
(12) United States Patent
Barney et al.

USOO9548866B2

US 9,548,866 B2
*Jan. 17, 2017

(10) Patent No.:
(45) Date of Patent:

(54) DELETION OF CONTENT IN DIGITAL
STORAGE SYSTEMS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Jonathan M. Barney, Poughkeepsie,
NY (US); David Lebutsch, Tuebingen
(DE); Cataldo Mega, Tuebingen (DE);
Stefan Schleipen, Herrenberg (DE);
Tim Waizenegger, Stuttgart (DE)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21)

(22)

Appl. No.: 15/046,673

Filed: Feb. 18, 2016

(65) Prior Publication Data

US 2016/01 64683 A1 Jun. 9, 2016

Related U.S. Application Data

Continuation of application No. 14/547,940, filed on
Nov. 19, 2014, now Pat. No. 9,298,951.

(63)

(30) Foreign Application Priority Data

Nov. 20, 2013 (GB) 132O459.9

(51) Int. Cl.
H04L 29/06
H04L 9/32

(2006.01)
(2006.01)

(Continued)

(52) U.S. Cl.
CPC H04L 9/3242 (2013.01); G06F 12/1408

(2013.01); G06F 2 1/6218 (2013.01);
(Continued)

(58) Field of Classification Search
CPC G06F 21/6218: G06F 21/78; G06F

222 1/2143; H04L 9/3242
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,171,557 B2* 1/2007 Kallahalla G06F 21,6218
38O,277

7,284,107 B2 * 10/2007 Willman G06F 12/1416
711/17O

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2013O88282 A1 6, 2013

OTHER PUBLICATIONS

Roche et al., “A Practical Oblivious Map Data Structure with Secure
Deletion and History Independence'. Retrieved from https://eprint.
iacr.org/2015/1126.pdf. Published Nov. 2015.*

(Continued)

Primary Examiner — Chau Le
(74) Attorney, Agent, or Firm — Patterson + Sheridan,
LLP

(57) ABSTRACT

A data processing and storage apparatus has a hardware
security module and a data storage medium storing
encrypted data objects and a hierarchical data maintenance
structure of encrypted partition tables and hash-nodes form
ing a rooted tree, where a given partition table comprises a
first reference to a given encrypted data object and a first
cryptographic key for decryption thereof, where a given
hash-node comprises a second reference to a partition tables
or hash-node and a second cryptographic key being Suitable

(Continued)

Master Key MK1

Hash-Node HN1

Key Pointer

: PTKey 1 PTRef1

)
Partition Table PT1

Key Identifier

DOKey2 UUID2

DataObject DC2 I

Hardware Security Module Internal Storage 4

Data Storage Medium 2

Table of Contents TOC

Pointer Identifier

DataObject DO1

0100101011101011111
0010100101010101101.

US 9,548,866 B2
Page 2

for decryption thereof, and where the root node is decipher
able using a master cryptographic key stored in the hardware
security module, the given data object being assigned to the
root node via the first and second references of the given
partition table and the given hash-nodes forming a set of
Successive nodes in the rooted tree.

20 Claims, 4 Drawing Sheets

(51) Int. Cl.
G06F2L/78 (2013.01)
G06F2L/62 (2013.01)
G06F 2/14 (2006.01)
H04L 9/4 (2006.01)

(52) U.S. Cl.
CPC G06F 21/78 (2013.01); H04L 9/14

(2013.01); G06F 2212/1052 (2013.01); G06F
222 1/2143 (2013.01); H04L 2209/24 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

7,404,006 B1 7/2008 Slaughter et al.
7,646,867 B2 * 1/2010 Plotkin G06F 21/62

380/28
7,730,327 B2* 6/2010 Plotkin HO4L 90891

T13, 193

8,224,935 B1 7/2012 Bandopadhyay et al.
8,300,823 B2 * 10/2012 Bojinov. G06F 3/0608

380/269
8,397,083 B1 3/2013 Sussland et al.
8,429,420 B1 4/2013 Melvin
8.433,901 B2 4/2013 De Atley et al.

2003, OO37248 A1
2005, OO18853 A1
2007/02268.09 A1
2008.0109395 A1 5, 2008 Loeb
2009/0046862 A1 2/2009 Ito et al.
2009/0282048 A1* 11/2009 Ransom GO6F 17,30094
2010/0110935 A1 5/2010 Tamassia et al.
2012/0093318 A1 4/2012 Obukhov et al.
2013,0024687 A1 1/2013 Lumb
2014/0237231 A1 8/2014 Spalka et al.

2/2003 Launchbury et al.
1/2005 Lain et al.
9, 2007 Ellard

OTHER PUBLICATIONS

Pinkas et al., “A Simple Recursive Tree Oblivious RAM”. Retrieved
from https://eprintiacr.org/2014/418.pdf. Published Jun. 2014.*
Search Report for British Application No. GB1320459.9, dated Apr.
28, 2014.
Reardon et al.: “SOK: Secure Data Deletion.” May 19-22, 2013;
http://ieeexplore.ieee.org/xpl/article Details.jsp? tp=
&searchWithin%DSecure+Deletion%26cqueryText%DDelete.
Castiglione et al.; “Automatic, Selective and Secure Deletion of
Digital Evidence.” Oct. 26-28, 2011; http://ieeexploreieee.org/xpl/
articleDetails.?tp=&amumber=6103064
&searchWithin%3DSecure+Deletion%26cqueryText%2DDelete.

* cited by examiner

U.S. Patent Jan. 17, 2017 Sheet 1 of 4 US 9,548,866 B2

Data Processing and Storage ApparatuS 1

Further Processing Means 5

Processor 6 Main Memory 7

Hardware Security Module 3

Internal Storage 4

Data Storage
Medium 2

Fig. l.

U.S. Patent Jan. 17, 2017 Sheet 2 of 4 US 9,548,866 B2

Hash-Node HN 1

PTKey 1 PTRef 1

Partition Table PT 1

DOKey 1 UUID 1

DOKey 2 UUID 2

Data Storage Medium 2

Table of Contents TOC

> UUID 1 DORef 1

> UUID 2 DORef 2

DataObject DO 2

Data Object DO 1.

O100101011101011111
OO 10100101010101101

U.S. Patent Jan. 17, 2017 Sheet 3 of 4 US 9,548,866 B2

Hardware Security Module Internal Storage 4

Master Key MK 1

Hash-Node HN 1

PTKey 1. PTRef 1

Partition Table PT 1

DOKey 1 UUID 1

Data Storage Medium 2

Table of ContentS TOC

> UUID 1 DORef 1

Data Object DO 2

DataObject DO 1.

O100101011101011111
OO 10100101010101101

U.S. Patent Jan. 17, 2017 Sheet 4 of 4 US 9,548,866 B2

Hash-Node HN 1

Key Pointer

PTKey 1 PTRef 1 O
PTKey 2 PTRef 2

Partition Table PT 1 ?

Partition Table PT 2

Data Storage Medium 2

Table of ContentS TOC

> UUID 1 DORef 1

> UUID 2 DORef 2

DataObject DO 1

Data Object DO 2

DataObject DO 3

O100101011101011111
OO10100101010101101

US 9,548,866 B2
1.

DELETION OF CONTENT IN DIGITAL
STORAGE SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application Ser. No. 14/547,940, filed Nov. 19, 2014,
which itself claims priority to a British application
1320459.9 filed on date. Nov. 20, 2013. The aforementioned
patent applications are incorporated by reference in their
entirety.

FIELD OF INVENTION

The invention relates to the field of computer science, and
more particularly the invention relates to a data processing
and storage apparatus, a method for operating a data pro
cessing and storage apparatus and to computer executable
instructions on a computer-readable non-transitory storage
medium for storing encrypted data objects in connection
with a data maintenance structure providing for manageable
plain-text access to these encrypted data objects.

BACKGROUND

Secure deletion of content is a business requirement today
in the context of defensible disposal. Defensible disposal of
business records is a business process where a business
entity can prove (in court) that it expunged certain records
while meeting its legal obligations (records management). If
the records were not truly expunged (securely deleted) the
court could order the retrieval of these records through
forensic methods.
Numerous known solutions provide for secure data dele

tion based on physically destructing storage devices or
overwriting magnetic disk drives with patterns. However,
these methods may not be used in modern storage technolo
gies. For example, deleting flash memory by overwriting
will not work when wear leveling is applied to enhance the
storage mediums lifetime. This is because wear leveling will
have the effect that an overwriting operation will not affect
the existing data intended to be deleted but rather will cause
the writing to a new block. To address this problem, solid
state devices (SSD) sometimes provide firmware commands
for secure deletion of an entire hard drive. However, such
deletion will only work on one entire physical disk and not
on the file/object level. As another example, overwriting of
content on a file system or blocks on a storage device will
not work in modern storage infrastructure due to intelligent
caching, archiving and/or virtualization.

Consequently, there is an unchanged need for improve
ments in Solutions for data accessibility lifetime manage
ment and secure data deletion.

SUMMARY OF THE INVENTION

The term “hardware security module', as used herein,
shall extend to any physical computing device that safe
guards and manages digital keys for strong authentication
and provides crypto processing without revealing decrypted
data. In particular, the term hardware security modules shall
include FIPS 140-1 and 140-2 certified products. Hardware
security modules may come in the form of a plug-in card or
an external security device that can be attached directly to a
server or general purpose computer through a network or
universal serial bus (USB) connection. A hardware security

10

15

25

30

35

40

45

50

55

60

65

2
module may contain one or more secure crypto processor
chips to prevent tampering and bus probing. Hardware
security modules may be also deployed in the form of
network hardware security modules to manage transparent
data encryption keys associated with some databases.
The term “data storage medium', as used herein, shall

extend to any physical device allowing retrieval of formerly
stored data as, for example, EPROM, EEPROM, PROM,
DVD-RAM, DVD+RW, CD-RW, Flash Memory, SSD
(Solid State Devices), HDD (Hard Disk Drives), Magnetic
Tapes, DAT (Digital Audio Tape), MO (Magneto Optical
Devices), Mini DiscTM.
The term “data object', as used herein, shall encompass

any kind of finite digital data aggregate which may be serve
as plain-text or cipher-text in an encryption/decryption
operation as, for example, portions of streams, files and
serialized objects. The term “data objects' shall relate to the
broadest understanding of finite digital data aggregates and
shall not imply any purpose, layout or structure.
The term “reference', as used herein, shall encompass a

specific purpose data object encoding a machine readable
descriptor of a storage location containing another (refer
enced) data object. The reference may be of the direct or
indirect type in the sense of allowing director indirect access
to the referenced data object. Direct references are known as,
by example, pointers which identify memory locations or
storage blocks in native addressing or numbering. Indirect
references are known as, for example, primary keys,
handles, unique identifiers, universally unique identifiers
(UUID) and globally unique identifiers (GUID). Indirect
references may not be directly used for access. Instead the
indirect reference has to be resolved into a native identifier
by means of a mapping table or deferring method call, for
example.
The term “hierarchical data structure' shall relate to a

collection of specific data objects, a number thereof com
prising references to other data objects in the collection
thereby allowing access to one or more other data objects by
resolution along a chain of references. A more specific
hierarchical data structure is known as “rooted tree' wherein
all data objects are accessible along chains of references
starting a single data object called “root node'.
The term “encryption', as used herein, shall encompass

applying any kind of known symmetric or asymmetric
cipher method to plain-text input data for getting a non
plain-text readable (cipher text) representation as an output.
The term “decryption', as used herein, shall encompass

applying any kind of known symmetric or asymmetric
cipher method to cipher-text input data for getting a plain
text readable representation as an output.
The term “re-encryption', as used herein, shall have the

meaning of changing from one cipher-text representation of
data to another cipher-text representation. In particular,
re-encryption may be performed by decryption of the initial
cipher-text representation into plain-text by using a first
cryptographic key and afterwards encryption of the plain
text for decryption with a different cryptographic key.
The term “cipher operation', as used herein, shall encom

pass any type of calculation which may not be derived or
reconstructed from observation of its output other than in a
complete search as, for example, encryption, decryption,
re-encryption, secure hashing and secure random key gen
eration.
The term “individually encrypted objects', as used herein,

shall have the meaning that cipher-text representations
located in different storage elements necessarily need to be
decrypted with different cryptographic keys. Beyond this,

US 9,548,866 B2
3

the term “individually encrypted' shall also assume that
knowledge of one cryptographic key does not divulge any
information on other cryptographic keys. This implies that
there is no information shared by any two keys. In a
particular implementation, the cryptographic keys may be
securely pairwise different as, for example, keys generated
in a real or cryptographically secure randomly number
generator are expected to be.
The term “obsolete cryptographic keys', as used herein,

shall relate to cryptographic keys being no longer Suitable
for decryption due to re-encryption of the respective cipher
text data.
A first principal embodiment comprises a data processing

and storage apparatus having a data storage medium and a
hardware security module, the hardware security module
having an internal storage for securely storing a master
cryptographic key, the data storage medium being config
ured for storing a number of individually encrypted data
objects and a data maintenance structure comprising an
number of individually encrypted partition tables and indi
vidually encrypted hash-nodes, the encrypted partition
tables and the encrypted hash-nodes forming a hierarchical
data structure via a rooted tree, wherein:

a given partition table of the partition tables comprises a
first reference assigning a given encrypted data object
of the encrypted data objects to the given partition
table, wherein the given partition table further com
prises a first cryptographic key being Suitable for
decryption of the given encrypted data object;

a given hash-node of the hash-nodes comprises a second
reference assigning one of the encrypted partition
tables or one of the hash-nodes to the given hash-node,
wherein the given hash-node comprises a second cryp
tographic key being Suitable for decryption of the one
of the encrypted partition tables or one of the hash
nodes assigned to the given hash node via the second
reference;

the root node of the rooted tree is decipherable using the
master cryptographic key, the given data object being
assigned to the root node via the first and second
references of the given partition table and the given
hash-nodes, wherein the given partition table and the
given hash-nodes form a first set of Successive nodes in
the tree; and

wherein the data processing and storage apparatus comprises
an application program, the application program being oper
able for receiving an instruction for deleting the given data
object, wherein the application program is further operable
in response to receiving the instruction for deleting the given
data object by:

traversing the first set of successive nodes in the tree by
Successively decrypting all hash-nodes and the parti
tion table starting from the root node using the second
cryptographic keys obtained by decrypting each of the
nodes; and

recursively traversing the first set of Successive nodes
starting from the partition table and re-encrypting all
the recursively traversed nodes with new second cryp
tographic keys, whereby the first cryptographic key is
removed from the partition table or disregarded in the
re-encryption of the partition table.

This may allow to advantageously overcome limitations
of typical hardware security modules and tamperproof
crypto hardware as, for example limited computing power
and limited memory capacity. Typical scaling requirement in
hardware security module performance respective to storage
throughput may be overcome. Upgrading of the hardware

5

10

15

25

30

35

40

45

50

55

60

65

4
security module in course of storage extension may be
avoided. In particular, the embodiment may help to raise the
level of security in existing storage system at economic cost
rate.

In a more detailed embodiment, the data processing and
storage apparatus has a non-volatile re-writable storage
medium.

In another more detailed embodiment of the data process
ing and storage apparatus the hash-nodes and the partition
tables have the references and cryptographic keys organized
in pairwise associations.

In another more detailed embodiment of the data process
ing and storage apparatus the hardware security module is
configured to erase a master cryptographic key for making
data objects stored in the data storage medium (irrevocably)
undecryptable and thus plain-text inaccessible.

In another more detailed embodiment of the data process
ing and storage apparatus exactly one hash-node is deci
pherable by an operation of the hardware security module
using one internally stored master cryptographic key.

In another more detailed embodiment of the data process
ing and storage apparatus is configured for marking the
storage location containing the plain-text inaccessible data
object as reusable.

In another more detailed embodiment, the data processing
and storage apparatus is configured for adding a new data
object to the data storage medium by:

encrypting the new data object with a new first crypto
graphic key,

storing the encrypted new data object on the data storage
medium for assigning the new data object to the root
node via the first and second references of the given
partition table and the given hash-nodes;

traversing the first set of successive nodes in the tree by
Successively decrypting all hash-nodes and the parti
tion table starting from the root node using the second
cryptographic keys obtained by decrypting each of the
nodes;

adding a further first reference and the new first crypto
graphic key to the given partition table, the further first
reference assigning the encrypted new data object to
the given partition table; and

re-encrypting with the given partition table with a third
cryptographic key.

For example, the third cryptographic key is a new second
cryptographic key or the third cryptographic key is given by
the second cryptographic key of the given partition table.

In another more detailed embodiment, a data processing
and storage apparatus is further configured for recursively
traversing the first set of Successive nodes starting from the
given partition table thereby re-encrypting all said recur
sively traversed nodes with new second cryptographic keys.

In another more detailed embodiment, a data processing
and storage apparatus is further configured for recursively
traversing the first set of Successive nodes starting from the
given partition table and re-encrypting all said recursively
traversed nodes with their respective second cryptographic
keys, wherein the third cryptographic key corresponds to the
second cryptographic key of the given partition table.

In another more detailed embodiment, the data processing
and storage apparatus is further configured for rebalancing
the data maintenance structure of the hash-nodes and the
partition tables thereby distributing data from a source
hash-node of the given hash-nodes or the given partition
table to a target hash-node of the hash nodes or a target
partition-table of the partition tables, the source hash node or
the given partition table being assigned to the root node via

US 9,548,866 B2
5

the second references of the given hash-nodes, wherein the
given partition table and the given hash-nodes form a second
set of Successive nodes in the tree, the target hash node or the
target partition table being assigned to the root node via the
second references of the given hash-nodes, wherein the
target partition table and the given hash-nodes form a third
set of Successive nodes in the tree, the apparatus being
configured for performing the rebalancing, the rebalancing
comprising:

traversing the second set of Successive nodes in the tree by
Successively decrypting all nodes starting from the root
node using the second cryptographic keys obtained by
decrypting each of the nodes, the traversing resulting in
a decrypted given partition table or decrypted Source
hash-node:

traversing the third set of successive nodes in the tree by
Successively decrypting all hash-nodes and the parti
tion table starting from the root node using the second
cryptographic keys obtained by decrypting each of the
nodes, the traversing resulting in a decrypted target
partition table or decrypted target hash-node;

adding at least a part of the references and cryptographic
keys comprised in the decrypted given partition table or
decrypted source hash-node to the decrypted target
partition table or decrypted target hash-node

removing the moved part from the respective decrypted
given partition table or decrypted Source hash-node,

recursively traversing the second set of Successive nodes
starting from the given partition table or the Source
hash-node and re-encrypting all the recursively tra
versed nodes with new second cryptographic keys and

recursively traversing the third set of Successive nodes
starting from the target partition table or the target
hash-node and re-encrypting all the recursively tra
versed nodes with new second cryptographic keys.

This rebalancing advantageously allows limiting the size
of the partition tables to the capacity of internal storage in
the hardware security module without degradation in overall
data object storage capacity.

In another more detailed embodiment of the data process
ing and storage apparatus, each data object has a unique
identifier (UUID) assigned to.

In another more detailed embodiment of the data process
ing and storage apparatus, the given hash-node of the
hash-nodes has associated a hash-function description, the
hash-function description providing a mapping of the unique
identifier to the second reference assigning one of the
encrypted partition tables or one of the hash-nodes to the
given hash-node.

This may have the advantage that by knowledge of the
unique identifier of a data object, traversing of the set of
nodes can be performed in a directed manner. For example,
each time a node is decrypted, the next second reference is
selected by applying a hash-function according to the hash
function description contained in that node to the unique
identifier.

In another more detailed embodiment, the data processing
and storage apparatus has the rebalancing operation further
comprising replacing the hash-function description in the
Source hash-node and the target hash node in order to reflect
the change in the cardinality of the set of second references
comprised in these hash-nodes.

In another more detailed embodiment of the data process
ing and storage apparatus, the hardware security module is
configured for performing all kind of cipher operation

10

15

25

30

35

40

45

50

55

60

65

6
during data object storage, retrieval or deletion without
storing cryptographic keys or plain-text data objects to the
data storage medium.

This may be useful when increasing the level of security
in data deletion is primarily targeted.

In another more detailed embodiment of the data process
ing and storage apparatus, the hardware security module is
configured for performing the decryption and encryption
thereby confining the master cryptographic key and the first
cryptographic keys and the second cryptographic keys and
any decrypted plain-text representation of data objects
involved in the decryption or encryption operation to the
internal storage.

This may be useful as providing for a good tradeoff
between security in data deletion and storage bandwidth/
throughput.

In another more detailed embodiment of the data process
ing and storage apparatus, the further processing means
comprises a processor and a volatile memory.

In another more detailed embodiment of the data process
ing and storage apparatus, the hardware security module is
configured for:

exclusively performing the encryption and the decryption
operations in case the encryption and decryption opera
tions are purely performed using the master crypto
graphic key stored in the internal storage; and

performing the encryption and the decryption operations
on a first portion of the data readable from the data
storage medium, whereby further processing means are
configured to execute the encryption and the decryption
operations on a second portion of the data readable
from the data storage medium.

In another more detailed embodiment of the data process
ing and storage apparatus, the hardware security module is
configured to perform the encryption and decryption opera
tion on the data readable from the data storage medium to
the extent of encryption and decryption and re-encryption of
the first and second cryptographic keys only. Thus, the
computing resources are exclusively reserved for retrieval of
cryptographic keys. The encryption and decryption of data
objects which may be rather computing resource consuming
may be dedicated to a further special crypto module.

In another more detailed embodiment of the data process
ing and storage apparatus, the hardware security module is
configured to perform the encryption and decryption opera
tion on the data readable from the data storage medium to
the extent of encryption and decryption and re-encryption of
the hash-nodes and partition tables only. In such situation,
the hardware security module may be configured to perform
encryption and decryption and re-encryption during tra
versal of the first, second and/or third set of tree nodes in a
streaming operation along the Successive nodes thereby
temporarily storing the cryptographic keys in the internal
Storage.

In another more detailed embodiment of the data process
ing and storage apparatus, the hardware security module is
configured to perform the encryption and decryption opera
tion on the data readable from the data storage medium to
the extent of encryption, decryption and re-encryption of the
hash-nodes and the partition tables only.

In another more detailed embodiment of the data process
ing and storage apparatus, the hardware security module is
configured for creating a public-private-key pair for asym
metric encryption of the data objects, embedding the private
key as the first cryptographic key into the partition table and
providing the public key to the further processing means for
use in the data object encryption and storage operations.

US 9,548,866 B2
7

This may be useful in obtaining a good storage band
width/throughput at highest security level in archiving appli
cations without considerable amount of data retrieval and/or
individual deletion operations.

In another principal embodiment, the deletion of content
in digital storage systems comprises a method for deleting a
data object using a data processing and storage apparatus
having a data storage medium and a hardware security
module, the hardware security module having an internal
storage for securely storing a master cryptographic key,
whereby the data storage medium is configured for storing
a number of individually encrypted data objects and a data
maintenance structure comprising an number of individually
encrypted partition tables and individually encrypted hash
nodes, the encrypted partition tables and the encrypted
hash-nodes forming a hierarchical data structure via a rooted
tree, wherein:

a given partition table of the partition tables comprises a
first reference assigning a given encrypted data object
of the encrypted data objects to the given partition
table, wherein the given partition table further com
prises a first cryptographic key being Suitable for
decryption of the given encrypted data object;

a given hash-node of the hash-nodes comprises a second
reference assigning one of the encrypted partition
tables or one of the hash-nodes to the given hash-node,
wherein the given hash-node comprises a second cryp
tographic key being Suitable for decryption of the one
of the encrypted partition tables or one of the hash
nodes assigned to the given hash node via the second
reference; and

the root node of the rooted tree is decipherable using the
master cryptographic key, the given data object being
assigned to the root node via the first and second
references of the given partition table and the given
hash-nodes, wherein the given partition table and the
given hash-nodes form a first set of Successive nodes in
the tree;

wherein the method comprises receiving by an application
program of the data processing and storage apparatus an
instruction for deleting the given data object, and in response
to receiving the instruction for deleting the given data object

traversing the first set of successive nodes in the tree by
Successively decrypting all hash-nodes and the parti
tion table starting from the root node using the second
cryptographic keys obtained by decrypting each of the
nodes,

recursively traversing the first set of Successive nodes
starting from the partition table and re-encrypting all
the recursively traversed nodes with new second cryp
tographic keys, whereby the first cryptographic key is
removed from the partition table or disregarded in the
re-encryption of the partition table.

In another principal embodiment, the deletion of content
in digital storage systems includes a computer readable
non-transitory storage medium comprising computer read
able instructions.
The above-described data processing apparatus and

operation methods may be implemented in digital electronic
circuitry, in computer hardware, firmware, and/or software.
The implementation may, for example, be a programmable
processor, a computer, and/or multiple computers.
As will be appreciated by one skilled in the art, aspects of

the present disclosure may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including

10

15

25

30

35

40

45

50

55

60

65

8
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer readable medium(s) having com
puter readable program code embodied thereon.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, Such that the
instructions stored in the computer readable medium pro
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.
Any combination of one or more computer readable

medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor system, apparatus, or device, or any Suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro
magnetic, optical, or any Suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ
ing but not limited to wireless, wire line, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language Such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the 'C' programming
language or similar programming languages. The program

US 9,548,866 B2

code may execute entirely on the user's computer, partly on
the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present disclosure are described with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the present disclosure. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor
of a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia
gram block or blocks.
The block diagrams in the Figures illustrate the architec

ture, functionality, and operation of possible implementa
tions of systems, methods and computer program products
according to various embodiments of the present disclosure.
In this regard, each block in the block diagrams may
represent a module, segment, or portion of code, which
comprises one or more executable instructions for imple
menting the specified logical function(s). It should also be
noted that, in Some alternative implementations, the func
tions discussed hereinabove may occur out of the disclosed
order. For example, two functions taught in Succession may,
in fact, be executed Substantially concurrently, or the func
tions may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams, and combina
tions of blocks in the block diagrams, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
The terminology used herein is for the purpose of describ

ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an and “the are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and

10

15

25

30

35

40

45

50

55

60

65

10
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
Suited to the particular use contemplated.

BRIEF DESCRIPTIONS OF THE DRAWINGS

Examples are described with reference to the attached
drawings, in which:

FIG. 1 schematically illustrates an exemplary data pro
cessing and storage apparatus;

FIG. 2 schematically illustrates a snapshot of the storage
inventory in an exemplary data processing and storage
apparatus according to FIG. 1;

FIG. 3 schematically illustrates deletion of an individual
data object in the storage inventory according to the Snap
shot of FIG. 2; and

FIG. 4 schematically illustrates insertion of a new data
object in the storage inventory according to the Snapshot of
FIG 2.

DETAILED DESCRIPTION

In the light of the Subsequent explanations numerous
advantages of the Summarized concepts will become appar
ent. In particular, the layout of the data maintenance struc
ture stored in the data storage medium allows the use of the
hardware security module to be limited to a small number of
operations during typical data object access, insertion or
deletion operations. A considerable amount of computa
tional load due to cipher operation may be shifted to an
additional processing means which, for example, may be
designed for Scalable performance at low costs. In a specific
situation, the proposed data layout may be used with an
asymmetric encryption/decryption algorithm thereby allow
ing encryption of all data objects to be performed in unsafe
hardware, i.e. outside the hardware security module, without
any negative impact on security. This specific approach may
be very useful in “one-way data storage as, for example,
data archiving, data tracking or transaction logging where
later need for accessing Stored data is typically rather
unlikely.

FIG. 1 schematically shows an example of a data pro
cessing and storage apparatus 1. The exemplary data pro
cessing and storage apparatus 1 comprises a data storage
medium 2. In instances, the data storage medium 2 is a
non-volatile storage medium thereby maintaining its internal
state in case of power shutdown or the like. The data
processing and storage apparatus 1 may also comprise a
hardware security module 3, in instances. The hardware
security module 3 may be configured to provide for tam
perproof cipher functionality.

For this sake, the hardware security module 3 may com
prise an internal storage 4 for storing a portion of secret data
as, for example, a number of master cryptographic keys used
or to be used for encryption or decryption. The hardware
security module 3 may be implemented in hardware in a way
making any external access to the Secret data in the internal
storage 4 impossible. In instances, the hardware security
module 3 may be configured to provide for the creation of
master cryptographic keys only, whereby master crypto
graphic key reading operation may not be supported. In a
more elaborated example, the hardware security module 3
may be configured to create and store master cryptographic
key using secure random number generation.

US 9,548,866 B2
11

In instances, the hardware security module 3 may provide
for functionality allowing the user to directly replace a
master cryptographic key internally stored by newly created
random master cryptographic key. In such situation, a master
cryptographic key previously stored in the internal storage
may become unrecoverable lost thereby making it impos
sible for anyone to gain access to the contents of cipher-text
decipherable using this earlier master cryptographic key.
As another example, the hardware security module 3 may

provide for functionality allowing re-encryption of a cipher
text portion contained in the data storage medium 2. Such
re-encryption operation may, for example, include copying
of the internally stored master cryptographic key to another
(volatile) internal storage location 4, creating and storing
new master cryptographic key at the internal storage, repeat
edly copying portions of the cipher-text from the data
storage medium 2 to an internal storage, decrypting the
cipher-text to plain-text thereby maintaining the intermedi
ate plain-text in internal storage, encrypting the intermediate
plain-text by use of the new master cryptographic key and
writing the resulting cipher-text to the data storage medium
2. After completion, the hardware security module 3 may
delete the copy of the former master cryptographic key and
the intermediate plain-text from the internal (volatile) stor
age.

In another example, the hardware security module 3 may
be configured to autonomously perform encryption, decryp
tion and re-encryption operations using master crypto
graphic keys stored in the internal storage 4. Preferably, the
hardware security module 3 may be configured to read and
write data to the data storage medium 3 directly without
involvement of other devices. Then, the hardware security
module 3 may be configured to perform encryption opera
tion using an incoming plain-text data stream and internally
stored master cryptographic key autonomously thereby writ
ing the resulting cipher-text to the data storage medium 2
directly.

Similarly, respective to decryption operation, the hard
ware security module 3 may be configured to read cipher
text from the data storage medium 2 directly when perform
ing decryption operation using the internally stored master
cryptographic key thereby producing a stream of plain-text
data as an output. In instances, measures may be taken to
prevent the incoming/outgoing plain-text data streams from
being copied. Such measures may include preventing the
data processing and storage apparatus 1 from Storing plain
text data in shared or non-volatile memory. As an example,
the hardware security module 3 may be configured to
perform all cipher operations in a tamperproof hardware
unit.

In instances, the data processing and storage apparatus 1
may comprise a further processing means 5. In an example,
Such further processing means 5 may include a processor 6
having a main memory 7 attached to. The further processing
means 5 may become helpful when the hardware security
module 3 has to be relieved from performing cipher opera
tions in large scale storage scenarios. Then, for example, a
portion of cipher operations may be performed by the further
processing means. Obviously, this portion may not include
cipher operations using the master cryptographic key stored
in the hardware security module 3 internally as such data
may not be read out for security reasons as pointed out
before.

In another example, cipher calculation may be allocated to
the further processing means 5. In such situation, cipher
operations performed by the hardware security module 3
may be limited to encryption and decryption operations

5

10

15

25

30

35

40

45

50

55

60

65

12
using the master cryptographic key stored internally. Oth
erwise, as an alternative example, all cipher (decryption,
encryption) operations may be allocated to the hardware
security module 3 for enhancement in security. A tamper
proof implementation of the hardware security module 3
may be chosen in Such situation to safeguard against plain
text data Sniffing on hardware level. In instances, it may be
chosen to adjust the allocation of cipher operation to the
further processing means according to the actual system
load. This might be useful for achieving a reasonable
trade-off between security requirements and system perfor
mance at any time.

FIG. 2 schematically illustrates an exemplary Snapshot on
data inventory in the storage medium 2 and the internal
storage 4 of the hardware security module 3 in an example
of the data processing and storage apparatus 1 according to
FIG. 1. The snapshot has been restricted to a rather straight
forward situation for the sake of simplification and compre
hensiveness. More complex situations may be constructed
based thereon according to the operations for adding new
data objects and balancing of the data maintenance structure
as explained below with reference to FIGS. 3 and 4 respec
tive.

Throughout snapshots in FIGS. 2, 3 and 4 symbols
relating to data contained in the internal storage of the
hardware security module 3 are shown in the upper broken
line box whereas symbols relating to data contained in the
data storage medium 2 will be found in the lower broken line
box. In the following explanations no differentiation will be
made between a stored data representation of an object and
the object as an element in a logical data organization
scheme.

In instances, the data storage medium 3 may contain a
number of data objects which may be understood as the pay
load portion of the data inventory. Data objects thereby may
be thought as data aggregates of a fixed known length
intended to be managed and manipulated in its entirety by
the data processing and storage apparatus. For the sake of
simplification, only two data objects DO 1, DO 2 are
shown in the drawing.

Additionally, as a more detailed example, a table of
contents TOC may be stored in the data storage medium 3
as part of the data maintenance structure. The table of
contents TOC may hold a number of pairwise associations
between unique identifiers and pointers to internal storage
locations containing the respective data objects. The asso
ciations may be of the mapping type, thereby allowing direct
retrieval of a pointer using a unique identifier. As an
example, the table of contents TOC may contain unique
identifiers UUID 1 and UUID 2 associated with the point
ers DORef 1 and DORef 2 designating the storage loca
tions holding cipher-text representations of data object
DO 1 and DO 2, respective. The table of contents TOC
may hold a complete list of all data objects DO 1, DO 2
contained in the data storage medium 2. For the sake of
uniqueness, the unique identifiers need to be pairwise dif
ferent. In an example, the unique identifiers may be integral
numbers constructed by Successively enumerating the data
objects during insertion.
The data objects DO 1, DO 2 are stored as individually

encrypted representations. Individually encrypted thereby
shall have the general meaning that knowledge of the
cryptographic key Suitable for decryption of a first data
object does not divulge any information upon cryptographic
keys suitable for decryption of other data objects. In the
particular situation as shown, knowledge of the crypto
graphic key being Suitable for decryption of the data object

US 9,548,866 B2
13

DO 1 does not divulge any information upon cryptographic
key suitable for decryption of data object DO 2 and vice
WSa.

The cryptographic keys DOKey 1 and DOKey 2 suitable
for decryption of the data objects DO 1 and DO 2, respec- 5
tive, shall be referred to as first cryptographic keys and may
be collected or organized in the structure of a partition table
PT 1. The partition table PT 1 may be understood as a data
layout providing a number of slots to hold pairs of a first
cryptographic key DOKey 1, DOKey 2 and a first refer- 10
ence to a data object DO 1, DO 2 which can be made
plaintext accessible by performing a decryption operation
using the respective first cryptographic key.

In instances, the first references to the data objects
included in the partition table may be of the indirect type as, 15
in the exemplary situation, the unique identifiers are. The
partition table PT 1 itself may not be stored in a plain-text
representation but rather in cipher-text representation to
prevent from direct access to the embedded first crypto
graphic keys DOKey 1, DOKey 2. In instances, as shown 20
in the exemplary situation, encryption of the partition table
PT 1 may be performed on the entire data as a whole. Then,
any access to data items within the partition table PT 1 as,
for example the first cryptographic keys DOKey 1,
DOKey 2, will require an overall decryption of the entire 25
cipher-text. It may be considered as an advantage, that in
such situation no portion of the partition table PT 1 would
be recoverable unless the entire cipher-text becomes avail
able for decryption. In instances, this may be an enhance
ment to data security because cipher-text fragments would 30
not allow reconstruction of a plain-text portion even in a
brute force attempt. However, corruption or loss of small
data portions due to hardware failure might spread out and
result in extended or even complete loss of plain-text
accessibility to the partition table. Therefore, in alternatives, 35
partition table data items, namely first references and first
cryptographic keys, may be encrypted individually thereby
leaving the structure of the partition table plain-text acces
sible in the data storage medium 3.

In instances, the data layout of the partition tables may be 40
designed to provide for only a limited number of slots for the
reason of improved performance. Limiting the number of
slots may be desirous in practice to restrict the amount of
data required for a plain-text representation of partition
tables to the limited capacity of the internal storage of the 45
hardware security module. This will allow encryption and
decryption to be performed in the hardware security module
by exclusively using the internal storage. In case of a limited
number of slots, however, there will be no way to extend the
number of slots dynamically at runtime. The exemplary 50
situation assumes a limitation to two slots as the Smallest
non-trivial number suitable to collect multiple pairs of first
references and first cryptographic keys. In practice there will
be typically much more slots in partition tables. Addition
ally, as the number of stored data objects will be multiple 55
times larger than the number of slots in the partition tables,
there will be a large number of partition tables in a typical
situation in practice.

In order to provide for a well-defined procedure for
accessing the partition tables, the data maintenance struc- 60
ture, in instances, may additionally include a number of
hash-nodes. Similar to the partition tables, as explained
before, the hash-nodes may be designed to provide for a
limited number of slots suitable for holding a number of
pairs, each including a second cryptographic key and a 65
second reference. In an example, the second references may
be pointers directly identifying storage locations of

14
encrypted partition tables whereas the cryptographic keys
associated thereto in the pair relation are suitable for plain
text access to the respective partition table in plain-text. This
situation is shown in the drawing. The pointer PTRef 1
identifies the storage location holding a cipher-text repre
sentation (encrypted version) of the partition table PT 1
whereby the second cryptographic key PTKey 1 may be
used for plain-text access to the partition table PT 1 by
decryption of the cipher-text at the respective storage loca
tion.

Preferably, the hash-nodes and partition tables may be
arranged in referential relation forming a rooted tree. In the
Snapshot situation the single hash-node HN 1 may be under
stood as the root node, whereby the partition table PT 1 may
be understood as the only leaf of the rooted tree. The
directed edges of the rooted tree are implied by the second
references included in the hash-node(s). The data objects
DO 1, DO 2 are rather payload data than part of the
overhead, namely the data maintenance structure, and will
therefore not be considered as leafs in the rooted tree.

Again similar to the partition tables, the hash-nodes may,
in instances, be encrypted as a whole. Then, access to any
portion of the hash-node plain-text would require complete
decryption of the stored cipher-text.

In instances, the internal storage 4 of the hardware secu
rity module 3 may contain a master cryptographic key
MK 1 Suitable to perform a decryption operation using an
encrypted representation of a root hash-node in the rooted
tree structure. In the exemplary situation, the hash-node
HN 1, as being the root node in the rooted tree, may be
made plain-text accessible by decryption operation using the
master cryptographic key MK 1.

In a first exemplary alternative, the master cryptographic
key MK 1 may include a symmetric cryptographic key to be
used in a symmetric encryption and decryption algorithm as
well. Then, the first hash-node HN 1 may be encrypted and
decrypted by use of the master cryptographic key MK 1 in
the same way. In an alternative, the master cryptographic
key MK 1 may include the (private) cryptographic key to be
used in a so-called public key algorithm. In Such circum
stances, the (public) encryption key formerly used for
encryption of the root hash-node HN 1 may have been
discarded after encryption. Use of asymmetric cryptography
may be preferred when encryption operation has to be
allocated to non-tamperproof hardware as, for example, to
the further processing means 5 as explained before. Then,
breaking the secret of the (public) encryption key would not
facilitate an attempt to reconstruct the encrypted data or
even the (private) cryptographic key for the well-known
CaSOS.

In a further extension, the master cryptographic key
MK 1 may have a pointer to the storage location of the first
root hash-node HN 1 associated with for facilitating data
retrieval. This may be useful, when multiple master cryp
tographic keys may be provided for the sake of multi-client
capability, as will be explained below in more detail. How
ever, no Such reference or pointer associated with master
cryptographic key MK 1 is shown in the drawing.
Any kind of plain-text access to the data objects DO 1.

DO 2 requires a decryption operation using the master
cryptographic key MK 1 as a first step. This can be seen as
follows. Direct plain-text access to the data objects DO 1.
DO2 is impossible due to their cipher-text storage represen
tations. However, despite being embedded in the partition
table PT 1, the respective first cryptographic keys
DOKey 1, DOKey 2 cannot be extracted in plain-text
unless the partition table PT 1 has been extracted in plain

US 9,548,866 B2
15

text itself by another decryption operation. This, however,
requires plain-text access to the second cryptographic key
PTKey 1 which allows decryption of the partition table
PT 1. According to the exemplary situation, the second
cryptographic key PTKey 1 is embedded in first hash-node
HN 1. As the first hash-node HN 1 is stored in a cipher-text
representation as well, decryption is required before the
embedded cryptographic key PTKey 1 becomes plain-text
accessible. Therefore and finally, decryption of the first
hash-node HN 1 requires a master cryptographic key MK 1
based decryption operation to be performed by the hardware
security module 3. In a situation when the hardware security
module 3 will not allow an external device reading access to
the master cryptographic key MK 1, the decryption opera
tion using the master cryptographic key MK 1 has to be
performed by the hardware security module 3.
As pointed out before, plain-text access to any data object

DO 1, DO 2, partition table PT 1 or hash-node HN 1 will
always recur backwards along the chain of references embed
in the data maintenance structure to a decryption operation
using the master cryptographic key MK 1 and to be per
formed by the hardware security module 3. This may be
understood in the sense of dependency.
As an obvious consequence, loss or erasure of a master

cryptographic key will make the depending hash-nodes,
partition tables and data objects becoming definitively and
irrecoverably plain-text inaccessible. Accordingly, master
cryptographic key erasure may be intentionally used for
making dependent data objects irrevocably plain-text inac
cessible at the same time, for example. In similar circum
stances, storage of an unencrypted representation of the table
of contents TOC as explained before may facilitate reuse of
the space in the data storage medium 2 being allocated to the
plain-text inaccessible data objects.
An effect very similar to erasure of a master cryptographic

key will occur, when the data storage medium 2 is separated
from the hardware security module 3 by malicious act as, for
example, theft. In the same way, plain-text access to a
backup or copy of the data storage medium will be impos
sible when separated from the hardware security module 3.

In another example, which not shown in the drawings, the
data storage medium inventory may be extended to multi
master cryptographic keys and a multiple data maintenance
structure in order to provide for multi-client capability. In a
very simple and exemplary implementation thereof, the
inventory in data storage medium 2 and hardware security
module internal storage 4, as shown in FIG. 2, may be
duplicated to provide for separate access paths to separate
data objects for two clients. In instances of such fundamental
multi-client capability, all master cryptographic keys may be
stored internally in the hardware security module 3 thereby
making the decryption operation based thereon Subject to an
authentication to be executed by the respective client or
client front-end system before plain-text access is granted. In
a more detailed example, such authentication may include
entering a password, providing a biometrical input, perform
ing a Smart card operation or the like.

In order to provide for access to the plain-text of a
selected data object, the data processing and storage appa
ratus 1 may be configured, for example, to perform a kind of
tree-search operation by Successively decrypting hash-nodes
and partition tables. In the exemplary situation, a plain-text
access to data object DO 2 may be achieved by decrypting
the first hash-node HN 1 using the master cryptographic key
MK 1, following the (sole) embedded reference PTRef 1 to
the partition table PT 1, decrypting the partition table PT 1
by using the second cryptographic key PTKey 1, searching

10

15

25

30

35

40

45

50

55

60

65

16
through the embedded pairs for the required value of the
unique identifier UUID 2, translating the unique identifier
UUID 2 into a pointer DORef 2 to the storage location of
the data object DO 2 by table of contents TOC lookup and
decrypting the data object DO 2 by using the first crypto
graphic key DOKey 2. More elaborated approach will be
explained Subsequent in the context of an exemplary inser
tion and tree-balancing operation.

FIGS. 3 and 4 are provided for illustration of certain
operations on the data inventory according to the Snapshot
given in FIG. 2. For a better understanding, the resulting
changes have been highlighted. Data newly-inserted during
the respective operation have bold letter labels. Hash-nodes
and partition tables which have been altered only by re
encryption to another cipher-text representation have their
respective titles written in italic. However, it should be
understood that, in instances, re-encryption may result in a
new storage object as resulting cipher-text may be stored as
a new portion of data at a storage location which was
formerly not used. This is a rather secondary effect.

FIG. 3 schematically illustrates a secure deletion opera
tion executed with respect to a selected data object in the
exemplary Snapshot situation according to FIG. 2. The
purpose of the deletion operation is to make the selected data
object, namely data object DO 2, becoming definitive plain
text inaccessible without affecting accessibility for all other
stored data objects, namely DO 1.

In an example, deletion may be requested by using the
unique identifier UUID 2 for designating the selected data
object DO 2 to be deleted. Then, deletion operation may
comprise reconstruction of the plain-text of a partition table
PT 1 having a pairwise association between the unique
identifier UUID 2 and a first cryptographic key DOKey 2
suitable for decryption of the data object DO 2. In the
example, such partition table PT 1 may be found by per
forming a searching operation similar to the tree searching
operation as described before in the context of data retrieval.
According to the assumption that data retrieval should be
possible, there will be at least one partition table PT 1
comprising a first decryption DO2 Key key for plain-text
access to the data object DO2.

In a next step, the deletion process may, for example,
re-encrypt the partition table PT 1 in a way, which makes
plain-text access Subject to a decryption with a new second
cryptographic key different from the second cryptographic
key PTKey 1 stored in pairwise association with the refer
ence PTRef 1 in hash-node HN 1 whereby the plain-text
access shall not extend to the first cryptographic key
DOKey 2. Again, the creation of the new cryptographic key
PTKey 1 may be performed by the hardware security mod
ule 3 in a real or at least cryptographically secure random
number generation algorithm.

In instances, the key DOKey 2 may be made plain-text
inaccessible by leaving it out when copying the partition
table PT 1 before encryption. In the drawing an empty slot
is shown as a result thereof. In an alternative example, in a
situation when the first cryptographic keys in the partition
table have been encrypted separately, it may be sufficient to
omit re-encryption of the first cryptographic key DOKey 2.
However, this is not shown in the drawing.

Afterwards, the deletion process may continue by replac
ing the obsolete second cryptographic key PTKey 1 embed
ded in the hash-table HN 1 by the newly-created second
cryptographic key. In instances, in a Subsequent step, the
deletion process may create a new master cryptographic key
MK 1 and re-encrypt the hash-node HN 1 for making it
plain-text accessible by use of the new master cryptographic

US 9,548,866 B2
17

key MK 1 only. Then the former master cryptographic key
MK 1 will be replaced in the internal storage of the hard
ware security module by the newly-created master crypto
graphic key. Due to loss of former (obsolete) master cryp
tographic key MK 1 there will be no way for making the
selected data object DO 2 plain-text accessible even if
memory Snapshots of the earlier data maintenance structure
have been saved or copied.

If, in an example, a plain-text accessible table of contents
TOC is provided, the respective unique identifier UUID 2
may be deleted to mark the storage of the selected data
object DO 2 freed for reuse, as shown in the drawing. In
Such situation, the pointer may still serve for access to the
storage location.

FIG. 4 schematically illustrates a new data object inser
tion operation in the exemplary Snapshot situation according
to FIG. 2. The exemplary insertion operation includes stor
ing of a new data object to the data storage medium 2 and
performing an update on the data maintenance structure in
order to allow the new data object DO 3 being made
plain-text accessible in the same way as explained before
with regard to the data objects DO 1, DO 2.

The new data object is stored in an individually encrypted
representation DO 3 Such that plain-text access requires
knowledge of a newly-created first cryptographic key
DOKey 3. Again, the first cryptographic key DOKey 3 may
be created by the hardware security module 3 in a real or at
least cryptographically secure random number generation
algorithm. Then, the first cryptographic key DOKey 3 may
be stored in the data maintenance structure to provide for
later plain-text access to the data object DO 3. Similar to the
other first cryptographic keys DOKey 1 and DOKey 1, the
new first cryptographic key DOKey 3 may be stored in a
partition table. However, in the exemplary situation, the
space provided for storing first cryptographic keys in the
partition table PT 1 is exhausted.

In this situation, a prima-facie solution might be to extend
the partition table. For improved performance, however, it
may be advantageous for the insertion operation to include
a rebalancing of the rooted tree by insertion of new partition
table PT 2, as shown in the drawing. Then, the new first
cryptographic key DOKey 3 may be filled into the first slot
of the new partition table PT 2. Afterwards, a new crypto
graphic key PTKey 2 may be created and the new partition
table PT 2 may be encrypted to a cipher-text representation
which requires decryption operation using the new second
cryptographic key PTKey 2 for plain-text access. Subse
quent, the hash-node HN 1 may be updated by insertion of
the new second cryptographic key PTKey 2 and a pointer
PTRef 2 to the storage location of the new partition table
PT 2 into an empty slot. Finally, in an example, the updated
hash-node HN 1 may be re-encrypted for making plain-text
access Subject to a decryption using a newly-created master
cryptographic key MK 1. It should be noted that no change
has been made to the representation and contents of other
partition tables, namely PT 1. At this point it should be
noted, that from the viewpoint of security, there is no need
for changing the master cryptographic key MK 1. Changing
the master cryptographic key is only required for restricting
accessibility to any stored data. Data insertion, however,
does neither require nor imply any restriction with regard to
accessibility of already stored data. Therefore, in an alter
native example, the hash-node HN 1 may be re-encrypted
for making plain-text access Subject to a decryption using
the unchanged master cryptographic key MK 1. It may be
found as a general concept, that the cryptographic keys of
existing hash-nodes and partition tables may be re-used in

5

10

15

25

30

35

40

45

50

55

60

65

18
data insertion and data maintenance structure rebalancing
operations. Reuse of existing keys may help to reduce load
in the hardware security module due to time-consuming key
generation.

In instances, when a hash-node holds second references to
a number of partition tables, a hash-function may be used to
spread access to data objects over these partition tables. In
a more detailed example, a hash-function may be calculated
using the unique identifiers associated to the data objects. In
another more detailed example, the hash-function may be
designed to achieve an equilibrated mapping of the identi
fiers to the partition tables. In just another more detailed
situation, the hash-function may be chosen and/or param
eterized using a hash-function descriptor stored in the
respective hash-node. In similar instances, the hash-function
descriptor may be used to fit the result set to the number of
filled slots containing valid second references to partition
tables. In a specific example, the hash-function may be
chosen to be the least significant digit in a representation of
the unique identifier as an integer value in the n-ary system,
whereby “n” may be chosen as the number of filled slots in
the hash-node. Then, the integral number of filled slots may
be taken as the hash-function descriptor. For the sake of
simplification, a hash-function descriptor has been omitted
in the drawings as an implementation of a similar extension
to the scheme presented before may be carried out in a
straight forward manner.

In the exemplary situation, when adding further new data
objects, the hash-node HN 1 will obviously have to be
re-balanced in the same way as explained before with regard
to the partition table PT 1. This may be, in instances,
extended to a more general concept of balancing the rooted
tree as follows. In a situation when adding a new pair of a
second reference and a second cryptographic key to a
selected hash-node fails due to limitation of the number of
slots, this hash-node may be expanded into a Sub-tree
consisting of three new hash-nodes. One of these hash-nodes
may be selected as the root node of this sub-tree thereby
having second references and second cryptographic keys
relating to the new two child hash-nodes filled into the slots.
The second references and second cryptographic keys for
merly stored in the old hash-node along with the second
reference and the second cryptographic key to be added may
be spread equally to the slots in the two new child hash
nodes of the Sub-tree. In a situation when a hash-function is
provided in the hash-node which has to be split, the hash
functions in the new hash-nodes may be adjusted accord
ingly to reflect the new situation. Alternatively, known
approaches for balancing rooted trees may be used as, for
example the Adelson-Velski-Landis (AVL) scheme and the
red-black scheme.

Applying similar advanced approaches to rebalancing
may yield benefits beyond merely avoiding degradation of
data object storage capacity due to a limitation of partition
table and/or hash-node size. In a specific situation, a well
balanced data maintenance structure may accelerate data
object access, insertion and/or deletion operations. In
another specific situation, a well-balanced data maintenance
structure may improve storage efficiency by reducing the
amount of Storage required by the data maintenance struc
ture in the data storage medium. As a consequence, rebal
ancing may be desired to occur not only in course of
insertion of data objects but also in other circumstances. In
a more detailed example, rebalancing may be performed
after deletion of a predefined number of data objects. In
another more detailed example, rebalancing may be per
formed periodically as a maintenance task.

US 9,548,866 B2
19

What is claimed is:
1. A computer-implemented method of secure data dele

tion, comprising:
providing a master cryptographic key securely stored on

an internal storage of a hardware security module of an
apparatus;

providing a plurality of data objects individually
encrypted and stored on a storage medium of the
apparatus, the storage medium further storing a hier
archical data-maintenance structure comprising a tree
having Successive nodes including a root node, a plu
rality of hash-nodes, and a plurality of partition tables,
the root node decipherable via the master cryptographic
key:

responsive to receiving an instruction specifying to delete
a first of the plurality of data objects, wherein the first
object is assigned to a first of the partition tables,
wherein the first object is decipherable via a first
cryptographic key stored in the first partition table,
traversing Successive nodes in the tree by Successively
decrypting one or more of the plurality of hash-nodes,
and the first partition table starting from the root node
and using cryptographic keys obtained by decrypting
each of the traversed nodes; and

recursively traversing and re-encrypting Successive nodes
starting from the first partition table and with new
cryptographic keys, by operation of one or more com
puter processors, wherein the first cryptographic key is
removed from the first partition table or disregarded in
re-encrypting the first partition table, thereby effecting
secure deletion of the first data object.

2. The computer-implemented method of claim 1,
wherein the hardware security module is configured to
exclusively perform any encryption involving the master
cryptographic key stored in the internal storage.

3. The computer-implemented method of claim 1,
wherein the hardware security module is configured to
exclusively perform any decryption involving the master
cryptographic key stored in the internal storage.

4. The computer-implemented method of claim 1,
wherein the apparatus comprises a data processing and
storage apparatus, wherein the storage medium comprises a
data storage medium, wherein the apparatus includes an
application program, wherein the Successive nodes are
recursively traversed by the application program, wherein
each partition table and each hash-node is individually
encrypted.

5. The computer-implemented method of claim 4,
wherein the first partition table contains a first reference
assigning the first data object to the first partition table,
wherein the second partition table contains a second refer
ence assigning the first partition table to the first hash-node,
wherein the first data object is effectively assigned to the
root node via the first and second references, wherein the
first partition table and the first hash node form a first set of
Successive nodes in the tree.

6. The computer-implemented method of claim 5, further
comprising:

rebalancing the hierarchical data-maintenance structure of
the hash-nodes and the partition tables, thereby distrib
uting data from a source hash-node of the hash-nodes
or a source partition table of the partition tables to a
target hash-node of the hash nodes or a target partition
table of the partition tables;

wherein the source hash node or the source partition table
is assigned to the root node via hash-node references,

5

10

15

25

30

35

40

45

50

55

60

65

20
wherein the source partition table and associated hash
nodes form a second set of successive nodes in the tree;

wherein the target hash node or the target partition table
is assigned to the root node via hash-node references,
wherein the target partition table and associated hash
nodes form a third set of successive nodes in the tree.

7. The computer-implemented method of claim 6,
wherein rebalancing the hierarchical data-maintenance
structure comprises, by the apparatus:

traversing the second set of Successive nodes in the tree by
Successively decrypting all nodes starting from the root
node using second cryptographic keys obtained by
decrypting each of the nodes, thereby resulting in a
decrypted source partition table or decrypted source
hash-node; and

traversing the third set of successive nodes in the tree by
Successively decrypting all hash-nodes and the parti
tion table starting from the root node using the second
cryptographic keys obtained by decrypting each of the
nodes, thereby resulting in a decrypted target partition
table or decrypted target hash-node.

8. The computer-implemented method of claim 7.
wherein rebalancing the hierarchical data-maintenance
structure further comprises:

adding at least a part of the references and cryptographic
keys comprised in the decrypted source partition table
or decrypted source hash-node to the decrypted target
partition table or decrypted target hash-node; and

removing the moved part from the respective decrypted
given partition table or decrypted source hash-node.

9. The computer-implemented method of claim 8.
wherein rebalancing the hierarchical data-maintenance
structure further comprises:

recursively traversing and re-encrypting the second set of
Successive nodes starting from the source partition
table or the source hash-node, and with new second
cryptographic keys; and

recursively traversing and re-encrypting the third set of
Successive nodes starting from the target partition table
or the target hash-node, and with new second crypto
graphic keys.

10. The computer-implemented method of claim 9.
wherein each data object is assigned a unique identifier,
wherein the first hash-node has an associated hash-function
description that provides a mapping of the unique identifier
to a reference assigning one of the partition tables or one of
the hash-nodes to the first hash-node, wherein rebalancing
the hierarchical data-maintenance structure further com
prises:

replacing the hash-function description in each of the
Source and target hash-nodes in order to reflect a
change in cardinality of references of the respective
hash-node.

11. The computer-implemented method of claim 10,
wherein the hardware security module is configured to
perform encryption and decryption in a manner that confines
the master cryptographic key and the first and second
cryptographic keys and any decrypted plain-text represen
tation of data objects involved in the decryption or encryp
tion to the internal storage, wherein the hardware security
module is configured to:

exclusively perform the encryption and decryption in case
the encryption and decryption are purely performed
using the master cryptographic key stored in the inter
nal storage; and

perform the encryption and decryption on a first portion of
data readable from the data storage medium, wherein

US 9,548,866 B2
21

the apparatus includes a further processing module
configured to execute the encryption and decryption on
a second portion of the data readable from the data
storage medium.

12. The computer-implemented method of claim 11,
wherein the hardware security module is configured to:

in a first instance, perform the encryption and decryption
on the data readable from the data storage medium only
to an extent of encrypting, decrypting, and re-encrypt
ing the first and second cryptographic keys; and

in a second instance, perform the encryption and decryp
tion on the data readable from the data storage medium
only to an extent of encrypting, decrypting, and re
encrypting the hash-nodes and the partition tables;

wherein the hardware security module is configured to
create a public-private-key pair for asymmetric encryp
tion of the plurality of data objects, the public-private
key pair including a public key and a private key,
wherein the private key is embedded into the first
partition table as the first cryptographic key, wherein
the public key is provided to the further processing
module for use in data object encryption and storage.

13. The computer-implemented method of claim 12, fur
ther comprising adding a new data object to the data storage
medium, wherein adding the new data object comprises:

encrypting the new data object with a new first crypto
graphic key:

storing the encrypted new data object on the data storage
medium for assigning the new data object to the root
node via the first and second references of the first
partition table and the first hash-node:

traversing the first set of successive nodes in the tree by
Successively decrypting the first hash-node and the first
partition table starting from the root node using the
second cryptographic keys obtained by decrypting each
of the nodes;

adding a further first reference and the new first crypto
graphic key to the first partition table, the further first
reference assigning the encrypted new data object to
the first partition table; and

re-encrypting the first partition table with a third crypto
graphic key.

14. The computer-implemented method of claim 13,
wherein adding the new data object further comprises:

in a first given instance, recursively traversing the first set
of Successive nodes starting from the first partition
table, thereby re-encrypting all the recursively tra
versed nodes with new second cryptographic keys; and

in a second given instance, recursively traversing the first
set of Successive nodes starting from the first partition
table and re-encrypting all the recursively traversed
nodes with respective second cryptographic keys,
wherein the third cryptographic key corresponds to the
second cryptographic key of the first partition table.

15. A non-transitory computer-readable medium contain
ing a program executable to perform an operation for secure
data deletion, the operation comprising:

providing a master cryptographic key securely stored on
an internal storage of a hardware security module of an
apparatus;

providing a plurality of data objects individually
encrypted and stored on a storage medium of the
apparatus, the storage medium further storing a hier
archical data-maintenance structure comprising a tree
having Successive nodes including a root node, a plu

10

15

25

30

35

40

45

50

55

60

65

22
rality of hash-nodes, and a plurality of partition tables,
the root node decipherable via the master cryptographic
key:

responsive to receiving an instruction specifying to delete
a first of the plurality of data objects, wherein the first
object is assigned to a first of the partition tables,
wherein the first object is decipherable via a first
cryptographic key stored in the first partition table,
traversing Successive nodes in the tree by Successively
decrypting one or more of the plurality of hash-nodes,
and the first partition table starting from the root node
and using cryptographic keys obtained by decrypting
each of the traversed nodes; and

recursively traversing and re-encrypting Successive nodes
starting from the first partition table and with new
cryptographic keys, by operation of one or more com
puter processors when executing the program, wherein
the first cryptographic key is removed from the first
partition table or disregarded in re-encrypting the first
partition table, thereby effecting secure deletion of the
first data object.

16. The non-transitory computer-readable medium of
claim 15, wherein the hardware security module is config
ured to exclusively perform any encryption involving the
master cryptographic key stored in the internal storage.

17. The non-transitory computer-readable medium of
claim 15, wherein the hardware security module is config
ured to exclusively perform any decryption involving the
master cryptographic key stored in the internal storage.

18. An apparatus for secure data deletion, comprising:
a hardware security module having one or more computer

processors and an internal storage securely storing a
master cryptographic key:

a storage medium storing a plurality of data objects that
are individually encrypted, the storage medium further
storing a hierarchical data-maintenance structure com
prising a tree having successive nodes including a root
node, a plurality of hash-nodes, and a plurality of
partition tables, the root node decipherable via the
master cryptographic key:

wherein the apparatus is configured to perform an opera
tion comprising:
responsive to receiving an instruction specifying to

delete a first of the plurality of data objects, wherein
the first object is assigned to a first of the partition
tables, wherein the first object is decipherable via a
first cryptographic key stored in the first partition
table, traversing Successive nodes in the tree by
Successively decrypting one or more of the plurality
of hash-nodes, and the first partition table starting
from the root node and using cryptographic keys
obtained by decrypting each of the traversed nodes:
and

recursively traversing and re-encrypting Successive
nodes starting from the first partition table and with
new cryptographic keys, wherein the first crypto
graphic key is removed from the first partition table
or disregarded in re-encrypting the first partition
table, thereby effecting secure deletion of the first
data object.

19. The apparatus of claim 18, wherein the hardware
security module is configured to exclusively perform any
encryption involving the master cryptographic key stored in
the internal storage.

US 9,548,866 B2
23

20. The apparatus of claim 18, wherein the hardware
security module is configured to exclusively perform any
decryption involving the master cryptographic key stored in
the internal storage.

24

