
(12) United States Patent
Babayan et al.

USO09529596B2

US 9,529,596 B2
Dec. 27, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR
SCHEDULING INSTRUCTIONS IN A
MULT-STRAND OUT OF ORDER
PROCESSOR WITH INSTRUCTION
SYNCHRONIZATION BITS AND
SCOREBOARD BITS

(75) Inventors: Boris A. Babayan, Moscow (RU);
Vladimir M. Pentkovski, Folsom, CA
(US); Alexander V. Butuzov, Moscow
(RU); Sergey Y. Shishlov, Moscow
(RU); Alexey Y. Sivtsov, Moscow
(RU); Nikolay E. Kosarev, Moscow
(RU)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1222 days.

(21) Appl. No.: 13/175,619

(22) Filed: Jul. 1, 2011

(65) Prior Publication Data

US 2013 FOOO7415 A1 Jan. 3, 2013

(51) Int. Cl.
G06F 9/38 (2006.01)
G06F 9/30 (2006.01)

(52) U.S. Cl.
CPC G06F 9/3851 (2013.01); G06F 9/3016

(2013.01); G06F 9/3824 (2013.01); G06F
9/3838 (2013.01); G06F 9/3891 (2013.01)

(58) Field of Classification Search
CPC ... GO6F 9/3838
USPC .. 712/216, 217
See application file for complete search history.

299
Strand 205

Y------ Strand
210

instruction

add r2 = 0x13

230
True dependency is
resolved using availability
bit for register r2

(56) References Cited

U.S. PATENT DOCUMENTS

5.537,561 A * 7/1996 Nakajima 71.2/23
6,260,189 B1* 7/2001 Batten et al. .. 717, 151
6,550,001 B1 * 4/2003 Corwin et al. T12/216
6,643,762 B1 1 1/2003 Arnold et al.
6,950,927 B1 * 9/2005 Apisdorf et al. T12/216
7,080.234 B2 7/2006 Saulsbury et al.
7,143,401 B2 11/2006 Babaian et al.
7,281.250 B2 10/2007 Ohsawa et al.
7,600,221 B1 * 10/2009 Rangachari 717/128

(Continued)

OTHER PUBLICATIONS

Arroyo and Lee, Dynamic Simultaneous Multithreaded Architec
ture, 2003, 16th International Conference on Parallel and Distrib
uted Computing Systems, pp. 1-8.*

(Continued)

Primary Examiner — Andrew Caldwell
Assistant Examiner — Jyoti Mehta
(74) Attorney, Agent, or Firm — Nicholson De Vos
Webster & Elliott LLP

(57) ABSTRACT

In accordance with embodiments disclosed herein, there are
provided methods, Systems, and apparatuses for scheduling
instructions in a multi-strand out-of-order processor. For
example, an apparatus for scheduling instructions in a multi
Strand out-of-order processor includes an out-of-order
instruction fetch unit to retrieve a plurality of interdependent
instructions for execution from a multi-strand representation
of a sequential program listing; an instruction scheduling
unit to schedule the execution of the plurality of interde
pendent instructions based at least in part on operand
synchronization bits encoded within each of the plurality of
interdependent instructions; and a plurality of execution
units to execute at least a subset of the plurality of interde
pendent instructions in parallel.

12 Claims, 9 Drawing Sheets

Data dependencies processing
200

Strand An/
215

GE) - divros ré, Ox
225
Output dependency is resolved
using busy bit for registerro

rows 2 GO sub Or, Sr., Ox2

-11 (a) N SB

235
Anti-dependency is
resolved through SB
appended to register

US 9,529,596 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,721,071 B2 5/2010 Jiang et al.
8,650,554 B2 * 2/2014 Elinozahy et al. 717/149

2002/0138714 A1 9, 2002 Leibholz et al.
2003/0033506 A1 2/2003 Hinds et al. 71.2/217
2003/0120902 A1* 6/2003 Kottapalli et al. . 712,216
2003/0126408 A1* 7/2003 Vajapeyam et al. ... 712/214
2004/0073777 A1* 4/2004 Arnold et al. 71.2/217
2004O162972 A1 8/2004 Iacobovici et al.
2005/025 1664 A1* 11/2005 Caprioli et al. T12/228
2005/0268.075 A1* 12/2005 Caprioli et al. 71.2/239
2007/0204135 A1 8/2007 Jiang et al.
2008/0046698 A1* 2/2008 Ahuja et al. T12/224
2008/0209173 A1* 8, 2008 Evers et al. 71.2/2O7
2009/0217020 A1 8, 2009 YourSt
2010.0005277 A1 1/2010 Gilbert et al. T12/220
2010.007074.0 A1 3/2010 Allen et al.
2010/0274972 A1* 10/2010 Babayan et al. 711/125

OTHER PUBLICATIONS

Tariq Jamil, RAM versus CAM, Apr./May 1997, IEEE Xplore, pp.
26-29.
6.823 Computer System Architecture Scoreboarding for in-order
issues, Oct. 27, 2005, pp. 1-2.*
Foldoc accumulator, Apr. 20, 1990, Foldoc, pp. 1-3.*

PCT International Search Report for PCT/US2012/045286, Mailing
date of Dec. 26, 2012, pp. 1-3.*
Office Action and Taiwan Search Report from foreign counterpart
Taiwan Patent Application No. 101 123731, mailed Dec. 27, 2014,
12 pages.
Arroyo, et al., “Dynamic Simultaneous Multithreaded Architec
ture', 16th International Conference on Parallel and Distributed
Computing Systems, 2003, pp. 1-8.
Jamil, Tariq, “RAM versus CAM", IEEE Xplore, Apr./May 1997,
pp. 26-29.
International Preliminary Report on Patentability for International
Application No. PCT/US2012/045286, mailed Jan. 16, 2014, 6
pageS.
McNairy C. et al., “Itanium 2 Processor Microarchitecture”, Apr.
2003, Micro, IEEE, vol. 23, Issue 2, pp. 44-55.
Ohsawa T., "Pinot: Speculative Multi-threading Processor Archi
tecture Exploiting Parallelism over a Wide Range of Granularities.”
Proceedings of the 38th Annual IEEE/ACM International Sympo
sium on Microarchitecture (MICRO'05), IEEE, 2005, 12 pages.
Thornton J.E., “Parallel Operation in the Control Data 6600'.
Proceedings-Spring Joint Computer Conference, 1964, pp. 33-40.
Tomasulo R.M., “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units” IBM Journal, 1967, pp. 25-33.
Tseng F., et al., “Achieving Out-of-Order Performance with Almost
in-Order Complexity” International Symposium on Computer
Architecture, IEEE, 2008, 10 pages.
Written Opinion for International Application No. PCT/US2012/
045286, mailed Dec. 26, 2012, 4 pages.

* cited by examiner

US 9,529,596 B2 U.S. Patent

()G?T I?toren

US 9,529,596 B2 Sheet 3 of 9 Dec. 27, 2016 U.S. Patent

US 9,529,596 B2 U.S. Patent

US 9,529,596 B2 Sheet 5 Of 9 Dec. 27, 2016 U.S. Patent

A A

+

A

vsr. sir

U.S. Patent Dec. 27, 2016 Sheet 6 of 9 US 9,529,596 B2

a s.l- 500 FIG. 5

502 PERPHERAL 536

MU-SRAND DEVICE
OU-OF-ORDER
PROCESSOR 52
cur N

OU-OF-ORDER 525 APHANUMERIC
FETCH NPU DEVICE

CURSOR
PROCESSING 526 CONTROL DEVICE

OGC 514
50

504

MAN MEMORY -->|USER INTERFACE
o

BNARY 524 TN-530
TRANSLATOR 56

NEGRAED
SPEAKER

NETWORK 518
NERFACE CARD SECONDARY MEMORY

MACHINE-ACCESSBE 53
SORAGE MEDUM

522
\ 520 SOFTWARE

- - - - - - - - - - - - - - - - -

U.S. Patent Dec. 27, 2016 Sheet 7 Of 9 US 9,529,596 B2

-- 615
/ 610

PROCESSOR

600

640

DISPLAY MEMORY

EXTERNAL
GRAPHCS
DEVICE PERPHERAL

FIG. 6

A "SOIH

US 9,529,596 B2 Sheet 8 of 9 Dec. 27, 2016 U.S. Patent

NjOSSE OO}}d

ESTO W

8 "SDIH

US 9,529,596 B2 Sheet 9 Of 9 Dec. 27, 2016 U.S. Patent

US 9,529,596 B2
1.

METHOD AND APPARATUS FOR
SCHEDULING INSTRUCTIONS IN A
MULT-STRAND OUT OF ORDER
PROCESSOR WITH INSTRUCTION
SYNCHRONIZATION BITS AND

SCOREBOARD BITS

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

TECHNICAL FIELD

Embodiments relate generally to the field of computing,
and more particularly to methods, systems, and apparatuses
for the scheduling of instructions in a multi-strand out-of
order processor.

BACKGROUND

The Subject matter discussed in the background section
should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The Subject matter in the background section merely repre
sents different approaches, which in and of themselves may
also correspond to disclosed embodiments.

Within a computer processor, Such as a central processing
unit (CPU), various operations or stages must be performed
for the CPU to perform any beneficial task. Within the CPU,
the concept of an instruction fetch corresponds to the
operation of retrieving an instruction from program memory
communicatively interfaced with the CPU so that it may
undergo further processing (e.g., instruction decode, instruc
tion execute, and write back of the results). Each of these
operations consume time or CPU clock cycles, and thus,
inhibit speed and efficiency of the processor.
The concepts of pipelining and SuperScalar CPU process

ing thus implement what is known in the art as Instruction
Level Parallelism (ILP) within a single processor or proces
sor core to enable faster CPU throughput of instructions than
would otherwise be possible at any given clock rate. One of
the simplest methods used to accomplish increased paral
lelism is to begin the first steps of instruction fetching and
decoding before the prior instruction finishes executing
resulting in a pipeline of instructions for processing.
Increased parallelism may also be attained through multiple
functional units to simultaneously perform multiple “fetch'
operations which are then placed into a pipeline Such that an
instruction is always available for an execution cycle. In
Such a way, an opportunity to execute an instruction less
likely to be wasted due to having to wait for an instruction
to be fetched.
As the complexity and redundancy of functional units

increases, so does the overhead penalty for managing the
increased instruction level parallelism of the CPU. When the
processor performs a simple fetch, decode, execute, and
write back cycle in a continuous sequential cycle, there is no
worry of dependency on a preceding or Subsequent state

10

15

25

30

35

40

45

50

55

60

65

2
ment. Any change required will have already been processed
(e.g., executed and written back) such that any data depen
dency is already satisfied by the time an otherwise depen
dent instruction seeks the data. For example, if a second
instruction depends upon the result of a first instruction, that
result is assured to be available in a simple and sequential
fetch, decode, execute, and write back cycle as the Subse
quent instruction cannot be “fetched until the prior instruc
tion is “executed, causing the change, and “written back.”
making the change available.

Thus it can be plainly seen that implementing instruction
level parallelism within a CPU presents a risk that a subse
quent instruction may potentially be “fetched' and presented
for execution before the first instruction is executed and
“written back.” If the second instruction depends upon the
first, dependency is violated. Other dependency types exist
as well besides the data dependency example set forth
above, such as anti-dependency, control dependency, and
output dependency.

Scoreboarding implements a scheduling mechanism by
which dependency violations can be avoided (e.g., via waits,
stalls, etc.) which would otherwise result in “hazards” or
incorrectly processed data, instruction, etc.

Previously known mechanisms allow for instruction level
parallelism of the CPU but enforce a requirement that fetch
is performed in-order and thus, the extent of instruction level
parallelism is so limited. Even where SuperScalar processors
permit out-of-order execution, the extent of instruction level
parallelism remains constrained to in-order fetch mecha
nisms and a correspondingly limited scheduling window.
The present state of the art may therefore benefit from

techniques, systems, methods, and apparatuses for the
scheduling of instructions in a multi-strand out-of-order
processor as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not
by way of limitation, and will be more fully understood with
reference to the following detailed description when con
sidered in connection with the figures in which:

FIG. 1 depicts an exemplary architecture for a prior art
fetch operation in a central processor units (CPUs) instruc
tion fetch unit which lacks instruction level parallelism;

FIG. 2A depicts an exemplary architecture for the sched
uling of instructions in a multi-strand out-of-order processor
in accordance with which embodiments may operate;

FIG. 2B depicts an exemplary architecture of a multi
Strand out-of-order processor in accordance with which
embodiments may operate;

FIG.3 depicts an exemplary data structure and instruction
format of an instruction having synchronization bits in
accordance with which embodiments may operate;

FIG. 4 is a flow diagram illustrating a method for the
scheduling of instructions in a Multi-Strand Out-Of-Order
Processor in accordance with disclosed embodiments;

FIG. 5 illustrates a diagrammatic representation of a
machine having a multi-strand out-of-order processor in the
exemplary form of a computer system, in accordance with
one embodiment;

FIG. 6 is a block diagram of a computer system according
to one embodiment;

FIG. 7 is a block diagram of a computer system according
to one embodiment; and

US 9,529,596 B2
3

FIG. 8 is a block diagram of a computer system according
to one embodiment.

DETAILED DESCRIPTION

Described herein are systems, methods, and apparatuses
for the scheduling of instructions in a multi-strand out-of
order processor. For example, disclosed mechanisms include
interleaving or braiding “strands' (also known as “braids')
having instruction therein to form a single program fragment
from multiple inter-dependent Strands in an out-of-order
code fetch mechanism.

For example, in accordance with one embodiment, a
system for scheduling instructions in a multi-strand out-of
order processor includes a binary translator to generate a
multi-strand representation of a sequential program listing,
in which the generated multi-strand representation includes
a plurality of interdependent strands, each of the plurality of
interdependent Strands having operand synchronization bits.
In Such an embodiment, the system further includes an
out-of-order instruction fetch unit to retrieve the plurality of
interdependent strands for execution and an instruction
scheduling unit to schedule the execution of the plurality of
interdependent strands based at least in part on the operand
synchronization bits. Such a system may further include, for
example, multiple execution units for executing multiple
fetched interdependent Strands in parallel. Subject to appro
priate scheduling to resolve dependencies between any of
the plurality of strands.

In another embodiment, an apparatus for scheduling
instructions in a multi-strand out-of-order processor
includes an out-of-order instruction fetch unit to retrieve a
plurality of interdependent instructions for execution from a
multi-strand representation of a sequential program listing:
an instruction scheduling unit to schedule the execution of
the plurality of interdependent instructions based at least in
part on operand synchronization bits encoded within each of
the plurality of interdependent instructions; and a plurality
of execution units to execute at least a subset of the plurality
of interdependent instructions in parallel.

In the following description, numerous specific details are
set forth Such as examples of specific systems, languages,
components, etc., in order to provide a thorough understand
ing of the various embodiments. It will be apparent, how
ever, to one skilled in the art that these specific details need
not be employed to practice the embodiments disclosed
herein. In other instances, well known materials or methods
have not been described in detail in order to avoid unnec
essarily obscuring the disclosed embodiments.

In addition to various hardware components depicted in
the figures and described herein, embodiments further
include various operations which are described below. The
operations described in accordance with Such embodiments
may be performed by hardware components or may be
embodied in machine-executable instructions, which may be
used to cause a general-purpose or special-purpose proces
Sor programmed with the instructions to perform the opera
tions. Alternatively, the operations may be performed by a
combination of hardware and software.

Embodiments also relate to an apparatus for performing
the operations disclosed herein. This apparatus may be
specially constructed for the required purposes, or it may be
a general purpose computer selectively activated or recon
figured by a computer program stored in the computer. Such
a computer program may be stored in a computer readable
storage medium, Such as, but not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag

10

15

25

30

35

40

45

50

55

60

65

4
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.
The algorithms and displays presented herein are not

inherently related to any particular computer or other appa
ratus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will appear as set forth in the
description below. In addition, embodiments are not
described with reference to any particular programming
language. It will be appreciated that a variety of program
ming languages may be used to implement the teachings of
the embodiments as described herein.

Embodiments may be provided as a computer program
product, or software, that may include a machine-readable
medium having stored thereon instructions, which may be
used to program a computer system (or other electronic
devices) to perform a process according to the disclosed
embodiments. A machine-readable medium includes any
mechanism for storing or transmitting information in a form
readable by a machine (e.g., a computer). For example, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium (e.g., read only memory (“ROM), random access
memory (RAM), magnetic disk storage media, optical
storage media, flash memory devices, etc.), a machine (e.g.,
computer) readable transmission medium (electrical, opti
cal, acoustical), etc.
Any of the disclosed embodiments may be used alone or

together with one another in any combination. Although
various embodiments may have been partially motivated by
deficiencies with conventional techniques and approaches,
some of which are described or alluded to within the
specification, the embodiments need not necessarily address
or solve any of these deficiencies, but rather, may address
only some of the deficiencies, address none of the deficien
cies, or be directed toward different deficiencies and prob
lems where are not directly discussed.

FIG. 1 depicts an exemplary architecture 100 for a prior
art fetch operation in a central processor units (CPUs)
instruction fetch unit 120 which lacks instruction level
parallelism.

Depicted is an instruction fetch unit 120 which takes a
program counter 115, and presents the program counter to a
memory 105 as an address via an interconnecting memory
bus 110. The presentment triggers/signals a read cycle on the
memory 105 and latches the data output from the memory
105 to the instruction register 125.
The instruction fetch unit 120 further handles an incre

ment of the program counter 115 to get the next instruction
(via adder 130), and the addition of a relative jump address
(via adder 131) for program counter 115 relative jumps, or
the selection 135 and substitution of a branch address for
direct branches.
The program counter 115 will always pull the next

instruction in-order. While more Sophisticated pipelining
buffers may be utilized or even superscalar architecture to
provide redundancy of such fetch operations, prior art archi
tecture 100 is nevertheless constrained by an in-order fetch
based mechanism insomuch as the program counter 115 will
always fetch the “next instruction' on increment.

FIG. 2A depicts an exemplary architecture 200 for the
scheduling of instructions in a multi-strand out-of-order

US 9,529,596 B2
5

processor in accordance with which embodiments may
operate. In particular, an exemplary architecture for data
dependencies processing 200 is shown in additional detail in
which the in-order fetch and out-of-order execution capa
bilities of previously known architectures is overcome in a
multi-strand out-of-order processor architecture which
improves instruction level parallelism and correspondingly
expands an overall instruction scheduling window.

In accordance with one embodiment, a combined soft
ware/hardware solution for encoding and detecting register
dependencies 230 and 225 between instructions in a multi
strand representation 299 generated by a binary translator
(BT) from the original sequential program is described. The
multi-strand representation 299 provides the capability to
overcome the abovementioned in-order fetch limitations to
provide enhanced instruction level parallelism.
A strand (e.g., 205, 210, and 215) is a sequence of

instructions predominantly data dependent on each other
that is arranged by a binary translator at program compila
tion time. As depicted, strand 205 includes instructions 220,
221, 222, and 223. Strand 210 includes instructions 211,
212, 213, and 250. Strand 215 includes instructions 224,
227, 226, and 228. The true dependency 230 depicted at
instruction 222 of strand 205 and represented by “add
r2–0x1, r3” is resolved using the availability bit for register
r2. The output dependency 225 depicted at instruction 224 of
strand 215 and represented by “div ro-ra, 0x1' is resolved
using the busy bit for register ro. The anti-dependency 235
depicted at instruction 226 of strand 215 and represented by
“sub ro–Sr1, 0x2' is resolved using a Synchronization Bit
(SB) appended to register r1, in accordance with the instruc
tion format incorporating such Synchronization Bits as
described herein. The instruction format having synchroni
zation bits is described in additional detail below in the
discussion of FIG. 3.

FIG. 2B depicts an exemplary architecture 201 of a
multi-strand out-of-order processor 298 in accordance with
which embodiments may operate. In one embodiment, a
multi-strand out-of-order processor 298 is a machine that
processes multiple strands 205, 210, 215 (and instruction
pointers) in parallel so that instructions (e.g. 220, 211, 224,
etc.) from different Strands are executed out of program
order. Additionally, an out-of-order instruction fetch unit
297 retrieves or fetches interdependent instructions, strands,
braids, etc., at least partially out of order. For example,
interdependent instructions maybe stored in a sequential
order and the out-of-order instruction fetch unit 297 enables
fetch and retrieval of the interdependent instructions for
execution in an order which is different from the order in
which they are stored.

In accordance with one embodiment, a multi-strand out
of-order processor 298 consists of several clusters 260, 261,
262, each cluster in turn processes a portion of the Strands
205, 210, 215 via a set of execution units 265 for the
respective cluster. Results 270 produced in one cluster (e.g.,
results 270 from cluster 260) can be transferred to another
cluster (e.g., to either 261 or 262) via a set of wires referred
to as inter-cluster data network 285. Each cluster 261-262
has an Instruction Scheduler Unit (ISU) 266 that is aimed at
correct handling of data dependencies (e.g., 225, 230, 235
from FIG. 2A) among instructions of the same strand (e.g.,
output dependency 225 of strand 215) as well as dependen
cies amongst the different Strands, known as cross-strand
data dependencies (e.g., such as dependencies 230 and 235).
Within each ISU 266 is a scoreboard 280 and tag compari
son logic 281. Registers 290 are additionally set forth within
each of the depicted clusters 261-262.

10

15

25

30

35

40

45

50

55

60

65

6
Strand accumulators 271, 272, 273, 274, 275, and 276

operate in conjunction with the common registers 290. Each
strand accumulator 271-276 is dedicated to one strand only
and is addressed by the strand identifier (strand ID). For
example, the strand 205 within cluster 260 may be uniquely
correlated to strand accumulator 271 via the strand ID 205A
for Strand 205.

In accordance with the disclosed embodiments, a syn
chronization bit (SB) is a bit appended to an operand address
of an instruction to Support correct handling of data anti
dependency among dependent instructions (e.g., anti-depen
dent instruction 226 of FIG. 2A). In accordance with the
disclosed embodiments, the synchronization bit cannot be
appended to an operand address that is pointing to a strand
accumulator 271-276. In such an embodiment, a rule may
implement a restriction or hardware logic may enforce Such
a restriction.
An instruction that is data dependent upon another

instruction through a register 290 is referred to as a con
Sumer instruction or consumer of that register. For example,
dependencies 225 and 230 depict dependency through a
register 290. The instruction that resolves a data dependency
through a register 290 thus allowing issuing of a consumer
is referred to as a producer instruction or producer of that
register 290. A consumer is considered to be ready if all data
dependencies of its operands are resolved. A consumer can
be in the same Strand (e.g., Such as dependency 225) as well
as in different strand with respect to the producer (e.g., Such
as dependency 230).
A scoreboard 280 is a hardware table containing the

instant status of each register in the machine implementing
the multi-strand out-of-order processor 298, each register
providing, indicating, or registering the availability of that
respective register for its consumers. In one embodiment,
scoreboard 280 operates in conjunction with tag comparison
logic 281. As depicted, the scoreboard 280 and tag com
parison logic 281 reside within each ISU 266 of each cluster
260-262.

In accordance with one embodiment, synchronization of
strands 205, 210, 215 through registers is performed via the
strand-based architecture 200 and consists of both software
(SW) and hardware (HW) components operating in accord
to implement the disclosed methodologies. In one embodi
ment, a software component includes a modified instruction
set architecture (ISA) having functionality therein for adding
synchronization bits to operands and further having therein
functionality for the arrangement of instructions into Strands
205, 210, 215 at compilation time. In one embodiment, the
arrangement of instructions into strands 205, 210, 215 at
compilation time is performed by a binary translator.
The out-of-order instruction fetch unit 297 of the multi

strand out-of-order processor 298 expands the available
scheduling window size of the processor 298 over previ
ously known mechanisms by, for example, permitting the
retrieval (fetch) of a critical instruction which is not accu
rately predicted by a branch prediction algorithm, without
requiring all sequentially preceding instructions to be
fetched. For example, in-order fetch mechanisms limit the
scheduling window size of a CPU because a critical instruc
tion cannot be fetched into the CPU, and therefore cannot be
considered for execution, until an entire continuous
sequence of previous instructions in the executing program
is also fetched and stored into the CPUs buffers or queues.
In-order fetch therefore requires that all control flow
changes in a sequence of instructions for the executing
program be correctly predicted by a branch prediction
mechanism or face a penalty manifested as inefficiency.

US 9,529,596 B2
7

Thus, the ability of CPUs with in-order fetch to exploit ILP
is limited by the branch prediction accuracy, the size of CPU
buffers or queues, and the speed of fetching a continuous
sequence of instructions. Errors in branch prediction trig
gered by flow control of an executing program therefore lead
to inefficiency bottlenecks.

Implementing an out-of-order fetch (e.g., via out-of-order
fetch unit 297) allows an instruction to be fetched to the
multi-strand out-of-order processor 298 and considered for
execution earlier than a previous instruction in the pro
gram's sequential listing of instructions. It is therefore
unnecessary to delay program execution while an entire
continuous sequence of previous instructions in the execut
ing program is also fetched and stored into the CPUs buffers
or queues leading up to the necessary instruction, such as is
required with previously known mechanisms implementing
in-order instruction fetch. Further still, it is not necessary for
the multi-strand out-of-order processor 298 to have buffers
large enough to keep all the previous instructions in the
sequence, and the branch prediction algorithm need not
correctly predict each branch in the sequence. The out-of
order fetch unit 297 therefore increases the scheduling
window size of the multi-strand out-of-order processor 298
and thus results in a greater exploitation of Instruction Level
Parallelism (ILP).

In accordance with one embodiment, the out-of-order
fetch architecture of the multi-strand out-of-order processor
298 constitutes a multi-strand architecture in which the
compiler splits a program on the instruction level into two or
more strands or braids, such that each Strand has a corre
sponding hardware program counter. While each program
counter performs fetch sequentially, several program coun
ters operating simultaneously and independently of one
another are capable to fetch instructions out of order with
regard to a program's sequential listing or the programs
provided order of instructions. If the compiler places a
critical instruction at the beginning of one of the strands, that
instruction will likely be fetched and considered for execu
tion earlier than instructions placed deep in other strands
which precede the critical instruction in the original pro
gram.

FIG.3 depicts an exemplary data structure and instruction
format 300 of an instruction 350 having synchronization bits
(315,325, and 335) in accordance with which embodiments
may operate.
To enable synchronization of strands 205, 210, 215

through registers 290, a separate bit, specifically the syn
chronization bit or “SB, is appended to each source and
destination operand in the object code as shown. The resul
tant format thus includes an exemplary instruction 350
within a strand 301 having op-code 305, source operand 1
address 310, a synchronization bit 315 for the source oper
and 1, source operand 2 address 320, a synchronization bit
325 for the source operand 2, a destination operand address
330, and a synchronization bit 335 for the destination
operand. As shown, multiple instructions 350 . . .359 may
be present within the strand 301, each incorporating a
similar format as that depicted in detail with regard to
instruction 350.

In one embodiment, a data anti-dependency (e.g., Such as
anti-dependency 235 at FIG. 2A) is explicitly encoded
between an instruction using a value in a register 290 and a
second instruction updating the register with a new value.
For example, a binary translator sets a synchronization bit of
a producer Source operand to indicate that the producer
Source operand is the last use of the data item causing the
anti-dependency. The binary translator further sets the syn

10

15

25

30

35

40

45

50

55

60

65

8
chronization bit of the consumer destination operand to
indicate that the instruction must wait until all uses of the
previous data item are completed, thus guiding the HW
scheduling logic to execute the consumer after the producer.
While generating strands 301 and 205, 210, 215 of FIG.

2A, the binary translator adheres to several conventions or
rules that guarantee correct Scheduling of strands by the
hardware scheduling logic.

In accordance with one embodiment: a first rule prohibits
race conditions among instructions belonging to different
Strands producing the same destination register, and a sec
ond rule prohibits race conditions among instructions
belonging to different Strands reading the same source
register with a synchronization bit.

In one embodiment, so as to comply with the first two
rules, the binary translator ensures that all such instructions
are required to be assigned to the same strand or the
execution order for Such instructions must be explicitly set
through additional data or control dependency. Some situ
ations may or may not be treated as race conditions depend
ing on the program algorithm. For example, two consumers
in two different Strands having the same source operand
address must be prohibited by the binary translator when the
program algorithm prescribes that they are dependent on two
corresponding producers with the same destination operand
address within another Strand. If the consumers according to
the program algorithm depend on the same producer, then
there is no race condition.

In accordance with one embodiment: a third rule prohibits
an instruction from having the same source and destination
operand addresses, each with a synchronization bit. In Such
an embodiment, the binary translator prohibits the situation
of the third rule as it leads to an ambiguous situation that
can’t be handled by the scheduling hardware.

In one embodiment, a hardware component implements
the aforementioned scoreboard 280 of FIG. 2B and further
implements tag comparison logic 281. Scoreboard 280 per
mits status, check, determination, and assessment of operand
readiness for an instruction, thus resolving data dependen
cies. In accordance with one embodiment, scoreboard 280
and tag comparison logic 281 is configured to allow fetch
ing, issuing and executing instructions from different Strands
301 (and 205, 210, 215 of FIG. 2A) out-of-order in accor
dance with the implementation of a multi-strand out-of
order processor 298 as described herein. In such an embodi
ment, Scoreboard 280 stores status bits for each register 290
and strand accumulator 271-276 in a multi-strand out-of
order processor 298 and every instruction looks up the
scoreboard 280 to determine if its requisite operands are
ready. In one embodiment, there are two status bits for each
register: an availability bit and a busy bit. In Such an
embodiment, the strand accumulators 271-276 have only
one status bit each, designated as a busy bit. In accordance
with one embodiment, the availability bit of a strand accu
mulator 271-276 is pre-initialized (“set as a default) and
when set, indicates that a register value has been written to
a register file (RF) by another instruction and is available for
reading. The busy bit, if set, indicates that an instruction is
in a processor pipeline updating a register value that has
been issued by instruction scheduler unit 266, but has not, as
of yet, written new register value. In one embodiment, the
status bits of the scoreboard are updated after issuing the
instruction.

If an instruction has been identified as ready and is issued
from the instruction scheduler unit 266, the instruction
scheduler unit 266 sets the busy bit for the destination
operand and the source operand with a synchronization bit

US 9,529,596 B2

(315,325, and 335). If an instruction completes its execution
and writes the destination register in the register file, the
corresponding availability bit is set and the busy bit is
cleared. A synchronization bit (315 or 325) appended to a
source operand address (310 or 320) of an instruction 350
indicates that both status bits must be cleared after reading
the operand value from the register file. A synchronization
bit 335 appended to the destination operand address 330 of
an instruction 350 indicates that the instruction must not be
issued until both status bits are cleared. An instruction
having the same source and destination operand addresses,
both with synchronization bits, is prohibited according to the
third rule set forth above, as the instruction 350 cannot be
issued requiring the corresponding availability bit to be set
and cleared simultaneously, without an ambiguous result.

In accordance with one embodiment, data dependencies
are resolved thus allowing an instruction to be issued, by
checking the status bits of the scoreboard 280 for the
operands of instructions 350 residing in an instruction
scheduler unit 266 as illustrated by FIG. 2B.

In accordance with one embodiment, true dependencies
(e.g., 230) are resolved thus allowing an instruction to be
issued, by setting the availability bit and clearing the busy
bit corresponding to the destination operand of the producer
after writing a produced register value into the register file.
Thus, the dependency is resolved if the source operand of a
consumer has its availability bit set and its busy bit cleared.

In accordance with one embodiment, so as to resolve an
anti-dependency (e.g., 235), synchronization bits appended
by a binary translator at program compilation time to the
Source operand of the producer and the destination operand
of the consumer are used. After reading the register value
from the register file for the source operand with a synchro
nization bit by the producer, the corresponding availability
bit and busy bit of the operand are cleared. Thus the
dependency is resolved if the destination operand with the
synchronization bit of the consumer has its availability and
busy bits cleared.

In accordance with one embodiment, so as to resolve an
output dependency (e.g., 225), the busy bit corresponding to
the destination operand of the producer is set immediately
after issuing the instruction. Thus the dependency is
resolved if the busy bit corresponding to the destination
operand of the consumer is cleared. Each instruction reads
the scoreboard 280 status to determine the status bits for
every operand only once during its allocation into the
instruction scheduler unit 266.

In accordance with one embodiment, tag comparison
logic 281 monitors the register values being generated by
instructions and detects the readiness of instructions waiting
in the instruction scheduler unit 266. After a consumer has
read the scoreboard 280 but its operand has not yet been
identified as ready (e.g., a producer hasn’t yet been issued or
completed thus it hasn’t yet updated the corresponding
status bits), its readiness will be detected by the tag com
parison logic 281 which monitors register values generated
by instructions.

In accordance with one embodiment, tag comparison
logic 281 implements a Content Addressable Memory
(CAM) that compares operand addresses of producers being
executed with operand addresses of consumers residing in
the instruction scheduler unit 266. The CAM performs four
types of operand address comparison: 1) destination address
of the producer with source address of the consumer, 2)
source address (310, 320) with synchronization bit (315.
325) of the producer with destination operand address (330)
with synchronization bit (335) of the consumer, 3) destina

10

15

25

30

35

40

45

50

55

60

65

10
tion operand address (330) of the producer with destination
operand address (330) of the consumer, and 4) source
address (310,320) with synchronization bit (315,325) of the
producer with source address (310,320) of the consumer. In
accordance with one embodiment, comparison types 3) and
4) are performed only if both the producer and the consumer
belong to the same strand (e.g., are both instructions within
one strand, such as instructions 350 and 359 within exem
plary strand 301).

In one embodiment, operand addresses of strand accumu
lators 271-276 are compared if the consumer and the pro
ducer (e.g., instructions 350 and 359 by way of example)
belong to the same strand 301 as well. In one embodiment,
the tag comparison logic 281 implemented CAM is respon
sible not only for wakeup of dependent consumers that
reside in instruction scheduler unit 266, thus substituting the
functionality of availability bits, but the CAM is additionally
responsible for stalling the consumers in the instruction
scheduler unit 266, thus substituting the functionality of the
busy bits. Comparison of source operand address (310 and
320) of the consumer with source operand address (310 and
320) of another consumer being executed belonging to the
same strand and having synchronization bit (315. 325) is
required in order to identify relevant producer and to resolve
a true dependency (e.g., 230) if the consumers read the
Source operand value from bypass wires. In such an embodi
ment, either the CAM performs the comparison or the binary
translator must properly arrange a corresponding strand,
thus delaying the second consumer in order to prevent Such
a situation.
As CPU architecture development trends shift toward

Software/hardware co-designed machines that take advan
tage of binary translation capabilities and are further enabled
to more deeply exploit instruction level parallelism by
looking up a wider instruction scheduling window than
previously known architectures support, more efficient ILP
based architectures may benefit from incorporating static
instruction scheduling to provide more efficient utilization of
the available execution units than with dynamic instruction
scheduling based on, for example, Tomasulo's algorithm.
One approach to providing a larger instruction window,

such as that which is enabled by the techniques and meth
odologies described herein, is splitting the initial program
control flow graph into fragments (e.g., Strands or braids as
depicted at 205, 210, 215 of FIG. 2A) executing on a
plurality of processing nodes (e.g., as individual threads of
execution in, for example, a Multiscalar architecture) Such
as the clusters 260-262 depicted at FIG. 2B. It is possible for
several strands (braids) to occupy the same cluster 260-262.
So as to support data synchronization between the

threads, each thread is annotated with the list of registers that
it may produce. This list is used to reset the scoreboard’s 280
state of the corresponding registers 290 so that the consum
ers are caused to wait, stall, or delay, for these registers 290
to be produced. Another approach implies partial or full
delegation of the instruction scheduling function from the
hardware dynamic scheduler to Software, thus simplifying
the scheduling hardware and providing more efficient utili
zation of multiple execution channels. However, where
previously known mechanisms require in-order fetch,
decode and register rename to be maintained, which limits
the instruction window size at the same level as the out-of
order SuperScalar machines, the methods and techniques
described herein permit a larger scheduling window by fully
adopting an out-of-order instruction fetch unit 297, thus
overcoming the prior limitations.

US 9,529,596 B2
11

Unlike previously known mechanisms which describe the
synchronization of streams of wide instructions using spe
cial synchronization operations where each stream is
executed by a separate processor of single-chip multipro
cessor System, the mechanisms and techniques described
herein provide for the synchronization of interdependent one
instruction wide streams (strands, braids) within one pro
cessor core involving synchronization bits appended to
instruction operand addresses. Unlike previously known
multiscalar architectures, the mechanisms and techniques
described herein maintain program order on the level of
single instructions, and not on the basis of entire strands.
Because program order is maintained on the level of single
instructions, the register synchronization information is
fetched in an order different from the program order, thus
providing the ability to interleave instructions from a single
program fragment in multiple strands. Strands (or “braids')
having instruction therein are thus interleaved, interwoven,
or braided, to form a single program fragment from multiple
inter-dependent strands in an out-of-order code fetch mecha
nism. Previously known mechanisms assume that threads
are spawned in the program order, and a newly spawned
thread receives the list of registers that need to be provided
by the previous threads. Conversely, no such requirement
exists to practice the disclosed embodiments as set forth
herein. And unlike previously known mechanisms, the dis
closed mechanisms and techniques do not require in-order
fetch, but to the contrary, the disclosed mechanisms adopt an
out-of-order code fetch, thus enabling a larger out-of-order
window of Scheduling, and thus, much deeper Instruction
Level Parallelism (ILP).

FIG. 4 is a flow diagram illustrating a method for the
scheduling of instructions in a multi-strand out-of-order
processor in accordance with disclosed embodiments.
Method 400 may be performed by processing logic that may
include hardware (e.g., circuitry, dedicated logic, program
mable logic, microcode, etc.), software (e.g., instructions
run on a processing device to perform the methodologies
and operations described herein, Such as the scheduling of
instructions in a multi-strand out-of-order processor to
enhance ILP. In one embodiment, method 400 is performed
by an integrated circuit or a system having an integrated
circuit therein, such as the multi-strand out-of-order proces
sor 298 architecture depicted by FIG. 2B. Some of the
blocks and/or operations of method 400 are optional in
accordance with certain embodiments. The numbering of the
blocks presented is for the sake of clarity and is not intended
to prescribe an order of operations in which the various
blocks must occur.

Method 400 begins with processing logic for fetching a
plurality of interdependent instructions, strands, or braids for
execution, wherein the plurality of interdependent instruc
tions, strands, or braids are fetched out of order (block 405).

At block 410, processing logic determines a dependency
exists between a first interdependent instruction and a sec
ond interdependent instruction.

At block 415, processing logic resolves a data depen
dency by checking status bits in a scoreboard for operands
associated with the first and second interdependent instruc
tions.

At block 420, processing logic resolves a true dependency
by setting the availability bit and clearing the busy bit
corresponding to a destination operand of a producer after
writing a produced register value.

At block 425, processing logic resolves an anti-depen
dency by reading a register value for a source operand with

5

10

15

25

30

35

40

45

50

55

60

65

12
a synchronization bit and clearing a corresponding avail
ability bit and busy bit for the source operand.
At block 430, processing logic resolves an output depen

dency by setting the busy bit corresponding to the destina
tion operand of the producer immediately after issuing the
instruction.
At block 435, processing logic monitors register values

being generated by instructions.
At block 440, processing logic detects the readiness of

instructions waiting in an instruction scheduler unit based on
a scoreboard status.
At block 445, processing logic compares operand

addresses of producers being executed with operand
addresses of consumers residing in the instruction scheduler
unit.
At block 450, processing logic schedules the plurality of

interdependent instructions for execution Subject to detect
ing the readiness and comparisons of operands.
At block 455, processing logic executes at least a Subset

of the plurality of interdependent instructions in parallel
Subject to the scheduling.

FIG. 5 illustrates a diagrammatic representation of a
machine 500 having a multi-strand out-of-order processor in
the exemplary form of a computer system, in accordance
with one embodiment, within which a set of instructions, for
causing the machine/computer system 500 to perform any
one or more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines in a Local
Area Network (LAN), an intranet, an extranet, or the Inter
net. The machine may operate in the capacity of a server or
a client machine in a client-server network environment, as
a peer machine in a peer-to-peer (or distributed) network
environment, as a server or series of servers within an
on-demand service environment. Certain embodiments of
the machine may be in the form of a personal computer (PC),
a tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, Switch or bridge, computing system, or any
machine capable of executing a set of instructions (sequen
tial or otherwise) that specify actions to be taken by that
machine. Further, while only a single machine is illustrated,
the term “machine' shall also be taken to include any
collection of machines (e.g., computers) that individually or
jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.
The exemplary computer system 500 includes a multi

strand out-of-order processor 502, a main memory 504 (e.g.,
read-only memory (ROM), flash memory, dynamic random
access memory (DRAM) such as synchronous DRAM
(SDRAM) or Rambus DRAM (RDRAM), etc., static
memory Such as flash memory, static random access
memory (SRAM), volatile but high-data rate RAM, etc.),
and a secondary memory 518 (e.g., a persistent storage
device including hard disk drives), which communicate with
each other via a bus 530. Main memory 504 includes binary
translator 524 to provide a program representation from an
original sequential program listing for processing by the
multi-strand out-of-order processor 502. The binary trans
lator 524 operates in conjunction with the out-of-order fetch
unit 525 and processing logic 526 of the multi-strand
out-of-order processor 502 to perform the methodologies
discussed herein.

Multi-strand out-of-order processor 502 incorporates the
capabilities of one or more general-purpose processing
devices such as a microprocessor, central processing unit, or

US 9,529,596 B2
13

the like. Multi-strand out-of-order processor 502 is config
ured to fetch instruction strands via out-of-order fetch unit
525 and execute the fetched instruction strands via process
ing logic 526 to perform the operations and methodologies
discussed herein.
The computer system 500 may further include a network

interface card 508. The computer system 500 also may
include a user interface 510 (such as a video display unit, a
liquid crystal display (LCD), or a cathode ray tube (CRT)),
an alphanumeric input device 512 (e.g., a keyboard), a
cursor control device 514 (e.g., a mouse), and a signal
generation device 516 (e.g., an integrated speaker). The
computer system 500 may further include peripheral device
536 (e.g., wireless or wired communication devices,
memory devices, storage devices, audio processing devices,
Video processing devices, etc.).
The secondary memory 518 may include a non-transitory

machine-readable or computer readable storage medium 531
on which is stored one or more sets of instructions (e.g.,
software 522) embodying any one or more of the method
ologies or functions described herein. The software 522 may
also reside, completely or at least partially, within the main
memory 504 and/or within the multi-strand out-of-order
processor 502 during execution thereof by the computer
system 500, the main memory 504 and the multi-strand
out-of-order processor 502 also constituting machine-read
able storage media. The software 522 may further be trans
mitted or received over a network 520 via the network
interface card 508.

Referring now to FIG. 6, shown is a block diagram of a
system 600 in accordance with one embodiment of the
present invention. The system 600 may include one or more
processors 610, 615, which are coupled to graphics memory
controller hub (GMCH) 620. The optional nature of addi
tional processors 615 is denoted in FIG. 6 with broken lines.

Each processor 610,615 may be some version of the
processor 500. However, it should be noted that it is unlikely
that integrated graphics logic and integrated memory control
units would exist in the processors 610,615. FIG. 6 illus
trates that the GMCH 620 may be coupled to a memory 640
that may be, for example, a dynamic random access memory
(DRAM). The DRAM may, for at least one embodiment, be
associated with a non-volatile cache.
The GMCH 620 may be a chipset, or a portion of a

chipset. The GMCH 620 may communicate with the pro
cessor(s) 610, 615 and control interaction between the
processor(s) 610, 615 and memory 640. The GMCH 620
may also act as an accelerated bus interface between the
processor(s) 610, 615 and other elements of the system 600.
For at least one embodiment, the GMCH 620 communicates
with the processor(s) 610, 615 via a multi-drop bus, such as
a frontside bus (FSB) 695.

Furthermore, GMCH 620 is coupled to a display 645
(such as a flat panel display). GMCH 620 may include an
integrated graphics accelerator. GMCH 620 is further
coupled to an input/output (I/O) controller hub (ICH) 650,
which may be used to couple various peripheral devices to
system 600. Shown for example in the embodiment of FIG.
6 is an external graphics device 660, which may be a discrete
graphics device coupled to ICH 650, along with another
peripheral device 670.

Alternatively, additional or different processors may also
be present in the system 600. For example, additional
processor(s) 615 may include additional processors(s) that
are the same as processor 610, additional processor(s) that
are heterogeneous or asymmetric to processor 610, accel
erators (such as, e.g., graphics accelerators or digital signal

5

10

15

25

30

35

40

45

50

55

60

65

14
processing (DSP) units), field programmable gate arrays, or
any other processor. There can be a variety of differences
between the physical resources 610, 615 in terms of a
spectrum of metrics of merit including architectural, micro
architectural, thermal, power consumption characteristics,
and the like. These differences may effectively manifest
themselves as asymmetry and heterogeneity amongst the
processors 610, 615. For at least one embodiment, the
various processors 610, 615 may reside in the same die
package.

Referring now to FIG. 7, shown is a block diagram of a
second system 700 in accordance with an embodiment of the
present invention. As shown in FIG. 7, multiprocessor
system 700 is a point-to-point interconnect system, and
includes a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. Each of
processors 770 and 780 may be some version of the pro
cessor 500 as one or more of the processors 610,615.

While shown with only two processors 770, 780, it is to
be understood that the scope of the present invention is not
so limited. In other embodiments, one or more additional
processors may be present in a given processor.

Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Proces
sor 770 also includes as part of its bus controller units
point-to-point (P-P) interfaces 776 and 778; similarly, sec
ond processor 780 includes P-P interfaces 786 and 788.
Processors 770, 780 may exchange information via a point
to-point (P-P) interface 750 using P-P interface circuits 778,
788. As shown in FIG. 7, IMCs 772 and 782 couple the
processors to respective memories, namely a memory 732
and a memory 734, which may be portions of main memory
locally attached to the respective processors.

Processors 770, 780 may each exchange information with
a chipset 790 via individual P-P interfaces 752, 754 using
point to point interface circuits 776, 794, 786, 798. Chipset
790 may also exchange information with a high-perfor
mance graphics circuit 738 via a high-performance graphics
interface 739.
A shared cache (not shown) may be included in either

processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation I/O
interconnect bus, although the scope of the present invention
is not so limited.
As shown in FIG. 7, various I/O devices 714 may be

coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodi
ment, second bus 720 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 720 includ
ing, for example, a keyboard and/or mouse 722, communi
cation devices 727 and a storage unit 728 such as a disk drive
or other mass storage device which may include instruc
tions/code and data 730, in one embodiment. Further, an
audio I/O 724 may be coupled to second bus 720. Note that
other architectures are possible. For example, instead of the
point-to-point architecture of FIG. 7, a system may imple
ment a multi-drop bus or other such architecture.

Referring now to FIG. 8, shown is a block diagram of a
third system 800 in accordance with an embodiment of the
present invention. Like elements in FIGS. 7 and 8 bear like

US 9,529,596 B2
15

reference numerals, and certain aspects of FIG. 7 have been
omitted from FIG. 8 in order to avoid obscuring other
aspects of FIG. 8.

FIG. 8 illustrates that the processors 870, 880 may include
integrated memory and I/O control logic (“CL”) 872 and
882, respectively. For at least one embodiment, the CL 872,
882 may include integrated memory controller units such as
that described above in connection with FIG. 7. In addition.
CL 872, 882 may also include I/O control logic. FIG. 8
illustrates that not only are the memories 832, 834 coupled
to the CL 872, 882, but also that I/O devices 814 are also
coupled to the control logic 872, 882. Legacy I/O devices
815 are coupled to the chipset 890.

While the subject matter disclosed herein has been
described by way of example and in terms of the specific
embodiments, it is to be understood that the claimed
embodiments are not limited to the explicitly enumerated
embodiments disclosed. To the contrary, the disclosure is
intended to cover various modifications and similar arrange
ments as would be apparent to those skilled in the art.
Therefore, the scope of the appended claims should be
accorded the broadest interpretation so as to encompass all
Such modifications and similar arrangements. It is to be
understood that the above description is intended to be
illustrative, and not restrictive. Many other embodiments
will be apparent to those of skill in the art upon reading and
understanding the above description. The scope of the
disclosed subject matter is therefore to be determined in
reference to the appended claims, along with the full scope
of equivalents to which Such claims are entitled.

What is claimed is:
1. An apparatus comprising:
an out-of-order instruction fetch unit to retrieve a plurality

of dependent instructions for execution from a multi
strand representation of a sequential program listing:

a plurality of registers to store data;
an instruction scheduling unit to schedule the execution of

the plurality of dependent instructions based at least in
part on an operand synchronization bit encoded within
each of the plurality of dependent instructions for each
operand, wherein the instruction scheduling unit is to
include a scoreboard implemented via a hardware table,
the scoreboard is to contain a status of each of the
plurality of registers and is to indicate operand readi
ness for each of the plurality of dependent instructions
via an availability bit and a busy bit per register,
wherein when the availability bit for a register is set, it
is to indicate that the register has been written to and is
available for reading, and wherein when the busy bit for
the register is set, it is to indicate that an instruction that
has been issued by the instruction scheduling unit is
updating and not written a value in the register, and
wherein a synchronization bit for a source operand of
an instruction when set is to indicate that both the
availability bit and the busy bit for that source operand
are to be cleared after reading that source operand
value, a synchronization bit for a destination operand of
an instruction is to indicate that the instruction with the
destination operand is to not be issued until both the
availability bit and the busy bit for that destination
operand are cleared; and

a plurality of execution units to execute at least a Subset
of the plurality of dependent instructions in parallel.

2. The apparatus of claim 1, wherein the apparatus com
prises an integrated circuit implementing a multi-strand
out-of-order processor.

10

15

25

30

35

40

45

50

55

60

65

16
3. The apparatus of claim 1, wherein the plurality of
dependent instructions are to be stored in a sequential

order; and
wherein the out-of-order instruction fetch unit is to

retrieve the plurality of dependent instructions for
execution in an order which is different from the order
in which they are stored.

4. The apparatus of claim 1, wherein the plurality of
dependent instructions constitute a compiled multi-strand

representation of a sequential program listing.
5. The apparatus of claim 1, further comprising tag

comparison circuit to monitor a plurality of register values
generated by instructions executed via the plurality of
execution units and to further detect instruction readiness for
one or more of the plurality of dependent instructions
awaiting execution at the instruction scheduling unit.

6. The apparatus of claim 5, further comprising a Content
Addressable Memory (CAM), operable in conjunction with
the tag comparison circuit, to compare operand addresses of
producer type dependent instructions being executed with
operand addresses of consumer type dependent instructions
awaiting execution at the instruction scheduling unit,
wherein a producer type dependent instruction is an instruc
tion that resolves a data dependency through a register and
a consumer type dependent instruction is an instruction
considered to be ready when all data dependencies of its
operands are resolved.

7. The apparatus of claim 6, wherein the CAM is to
implement each of the following address comparisons:

1) a destination address of a producer type dependent
instruction is compared with a source address of a
consumer type dependent instruction;

2) a source address with an appended synchronization bit
of a producer type dependent instruction is compared
with a destination address with an appended synchro
nization bit of a consumer type dependent instruction;

3) a destination address of a producer type dependent
instruction is compared with a destination address of a
consumer type dependent instruction; and

4) a source address with an appended synchronization bit
of a producer type dependent instruction is compared
with a source address of a consumer type dependent
instruction.

8. The apparatus of claim 1, further comprising a plurality
of Strand accumulators, each to provide a register, wherein
each strand accumulator is uniquely dedicated to no more
than one strand and addressed by a strand identifier.

9. The apparatus of claim 8, wherein the scoreboard is to
operate in conjunction with tag comparison circuit to moni
tor a plurality of register values being generated by instruc
tions executed via the plurality of execution units and to
further resolve dependencies among two or more of the
plurality of dependent instructions awaiting execution at the
instruction scheduling unit.

10. A method comprising:
fetching a plurality of dependent instructions for execu

tion, wherein the plurality of dependent instructions are
fetched out of order;

determining a dependency exists between a first depen
dent instruction and a second dependent instruction
among the plurality of dependent instructions;

resolving the dependency through scheduling of the plu
rality of dependent instructions based at least in part on
synchronization bits encoded within each of the plu
rality of dependent instructions by setting an availabil
ity bit and clearing a busy bit corresponding to a
destination operand of a producer corresponding to the

US 9,529,596 B2
17

first dependent instruction after writing a produced
register value, wherein the dependency is resolved
when a source operand of a consumer corresponding to
the second dependent instruction has its respective
availability bit set and its respective busy bit cleared,
wherein the producer is an instruction that resolves a
data dependency through a register and the consumer is
an instruction considered to be ready when all data
dependencies of its operands are resolved, wherein
resolving the dependency through scheduling of the
plurality of dependent instructions based at least in part
on the synchronization bits encoded within each of the
plurality of dependent instructions comprises resolving
an anti-dependency by reading a register value for a
Source operand with a synchronization bit correspond
ing to the first dependent instruction and clearing a
corresponding availability bit and busy bit for the
Source operand, wherein the dependency is resolved
when a destination operand with a synchronization bit
of the consumer corresponding to the second dependent
instruction has its respective availability bit and busy
bit cleared; and

executing at least a subset of the plurality of dependent
instructions in parallel subject to the scheduling.

10

15

18
11. The method of claim 10, wherein resolving the depen

dency through scheduling of the plurality of dependent
instructions based at least in part on the synchronization bits
encoded within each of the plurality of dependent instruc
tions comprises:

resolving a data dependency by checking status bits in a
scoreboard for operands of the first dependent instruc
tion and the second dependent instruction having the
dependency.

12. The method of claim 10, wherein resolving the
dependency through scheduling of the plurality of dependent
instructions based at least in part on the synchronization bits
encoded within each of the plurality of dependent instruc
tions comprises:

resolving an output dependency by setting a busy bit
corresponding to the destination operand of the pro
ducer corresponding to the first dependent instruction
immediately after issuing the first dependent instruc
tion, wherein the dependency is resolved when a busy
bit corresponding to the destination operand of the
consumer is cleared, wherein the consumer corre
sponds to the second dependent instruction.

