
United States Patent

USO09529772B1

(12) (10) Patent No.: US 9,529,772 B1
Shankaran et al. (45) Date of Patent: Dec. 27, 2016

(54) DISTRIBUTED CACHING CLUSTER 7,197.632 B2 * 3/2007 Rao et al. T13/1
CONFIGURATION 7.406,473 B1 7/2008 Brassow et al.

8,271,652 B2* 9/2012 EZolt HO4L 29, 12066
(71) Applicant: Amazon Technologies, Inc., Reno, NV 709/217

(US) 8,601,101 B1 12/2013 Singh
8,805,949 B2 8, 2014 Aviles et al.
8,856,335 B1 10/2014 Yadwadkar et al.

(72) Inventors: Nishanth Shankaran, Kirkland, WA 2002fOO42693 A1 4, 2002 RN al
(US); Rajat Arya, Seattle, WA (US); 2003/019 1927 A1 10/2003 Joy et al.
Clint Joseph Sbisa, Seattle, WA (US); 2003/0236800 A1 12/2003 GoeltZenleuchter et al.
Dong Shou, Seattle, WA (US); 2004/0243673 Al 12/2004 Goyal et al.
Rajaprabhu Thiruchi Loganathan, 2004/0249904 A1 12/2004 Moore et al.
Issaquah, WA (US); Shyam (Continued)
Krishnamoorthy, Kirkland, WA (US)

FOREIGN PATENT DOCUMENTS
(73) Assignee: Amazon Technologies, Inc., Reno, NV

(US) JP 2002-132568 A 5, 2002
JP 2010-009448 A 1, 2010

(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 326 days. OTHER PUBLICATIONS

(21) Appl. No.: 13/685,596 U.S. Appl. No. 13/685,615, titled “Distributed Caching Cluster
illed Management”, filed Nov. 26, 2012.

(22) Filed: Nov. 26, 2012 (Continued)

(51) Int. Cl.
SC 47 39.83 Primary Examiner — Joshua Joo
H04L 29/08 (2006.015 (74) Attorney, Agent, or Firm — Kilpatrick Townsend &

CPC G06F 15/167 (2013.01); H04L 4I/0803
(2013.01); H04L 4I/0853 (2013.01); H04L 671097 (2013,015 (57) ABSTRACT

(58) Field of Classification Search A cache or other cluster is configuration-aware such that
None initialization and changes to the underlying structure of the
See application file for complete search history. cluster can be dynamically updated. For example, a client

may resolve an alias from a static configuration endpoint to
(56) References Cited a node in a cluster. The client may request initial configu

U.S. PATENT DOCUMENTS

6,243,814 B1
6,606,643 B1*

6, 2001 Matena
8/2003 Emens HO4L 29/06

TO9/200

Client System

214 Management System

ration from the node and then update configuration from
nodes that store the current configuration of the cluster.

27 Claims, 13 Drawing Sheets

US 9,529,772 B1
Page 2

(56)

2005, OO15471

2006/0037016
2006.0053337

2007/0204061
2008, OO31238

2008/0059721
2009, OOO6531

2009, O144388
2009, O144800
2009,0182836

2009,0276540
20090313436
2010.0030914
2010.0030964
2010/0281216

2010, O299553
2011 OO82908
2012,0059832
2012fO144232
2012. O151245
2012fO166394

2012,019 1773
2012,019 1912
2012fO254669
2013/0103787
2013/O1983.50

2013, O262683
2013/0332484

2013/0339385
2013/03394.94

References Cited

U.S. PATENT DOCUMENTS

1/2005

2, 2006
3, 2006

8, 2007
2, 2008

3, 2008
1/2009

6, 2009
6, 2009
T/2009

11/2009
12, 2009
2, 2010
2, 2010

11, 2010

11, 2010
4/2011
3/2012
6, 2012
6, 2012
6, 2012

T/2012
T/2012

10, 2012
4, 2013
8, 2013

10, 2013
12, 2013

12, 2013
12, 2013

Zhang HO4L 63,0442
TO9,221

Saha et al.
Pomaranski GO6F 11.0709

714.f412
Chen et al. TO9,238
Harmelin HO4L 41,0843

370,389
Turner et al.
Gillum HO4L 67,322

TO9,203
Gross et al.
Black-Ziegelbein et al. ... 726/1
Aviles HO4L 41,0893

TO9,213
Ahn et al.
Krishnaprasad et al.
Sparks et al. 709,235
Acicmez et al.
Patel G06F 12,121

T11 118
Cen
Ban et al.
Zamarreno et al.
Griffith et al. 714.f412
Chang et al.
Kim GO6F 17,30575

TO7/634
Appleton TO9,203
Kadatch et al. T11 119
Xia et al.
Glover et al.
Moore HO4L 29/06

TO9,221
Hayashi et al.
Gajic GO6F 17,30286

707/770
Abrams et al.
Mithyantha TO9.220

2014/00 19798 A1 1/2014 Allison GO6F 17,30067
714.f4.3

2014/0317159 A1 * 10/2014 Dhavale GO6F 3,0647
707/823

2015,0378893 A1 12/2015 Atkisson et al.

FOREIGN PATENT DOCUMENTS

JP 2012-0.59257 3, 2012
JP 2012-208781 A 10, 2012
JP 2013-205891 A 10, 2013

OTHER PUBLICATIONS

U.S. Appl. No. 13/685,607, titled “Distributed Caching Cluster
Client Configuration', filed Nov. 26, 2012.
U.S. Appl. No. 13/685,620, titled “Replication in Distributed Cach
ing Cluster', filed Nov. 26, 2012.
Memcached. Datasheet online). Wikipedia, 2012 retrieved on
Nov. 29, 2012). Retrieved from the Internet: <URL: http://en.
wikipedia.org/wiki/Memcached.
“Hashing”. Presentation. (Fall 2007), 50 pages.
Fitzpatrick Brad, “Distributed Caching with Memcached”. Linux
Journal, vol. 2004 Issue 124. Aug. 1, 2004 retrieved on Sep. 2,
2015 Retrieved from the Internet: <URL: http://www.linuxjournal.
com/article/7451 ?page=O. 12, 8 pages.
Sedgewicket al., “Algorithms and Data Structures Fall 2007”. (Fall
2007), 1 page.
Best Practices in Evaluating Elastic Load Balancing. online Ama
zon Web Services, Inc., Feb. 27, 2012 retrieved on Sep. 17, 2016).
Retrieved from the Internet: <URL: http://aws.amazon.com/articles/
1636.1858.1049279), 6 pages.
Decandia et al., “Dynamo: Amazon's Highly Available Key-value
Store'. Proceedings of Twenty-First ACM SIGOPS Symposium On
Operating Systems Principles (2007), pp. 205-220.
Mateescu et al., "Hybrid Computing Where HPC meets grid and
Cloud Computing”. Future Generation Computer Systems, vol. 27.
Issue 5 (Nov. 3, 2010), pp. 440-453.

* cited by examiner

U.S. Patent Dec. 27, 2016 Sheet 1 of 13 US 9,529,772 B1

5- Rs 5-113 100 - - - - 1

Caching -

102 Node 1 S
- C

Cache (insert Key
Space Value

104
108
Key

- - - - - - -

?-- c. Value
Reserved /

Colon g ----------- Configuration
S. 5 x------------ Endpoint

106

112

FIG. 1

U.S. Patent Dec. 27, 2016 Sheet 2 of 13 US 9,529,772 B1

2OO

2O2 Application

Configuration
Endpoint 213

214 Management System

FIG. 2

U.S. Patent Dec. 27, 2016 Sheet 3 of 13

Config
Endpoint

308
302

302 302 Data Center 302

FIG. 3 304

US 9,529,772 B1

Client
Application

U.S. Patent Dec. 27, 2016 Sheet 4 of 13 US 9,529,772 B1

400

Reserved
Configuration

Space Configuration
Endpoint

Management System

FIG. 4

U.S. Patent Dec. 27, 2016 Sheet S of 13 US 9,529,772 B1

500

Application

Client Driver

Configuration
Endpoint

506

FIG. 5

U.S. Patent Dec. 27, 2016 Sheet 6 of 13 US 9,529,772 B1

606 Resolve
M Config.

Endooint

600
608

Configuration
Endpoint 61

Config.
Endpoint

ID

Application EX client Driver

602

Application CF)

Client
Driver

U.S. Patent Dec. 27, 2016 Sheet 7 of 13 US 9,529,772 B1

700

702
Provide an Alias to Node For Configuration

Distribution

Modify Cache Cluster Node

Determine New Configuration Based on
Change

Update Node
Configuration Update Alias

704

710
708

FIG. 7

U.S. Patent Dec. 27, 2016 Sheet 8 of 13 US 9,529,772 B1

Receive Information Regarding Configuration
Endpoint 802 800

Resolve Information From Configuration
Endpoint 804

Request Configuration From Node 805

Load Configuration 806

Service Application Requests to Caching
NOces 808

NO

810

Yes

Request Configuration from Caching Node 812

FIG. 8

U.S. Patent Dec. 27, 2016 Sheet 9 of 13 US 9,529,772 B1

900

Monitor Node(s) for Indicator of Problem 902

NO

904

YeS

Yes 908

YeS De-Provision NOde 912

NO

No

Determine New Configuration Based on
Changes 914

920 Update Node
Configuration Update Endpoint Alias 918

FIG. 9

U.S. Patent Dec. 27, 2016 Sheet 10 of 13 US 9,529,772 B1

1000

Monitor Usage of Nodes 1002

ldentify Key/Value to Make Redundant from
First NOce 1003

Select Second Node to Service Key/Value 1004

Cause Second Node to Service Key/Value 1006

Determine New Configuration Based on
Change 1008

Update Node
Configuration Update Endpoint Alias 1012

FIG. 10

U.S. Patent Dec. 27, 2016 Sheet 11 of 13 US 9,529,772 B1

1100

Node B
Assign. 2
1105

FIG. 11

U.S. Patent Dec. 27, 2016 Sheet 12 of 13 US 9,529,772 B1

Node B Assign. 18.
Node C Assign. 1
1108 & 1118

FIG. 12

U.S. Patent Dec. 27, 2016 Sheet 13 of 13 US 9,529,772 B1

1102 Web Application
1104

ty----
1112 1114 1116

FIG. 13

US 9,529,772 B1
1.

DISTRIBUTED CACHING CLUSTER
CONFIGURATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to and incorporates by refer
ence for all purposes the full disclosure of co-pending U.S.
patent application Ser. No. 13/685,607, filed concurrently
herewith, entitled “DISTRIBUTED CACHING CLUSTER
CLIENT CONFIGURATION” co-pending U.S. patent
application Ser. No. 13/685,615, filed concurrently herewith,
entitled DISTRIBUTED CACHING CLUSTER MAN
AGEMENT, and co-pending U.S. patent application Ser.
No. 13/685,620, filed concurrently herewith, entitled “REP
LICATION IN DISTRIBUTED CACHING CLUSTER.

BACKGROUND

Data centers provide computing resources for use by one
or more clients. These services may include computing,
storage and networking services. For example, a data center
may provide a machine to host an application, storage to
store application data, cache to quickly respond to repeated
data requests and networking to enable communication
between resources. By making use of the data center Ser
vices, a customer may pay for computing and/or resource
use rather than purchasing anticipated hardware needs. This
enables a customer to expand and contract use of computing
services according to demand. For example, an application
may be configured to request more storage as needed rather
than a developer or administrator monitoring and anticipat
ing use.
On demand systems may be used to reduce the number of

times a database must be read by caching data and objects
from the database. For example, one implementation uses a
client centered architecture where a client knows the servers,
but the servers are not known to each other. To read or set
a key, the client uses a hash to determine which server to
contact and contacts that server. The server then calculates
a second hash to determine where to store or read the
corresponding value. Additions or Subtractions to the group
of servers are managed by the client.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present
disclosure will be described with reference to the drawings,
in which:

FIG. 1 shows an illustrative example of a cache cluster in
accordance with at least one embodiment;

FIG. 2 shows an illustrative example of a cluster caching
management in accordance with at least one embodiment;

FIG.3 shows an illustrative example of an environment in
accordance with at least one embodiment;

FIG. 4 shows an illustrative example of an embodiment of
cluster caching management;

FIG. 5 shows an illustrative example of logical connec
tions between components in accordance with at least one
embodiment;

FIG. 6 shows an illustrative chart of a process in accor
dance with at least one embodiment;

FIG. 7 shows an illustrative example of a process in
accordance with at least one embodiment;

FIG. 8 shows an illustrative example of a process in
accordance with at least one embodiment;

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 9 shows an illustrative example of a process in

accordance with at least one embodiment;
FIG. 10 shows an illustrative example of a process in

accordance with at least one embodiment;
FIG. 11 shows an illustrative example of hashing in

accordance with at least one embodiment;
FIG. 12 shows an illustrative example of hashing in

accordance with at least one embodiment; and
FIG. 13 illustrates an environment in which various

embodiments can be implemented.

DETAILED DESCRIPTION

In the following description, various embodiments will be
described. For purposes of explanation, specific configura
tions and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be
apparent to one skilled in the art that the embodiments may
be practiced without the specific details. Furthermore, well
known features may be omitted or simplified in order not to
obscure the embodiment being described.

Techniques described and Suggested herein include
enabling a cache cluster to be configuration-aware such that
initialization and changes to the underlying structure of the
cache cluster can be dynamically updated. For example, a
cache cluster may comprise a set of one or more memory
caching nodes. The memory caching nodes may adhere to a
protocol of eviction and expiration of data in the cache
portion of memory. A management system can provision and
remove memory caching nodes from a cache cluster and
maintain the configuration of the cache cluster. A configu
ration may be an indication of, among other things, the
number of memory caching nodes in the cache cluster and
the location of the memory caching nodes. The configuration
may be maintained, in one embodiment, at each node in the
set of one or more memory caching nodes. Each node may
contain a reserved memory space which does not adhere to
the normal eviction and expiration rules of the remaining
memory space of the cache node. As such, each memory
caching node may be aware of the configuration of every
memory caching node in the cache cluster.

In an embodiment, when a client is first attempting to
connect to the cache cluster, the client may resolve an alias
from a static configuration endpoint to a memory caching
node in a cache cluster. The client may request initial
configuration from the memory caching node. The configu
ration may be maintained in a reserved memory space. As
additional requests for cached data are made to the cache
cluster, a cache cluster may change in one or more ways. As
Such, the configuration may be updated and sent to the
reserved memory space on each of the set of one or more
memory caching nodes in the cache cluster, thereby updat
ing the configuration on each memory caching node. The
client may then obtain the updated configuration directly
from a memory caching node that has the current configu
ration of the cache cluster. As such, updated configurations
are easily obtained by a client without having to resolve a
memory caching node via the configuration endpoint after a
node has been resolved.
A cache cluster may cache data and objects to reduce

accesses to a data source. The cache cluster may include one
or more memory caching nodes. Each node may store a
portion of a set of cached data. The cached data may be split
between memory caching nodes based on keys that are used
to retrieve an element of data from the cache cluster. Data
Sources may include a database, application programming
interface (API) or other data store or data source. The

US 9,529,772 B1
3

memory caching nodes may use computer memory as Stor
age for cache. Such as RAM, to speed up responses to
requests.

In one illustrative example, a cache cluster is managed by
a management system. The management system may deter
mine, store, and/or maintain configurations of one or more
cache clusters. In addition, the management system may be
logically connected to distributed computing resources via a
network. The management system may be configured to
provision the computing resources as memory caching
nodes. As one example, the management system may pro
vision a memory caching node by installing a caching
protocol on hardware. The caching protocol may comprise a
protocol of evictions and expirations for data stored with a
cache. The caching protocol can also comprise a reserve
memory area which does not adhere to the protocol of
evictions and expirations of the cache memory. The man
agement system may also be configured to associate the
provisioned memory caching nodes with any of the one or
more cache clusters. In an embodiment, the management
system may also be configured to wind down a memory
caching node and to remove the computing resources from
the cache cluster to a general pool of distributed computing
resources. When a cache cluster is updated, the configura
tion of the cache cluster may be updated in the management
system and sent to one or more of the memory caching
nodes. As such, each memory caching node may comprise a
current version of the configuration of the cache cluster.
As one example, a cache cluster may have four memory

caching nodes servicing a web application making requests
to a database. Because of heavy traffic, a fifth memory
caching node may be brought on line to aid in the servicing
of requests between the web application and the database.
The memory caching node may be provisioned by the
management system which may provision computing
resources for the fifth node, installing cache software and
associating it as a portion of the cache cluster. After bringing
the memory caching node online, the management system
may update the configuration for the cache cluster to incor
porate the fifth memory caching node. The updated configu
ration may be pushed to one or more of the memory caching
nodes for storage in a reserved memory space and for
retrieval. In one embodiment, the clients may receive the
updated configuration from a memory caching node without
contacting the configuration endpoint. In another embodi
ment, a static configuration endpoint may receive an update
to an alias referencing a memory caching node that com
prises the updated configuration. Clients of the cache cluster
may receive the alias from the configuration endpoint and
receive the updated configuration to minimize caching dis
turbances.

The term provisioning is meant to be read broadly to
include the assignment of a computing resource to a use. In
Some embodiments, this includes preparing the computing
resource for use. In one embodiment, a provisioning of a
memory caching node would include the assignment of a
server, installation of an operating system, installation and
configuration of the memory caching node and enabling the
memory caching node for use. For example, a provisioning
system may select a server to use as a memory caching node.
The provisioning system may then create a workflow that
prepares the server for use as a memory caching node. As
part of the workflow, a machine image may be loaded on the
server. The machine image may include operation system,
memory caching software and/or settings. After loading the
machine image, the server may be caused to boot into the
operating system and receive any further software and/or

10

15

25

30

35

40

45

50

55

60

65

4
settings. Such settings may include cache cluster configu
ration. After provisioning is complete, the server may be
turned over to a management system for use as a memory
caching node.

Configurations may be delivered to a client in a plurality
of ways. In one embodiment, a pre-defined configuration
endpoint can be queried by a client driver to resolve an
address for a memory caching node from which to request
a current configuration. The configuration endpoint may be
statically declared such that Support Software, including a
client driver for the client system may be able to resolve an
alias provided by the configuration endpoint to a reserved
memory space in a memory caching node from which a
configuration may be obtained. The configuration can
describe how to access caching resources of the cache
cluster, including the memory caching nodes. This static
declaration of an alias allows for new clients to start and
self-configure to current cache cluster conditions rather than
manually configure a new client before starting the new
client. In another embodiment, the memory caching nodes
can also contain reserved space for storing configuration
describing the structure of the cache cluster. While normal
caching of data can cause data to expire, a section of storage
may be partitioned such that configuration may be stored in
such reserved memory space without worry of deletion.
A client already in communication with a memory cach

ing node may request a current configuration from a memory
caching node. In one embodiment, the request is made if the
configuration stored in the memory caching node has been
updated from the current configuration that the client has. In
another embodiment, the client may request configurations
on a periodic basis or random time basis from one or more
memory caching nodes. In another embodiment, instead of
responding to a request from a client, new configurations
may be pushed to the client by the memory caching node
upon the event of a configuration change or any other change
to the cache cluster. Further still, the configuration of the
cache cluster may be sent out to the client by the memory
caching node based on time intervals, such as a periodic,
heartbeat, expiration, or random time basis. In an additional
embodiment, configurations may be pushed to a client when
a client makes a request to access the cache cluster. By
providing the current configuration, memory caching nodes
may be altered with the expectation that clients will update
upon access of a memory caching node.

In one embodiment, a client may send a request for
cached data to a cache cluster. The request may be received
at a first memory caching node. The first memory caching
node may determine that the data requested is not available
on the first memory caching node. The node may be con
figured to determine, based on the configuration contained in
the reserved memory space, that the requested data is
available on a second memory caching node. As such, the
first memory caching node may act as a proxy or it may be
configured to redirect the request for data. The above
provides a first example of how the self-aware cluster may
be used, but is by no means limiting.

Turning now to FIG. 1, an illustrative example of a cache
cluster environment 100 in accordance with at least one
embodiment is shown. A memory caching node 102 may
manage cached key-value pairs 108, respond to requests to
provide cached values 108 and provide a configuration 110
identifying how to communicate with the cache cluster 102.
The cache cluster environment 100 may include a configu
ration endpoint 112 that comprises an alias for one or more
memory caching nodes 102 that form a cache cluster 113.
The cache cluster 113 may comprise a plurality of memory

US 9,529,772 B1
5

caching nodes 102. One or more of the memory caching
nodes 102 may serve cached data from a cache space 104
and configuration data from a reserved memory space 106.
In one embodiment, a cache cluster 113 may include mul
tiple memory caching nodes 102. The memory caching
nodes 102 may each comprise a virtual machine executing
on a computing device Such as a server. In another embodi
ment, a cache cluster 113 may include multiple memory
caching nodes 102 executing directly on hardware. As such,
it should be recognized that the programs and processes
referenced herein may be run on actual hardware, virtual
machines or combinations thereof.
Memory caching nodes may receive key/values 108 to

store within the cache space 104. The key-values 108 may
have an expiration time, as well as early expiration depend
ing on if the memory caching node 102 runs out of cache
space 104. In some embodiments, a least-frequently used
algorithm is used to determine which items are expired early
when the cache is full. A memory caching node may also
provide storage for a configuration 110 detailing communi
cation parameters with the cache cluster. In some embodi
ments, this configuration may be stored in a reserved
memory space 106 that is not subject to expiration. In one
embodiment, the configuration is stored in the cache space
104, but a client or management system ensures frequent
enough requests and/or updates to ensure the configuration
110 is available. The configuration 110 may be overwritten
and/or updated to keep current with changes to the cache
cluster 113.
A configuration endpoint 112 may also be provided to aid

in configuration 110 retrieval. In some embodiments, a
configuration endpoint 112 is a static resource that may be
directly referenced as an alias to a memory caching node 102
for configuration 110 retrieval. For example, new clients
may be initialized with a hostname of the configuration
endpoint 112. Upon instantiation of a new client, the client
may connect with the configuration endpoint 112 to resolve
an alias to a memory caching node 102 and retrieve the
configuration 110 from the memory caching node 102. By
providing the configuration endpoint 112, clients may self
configure rather than start with a list of memory caching
nodes 102 that may become obsolete and require mainte
nance. In some embodiments, a client may continue to
retrieve a more current configuration 110 by requesting the
configuration 110 from a memory caching node referenced
in the alias provided by the configuration endpoint or a
memory caching node 102. In one embodiment the configu
ration endpoint 112 is implemented by domain name system
(DNS) services. A client may request a static hostname from
the domain name server and receive an IP address that
resolves to a memory caching node.

Turning now to FIG. 2, an illustrative example of a
distributed memory caching system 200 in accordance with
at least one embodiment is shown. A client system 203 uses
a client driver 204 to retrieve information from a cache
cluster 213 managed by a management system 214. In the
embodiment shown, a client system 203 includes an appli
cation 202 that retrieves data from the cache cluster 213. The
client system 203 uses a client driver 204 to manage the
interface between the application 202 and the cache cluster
213. For example, the application 202 may be a shopping
website and the client driver 204 may be a library that
exposes the caching functionality through function calls
and/or an application programming interface (API).
The client driver 204 may manage the communication

with the cache cluster 213. In one embodiment, the client
driver 204 Supports automatic configuration. An initial con

10

15

25

30

35

40

45

50

55

60

65

6
figuration of the client driver 204 may be small, such as a
hostname of a configuration endpoint 206 that provides an
alias at which configuration 208 may be obtained. In one
embodiment, the alias is provided as part of the configura
tion endpoint acting as a domain name server. The configu
ration 208 may include information needed for the client
driver 204 to connect to and use the cache cluster 213. For
example, an application 202 may provide a hostname and/or
address of a configuration endpoint 206 to the client driver
204 as part of initializing the client driver 204. Using the
given hostname and/or address, the client driver 204 con
tacts the configuration endpoint 206 to resolve an alias to a
memory caching node 210 and requests a configuration 208
from the memory caching node 210. In one embodiment,
this configuration is stored in a reserved memory space of
the memory caching node 210 that is not subject to certain
cache rules of a protocol implemented by the cache node
(such as the memcached protocol and variations thereof),
Such as eviction. Information in the reserved memory space
may be accessed according to an extension to a standard
caching protocol. Such as memcached. Upon receiving the
configuration 208, the client driver 204 may load the con
figuration 208. Once loaded, the client driver 204 may verify
the configuration 208. In one embodiment, the client driver
204 contacts one or more memory caching nodes 210 and
verifies the version of the configuration 208 against a
configuration version contained in a second memory caching
node 210. The client driver 204 may use the most recent
configuration 208 discovered. The client driver 204 may
then act upon requests for data from the application 202 by
requesting the data from one or more memory caching nodes
210 that store the data in their cache 212. Periodically, the
client driver 204 may check the loaded configuration version
against configuration versions stored by the memory caching
nodes 210. The client driver 204 may elect to use the newest
configuration discovered, which may be the current version
loaded in the client driver 204. By loading the configuration
208, the client driver can react to dynamic changes in the
cache cluster 213. For example, the configuration 208 may
identify memory caching nodes 210 that are added or
removed from the cache cluster 213. By loading the con
figuration, the client driver 204 may react to any changes in
the cache cluster 213 infrastructure without instruction from
the application 202.

Loading the configuration may synchronize, with other
computing systems, a client driver's information about the
cache cluster. In one embodiment, several client drivers 204
exist at the same time to serve multiple instances of a web
application, each on its own server. Synchronizing a con
figuration of the cache cluster 213 allows each client driver
204 to properly populate and request information from
memory caching node 210 that form the cache cluster 213.
For examples of populating and cache requests of memory
caching nodes, see FIGS. 11-12 and the associated descrip
tion.
The client driver 204 and caching nodes 210 may com

municate using a standard protocol. Such as a memcached
protocol, and extensions to the protocol. For example,
caching operations may use the standard protocol, while
configuration operations may use extensions to the protocol,
Such as additions to a command set of the protocol. In some
embodiments, the extension operations operable on the
reserved configuration storage may include create, retrieve,
update and destroy operations. Other extension operations
may include a get configuration version operation, other
metadata manipulation operations and a propagate configu
ration request.

US 9,529,772 B1
7

A management system 214 may be one or more comput
ing resources responsible for management of other systems.
In FIG. 2, the management system 214 is responsible for the
distributed memory caching system 200, including the pro
visioning and monitoring of memory caching nodes 210 in
the cache cluster 213. The management system 214 may also
receive instructions from customers and/or administrators
Such that the management of the management system 214
fits the needs of the customer and/or administrator. For
example, a management system 214 may be responsible for
a set of memory caching nodes 210 that form the cache
cluster 213. The management system 214, through a provi
Sioning system as an example, may cause new memory
caching nodes 210 to be instantiated or current memory
caching nodes 210 to be stopped. The management system
214 may also be responsible for monitoring the cache cluster
213, which may include monitoring the set of memory
caching nodes 210 for indicators. The indicators may
include usage, failure or other information about the use
and/or underlying systems. A configuration endpoint 206
may also be maintained by the management system 214 to
ensure that an alias to an active memory caching node 210
that can provide configuration 208 is always available.

In one embodiment, the management system 214 may use
a monitoring system and react to perceived problems with
the caching service 200. For example, if a failure occurs in
a failed memory caching node 210, the failed memory
caching node may be de-provisioned and removed from the
cache cluster 213. A new memory caching node 210 may be
provisioned to replace the failed memory caching node and
recover from loss of the failed memory caching node. In
other examples, the failed memory caching node may be
repaired by replacing, reinitializing and recovering the
memory caching node. Using the changes made to the cache
cluster 213, the management system 214 may update the
configuration 208 and cause the updated configuration 208
to be stored in each memory caching node 210. If needed,
the alias provided by the configuration endpoint 206 may
also be updated. In another example, the management sys
tem 214 provisions a new memory caching node 210 due to
an increase in demand for cached data. The management
system 214 may update the configuration 208 with the
connection information to the new memory caching node
210 and cause the configuration 208 to be stored in memory
caching nodes 210.
A configuration may include information necessary to

connect to the cache cluster 213. In some embodiments that
use a direct connecting configuration, this may include
information to directly connect to each memory caching
node 210. In other embodiments using a request forwarding
configuration, the configuration 208 may identify a memory
caching node 210 responsible for the forwarding of requests
to a memory caching node 210 that holds the data in cache
212. In one embodiment, a hybrid approach may be taken
where direct connection and request forwarding are both
available.

Turning now to FIG. 3, an illustrative example of a
distributed memory caching environment 300 in accordance
with at least one embodiment is shown. The client applica
tion 309 (202 in FIG. 2), management system 312 (214 in
FIG. 2) and configuration endpoint 308 (206 in FIG. 2) may
exist in the context of a data center. The computers may be
divided into trusted computing resources within the data
center 304 and untrusted external computing systems 316,
318, 320, sometimes referred to as application clients 322,
outside the data center 304. Inside the data center 304,
computing resources and networking 306 may be under the

10

15

25

30

35

40

45

50

55

60

65

8
domain and control of known administrators and thus have
trusted internal connections. Outside of the data center 304
may be beyond the control of administrators, and therefore
untrusted, such as the Internet 305.

Inside the data center 304 may be memory caching nodes
302, internal networking 306, a management system 312, a
gateway 310, a configuration endpoint 308 and a client
application 309. An memory caching node 302 may be
connected to other memory caching nodes 302 through
internal networking 306. The memory caching nodes 302
may also be connected with a management system 312. The
management system 312 may receive requests to manipulate
computing resources, including provisioning resources and
changing routing. The memory caching nodes 302 and
management system 312 may also be connected with a
gateway 310. The gateway 310 may filter and route external
traffic to a client application 309, such as HTTP traffic to
Web servers. For example, a client application 309 may
communicate with external systems 316, 318, 320, but
memory caching nodes 302 are not allowed external com
munications.

Outside the data center 304 may be any of a number of
different components or environments, and may include the
Internet 305 and various external computing systems such as
desktops 316, laptops 318 and mobile devices 320, such as
electronic book readers, mobile phones, tablet computing
devices, etc. The systems 316, 318, 320 may be viewed as
untrusted because the systems 316, 318, 320 may not be
administered by a trusted administrator. Further, the com
munication channels, such as the Internet, are not controlled
by a trusted administrator. Thus, a message from an external
computing system 316, 318,320 may be intercepted, coun
terfeited and/or exploited.

In some cases, and for protective reasons, client applica
tions 309 on a secure internal network 306 may only be
given the Internet 305 access required to operate, if any at
all. For example, a Web server in a data center 304 may only
receive outside traffic on port 80 because a gateway 310
provides access controls to the secure internal network that
prevent all other Internet 305 traffic from directly reaching
the Web server. In another example, a memory caching node
302 on a secure internal network 306 may not be connected
to the Internet 305 because it is only queried by a local Web
server over the secure internal network. In other embodi
ments, a client application 309 may be behind a load
balancer, which may occasionally direct Internet 305
requests to the client application 309.

Turning now to FIG. 4, an illustrative example of a
distributed memory caching management environment 400
in accordance with at least one embodiment is shown. A
management system 416 may monitor and/or manage
memory caching node 402. Memory caching node 402 may
manage cached key-value pairs 410, respond to requests to
provide cached values (from the key-value pairs 410) and
provide a configuration 412 identifying how to communicate
with the cache cluster 413 and/or each memory caching
node 402. Key value pairs 410 may be inserted into a cache
of the memory caching node 402 when read and/or changed
from a data store 408. The cache cluster 413 allows poten
tially quicker responses to frequently accessed and/or high
access cost data than requesting data directly from the data
Store 408.
A memory caching node 402 may be provided that

includes cache space 404 and reserved memory space 406.
The memory caching node 402 may be serviced by virtual
and/or physical hardware, including a virtual machine. The
memory caching node may receive key/values pairs 410 to

US 9,529,772 B1
9

store within the cache space 404. The key-values 410 may
have an expiration time, as well as early expiration depend
ing on whether the memory caching node 402 runs out of
cache space 404. The memory caching node 402 may use an
algorithm to determine which key-value pairs 410 may be
expired early. In some embodiments, a least-frequently used
algorithm is used to determine which items are expired early
when a cache is full. In other embodiments, a cost of
querying the data store may be factored in. In one embodi
ment, the expiration may be based on which key-value pairs
410 are not expected to be frequently accessed in the future.
The memory caching node 402 may also provide storage for
a configuration 412 detailing communication parameters
with the cache cluster 413. In some embodiments, this
configuration 412 may be stored in a reserved memory space
406 that is not subject to expiration. In one embodiment, the
configuration 412 is stored in the cache space 404, but a
client or management system 416 ensures frequent enough
requests and/or updates to ensure the configuration 412 is
available. The configuration 412 may be overwritten and/or
updated to keep current with changes to the cache cluster
413.
A configuration endpoint 414 may also be provided to aid

in configuration 412 retrieval. In some embodiments, a
configuration endpoint 414 is a static resource that may be
directly referenced as an alias to a memory caching node for
configuration 412 retrieval. For example, new clients may be
initialized with a hostname of the configuration endpoint
414. Upon instantiation of a new client, the client may
connect with the configuration endpoint 414 resolve an alias
to a memory caching node 402 and retrieve the configuration
412 from the memory caching node 402. By providing the
configuration endpoint 414, clients may self-configure rather
than start with a list of memory caching nodes 402 that may
become obsolete and require maintenance. In some embodi
ments, a client may continue to retrieve a more current
configuration 412 by requesting the configuration 412 from
a memory caching node 402 referenced in the alias provided
by the configuration endpoint 414 or a memory caching
node 402 directly.

In one embodiment, the management system 416 assumes
responsibility for the configuration 412. In another embodi
ment, memory caching nodes 402 may be cluster-aware Such
that, as new memory caching nodes 402 are detected, they
may be added to the configuration 412. In another embodi
ment, the management system 416 may store an updated
configuration 412 in an identified memory caching node
402, such as a memory caching node 402 identified by an
alias maintained by the configuration endpoint 414. Each
memory caching nodes 402 may then monitor the identified
memory caching node 402 for changes and download the
configuration 412 when it is determined that the configura
tion 412 has changed. In some embodiments, the identified
memory caching node 402 may distribute and/or notify other
memory caching node 402 in the cache cluster 413 of
changes to configuration 412. By obtaining an updated
configuration 412, a client may adapt to dynamically chang
ing memory caching nodes 402 within the caching cluster
413.
A memory caching node 413 may follow a protocol that

includes rules governing cached data. In one embodiment,
the rules specify cache eviction upon a last recently used
basis when the cache space 404 is full. In another embodi
ment, the rules allow cached data, Such as the key-value pair
410 to be associated with a time to live after which the data
will no longer be available. In some embodiments, the
protocol governing cached data has been extended such that

5

10

15

25

30

35

40

45

50

55

60

65

10
configuration 412 stored in the reserved configuration space
402 is not subject to the rules governing cache eviction
and/or time to live.

Turning now to FIG. 5, an illustrative example 500 of
logical connections between components in accordance with
at least one embodiment is shown. A purpose of the cache
clusters 513 using memory caching nodes 510 may be to
prevent a load on and/or slow response from an API or data
store 514, such as a relational database, NoSQL database
and key-value Store. In the embodiment shown, an applica
tion 502 may cause a client driver 504, such as through a
library API call, to retrieve a configuration 508 from a
memory caching node 510 identified by an alias retrieved
from a predetermined configuration endpoint 506. The con
figuration 508 may include information to enable commu
nication with data store 514 and memory caching nodes 510.
Upon configuring the communication, the client driver 504
may field requests from the application 502 for data within
the data store 514. The client driver 504 may determine a
memory caching node 510 to contact to see if the data is in
the cache 512 of the memory caching node 510. If so, the
client driver 504 may return the data to the application 502.
If not, the client driver may request the information from the
data store 514 directly. Because of the request, the data store
514 and/or the client driver 504 may cause the data to be
stored in a cache 512 of a memory caching node 510 for
future retrieval. In some embodiments, during a request to a
memory caching node 510, the client driver 504 may check
and/or be notified that a configuration change has occurred.

In some embodiments, request forwarding may occur. For
example, a client driver 504 may make a request for data to
a first memory caching node 510 that may forward the
request to a second memory caching node 510. If the second
memory caching node 510 does not have the data requested
in cache 512, the second memory caching node 510 may
forward the request to the data store 514. The data store may
return the requested data, either through the same path or
directly to the client driver 504. An advantage of request
forwarding is that the client driver 504 need not have a
current configuration 508. However, the delays may be more
significant than direct communication with a memory cach
ing node 510.

Turning now to FIG. 6, an illustrative chart of distributed
memory caching configuration process in accordance with at
least one embodiment is shown. This process may be
accomplished, in one embodiment, by computing resources
Such as those seen in FIG. 2 including application 202, client
driver 204, configuration endpoint 206 and memory caching
nodes 210. The configuration process may include three
phases: initialization 600, use 614 and reconfiguration 622.
During initialization, a client driver 604 prepares to receive
data from a cache on behalf of an application 602 by
obtaining a configuration 612. In FIG. 6, the application 602
gives the client driver 604 a configuration endpoint identifier
606 that identifies a configuration endpoint 610, such as by
hostname, address or other identifying information. The
client driver 604 uses this configuration endpoint identifier
606 to resolve an alias identifying a memory caching node
620 comprising the configuration 612. The client driver
requests 608 the configuration 612 from the memory cach
ing node 620. The memory caching node 620 may send the
configuration 612 to the client driver 604. The client driver
604 may then load the configuration 612 to enable commu
nications with a cache cluster 613 having memory caching
nodes 620.

In some embodiments, a configuration endpoint 610 is
ensured for high availability, as new applications 602 rely on

US 9,529,772 B1
11

the availability of the configuration endpoint alias. The
configuration endpoint 610 may be access restricted based
on the request or an identifier associated with the request,
Such as requesting IP address, destination IP address and/or
credentials. 5

In the use phase 614, the client driver 604 may act as an
interface between the application 602 and the cache cluster
613. In some embodiments, this interface may be done with
an API and/or code library. The application 602 may send a
request for data 616 that is analyzed by the client driver 604 10
to determine which memory caching node 620 may have the
requested data in its cache. The client driver 604 may then
send the request 616 for data in a format recognized by the
memory caching node 620. If the data is found within the
memory caching node 620, the memory caching node 620 15
returns the data 618 to the client driver 604. The client driver
604 may then return the data 618 to the application 602.
However, if the data is not found within the memory caching
node 620, the client driver's request may fail and/or be
redirected to the data store. 2O

In some embodiments, the data in a request 616 may be
serviced by more than one memory caching node 620 in a
cache cluster 613. In one embodiment, this redundancy may
be due to cached data that is expensive to recreate. In other
embodiments, this redundancy may be due to reducing a 25
server load due to a collection of frequently accessed data.
The client driver 604 may use configuration information
612, information from a management system regarding
cache cluster 613, request latency from a memory caching
node 620 and/or other information or indicators to determine 30
which memory caching node 620 should be contacted for
redundant information. In another embodiment, a memory
caching node 620 is randomly selected if the data is avail
able from two or more memory caching nodes 620.

In the reconfiguration phase 622, the client driver 604 35
ensures that its configuration 612 is up to date by comparing
its version with a version known to one or more of the
memory caching nodes 620. In one embodiment, a client
driver 604 may periodically send a request for configuration
608 to one or more memory caching nodes 620. The 40
contacted memory caching nodes 620 may return a stored
configuration 612 which may be compared against a con
figuration used by the client driver 604. In another embodi
ment, the client driver may request version information of
the configuration 612 from the memory caching node 620. 45
The client driver 604 may compare the version information
retrieved against version information of a local configura
tion. If the retrieved information is a newer version, the
client driver 604 may request the new version of the con
figuration 612. For example, version information may be a 50
combination of a serially incremented number and a time
stamp. In some embodiments, the client driver may receive
an indicator from a memory caching node 620 that a
configuration has changed during the use phase 614. Such as
a secondary return value. 55

FIG. 7 shows an illustrative example of a process 700 that
may be used to update configuration in accordance with at
least one embodiment. This process may be accomplished,
in one embodiment, by computing resources such as those
seen in FIG. 2 including application 202, client driver 204, 60
configuration endpoint 206 and memory caching nodes 210.
A cache cluster may provide 702 a configuration endpoint to
provide an alias to a memory caching node for configuration
distribution. Upon modifying 704 one or more distributed
memory caching nodes, such as provisioning memory cach- 65
ing nodes, de-provisioning memory caching nodes, move
ment of keys, changes to key placement or other changes

12
affecting a client configuration, a new configuration may be
determined 706 based on the changes performed. Configu
rations stored in memory caching nodes may be updated 710
as well as the configuration endpoint alias updated 708, if
needed. The update to a configuration may be a replacement,
concatenation, overwrite or other modification to the con
figuration data stored in a memory caching node.
Some or all of the process 700 (or any other processes

described herein, or variations and/or combinations thereof)
may be performed under the control of one or more com
puter systems configured with executable instructions and
may be implemented as code (e.g., executable instructions,
one or more computer programs or one or more applica
tions) executing collectively on one or more processors, by
hardware or combinations thereof. The code may be stored
on a computer-readable storage medium, for example, in the
form of a computer program comprising a plurality of
instructions executable by one or more processors. The
computer-readable storage medium may be non-transitory.
FIG.8 shows an illustrative example of a process 800 that

may be used to configure a client in accordance with at least
one embodiment. This process may be accomplished, in one
embodiment, by computing resources such as those seen in
FIG. 2 including application 202, client driver 204, configu
ration endpoint 206 and cache cluster 213. A client driver
may receive 802 initialization information regarding a con
figuration endpoint. Using the configuration endpoint infor
mation, the client driver may request 804 use an alias
provided by the configuration endpoint to receive 804
memory caching node information. The client driver may
then request 805 a current configuration from the memory
caching node. The request may include explicit or implicit
identification of the application, client and/or customer
requesting the configuration. Explicit identification may
include credentials or account information. Implicit identi
fication may include origin, destination, requesting IP
address, destination IP address or other inherent character
istics of the requestor or the request. The identification is
useful if the configuration endpoint serves multiple aliases
for different distributed caching clusters. The client driver
may load 806 the configuration and service 808 application
requests until a configuration change is needed 810. The
need for a configuration update may be checked periodically,
noted in a return value from a memory caching node,
messaged to the driver or otherwise noticed by or notified to
the driver, application or client. If needed, the configuration
may be requested from a memory caching node.
FIG.9 shows an illustrative example of a process 900 that

may be used to manage caching in accordance with at least
one embodiment. This process may be accomplished by
computing resources such as those seen in FIG. 2 including
application 202, client driver 204, configuration endpoint
206 and memory caching nodes 210. A management system
may monitor memory caching nodes 902 for indicators of a
problem. If a problem is discovered 904, new memory
caching nodes 90.6 may be provisioned 908 and/or existing
memory caching nodes to be removed 910 may be de
provisioned 912. For example, problems requiring new
memory caching nodes to the cache cluster may include a
growth in the need for caching bandwidth and/or caching
storage. Problems requiring the removal of memory caching
nodes from the cache cluster may be the decrease in need of
caching bandwidth, failing hardware and/or caching storage.
For example, caching may be increased during seasons of
high use. Such as a shopping website in December. Caching
may also be decreased during seasons of low use. Such as a
ski retailer commerce application in Summer. Some prob

US 9,529,772 B1
13

lems may also require the provisioning of new memory
caching nodes and the removal of other memory caching
nodes. This may include failure of a memory caching node
and/or the migration from one size of memory caching node
to another size of memory caching nodes. After provisioning
and/or de-provisioning memory caching nodes, a new con
figuration may be determined 914 based at least in part on
the changes in response to the problem. The new configu
ration may be pushed to update 920 the memory caching
nodes for storage and/or update 918 the alias used by a
configuration endpoint.

Turning now to FIG. 10, an illustrative example of a
process 1000 that may be used to manage memory caching
node behavior in accordance with at least one embodiment
is shown. This process may be accomplished by computing
resources such as those seen in FIG. 2 including application
202, client driver 204, configuration endpoint 206 and
memory caching nodes 210. During the monitoring 1002 of
memory caching nodes, one or more key/value pairs are
identified 1003 to make redundant. This redundancy may be
used to distribute a high load among memory caching nodes
and/or increase durability of a cached key-value pair. A
second memory caching node may be selected 1004 and
caused to service 1006 the identified key-value pair. The
second memory caching node may be identified by load, use
patterns, durability or other attributes that make the memory
caching node desirable. In some embodiments, important
key-value pairs are stored on three or more memory caching
nodes. Using the changes, a new configuration may be
determined 1008. Using the new configuration, memory
caching nodes may be updated 1010 by receiving and
storing the configuration. The configuration endpoint may
also be updated 1012 by updating its alias.

For example, durability of key-value pairs that are costly
to re-calculate may be factored in a decision to make the
key-value pair redundant. An algorithm running on a moni
toring system within the management system measures
frequency of access to determine which key-value pairs will
be made redundant. Using the result of the algorithm, the
management system may cause a provisioning system to
distribute the key-value pairs across two or more memory
caching nodes. After distributing the key-value pairs, the
management system may then update a configuration and
cause the configuration to be stored by memory caching
nodes that form part of a cache cluster. In some embodi
ments, this algorithm may be modified to weigh the costs of
key-value pairs, such that costly and frequently accessed
key-value pairs may be made redundant. In some embodi
ments that require further redundancy, multiple configura
tion endpoints may be used to increase durability.

In some embodiments, the key-value pair may be trans
ferred rather than made redundant. For example, a memory
caching node under load may select a range of keys to
offload to a second memory caching node. In some cases, the
memory caching node under load may have to continue
servicing the range of keys until all or most of clients update
their configuration.

In some embodiments, configurations may be propagated
between memory caching nodes. For example, once a
memory caching node receives a configuration, the memory
caching node may attempt to distribute the configuration to
other memory caching nodes in the configuration. In this
way the memory caching nodes may work in using peer-to
peer communication to propagate configuration to each
memory caching node. In one embodiment, memory caching
nodes in a cache cluster may track nodes within the cache
cluster Such that changes to the cache cluster are monitored

10

15

25

30

35

40

45

50

55

60

65

14
by the memory caching nodes themselves. A memory cach
ing node that notices an addition or Subtraction of a memory
caching node, or is the Subject of the addition or Subtraction,
may create a new configuration to distribute to the other
memory caching nodes.

It should be recognized that the use of the term client
driver does not necessarily refer to software that directly
supports hardware. The client driver is code executed by a
computing resource that at least manages communication
between an application and a distributed cache cluster. In
some embodiments, this is accomplished by a library. For
example, a developer may call functions within a library to
perform the phases seen and discussed in relation to FIG. 6.

It should be recognized that the use of the term memory
caching node is used as a broad term that covers more than
just the specific examples above. Other caching types are
included in this term. Other examples of memory caching
nodes include persistent caching systems and disk caching
systems. In one embodiment, a persistent caching system is
used such that a cache state is saved to avoid losing the
cache. In another embodiment, a disk caching system may
be used.

FIG. 11 is an illustrative example of a mapping 1100 that
may be used to represent node locations in managed cache
retrieval in accordance with at least one embodiment. This
process may be accomplished by computing resources Such
as those seen in FIG. 2, including application 202, client
driver 204, configuration endpoint 206 and memory caching
nodes 210. A range of possible hashes may be represented by
a circle 1102. Although differences in angles may graphi
cally show similar spaces between nodes, any number of
hashes may be included within a range of angles. For
example, in one embodiment, there may be thousands of
hashes contained within a small portion of the circle and in
another embodiment, there may not be any hashes contained
within a second portion of the circle.
Keys Z (1110), Y (1112), X (1114) and W (1116) corre

spond to caching angles measured from a reference angle
1101, such as, for example, angles 1126, 1130, 1132 and
1134, shown on circle 1102. The keys may be input into a
hashing function that returns a corresponding caching angle.
A memory caching node may be assigned at least one
caching angle along circle 1102. Larger memory caching
nodes may be assigned more caching angles, which may
grant a larger coverage over the circle 1102. It is understood
that the number of hashes can differ per angle. For example,
memory caching node assignments to memory caching node
A include caching angle 1104 and caching angle 1106. A key
is assigned to a memory caching node first encountered
travelling clockwise around the circle from a caching angle
corresponding to the key. For example, caching angle 1130
determined from a hash of key Z 1110 is followed clockwise
1138 to the caching angle assignment 1 (1104) of memory
caching node A.

In FIG. 11 a caching angle is shown to be measured
clockwise from the reference angle 1101. For example,
caching angle 1130 may have a smaller angle than caching
angle 1126 as measured from the reference angle. To deter
mine which memory caching node is responsible for a key,
the key is first processed through a hash function to deter
mine a caching angle. The caching angle may then be
followed clockwise until the first memory caching node
assignment occurs. For example, key X1114 resolves to the
caching angle 1126 shown. The caching angle is then Swept
clockwise along line 1124 until the first memory caching
node assignment occurs at caching angle 1104 which is
assignment number 1 for memory caching node A. There

US 9,529,772 B1
15

fore key X is assigned to memory caching node A. Similarly,
the caching angle of key Z (1110) sweeps 1138 to caching
angle 1104 which is assignment 1 of memory caching node
A. For the same reasons, Key Y1112 is assigned to memory
caching node A, assignment 2 (1106) because of the Sweep
1136 to the assignment of caching angle 1106. Key W 1116
is assigned to memory caching node B because Sweeping
1140 clockwise arrives at the assignment of a caching angle
1108 assigned to assignment 1, memory caching node B.
Memory caching node assignments may be accomplished

by several different methods. In one embodiment, the client
driver comprises code configured to assign memory caching
nodes within the mapping. In Such an embodiment, the client
may be aware of the angles on the mapping that are “hot”
and as Such require an additional node to offload one or more
requests. In another embodiment, a management system
may aid a client driver in assigning caching angles. For
example, a management system monitors the access of keys
and determines an optimum placement of assignments to
reduce server loads on memory caching nodes. The man
agement system may be aware of one or more aspects of the
cache cluster in general as well as added nodes that it may
provide as “hints' to the client driver.

In another embodiment, one or more clients monitor
usage of the memory caching nodes. If needed, a client may
request provisioning of a new memory caching node to add
to the cache cluster. For example, a client may determine
that a latency of a response from a memory caching node has
increased beyond an acceptable threshold. As another
example, the client may query the memory caching node
using a protocol extension or reviewing an access log, the
client determines that one or more keys are accessed with a
frequency above a threshold. The client may then request
that a provisioning system provision a new memory caching
node. The client may then assign the memory caching node
one or more caching angles.

In one example, shown in FIG. 12, a memory caching
node C is added to the cache cluster illustrated in FIG. 11.
Memory caching node C is able to Support three caching
angles: caching angle assignment 1 (1118), caching angle
assignment 2 (1120) and caching angle assignment 3 (1122).
This ability to Support three caching angles may be due to
the size, processing ability and/or placement of memory
caching node C. Further, as illustrated, nodes in the cluster
may not necessarily be equidistant from each other in terms
of the angular distances between them. Some nodes may be
closer to each other than others (in terms of angular distance
in the representation in FIGS. 11-12) due to various factors
in connection with the key spaces served by the nodes. In the
example shown, Key X1114 and Key Z 1110 may be “hot”
keys that are frequently accessed (i.e., accessed with a
frequency in a range designated as “hot”), therefore, causing
the utilization of caching angle 1104 to be responsible for the
high utilization of memory caching node A. A management
system may cause a new memory caching node C to receive
a caching angle assignment 2 (1120). Due to the new
assignment of caching angle 1120. Key X1114 may now be
serviced by memory caching node C, as a Sweep of caching
angles along line 1128 leads to caching angle 1120 that is
assigned to memory caching node C, assignment 2. Key Z
1110 may remain with memory caching node A due to an
assignment of caching angle 1104.

In another example, an access history of Key W1116 may
be such that Key W 1116 should be serviced by more than
one memory caching node. This replication of the key space
may be due to load, difficulty of calculation of the under
lying cached value or other replication need. As shown in

10

15

25

30

35

40

45

50

55

60

65

16
FIG. 12, memory caching node C, assignment 1 (1118) has
been assigned the same caching angle assignment 1118 as
the caching angle assignment 1108 of memory caching node
B, assignment 1 (1108). Thus, memory caching node B and
memory caching node C share responsibility for the same
key space. In some embodiments, only a portion of the key
space is noted as replicated.

In yet another example, a management system may also
determine that the key space covered by caching angle 1105
assigned to memory caching node B, assignment 2 should be
Smaller. A caching angle 1122 assignment 3 to memory
caching node C is added between assigned caching angles
1105 and 1106. As may be noted in FIG. 12, the range
responsibility between caching angles 1105 and 1122 need
not be symmetric. In some cases, memory caching node Cs
range may be smaller than memory caching node A's range,
but may be more frequently accessed. Considerations, such
as range and frequency of access, may be used to determine
the assignment of caching angle assignments. It should be
recognized that in each of the above embodiments, the client
driver may be in control of the determination of the location
of the nodes and as such, the management system may
provide information which may be used by the client driver
in making the determinations.

It should be recognized that while the memory caching
angle assignments have been discussed in terms of three or
less assignments, actual use may be higher including hun
dreds, thousands, millions or more of caching assignments.
The few assignments shown are for simplifying discussion.

While memory caching nodes have been used for illus
tration of various aspects of the present disclosure, it should
be recognized that the structures and processes described
may also be more broadly applied to storage nodes and
clusters of computing resources in general. For example, a
storage node may include a memory caching node, data
bases and read-replicas. In one embodiment, membership
information of a cluster of nodes is shared with clients of the
nodes. For example, the processes and structures may be
used in database scaling. Configuration of read-replicas may
be stored in a configuration space on a database server.
Clients of the database server may detect changes, such as
additions or Subtractions, to the read-replicas by requesting
the configuration from a read-replica, using client configu
ration update techniques described above. In another
example, the processes and structures may be used in
database clustering. A cluster configuration may be stored in
the database itself alongside the data that makes up the
distributed data store of the cluster, which may be retrieved
by clients of the database. This allows the client initializa
tion to be decoupled from server resources.

FIG. 13 illustrates aspects of an example environment
1300 for implementing aspects in accordance with various
embodiments. As will be appreciated, although a Web-based
environment is used for purposes of explanation, different
environments may be used, as appropriate, to implement
various embodiments. The environment includes an elec
tronic client device 1302, which can include any appropriate
device operable to send and receive requests, messages or
information over an appropriate network 1304 and convey
information back to a user of the device. Examples of such
client devices include personal computers, cell phones,
handheld messaging devices, laptop computers, set-top
boxes, personal data assistants, electronic book readers and
the like. The network can include any appropriate network,
including an intranet, the Internet, a cellular network, a local
area network or any other Such network or combination
thereof. Components used for Such a system can depend at

US 9,529,772 B1
17

least in part upon the type of network and/or environment
selected. Protocols and components for communicating via
such a network are well known and will not be discussed
herein in detail. Communication over the network can be
enabled by wired or wireless connections and combinations
thereof. In this example, the network includes the Internet,
as the environment includes a Web server 1306 for receiving
requests and serving content in response thereto, although
for other networks an alternative device serving a similar
purpose could be used as would be apparent to one of
ordinary skill in the art.
The illustrative environment includes at least one appli

cation server 1308 and a data store 1310. It should be
understood that there can be several application servers,
layers, or other elements, processes or components, which
may be chained or otherwise configured, which can interact
to perform tasks such as obtaining data from an appropriate
data store. As used herein the term “data store' refers to any
device or combination of devices capable of storing, access
ing and retrieving data, which may include any combination
and number of data servers, databases, data storage devices
and data storage media, in any standard, distributed or
clustered environment. The application server can include
any appropriate hardware and software for integrating with
the data store as needed to execute aspects of one or more
applications for the client device, handling a majority of the
data access and business logic for an application. The
application server provides access control services in coop
eration with the data store, and is able to generate content
Such as text, graphics, audio and/or video to be transferred
to the user, which may be served to the user by the Web
server in the form of HTML, XML or another appropriate
structured language in this example. The handling of all
requests and responses, as well as the delivery of content
between the client device 1302 and the application server
1308, can be handled by the Web server. It should be
understood that the Web and application servers are not
required and are merely example components, as structured
code discussed herein can be executed on any appropriate
device or host machine as discussed elsewhere herein.
The data store 1310 can include several separate data

tables, databases or other data storage mechanisms and
media for storing data relating to a particular aspect. For
example, the data store illustrated includes mechanisms for
storing production data 1312 and user information 1316,
which can be used to serve content for the production side.
The data store also is shown to include a mechanism for
storing log data 1314, which can be used for reporting,
analysis or other Such purposes. It should be understood that
there can be many other aspects that may need to be stored
in the data store, Such as for page image information and to
access right information, which can be stored in any of the
above listed mechanisms as appropriate or in additional
mechanisms in the data store 1310. The data store 1310 is
operable, through logic associated therewith, to receive
instructions from the application server 1308 and obtain,
update or otherwise process data in response thereto. In one
example, a user might Submit a search request for a certain
type of item. In this case, the data store might access the user
information to Verify the identity of the user, and can access
the catalog detail information to obtain information about
items of that type. The information then can be returned to
the user, such as in a results listing on a Web page that the
user is able to view via a browser on the user device 1302.
Information for a particular item of interest can be viewed in
a dedicated page or window of the browser.

10

15

25

30

35

40

45

50

55

60

65

18
Each server typically will include an operating system

that provides executable program instructions for the general
administration and operation of that server, and typically
will include a computer-readable storage medium (e.g., a
hard disk, random access memory, read only memory, etc.)
storing instructions that, when executed by a processor of
the server, allow the server to perform its intended functions.
Suitable implementations for the operating system and gen
eral functionality of the servers are known or commercially
available, and are readily implemented by persons having
ordinary skill in the art, particularly in light of the disclosure
herein.
The environment in one embodiment is a distributed

computing environment utilizing several computer systems
and components that are interconnected via communication
links, using one or more computer networks or direct
connections. However, it will be appreciated by those of
ordinary skill in the art that such a system could operate
equally well in a system having fewer or a greater number
of components than are illustrated in FIG. 13. Thus, the
depiction of the system 1300 in FIG. 13 should be taken as
being illustrative in nature, and not limiting to the scope of
the disclosure.
The various embodiments further can be implemented in

a wide variety of operating environments, which in some
cases can include one or more user computers, computing
devices or processing devices which can be used to operate
any of a number of applications. User or client devices can
include any of a number of general purpose personal com
puters, such as desktop or laptop computers running a
standard operating system, as well as cellular, wireless and
handheld devices running mobile software and capable of
Supporting a number of networking and messaging proto
cols. Such a system also can include a number of worksta
tions running any of a variety of commercially-available
operating systems and other known applications for pur
poses such as development and database management.
These devices also can include other electronic devices. Such
as dummy terminals, thin-clients, gaming systems and other
devices capable of communicating via a network.
Most embodiments utilize at least one network that would

be familiar to those skilled in the art for supporting com
munications using any of a variety of commercially-avail
able protocols, such as TCP/IP. OSI, FTP, UPnP, NFS, CIFS
and AppleTalk. The network can be, for example, a local
area network, a wide-area network, a virtual private net
work, the Internet, an intranet, an extranet, a public Switched
telephone network, an infrared network, a wireless network
and any combination thereof.

In embodiments utilizing a Web server, the Web server
can run any of a variety of server or mid-tier applications,
including HTTP servers, FTP servers, CGI servers, data
servers, Java servers and business application servers. The
server(s) also may be capable of executing programs or
Scripts in response requests from user devices, such as by
executing one or more Web applications that may be imple
mented as one or more scripts or programs written in any
programming language, such as Java R., C, C# or C++, or any
Scripting language, such as Perl, Python or TCL, as well as
combinations thereof. The server(s) may also include data
base servers, including without limitation those commer
cially available from Oracle(R), Microsoft(R), Sybase R and
IBMCR).
The environment can include a variety of data stores and

other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the

US 9,529,772 B1
19

computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the infor
mation may reside in a storage-area network ("SAN)
familiar to those skilled in the art. Similarly, any necessary
files for performing the functions attributed to the comput
ers, servers or other network devices may be stored locally
and/or remotely, as appropriate. Where a system includes
computerized devices, each Such device can include hard
ware elements that may be electrically coupled via a bus, the
elements including, for example, at least one central pro
cessing unit (CPU), at least one input device (e.g., a mouse,
keyboard, controller, touch screen or keypad), and at least
one output device (e.g., a display device, printer or speaker).
Such a system may also include one or more storage devices,
Such as disk drives, optical storage devices, and Solid-state
storage devices Such as random access memory (RAM) or
read-only memory (“ROM), as well as removable media
devices, memory cards, flash cards, etc.

Such devices also can include a computer-readable stor
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi
cation device, etc.) and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read
able storage medium, representing remote, local, fixed and/
or removable storage devices as well as storage media for
temporarily and/or more permanently containing, storing,
transmitting and retrieving computer-readable information.
The system and various devices also typically will include a
number of software applications, modules, services or other
elements located within at least one working memory
device, including an operating System and application pro
grams, such as a client application or Web browser. It should
be appreciated that alternate embodiments may have numer
ous variations from that described above. For example,
customized hardware might also be used and/or particular
elements might be implemented in hardware, software (in
cluding portable software, such as applets) or both. Further,
connection to other computing devices such as network
input/output devices may be employed.

Storage media and computer readable media for contain
ing code, or portions of code, can include any appropriate
media known or used in the art, including Storage media and
communication media, Such as but not limited to Volatile and
non-volatile, removable and non-removable media imple
mented in any method or technology for storage and/or
transmission of information Such as computer readable
instructions, data structures, program modules or other data,
including RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices or
any other medium which can be used to store the desired
information and which can be accessed by the a system
device. Based on the disclosure and teachings provided
herein, a person of ordinary skill in the art will appreciate
other ways and/or methods to implement the various
embodiments.
The specification and drawings are, accordingly, to be

regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

Other variations are within the spirit of the present
disclosure. Thus, while the disclosed techniques are suscep
tible to various modifications and alternative constructions,

10

15

25

30

35

40

45

50

55

60

65

20
certain illustrated embodiments thereof are shown in the
drawings and have been described above in detail. It should
be understood, however, that there is no intention to limit the
invention to the specific form or forms disclosed, but on the
contrary, the intention is to cover all modifications, alterna
tive constructions and equivalents falling within the spirit
and scope of the invention, as defined in the appended
claims.
The use of the terms 'a' and “an and “the' and similar

referents in the context of describing the disclosed embodi
ments (especially in the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. The terms “comprising,” “having,” “including.”
and "containing are to be construed as open-ended terms
(i.e., meaning “including, but not limited to.”) unless oth
erwise noted. The term “connected' is to be construed as
partly or wholly contained within, attached to, or joined
together, even if there is something intervening. Recitation
of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate
value falling within the range, unless otherwise indicated
herein, and each separate value is incorporated into the
specification as if it were individually recited herein. All
methods described herein can be performed in any suitable
order unless otherwise indicated herein or otherwise clearly
contradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as”) provided herein, is
intended merely to better illuminate embodiments of the
invention and does not pose a limitation on the scope of the
invention unless otherwise claimed. No language in the
specification should be construed as indicating any non
claimed element as essential to the practice of the invention.

Preferred embodiments of this disclosure are described
herein, including the best mode known to the inventors for
carrying out the invention. Variations of those preferred
embodiments may become apparent to those of ordinary
skill in the art upon reading the foregoing description. The
inventors expect skilled artisans to employ such variations
as appropriate, and the inventors intend for the invention to
be practiced otherwise than as specifically described herein.
Accordingly, this invention includes all modifications and
equivalents of the Subject matter recited in the claims
appended hereto as permitted by applicable law. Moreover,
any combination of the above-described elements in all
possible variations thereof is encompassed by the invention
unless otherwise indicated herein or otherwise clearly con
tradicted by context.

All references, including publications, patent applications
and patents, cited herein are hereby incorporated by refer
ence to the same extent as if each reference were individu
ally and specifically indicated to be incorporated by refer
ence and were set forth in its entirety herein.
What is claimed is:
1. A computer-implemented method for caching, com

prising:
determining, by one or more computer systems, a current

configuration of a cache cluster, the cache cluster
comprising a set of memory caching nodes and Subject
to one or more cache rules, each of the set of memory
caching nodes comprising a reserve memory space;

providing, by a static configuration endpoint of the cache
cluster, the current configuration to a client device, the
static configuration endpoint configured to receive a
request from the client device and resolve a location of
the current configuration on the first reserve memory
Space;

US 9,529,772 B1
21

providing the current configuration of the cache cluster to
each memory caching node of the set of memory
caching nodes, the current configuration of the cache
cluster residing in the reserve memory space;

detecting a change in the cache cluster;
determining an updated configuration of the cache cluster

based at least in part on the change to the cache cluster;
and

providing the updated configuration to the reserve
memory space of each memory caching node of the set
of memory caching nodes in the cache cluster for
storage, each memory caching node of the set of
memory caching nodes being configured to provide the
updated configuration to a client, and the reserve
memory space not being Subject to the one or more
cache rules applicable to the cache cluster.

2. The computer-implemented method of claim 1,
wherein providing the updated configuration to the reserve
memory space of each memory caching node of the set of
memory caching nodes further comprises:

providing the updated configuration to a first memory
caching node; and

propagating, by one or more memory caching nodes from
the set of memory caching nodes, the updated configu
ration to other memory caching nodes identified in the
updated configuration, the one or more memory cach
ing nodes comprising the first memory caching node.

3. The computer-implemented method of claim 1,
wherein the static configuration endpoint provides an alias to
at least one of the memory caching nodes of the set of
memory caching nodes.

4. The computer-implemented method of claim 1,
wherein the change is made in response to a request to
change routing.

5. The computer-implemented method of claim 1,
wherein the one or more cache rules includes at least one or
more protocols for eviction of data or expiration of the cache
memory.

6. The computer-implemented method for caching of
claim 1, further comprising:

obtaining, using the current configuration, a second con
figuration from a particular memory caching node of
the set of memory caching nodes;

Verifying the current configuration by comparing times
associated with the current configuration and the sec
ond configuration;

determining an additional updated configuration of the
changed cache cluster based at least in part on the
verifying of the current configuration against the sec
ond configuration; and

providing the additional updated configuration to the
reserve memory space of each memory caching node of
the set of memory caching nodes.

7. A computer-implemented method for caching, com
prising:

provisioning, by one or more computer systems, a first
storage node, the first storage node comprising a first
reserve memory space;

provisioning a second storage node, the second storage
node comprising a second reserve memory space;

determining a configuration of a cluster, the cluster com
prising the first storage node and the second storage
node and Subject to one or more cache rules; and

sending, by a static configuration endpoint of the cluster,
the configuration to a client device, the static configu
ration endpoint configured to receive a request from the

10

15

25

30

35

40

45

50

55

60

65

22
client device and resolve a location of the configuration
on the first reserve memory space;

sending the configuration to the first storage node and the
second storage node for storage in the first reserve
memory space and the second reserve memory space,
the first reserve memory space and the second reserve
memory space not being Subject to the one or more
cache rules applicable to the cluster.

8. The computer-implemented method of claim 7.
wherein the first storage node and the second storage node
are memory caching nodes.

9. The computer-implemented method of claim 7, further
comprising:

provisioning a third storage node into the cluster, the third
storage node comprising a third reserve memory space;

determining an updated configuration of the cluster, and
sending the updated configuration to the first storage node

for storing in the first reserved memory space, the
second storage node for storage in the second memory
space, and the third storage node for storage in the third
reserve memory space, the third reserve memory space
not being Subject to the one or more cache rules
applicable to the cluster.

10. The computer-implemented method of claim 7, fur
ther comprising:

removing the second storage node from the cluster;
determining an updated configuration of the cluster, and
sending the updated configuration to the first storage node

for storage in the first reserved memory space.
11. The computer-implemented method of claim 7.

wherein the first storage node is configured to receive a
request for cached data from a client and determine whether
the requested data is stored within the first storage node.

12. The computer-implemented method of claim 11,
wherein the first storage node determines, based at least in
part on the configuration stored in the first reserve memory
space, that the requested data is stored in the second storage
node, and forwards the request to the second storage node.

13. The computer-implemented method of claim 7.
wherein the first storage node, the second storage node, and
a third storage node individually store a key space, and
wherein the key space is repartitioned among the first
storage node, the second storage node, and the third storage
node based at least in part on the provisioning of the third
storage node.

14. The computer-implemented method of claim 7.
wherein, upon receiving an updated configuration, the first
storage node pushes the updated configuration to the client
device.

15. The computer-implemented method of claim 7, fur
ther comprising monitoring health of the first storage node
and the second storage node, wherein monitoring the health
comprises one or more of detecting a failure or determining
that the first storage node or the second storage node are to
be repaired.

16. The computer-implemented method of claim 15,
wherein repairing comprises replacing the first storage node
or the second storage node.

17. The computer-implemented method of claim 15
wherein repairing comprises:

determining that the first storage node is to be replaced;
provisioning a replacement storage node, the replacement

storage node comprising a replacement reserved
memory space;

removing the first storage node from the cluster;
adding the replacement storage node to the cluster,
determining an updated configuration of the cluster, and

US 9,529,772 B1
23

sending the updated configuration for storage in the
second reserved memory space and the replacement
reserved memory space.

18. The computer-implemented method of claim 7, fur
ther comprising receiving a client request for an updated
configuration or cached data, wherein the first storage node
is configured to respond with the updated configuration.

19. One or more non-transitory computer-readable stor
age media having collectively stored thereon executable
instructions that, when executed by one or more processors
of a computer system, cause the computer system to at least:

provision a first memory caching node:
provision a second memory caching node,
determine a configuration of a cache cluster, the cache

cluster comprising the first memory caching node and
the second memory caching node, the cache cluster
Subject to one or more cache rules;

send, by a static configuration endpoint of the cache
cluster, the configuration to a client device, the static
configuration endpoint configured to receive a request
from the client device and resolve a location of the
configuration of the first memory caching node of the
set of memory caching nodes;

send the configuration to the first memory caching node
and the second memory caching node for storage in a
reserved memory space of each of the first memory
caching node and the second memory caching node, the
reserve memory space not being Subject to the one or
more cache rules applicable to the cache cluster.

20. The one or more non-transitory computer-readable
storage media of claim 19, wherein the instructions further
comprise instructions that, when executed:

provide a hostname; and
resolve the hostname through a domain name server for

storage to the first memory caching node.
21. The one or more non-transitory computer-readable

storage media of claim 20, wherein providing the hostname
further comprises providing the hostname as an alias to the
first memory caching node.

22. The one or more non-transitory computer-readable
storage media of claim 19, wherein the instructions further
comprise instructions that, when executed provide the static
configuration endpoint at a static location.

5

10

15

25

30

35

40

24
23. The one or more non-transitory computer-readable

storage media of claim 22, wherein the instructions further
comprise instructions that, when executed, cause the com
puter system to at least:
remove the first memory caching node from the cache

cluster;
select the second memory caching node; and
map the static configuration endpoint to the second
memory caching node.

24. A computer system, comprising:
one or more processors; and
memory including instructions that, when executed by the

one or more processors, cause the computer system to:
receive, by a memory caching node in a cache cluster,

a request to store a configuration of the cache cluster,
the cache cluster Subject to one or more cache rules;

store the configuration in a reserved memory space, the
reserve memory space not being Subject to the one or
more cache rules applicable to the cache cluster;

send, by a static configuration endpoint of the cache
cluster, the configuration to a client device in
response to a request for the configuration, the static
configuration endpoint configured to receive the
request from the client device and resolve a location
of the configuration on the reserve memory space.

25. The computer system of claim 24, wherein the com
puter system is a memory caching node in the cache cluster,
and the instructions, when executed by the one or more
processors, cause the computer system to respond to one or
more requests for data stored in the cache cluster, the cache
cluster storing data from a data source.

26. The computer system of claim 24, wherein the con
figuration includes connection information for each memory
caching node in the cache cluster.

27. The computer system of claim 24, wherein the com
puter system is a memory caching node in a cache cluster
and the instructions, when executed by the one or more
processors, further cause the computer system to propagate
the configuration to other memory caching nodes within the
cache cluster.

