
(12) United States Patent
Plattner et al.

USO09525731B2

(10) Patent No.: US 9,525,731 B2
(45) Date of Patent: Dec. 20, 2016

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(30)

ROBUST TENANT PLACEMENT AND
MGRATION IN DATABASE-AS-A-SERVICE
ENVIRONMENTS

Applicant: Hasso-Plattner-Institut fuer
Softwaresystemtechnik GmbH,
Potsdam (DE)

Inventors: Hasso Plattner, Schriesheim (DE); Jan
Schaffner, Berlin (DE); TIm
Januschowski, Berlin (DE)

Assignee: HASSO-PLATNER-INSTITUT FUER
SOFTWARESYSTEMTECHNIK
GMBH, Potsdam (DE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 544 days.

Appl. No.: 13/975,647

Filed: Aug. 26, 2013

Prior Publication Data

US 2014/OO59232 A1 Feb. 27, 2014

Foreign Application Priority Data

Aug. 24, 2012 (EP) 1218 1637

(51)

(52)

Int. C.
G06F 5/16 (2006.01)
H04L 29/08 (2006.01)
G06F 9/50 (2006.01)
G06F 7/30 (2006.01)
U.S. C.
CPC H04L 67/1029 (2013.01); G06F 9/5027

(2013.01); G06F 17/30575 (2013.01)

Define recording period

weasure workload oftenants during
recording period

update attornatically

re---
:

wroto-or-n-rooxan-N-W--- ----
| Apply migration comman pply migration commani

r

costs

Detect DRAM capacity of all servers
and update automatically

--------m-m-m-8-8 -

Compute measurement signals

(58) Field of Classification Search
CPC. H04L 67/1097; H04L 41/0806; H04L 43/08;

H04L 47/125; H04L 47/828
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0162491 A1* 7/2008 Becker GO6F 17,30581
2010, OO77449 A1 3/2010 Kwok et al.
2012/0173513 A1* 7/2012 Agrawal G06F 17,30448

707/716
2012/0259894 A1* 10/2012 Varley GO6F 17,30575

707/795
2013/0297655 A1 * 1 1/2013 Narasayya GO6F 17,30575

707/791
2015/0142743 A1* 5/2015 Zunger G06F 13/10

TO7/634

OTHER PUBLICATIONS

SChaffner, J. et al. Predicting In Memory Database Performance
for Automating cluster Management Tasks, ICDE conference, Apr.
2011, IEEE, pp. 1264-1275.*

(Continued)
Primary Examiner — Djenane Bayard
(74) Attorney, Agent, or Firm — Walter Ottesen, P.A.
(57) ABSTRACT
A robust tenant placement and migration system, a process,
and a respective controller for database-as-a-service envi
ronments are disclosed. Multiple tenants (T) are allocated on
a set of in-memory database servers (S). Such that workload
changes depending on the tenants’ behavior are considered,
while maintaining strict service level objectives. The place
ment and migration are based on a migration command
which, in turn, is based on an interleaved placement by
interleaving tenants (T) across servers.

18 Claims, 5 Drawing Sheets

Output patent, tigration. |
:

US 9,525,731 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Schaffner, J. et al., “Predicting In-Memory Database Performance
for Automating Cluster Management Tasks”, ICDE Conference
2011, IEEE, pp. 1264 to 1275.
Schaffner, J. et al., “The Multi-Tenant Data Placement Problem'.
DBKDA 2012: The Fourth International Conference on Advances in
Databases, Knowledge, and Data Applications, IARIA, 2012, pp.
157 to 162, XP-002693097.
Lang, W. et al. "On Energy Management, Load Balancing and
Replication”, SIGMOD Record, Dec. 2009, vol. 38, No. 4, pp. 35
to 42, XP-002693098.
Lang, W. et al. “Towards Multi-Tenant Performance SLOs”, 2012
IEEE 28th International Conference on Data Engineering (ICDE
2012), IEEE Computer Society, pp. 702 to 713, XP002693.099.
Banks, D. et al., “Toward Cloud-based Collaboration Services',
HotCloud '09 Proceedings of the 2009 conference on Hot topics in
cloud computing, 2009, 5 pages, XP-002693100.

English translation of the search report of the European Patent
Office dated Mar. 19, 2013 in European patent application
1218 1637.5 on which the claim of priority is based.
Curino, C. et al., “Workload-Aware Database Monitoring and Con
solidation', SIGMOD 11, Jun. 12-16, 2011, ACM, Greece, twelve
pageS.
Yang, F. et al., “A Scalable Data Platform for a Large Number of
Small Applications', 4th Biennial Conference on Innovative Data
Systems Research (CIDR), Jan. 4-7, 2009, California, ten pages.
Hsiao, H. etal, “Chained Declustering: A New Availability Strategy
for Multiprocssor Database machines', in Proceeding ICDE, 1990,
pp. 1 to 30.
Watanabe, A. et al. "Adaptive Overlapped Declustering: A Highly
Available Data-Placement Method Balancing Access Load and
Space Utilization'. Proceedings of the 21st International Confer
ence on Data Engineering (ICDE 2005), IEEE, twelve pages.
Lamport, L., “Paxos Made Simple”, ACM SIGACT News (Distrib
uted Computing Column), 32, 4 (Whole No. 121, Dec. 2001),
51-58, pp. 1 to 11.

* cited by examiner

U.S. Patent Dec. 20, 2016 Sheet 1 of 5 US 9,525,731 B2

FIG. 1 (Prior Art)

U.S. Patent Dec. 20, 2016 Sheet 2 of 5 US 9,525,731 B2

Server 1 Server 2

Server 3

FIG. 2

U.S. Patent Dec. 20, 2016 Sheet 3 of 5 US 9,525,731 B2

Operating System

Database Files

ke

s
Server Cloud c

s
.
t
tes

.

Controller C

ea
&

t D c 4.
S-X. xx-xx-awwawwas d

s
sus

2

Set of tenants

s
r

92
s
t

St.
5.
.

a

F.G. 3

U.S. Patent Dec. 20, 2016 Sheet 4 of 5 US 9,525,731 B2

Define recording period k
ors

Measure workload of tenants during
recording period

Detect measurement signals and
update automatically

re-or-owsers-to-esses

| Detect DRAM capacity of all servers
and update automatically

opersossessessessors &sarrassacra-a-a-a-a-Waxwata

Apply migration command

Compute measurement signals

Compute DRAM capacity

Output placement, migration,
COSts

F.G. 4

US 9,525,731 B2 Sheet 5 of 5 Dec. 20, 2016 U.S. Patent

€ uÐAuÐS

QUIBUQ4

E

EE / J?AuÐS9 uÐAuÐS & |--E
E G J?AuÐS E I uÐAuÐS

US 9,525,731 B2
1.

ROBUST TENANT PLACEMENT AND
MGRATION IN DATABASE-AS-A-SERVICE

ENVIRONMENTS

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority of European patent appli
cation no. 12181637.5, filed Aug. 24, 2012, the entire
content of which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention generally relates to allocation of a
plurality of tenants to memory storage databases and par
ticularly to placing atomic tenants on servers in a cluster of
database servers. Further, embodiments of the subject matter
described herein relate to the migration of data between
databases in a multi-tenant database system.

BACKGROUND OF THE INVENTION

Database as a Service (DBaaS) provides significant ben
efits for both the customer and service provider. DBaaS
allows customers, i.e., tenants, to rent a database instance
from a service provider, which relieves the customer from
the hassle of provisioning the hardware and configuring,
operating and maintaining the database. The service pro
vider, on the other hand, can leverage economies of scale by
automating common maintenance tasks as well as consoli
dating tenants onto the same machine to improve utilization
and thereby decrease its operational cost. Consolidation is
especially important given that—even for highly-optimized
cloud infrastructures—energy consumption is still the domi
nant cost factor.
When sharing resources among tenants it is challenging to

ensure that service-level objectives (SLOs) for tenants are
met. Ideally, every tenant has the impression that its database
instance is hosted on a dedicated machine with virtually
infinite resources and 100% reliable hardware.
A strategy for assigning tenants to servers should there

fore ensure that:
(1) tenants have enough available resources per machine
and are not impacted by other tenants,

(2) the data is replicated with enough resources on all
copies to cover hardware failures and

(3) a tenants resources are seamlessly adjusted depending
on a tenant's needs.

These cloud applications or platforms often have unpre
dictable load patterns, such as flash crowds originating from
a Sudden and viral popularity, resulting in the tenants
resource requirements changing with little notice. Load
balancing is therefore an important feature to minimize the
impact of a heavily loaded tenant on the other co-located
tenantS.

Furthermore, a platform deployed on a pay-per-use infra
structure (like Amazon EC2) needs to provide the potential
to minimize the system's operating cost. Flexibility, i.e., the
ability to scale out to deal with high load while scaling in
during periods of low load, is a critical feature to minimize
the operating cost. Flexible load balancing is therefore a key
feature in the design of modern database management
systems for cloud systems and requires a low cost technique
to migrate tenants between servers within a server cloud.
There is therefore a need to provide placement and migra
tion Solutions, which Successfully balance running time with
Solution quality.

2
Multi-tenancy database services are known, Such as Rela

tional Cloud: "C. Curino et al., Workload-aware database
monitoring and consolidation'. In Proceeding SIGMOD,
2011 or J. Schaffner et. al., "Predicting in-memory database

5 performance for automating cluster management tasks'. In

10

15

25

30

35

40

45

50

55

60

65

Proceedings ICDE, 2011 and “Yahoo's platform for small
applications’: Fan Yang, Jayavel Shanmugasundaram,
Ramana Yermeni: A Scalable Data Platform for a Large
Number of Small Applications. CIDR 2009. However, both
state of the art systems, Relational Cloud and the Yahoo
system use static placement algorithms and do not consider
the cost of tenant migrations.

Further, so called interleaved declustering strategies are
known (see for example: H.-I. Hsiao und D. DeWitt,
“Chained Declustering: A New Availability Strategy for
Multiprocessor Database Machines'. In Proceeding IDCE,
1990 and A. Watanabe und H. Yokota, Adaptive Lapped
Declustering: A Highly Available Data Placement Method
Balancing Access Load and Space Utilization' In. Proceed
ings ICDE, 2005). As a disadvantage all declustering strat
egies, however, assume that a partition (e.g. a table) can be
further split into sub-partitions and hence, distributed across
servers. Unfortunately, this assumption does not hold in
in-memory multi-tenancy application, where a tenant is
considered an atomic unit. Furthermore, existing decluster
ing strategies assume a fixed number of servers and replicas,
which is not realistic for cloud environments.
US 2010/0077.449 discloses a method for assigning ten

ants to application or middleware instances. Here, the
assigning is also based on server resource capacity and
constraints. However, this approach does not take into
account that the number of servers may vary dynamically.
This has the disadvantage that the number of servers may not
be reduced as much as possible and thus more costs will be
generated. Further, the assigning or mapping according to
this disclosure is based on the fact that there is no replication
of tenants and, thus, each tenant only exists once, which
shows disadvantages with regard to server failures or server
overload situations.
A common approach to address the above mentioned

goals starts by monitoring each tenant for some period of
time on dedicated servers and developing an estimate of
their peak resource consumption. This approach is for
example disclosed in F. Yang, J. Shanmugasundaram and R.
Yerneni, "A Scalable Data Platform for a Large Number of
Small Applications, 'In Proceedings CIDR, 2009. Based on
this estimate a bin-packing algorithm is run to allocate
tenants to servers, perhaps folding new tenants into an
existing cluster. A bin-packing algorithm refers to an allo
cation procedure where objects of different volumes (ten
ants) must be packed (allocated) into a finite number of bins
of capacity (database storage servers) in a way that mini
mizes the number of bins used. Typically, the whole place
ment is mirrored (i.e., replicated) to ensure fault-tolerance.

FIG. 1 shows such a placement in a fictive example of 5
tenants with different estimated peak resource needs (the
servers capacities are normalized to 1) using a first fit
algorithm and a mirroring technique as known from the state
of the art. The total normalized load per tenant is: A (0.3), B
(0.3), C (0.4), D (0.4), E (0.3). The capacity per server is 1.0.
However, this approach has severe disadvantages: First, the
cluster has to be substantially over-provisioned as it has to
reserve capacity for peak loads. Second, servers are more
than 50% underutilized for the normal operational case even
at peak times. This is due to the fact that, in the case of a
read-mostly workload, the load can be distributed evenly
across the copies (e.g., the total load of tenant A of 0.3 is

US 9,525,731 B2
3

spread across server 1 and 3 in FIG. 1). However, upon the
failure of a server, its mirror must take over the entire load.
Third, reacting to changing resource requirements and/or
improved estimates, is problematic as it requires a re
organization of the placement and typically has to be done
off-line because of its operational and performance impact
on the cluster.

SUMMARY OF THE INVENTION

Accordingly, there is a need for improved systems and
methods for tenant placement and for migrating data
between databases. One object is to provide a system,
product and method which consider the cost of tenant
migrations. Further, migrating tenants between servers
should consider minimizing the utilization of the cluster as
a whole. Furthermore, tenant placement and migration
should consider tenant replication strategies and robustness
towards server failures. With respect to cloud environments,
where tenant's needs may vary significantly, known
approaches which are based on a fixed number of servers
and replicas, are to be improved as they are no longer
realistic.

In the following, the invention will be described with
respect to the method. However, the invention also might be
implemented in hardware or in hardware modules, possibly
combined with software modules. The hardware modules
are then adapted to perform the functionality of the steps of
the method, described above. Accordingly, the steps,
claimed or described with respect to the method may also be
transferred to and implemented as hardware modules,
adapted to provide the respective functionality. For example
the method step "storing data” may accordingly be imple
mented by a “storage unit,” which is adapted to store the data
and vice versa. It is also possible to have a combination of
hardware and software modules. The modules are preferably
integrated into an existing database environment, for
example into a DBaaS platform, comprising servers and
hosts with DRAM memory modules.

According to one aspect, the present invention is directed
to a method for controlling allocation of at least one tenant
or a set of tenants (as a cloud user) to database servers in a
server cluster. The cluster may also be referred to as a cloud
network system (physically connected) or a set of physical
servers which implement a database-as-a-service-environ
ment and preferably comprise a plurality of in-memory
database servers which serve as (middleware) memory
capacity.
The method comprises:
Dynamically (i.e., periodically or incrementally) measur

ing workload of all or selected tenants within a record
ing period and providing measurement signals. The
measurement signals are detected as a result of mea
Surement in the Supervision or monitoring (recording)
period, which might be configured in a configuration
phase. Measuring takes into account additional work
load of a specific server due to a hardware failure of
another server and/or due to an additional tenants
access requests. The monitoring period is to be con
strued as a sliding window (e.g., 10 minutes), in order
to detect the workload on the respective tenant.

Detecting a DRAM capacity of each server.
Continuously applying an adaptive and recovery-aware

migration command. The migration command refers to
a complex procedure, which may be implemented by
means of a plurality of placement (and migration)
algorithms. The migration command is adapted to

10

15

25

30

35

40

45

50

55

60

65

4
control allocation (or placement) of the set of tenants to
servers. The migration command may be executed on
different computer instances. In the preferred embodi
ment the migration command is executed on a control
ler. The controller may be implemented on a dedicated
server node or may be implemented in the database
management System.

Automatically generating the migration command, being
based on the measurement signals and on the detected
DRAM capacity of each of the servers of the cloud of
servers by applying an interleaved replication so that
not the whole server is replicated, but each tenant,
which has been allocated to a server is replicated
separately and interleaved in order to recover overload
situations. The migration command allocates a variable
number of replicas, but at least two replicas (or copies)
of a variable number of tenants to a variable number of
servers. The migration command or command
sequence thereby considers that a number of active (or
already allocated, used) servers in the cluster is to be
minimized, while maximizing performance of the
server cluster as a whole. According to an alternative
incremental embodiment, a placement will be found
with the least amount of overloaded servers, instead of
minimizing the number of active servers.

Allocating tenants to servers by continuously executing
the migration command.

It is to be noted that the sequence of the method steps may
be varied. Thus, for example it is possible to first detect the
DRAM capacity and then to measure workload. Further,
method steps may be performed by one or more program
mable processors or microprocessors executing a computer
program in order to perform the above mentioned functions.
However, it is also possible to directly implement the
method in hardware, i.e., in a microprocessor circuitry (like
FGPA or other integrated circuits etc.).

It has to be noted that the control of the tenant-server
placement according to the invention is dynamic, i.e., it
considers and computes the change of the tenants load over
time.

Further, the costs for migrating a tenant to another server
are considered for placement and migration control. In
particular, the overall costs, regarding the whole system are
considered (not only tenant/server specific.).

In the following there is given a short explanation or
definition of terms used within this application.

'Allocating refers to a placement or assignment of a
tenant to a database server. Thus, physical memory Volume
is assigned to a set of requesting computer instances (ten
ants).
A “tenant generally refers to a computer instance or to a

group of computer based instances which is/are accessing
data on a database. The access may be based on an internet
access transfer protocol (i.e., TCP-IP) or by other protocols
and/or networks. Typically the tenants access their 'own'
private databases/tables. However, it might also be possible
that the data may be shared by the tenants. As usually
multiple tenants access the cloud system, the system is also
called multi-tenant system. In an example, tenants may
represent customers, customer departments, business or
legal organizations, and/or any other entities that maintain
data for particular sets of computers within the system.
Although multiple tenants may share access to the server or
database, the particular data and services provided from the
server to each tenant can be securely isolated from those
provided to other tenants. The multi-tenant architecture

US 9,525,731 B2
5

therefore allows different sets of users to share functionality
without necessarily sharing any of the data.

The database is any sort of repository or other physical
data storage medium capable of storing and managing
associated with any number of tenants. The database may be 5
implemented using any type of conventional database server
hardware.

According to a preferred embodiment the database is an
in-memory database. The in-memory database primarily
relies on main memory (in contrast to disk storage based 10
databases) for computer data storage. Accessing in-memory
databases is accompanied with reduced Input/Output access
activity when querying the data which provides faster and
more predictable performance than disk-based systems.
However, in an alternative embodiment in-memory database 15
may also be combined with external, disk-based databases
or virtual database systems (hybrid system). The database
typically comprises an amount of DRAM (Dynamic ran
dom-access memory) capacity. Alternatively, other volatile
storage cells may be used as an SDRAM (Synchronous 20
dynamic RAM) or a SRAM (Static random-access
memory). The term DRAM capacity should be construed as
memory capacity, in case other storage cells are used. The
memory capacity may vary from server to server and
typically is not constant over time. Present placement and 25
migration concept considers this aspect. Therefore, accord
ing to a preferred embodiment the memory or DRAM
capacity of the servers are detected or measured dynamically
in order to be able to represent changes in servers’ memory
capacity. Generally, data format (for example required by 30
the tenant) and access strategies are not limited to a specific
type. According to a preferred embodiment of the present
application, the database may be implemented as a transac
tional database, where write transactions on the database are
able to be rolled back if they could not be completed 35
properly (e.g. due to failure, like power or connectivity loss).
In the database system a transaction might consist of one or
more data-manipulation statements and queries, comprising
reading and/or writing accesses and instructions (i.e. SQL
instructions) to the database. 40

Usually, the database used in the DBaaS cluster is an
in-memory column database, such as employed by Some of
SAP's on-demand applications. The advantage of
in-memory database instances are that the two main
resources consumed by the system, CPU and main memory, 45
combine almost linearly when running multiple databases on
the same physical machine. However, for conventional
disk-based databases non-linear functions could be applied
to the method and system described here to determine the
combined load of two or more tenants on the same machine 50
with shared disk-access.

The server is implemented using one or more actual
and/or virtual computing systems. The server typically oper
ates with any sort of conventional processing hardware. Such
as a processor (CPU: central processing unit), memory, 55
input/output interfaces and the like. The processor may be
implemented using one or more of microprocessors, micro
controllers, processing cores and/or other computing
resources spread across any number of distributed or inte
grated systems, including any number of "cloud-based' or 60
other virtual systems. The memory represents any non
transitory short or long term storage capable of storing
programming instructions for execution on the processor,
including any sort of random access memory (RAM), read
only memory (ROM), flash memory, magnetic or optical 65
mass storage, and/or the like. The input/output interfaces
represent conventional interfaces to networks (e.g., to the

6
tenant or to a network, or any other local area, wide area or
other network), mass storage, display devices, data entry
devices and/or the like. As noted above, the server may be
implemented using a cluster of actual and/or virtual servers
operating in conjunction with each other, typically in asso
ciation with conventional network communications, cluster
management, load balancing and other features as appropri
ate. The server and/or the other computer-based instances of
the system which are adapted to implement the allocation
and migration method are typically coupled through the I/O
interfaces to a display and various input devices such as a
mouse and keyboard. The Support circuits can include
circuits such as cache, power Supplies, clock circuits, and a
communications bus.
The term “a tenant is replicated separately' is to be

construed to mean that not the whole server is mirrored but
each tenant which has been allocated to the server is moved
to another (replication) server independently and/or sepa
rately of the other tenants, which are also allocated to the
server. For example, if tenant A and tenant B are placed on
server 1 and now server 1 should be migrated, then a
migration target server 2 will be determined for tenant A and
a migration target server 3 will be determined for tenant B
as well, where server 2 and server 3 may be (and typically
are) different servers. Thus, the number of original servers
(before migration) and the number of migration servers
(after migration) need not necessarily be the same. The
migration command considers this as an optimization strat
egy, so that at best the number of migration servers, after
migration, is lower than before. The tenant is an atomic unit
and cannot be partitioned.

According to a preferred embodiment, workloads are
read-mostly workloads, such as encountered in OLAP sce
narios, which means that write-accesses are executed only
rarely (for example, periodically, every 30 minutes per
tenant). Therefore, it is sufficient to serialize all write
accesses and retain the replicas per tenant synchronous by
means of a 2PC protocol (two phase commit protocol).
These OLAP workloads allow to equally distribute the load
across multiple replicas. Possibly Surprising, for write-heavy
workloads tenants are often easier to place since the load is
not shared across the copies of a tenant making mirroring
strategies as attractive as interleaving.

Typically, the workload measurements are in-memory
specific. However, it is also possible to apply the method
with the placement algorithms to non in-memory and thus
“traditional databases.

According to a preferred embodiment the migration com
mand is based on an incremental placement algorithm, when
placing a single replica of a tenant on a server, interalia on
a tabu algorithm, a robustfit algorithm, a robustfit-merge or
a splitmerge algorithm. Using incremental algorithms has
the advantage to consider changes in tenant's load over time.

Preferably, the migration command (for the incremental
placement algorithm) considers a migration budget. The
migration or move budget represents a limit of data to be
migrated in order to change or adapt a given placement.
The migration command might comprise the following

steps, when placing a single replica of a tenant on a server:
Computing for each server its load and its penalty and

generating an ordered server result list
Allocating a respective tenant according to the ordered

server result list.
The term “penalty” is to be construed as general costs for

reserving spare capacity for excess load, which might be
caused by server failure or demanding tenants’ access
requests. Particularly, penalty denotes the fraction or section

US 9,525,731 B2
7

of (spare) capacity of a server that must be left unused Such
that additional load due to a single server failure does not
cause an SLO violation. Therefore, on each server the load
(or residue capacity) is detected and, based on this, the
penalty is computed. In doing so, the respective server for
which the penalty is to be computed, is compared to all other
servers, for measuring (detecting) an overlap of tenants. The
overlap is represented in load. Finally, the penalty is the
result of this statistical computation and is the maximum of
all pairwise comparisons. Thus, a statistical analysis is
executed in order to compute a variance over all servers with
respect to penalty, with the goal of balancing the penalty
across all servers. Penalty is thus related to robustness and
reliability of the database placement. It is to be noted that the
Sum of load and penalty (of a server) must not exceed a load
capacity of the respective server. With other words: If
load capacity of the respective server i=1.0. Then, for server
i the following requirement has to be fulfilled:

Load (i)+penalty (i)<1.0,

in order to ensure that the server is failsafe and placement or
migration is robust.

In contrast to using incremental placement algorithms, the
migration command might also be based on a static place
ment algorithm. In this case, inter alia a greedy algorithm
may be used, which in turn may be based on a best-fit
algorithm, a robustfit-s-mirror algorithm, a robustfit-s-inter
leaved or a robustfit-S-2atonce algorithm or a tabu algo
rithm. It has to be noted that these known algorithms are
adapted to be usable for the framework according to the
invention, i.e., for considering re-allocation or migration of
workload for the entirety of all servers.

According to an aspect of present invention, the number
of replicas per tenant is determined dynamically and may
vary according to present cluster (tenant, server) conditions.
According to a preferred embodiment the number of replicas
(per tenant) is computed in relation to the load, wherein the
load is distributed (as uniformly or evenly as possible) over
all copies of a tenant.

Preferably, at least one replica of a tenant is removed if it
is detected as unnecessary, particularly if a removal condi
tion is met. The removal condition is based on the lower
bound signal. When the load of a tenant has decreased in
comparison to a previous interval (relating to the recording
period), it might be the case that removing a replica of the
tenant is possible. Therefore, in this phase, a heuristically
selected replica of all tenants meeting this removal condition
is deleted. Preferably, removing the at least one replica does
not count towards the migration budget.
The lower bound signal refers to a lower limit for the

number of replicas per tenant. In the detailed description the
lower bound will be specified in detail relating to r(t).

Preferably, a safe migration source mechanism is pro
vided which is adapted to ensure that at least during a period
of a migration of a tenant a safe migration source does exist
in order to handle migration flexibly without violating SLO
constraints. The safe migration mechanism ensures that all
tenants are assigned to at least one server from which the
tenant can safely be migrated away without SLO violation.
This is done by moving one replica of a tenant without a safe
migration Source to another server. For determining this
server, the plugged in algorithm is used. The reason for
implementing the safe migration Source mechanism is that
during a migration (phase), the servers, being involved in
migration process, could only process less queries in order
to still comply with SLO constraints. Thus, the load which
one server may handle maximally, temporarily drops (from

5

10

15

25

30

35

40

45

50

55

60

65

8
1.0 to 0.83 or 0.85, depending on the server being migration
destination or migration source). If at least one server in the
cluster may be found (calculated) which has a corresponding
minor load, this server will be a determined as a safe
migration source for the tenant. This enhances safeguarding
the database placement and migration against failures.

According to a further aspect of the present application at
least one replica of a tenant is added if necessary, particu
larly if an updated lower bound signal is detected and is
meeting an addition condition. The addition condition is
based on an increased lower bound of a tenant's replicas
(due to increasing load). This phase handles the opposite
case of the removal condition, mentioned above, where the
lower bound on a tenant's replicas has increased as a result
of increasing load. The plugged in algorithm is used to place
enough extra replicas as necessary to match the new lower
bound. When the load of a tenant has increased in compari
son to a previous interval, it might be the case that adding
a replica of the tenant is necessary. Therefore, in this phase,
a (heuristically selected) replica of a tenant meeting this
addition condition is added.

According to a preferred embodiment of the present
invention, server overload is detected dynamically and in
case of an overloaded server as many tenants as necessary
are moved away from the overloaded server so that it is no
longer overloaded. Other servers must be found for the
tenant replicas to be moved. This step is handled by a
plugged in algorithm.

According to a further preferred embodiment of present
invention, the migration command migrates tenants between
the servers of the server cluster in order to minimize the
number of the active or used (allocated) servers in the cluster
as a whole and/or may be used to predict a tenant's load
before load changes occur to be considered for tenant
placement.

According to a further preferred embodiment of the
present invention, the migration command ensures that no
servers are allocated that have a much higher penalty than
other servers. The penalty might be compared and evaluated
for all servers of the server cluster by statistical methods
(computation of variance), particularly, when it is no longer
possible to reduce the number of allocated servers in the
cluster.

According to a further preferred embodiment of present
invention, the migration command may be applied for an
un-allocated set of tenants so that tenants are to be allocated
to the set of servers in the cluster for the first time. Alter
natively, it is also possible to apply the migration command
for already allocated tenants so that a given tenant-server
placement eventually may be changed (for example in reply
to changed load conditions).

Advantageously, the migration command considers
migration costs. Thus, it is possible to evaluate all opera
tional costs for this procedure and the benefit implied with
it before changing a given tenant placement. According to an
embodiment, costs are measured as a number of the active
servers in the cluster and/or the cluster performance as a
whole.

According to a further preferred embodiment of the
present invention, a trigger signal is detected which triggers
applying the continuous and recovery-aware migration com
mand, wherein the trigger signal refers to the periodically
measured workload of all servers in the cluster and/or to a
result of a placement algorithm which is monitored dynami
cally. Thus, the migration command may be activated or
deactivated. Further, the embodiments described herein may

US 9,525,731 B2

also be subject to the trigger signal and thus can be activated
or deactivated according to actual tenant-server-conditions.

According to a further preferred embodiment of the
present invention, the migration command ensures that a
tenant's load does not exceed the DRAM capacity and the
processing capabilities of the server to be allocated, wherein
spare capacity on each server is reserved for excess load of
a failed server which is captured by the penalty.

According to a further preferred embodiment of the
present invention, a number of servers and/or a number of
replicas per tenant may vary and is at least one and is
determined dynamically for the migration command.

According to a further preferred embodiment of the
present invention, the migration command controls tenant
allocation and ensures that a replica of the set of replicas of
a respective tenant is assigned to a server exactly once.

According to a further preferred embodiment of the
present invention, the migration command ensures that no
two copies of the same tenant are placed on the same server.

Another aspect of the present invention refers to an
allocation controller for controlling allocation of a set of
atomic tenants to database servers in a server cluster, com
prising:
A measurement means which is adapted to dynamically

and incrementally measure workload of all or selected
tenants within a pre-configurable recording period and
providing measurement signals, taking into account
additional workload due to a hardware failure and/or a
tenants access requests

A detection module, which is adapted to detect a DRAM
capacity of each server in the cluster
wherein the controller is adapted to apply an adaptive

and recovery-aware migration command for continu
ously controlling allocation of the set of tenants to
servers, wherein the controller interacts with the
measurement means and with the detection module
Such as the allocation control is based on the mea
Surement signals and on the detected DRAM capac
ity of each of the servers and

wherein the controller controls allocation of tenants to
servers by applying an interleaved replication so that
not the whole server is replicated, but each tenant,
which has been allocated to a server is replicated
separately and interleaved in order to react to over
load situations, wherein a number of allocated Serv
ers in the cluster is minimized, while maximizing
performance of the server cluster and wherein at
least two replicas of a variable number of tenants are
assigned to a variable number of servers.

The controller might be implemented as a software pack
age and might be run on a dedicated infrastructural node in
the cluster, the cloud or in the network. Optionally, the
controller might be run in a module within a database
management system (DBMS) or within a module which
interacts with the DBMS system, particularly in case of a
distributed database, which is controlled centrally. Further,
means are provided in order to ensure that the controller
itself runs reliably. The controller may be implemented on
all of the servers, wherein typically only one server is active
and acts as master server. All servers in common are
responsible for defining a new master server in case the
actual master fails. A so called Paxos algorithm (see: Lamp
ort, Leslie (2001). Paxos Made Simple ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number
121, December 2001) 51-58.) may be applied in this case.
A major advantage of the placement and migration sched

ule described here is to reduce the operational cost for

10

15

25

30

35

40

45

50

55

60

65

10
in-memory DBaaS by interleaving tenants across machines
and incrementally adjusting the tenant placement to work
load changes while maintaining their service level objectives
(SLOS). In contrast to the mirroring-based approach, men
tioned as a state of the art system, interleaved placements try
to avoid co-locating any pair of tenants on more than one
server. This has the advantage that, in case of a server
failure, the excess load spreads across multiple nodes allow
ing to decrease the required “headroom' to handle failures
and thus, improve utilization.
The method and system disclosed here, considered not

only different tenant sizes and request rates, but also varying
numbers of replicas. This makes the method much more
flexible compared to state of the art systems. Further, the
underlying model is extended to dynamic scenarios, where
tenants behavior changes over time and, building on exist
ing placements, incrementally changed placements are con
sidered. This is achieved by Supporting step-wise changes
and considering the cost of migrating a tenant from one
machine to another. Unfortunately, even for a small number
of tenants and servers, finding an optimal solution is often
impractical because of the computational complexity of the
problem, which is proportional to (N), where N is the
number of active servers and T is the number of tenants.
Therefore, heuristics are provided, which extend well
known bin-packing algorithms such as best-fit, for static as
well as incremental DBaaS tenant placement. Evaluations
using real-world traces from on-demand applications show
that incremental algorithms are able to achieve an order of
magnitude improvement in cost over the static best-fit
mirroring placements.
Thus interleaved data placement for multi-tenancy DBaaS

is considered here.
The present application allows for placement algorithms

to be used for a wide variety of hosted database services in
the cloud, such as MySQL or in-memory database systems.
Furthermore, incremental changes to the placement while
taking the impact of the re-organization on the SLO into
account are considered.

Another aspect of the invention refers to a computer
program being loadable in a memory of a computer, wherein
the computer program is adapted to carry out the steps of the
method as mentioned above.

Moreover, another aspect relates to a system and a product
for allocating and placing tenants on servers by applying the
method as described above. The method is computer-imple
mented and may be executed on different computer
instances as a distributed system. The computer program
product is tangibly embodied on a non-transitory computer
readable medium and comprises computer instructions, that
when executed, are configured to perform the method as
described above.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the Subject matter may
be derived by referring to the detailed description and claims
when considered in conjunction with the following figures,
wherein like reference numbers refer to similar elements
throughout the figures.

FIG. 1 is a schematic overview of a mirrored tenant
placement according to a state of the art system, using a first
fit algorithm.

FIG. 2 is a schematic overview of an interleaved tenant
placement according to a preferred embodiment of the
present application.

US 9,525,731 B2
13

It is assumed that queries are load balanced across tenant
replicas in a round-robin fashion. Thus, a server S only
receives a fraction of the total load of a tenant T. depending
on how many replicas it has.

At first glance, RTP resembles the two-dimensional bin
packing with conflicts problem, where the conflicts arise
from the constraint that no server may hold more than one
copy of the same tenant. However, RTP is different from the
two-dimensional bin-packing with conflicts problem
because the placement shall be robust towards server fail
ures. A server failure causes a load increase on those servers
that hold copies of the tenants that were assigned to the
failed server. RTP requires that even with the additional load
caused by a failure no servers S must be overloaded.
A so-called assignment formulation is used to model and

formalize RTP and thereinafter, two extensions of RTP are
described: dynamically determining the number of replicas
per tenant T and ensuring that tenants T can be migrated
between servers S without SLO violations.
A valid instance of RTP has the following data as input:
To N, the set of tenants.
No N, the set of available servers.
R={1,2,... r(t)}, the replicas per tenant where r(t)-2 is

the (fixed) number of replicas per tenant;
O: T->N", a function returning the DRAM requirement
of a given tenant T.

cap: N->N", a function returning the DRAM capacity of
a given server S.

l:T->Q", a function returning the current load of a given
tenant T.

cap:N->Q", a function returning the request processing
capacity of a given server S.

In the following it is differentiated between input param
eters and decision variables by denoting variables with
Sub-indices whereas input parameters have functional nota
tion.

The formulation of the RIP uses a binary decision variable
ye{0,1}^*** where

(k) { 1, if copy k of tenant t is on server i
yi =

W. otherwise

A valid solution of RTP must assign appropriate values to
the following further decision variables:

se {0,1}^, where s, 1 denotes that server i is active and
otherwise, the server S is not active.

pe (2', where p, denotes the fraction of the capacity of
server i that must be left unused such that additional
load due to a single server failure does not cause an
SLO violation.

p, is called the penalty that must be reserved on server i
The objective of the RTP is to minimize the number of

active servers S, i.e.,

minX Si
ie W

(1)

A solution of the RTP must obey the following con
straints.

Xy' = 1 (2)
iew

Wi e TW ke R

10

15

25

30

35

40

45

50

55

60

65

14
Constraint (2) ensures that each replica 1sksr(t) of a

tenant t is assigned to a server exactly once.

Xy's (3)
ie W

Wi e TWie N

Constraint (3) ensures that no two copies of the same
tenant are placed on the same server.

(4) XXC () sy's cap.(i) is
tell keR

Wie N

Constraint (4) ensures that the tenants’ load on a server
does not exceed the server's DRAM capacity. Note that a
server is active when at least one tenant is assigned to the
server, sinces, must be one to fulfill the constraint.

Similar to Constraint (4), the next constraint ensures that
the tenants’ load on a server does not exceed the processing
capabilities of the server. Due to our round-robin load
balancing assumption, each server holding a replica of
tenant t receives only 1/r(t)-th of 1(t).

i(t) (5) XX, k r(t) sy'+ps cap (i) is
teT keR

Wie N

In addition to accumulated tenants loads, each server S
must be capable of handling potential additional load in case
another server fails. The spare capacity reserved for this
excess load is captured by penalty p, in Constraint (5). In the
following constraint, the penalty p is set.

(k) (6) (k) * yi kyi P = Ina, XXX. teTke RikeR

Wie N

What fraction of a tenants load must be added to p,
depends on the number of remaining replicas. If server
handled a fraction

of the load or tenant t prior to the failure, then the remaining
r(t)-1 replicas of tenant t must share the load after the failure
(according to our round-robin load balancing assumption).
Hence, the extra load that server i must Support is

i(t) 1 i(t)
r(t) r(t) - 1 ro2 - r(t)

Constraint (6) ensures that p, is set Such that server i can
cover a worst-case single server failure. The constraint has

US 9,525,731 B2
15

a special property that renders standard heuristics for bin
packing unusable for RTP: given three servers U, V, and W.
moving a tenant from V to W might increase p, and thus
render server U unable to Sustain the extra load coming from
another server failing.

It is to be noted that also other solutions are within the
Scope of this application. For example, it is possible to apply
the method with equally (load) balanced placements which
could be easily integrated into the objective function.
Another possibility is to apply a mixed integer program (see
below). Less closely related formulations with other choices
of decision variables are also conceivable. The preferred
embodiment has the advantage of enhanced flexibility and
expressivity.
Above it was described that the number of replicas per

tenant r(t) was treated as an input parameter to the optimi
zation problem. In the following, it will be explained how to
obtain r(t). Contrary to OLTP workloads, these workloads
are not affected by a higher replication factor.

It seems plausible to set r(t) as low as possible because a
high replication factor leads to a more constrained RTP due
to (3). Sometimes, increasing the number of replicas beyond
2 is necessary whenever the load of a tenant T is so high that
it cannot be handled by a single server. In that case, the
round-robin load balancing assumption allows to scale-out
across multiple servers (by increasing the number of repli
cas). The number of copies r(t) of a tenant t must be chosen
Such that 1(t)/r(t), i.e., the load that t puts onto a server, does
not exceed the load capacity cap,(i) of a server Si. In
addition, server Si must be able to handle the extra load
coming from another server failing that also holds a copy of
t. Hence, r(t) has to be chosen such that the following
inequality holds.

l() (7)

Wie N

is cap (i)

Re-arranging Inequality (7) for r(t) and keeping in mind
that RTP requires any tenant T to have at least two replicas,
a lower bound on the number of replicas per tenant r(t) is
defined as follows:

i(t) r(t):= max, cap, (t)
+ 1

In the following it is referred to FIG. 5. Here an example
shows that increasing the number of replicas beyond r(t)
may yield placements with fewer servers, which contrasts
the intuition that a lowest number of replicas is desirable.

Example 1 in FIG. 5 considers four tenants A to D, each
with a load 1.0 and servers S with capacity 1.0. For two
replicas per tenant T. as shown in FIG. 5 (a), eight servers
S are necessary to place all tenants T. The load on all servers
S including spare capacity reserved to accommodate poten
tial server failures (i.e., p.) is 1.0. If three replicas per tenant
T are allowed, as shown in FIG. 5 (b), then a total of six
servers are sufficient. Also in this case, the load on all servers
S including p, is 1.0.

Example 1 Suggests using the number of copies per tenant
T as a variable in RTP as opposed to merely an input
parameter.

10

15

25

30

35

40

45

50

55

60

65

16
In the following a recovery-aware placement will be

described in more detail. Until now, the RTP has been
formulated Such that a tenant placement must be robust
towards one server failure. When a server fails, however, it
must be possible to migrate the tenants T on the failed server
to a new server. Migration should not cause overloading of
the remaining servers holding copies of the failed tenants T.

Migrations consume resources on any server i, which
temporarily reduces the server's capacity for processing
requests (cap,(i)). How much the capacity degrades during
migration depends on the actual schema and workload. The
impact of a migration could differ on the migration source
and migration destination server. Evaluations and experi
ments show that the overhead for migrating an in-memory
database was determined to be 15% on the source server and
18% at the destination server. For the formal exposition of
the RTP, the deterioration factor on a migration source server
is defined as L with 0<u>1.

According to a preferred embodiment, the costs and/or the
migration overhead, which preferably may be calculated and
detected separately for a server acting as migration source or
as migration destination may be outputted on a respective
interface. Generally, the result of the method for placement
and migration may be executed automatically and may be
represented by a schematic composition (textual and/or
graphical) of a tenant placement or migration. The repre
sentation may be visualized on a (graphical) user interface.
Optionally, the migration costs may be outputted on an
interface in order to be validated before being executed.

In order for a placement to allow for safe tenant migra
tion, it must thus contain at least one server S for every
tenant T that has enough spare capacity to act as the source
server of a migration. In situations where one server S has
failed and must be recovered, this allows for migrating
tenants T without overloading the remaining servers, as
formulated in Constraint (8).

l(t) (8) k sy, + pi < t k cap (i): S; Wi e i e N: XX
tleT keR

Constraint (8) enforces that enough spare capacity for
every possible tenant migration is reserved via Lucap,(i).
So far, (static RTP) embodiments have been explained

where tenants’ loads change over time has not been consid
ered.

Further embodiments refer to an incremental placement
scheme, which will be described in more detail below. If a
load change occurs, it is mandatory to consider the current
placement of the tenants T before migrating. Simply solving
RTP again would most likely be too expensive in terms of
migration cost.

Thus, RTP has to be solved periodically using an existing
or given placement as the starting point. This is called an
incremental RTP (as opposed to static RTP as described
above). The length of the reassignment interval limits the
amount of data migration and thus the amount of change that
can be applied to the original placement. The size of a tenant
T dictates how long it takes to migrate the tenant T.

In a preferred embodiment, migrations or migration com
mands may be performed in parallel. The amount of migra
tion that is permissible in each step also depends on the
extent to which migrations can be performed in parallel. It
is assumed that a fixed amount of data can be migrated in
each step and all of the experiments were conducted with a
varying move budget.

US 9,525,731 B2
17

In addition to the input data for incremental RTP, the
incremental version of the placement problem has an exist
ing placement y, and a move budget Öe N as input
variables.

It is to be noted that in the following it is departed from
the notational convention and Sub-indices for the input
parametery' are used. It is defined:
T{teT: a copy of t was moved}.
The following constraints are required in addition to RTP:

(k) (9) Wie N: i is migrating target X X sky." + p.; s vsk cap (i) ks;
teke R

Similar to Constraint (8), Constraint (9) expresses the
temporary capacity drop V when migrating tenants T onto a
destination server S.

X Ot(t)s d (10)
teinig

Constraint (10) ensures that the migration budget Ö is
never violated.

v t e Tidie N: XX. (k)
(11)

(t) 4 y, + pis cap (i)}: S;
tleT keR

Constraint (11) is less restrictive than the rather similar
Constraint (8) because only tenants T that are in fact moved
need a server S with enough spare capacity to act as a
migration Source. Constraint (11) takes the previous place
ment into account. Like Constraint (10), in cases of extreme
load changes between intervals, Constraint (11) may render
the incremental RTP infeasible. After all, a possibly changed
load 10t) of a tenant t is used with the tenant t still residing
on a server Swhere it was placed when it had a different load
(observed in the previous interval). When an infeasibility
occurs, it may become necessary to tolerate violations of the
SLO for a short period of time, i.e., some constraints must
be dropped. Additionally, a change in objective function
becomes necessary So that SLO violations are minimized.
Instead of minimizing the number of active servers, a
placement shall be found with the least amount of over
loaded servers which can be formalized as follows. A

variable ee (Q. N introduced, which measures the overload of
a server. For ieN, the following equation holds:

i(t) K
r(t) : yS. + p; - cap (i)

fe keR

and alternative objective functions are

min e; or minimaxe.
iew

ie W

Changes in tenants DRAM consumption are negligible
here and are therefore not included in e.
Algorithms for RTP:

Below it will be described how algorithms have been
developed that solve RPT while adhering to all constraints
described above.

10

15

25

30

35

40

45

50

55

60

65

18
Algorithms for Static RTP:
Greedy Heuristics:

For the bin-packing problem, greedy heuristics are well
known to deliver good results. Another reason for consid
ering greedy variants is their speed. Even for short migration
intervals, agreedy heuristic can be used when more complex
algorithms are prohibitive.
The greedy algorithms applied for the method according

to an embodiment of the present application are loosely
based on the well-known best-fit algorithm. When placing a
single replica of a tenant T, for each server S its total load
including its penalty is computed. The penalty is cached on
a per-server basis to speed up computation. The servers S are
then ordered according to load plus penalty in decreasing
order. Similar to best-fit, the first server S that has enough
free capacity is selected. If no active server has enough
capacity, then the tenant T is placed on a new server S.

Besides load plus penalty on the servers, it is necessary to
take the other constraints of static RTP into account:
A tenant t cannot be added to a server S if the penalty p

of another server T would increase in a way that T is beyond
capacity.

Furthermore, tenant t cannot be placed on server S if
another tenant loses its safe migration Source as a conse
quence of adding the t. This happens when the load on the
target (or destination) server i after adding a replica of t is
larger than LL cap,(i) and the server S in question previously
was the only safe migration source for any of the tenants T
assigned to it. Naturally, a tenant T cannot be added to a
server S if not enough DRAM is available on the server S.

This basic mechanism for placing a single replica of a
tenant T is the basis for the algorithms robustfit-s-mirror and
robustfit-s-interleaved. Robustfit-s-interleave starts out by
sorting all tenants T by load (in descending order) and places
the first replica of each tenant T. Since there is no penalty
when there is only one copy, the algorithm assumes a server
capacity of

pt k Cap (i)
2

in this step. Then all servers S are mirrored. Finally, the
algorithm places additional replicas individually for tenants
T that require more replicas than the lower bound. Robustfit
S-interleaved also sorts all tenants and then, tenant after
tenant, places all replicas of each tenant. For the first replica
of each tenant Ta server capacity of cap, is assumed. For
all other replicas the algorithms assume a capacity of cap,(i).
This results in a placement where each tenant has a safe
Source server. Also, tenant replicas are naturally interleaved
across servers. Both algorithms are of quadratic complexity
and run fast for the problem sizes that are considered for this
allocation method.

Robustfit-S-2atonce is the only greedy algorithm that does
not build upon the best-fit approach for placing individual
replicas. Instead, for one tenant at a time, it tries to find two
servers among the currently active servers to which a replica
of the tenant can be assigned in one step. In the worst case
it explores

Nik (N - 1)
2

options in this step. In case no server pair can be found Such
that the two copies of the tenants T can be placed in a valid
way, two new servers S are created. Similar to the previous
algorithms, this algorithm places additional replicas indi
vidually for tenants requiring more than two replicas in a

US 9,525,731 B2
19

final step. Robustfit-s-2atonce also naturally interleaves ten
ants T but it has a higher computational complexity.
Metaheuristic: Tabu Search:

Having considered fast greedy heuristics, a computation
ally more expensive heuristic is considered next, which can
improve upon solutions, e.g. obtained by the greedy algo
rithms. A variant of Tabu search is proposed, which is used
as a local search improvement heuristic. The Tabu search
here tries to remove an active server S given a solution of
RTP by traversing the search space as follows. Every valid
solution of RTP is a point in the search space. It is moved
from one valid solution to another valid solution by moving
a tenant t from S to a different server T, even if this move
leads to an invalid placement. Next, possible conflicts are
fixed (if possible without placing a tenant on S). In order to
avoid both cycling and stalling in a local optimum, a
so-called Tabu list stores a move (t, S, T) and only the move
(t, S, T) is allowed if it was not already contained in the Tabu
list. If the list reaches a certain length, then the oldest
element is removed and the corresponding move is hence
allowed again. The search aborts if after a certain number
of iterations—no placement was found that does not use S.
If a solution without S was found, the Tabu search continues
from the new solution with the goal of removing another
server from the placement.
The performance of the above algorithm relies on the

careful adjustment of its parameters: the length of the Tabu
list, the choice of server(s) to be cleared out, the order of
tenants to be moved, the approach to fixing conflicts in
invalid solutions, and the number of restarts, just to name a
few.
Framework for Incremental RTP:
A further embodiment is described below with regard to

a framework, which consists of six phases. The six phases
may be applied separately and also independently of each
other and in another sequence. They are executed at the
beginning of each re-organization interval, independent of
the algorithm that is currently run. Individual algorithms
must plug in a method for placing a single replica of a tenant
or replace entire phases. Such a method is for example the
best-fit method described above. An incremental algorithm
can also provide an own implementation for individual
phases in the framework. The six phases of this framework
are as follows.

1. Delete unnecessary replicas. When the load of a tenant
T has decreased in comparison to the previous interval,
it might be the case that removing a replica of the tenant
T is possible. See also the discussion on the lower
bound on the number of replicas per tenant T above.
Therefore, in this phase, a heuristically selected replica
of all tenants meeting this condition is deleted. Note
that deleting a tenant does not count towards the
migration budget.

2. Ensure migration flexibility. This phase ensures that all
tenants T are assigned to at least one server S from
which the tenant can safely be migrated away without
SLO violation. This is done by moving one replica of
a tenant T without a safe migration source to another
server. For determining this server S, the plugged in
algorithm is used.

3. Create missing replicas. This phase handles the oppo
site case of phase 1, where the lower bound on a
tenants replicas has increased as a result of increasing
load. The plugged in algorithm is used to place enough
extra replicas as necessary to match the new lower
bound.

10

15

25

30

35

40

45

50

55

60

65

20
4. Fix overloaded servers. The goal of this phase is to

repair overloaded servers S. The approach is to move as
many tenants T away from an overloaded server S that
it is no longer overloaded. Other servers S must be
found for the tenant replicas to be moved. This step is
handled by the plugged in algorithm.

5. Reduce number of active servers. All servers S are
ordered by total load plus penalty. Then, all tenants T
on the most lightly loaded server S are moved to other
servers using the plugged in algorithm. This phase is
repeated with the next server until the remaining migra
tion budget is smaller than the total size of all tenants
on the server S.

6. Minimize maximum load. At the point where it is no
longer possible to reduce the number of servers S, this
phase tries to flatten out the variance in load plus
penalty across all servers. The goal is to avoid having
servers S in the placement that have a much higher
penalty than other servers S. Again, the plugged in
heuristic is used. This phase terminates when the
migration budget is exhausted or additional migrations
would have too small an effect on the variance.

The order of execution of the above steps (framework) is
in itself a heuristic and the steps may be applied in varying
order or sequence. Further, it is possible to apply only one
or specific steps of the above mentioned steps within the
method for placement and migration according to present
application. For example, experimentation has revealed that
executing phase 4 after phase 2 results in fewer servers than
the inverse order. The reason is that some overloaded servers
are repaired as a side product of finding a safe migration
Source for tenants.

Further it should be noted that the specific implementation
referring to the aspect how many replicas a tenant should
have is orthogonal to this framework. Similar to algorithms
for placing individual replicas, different strategies for deter
mining the replication factor can be plugged in. The standard
method is to use exactly as many replicas as suggested by
the lower bound. Another method is to increase the lower
bound by a fixed offset. A more sophisticated method is to
set the number of replicas across all tenants in a way that all
replicas receive more or less the same load. A last method is
to repair overloaded servers in phase 4 by creating additional
replicas elsewhere, thus decreasing the load of the tenant on
the overloaded server.

In the following plugin algorithms are discussed that have
been developed for this framework.
Greedy Heuristics:
The simplest (and also the fastest) algorithm is robustfit.

It merely entails the method for placing a single replica
using best-fit. This method is plugged into the above frame
work as is.

Based on the observation that the space of possible
actions when transforming a given placement into a new
placement is very large, splitmerge has been created. This
algorithm acts exactly as robustfit but provides an own
implementation of phases 4 and 5 in the framework above.
In phase 4 the only allowed operation is splitting each
overloaded server into two servers. In phase 5, conversely,
merging two servers into one is the only legal operation,
although multiple server pairs can be merged in one step.
Since the underlying best-fit method is very fast, it has been
decided to use a more complex procedure for deciding what
servers to merge: Splitmerge builds up its list of merge pairs
by checking whether two servers U and V can be merged for
all candidate pairs UxV.

US 9,525,731 B2
21

The method in splitmerge for removing servers is effec
tive, yet computationally intensive. Its approach for fixing
overloaded servers is rather simple. Essentially, overloaded
servers cannot be fixed without creating one new server per
overloaded server, which seems too drastic. Therefore split
merge's implementation of phase 4 is replaced with the
standard one again and used best-fit as the plugin heuristic.
This approach is called robustfit merge.
Metaheuristic: Tabu Search
The Tabu search is also re-used for the incremental

version of RTP: Tabu, which also uses best-fit as its plugin
heuristic, replaces phase 5 with the Tabu search. For this
algorithm, phase 6 is simply omitted, which saves some
migration budget and thereby allows the Tabu search to run
a little longer. The next heuristic, tabu-long works exactly as
tabu, except that the parameters of the Tabu search are set
Such that it runs significantly longer (and thus visits more
solutions). Finally, robustfit is combined with a Tabu search
to obtain tabu-robustfit. Robusflit is used and instead of
executing phase (6) in robustfit, the potentially un-used
migration budget is used to further improve the Solution via
a Tabu search. Similar to before, tabu-robustfit-I is the same
algorithm as tabu-robustfit but is parameterized to run
longer.
Portfolio Approach:
The portfolio approach combines all heuristics for the

incremental RIP. All heuristics are run, starting from the
same, best-known solution. The best solution is then
selected among all algorithms as the next Solution. Choosing
the best solution as the next solution is itself a heuristic
approach. Instead of simply running all algorithms, more
sophisticated machine learning techniques could be applied
to choose a promising algorithm.
Static vs. Incremental RTP:

In experiments it was evaluated how close algorithms for
the incremental RTP get to the solutions of the static
algorithms. It turns out that robustfit-s-mirror is the worst
static algorithm in terms of server cost but also the fastest.
The other static algorithms perform fairly similar in regard
to server cost. In 129 out of 144 cases, a CPLEX optimi
zation (as a MIP-solver; MIP: mixed integer program), was
not able to improve the best heuristic solution and spent
most of its 4 hour computing time per tick on improving the
lower bound. Surprisingly, robustfit performs as good as the
static algorithms in terms of server costs even though it
seems that the incremental RTP is a much more constrained
problem.

Experimental evidence relating to varying the number of
replicas per tenant T. In further experiments (based on
robustfit) it was found that the maximum number of servers
observed during peak loads changes drastically as the offset
increases. Therefore, increasing the number of replicas
before load changes could help to reduce the number of
servers needed.
The quality of placements for high replication factors

during peak load is explained as follows. For higher number
of replicas, the focus of the RTP shifts from load being the
tightest constraint to size being the dominating constraint.
As the size of a tenant T does not change over time, some
of the dynamics of the RTP are removed. Furthermore, the
absolute load changes are Smoothed by a higher number of
replicas and therefore, the changes in the placement caused
by sharp load increases are less drastic.

In this application an implementation for RTP has been
Suggested and a variety of algorithms have been introduced
to Successfully solve real-world instances. Cost savings of
an order of magnitude are possible based on this approach.

10

15

25

30

35

40

45

50

55

60

65

22
The following algorithms are evaluated to be superior:
Robustfit delivers comparably good placements very fast,
while tabu-robusfit delivers close to best-in-class place
ments with reasonable running times. Both algorithms also
produce placements that are very robust toward load
changes that occur before they can be corrected. Even
though both algorithms solve the incremental RTP, their
performance almost matches the performance of (complete)
algorithms for the less constrained static RTP.

In Summary, the present invention is a mechanism for
placing and migrating tenants T on servers S, which is
performed by executing a migration command. The migra
tion command replicates each of the tenants separately and
interleaved on a varying number of servers S. So that a
number of allocated servers S in the cluster may be mini
mized, while maximizing performance of the server cluster
as a whole. The migration command always assigns at least
two replicas of a tenant T to a number of servers S. The
migration command is adaptive as it considers that the input
parameters may vary/change over time. In a preferred
embodiment the input parameters are: the number of tenants
T, the number of replicas of a tenant T, the number of servers
S and/or the workload of at least one tenant T.
The migration command dynamically calculates the

placement or migration for variable (online measured,
dynamically detected) input parameters and ensures that the
placement and migration is robust against failure(s) of a
server S (by providing the interleaved tenant replication) and
reduces operational costs (by continuously or permanently
minimizing the number of active servers in the cluster).
Further, the migration command ensures that all (pre-con
figurable) SLO constraints are met.
The migration of tenants T form a given first (or original,

Source) placement to a second target placement and consid
ers the costs for migration. Therefore, in a first step a set of
possible migrations (possible target placements) is com
puted. In a second step the computed set of possible migra
tions is evaluated with respect to the costs evolved, wherein
the costs are calculated for the whole cluster with respect to
failsafeness and overall performance. The evaluation takes
into account tenants interdependencies. If one parameter of
the cluster system changes (for example, failure of a specific
server, workload changes of a specific tenant, a change of
available servers or requiring tenants etc.) its impact on the
other system instances (tenants, servers) is automatically
evaluated.
The example embodiments mentioned above are to be

considered in all respects only as illustrative and not restric
tive. The scope of the invention is, therefore, indicated by
the appended claims rather than by this description.

REFERENCE NUMERALS

T Tenant
S Server
C Controller
M. Measurement means
D Detection module
P Penalty

What is claimed is:
1. A method for controlling allocation of a set of atomic

tenants (T) to database servers (S) in a server cluster,
comprising the following steps:

dynamically and incrementally measuring workload of all
or selected tenants (T) within a pre-configurable
recording period and providing measurement signals,

US 9,525,731 B2
23

taking into account additional workload due to a hard
ware failure and/or a tenant’s access requests;

detecting a DRAM capacity of each server (S); and
applying an adaptive and recovery-aware migration com
mand for continuously controlling allocation of the set
of tenants (T) to servers (S), wherein the migration
command:
is based on the measurement signals and on the

detected DRAM capacity of each of the servers (S);
allocates tenants (T) to servers (S) by applying an

interleaved replication so that not the whole server
(S) is replicated, but each tenant (T), which has been
allocated to a server (S) is replicated separately and
interleaved in order to recover overload situations,
wherein at least two replicas of a number of tenants
(T) are allocated to a number of servers (S) and
thereby minimizing a number of allocated servers (S)
in the cluster, while maximizing performance of the
server cluster;

wherein the migration command is based on an incre
mental placement algorithm, when placing a single
replica of a tenant (T) on a server (S), and

wherein the migration command comprises the following
steps, when placing a single replica of a tenant (T) on
a server (S):

computing for each server (S) its load and its penalty (p)
and generating an ordered server result list; and,

allocating a respective tenant (T) according to the ordered
server result list by taking into account a migration
budget.

2. The method according to claim 1, wherein the migra
tion command is based on a static placement algorithm,
which uses a greedy algorithm and which is based on a
best-fit-algorithm, a robustfit-s-mirror algorithm, a robustfit
s-interleaved or a robustfit-s-2atonce algorithm.

3. The method according to claim 1, wherein a number of
replicas is computed dynamically based on the load, wherein
the load is distributed over all copies of a tenant (T) and
wherein at least one replica of a tenant (T) is removed if it
is detected as unnecessary if a lower bound signal is detected
and is meeting a removal condition.

4. The method according to claim 1, wherein a safe
migration mechanism is applied, which ensures that all
tenants (T) are assigned to at least one server (S) from which
a specific tenant (T) can safely be migrated away without an
SLO violation.

5. The method according to claim 1, wherein at least one
replica of a tenant (T) is added if an updated lower bound
signal is detected and is meeting an addition condition.

6. The method according to claim 1, wherein server
overload is detected dynamically and in case of an over
loaded server (S), as many tenants (T) as necessary are
moved away from the overloaded server (S).

7. The method according to claim 1, wherein the migra
tion command migrates tenants (T) between the servers (S)
of the cluster of servers (S) in order to minimize the
utilization of the server cluster as a whole and/or may be
used to predict a tenant's load before load changes occur to
be considered for tenant placement.

8. The method according to claim 1, wherein, when it is
no longer possible to reduce the number of allocated servers
(S) in the cluster, the migration command ensures that no
servers (S) are allocated that have a much higher penalty (p)
than other servers (S).

9. The method according to claim 1, wherein the migra
tion command is applied for an un-allocated set of tenants
(T) so that tenants (T) are to be allocated to the set of servers

10

15

25

30

35

40

45

50

55

60

65

24
(S) in the cluster for the first time or the migration command
is applied for already allocated tenants (T) so that a given
tenant-server-placement has to be changed.

10. The method according to claim 1, wherein the migra
tion command considers migration costs.

11. The method according to claim 1, wherein a trigger
signal is detected which triggers applying the continuous
and recovery-aware migration command, wherein the trig
ger signal refers to the periodically measured workload of all
servers (S) in the cluster and to a result of a placement
algorithm, which is monitored dynamically.

12. The method according to claim 1, wherein the migra
tion command ensures that a tenants (T) load does not
exceed the DRAM capacity and the processing capabilities
of the server (S) to be allocated, wherein spare capacity on
each server (S) is reserved for excess load of a failed server
(S) which is captured by a penalty (p).

13. The method according to claim 1, wherein a number
of servers (S) and/or a number of replicas per tenant (T) is
Variable, is at least one, and is determined dynamically.

14. The method according to claim 1, wherein the migra
tion command controls tenant allocation and ensures that a
replica of the set of replicas of a respective tenant (T) is
assigned to a server (S) exactly once.

15. The method according to claim 1, wherein the migra
tion command ensures that no two copies of the same tenant
(T) are placed on the same server (S).

16. A computer program product stored on a non-transi
tory computer-readable medium, the computer product
being operable, when executed on at least one computer, to
perform the method steps of claim 1.

17. The method according to claim 1, wherein the incre
mental placement algorithm is selected from the group
consisting of a tabu algorithm, a robustfit algorithm, a
robustfit-merge, and a splitmerge algorithm.

18. A method for controlling allocation of a set of atomic
tenants (T) to database servers (S) in a server cluster,
comprising the following steps:

dynamically and incrementally measuring workload of all
or selected tenants (T) within a pre-configurable
recording period and providing measurement signals,
taking into account additional workload due to a hard
ware failure and/or a tenant's access requests;

detecting a DRAM capacity of each server (S); and
applying an adaptive and recovery-aware migration com
mand for continuously controlling allocation of the set
of tenants (T) to servers (S), wherein the migration
command:
is based on the measurement signals and on the

detected DRAM capacity of each of the servers (S);
allocates tenants (T) to servers (S) by applying an

interleaved replication so that not the whole server
(S) is replicated, but each tenant (T), which has been
allocated to a server (S) is replicated separately and
interleaved in order to recover overload situations,
wherein at least two replicas of a number of tenants
(T) are allocated to a number of servers (S) and
thereby minimizing a number of allocated servers (S)
in the cluster, while maximizing performance of the
server cluster;

wherein, when it is no longer possible to reduce the
number of allocated servers (S) in the cluster, the
migration command ensures that no servers (S) are
allocated that have a much higher penalty (p) than other
servers (S).

