises: ing candidate, wherein the respective combined 

means for selecting a merging candidate in the current list 55 bi-predictive merging candidate is a combination 
of merging candidates; and of the list 0 motion vector of the first merging 

means for signaling a position in the current list of candidate and the list 1 motion vector of the 
merging candidates of the selected merging candidate. second merging candidate, wherein the motion 

18. The video coding device of claim 13, wherein: vector of the first merging candidate and the 
generating the current list of merging candidates com- 60 motion vector of the second merging candidate 

prises deriving the one or more combined bi-predictive 
merging candidates after inserting an inter-view pre 
diction motion vector candidate (IPMVC), if available, 
in the current list of merging candidates, after perform 
ing a derivation process for spatial merging candidates, 
and after performing a derivation process for a tempo 
ral merging candidate, 

65 

refer to pictures in different reference picture lists; 
and 

include the respective combined bi-predictive merg 
ing candidate in the current list of merging can 
didates. 

20. The non-transitory computer-readable data storage 
medium of claim 19, wherein as part of causing the video 
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coding device to generate the current list of merging can 
didates, the instructions cause the video coding device to: 

in response to determining that there are 5 merging 
candidates in the current list of merging candidates 
prior to adding any of the one or more bi-predictive 
merging candidates to the current list of merging can 
didates, include a zero candidate in the current list of 
merging candidates, wherein motion vector compo 
nents of the Zero candidate are equal to 0 and a 
reference index of the Zero candidate is equal to 0, the 
reference index indicating a location of a reference 
picture in a reference picture list. 

21. The non-transitory computer-readable data storage 
medium of claim 19, wherein the instructions cause the 
Video coding device to generate the current list of merging 
candidates without checking any backward warping view 
synthesis (BVSP) flags. 

22. The non-transitory computer-readable data storage 
medium of claim 19, wherein the video block is a prediction 
unit (PU), the instructions further causing the video coding 
device to: 

obtain, from a bitstream, a syntax element indicating a 
Selected merging candidate in the current list of merg 
ing candidates; and 

use motion information of the selected candidate to gen 
erate predictive samples of the PU. 
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23. The non-transitory computer-readable data storage 

medium of claim 19, wherein the instructions further cause 
the video coding device to: 

select a merging candidate in the current list of merging 
candidates; and 

signal a position in the current list of merging candidates 
of the selected merging candidate. 

24. The non-transitory computer-readable data storage 
medium of claim 19, wherein the instructions cause the 
video coding device to derive the one or more combined 
bi-predictive merging candidates after inserting an inter 
view prediction motion vector candidate (IPMVC), if avail 
able, in the current list of merging candidates, after perform 
ing a derivation process for spatial merging candidates, and 
after performing a derivation process for a temporal merging 
candidate, 

wherein the derivation process for spatial merging can 
didates derives and inserts up to four spatial motion 
vector candidates in the current list of merging candi 
dates, and 

wherein the derivation process for the temporal merging 
candidate adds a temporal motion vector predictor 
(TMVP) candidate, if available, to the current list of 
merging candidates. 
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