
(12) United States Patent
Nakamura et al.

USO09529707B2

US 9,529,707 B2
Dec. 27, 2016

(10) Patent No.:
(45) Date of Patent:

(54) APPARATUS AND METHOD FOR
REDUCING READ-MODIFY-WRITE CYCLES
BY COMBINING UNALIGNED WRITE
COMMANDS

(71) Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

(72) Inventors: Masatoshi Nakamura, Machida (JP);
Koutarou Nimura, Kawasaki (JP);
Marie Abe, Kawasaki (JP); Yoshihito
Konta, Kawasaki (JP); Hidefumi
Kobayashi, Yokohama (JP); Mihoko
Tojo, Kawasaki (JP); Yasuhiro
Ogasawara, Fujisawa (JP); Shigeru
Akiyama, Kawasaki (JP)

(73)

(*)

Assignee: FUJITSU LIMITED, Kawasaki (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 54 days.

(21)

(22)

Appl. No.: 14/510,157

Filed: Oct. 9, 2014

Prior Publication Data

US 2015/O121021 A1 Apr. 30, 2015
(65)

(30) Foreign Application Priority Data

Oct. 24, 2013 (JP) 2013-22O787

(51) Int. Cl.
G06F 2/02
G06F 3/06
U.S. C.
CPC G06F 12/023 (2013.01); G06F 3/06 II

(2013.01); G06F 3/0659 (2013.01); G06F
3/0661 (2013.01);

(2006.01)
(2006.01)

(52)

(Continued)
Field of Classification Search
None
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

6,343,343 B1* 1/2002 Menon G06F 3/0608
T11 113

2004/OO88479 A1 5, 2004 Hall

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2005-063441 3, 2005
JP 2010-026345 2, 2010

(Continued)

OTHER PUBLICATIONS

Extended European Search Report dated Feb. 25, 2015 for corre
sponding European Patent Application No. 14188972.5, 9 pagers.

Primary Examiner — Kevin Verbrugge
(74) Attorney, Agent, or Firm — Fujitsu Patent Center

(57) ABSTRACT

Write commands for a storage device specify write data with
either a first data step size or a second data step size. In the
former case, the storage device performs a read-modify
write (RMW) cycle which includes reading data with the
second data step size. In the latter case, the storage device
executes the command in a single write cycle. A command
sorting unit sorts received commands into two groups, first
commands and second commands, when storing them in a
memory. First commands are write commands whose data
boundaries do not match with the second data step size.
Second commands include write commands whose data
boundaries match with the second data step size. A com
mand issuing unit converts first commands into a second
command upon predetermined conditions. The command
issuing unit issues the second commands to the storage
device, in preference to the first commands.

11 Claims, 14 Drawing Sheets

COMMAND
(FIRSTDATASTEPSIZE)

STORAGE COMROLAPPARAUS 4- 4

COMMANDSORING UNIi

3

MMORY 5 7
- 4.

FIRST quEUE SECOND QUELE
SECONd FIRSF
CMMANS COMMANs

, f
re

-' s *w-...---...- 4.
COMMAND ISSUENGUNTT

SECOND FIRST
COMMANDS COMMANDS

2

STRAGEDEVICE
DATAOBEACCESSE
Second DATASTEP SIZE)

US 9,529,707 B2
Page 2

(52) U.S. Cl.
CPC G06F 3/0689 (2013.01); G06F 221 2/69

(2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2005.0036381 A1 2/2005 Hassner et al.
2008/O120463 A1* 5/2008 Ashmore G06F 3.0613

711/114
2009 OO24808 A1 1/2009 Hillier, III et al.
2010, 0079904 A1 4/2010 Sato
2010/0232048 A1 9, 2010 Aida
2011/019 1537 A1* 8/2011 Kawaguchi GO6F 3.0605

711/114
2012/0137063 A1* 5, 2012 Horibe G06F 12,0866

T11 113
2013,0007381 A1* 1/2013 Palmer G06F 12fO246

T11,154
2014/0289493 A1* 9/2014 Kobayashi G06F 12,0868

711/171
2016/001 1966 A1 1/2016 Keeler G06F 12fO246

T11 103

FOREIGN PATENT DOCUMENTS

JP 2010-080021 4/2010
JP 2010-211888 9, 2010
JP 2012-113789 6, 2012
JP 2012-221350 11 2012

* cited by examiner

U.S. Patent Dec. 27, 2016 Sheet 1 of 14 US 9,529,707 B2

FIG. 1
COMMAND

(FIRST DATA STEP SIZE)

STORAGE CONTROL APPARATUS

COMMAND SORTING UNIT

SECOND QUEUE

FIRST
COMMANDS

FIRST QUEUE

SECOND
COMMANDS

COMMAND ISSUING UNIT

SECOND FIRST
COMMANDS COMMANDS

STORAGE DEVICE

DATA TO BEACCESSED
(SECOND DATA STEP SIZE)

U.S. Patent Dec. 27, 2016 Sheet 3 of 14 US 9,529,707 B2

FIG. 3
-21 C

23a

CACHE MEMORY

27
a as an a sea aaaaaaaaaaaaans as a maa- 4.7.1.

I/O WAIT QUEUE 29 : 28

NORMAL UNALIGNED

COMMAND QUEUE s COMMAND QUEUE

DISKENCOSURE

U.S. Patent Dec. 27, 2016 Sheet S of 14 US 9,529,707 B2

FIG. 5

STORAGE DISK
ARRAY DEVICE HDDS DISK MEDIA

4K Write
H> 4K Write

Non-4K Write Helle-D
->

Read
Have-O.

Read
CH-e-

Modify
4K Write

e-o:

Read

U.S. Patent Dec. 27, 2016 Sheet 6 of 14 US 9,529,707 B2

COMMAND SORTING

S1
UNALIGNED WRITE N NO

FIG. 6
YES S S12

ENQUEUE TO TAIL OF ENQUEUE TO TAIL OF
UNALIGNED COMMAND NORMAL COMMAND

QUEUE QUEUE
S1.4

SEEK COMBINATION OF
UNALIGNED COMMANDS

POSSIBLE O
PRODUCE ALIGNED

COMMANDP

DEQUEUE UNALIGNED
COMMANDS

PRODUCE ALIGNED
COMMAND

HIGH CACHE USAGE
BY UNALIGNED

COMMAND QUEUE?
YES

S20

COMMAND
DISCHARGING

S21

PSEUDO READ NO
COMMAND
PRODUCED S23

DEQUEUE UNALIGNED
COMMAND

S24

ENQUEUE NEWALIGNED
COMMAND TO HEAD OF

NORMAL QUEUE

ENQUEUE PSEUDO READ
COMMAND TO HEAD OF

NORMAL QUEUE

ENQUEUE UNALIGNED
COMMAND TO HEAD OF

NORMAL QUEUE

END

US 9,529,707 B2 Sheet 7 of 14 Dec. 27, 2016 U.S. Patent

GO ZO

EnEnÔ TWW HON As as a six a AA is a

*---------~~~~--~~~~ ~~~~ ~~~~~--~~~~ ~~~~--~~~~~~-----+--------4---.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
assessess an on ssa aaaan

uON

U.S. Patent Dec. 27, 2016 Sheet 8 of 14 US 9,529,707 B2

FIG. 8
C1

NOn-4K Write

210 WRITE DATA

2. r

C12

NOn-4K Write

21 WRITE DATA

C13

4K Write

212 WRE DATA

(QHIHIGOW VIVG) \/ENHW GHARHSH?! CTV/EH-OGITESd

US 9,529,707 B2 U.S. Patent

U.S. Patent Dec. 27, 2016 Sheet 11 of 14 US 9,529,707 B2

FIG. 11

COMMAND DISCHARGING

START

S

ALOWED TO ISSUE
PSEUDO READ COMMAND?

PSEUDO READ AREA
OVERLAPS WITH MULTIPLE
UNALIGNED COMMANDS?

PRODUCE
PSEUDO READ COMMAND

U.S. Patent Dec. 27, 2016 Sheet 12 of 14 US 9,529,707 B2

COMMAND DEQUEUING

FIG. 12

POSSIBLE TO ISSUE
COMMAND?

S 42

COMMAND IN NORMA V NO
COMMAND QUEUE?

ONG-WAITING
COMMAND IN UNALIGNED

COMMAND QUEUE?
S44

DEQUEUE COMMAND DEQUEUE COMMAND
FROM NORMAL FROM UNALIGNED

COMMAND QUEUE COMMAND QUEUE

ISSUE COMMAND

U.S. Patent Dec. 27, 2016 Sheet 13 of 14 US 9,529,707 B2

RESPONSE CHECKING

FIG. 13
S51

RESPONSETO NO
READ COMMAND?

UNALIGNED
COMMAND OVERLAPS
WITH READ AREA?

YES S54 S53

S55

UNALIGNED COMMAND QUEUE
S56

COMBINE READ DATA
WITH WRITE DATA OF
UNALIGNED COMMAND

S

RESPONSE TOPSEUDO
READ COMMAND?

RESPOND TO
REQUESTINGHOST

S

ENOUEUE ALIGNED COMMAND
TO HEAD OF NORMAL QUEUE

END

RESPOND TO HOST,
REMOVING DATA OF
PSEUDO READ AREA

60

U.S. Patent Dec. 27, 2016 Sheet 14 of 14 US 9,529,707 B2

PSEUDO READ SET-UP

START

S71 FIG. 14
OBTAIN INFORMATION ON

ISSUED COMMAND
S72

INITIALIZE SCORE

S73
EVALUATE

READ-TO-WRITE RATIO

S74

WRITE > READ? NO

INCREMENT SCORE BY ONE

S79
S76

EVALUATE ALIGNED-TO- EVALUATE HIT RATE

S80
UNALIGNEDRATIO

S77 HITRATE NO
p

ALIGNED < UNALIGNED? NO < THRESHOLD

INCREMENT SCOREBY ONE
INCREMENT SCORE BY ONE

S8
NO

S8

2

3

DISABLE PSEUDO READ

END

US 9,529,707 B2
1.

APPARATUS AND METHOD FOR
REDUCING READ-MODIFY-WRITE CYCLES

BY COMBINING UNALIGNED WRITE
COMMANDS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2013
220787, filed on Oct. 24, 2013, the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein relate to an apparatus
and method for controlling storage devices.

BACKGROUND

With the recent advancements in hard disk drive (HDD)
design toward high-density recording, the physical sector
format of HDDs has been migrating from 512 bytes per
sector to 4096 (4K) bytes per sector. Many of the existing
Software components, on the other hand, assume that the
HDDs are configured with 512-byte logical sectors, and here
arises an issue of compatibility between their assumption
and the native 4K-byte sectors of HDDs. Those 4K-native
HDDs are supposed to operate only with 4096-byte logical
sector mapping, but the 512-byte logical sectors are not
directly mapped onto their 4096-byte physical sectors. A
known solution for this problem is the 512e mode of the
Advanced Format Technology (AFT). In this 512e mode,
4K-native HDDs emulate operation in the conventional
512-byte sector organization, thus enabling the existing
software components to access data in those HDDs. See, for
example, the following publications:

Japanese Laid-open Patent Publication No. 2012-221350
Japanese Laid-open Patent Publication No. 2005-63441
Japanese Laid-open Patent Publication No. 2010-26345
Japanese Laid-open Patent Publication No. 2010-21 1888
Japanese Laid-open Patent Publication No. 2010-80021
One thing to note about the AFT 512e mode, however, is

that HDDs execute a read-modify-write (RMW) cycle in
response to a write command, when its write data boundaries
are not aligned with the 4096-byte physical sector bound
aries. RMW cycles include a read operation before writing
data, which means that the write operation is delayed by a
multiple of the rotation time of disk media (e.g., two
rotations). This delay degrades the performance of HDD
aCCCSS,

SUMMARY

According to an aspect of the embodiments to be dis
cussed herein, there is provided a storage control apparatus
that controls input and output operations on a storage device
in response to received commands, where the received
commands specifying data with a first data step size, and the
storage device being configured to store data with a second
data step size that is a multiple of the first data step size. This
storage control apparatus includes a memory configured to
store commands, and a controller configured to perform a
procedure including: storing the received commands in the
memory, while sorting the received commands into first
commands and second commands, the first commands being
write commands whose data boundaries do not match with

10

15

25

30

35

40

45

50

55

60

65

2
the second data step size, the second commands including
write commands whose data boundaries match with the
second data step size, converting one or more first com
mands in the memory into a second command when a
predetermined condition is met, and issuing the second
commands to the storage device, in preference to the first
commands.
The object and advantages of the invention will be

realized and attained by means of the elements and combi
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem
plary and explanatory and are not restrictive of the inven
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an exemplary configuration of a storage
control apparatus according to a first embodiment;

FIG. 2 illustrates an exemplary configuration of a storage
system according to a second embodiment, together with an
exemplary hardware configuration of a storage disk array
device;

FIG. 3 exemplifies an I/O wait queue according to the
second embodiment;

FIG. 4 illustrates several examples of boundary alignment
and misalignment of write data to which the second embodi
ment is directed;

FIG. 5 illustrates an example of a delay of a read
command in the second embodiment which is caused by a
preceding unaligned command;

FIG. 6 is a flowchart of a command sorting routine
according to the second embodiment;

FIG. 7 gives an example of commands enqueued to a
normal command queue or an unaligned command queue of
the second embodiment;

FIG. 8 gives an example of how the second embodiment
produces an aligned command from unaligned commands;

FIG. 9 exemplifies a pseudo read command and its
operation in the second embodiment;

FIG. 10 illustrates another pseudo read command and its
operation in the second embodiment, where the commands
pseudo read area overlaps with write areas of three
unaligned commands;

FIG. 11 is a flowchart of a command discharging routine
according to the second embodiment;

FIG. 12 is a flowchart illustrating a dequeuing routine
according to the second embodiment;

FIG. 13 is a flowchart illustrating a response checking
routine according to the second embodiment; and

FIG. 14 is a flowchart illustrating a pseudo read setup
routine according to the second embodiment.

DESCRIPTION OF EMBODIMENTS

Several embodiments will be described below with ref
erence to the accompanying drawings.

(a) First Embodiment
This section describes a first embodiment with reference

to an exemplary configuration of a storage control apparatus
illustrated in FIG. 1. The illustrated storage control appara
tus 1 controls input and output operations on a storage
device 2 in response to commands from host controllers (not
illustrated) Such as file servers. For example, the storage
control apparatus 1 receives a command that requests access
to data whose size is specified with a first data step size.

US 9,529,707 B2
3

More specifically, the term “first data step size” refers to
the size of each logical sector of HDDs, which matches with
the conventional physical sector size, 512 bytes or 520
bytes. In contrast to the first data step size, another term
“second data step size” refers to an integer multiple of the
first data step size. The second data step size may be, for
example, eight times as large as the first data step size. This
second data step size corresponds to the physical sector size
of 4K-native HDDs, which is 4096 (=512x8) bytes or 4160
bytes (=520x8) bytes.

The storage device 2 has its native format based on the
second data step size, with compatibility with the first data
step size. In the context of FIG. 1, the storage device 2 is
configured to handle input and output of data in response to
commands with the first data step sizes, while physically
storing data in a multiple of the first data step size. For
example, the storage device 2 is compatible with the AFT
standard, Supporting the 512e emulation mode to enable
access to 4K physical sectors by using read and write
commands specifying 512-byte logical sectors. The storage
device 2 performs a read-modify-write (RMW) cycle for a
write command with the first data step size, as opposed to a
single write cycle in the case of a write command with the
second data step size. RMW cycles include reading data
with the second data step size.

The storage control apparatus 1 includes, among others, a
memory 3, a command Sorting unit 4, and a command
issuing unit 5. The memory 3 is, for example, a cache
memory configured to store commands received from host
controllers.
The command sorting unit 4 stores received commands in

the memory 3 while sorting them into two groups referred to
herein as “first commands' and 'second commands.” The
first commands are write commands whose data boundaries
do not match with the second data step size. The second
commands include write commands whose data boundaries
match with the second data step size. In other words, the first
commands cause the storage device 2 to perform an RMW
cycle, whereas the second commands do not. The second
commands further include read commands, in addition to the
write commands noted above.

For example, the memory 3 includes a first queue 6 and
a second queue 7, to which the command sorting unit 4
distributes received commands. That is, the command sort
ing unit 4 selectively enters first commands to the second
queue 7 and second commands to the first queue 6.
The command issuing unit 5 issues second commands to

the storage device 2 in preference to first commands. The
command issuing unit 5 also converts Some first commands
to second commands when those first commands satisfy a
predetermined condition. As a result of the preference for the
second commands, the first commands stay longer in the
memory 3, and during their stay in the memory 3, Some of
the first commands may have the chance of turning into
second commands. The proposed storage control apparatus
1 controls I/O transactions on the storage device 2 in this
way, while reducing the number of pending commands that
need RMW cycles. In other words, the storage control
apparatus 1 reduces the chances of RMW operations,
thereby preventing the storage device 2 from degradation of
its access performance.

(b) Second Embodiment
This section describes a storage system of a second

embodiment, beginning with a hardware configuration of a
storage disk array device in FIG. 2. FIG. 2 illustrates an
exemplary configuration of a storage system according to

10

15

25

30

35

40

45

50

55

60

65

4
the second embodiment, together with an exemplary hard
ware configuration of a storage disk array device.
The illustrated Storage system 10 includes a storage disk

array device 20 and a disk enclosure (DE) 30. Further, a
server 11 is coupled to the storage disk array device 20 via
communication links. While FIG. 2 illustrates only one
server 11, the storage system 10 may actually include a
plurality of such servers. The storage disk array device 20
has a link to the DE 30, which contains a plurality of HDDs
31a, 31b, ... , 31n (collectively referred to as HDDs 31).
These HDDs 31 are one type of storage devices, with
4K-byte physical sectors and support emulation of 512-byte
SectOrS.

The DE 30 includes an interface (not illustrated) to
connect HDDs 31 with the storage disk array device 20. The
storage system 10 provides logical volumes created in
individual HDDs or in a combination of two or more HDDs
31. While FIG. 2 illustrates the DE 30 as a stand-alone
device coupled to the storage disk array device 20 via
communication links, the DE 30 may be implemented as
integral part of the storage disk array device 20. Further, the
storage disk array device 20 may be connected to more DEs
than seen in FIG. 2.
The illustrated storage disk array device 20 receives I/O

requests for HDDs 31 from the server 11. These I/O requests
specify particular logical volumes as part of the HDDs 31.
To handle such I/O requests, the storage disk array device 20
has one or more controller modules (CM) 21. In the example
of FIG. 2, two CMs 21a and 21b are included to provide
redundancy protection in the storage disk array device 20.
The CM 21a , as one implementation of the foregoing

storage control apparatus 1, controls HDDs 31 in response
to I/O requests (e.g., write commands and read commands)
received from the server 11. The CM 21a includes a pro
cessor 22, a memory 23, a disk adapter (DA) 24, and a
channel adapter (CA) 25, interconnected by a bus (not
illustrated). The CM 21a reaches HDDs 31 via the DA 24
and the server 11 via the CA 25. The DA 24 controls the
interface and access to the HDDs 31.
The processor 22 controls the CM 21a as a whole, besides

controlling I/O to the HDDs 31. The processor 22 may be a
single processing device or a multiprocessor System includ
ing two or more processing devices. For example, the
processor 22 may be, but not limited to, a central processing
unit (CPU), micro processing unit (MPU), digital signal
processor (DSP), application specific integrated circuit
(ASIC), programmable logic device (PLD), or any combi
nations of them.
The memory 23 may include, for example, a random

access memory (RAM) and non-volatile memory. Besides
holding data read out of the HDDs 31, the memory serves as
an I/O wait queue for temporarily storing I/O requests, and
as a buffer for storing write data for the HDDs 31. The
memory 23 also stores user data and control data. For
example, the RAM serves as the primary storage in the CM
21a, which is used to temporarily store at least some of the
operating system (OS) programs, firmware programs, and
application programs that the processor 22 executes, in
addition to other various data objects that it manipulates at
runtime. The RAM may include cache memory, in addition
to the memory devices used to store various data mentioned
above.
As another part of the memory 23, the non-volatile

memory retains its data content even when the storage disk
array device 20 is not powered. Examples of non-volatile
memory include semiconductor memory devices such as
electrically erasable programmable read-only memory (EE

US 9,529,707 B2
5

PROM) and flash memory, as well as magnetic storage
devices such as HDDs. The non-volatile memory stores
program and data files of the operating system, firmware,
and applications.
The other CM 21b is configured similarly to the CM 21a

discussed above. See the same description for details of the
CM 21b.
The above-described hardware serves as a platform for

implementing processing functions of the proposed CMS 21
(and storage disk array device 20 as a whole) of the second
embodiment. The noted hardware configuration may also be
used to implement the storage control apparatus 1 discussed
in the first embodiment.
The CMs 21 (storage disk array device 20) provide their

processing functions of the second embodiment by, for
example, executing programs encoded and stored in a com
puter-readable medium. A variety of storage media may be
used for this purpose, which include non-volatile memory.
The processor 22 reads out at least part of the programs
stored in the non-volatile memory, loads them into RAM,
and executes the loaded programs. The programs for the
CMs 21 may be stored in portable storage media such as
optical discs, memory devices, and memory cards (not
illustrated). Optical discs include digital versatile disc
(DVD), DVD-RAM, compact disc read-only memory (CD
ROM), CD-Recordable (CD-R), or CD-Rewritable (CD
RW), for example. Memory devices are data storage media
having a capability to communicate with an I/O interface or
peripheral device interface (not illustrated). Memory cards
are one type of memory devices, in the physical form of a
Small card. For example, a memory card reader/writer (not
illustrated) is used to write data to or read data from a
memory card.
The programs stored in a portable storage medium are

previously installed in the non-volatile memory under the
control of the processor 22, so that they are ready to execute
upon request. It may also be possible for the processor 22 to
execute program codes read out of a portable storage
medium, without installing them in its local non-volatile
memory.
The second embodiment offers an I/O wait queue as will

be described below with reference to FIG. 3. FIG. 3 exem
plifies an I/O wait queue according to the second embodi
ment. The illustrated CM 21 has a driver 26 as a control
module for issuing commands to HDDs 31 and handling
responses from the same, where the commands may be those
defined in, for example, the Small Computer System Inter
face (SCSI) standards. The driver 26 is actually a collection
of programs executed by the processor 22. Specifically, the
driver 26 creates an I/O wait queue 27 on the memory 23 in
preparation for command control. The driver 26 receives
commands from host devices through a cache memory 23a
and enqueues them to the I/O wait queue 27. When it is
ready to issue a command to HDDs 31, the driver 26
dequeues a command from the I/O wait queue 27 and issues
it to the DE 30 (HDDs 31). When there is a response from
the DE 30 (HDDs 31), the driver 26 responds to the
requesting host device through the cache memory 23a.
The I/O wait queue 27 actually includes a normal com

mand queue 28 and an unaligned command queue 29. The
normal command queue 28 may also be called an “aligned
command queue.” in contrast to the unaligned command
queue 29. Received commands are a mixture of aligned
commands and unaligned commands described below. The
driver 26 directs unaligned commands to the unaligned
command queue 29 and the rest of the received commands
(or aligned commands) to the normal command queue 28.

10

15

25

30

35

40

45

50

55

60

65

6
Unaligned commands, previously discussed as the first

commands in the first embodiment, are write commands
whose data boundaries do not match with the physical sector
size of HDDs 31 and whose execution consequently needs
an RMW cycle on the HDDs 31. Aligned commands,
previously discussed as the second commands in the first
embodiment, include write commands whose data bound
aries match with the physical sector size of HDDs 31 and
whose execution includes no RMW cycles on the HDDs 31.
Aligned commands also include read commands, which are
not affected by whether their data boundaries match with the
physical sector size of HDDs 31.

Referring now to FIG. 4, the following description will
explain how the physical sector size of HDDs 31 relates to
data boundaries of commands. FIG. 4 illustrates several
examples of boundary alignment and misalignment of write
data to which the second embodiment is directed.
The storage space of HDDs 31 is divided into logical

sectors with a size of 520 bytes, while their physical sectors
are 4160 bytes (4K bytes), eight times as large as the logical
sector size. The HDDs 31 perform RMW as part of their
internal operations when the data size specified in a received
write command is less than 4K bytes. Since RMW cycles
take more time than simple write operations, such small-data
write commands may slow down the performance of HDDs
31.

In the example of FIG. 4, first write data 200 matches with
the physical sector boundaries at both of its head point 200S
and end point 200E, thus causing no RMW cycles in HDDs
31. Second write data 201 matches with the physical sector
boundaries at its end point 201E, but not at its head point
201S, and thus causes HDDs 31 to do RMW in the physical
sector where the second write data 201 begins. Third write
data 202, on the other hand, matches with the physical sector
boundaries at its head point 202S, but not at its end point
202E, and thus causes HDDs 31 to do RMW in the physical
sector where the third write data 202 ends. Fourth write data
203 does not match with the physical sector boundaries at
either its head point 203S or its end point 203E, and thus
causes HDDs 31 to do RMW in two physical sectors
corresponding to these points 203S and 203E.
The first write data 200 can thus be written by using

aligned commands in all physical sectors. In contrast, write
commands for the other pieces of write data 201, 202, and
203 discussed above include unaligned commands in their
topmost physical sector or endmost physical sector or both.

Referring next to FIG. 5, the following description will
discuss possible delays of HDD access caused by unaligned
commands. FIG. 5 illustrates an example of a delay of a read
command in the second embodiment which is caused by a
preceding unaligned command. Specifically, FIG. 5 illus
trates a series of commands sent from the storage disk array
device 20 to HDDs 31, which include a write command for
4K-byte data (referred to as a 4K write command), a write
command for data of less than 4K bytes (referred to as a
non-4K write command), and a read command issued in that
order.

In response to the first 4K write command, the HDDs 31
write the specified 4K-byte data in their disk media. For the
second non-4K write command, the HDDs 31 first read out
4K-byte data currently stored in the physical sector where
the specified write data is to go. The HDDs 31 then modify
this read data with the write data and write the modified
4-byte data back to its original location in the disk media.
That is, this write command, issued from the storage disk
array device 20 for data smaller than 4K bytes, causes the
HDDs 31 to performan RMW cycle. The additional time of

US 9,529,707 B2
7

read operation in an RMW cycle may amount to about the
time equivalent of two disk rotations, which spoils the
performance of disk access.
The noted additional time in RMW results in a delay of

the Subsequent read command to start. Such delay times
would accumulate to a non-negligible level as non-4K write
commands are Submitted more frequently. In other words,
reduction of those non-4K write commands will help the
storage system avoid possible performance degradation in
the disk access.

Referring now to FIG. 6, the following description will
explain how the second embodiment distributes commands
to two queues. FIG. 6 is a flowchart of a command sorting
routine according to the second embodiment.
The storage disk array device 20 subjects received com

mands to a command sorting routine to enqueue them to
either the foregoing normal command queue 28 or unaligned
command queue 29. The command sorting routine also
converts Some unaligned commands in the unaligned com
mand queue 29 to an aligned command when they satisfy a
predetermined condition(s). The processor 22 executes this
command sorting routine as part of the foregoing driver 26
in response to a command received from a host device.

(Step S11) Upon receipt of a new command, the driver 26
(or processor 22) determines whether the received command
is an unaligned write command. In other words, this deter
mination tests whether the received command is to cause an
RMW cycle. When the command is found to be an unaligned
write command, the driver 26 advances to step S13. Other
wise, the driver 26 proceeds to step S12.

(Step S12) The driver 26 enqueues the received command
to the tail of the normal command queue 28 and exits from
the command Sorting routine. Basically the commands
stored in this normal command queue 28 are dequeued on a
first-in first-out (FIFO) basis.

(Step S13) The driver 26 enqueues the received com
mands to the tail of the unaligned command queue 29.

Before continuing the explanation of the routine, the
description presents an example of command Sorting with
reference to FIG. 7. FIG. 7 gives an example of commands
enqueued to the normal command queue or unaligned com
mand queue of the second embodiment. The driver 26 now
has five commands C1, C2, C5 that the storage disk array
device 20 has received in that order. First, the driver 26
enqueues command C1 to the tail of the unaligned command
queue 29 since it is a non-4K write command, which falls in
the category of unaligned commands. Then the driver 26
enqueues command C2 to the tail of the normal command
queue 28 since it is a 4K write command, which falls in the
category of aligned commands. The driver 26 also places
command C3 to the tail of the normal command queue 28
since it is a read command. Similarly to the above, the driver
26 enqueues command C4 to the tail of the unaligned
command queue 29 and command C5 to the tail of the
normal command queue 28. The illustrated queuing opera
tion directs RMW-free commands to the normal command
queue 28 and RMW-causing commands to the unaligned
command queue 29. The description now returns to the
flowchart of the command Sorting routine.

(Step S14) The driver 26 examines unaligned commands
stored in the unaligned command queue 29 to determine
whether it is possible to produce an aligned command from
any two or more of those unaligned commands. More
specifically, the driver 26 seeks two or more unaligned
commands whose write data areas, if combined, would make
a continuous area between 4K-byte boundaries (i.e., would
exactly fit within a 4K-byte physical sector).

5

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 8 gives an example of how the second embodiment

produces an aligned command from unaligned commands.
That is, one unaligned command C11 is to store its write data
210, not in the whole of, but only in an anterior part of a
specific 4K-byte sector. The other unaligned command C12
is to store its write data 211 in a posterior part of the same
specific 4K-byte sector. That is, these two pieces of write
data 210 and 211 are located in complementary sections of
one 4K-byte sector and may thus be merged into a single
piece of write data 212. The resulting write data 212 is
4K-aligned, the entirety of which can be written in a 4K-byte
sector with a single aligned write command C13.
When no such complementary pieces of unaligned data

are found in the unaligned command queue 29, the driver 26
is unable to produce an aligned command from the currently
stored unaligned commands in the discussed way. The driver
26 may then wait for input of new unaligned commands
Suitable for conversion to an aligned command.
The description now returns to the flowchart of the

command sorting routine.
(Step S15) The driver 26 advances to step S16 when the

determination result of step S14 indicates the presence of
unaligned commands that can be combined into an aligned
command. Otherwise, the driver 26 proceeds to step S19.

(Step S16) The driver 26 dequeues the unaligned com
mands found at step S14 from the unaligned command
queue 29 to turn them into an aligned command. It is noted
that the driver 26 temporarily disables FIFO features of the
unaligned command queue 29 during this dequeuing of
unaligned commands.

(Step S17) The driver 26 produces an aligned command
out of the unaligned commands dequeued from the
unaligned command queue 29. In other words, the driver 26
converts these unaligned commands into an aligned com
mand.

(Step S18). The driver 26 enqueues the produced aligned
command to the head of the normal command queue 28 and
then exits from the command sorting routine of FIG. 6. This
new aligned command is Supposed to be dequeued soon
from the normal command queue 28 and issued to HDDs 31.
As can be seen from the above, the storage disk array

device 20 has the capability of converting some of the
unaligned commands into aligned commands, thereby
reducing RMW cycles in I/O operations of HDDs 31. The
reduction in the number of RMW cycles contributes to
avoiding performance degradation in HDD access. It is also
noted that the noted conversion of unaligned commands also
means a reduction in the total number of commands to be
executed. This feature of the proposed storage disk array
device 20 is expected to enhance the performance of HDD
aCCCSS,

(Step S19) The driver 26 checks the cache usage by the
unaligned command queue 29. For example, the driver 26
determines whether the cache usage in question is greater
than a predetermined threshold. When the comparison with
the threshold indicates that the unaligned command queue
29 has a high cache usage, the process advances to step S20.
Otherwise, the driver 26 exits from the command sorting
routine.
The threshold may be varied according to the operational

status of the storage disk array device 20 or the usage of
memory 23. The purpose of the cache usage determination
is to prevent the unaligned command queue 29 from Swell
ing too much with pending unaligned commands. To achieve
the same purpose, the driver 26 may be configured to check,
instead, the amount of unaligned commands accumulated in

US 9,529,707 B2
9

the unaligned command queue 29 or the length of time (e.g.,
average duration) the commands stay in the unaligned
command queue 29.

(Step S20) Now that the unaligned command queue is
found to have a high cache usage, the driver 26 calls a
command discharging routine. Briefly, this routine is called
to determine whether to output unaligned commands as
RMW-causing commands or as RMW-free commands
accompanying a pseudo read command (described later).
Details of the command discharging routine will be
described later with reference to FIG. 11.

Before proceeding to the next step S21, the description
explains pseudo read commands with reference to FIGS. 9
and 10. One type of pseudo read commands are used to
expand the data range of received read commands. For
example, FIG. 9 illustrates a pseudo read command and its
operation in the second embodiment. Here the driver 26 has
previously reserved an area of the cache memory (part of the
memory 23) for the purpose of handling pseudo read com
mands, the area being referred to herein as a "pseudo-read
reserved area.” When there is a read command for a specific
physical sector, the driver 26 may turn it into a pseudo read
command that reads out data, not only in the physical sector
specified by the original read command, but also in one or
more additional physical sectors that follow. In other words,
this pseudo read command is to read data from HDDs 31
while expanding its original data range of the received read
command by the length of a pseudo read area. Note here that
the pseudo read area, when combined with the original read
area, is Smaller than or equal in size to the pseudo-read
reserved area mentioned above.
The driver 26 produces such a pseudo read command

when the read area of a received read command, if expanded
in the way described above, is expected to overlap with the
write data area of an unaligned command in the unaligned
command queue 29. The example seen in FIG. 9 assumes
that the unaligned command queue 29 contains, among
others, two unaligned commands C21 and C22 for writing
data in their respective write areas WR1 and WR2. The
driver 26 then receives a read command C20 that requests
data in a read area RR. This event gives the driver 26 the
chance of eliminating RMW cycles of the unaligned com
mands C21 and C22 by expanding the read area RR to create
a pseudo read area DR1 that contains the write areas of these
commands C21 and C22.
The driver 26 thus issues a pseudo read command (or

expanded read command) C23 instead of enqueuing the
received read command C20 as is, so that expanded read
data 221 will be cached in the pseudo-read reserved area.
The driver 26 now modifies the read data 221 (hatched with
oblique lines) by replacing relevant part with the specified
write data (hatched with horizontal lines) of the two
unaligned commands C21 and C22. FIG. 9 illustrates write
data 222 produced in this way. The driver 26 subsequently
issues an aligned write command C24 for the write data 222.
As can be seen from this example, the driver 26 is capable
of issuing an RMW-free aligned command C24 in place of
RMW-causing unaligned commands C21 and C22.

Another type of pseudo read commands may be produced
from unaligned commands when a pseudo read area can be
created to cover their write areas. For example, FIG. 10
illustrates another pseudo read command and its operation in
the second embodiment, where the command's pseudo read
area overlaps with write areas of three unaligned commands.
The driver 26 produces a pseudo read command whose

pseudo read area overlaps with write data areas of a plurality
of unaligned commands, when it is allowed to issue pseudo

5

10

15

25

30

35

40

45

50

55

60

65

10
read commands. Referring to the example of FIG. 10, the
unaligned command queue 29 contains, among others, three
unaligned commands C21, C22, and C25 for writing data in
their respective write areas WR1, WR2, and WR3. The
driver 26 produces a pseudo read command C26, provided
that issuance of pseudo read commands has been enabled.
This pseudo read command C26 is to read data out of a
pseudo read area DR2 extending from the read area of the
unaligned command C25 which would be read in its RMW
cycle. The pseudo read command C26 is to read data from
its pseudo read area DR2 containing all the three write areas
WR1, WR2, and WR3, making it possible to obviate the
need for RMW in the individual unaligned commands C21,
C22, and C25.
The driver 26 issues such a pseudo read command C26 in

the illustrated situation, thereby loading the pseudo-read
reserved area with read data 223. The driver 26 then modi
fies this read data 223 (hatched with oblique lines) with write
data (hatched with horizontal lines) of each unaligned com
mand C21, C21, and C25. FIG. 10 illustrates write data 224
produced in this way. The driver 26 subsequently issues an
aligned write command C27 for the write data 224. As can
be seen from this example, the driver 26 is capable of issuing
an RMW-free aligned command C27 in place of RMW
causing unaligned commands C21, C22, and C25.
The description now returns to the flowchart of the

command sorting routine.
(Step S21) The driver 26 checks the result of the above

command discharging routine of step S20. When it is found
that a pseudo read command has been produced at Step S20.
the driver 26 advances to step S22. Otherwise, the driver 26
proceeds to step S23. Note that the command discharging
routine is configured to produce a pseudo read command
whose pseudo read area overlaps with write areas of mul
tiple unaligned commands as in the example of FIG. 10.
Pseudo read commands that expand a read command are not
within the scope of the command discharging routine.

(Step S22) The driver 26 enqueues the produced pseudo
read command to the head of the normal command queue 28
and then exits from the command sorting routine of FIG. 6.
This pseudo read command is Supposed to be dequeued soon
from the normal command queue 28 and issued to HDDs 31.

(Step S23) The driver 26 dequeues an unaligned com
mand from the unaligned command queue 29.

(Step S24) The driver 26 enqueues the dequeued
unaligned command to the head of the normal command
queue 28 and then exits from the command sorting routine
of FIG. 6. This unaligned command is supposed to be
dequeued soon from the normal command queue 28 and
issued to HDDs 31.

Referring next to FIG. 11, the following description will
explain how the second embodiment discharges commands
from the unaligned command queue 29. FIG. 11 is a flow
chart of a command discharging routine according to the
second embodiment. The command discharging routine is
called and executed by the driver 26 at step S20 of the
foregoing command sorting routine to discharge unaligned
commands.

(Step S31) The driver 26 (processor 22) determines
whether it is enabled to issue pseudo read commands. This
determination is made on the basis of a setup parameter
previously defined by a pseudo read setup routine described
later with reference to FIG. 14. The driver 26 advances to
step S32 when the setup parameter indicates that issuance of
pseudo read commands is enabled. Otherwise, the driver 26
exits from the command discharging routine.

US 9,529,707 B2
11

(Step S32) The driver 26 determines whether there is a
pseudo read area that overlaps with write areas of a plurality
of unaligned commands. When Such a pseudo read area is
found, the driver 26 advances to step S33. Otherwise, the
driver 26 exits from the command discharging routine.

(Step S33) The driver 26 produces a pseudo read com
mand for reading data from the found pseudo read area and
exits from the command discharging routine.

Referring next to FIG. 12, the following description will
explain how the second embodiment dequeues pending
commands. FIG. 12 is a flowchart illustrating a dequeuing
routine according to the second embodiment. This
dequeuing routine, executed by the driver 26 while it is
active, dequeues commands from the I/O wait queue 27 and
issues them to HDDs 31.

(Step S41) The driver 26 (processor 22) determines
whether it is possible to issue commands. For example, the
driver 26 determines whether the destination of commands
is ready to receive commands. When it is possible to issue
commands, the driver 26 advances to step S42. Otherwise,
the driver 26 repeats this step S41, thus waiting until it
becomes possible to issue commands.

(Step S42) The driver 26 determines whether the normal
command queue 28 contains a pending command. When a
command is found in the normal command queue 28, the
driver 26 advances to step S43. Otherwise, the driver 26
proceeds to step S44.

(Step S43) The driver 26 determines whether the
unaligned command queue 29 contains any command that
has been waiting for a long time. An appropriate threshold
has previously been defined for comparison of this waiting
time, either as a fixed value or as a variable value that may
vary depending on the operational status of the driver 26.
When Such a long-waiting command is found in the
unaligned command queue 29, the driver 26 advances to step
S44. Otherwise, the driver 26 proceeds to step S45.

(Step S44) The driver 26 dequeues an unaligned com
mand from the unaligned command queue 29.

(Step S45) The driver 26 dequeues an aligned command
from the normal command queue 28.

(Step S46) Now that a command has been dequeued from
the I/O wait queue 27 (normal command queue 28 or
unaligned command queue 29), the driver 26 issues the
dequeued command to HDDs 31 and returns to step S41 to
wait the opportunity to issue another command.
As can be seen from the above flowchart, the driver 26

discharges commands from the normal command queue 28
in preference to the unaligned command queue 29. The
driver 26, however, prevents unaligned commands from
staying too long in the unaligned command queue 29.

Referring next to FIG. 13, the following description will
explain how the second embodiment handles responses to
the commands that are issued. FIG. 13 is a flowchart
illustrating a response checking routine according to the
second embodiment. This routine is executed by the driver
26 to check a response received from the destination of a
command.

(Step S51) Upon receipt of a response from the destina
tion of a command, the driver 26 (processor 22) determines
whether the received response is for a read command. When
the response is found to be for a read command, the driver
26 advances to step S52. Otherwise, the driver proceeds to
step S53. Note that what are referred to herein as “read
commands' include pseudo read commands.

(Step S52) The driver 26 determines whether the
unaligned command queue 29 contains any unaligned com
mands whose write areas overlap with the read area of the

10

15

25

30

35

40

45

50

55

60

65

12
read command found above. When Such an unaligned com
mand or commands are found, the driver 26 advances to step
S54. Otherwise, the driver 26 proceeds to step S53.

(Step S53) The driver 26 returns a response to the
requesting host device (i.e., the source of the read command)
and exits from the response check routine.

(Step S54) The driver 26 saves read data in a buffer
(pseudo-read reserved area).

(Step S55) The driver 26 dequeues the unaligned com
mand or commands found at step S52 from its or their
locations in the unaligned command queue 29. Note that this
dequeuing does not necessarily take place at the head of the
unaligned command queue 29.

(Step S56) The driver 26 modifies the read data saved in
the buffer with the write data of each dequeued command.
The driver 26 handles the dequeued unaligned command(s)
in this way, eliminating the need for reading data for their
RMW cycles, and making it possible to convert these
unaligned commands into an aligned command. The write
data of this new command contains all write data of the
original unaligned commands.

(Step S57) The driver 26 determines whether the received
response is for a pseudo read command. When it is, the
driver 26 advances to step S59. Otherwise, the driver 26
proceeds to step S58.

(Step S58) The driver 26 returns a response to the
requesting host device (the Source of the read command).

(Step S59) The driver 26 returns a response to the
requesting host device, removing data (and any other things
in the received response) corresponding to its pseudo read
area. For example, the pseudo read command in question
may have been issued as an expanded read command as in
the case of the pseudo read command C23 discussed in FIG.
9. The received response in this case is made up of two parts,
one corresponding to the original read RR and the other
corresponding to the pseudo read area DR1. The driver 26
then returns a response to the requesting host device, remov
ing the latter part of the received response. The pseudo read
command in question may otherwise have been issued for a
pseudo read area covering write areas of multiple unaligned
commands as in the case of the pseudo read command C26
discussed in FIG. 10. When this is the case, the driver 26
outputs nothing at step S59, as opposed to the caption seen
in FIG. 13, since the received response is not for host
commands.

(Step S60) The driver 26 enqueues the dequeued
unaligned command to the head of the normal command
queue 28 and then exits from the response check routine of
FIG. 13.
As can be seen from the above flowchart, the driver 26

seeks unaligned commands related to a read command
(including pseudo read command) to which a response has
been returned. The driver 26 converts these unaligned com
mands into an aligned command to eliminate their RMW
cycles. This feature of the driver 26 reduces the frequency of
RMW cycles in HDDs 31, which would otherwise be
performed as part of execution of unaligned commands. The
driver 26 thus prevents the HDDs 31 from degradation of its
performance.

Referring lastly to FIG. 14, the following description will
explain how the second embodiment manages a setup
parameter for pseudo read commands. FIG. is a flowchart
illustrating a pseudo read setup routine according to the
second embodiment.
The pseudo read setup routine determines whether to

enable or disable issuance of pseudo read commands and
indicates it in a setup parameter. The driver 26 executes this

US 9,529,707 B2
13

routine on Some specific conditions (e.g., at predetermined
timer intervals or upon detection of particular events) to
update the setup parameter for pseudo read commands.

(Step S71) The driver 26 (processor 22) obtains informa
tion about commands that the driver 26 have issued to HDDs
31. What is being referred to here is the information that the
driver 26 uses to evaluate how smoothly the commands are
being discharged from the unaligned command queue 29.
For example, this information may be the ratio of read
commands to write commands (read-to-write ratio), the ratio
of aligned commands to unaligned commands (aligned-to
unaligned ratio), the rate at which unaligned commands are
turned into aligned commands (hit rate), or any combina
tions of them. The storage disk array device 20 may include
a data collection unit (not illustrated) to collect such records
of issued commands and compile them as statistical data.

(Step S72) The driver 26 initializes an evaluation score
(e.g., clears it to Zero). This evaluation score will be used to
determine whether to enable or disable issuance of pseudo
read commands. For example, the issuance of pseudo read
commands is enabled when the evaluation score is greater
than a predetermined threshold.

(Step S73) The driver 26 evaluates the read-to-writeratio,
which Suggests how much part of the read commands
addressed to particular disks of interest may be utilized to
read data for RMW of unaligned commands. For example,
if read commands outnumber write commands, then it
means that the unaligned command queue 29 has been
discharging a relatively large number of commands in the
response checking routine. If read commands are fewer than
write commands, then it means that the unaligned command
queue 29 has been discharging a relatively small number of
commands in the response checking routine.

(Step S74) When write commands outnumber read com
mands, the driver 26 advances to step S75. Otherwise, the
driver 26 skips to step S76.

(Step S75) The driver 26 determines that the unaligned
command queue 29 has been discharging a relatively small
number of commands, thus incrementing the evaluation
score by one.

(Step S76) The driver 26 evaluates the aligned-to-un
aligned ratio, which suggests how often the driver 26 issues
unaligned commands to particular disks of interest, relative
to aligned commands. If aligned commands outnumber
unaligned commands, it means that a relatively small num
ber of commands are accumulated in the unaligned com
mand queue 29. If aligned commands are fewer than
unaligned commands, it means that a relatively large number
of commands are accumulated in the unaligned command
queue 29.

(Step S77) When aligned commands are fewer than
unaligned commands, the driver 26 advances to step S78.
Otherwise, the driver 26 skips to step S79.

(Step S78) The driver 26 determines that a relatively large
number of commands are accumulated in the unaligned
command queue 29, thus incrementing the evaluation score
by one.

(Step S79) The driver 26 evaluates the hit rate, which
indicates how often the unaligned commands for the disks of
interest have been turned into aligned commands. For
example, a high hit rate means that the unaligned command
queue 29 has been discharging a relatively large number of
commands. A low hit rate means that the unaligned com
mand queue 29 has been discharging a relatively small
number of commands. As an alternative, the driver 26 may
evaluate the frequency of unaligned commands being
issued, or the frequency of RMW cycles being executed.

10

15

25

30

35

40

45

50

55

60

65

14
These alternative factors actually represent a miss rate, as
opposed to the hit rate used above. It is also noted that steps
S73, S76, and S79 may be implemented to compare the
read-to-write ratio, aligned-to-unaligned ratio, and hit rate
with their respective thresholds, which may be previously
determined or dynamically updated depending on the opera
tional status of the storage system.

(Step S80) When the hit rate is smaller than a threshold,
the driver 26 advances to step S81. Otherwise, the driver 26
skips to step S82.

(Step S81) The driver 26 determines that the unaligned
command queue 29 has been discharging a relatively small
number of commands, thus incrementing the evaluation
score by one.

(Step S82) The driver 26 compares the evaluation score
with a predetermined thresholds (e.g., two). When the evalu
ation score is two or greater, the driver 26 advances to step
S83. Otherwise, the driver 26 proceeds to step S84.

(Step S83) The driver 26 enables issuance of pseudo read
commands and exits from the pseudo-read setup routine,
with a setup parameter indicating the result.

(Step S84) The driver 26 disables issuance of pseudo read
commands and exits from the pseudo-read setup routine,
with a setup parameter indicating the result.
The above-described steps cause the driver 26 to evaluate

the queuing status (i.e., how Smoothly the commands are
being discharged from the unaligned command queue 29)
from the read-to-write ratio, aligned-to-unaligned ratio, and
hit rate, and determine whether to enable or disable issuance
of pseudo read commands based on the evaluation.
The setup parameter of pseudo read commands is refer

enced at step S31 in the foregoing command discharging
routine, which permits the driver 26 to adjust the discharge
rate of the unaligned command queue to prevent unaligned
commands from building up too much in the unaligned
command queue 29. In other words, the unaligned command
queue 29 is controlled so that an appropriate number of
unaligned commands queue up. This feature of the second
embodiment reduces the occurrence of RMW cycles for
unaligned commands.
As can be seen from the above, the proposed storage disk

array device 20 is designed to avoid performance degrada
tion in HDD access by reducing RMW cycles. This is
achieved by the driver 26 of the second embodiment, which
takes several chances of dequeuing unaligned commands
from the unaligned command queue 29 as will be summa
rized below.

Condition #1: An unaligned write command is dequeued
from the unaligned command queue 29 upon receipt of a
response to a read command if the read command's data area
contains the write area of that unaligned write command.
This is what the driver 26 performs at step S55 of the
foregoing response check routine.

Condition #2: Two or more unaligned commands are
dequeued from the unaligned command queue 29 when their
write data areas, as a whole, would make a continuous area
between 4K-byte boundaries (and there is thus no need to
read data). This is what is performed at step S16 of the
foregoing command distribution routine.

Condition #3: An unaligned command is dequeued from
the unaligned command queue 29 when the cache usage of
unaligned commands is increased. This is what the driver 26
performs at step S23 of the foregoing command distribution
routine.

Condition #4: An unaligned command is dequeued from
the unaligned command queue 29 when the normal com

US 9,529,707 B2
15

mand queue 28 is empty. This is what the driver 26 performs
at step S44 immediately after step S42 in the foregoing
dequeuing routine.

Condition #5: An unaligned command is dequeued from
the unaligned command queue 29 when that command stays
there for an excessive amount of time. This is what the driver
26 performs at step S44 after steps S43 in the foregoing
dequeuing routine.
The above-described second embodiment uses two sepa

rate queues, namely, normal command queue 28 and
unaligned command queue 29, so that the driver 26 directs
each received command to either of them. As an alternative,
the second embodiment may be modified to enter received
commands to a unified I/O wait queue 27. This single-queue
configuration may be applied when aligned commands are
distinguished from unaligned commands in the same queue
line. That is, the driver 26 distinguishably marks each
received command, instead of distributing them to separate
queues.
The above-described processing functions of the storage

control apparatus 1 and storage disk array device (CMS 21)
may be implemented on a computer system, the instructions
being encoded and provided in the form of computer pro
grams. A computer system executes those programs to
provide the processing functions discussed in the preceding
sections. The programs may be recorded in a computer
readable medium for the purpose of storage and distribution.
Such computer-readable media include magnetic storage
devices, optical discs, magneto-optical storage media, semi
conductor memory devices, and other tangible storage
media. Magnetic storage devices include hard disk drives
(HDD), flexible disks (FD), and magnetic tapes, for
example. Optical disc media include DVD, DVD-RAM,
CD-ROM, CD-RW, and others. Magneto-optical storage
media include magneto-optical discs (MO), for example.

Portable storage media, such as DVD and CD-ROM, are
used for distribution of program products. Network-based
distribution of Software programs may also be possible, in
which case program files are made available on a server
computer for transfer to other computers via a network.

For example, a computer stores Software programs in its
local storage device, which have previously been installed
from a portable storage medium or downloaded from a
server computer. The computer executes these programs
read out of the local storage device, thereby performing their
programmed functions. Where appropriate, the computer
may execute program codes read out of a portable storage
medium, without installing them in its local storage device.
Another alternative method is that the computer dynamically
downloads programs from a server computer when they are
demanded and executes them upon delivery from the server.

It is further noted that the above processing functions may
be executed wholly or partly by a DSP, ASIC, PLD, or other
electronic circuits.
A couple of embodiments of a storage control apparatus,

program, and method have been discussed above. In one
aspect of those embodiments, the proposed techniques
reduce the frequency of RMW cycles in storage devices and
thus alleviate performance degradation in disk access.

All examples and conditional language provided herein
are intended for the pedagogical purposes of aiding the
reader in understanding the invention and the concepts
contributed by the inventor to further the art, and are not to
be construed as limitations to Such specifically recited
examples and conditions, nor does the organization of Such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although one or

10

15

25

30

35

40

45

50

55

60

65

16
more embodiments of the present invention have been
described in detail, it should be understood that various
changes, Substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What is claimed is:
1. A storage control apparatus that controls input and

output operations on a storage device in response to received
commands, the received commands specifying data with a
first data step size, the storage device being configured to
store data with a second data step size that is an integer
multiple of the first data step size, the storage control
apparatus comprising:

a memory configured to store commands; and
a controller configured to perform a procedure including:

storing the received commands in the memory, while
sorting the received commands into first commands
and second commands, the first commands being
write commands whose data boundaries do not
match with the second data step size, the second
commands including read commands and write com
mands whose data boundaries match with the second
data step size,

receiving a read command from a host device and
issuing the received read command to the storage
device,

receiving a response to the read command issued to the
storage device,

combining read data contained in the received response
to the issued read command and write data of one or
more first commands in the memory into a new piece
of write data, and

issuing a new write command specifying the new piece
of write data.

2. The storage control apparatus according to claim 1,
wherein the procedure further includes:

converting at least two first commands in the memory into
a second command by combining the at least two first
commands when a predetermined condition is met, and

issuing the second commands to the storage device, in
preference to the first commands;
the memory includes a first queue and a second queue;
the storing the received commands includes storing the

second commands to the first queue, and the first
commands to the second queue; and

the converting includes dequeuing the at least two first
commands from the second queue when the prede
termined condition is met and producing a second
command from the dequeued first commands.

3. The storage control apparatus according to claim 2,
wherein the procedure performed by the controller further
includes enqueuing the produced second command to a head
position of the first queue.

4. The storage control apparatus according to claim 2,
wherein the converting includes producing a single write
command, as a second command, from the at least two first
commands in the memory when write areas of the at least
two first commands are both located within a single physical
SectOr.

5. The storage control apparatus according to claim 4.
wherein the controller performs the producing of a single
write command when the at least two first commands
overwrite entire data stored in the single physical sector.

6. The storage control apparatus according to claim 2,
wherein the procedure performed by the controller further
includes:

US 9,529,707 B2
17

finding in the memory two or more first commands whose
write areas fall within a limited area in the storage
device, and

producing a pseudo read command specifying a read area
that contains the limited area.

7. A storage control apparatus that controls input and
output operations on a storage device in response to received
commands, the received commands specifying data with a
first data step size, the storage device being configured to
store data with a second data step size that is an integer
multiple of the first data step size, the storage control
apparatus comprising:

a memory configured to store commands; and
a controller configured to perform a procedure including:

storing the received commands in the memory, while
sorting the received commands into first commands
and second commands, the first commands being
write commands whose data boundaries do not
match with the second data step size, the second
commands including write commands whose data
boundaries match with the second data step size,

converting one or more first commands in the memory
into a second command when a predetermined con
dition is met, and

issuing the second commands to the storage device, in
preference to the first commands, wherein:

the memory includes a first queue and a second queue;
the storing the received commands includes storing the

second commands to the first queue, and the first
commands to the second queue;

the converting includes dequeuing the one or more first
commands from the second queue when the predeter
mined condition is met and producing a second com
mand from the dequeued first commands;

the second commands further include read commands;
and

the converting also includes producing an expanded read
command from a read command specifying a read area
that is adjacent to a pseudo read area containing write
areas of the one or more first commands, the expanded
read command specifying an expanded read area con
taining both the read area and the pseudo read area.

8. The storage control apparatus according to claim 7.
wherein the procedure performed by the controller further
includes:

evaluating queuing status of the first commands in the
second queue; and

determining whether to enable or disable the producing of
an expanded read command, based on a result of the
evaluating.

9. A storage control apparatus that controls input and
output operations on a storage device in response to received
commands, the received commands specifying data with a
first data step size, the storage device being configured to
store data with a second data step size that is an integer
multiple of the first data step size, the storage control
apparatus comprising:

a memory including a first queue and a second queue to
store commands; and

a controller configured to perform a procedure including:
storing the received commands in the memory, while

Sorting the received commands into first commands and
second commands and enqueuing the second com
mands to the first queue and the first commands to the
second queue, the first commands being write com
mands whose data boundaries do not match with the
second data step size, the second commands including

10

15

25

30

35

40

45

50

55

60

65

18
read commands and write commands whose data
boundaries match with the second data step size,

converting at least two first commands dequeued from the
second queue in the memory into a second command
by combining the dequeued first commands when a
predetermined condition is met,

issuing the second commands to the storage device, in
preference to the first commands,

finding in the memory two or more first commands whose
write areas fall within a limited area in the storage
device,

producing a pseudo read command specifying a read area
that contains the limited area,

evaluating queuing status of the first commands in the
Second queue, and

determining whether to enable or disable the producing of
a pseudo read command, based on a result of the
evaluating.

10. A non-transitory computer-readable storage medium
storing a program for controlling input and output operations
on a storage device in response to received commands, the
received commands specifying data with a first data step
size, the storage device being configured to store data with
a second data step size that is an integer multiple of the first
data step size, wherein the program causes a computer to
perform a procedure comprising:

storing the received commands in a memory, while sort
ing the received commands into first commands and
second commands, the first commands being write
commands whose data boundaries do not match with
the second data step size, the second commands includ
ing read commands and write commands whose data
boundaries match with the second data step size;

receiving a read command from a host device and issuing
the received read command to the storage device;

receiving a response to the read command issued to the
storage device;

combining read data contained in the received response to
the issued read command and write data of one or more
first commands in the memory into a new piece of write
data; and

issuing a new write command specifying the new piece of
write data.

11. A method of controlling input and output operations
on a storage device in response to received commands, the
received commands specifying data with a first data step
size, the storage device being configured to store data with
a second data step size that is an integer multiple of the first
data step size, the method comprising:

storing, by a computer, the received commands in a
memory, while sorting the received commands into first
commands and second commands, the first commands
being write commands whose data boundaries do not
match with the second data step size, the second
commands including read commands and write com
mands whose data boundaries match with the second
data step size;

receiving, by the computer, a read command from a host
device and issuing the received read command to the
storage device;

receiving, by the computer, a response to the read com
mand issued to the storage device;

combining, by the computer, read data contained in the
received response to the issued read command and
write data of one or more first commands in the
memory into a new piece of write data; and

US 9,529,707 B2
19

issuing, by the computer, a new write command specify
ing the new piece of write data.

k k k k k

20

