
(12) United States Patent
Lee

USO0952.5564B2

US 9,525,564 B2
Dec. 20, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

SECURE VIRTUAL NETWORK PLATFORM
FOR ENTERPRISE HYBRID CLOUD
COMPUTING ENVIRONMENTS

Applicant: Zentera Systems, Inc., San Jose, CA
(US)

Inventor: Jaushin Lee, Saratoga, CA (US)

Assignee: Zentera Systems, Inc., San Jose, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 174 days.

Appl. No.: 14/187,091

Filed: Feb. 21, 2014

Prior Publication Data

US 2014/0244851 A1 Aug. 28, 2014

Related U.S. Application Data
Provisional application No. 61/769,691, filed on Feb.
26, 2013, provisional application No. 61/770,320,
filed on Feb. 28, 2013.

Int. C.
G06F 15/177 (2006.01)
H04L 2/46 (2006.01)
H04L 2/74 (2013.01)
U.S. C.
CPC H04L 12/4641 (2013.01); H04L 45/54

(2013.01)
Field of Classification Search
CPC G06F 11/34; G06F 9/455; G06F 9/5072:

H04L 41/04: HO4L 41/12: HO4L 41/142:
H04L 41/5096; H04L 43/0817; H04L

63/00; H04L 67/1097; H04L
67/125; H04L 69/02; H04L

12/4641; H04L 45/54
USPC .. 709/228 245
See application file for complete search history.

605 Y.

(56) References Cited

U.S. PATENT DOCUMENTS

5,386,417 A * 1/1995 Daugherty H04Q 3/58
340.2.1

6,717.956 B1 * 4/2004 Fan HO4L 29, 12009
370,389

7,013,345 B1* 3/2006 Brown HO4L 69,168
709,223

8,250,642 B2 8/2012 Bartholomy et al.
8,640,218 B2 1/2014 Bartholomy et al.

2003/0016664 A1* 1/2003 Melampy HO4L 29,06027
370,389

2003/0051169 A1* 3/2003 Sprigg G06F 9/468
T26/4

2004/00598.27 A1* 3/2004 Chiang HO4L 47.11
709,235

2004/0181694 A1* 9, 2004 Cox HO4L 63,1458
T13,154

2005/0257.264 A1 11/2005 Stolfo et al.
2006, OO31472 A1 2/2006 Rajavelu et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO 2012 130523 10, 2012

Primary Examiner — David Lazaro
Assistant Examiner — Berhanu Shitayewoldetsadi
(74) Attorney, Agent, or Firm — Staniford Tomita LLP

(57) ABSTRACT

A secure virtual network platform connects two or more
different or separate network domains. When a data packet
is received at an end point in one network domain, a
determination is made as to whether the data packet should
be forwarded outside the virtual network platform, or trans
mitted via the virtual network to a destination in another
network domain connected by the virtual network platform.

21 Claims, 16 Drawing Sheets

Receive at a first endpoint in a first network domain a
request to connect to a destimation

Determine if the connection should be provided through
a virtual network that connects the first network drain
with a second network domain different from the first

domain

Provide through
virtual network

Establish a wirtual network connection
between the first endpoint and the
destination, the destination being in

the second natwork domain
623

do not provide through
virtual network

Pass the request outside the wirtual
network
625

US 9,525,564 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2007, OO19622 A1* 1/2007 Alt HO4L 29,06027
370,352

2008/O165957 A1 7/2008 Kandasamy et al.
2008/0276313 A1 11/2008 Kummu et al.
2008/02951 14 A1* 11/2008 Argade GO6F9,485

T19,320
2011/0090911 A1* 4/2011 Hao HO4L 12,4633

370,395.53
2012,0005724 A1 1/2012 Lee
2012/O124566 A1 5/2012 Federighi et al.
2014.0068698 A1 3/2014 Burchfield et al.
2014.0068701 A1 3/2014 Burchfield et al.

* cited by examiner

U.S. Patent Dec. 20, 2016 Sheet 1 of 16 US 9,525,564 B2

Server
System 1

Server
System 2

Server
System 3

Figure 1

Figure 2

U.S. Patent Dec. 20, 2016 Sheet 2 of 16 US 9,525,564 B2

- 201

I/O Central Speaker
Controller Processor p.

3O6 302

1st-322

Display
Adapter
308

Monitor Serial Kevboard Mass Network
2O3 Port 2. Storage Interface

312 217 318

Figure 3

US 9,525,564 B2 Sheet 3 of 16 Dec. 20, 2016 U.S. Patent

iz ?un61-I

G ?un61

US 9,525,564 B2

909

Sheet 4 of 16 Dec. 20, 2016

©^-sis
U.S. Patent

ddwy

U.S. Patent Dec. 20, 2016 Sheet S of 16 US 9,525,564 B2

605 \

Receive at a first end point in a first network domain a
request to connect to a destination

610

Determine if the connection should be provided through
a virtual network that connects the first network domain
with a second network domain, different from the first

domain
615

Provide through
virtual network

Do not provide through
virtual network

Establish a virtual network Connection
between the first end point and the Pass the request outside the virtual
destination, the destination being in network

the Second network domain 625
620

Figure 6

US 9,525,564 B2 U.S. Patent

U.S. Patent Dec. 20, 2016 Sheet 8 of 16 US 9,525,564 B2

905 Y

Define users, user groups, applications, and endpoints
910

Define security policies
915

Provide virtual network agents and virtual routing tables
92O

Figure 9

US 9,525,564 B2 Sheet 9 of 16 Dec. 20, 2016 U.S. Patent

U.S. Patent Dec. 20, 2016 Sheet 10 of 16 US 9,525,564 B2

1105
Assign IP addresses

1110

Configure application program for virtual
network
1115

Create static virtual routing tables for the
virtual network proxies

1 120

Receive and filter traffic according to the
static virtual routing tables

1125
Matching entry in static No matching entry in

routing table static routing table

Perform security check Forward packet to local TCP/IP
1135 network

1130

PaSS

Fai
Inform VNPs and WNS to create
a session for a virtual network Do not establish virtual network

Connection
1140

Connection
1145

Create dynamic routing tables
for the VNPS and WNS

1150

Route traffic according to the
dynamic routing tables

1155 Figure 11A

US 9,525,564 B2 Sheet 13 of 16 Dec. 20, 2016 U.S. Patent

U.S. Patent Dec. 20, 2016 Sheet 14 of 16 US 9,525,564 B2

1305 a -a- r

Y Store an identifier associated with a specific application
program that is allowed to use the virtual network

1310

Receive a request from a client component of an
application program to connect to a server component

of the application program
1315

Determine if an identifier associated with the application
program matches the stored identifier associated with

the specific application program
1320

Match No Match

Allow the client component to connect
to the server component through the Do not allow the virtual network

Connection
1330

virtual network
1325

Figure 13

US 9,525,564 B2

9 | 9 || quod pue p????ep

Sheet 15 of 16 Dec. 20, 2016 U.S. Patent

U.S. Patent

Enterprise 1635

Controller L.
1645

First Network
Domain

Enterprise

First Network
Domain

Enterprise

First NetWork
Domain

Dec. 20, 2016 Sheet 16 of 16

Virtual Network
1630

Figure 16

Virtual Network
1730

Figure 17

Third Party 1860

Controller
1845

Virtual Network
1840

Figure 18

US 9,525,564 B2

Public Cloud 1640

Second NetWork
Domain

-- 1620
- 1625

OD, Dy App. /

N N
OD, Dy App /
OT

Public Cloud

Second Network
Domain

US 9,525,564 B2
1.

SECURE VIRTUAL NETWORK PLATFORM
FOR ENTERPRISE HYBRID CLOUD
COMPUTING ENVIRONMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims priority to U.S. provisional
patent application 61/769,691, filed Feb. 26, 2013, and also
claims the benefit of U.S. provisional patent application
61/770,320, filed Feb. 28, 2013, which are all incorporated
by reference along with all other references cited in this
application.

BACKGROUND

The present invention relates to the field of information
technology, including, more particularly, to systems and
techniques for networking.

Enterprise cloud computing is becoming inevitable. The
advancement of mobile devices such as Smart phones and
touch pads has further pushed the deployment of cloud
computing infrastructure to Support various business appli
cations online. According to market research analysts, by
end of 2016, more than 15 percent of worldwide enterprise
IT spending will be on public or hybrid cloud computing
environments.

While much of the world is embracing cloud computing,
cloud deployments still require intensive customization
efforts and remain challenging for enterprises to establish a
hybrid infrastructure, on demand, connecting applications
(e.g., client-server software) and computing resources in
public and private computing environments without com
promising enterprise security and compliance.
The conventional IT network and infrastructure security

technology does not directly apply to the hybrid environ
ments. To brute force a connection, enterprise IT is facing a
tremendous amount of operating risks and efforts to accom
plish their mission. A next-generation platform is needed to
address the needs.
The world top-tier cloud service providers have extensive

experience in deploying a flat cloud computing infrastruc
ture inside a single datacenter. To facilitate ease of manage
ment and on demand services, the implementation has been
featuring a unified network and infrastructure security Sup
porting the cloud. This approach significantly simplifies the
management of applications running in the cloud by elimi
nating the complexity for network and infrastructure Secu
rity. While this approach may be appropriate within the
environment of a single datacenter, it is difficult to apply in
a hybrid cloud environment, where the underlying network
and infrastructure security are distributed, segregated, and
belong to multiple authorities.
More particularly, in modern enterprises, the network and

security infrastructure are specifically designed to imple
ment corporate Security and compliance governance. The
critical business data and operations are typically deployed
in the inner layer of a network domain behind layers of
firewalls. Such a secure network and firewall system block
the external malicious access intents or at least make it
extremely challenging to penetrate. However, on the other
hand, if there is any new business initiative that requires an
access connection from an external location to reach the
inner most layers, it can be extremely difficult or could
require a tremendous amount of corporate IT efforts to
re-provision the environment and to allow the traffic to travel
through.

10

15

25

30

35

40

45

50

55

60

65

2
Today's high-tech industry (e.g., semiconductor and EDA

(Electronic Design Automation)) is consolidating, converg
ing, and moving toward a service oriented industry. The
technology products being developed by the enterprises in
this industry are becoming extremely sophisticated, and the
enterprises frequently require Some form of collaboration
from their eco-system partners and vendors. These enter
prises typically place their valuable IP (Intellectual Prop
erty) and development resources behind layers of firewalls
for protection. This security infrastructure, however, makes
the legitimate access extremely difficult. As a result, the
business Suffers with poor productivity and long time to
resolving technical and business oriented issues.

Thus, there is a need to provide systems and techniques to
facilitate Secure communications between two or more net
work domains.

BRIEF SUMMARY OF THE INVENTION

A secure virtual network platform connects two or more
different or separate network domains. When a data packet
is received at an end point in one network domain, a
determination is made as to whether the data packet should
be forwarded outside the virtual network platform, or trans
mitted via the virtual network to a destination in another
network domain connected by the virtual network platform.

In a specific implementation, a secure virtual network
platform that connects client-server applications for enter
prise hybrid cloud computing environments is provided. The
platform can provide one view to the applications running in
segregated network domains with one unified virtual net
work and security. This secure virtual network platform is
decoupled and independent from the physical network topol
ogy and security underneath. With this secure virtual net
work platform, the deployment and management of enter
prise applications in a hybrid cloud environment is very
easy.

In another specific implementation, a secure virtual net
work platform includes a remote access platform that allows
enterprise users to securely access a remote cloud based
virtual infrastructure and applications. The remote access
platform includes a web service design along with a client
control of access and debug Solutions with an interlock
technology. The interlock technology secures specified
application Software as being the only allowed software
versions used and locked over this secure virtual network
infrastructure. Various access and debug functions and fea
tures are able to take advantage of this secure network
platform and the interlock technology. The net design is an
end-to-end, secure, and novel platform for enterprise remote
access, operation, debug, and collaboration.

In a specific implementation, a method includes receiving
at a first end point in a first network domain a request to
make a connection to a second end point, determining if the
connection should be provided through a virtual network
connecting the first network domain with a second network
domain, separate from the first network domain, if the
connection should be provided through the virtual network,
establishing a virtual network connection between the first
end point and the second end point, the second end point
being in the second network domain, and if the connection
should not be provided through the virtual network, passing
the request outside the virtual network.
The passing the request outside the virtual network may

include forwarding the request to a local TCP/IP network
inside the first network domain. The passing the request

US 9,525,564 B2
3

outside the virtual network may include forwarding the
request to a physical networking device inside the first
network domain.

Determining if the connection should be provided through
a virtual network connection may include comparing one or
more than one Internet Protocol (IP) addresses associated
with the second end point against a list of IP addresses stored
at the first end point, where when the one or more than one
IP addresses associated with the second end point are not
listed in the list of IP addresses, the connection should not
be provided through the virtual network.

In a specific implementation, the virtual network includes
a first control daemon and a first virtual network proxy at the
first end point in the first network domain, a second control
daemon and a second virtual network proxy at the second
end point in the second network domain, a virtual network
switch coupled between the first and second network
domains, and a controller coupled to the virtual network
Switch, and the first and second control daemons. The
controller upon approving the virtual network connection
instructs the first virtual network proxy via the first control
daemon to establish a first connection of the virtual network
connection to the virtual network Switch, instructs the sec
ond virtual network proxy via the second control daemon to
establish a second connection of the virtual network con
nection to the virtual network switch, and instructs the
virtual network switch to allow the first connection from the
first virtual network proxy, and to allow the second connec
tion from the second virtual network proxy.

The first end point, second end point, or both may include
at least one of a physical server, a virtual machine (VM), or
a virtual network edge gateway.

In a specific implementation, the first end point includes
a client component of an application program that issues the
request, the second end point includes a server component of
the application program, and the method includes computing
an identifier of the application program, comparing the
identifier with a predetermined identifier associated with a
specific version of the application program, and if the
identifier does not match the predetermined identifier asso
ciated with the specific version of the application program,
determining that the connection should not be provided
through the virtual network.

In a specific implementation, the first network domain is
coupled to the second network domain via the Internet. The
method may include storing a list identifying one or more
specific application programs authorized to use the virtual
network, determining that the request is from one of the one
or more specific application programs authorized to use the
virtual network, after the determination that the request is
from a specific application program authorized to use the
virtual network, seeking permission from a controller for the
establishment of the virtual network connection, and receiv
ing an indication that the connection should not be provided
through the virtual network, the permission thereby being
denied by the controller.

In a specific implementation, the establishing a virtual
network connection between the first end point and the
second end point includes creating at the first end point a
first dynamic routing table having first routing information,
the first routing information including a first session iden
tifier for the virtual network connection, and forwarding the
first routing information to a virtual network switch between
the first and second network domains. The virtual network
Switch consults a second dynamic virtual routing table
having second routing information, the second routing infor
mation a second session identifier. When the second session

5

10

15

25

30

35

40

45

50

55

60

65

4
identifier matches the first session identifier, the virtual
network switch forwards a payload of a data packet from the
first end point to the second end point according to the
second routing information.

In another specific implementation, a method includes
storing a list identifying one or more specific application
programs that are allowed to use a virtual network connect
ing a first network domain with a second network domain,
different from the first network domain, receiving at a first
end point in the first network domain a request from a client
component of an application program to make a connection
to a server component of the application program, deter
mining from the list if the application program is one of the
one or more specific application programs that are allowed
to use the virtual network, if allowed, establishing for the
application program a virtual network connection between
the first end point and a second end point in the second
network domain, the server component of the application
program being at the second end point in the second network
domain, and if not allowed, not establishing the virtual
network connection.
One of the first or second network domains may include

a private network domain, and another of the first or second
network domains may include a public network domain.
One or more specific application programs may include at
least one of a GDB Debug Application, a VNC Access and
Collaboration Application, or a Zshell Secure Access Appli
cation.

In a specific implementation, the virtual network includes
a virtual network switch connected between the first and
second network domains, and a virtual routing table. The
virtual network switch receives a data packet from the first
end point, and based on the virtual routing table, forwards a
payload in the data packet to the second end point in the
second network domain.
The method may include comparing an identifier associ

ated with the application program to the list identifying the
one or more specific application programs are allowed to use
the virtual network, if the identifier associated with the
application program matches an identifier in the list, deter
mining that the application program is one of the one or
more specific application programs that are allowed to use
the virtual network, and if the identifier associated with the
application program does not match an identifier in the list,
determining that the application program is not one of the
one or more specific application programs that are allowed
to use the virtual network, and passing the request to a local
TCP/IP network inside the first network domain.

In a specific implementation, establishing for the appli
cation program a virtual network connection includes cre
ating at the first end point a first dynamic routing table
having first routing information, the first routing information
including a first session identifier for the virtual network
connection, and forwarding the first routing information to
a virtual network switch between the first and second
network domains. The virtual network switch consults a
second dynamic virtual routing table having second routing
information. The second routing information includes a
second session identifier. When the second session identifier
corresponds to the first session identifier, the virtual network
switch forwards a payload of a data packet from the client
component to the server component according to the second
routing information.

In another specific implementation, a method includes
storing at a first end point in a first network domain a static
routing table including a list of virtual destination Internet
Protocol (IP) addresses, receiving at the first end point a

US 9,525,564 B2
5

request from a client to connect to a destination, Scanning
the static routing table to determine whether an IP address of
the destination is listed in the static routing table, if the IP
address is not listed, passing the request to a TCP/IP network
that is local to the first network domain, if the IP address is
listed, seeking permission to use a virtual network connect
ing the first network domain to a second network domain,
different from the second network domain, the destination
being in the second network domain, and upon a determi
nation that use of the virtual network is permitted, estab
lishing for the client a virtual network connection between
the first end point and the destination.

The method may further include upon the determination
that use of the virtual network is permitted, creating at the
first end point a first dynamic routing table having first
routing information, the first routing information including
a first identifier that identifies the virtual network connec
tion, and forwarding the first routing information to a virtual
network switch between the first and second network
domains, where the virtual network Switch consults a second
dynamic virtual routing table having second routing infor
mation, the second routing information comprising a second
identifier, where when the second identifier corresponds to
the first identifier, the virtual network switch forwards a
payload of a data packet from the client to the destination
according to the second routing information.

In a specific implementation, the second dynamic virtual
routing table is provisioned by a controller after the con
troller determines that use of the virtual network is permit
ted.

In a specific implementation, the virtual network includes
a controller that grants or denies permission to use the virtual
network. When the controller grants permission to use the
virtual network, the controller provisions an entry in a
dynamic virtual routing table at a virtual network switch
between the first and second network domains. The entry
includes a virtual IP address associated with the client, a
virtual IP address associated with the destination, and a
session identifier for the virtual network connection.

Other objects, features, and advantages of the present
invention will become apparent upon consideration of the
following detailed description and the accompanying draw
ings, in which like reference designations represent like
features throughout the figures.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a computer network system within which
the present invention may be embodied.

FIG. 2 shows a more detailed diagram of an example of
a client or computer which may be used in an implementa
tion of the invention.

FIG.3 shows a system block diagram of a client computer
system.

FIG. 4 shows a block diagram of end points within two
network domains.

FIG. 5 shows a block diagram of a secure virtual network
platform connecting the two or more network domains.

FIG. 6 shows an overall flow diagram for the virtual
network platform.

FIG. 7 shows a block diagram of a secure virtual network
with L4 control paths.

FIG. 8 shows a more detailed block diagram of the secure
virtual network platform including virtual routing tables.

FIG. 9 shows a flow diagram for configuring the secure
virtual network platform.

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 10 shows a block diagram of a secure virtual

network with L7 control paths.
FIG. 11A shows a flow diagram of an operation of the

secure virtual network platform.
FIG. 11B shows an example of virtual routing tables being

generated for a first type of connection across the virtual
network.

FIG. 11C shows an example of virtual routing tables being
created for a second type of connection across the virtual
network.

FIG. 12 shows a block diagram of a secure virtual
network for secure remote access, debug, and collaboration
applications.

FIG. 13 shows a flow diagram of an “interlock' mecha
nism of the secure virtual network platform.

FIG. 14 shows a flow diagram for discovering a new end
point in a network domain.

FIG. 15 shows a flow diagram for discovering a deleted
end point in a network domain.

FIG. 16 shows an example of a deployment model for a
secure virtual network platform.

FIG. 17 shows another example of a deployment model
for a secure virtual network platform.

FIG. 18 shows another example of a deployment model
for a secure virtual network platform.

DETAILED DESCRIPTION

FIG. 1 shows a computer network system 100 within
which the present invention may be embodied. There may be
any number of servers and clients in the system. For
example, there may be hundreds, thousands, or even mil
lions of servers and clients. In this system, there are three
servers, server 1, server 2, and server 3, and there are three
clients, client 1, client 2, and client 3. The client and server
can represent application Software. The hardware machine
can be but is not limited to a server host machine or any type
of client hardware machines such as desktop PC, laptop, and
mobile devices. The servers communicate with the clients by
exchanging packets over a network 120. The computer
network system is representative of many different environ
ments including a LAN (local area network) system, a wide
area network (WAN) system, an Internet system, Ethernet,
computer network, intranet, cellular phone network, or
other.

Distributed computer network 100 in FIG. 1 is merely
illustrative of an embodiment and is not intended to limit the
scope of the invention as recited in the claims. One of
ordinary skill in the art would recognize other variations,
modifications, and alternatives. Client systems typically
request information from server systems which provides the
information. For this reason, server systems typically have
more computing and storage capacity than client systems.
However, a particular computer system may act as both a
client or a server depending on whether the computer system
is requesting or providing information.

Additionally, although some aspects of the invention are
described using a client-server environment or client-server
application program, it should be apparent that the invention
may also be embodied in any environment where one system
communicates with another system over a network. For
example, in a hybrid cloud environment, there can be servers
implementing the “client software” and other servers imple
menting the “server software.” Those servers communicate
with each other across cloud domains. The communication
can be facilitated via a virtual network platform as discussed
in this patent application.

US 9,525,564 B2
7

As another example, there can be an access application
where a "client machine’ for a user is accessing servers in
the "cloud.” In this case, using GDB (GNU Debugger) as an
example, the client software is then running on the client
user machine. This client GDB software may to connect to
the server GDB software that is running on the “server” in
the cloud. The connection can be facilitated via a virtual
network platform as discussed in this patent application.
A network generally includes: (1) at least two computers,

(2) a network interface or network interface card (NIC) on
each computer, (3) a connection medium, and (4) network
operating system software. The NIC is a device that lets the
computer talk to the network. The connection medium is
usually a wire or cable, although wireless communication
between networked computers and peripherals is also avail
able. Some examples of network operating systems Software
include Microsoft Windows 7 or Windows Server 2012,
Linux Red Hat 5, Ubuntu 13, Novell NetWare, AppleShare,
or Artisoft LAN tastic.
A network may include a hub, switch, or router. Hubs

interconnect groups of users. Hubs can forward data pack
ets—including e-mail, word-processing documents, spread
sheets, graphics, print requests—they receive over one port
from one workstation to all their remaining ports.

Switches can offer more dedicated bandwidth to users or
groups of servers. A Switch can forward a data packet only
to the appropriate port for the intended recipient, based on
information in each packet header. To insulate the transmis
sion from the other ports, the switch establishes a temporary
connection between the source and destination, and then
terminates the connection when the conversation is done.
A router links a local network to a remote network. On the

internet, a router is a device or, in some cases, software in
a computer, that determines the next network point to which
a packet should be forwarded toward its destination. The
router is connected to at least two networks and decides
which way to send each information packet based on its
current understanding of the state of the networks it is
connected to. A router is located at any gateway (where one
network meets another), including each Internet point-of
presence. A router is often included as part of a network
switch.

FIG. 2 shows an example of a client or server system that
may be used to execute software of the present invention. In
an embodiment, a user interfaces with the system through a
computer workstation system, such as shown in FIG. 2. FIG.
2 shows a computer system 201 that includes a monitor 203,
screen 205, cabinet 207, keyboard 209, and mouse 211.
Mouse 211 may have one or more buttons such as mouse
buttons 213. Cabinet 207 houses familiar computer compo
nents, some of which are not shown, Such as a processor,
memory, mass storage devices 217, and the like.
Mass storage devices 217 may include mass disk drives,

floppy disks, magnetic disks, optical disks, magneto-optical
disks, fixed disks, hard disks, CD-ROMs, recordable CDs,
DVDs, recordable DVDs (e.g., DVD-R, DVD+R, DVD
RW, DVD+RW, HD-DVD, or Blu-ray Disc(R), flash and
other nonvolatile solid-state storage (e.g., USB flash drive),
battery-backed-up volatile memory, tape storage, reader, and
other similar media, and combinations of these.
A computer-implemented or computer-executable version

of the invention may be embodied using, stored on, or
associated with computer-readable medium or non-transi
tory computer-readable medium. A computer-readable
medium may include any medium that participates in pro
viding instructions to one or more processors for execution.
Such a medium may take many forms including, but not

5

10

15

25

30

35

40

45

50

55

60

65

8
limited to, nonvolatile, Volatile, and transmission media.
Nonvolatile media includes, for example, flash memory, or
optical or magnetic disks. Volatile media includes static or
dynamic memory, such as cache memory or RAM. Trans
mission media includes coaxial cables, copper wire, fiber
optic lines, and wires arranged in a bus. Transmission media
can also take the form of electromagnetic, radio frequency,
acoustic, or light waves, such as those generated during
radio wave and infrared data communications.

For example, a binary, machine-executable version, of the
software of the present invention may be stored or reside in
RAM or cache memory, or on mass storage device 217. The
source code of the software may also be stored or reside on
mass storage device 217 (e.g., hard disk, magnetic disk,
tape, or CD-ROM). As a further example, code may be
transmitted via wires, radio waves, or through a network
Such as the Internet.
FIG.3 shows a system block diagram of computer system

201. As in FIG. 2, computer system 201 includes monitor
203, keyboard 209, and mass storage devices 217. Computer
system 201 further includes subsystems such as central
processor 302, system memory 304, input/output (I/O) con
troller 306, display adapter 308, serial or universal serial bus
(USB) port 312, network interface 318, and speaker 320. In
an embodiment, a computer system includes additional or
fewer Subsystems. For example, a computer system could
include more than one processor 302 (i.e., a multiprocessor
system) or a system may include a cache memory.
Arrows such as 322 represent the system bus architecture

of computer system 201. However, these arrows are illus
trative of any interconnection scheme serving to link the
subsystems. For example, speaker 320 could be connected to
the other Subsystems through a port or have an internal direct
connection to central processor 302. The processor may
include multiple processors or a multicore processor, which
may permit parallel processing of information. Computer
system 201 shown in FIG. 2 is but an example of a suitable
computer system. Other configurations of Subsystems Suit
able for use will be readily apparent to one of ordinary skill
in the art.
Computer software products may be written in any of

various Suitable programming languages, such as C, C++,
C#, Pascal, Fortran, Perl, Matlab(R) (from MathWorks), SAS,
SPSS, JavaScript(R), AJAX, Java R, SQL, and XQuery (a
query language that is designed to process data from XML
files or any data source that can be viewed as XML, HTML,
or both). The computer software product may be an inde
pendent application with data input and data display mod
ules. Alternatively, the computer Software products may be
classes that may be instantiated as distributed objects. The
computer Software products may also be component soft
ware such as Java Beans(R (from Oracle Corporation) or
Enterprise Java Beans.(R) (EJB from Oracle Corporation). In
a specific embodiment, the present invention provides a
computer program product which stores instructions such as
computer code to program a computer to perform any of the
processes or techniques described.
An operating system for the system may be one of the

Microsoft Windows(R family of operating systems (e.g.,
Windows Server 2008, 2012, Windows NTR, Windows
2000(R), Windows XPR), Windows XPR x64 Edition, Win
dows Vista R, Windows 7R), Windows CER), Windows
Mobile(R), Linux, HP-UX, UNIX, SunOSR, Solaris(R, Mac
OS X(R), Alpha OS(R), AIX, IRIX32, or IRIX64. Other
operating systems may be used. Microsoft Windows(R) is a
trademark of Microsoft(R) Corporation.

US 9,525,564 B2

Furthermore, the computer may be connected to a net
work and may interface to other computers using this
network. The network may be an intranet, internet, or the
Internet, among others. The network may be a wired net
work (e.g., using copper), telephone network, packet net- 5
work, an optical network (e.g., using optical fiber), or a
wireless network, or any combination of these. For example,
data and other information may be passed between the
computer and components (or steps) of the system using a
wireless network using a protocol such as Wi-Fi (IEEE 10
standards 802.11, 802.11a, 802.11b, 802.11e, 802.11g,
802.11i, and 802.11n, just to name a few examples). For
example, signals from a computer may be transferred, at
least in part, wirelessly to components or other computers.

In an embodiment, with a Web browser executing on a 15
computer workstation system, a user accesses a system on
the World WideWeb (WWW) through a network such as the
Internet. The Web browser is used to download web pages
or other content in various formats including HTML, XML,
text, PDF, and postscript, and may be used to upload 20
information to other parts of the system. The Web browser
may use uniform resource identifiers (URLs) to identify
resources on the Web and hypertext transfer protocol
(HTTP) in transferring files on the Web.

FIG. 4 shows a simplified block diagram of a distributed 25
computing environment 405 in which a virtual network
platform may be implemented. This environment includes a
first network domain 410, a second network domain 415,
and a network 420 that connects the first and second network
domain. The first network domain includes a first set of end 30
points 425 (e.g., end point A, end point A. . . . end point
A.). The second network domain includes a second set of
end points 430 (e.g., end point B, end point B. . . . end
point B). The end points in a network domain may be
interconnected themselves such as through a network or 35
local network.
The network may be as shown in FIG. 1. An end point

may be referred to as a node or computing node. In a specific
embodiment, the first and second network domains are
separate and interconnected via the Internet. One of the first 40
or second network domains may include a private cloud
infrastructure. Another of the first or second network
domains may include a public cloud infrastructure. In this
specific embodiment, the architecture shown in the example
of FIG. 4 may be referred to as a hybrid cloud. 45

Security in a hybrid cloud environment is a concern
because the underlying network and infrastructure are dis
tributed, segregated, and owned by multiple authorities.
Coordination among all parties for security re-provisioning
can be overwhelming and prohibited, even if the change 50
request is driven by a validated and approved business case.
In a specific implementation, systems and techniques are
provided for a secure virtual network platform that connects
client and server applications deployed in two (or more)
separate network domains interconnected via the Internet. 55
A network domain may include any number of end points.

For example, there can be hundreds, thousands, or even
millions of end points. An end point may include a physical
device, a virtual device, or both. An end point can include a
physical server (e.g., blade servers or rack-mounted servers), 60
a virtual machine (VM), a virtual network edge gateway, or
other physical or virtual appliance.
More particularly, an end point may include a general

purpose computing system having one or more components
such as that shown in FIGS. 2-3. For example, an end point 65
may include a user interface, one or more processors, a
network interface, mass storage, and memory. Alternatively,

10
Some embodiments may not include the user interface or the
user interface may not be connected directly to the hardware
platform. For example, user interaction may be automated or
occur remotely in connection with data center administra
tion. A first end point can include a client. A second end
point, remote from the first end point, can include a server.
The server may host application services for the client.

In a virtual machine environment, the hardware platform
may be referred to as a host, host machine, or host computer.
The host uses the virtualization software to run the virtual
machines or virtual devices. Generally, virtualization is an
abstraction layer that allows multiple virtual environments
to run in isolation, side-by-side on the same physical
machine. A virtual machine (VM) is a software implemen
tation of a machine (e.g., a computer) that executes pro
grams like a physical machine. In other words, the virtual
machine is a software abstraction of a physical computer
system that is installed as a "guest' on the “host' hardware
platform.
A virtual machine can include a guest operating system,

guest applications running on the guest operating System,
and virtual hardware which represents a hardware state of
the virtual machine. The virtualization software may include
a hypervisor or virtual machine monitor (VMM) that pres
ents the guest operating system with a virtual operating
platform. Virtual hardware refers to the hardware resources
allocated to the virtual machine and is mapped to the
hardware platform. The virtual hardware may include virtual
disks, virtual processors, virtual system memory, and vari
ous virtual devices for which the guest operating system
includes corresponding drivers. A host hardware platform
may host multiple virtual machines. Each virtual machine
may be assigned an identifier Such as an internet protocol
(IP) address.
An end point including a virtual network edge gateway

provides a network entry point to services or applications
behind the gateway. For example, an edge device can
connect an internal local area network to the virtual network.
A network domain can be enterprise local area network

(LAN), server farm environment, or an Infrastructure as a
Service (IaaS) cloud datacenter, which can be protected by
conventional peripheral firewalls. The two network domains
can be interconnected via Internet or any TCP/IP network.

In an embodiment, the first network domain is different or
separate from the second network domain. For example, the
domains may be in different physical or geographic loca
tions, have different capabilities, have different computer
architectures, have different network environments, have
different physical devices, networking infrastructure may be
owned, operated, and administered by different entities,
companies, enterprises, authorities, parties, or organizations,
have different administrative policies, have different storage
policies, have different security policies, or combinations of
these.

Both domains may be owned by the same enterprise, but
may be in different geographic locations. For example, one
domain may be in San Francisco. Another domain may be in
London. As another example, one domain or networking
infrastructure may be privately owned such as by an enter
prise. Another domain or networking infrastructure may be
owned by a different or third-party that leases computing
resources to the enterprise. A domain may be or be a part of
a cloud computing or multi-tenant data center. There can be
multiple private domains. There can be multiple public
domains.

In a specific embodiment, the first and second domains are
connected by the Internet. The Internet is a global system of

US 9,525,564 B2
11

interconnected computer networks that use the standard
Internet protocol suite (TCP/IP) to serve users worldwide. It
is a network of networks that includes millions of private,
public, academic, business, and government networks, of
local to global scope, that are linked by a broad array of
electronic, wireless, and optical networking technologies.

In a specific embodiment, one of the first or second
domains is a private cloud. Another of the first or second
domains is a public cloud. A private cloud refers to a
computing infrastructure (e.g., hardware, Software, or both)
that may be operated, controlled, or owned by a single
enterprise. The computing infrastructure is internal to the
enterprise. A public cloud refers to a computing infrastruc
ture in which services are rendered over a network that is
open for public use (e.g., Internet). The public cloud can
offer on-demand network access to a shared pool of con
figurable computing resources (e.g., networks, servers, Stor
age, applications, and services).
Some characteristics of a public cloud include on-demand

self-service (e.g., consumer can unilaterally provision com
puting capabilities such as server time and network storage),
resource pooling (e.g., the providers computing resources
are pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources such as
storage, processing, memory, and network bandwidth
dynamically assigned and reassigned according to consumer
demand), elasticity (e.g., capabilities can be elastically pro
visioned and released to Scale outward and inward based on
demand), and metering (e.g., resource usage can be moni
tored and reported for billing).
Some examples of cloud computing service providers

include Amazon Web Services (AWS), Microsoft AZure, HP
Public Cloud, IBM SmartCloud, and many others. The
number of computing end points in a private network
domain for an enterprise may be different from the number
of computing end points in a public cloud network domain.
For example, the enterprise may include several thousand
end points. The public cloud may include hundreds of
thousands or millions of end points.

In this specific embodiment, the computing architecture
may be referred to as a hybrid cloud. A hybrid cloud is a
composition of two or more clouds such as a private cloud
and a public cloud. A hybrid cloud allows an enterprise to
extend its computing capabilities without having to make
large capital investments in assets Such as physical space and
computing hardware. A hybrid cloud can also be used by an
enterprise to accommodate spikes in demands for computing
resources. An organization can pay for computing resources
when they are needed. The organization may have a rental,
lease, or other contractual agreement with a cloud services
provider for the computing resources. An organization may
utilize the services of multiple cloud service providers.
As discussed above, however, security and the network

connection in a hybrid cloud environment is a concern
because the underlying network and infrastructure are dis
tributed, segregated, and owned by multiple authorities.
Each authority may have different approaches and practices
regarding security, privacy, administration, and compliance.

FIG. 5 shows a simplified block diagram of a secure
virtual network platform or system 505. The virtual network
platform may be referred to as a software-defined network
(SDN), however, this SDN is not limited to an enterprise
LAN (Local Area Network) or a local network in a cloud
datacenter only. It is a WAN (Wide Area Network) based
virtual network platform that is across multiple network
domains. In a specific embodiment, the virtual network
platform connects different physical network domains 510 in

5

10

15

25

30

35

40

45

50

55

60

65

12
a hybrid cloud environment. The virtual network platform
may be referred to as a wide area virtual network because it
goes across or connects different network domains. As
shown in the example of FIG. 5, the virtual network platform
is layered on top of the physical network domains. The
physical network domains may be running TCP/IP (Trans
mission Control Protocol/Internet Protocol). TCP/IP is one
of several protocols that operating systems can use to
process application requests for transmission over a net
work. The physical network domains may be controlled by
different groups or IT departments.

Applications, such as client-server applications 515, are
layered on top of the virtual network platform. In other
words, the virtual network platform is positioned between
the applications and the network domains. The applications
can use the services provided by the virtual network plat
form to send and receive information across different
domains. The virtual network platform helps to isolate the
applications from the complexity of transmitting and receiv
ing data across the different network domains.

For example, a client-server application may include a
client application component and a server application com
ponent. The client application component may be executing
on a first end point in a first network domain. The server
application component may be executing on a second end
point in a second network domain. The second network
domain may be separate, remote, or different from the first
network domain. In a specific implementation, the client
application component can be a web browser. A client web
browser requests an action or service from the provider of
service (e.g., server or web server). In another specific
implementation, the client application component executes
independently of the web browser, such as an email client
that connects to an email server.
When appropriate, the virtual network platform can be

used to securely communicate or exchange information
(e.g., data packets) between the network domains. For
example, depending on the source of a particular data
packet, destination of a particular data packet, security
policy, application program, or combinations of these, it may
or may not be appropriate to use the virtual network for the
transport.

FIG. 6 shows an example of an overall flow 605 for a
specific implementation of the virtual network platform.
Some specific flows are presented in this application, but it
should be understood that the process is not limited to the
specific flows and steps presented. For example, a flow may
have additional steps (not necessarily described in this
application), different steps which replace some of the steps
presented, fewer steps or a Subset of the steps presented, or
steps in a different order than presented, or any combination
of these. Further, the steps in other implementations may not
be exactly the same as the steps presented and may be
modified or altered as appropriate for a particular process,
application or based on the data.

In a step 610, a data packet (e.g., request) is received at
a first end point in a first network domain to be sent to a
destination. The data packet can indicate a request to con
nect to the destination. In a specific implementation, the
request is from a client application component of an appli
cation program to connect with a server component of the
application program.

It should be appreciated, however, that the request or
connection can involve any type of Source in one domain
connecting to any type of destination in another domain and
Vice-versa. For example, in a hybrid cloud environment,
there are servers implementing the “client software' and

US 9,525,564 B2
13

other servers implementing the “server software.” The vir
tual network platform facilitates the servers communicating
with each other across cloud domains. In another specific
implementation, there is an access application where a
"client machine' for a user is accessing servers in the
"cloud.” In this case, using GNU Debugger (GDB) as an
example, the client software is then running on the client
user machine. This client GDB software can connect to the
server GDB software that is running on the “server in the
cloud.

In a step 615, a determination is made as to whether the
connection should be provided through a virtual network
that connects the first network domain with a second net
work domain, different or separate from the first network
domain.

In a step 620, if the connection should be provided
through the virtual network, a virtual network connection is
established between the first end point in the first network
domain and the destination, the destination being at a second
end point in the second network domain.

Alternatively, in a step 625 if the connection should not be
provided through the virtual network, the data packet is
passed outside the virtual network. In other words, the data
packet may be forwarded to a destination outside or external
to the virtual network. In a specific implementation, the data
packet is passed to the local TCP/IP network inside the first
network domain. The local TCP/IP network can include a
physical networking device (e.g., hardware router or hard
ware switch) within the first network domain. The physical
networking device may include its own set of rules and logic
for processing and forwarding the data packet. These rules
and logic are separate from or independent of the rules and
logic of the virtual network platform.

In a specific implementation, the decision as to whether
the virtual network should be used can be made locally or
without traversing the virtual network. For example, the
decision can be made within the originating domain (e.g.,
the first domain). This feature helps to conserve the com
puting resources of the virtual network, reduce network
traffic across the virtual network, and prevent bottlenecks.
The virtual network platform provides IT administrators
with the flexibility to decide the conditions, circumstances,
or contexts for when the virtual network should be used (or
not be used) to transmit data across two or more network
domains. For example, the administrator can use the system
to control which applications will use the virtual network,
which applications will not use the virtual network, or both.

In a specific implementation, the system stores a list of
applications that are authorized or allowed to use the virtual
network. This list may be referred to as a white list. In
various other specific implementations, the system stores a
list of applications that are not authorized or allowed to use
the virtual network. This list may be referred to as a black
list. In a specific implementation, an application not listed in
the black list is allowed to use the virtual network.

FIGS. 7 and 8 show more detailed block diagrams of the
virtual network platform shown in FIG. 6. Referring now to
FIG. 7, in a specific implementation, this secure virtual
network platform design features a central controller 710, a
virtual network switch (VNS) 715, and various end point
modules 720 to form an end-to-end closed virtual network
system. The controller, Switch, and modules can include
executable code, code components, or logic stored in
memory of a hardware component.

In a specific implementation, the central controller is
responsible for implementing and maintaining security poli
cies in a central database, evaluating the security policies,

10

15

25

30

35

40

45

50

55

60

65

14
approving (or denying) virtual network connections, direct
ing the virtual switches to allow (or block) the virtual
network connections, and directing the virtual network
proxies to establish connections to the virtual switches. A
specific example for Such a security policy can be a rule for
a GDB server application that is running on certain server
machines in a network domain which can be accessed by a
certain group of client machines running the GDB client
software in a different network domain.
The virtual network switches are responsible for switch

ing operations such as receiving a data packet and forward
ing the data packet to the appropriate end point or port for
the intended recipient. The virtual network switches can act
as a bridge for exchanging communication between two
different components of an application (e.g., a client com
ponent and a server component), where the application
components are on two different end points in two different
or separate network domains. Each network domain can
remain independently configured. A virtual Switch may
execute within the virtualization software or firmware of a
hardware component.

In a specific implementation, an end point module
includes a control daemon and virtual network proxy. The
control daemon, Virtual network proxy, or both may be
referred to as a virtual network agent. In a specific imple
mentation, the end point modules are independent applica
tion programs or code modules. The modules may be
external to the end point OS. A module may include code
that is not native to the OS. In another specific implemen
tation, the modules may function at the OS level or may be
part of the OS. That is, a module may be internal to the OS.
A module may include code that is native to the OS. A
module may be implemented via add-ins, plug-ins, Scripts,
macros, extension programs, libraries, filters, device drivers,
or combinations of these. Further discussion is provided
below.

FIG. 7 shows a design with L4 (OSI layer 4) control paths
between components that assure a tight security control for
the use of the virtual network platform. The OSI (Open
Systems Interconnection) Reference Model divides the
functionality of the networking process into a seven-layer
structure. The layers from top to bottom include application,
presentation, session, transport, network, data link, and
physical. The TCP/IP protocols are also divided into layers
representing some of the same processes as their counter
parts in the OSI model. There are four layers of the TCP/IP
stack including application, transport, Internet, and link. The
transmission of data from a source computer to a destination
computer involves passing a request down through the
various layers of the protocol stack.
The end point modules in a first network domain (e.g.,

network domain 1) 725 and a second network domain (e.g.,
network domain 2) 730 each include a virtual network proxy
(VNP) and a control daemon connecting to the central
controller. As discussed above, an example for an end point
can be a physical server or a VM (virtual machine). Another
example can be a virtual network edge gateway. In this
specific implementation, a VNS is also or always connected
to the controller. The network domain can be an enterprise
LAN, server farm environment, or IaaS cloud datacenter,
which can be protected by conventional peripheral firewalls.
The two network domains can be interconnected via Internet
or any TCP/IP network.

In a specific implementation, the enterprise IT defines a
virtual routing table in the controller that defines how a
client application 735 can find a server application 740 in a
hybrid cloud environment. A set of virtual IP addresses is

US 9,525,564 B2
15

defined to connect a particular client-server application. This
table is defined in the controller and the detail information
is then pushed 745 and 750 to all control daemons and
implemented in the VNPs.

In this specific implementation, when the application
client software is making a connection to the application
server in a separate network domain (e.g., the second
network domain) in a hybrid cloud environment, it follows
a TCP/IP routing table and requests a TCP connection with
the VNP on the client side. The VNP confirms with the
virtual routing table and then requests the control daemon to
set up a virtual network connection.
The control daemon then makes the request to the central

controller. The central controller checks the security policy,
approves the connection, and then informs 755 VNS to
allow virtual network connections 760 and 765 from both
VNPs, respectively, and switch the packets. Once receiving
the confirmation from the VNS, the controller requests both
VNPs (via the control daemon) to establish a virtual network
connection to VNS. The VNPs will then operate or function
as a TCP proxy for data transfer. The VNS switches the data
sent/received from the two virtual network connections.

In an implementation, the VNS only accepts virtual
network connections when it is requested by the central
controller for security control. The connections are always in
pairs. When one connection is terminated by a VNP, the
VNS will terminate the other virtual network in the same
pair. In an implementation, the virtual network is always
encrypted to protect the data transport.
The VNPs work as a TCP proxy and reverse proxy for the

traffic defined in the virtual routing table. For the traffics not
defined in the virtual routing table (i.e., traffic not using
secure virtual network), the VNP will pass 770 and 775 the
packets to the local TCP/IP network inside the respective
network domain.

In an implementation, the virtual network connection
(e.g., a TCP connection) is always initiated by the VNP at an
end point to the central VNS. The data is then switched in
the VNS. This architecture design is suitable for most of the
TCP/IP network and peripheral firewall implementations in
enterprise legacy networks. This architecture design allows
the secure virtual network provisioning to be decoupled
from the physical network and firewalls underneath and
helps to avoid changing any legacy infrastructure. More
specifically, the VNP initiates TCP traffic to the VNS, as this
direction follows the typical enterprise firewall rules of
“outbound first, inbound reply.”

In a specific implementation, the virtual network Switch
(VNS) operates as a switching mechanism between the first
and second network domains. In this specific implementa
tion, the VNS can remove or extract a payload received from
the first virtual network proxy in the first network domain
and place the payload into return traffic to the second virtual
network proxy in the second network domain.
The architecture of the virtual network platform allows

the platform to be deployed without having to make exten
sive changes to the underlying network layer Such as the
legacy or exiting security firewall settings. For example,
typically, as discussed an enterprise's firewall setting will
allow outbound traffic to a destination gateway and then an
inbound return. The virtual network switch between the
domains provides an outbound traffic destination for end
points in the first network domain, and an outbound traffic
destination for end points in the second domain. This helps
to reduce or eliminate the need for an enterprise to change
their existing firewall settings. A new security policy can be

5

10

15

25

30

35

40

45

50

55

60

65

16
implemented in the virtual network layer via the controller
710 as an easy add-on layer to the enterprise legacy network.

In other words, for many enterprises outbound traffic is
allowed. The returning traffic for inbound is also allowed.
The inbound first traffic is typically blocked by the corporate
firewall for the reasons of protecting the corporate networks.
That is, an enterprise may block unsolicited inbound traffic.
The system architecture design shown in FIG. 7 recognizes
such corporate firewall system policies by having the VNPs
initiate outbound connections to the VNS for the establish
ment of a virtual network connection. An enterprise wishing
to implement the virtual network platform will not have to
make many changes to the corporate firewall because many
corporate firewalls, while blocking unsolicited inbound traf
fic, will allow outbound network traffic and the subsequent
inbound traffic associated with the outbound connections,
e.g., return, response, or reply traffic.

In a specific implementation, a method for establishing a
virtual connection between a first end point in a first network
domain and a second end point in a second network domain,
different from the first network domain, includes instructing
a first virtual network proxy at the first end point to initiate
a first connection outbound to a virtual network switch
between the first and second network domains, the first
connection thereby being outbound network traffic to the
virtual network Switch, instructing a second virtual network
proxy at the second end point to initiate a second connection
outbound to the virtual network switch, the second connec
tion thereby being outbound network traffic to the virtual
network switch, receiving at the virtual network switch a
data packet from the first end point for the second end point,
and forwarding a payload of the data packet to the second
end point as return traffic associated with the second con
nection.

In another specific implementation, a method for estab
lishing a virtual network connection between a first end
point in a first network domain and a second end point in a
second network domain, different from the first network
domain, includes initiating or making a first connection from
the first end point to a virtual network switch between the
first and second network domains, initiating or making a
second connection from the second end point to the virtual
network Switch, the second connection thereby including an
outbound request from the second end point to the virtual
network switch, receiving at the virtual network switch a
data packet from the first end point via the first connection,
and forwarding a payload of the data packet to the second
end point as a response to the outbound request.

In another specific implementation, a method includes
receiving at a virtual network switch between first and
second network domains a data packet from the first end
point, receiving at the virtual network switch outbound
traffic from the second end point, and forwarding a payload
of the data packet as return traffic associated with the
outbound traffic.

In another specific implementation, the end points also
always initiate the control traffic, connecting to the central
controller. Again, a reason is because corporate firewalls
typically block inbound traffics and allow outbound traffic
and the inbound return traffic. The “control path’ is designed
for such firewalls in that the end points always initiate the
control traffic to the central controller to avoid any corporate
firewall issue. When the controller is communicating with
the second endpoint, asking it to initiate a traffic to the VNS,
the controller is using the “return traffic’ to talk to the
second end point (since the second end point initiates the
traffic to the controller first).

US 9,525,564 B2
17

In a hybrid cloud environment, the virtual routing table
can be dynamically updated when end points are added to or
deleted from the virtual network. The updated virtual routing
table will be pushed by the controller to each involved
control daemon and then implemented in each VNP.

FIG. 8 shows a more detailed diagram of a specific
implementation of a virtual network platform. As shown in
the example of FIG. 8, there is a first network domain 810,
a second network domain 815, and a virtual network switch
820 between the first and second network domains. The first
network domain includes a first end point 825. The first end
point includes a first control daemon 830 and a first virtual
network proxy 835.

Similarly, the second network domain includes a second
end point 840. The second end point includes a second
control daemon 845 and a second virtual network proxy 850.
There is a controller 855 that is connected to the virtual
network Switch, and first and second control daemons. The
controller includes a policy evaluation engine 860, an
administration module 865, a database 870 for storing
security policies, and a database 875 for storing configura
tion data. The VNPs and VNS include virtual routing tables
for filtering and routing data packets between the two
network domains. Further discussion is provided below.

FIG. 9 shows a flow 905 for configuring a specific
implementation of the virtual network. In this specific
implementation, an IT administrator will program the cen
tral controller to define users and user groups (therefore,
their computer (e.g., laptop computer) will automatically
become end-points when they are on the computer and log
in to the system), and the servers or VMs that are running
some enterprise applications for access on the virtual net
work platform. And then the administrator will define the
access rules (security) for who can access what, in what
circumstances, and running what applications (e.g., what
specific servers that have loaded these applications). Once
these security rules are defined, users (e.g., their client
computers as end-points) will be able to use the virtual
network platform to securely access provisioned applica
tions running on other end-points in segregated network
domains.
More particularly, in a step 910, the IT administrator uses

the administration module of the controller to define users,
user groups, applications, and end points. The definitions
may be stored in a configuration file or database. The
administration module may include a graphical user inter
face (GUI) So that the administrator can easily manage the
system. Using the administration module, an administrator
can identify, create, add, update, delete, modify, alter, and
remove users, groups, applications, and end points for the
virtual network.

Table Abelow shows an example listing of users that may
be defined through the administration module.

TABLE A

Name User Name

John Kent kent
Mark Smith mSmith
Ben Carver bcarver
Violet Sun WS

In table A above, a first column lists the user first and last
name. A second column lists the user name corresponding to
the user.

Table B below shows an example listing of user groups
that may be defined through the administration module.

5

10

15

25

30

35

40

45

50

55

60

65

18
TABLE B

Group Users

kent, mSmith
bcarver, VSun

Marketing
Engineering

In table B above, a first column lists the name of the
group. A second column lists the users who belong to the
corresponding group.

Table C below shows an example listing of applications
that may be defined through the administration module.

TABLE C

Application Version

GDB Debug S.1.3
VNC Access and Collaboration 10.7
Zshell Secure Access 8.4.2

In table C above, a first column lists the name of an
application. A second column lists the version of the appli
cation.
The administrator can use the administration module to

define the virtual network routing tables. In a specific
implementation, the virtual network routing tables identify
the type of network traffic based on traffic source, desti
nation, or both—that will use the virtual network. Other
traffic, e.g., traffic not identifying the specific IP destinations
listed in the virtual routing tables, will be routed to the local
or lower level TCP/IP network. The local TCP/IP network
may then use a different set of routing tables to forward the
traffic to the appropriate destination.

In a step 915, security policies are defined and stored in
the policies database. As discussed above, a policy can
include rules for who can access what, in what circum
stances, and running what applications (e.g., what specific
servers that have loaded these applications). A policy may
include a programmatic expression to be evaluated, a con
ditional statement (e.g., if X then do Y else do Z), nested
conditionals, multiple conditionals, boolean operators (e.g.,
OR, AND, or NOT), or combinations of these. For example,
an access rule or policy may be structured or formatted as
follows:

If <condition> then ALLOW, else DENY
In the above example, use of the virtual network is

allowed when the <condition> evaluates to TRUE. Use of
the virtual network is not allowed or denied when the
<condition> evaluates to FALSE.

Consider, as an example, the following:
If <X> accesses <Y> then ALLOW, else DENY
The X and Y variables can identify users, user groups,

application programs, application program versions, appli
cation program client components, application program
server components, end points, physical machines, physical
devices, virtual machines, virtual devices, network domains,
or combinations of these that will be allowed to use the
virtual network.
A policy can specify, for example, the end points in a

particular network domain (e.g., private cloud) that will be
allowed to connect to end points in another network domain
(e.g., public cloud). Instead or additionally, there can be a
policy that specifies the end points a particular network
domain that will not be allowed to connect to end points in
another network domain.

US 9,525,564 B2
19

Below is an example of a policy:
If <user-vsund accesses <end point=50.63. 103.1-> then
ALLOW, else DENY

In this example, the user “vsun' (or “Violet Sun”) will be
allowed use of the virtual network to connect to the end
point associated with IP address “50.63. 103.1.” Other users
may be denied use of the virtual network. Another similar
example is: If <end point=172.64.0.1 accesses <end
point=50.63. 103.1 > then ALLOW, else DENY. In this
example, it is one end-point server accessing another end
point server in a different network domain.

Below is another example of a policy:
If <user group=NOT Engineering> accesses

point=50.63. 103.1 > then DENY, else ALLOW
In the above example, users not in the engineering group

will be denied use of the virtual network to connect to the
end point. Users in the engineering group will be allowed
use of the virtual network to connect to the end point. From
the example data in table B above, users kent” and
“msmith' will be denied use of the virtual network because
they are in the Marketing group which is not the Engineering
group. Users “bcarver” and “vsun' will be allowed use of
the virtual network.
As can be appreciated, an administrator can create very

granular policies, very broad policies, or both that define the
conditions in which use of the virtual network is allowed or
not allowed. This allows enterprises to control communica
tion across different network domains in a hybrid cloud
environment without having to open their protected legacy
networks. An add-on virtual network easily addresses new
connection and business requirements.

Security can be specified based on specific computing
nodes or machines (e.g., machine A in first domain can
connect only to machine B in second domain) or groups of
computing nodes or machines (e.g., all machines in machine
group A in first domain can connect only to the machines in
machine group B in second domain). Security can be speci
fied based on specific application version (e.g., only appli
cation version 2.3 in first domain can connect to second
domain) such that a security hack by altering application
software can be blocked by virtual network access control.
Security can be specified based on specific machines execut
ing a specific version of an application (e.g., only application
version 2.3 executing on machine A in first domain can
connect to machine B in second domain). And So, forth.
As a specific example, consider a scenario where user-A

can access a particular application that is running on
server-A in the second network domain. When user-A is
connected to the server-A and accessing the application,
under that situation another user-B is allowed to access
server-A at the same time and access a second application.
In other words, there can be a policy Such that the access
right for user-B is only granted while user-A is conducting
the access to the same server. Such a policy can be advan
tageous to security where user-A is an employee to the
domain where server-A is deployed. User-B is a vendor who
is helping user-A who is working on Some application.
According to the policy, the vendor, user-B, is never allowed
to access the server-Aalone. His access is only granted when
user-A is connected to server-A. Thus, the “circumstances
for when the virtual network can (or cannot) be used can be
a logical condition, a time condition, a geographical condi
tion, a user role condition, a multiple user role condition, a
dependency condition, or combinations of these.

<end

10

15

25

30

35

40

45

50

55

60

65

20
Further, because the virtual network is decoupled from the

physical network infrastructure, the control can be achieved
without having to engage in extensive reconfiguration of the
legacy infrastructure.

In a specific implementation, policy evaluation is central
ized. In this specific implementation, policy evaluation is at
the controller and is not at the individual end points and
virtual switches. The policies are not distributed to the end
points or Switches. This centralized approach helps to reduce
the resources needed to execute the end point modules (e.g.,
control daemon) and virtual Switches because the logic for
the policy evaluation will be the responsibility of the policy
engine at the controller. The centralized approach is more
secure as the controller can be strategically protected by
enterprise IT and it is not easily reached or altered by users.
Furthermore, there will be no storage space requirement at
an end point for policies because the policies are stored at
the controller. Such a centralized approach can also facilitate
Scaling and clustering of virtual network infrastructure.

In another specific implementation, policy evaluation is
decentralized or a portion of policy evaluation is decentral
ized. In this specific implementation, there can be policy
enforcement end point modules. Policies may be provided to
the various end points so that policy evaluation can occur at
an end point, virtual switch or both. In such a decentralized
approach, it can be easier to scale the intelligence of security
policies if there is a requirement for a complex security
system.

In a step 920, virtual network agents (e.g., control dae
mons and virtual network proxies) and virtual routing tables
are provided to the end points and virtual network switches.
In a specific implementation, the agents, tables, or both are
distributed from a central location (e.g., central control
server) to the end points. In another specific implementation,
the agents, tables, or both are provisioned in conjunction
with the provisioning of an endpoint. For example, there can
be a virtual machine template that provides for the instal
lation of an agent, table, or both when a virtual machine is
created or cloned from the template.

FIG. 10 shows a block diagram of another specific imple
mentation of a virtual network platform. The system shown
in FIG. 10 is similar to the system shown in FIGS. 7-8. In
the system of FIG. 10, however, the end points include a
manager module to provide enhanced functionality. For
example, as shown in FIG. 10, there is a client manager 1005
and a server manager 1010. The client manager is executing
at the first end point in the first network domain. The server
manager is executing at the second end point in the second
network domain.
More particularly, FIG. 10 shows an example of a secure

virtual network design with L7 (OSI Layer 7) control paths.
The uniqueness of this virtual network design is the
enhanced security control on the client-server applications
using the virtual network platform. In this specific imple
mentation, there is a client manager and a server manager
that manage the client and server applications, as well as to
interact with the central controller and control VNPs.

This design facilitates a feature that may be referred to as
an “interlock” or “application interlock” or “computing
interlock.” The “interlock' mechanism helps to ensure that
only the authorized client-server applications can use the
virtual network for hybrid cloud connections. With the L7
management Software at the endpoint, more intelligence can
be built-in to support advanced security functions and appli
cation features in a hybrid cloud environment. When it
comes to security control, it can be desirable to “integrate'
or “interlock” the application level access with the network

US 9,525,564 B2
21

level access. In a specific implementation, the control is
owned by the central controller. Therefore, in this case the
virtual network access is then only available to specific
applications that are provisioned by the controller at a higher
level.

In this specific implementation, security can be imple
mented at the application layer, operating system layer, or
both. The architecture of the platform allows for such
security without having to program the network, the com
puting node on the network, and the application executing in
the node.

The “interlock' mechanism facilitates vertical integration
for security policy protection. For example, the system can
be used to provision servers (or VMs) in two (or more)
network domains such that the client-server applications can
find each other using the virtual network platform. In this
case, the IT administrator configures the central controller
and defines an application profile that includes the valid
computing flows among the end-points (as the security
policy for communication). When a cloud manager adds
more VMs into this application profile, the security rules
(application profile and the computing flows) are automati
cally enforced in all end-points. When the end-points need
to access each other (e.g., the client-server applications
running inside these end-points are trying to reach each
other), they will be able to use the pre-defined/allowed
virtual networks.

FIG. 11A shows a flow diagram 1105 of a technique of a
virtual network platform as shown in the example of FIG.
10. The virtual routing tables in the virtual network proxies
and virtual network switches may be referred to as IP
forwarding tables. In a specific implementation, there can be
two types of end points when considering the virtual net
work connections. A first type of end point (“type-1)
includes an end point machine where the application client
Software (or application server Software) is a process that is
in the same end point machine.
A second type of end point (“type-2') includes an end

point gateway where the application client software (or
application server software) is a process that is running on
the network, not in the end-point gateway. In this specific
implementation, in these two types of end points, the net
work routing considerations are different. The “virtual net
work routing table' and the way the connections are routed
can be different. There can be a case where an end-point in
a virtual network is a machine as well as a gateway.
A first type of end point can connect to another end point

that is of the first type (e.g., “type-1 connects to “type-1).
A second type of end point can connect to another end point
that is of the second type (e.g., “type-2 connects to “type
2). As can be appreciated, the platform can Support many
more different connection conditions.

Regarding the first type of end point connections, in a step
1110, IP addresses are assigned. Consider, as an example, a
specific implementation of the virtual network platform
shown in FIG. 10. For this example, the virtual network will
be provisioned to connect an end-point A in a network
domain 1 to an end point B in a virtual domain 2. A
controller 1015 assigns a first virtual IP address (e.g.,
“vIPa”) to a first virtual network proxy (“VNPA) 1020A, a
second virtual IP address (e.g., “VIPb) to a second virtual
network proxy (“VNPB) 1020B. The first and second
virtual IP address (“vIPa” and “viPb) are virtual IP
addresses which may or may not be routable in the physical
TCP/IP network in domain 1 and domain 2.

In a step 1115, an application program is configured to use
the virtual network. In this example, the application client

5

10

15

25

30

35

40

45

50

55

60

65

22
Software is configured so that it understands that the second
virtual IP address (“vIPb') is the IP address to reach the
application server Software.

In a step 1120, static virtual routing tables are created for
the virtual network proxies. These tables help the virtual
network proxies (e.g., VNPA or VNPB) to filter traffic and
decide whether to forward the packets via the virtual net
work or to the local TCP/IP network.

Referring now to FIG. 11B, table D below shows an
example of a static virtual routing table 1160 that may be
created for first virtual network proxy (VNPA) 1020A.

TABLED

Source IP Destination IP

wPa wPb

A first column of the table lists the source IP addresses. A
second column of the table lists the destination IP addresses
that correspond or map to the source IP addresses. In this
example, the first virtual IP address (“VIPa') is mapped to
the second virtual IP address (“VIPb). A virtual routing table
similar to the routing table shown in table D is created for
the second virtual network proxy (VNPB) 1020B. In the
type-1 case, both end points can initiate a network connec
tion. That is, a client-server application can be deployed in
both directions. In this case, for VNPB initiating a connec
tion to VNPA, its routing table is a swapped version from
what is shown in table D. Specifically, in this example, the
Source IP will be “VIPb and the destination IP will be
“VIPa.
As discussed above, in a specific implementation, the IT

administrator uses the controller to create or generate the
tables and distribute the tables to the virtual network proxies
at the end points. For example, the controller may include a
user interface that includes a set of input boxes. Using the
input boxes, the administrator can input or enter the
addresses and their corresponding address mappings. Alter
natively, in another specific implementation, a virtual rout
ing table may be created at an end point.

In a step 1125, traffic or data packets are received and
filtered according to the static virtual routing tables. Data
packets not having a routing address listed in the static
routing table are forwarded to the local TCP/IP network
(step 1130). In a specific implementation, determining if the
connection should be provided through a virtual network
connection includes comparing one or more than one Inter
net Protocol (IP) addresses associated with the second end
point against a list of IP addresses stored at the first end
point. In this specific implementation, when the one or more
than one IP addresses associated with the second end point
are not listed in the list of IP addresses, the connection
should not be provided through the virtual network. One or
more than one IP address can be associated with an end
point. Each IP address can represent one 'application
server in the other (e.g., second) network domain that the
client wants to address.

Alternatively, if a data packet includes a routing address
that matches an entry in the static virtual routing table, a
security check 1135 is performed to determine whether a
virtual network connection should be established. For
example, assuming that an entry in the virtual routing table
1160 at first virtual network proxy (VNPA) 1020A can be
found for a data packet, when application client 1025A is

US 9,525,564 B2
23

making a connection to application server 1025B, client
manager 1005 checks with controller 1015 for security
permission.

In other words, the manager will seek permission from the
controller for the virtual network connection. There can be
cases where a routing address is found in the static virtual
routing table, but the controller denies the virtual network
connection. This can be the result of a policy evaluation by
the controller where, for example, one or more parameters of
the policy have or have not been satisfied as described in the
discussion of policies accompanying FIG. 9, step 915.
The local filtering via the static routing tables (step 1125)

at the end points helps to reduce network congestion and
bottlenecks. For example, a data packet will not have to be
forwarded to a gateway device only to be returned because
it is to be routed to the local TCP/IP network rather than the
virtual network. The architecture helps to ensure that the
system can be easily implemented without having to make
expensive investments in upgrading, for example, the
Switching capacity of the existing network.

If the security check fails (step 1140), the application
client is blocked from connecting to the application server.
In other words, based on a policy evaluation by the control
ler, the controller may deny permission to use the virtual
network. An alert Such as an email, text message, or other
notification for the administrator may be generated. The
security failure may be recorded in a log.

Alternatively, if the security check passes (step 1145), the
controller informs the virtual network proxies and virtual
network switches to create a session for the virtual network
connection. For example, when the security check is pass
ing, the controller 1015 (FIG. 10) will inform first virtual
network proxy (VNPA) 1020A, second virtual network
proxy (VNPB) 1020B, and a first virtual network switch
(VNS1) 1030, between the first and second virtual network
proxies, to create a session for connection. It should be
appreciated that there can be multiple (e.g., two or more)
virtual network switch units for scalability.

In a step 1150, dynamic virtual network routing tables are
created for the virtual network proxies and virtual network
switch. Traffic between the first and second network
domains is then routed according to the dynamic routing
tables (step 1155). Dynamic virtual routing tables can refer
to tables that are automatically generated, provisioned, or
updated as part of establishing (or terminating) the virtual
network connection. For example, the tables may be provi
Sioned after a connection request is received. The tables can
be created and updated without user intervention. Static
virtual routing tables can refer to tables that are manually
provisioned by an administrator as part of a configuration
phase for the virtual network. For example, the tables may
be provisioned before a connection request is received.

Table E below shows an example of a dynamic routing
table 1165 (FIG. 11B) that may be created for first virtual
network switch (VNS1) 1030.

TABLE E

Source IP Session ID Destination IP

wPa 300 wPb

A first column of the table lists the source IP address. A
second column lists the corresponding session ID. A third
column of the table lists the corresponding destination IP
address. In a specific implementation, only the Controller is
able to provision an entry in the virtual network switch

10

15

25

30

35

40

45

50

55

60

65

24
(VNS) table. The restriction on access helps to ensure the
security of the virtual network platform.

Table F below shows an example of a dynamic virtual
network routing table 1170 (FIG. 11B) that may be created
for first virtual network proxy (VNPA) 1020A.

TABLE F

Source Destination Destination
IP Source Port Session ID VNSIP IP Port

wPa 1OOO 3OO VNS1 wPb SOOO

A first column of the table lists the source IP address. A
second column lists the corresponding source port. A third
column lists the session ID. A fourth column lists identifies
the corresponding virtual network switch for the virtual
connection. A fifth column lists the corresponding destina
tion IP address. A sixth column lists the corresponding
destination port. A similar table is also created in the second
virtual network proxy (VNPB) 1020B.

In this example, application client software 1025A sends
packets to the second virtual IP address (“VIPb') inside or
within the end point machine A in the first network domain.
The first virtual network proxy (VNPA) 1020A captures the
packets via the static virtual routing table filter function (see
table D above).

All packets captured in first virtual network proxy
(VNPA) 1020A following the table above are forwarded to
virtual network switch (VNS1) 1030 with the session ID,
port information, as well as the destination IP information.

All packets received at virtual network switch (VNS1)
1030 are routed based on the dynamic VNS table above (see,
e.g., table E). As discussed above, in a specific implemen
tation, provisioning the dynamic VNS table is the respon
sibility of the controller. The VNS can compare the for
warded information from a VNP with the information
provided in the dynamic VNS table to determine where a
data packet should be routed. In a specific implementation,
the session ID in the forwarded information and the session
ID in the dynamic routing table help to identify the proper
routing. If the session IDs do not match or correspond, the
VNS may not transmit the data packet to the destination IP
listed in the routing information forwarded by the VNP. The
VNS (via the controller) thus helps to ensure the security of
the virtual network.

It should be appreciated, however, that any competent
technique may be used to determine whether or not routing
information forwarded by a VNP to a VNS corresponds to
routing information provisioned in the dynamic VNS table
by the controller. Such techniques can include, for example,
logic to identify a session, hashing, security tokens, encryp
tion, cryptography, cookies, other variables instead of or in
addition to session identifiers, or combinations of these.

All packets that arrive at second virtual network proxy
(VNPB) 1020B with the destination IP address of “viPb”
will be forwarded to the process that owns port 5000
(destination port) on the same end point machine B in the
second network domain.

In a specific implementation, a method includes storing at
a first end point in a first network domain a static routing
table including a list of virtual destination Internet Protocol
(IP) addresses, receiving at the first end point a request from
a client to connect to a destination, and scanning the static
routing table to determine whether an IP address of the
destination is listed in the static routing table. The method
further includes if the IP address is not listed, passing the

US 9,525,564 B2
25

request to a TCP/IP network that is local to the first network
domain, and if the IP address is listed, seeking permission
from a controller to use a virtual network connecting the first
network domain to a second network domain, different from
the second network domain, the destination being in the
second network domain, and upon a determination by the
controller that use of the virtual network is permitted,
establishing for the client a virtual network connection
between the first end point and the destination.

In a specific implementation, the method further includes
upon the determination that use of the virtual network is
permitted, creating at the first end point a first dynamic
routing table having first routing information, the first rout
ing information including a first session identifier that iden
tifies the virtual network connection, and forwarding the first
routing information to a virtual network switch between the
first and second network domains. The virtual network
Switch consults a second dynamic virtual routing table
having second routing information. The second routing
information includes a second session identifier. When the
second session identifier corresponds to the first session
identifier, the virtual network switch forwards a payload of
a data packet from the client to the destination according to
the second routing information.

For the second type of end point connections, the appli
cation client Software and application server software are
running outside of or are external to the end-point machines.
FIG. 11C shows an example of application client software
and application server software 1175A and 1175B, respec
tively that are not located in end point machines 1180A and
1180B. The end-point machines in this case can be consid
ered as virtual network gateways, not an end point server. In
this case, each "client-server application will be provi
sioned in the virtual network so that the routing can be
accomplished.

Consider again, as an example, the virtual network plat
form and flow shown in FIG. 10-11A. In step 1110, IP
addresses are assigned. When a first client-server application
is provisioned on a virtual network that connects end point
A as a virtual network gateway in network domain 1 to the
end point B as a virtual network gateway in the virtual
domain 2, controller 1015 assigns a first IP address (“IPa1)
and a first virtual IP address (“vIPa1') to first virtual
network proxy (“VNPA) 1020A. The controller assigns a
second IP address (“IPb1) and a second virtual IP address
(“vIPb1') to second virtual network proxy (“VNPB)”
1020B, as well as the application server IP app-server-IP.
The first virtual IP address (“vIPal”) and the second

virtual IP address (“vIPb1) are virtual IP addresses which
may or may not be routable in the physical TCP/IP network
in first network domain 1 and second network domain 2. The
first IP address (“IPa1), second IP address (“IPb1), and the
address for the application server (“app-server-IP) are
physical IP addresses.

In step 1115, the application program is configured for the
virtual network. In this example, the application client
software, is configured so that it understands the first IP
address (“IPa1) is the physical IP address to reach the
application server Software running in network domain 2.

In step 1120, static virtual routing tables are created for
the virtual network proxies. As discussed above, these tables
helps the virtual network proxies to filter traffic and forward
the packets via virtual network or to the local TCP/IP
network (or drop the packets). Table G below shows an
example of an entry in a static virtual routing table 1185A

10

15

25

30

35

40

45

50

55

60

65

26
(FIG. 11C) that may be created for first virtual network
proxy (VNPA) 1020A (which, in this example, is a virtual
network gateway).

TABLE G

Source Source Destination Destination Application
Physical IP Virtual IP Virtual IP Physical IP Server IP

IPa1 wPa1 wPb1 IPb1 app-server-IP

A first column of the table lists a physical IP address of the
Source gateway. A second column lists the virtual IP address
of the source gateway. A third column lists the virtual IP
address of the destination gateway. A fourth column lists the
physical IP address of the destination gateway. A fifth
column lists the IP address of the application server. A
similar virtual routing table is created in second virtual
network proxy (VNPB) 1020B.

Entries may be added to the virtual routing tables as
needed. For example, when a second client-server applica
tion is provisioned to route through the virtual network,
another entry can be added to the static virtual table as
shown in the example of table H below.

TABLE H

Source Source Destination Destination Application
Physical IP Virtual IP Virtual IP Physical IP Server IP

IPa1 wPa1 wPb1 IPb1 app-server-IP
IPa2 wPa2 wPb2 IPb2 app-server-IP2

In step 1125, as discussed above, traffic or data packets are
received and filtered according to the static virtual routing
tables. Data packets not having a routing address listed in the
static routing table are forwarded to the local TCP/IP net
work (step 1130). Alternatively, data packets having an
address listed in the static routing table trigger a security
check. In a specific implementation, when the application
client is making a connection to the application server, the
IP network in first network domain 1 routes the packets to
the first virtual network proxy (VNPA). Client manager
1005 then checks with controller 1015 for security permis
sion, on demand (step 1135).
When security check passes, controller 1015 will inform

the first virtual network proxy (VNPA), second virtual
network proxy (VNPB), and the virtual network switch
(VNS1) to create a session for connection (step 1145). There
can be multiple VNS units for scalability.

In step 1150, dynamic routing tables are created. Table I
below shows another example of a dynamic routing table
1190 (FIG. 11C) that may be created for the virtual network
switch.

TABLE I

Source IP Session ID Destination IP

wPa1 305 wPb1

As discussed above, in a specific implementation, only the
controller is able to provision an entry in the VNS table to
ensure the security of the system. In other specific imple
mentations, where, for example, security is not too high of
a concern, the VNS table may be provisioned by a module
other than the controller. Such provisioning can help to
increase response time and network performance.

Table J below shows an example of a dynamic virtual
network routing table 1195 (FIG. 11C) created for the first
virtual network proxy (VNPA).

US 9,525,564 B2

TABLE J

Source
Virtual Source Session Destination Destination Application
IP Port ID VNSIP Virtual IP Physical IP Server IP

wPa1 1OOO 305 VNS1 wPb1 IPb1 app-server
IP

A first column of the table lists the virtual IP address of
the Source gateway. A second column lists the port of the
Source gateway. A third column lists the session ID. A fourth
column lists the IP address of the virtual switch. A fifth
column lists the virtual IP address of the destination gate
way. A sixth column lists the physical IP address of the
destination gateway. A seventh column lists the IP address of
the application server. An eighth column lists the destination
port. A similar table is also created in the second virtual
network proxy (VNPB) 1020B.

In this example, all packets captured in the first virtual
network proxy (VNPA) following the table above are for
warded to the virtual network switch (VNS1) with the
session ID, the port information as well as the destination IP
information. All packets received at the virtual network
switch (VNS1) will be routed based on the dynamic VNS
table above. All packets arriving at the second virtual
network proxy (VNPB) with the destination virtual IP
address of “viPb1” will be forwarded to app-server-IP with
port 5000. In this forwarding traffic, the source IP will be
“IPb1, i.e., the physical IP address of the destination
gateway from the table above.

FIG. 12 shows a block diagram of another specific imple
mentation of a virtual network platform. The system shown
in FIG. 12 is similar to the system shown in FIG. 10. In the
system of FIG. 12, however, the platform is further enhanced
with a central web portal 1205, a web browser with client
manager 1210, and various client-server applications
1215A, B that are managed by the client manager and a
server manager 1220. The virtual network interlock capa
bility is built in and enforced by the client manager and
server manager to lock the application Software and the
usage of virtual network.

The platform Supports secure remote access, operation,
debug, and collaboration without re-engineering or re-pro
visioning enterprise existing network and security infra
structure. During the access, the enterprise IP (Intellectual
Property) and secure data stay behind their layers of fire
walls. A specific version of the application software can be
locked and used on the remote access platform for security
compliance. In a specific implementation, only the packets
generated by the authorized access, debug, and collaboration
tools are allowed to travel through the virtual network.

The example of the secure remote access platform shown
in FIG. 12 includes virtual network controller 1225, a virtual
network switch (VNS) 1230, virtual network proxy (VNP)
1235 and 1240 on both client and server sides, respectively,
central web portal system 1205, client manager 1210 man
aging application client Software 1215A, and server man
ager 1220 managing application server software 1215.B.

All client-server applications on this platform (e.g. access,
collaboration, GDB debug, and Zshell) are controlled end
to-end horizontally between network domains and top-down
from application layer to the secure network layer vertically.
The client-server application connections are realized via the
virtual network infrastructure underneath.

Table K below shows a flow of a specific implementation
of the system.

10

15

25

30

35

40

45

50

55

60

65

28

Destination
Port

SOOO

TABLE K

Step Description

1 A user can log on to the web portal via a web browser. Given a
privilege control, the user can choose to use an access and
collaboration tool (e.g., VNC), a remote debug tool (e.g., GDB),
and a secure shell access tool (e.g., Zshell) from links offered on
a web page. By clicking the link, the system platform will
execute one or more of the following steps 2-8:

2 A package including the client manager Software, application
client software, and VNP is dynamically downloaded via web
browser plug-in.

3 Client manager requests security permission from the controller
for the operation associated with the link.

4 Controller allows it (or denies it based on policy) and informs
server manager to prepare application server and turn on virtual
network with connection controlled by VNP, connecting to VNS.
Prior to the connection request, deploy the access server with the
server manager and application server Software.

5 Controller informs VNS to allow two connections from VNPs
on both the client and server ends. The two connections will be
formed in a pair and the data are securely switched in VNS.
Controller informs client manager that the permission granted. 6

7 Client manager starts application client software, connecting to
VNP, and then connects to VNS via virtual network.

8 The end-to-end client-server applications are then connected
and interlocked with the virtual network.

In a specific implementation, the virtual network platform
is used in conjunction with a debugging application referred
to as GNU Project debugger (GDB). In this specific imple
mentation, with this secure remote access platform, a client
server GNU GDB tool can connect between two network
domains to perform source code debug without changing
any of the underneath network infrastructure. With this
capability, the data files stay behind the firewall in a network
domain (e.g., second network domain). The Source code of
the application software under debug stay in another net
work domain (e.g., first network domain). The data files and
Source codes are considered sensitive corporate IP and can
be prevented from being transferred out of the enterprises.

It can be desirable to ensure that a specific version of the
GDB client and software tools are used on this platform. The
original GNU GDB tools include some special functions that
are considered security violations for many enterprises when
used in a cross domain environment. In this specific imple
mentation, a special version of the GDB software with the
malicious (or undesired) functions removed can be “locked
in this platform for usage.

In another specific implementation, the virtual network
platform is used in conjunction with a desktop sharing
application referred to as VNC Access and Collaboration.
VNC is very popular and has been widely used in the high
tech industry for remote virtual desktop access and collabo
ration. Over this specific implementation of the secure
remote access platform, a special version of VNC can be
embedded to Support remote access and collaboration func
tion.
More particularly, VNC carries some native features that

may be undesirable to the enterprises in terms of security
when used in a cross domain environment. A special version

US 9,525,564 B2
29

of VNC with these features removed can be embedded and
“locked' in this platform for usage.
VNC supports a collaboration mode with a view sharing

for the virtual desktop. On this specific implementation of
the secure remote access platform with web portal a browser
control, one can implement a desirable collaboration feature
where a "guest' can be invited to join a live VNC session
owned by another user. The guest can only join this VNC
session when it is live. The owner of the VNC session does
not need to release his or her secure password to the guest
for signing on. The platform hides the complexity and makes
the collaboration session very simple and yet secure.

Another example of a desirable function that can be
offered on this specific implementation of the platform is an
“administrator enforced join' into any live VNC session.
With a proper privilege control on the web portal system,
one user can have a high privilege to actively join into a
VNC session that is owned by another user.

In another specific implementation, the virtual network
platform is used in conjunction with a shell application
referred to as Zshell. Zshell is a secure shell feature that
allows one party to execute a specific and pre-defined set of
shell commands in another domain without opening the
network. When two companies are collaborating across
domains, frequently a specific set of tasks need to be
executed by guests in a secure environment.

However, given the constraints in the modern enterprise
environment, the network and computing environment have
to be "open’ even just to Support running a small set of tasks.
However, once the network and computing environment are
open to Support these tasks, it becomes extremely difficult to
ensure that only the set of tasks was executed in the
environment. The corporate compliance could be compro
mised in Such a scenario.

Zshell is a function designed to avoid the overhead and
yet achieve the goal of executing the limited set of tasks via
a shell. In this specific implementation, when Zshell is
integrated in the secure remote access platform, the Zshell
feature along with the “interlock' capability of the platform
enables the 'guest to execute only a given set of commands
in the remote domain. No other network connection is open.
No other computing capability is granted in Such a case. The
same benefits from avoiding “opening the network via the
“interlock' capability with the virtual network applies to
other applications such as and not limited to GDB and VNC.

In this specific implementation, a pre-defined set of shell
commands is associated with each server manager. The
association can be enforced by the central web portal. The
user access of Zshell is then offered through the front-end
web browser and client manager. Once the Zshell client tool
is connected to the Zshell daemon, the corresponding set of
shell commands will be associated by the Zshell daemon to
limit the tasks that can be executed by the user. Note that the
server manager can be deployed in an access server, where
the access server can be easily deployed anywhere inside a
company network domain. The programmability of a spe
cific set of commands (i.e., task execution) can be dynami
cally inserted anywhere inside a corporation for business
needs and made available to external guests without com
promising security.

In various specific implementations, a novel platform is
provided for secure remote access, operation, debug, and
collaboration. GDB Debug, VNCAccess and Collaboration,
and Zshell Secure Access are some examples of client-server
applications that can be locked on this platform to Support
secure functions and features for enterprise remote opera
tions. It should be appreciated, however, that the merits of

5

10

15

25

30

35

40

45

50

55

60

65

30
this platform and technology are not limited to the presented
functions and features. The design principles and aspects
discussed in this patent application can be applied to many
other client-server applications that can be integrated and
locked on this platform and achieve business benefits.
To support a fairly complex operations Scenario, multiple

features on this secure remote access platform can be
applied and used in a mixed format. Multiple access servers
with different features selected and enabled can be offered in
parallel and to users with different role and privilege.

FIG. 13 shows an overall flow 1305 of a specific imple
mentation of the “interlock' mechanism. In a step 1310, the
system stores an identifier or predetermined identifier asso
ciated with a specific application program (or a specific
version of the application program) that is authorized or
allowed to use the virtual network. The identifier may be
calculated by the system. Alternatively, the identifier may be
calculated using an algorithm that is external to the system.
The identifier can be any unit of data that helps to uniquely
identify a particular version of the application program. In a
specific implementation, the identifier includes a checksum
associated with a particular version of the application pro
gram. An identifier for an application can include a signa
ture, hash value, fingerprint, or combinations of these. In a
specific implementation, the identifier may be provided to
and stored at one or more end points in a network domain.

In a step 1315, a request is received from a client
component of an application program to connect to a server
component of the application program. For example, the
request may be received at an end point module (e.g., client
manager) at the end point.

In a step 1320, a determination is made by the respective
client or server manager (see, e.g., FIG. 12) as to whether an
identifier associated with the application program matches
the stored identifier associated with the specific application
program. If there is a match, in a step 1325, the client
component may be allowed to connect to the server com
ponent through the virtual network. In a specific implemen
tation, use of the virtual network is subject to further
approval by the controller. In another specific implementa
tion, use of the virtual network is allowed without further
approval from the controller. This specific implementation
can be desirable in cases where security is less of a concern
than, for example, response time and network performance.

Alternatively, if there is not a match, in a step 1330, the
client component is not allowed to connect to the server
component through the virtual network. In other words, in a
specific implementation, an identifier is associated with each
application program authorized to use the virtual network. In
a specific implementation, when the client application at the
first end point in the first network domain attempts to
connect to the server application at the second end point in
the second network domain via the virtual network, a check
is performed to determine if the application is authorized to
use the virtual network. The check includes comparing an
identifier associated with the application against the list of
identifiers associated with the authorized applications (step
1320). If there is a match, a virtual network connection may
be allowed between the two end points (step 1325). If there
is not a match, the virtual network connection is not allowed
(step 1330).

Consider, as an example, table L below. Table L lists the
identifiers for application program versions shown in table
C.

US 9,525,564 B2

TABLE L

Application Version Identifier

GDB Debug S.1.3 ID1
VNC Access and 10.7 ID2
Collaboration
Zshell Secure Access 8.4.2 ID3

The example data shown in table L shows the specific
versions of the application programs that are authorized or
allowed to use the virtual network. From the data above, the
application “VNC Access and Collaboration” version 10.7
having the identifier ID2 is allowed use of the virtual
network. A different version of the application (e.g., version
9.0) will have a different identifier, e.g., ID7. In this
example, version 9.0 of the application will not be allowed
to use the virtual network because the identifiers (ID2 and
ID7) do not match.
As discussed above, the “interlock' mechanism helps to

ensure that only specific applications (or specific versions of
applications) will be able to use the virtual network. For
example, an application program (e.g., GDB Debug, VNC
Access and Collaboration, or Zshell Secure Access) may
include functions, services, options, modules, or capabilities
that an IT administrator wishes to disable or modify. The
disablement or modification can be for any number of
reasons. One reason can include security. For example, a
function of an application program may be disabled to help
prevent employees of the enterprise from using the function
to steal sensitive corporate information. Another reason can
include application performance. For example, a service of
an application program may be disabled to reduce the
application size or space requirements, to improve applica
tion response time, and so forth.

In another specific implementation, the system stores a
list of identifiers associated with banned application pro
grams or application programs that are not allowed to user
the virtual network. In this specific implementation, a check
includes comparing an identifier associated with the appli
cation against a list of identifiers associated with banned or
unauthorized applications. If there is a match, a virtual
network connection is not allowed between the two end
points. If there is not a match, a virtual network connection
is allowed between the two end points.

FIGS. 14-15 show flow diagrams for updating the virtual
routing tables based on end point changes in a network
domain. More particularly, FIG. 14 shows a flow 1405 when
an end point is added in a network domain. In a step 1410.
the system discovers an addition of a new end point in a
network domain.

In a specific implementation, the discovery is facilitated
through a cloud manager component of the controller. In this
specific implementation, the cloud manager component pro
vides a tool or an automated mechanism that the adminis
trator uses to provision the network with a new end point
Such as a new virtual machine. The provisioning operation
can include providing the new end point with the end point
modules and appropriate application Software such as, for
example, the control daemon, virtual network proxy, client
or server manager, and so forth. The end point module in the
newly added end point may execute a set of instructions to
notify the controller of its existence.

In another specific implementation, the end point may be
created within a network domain that may belong to another
authoritative entity. For example, the network domain may
belong to a third-party cloud services provider. In this

10

15

25

30

35

40

45

50

55

60

65

32
specific implementation, the controller includes a program
matic interface that communicates with an application pro
gramming interface (API) of the cloud service provider to
discover the new end point and information about the new
end point. The information can include, for example, an
inventory of application programs that have been provided
at the new end point, application version information, con
figuration information, and so forth.
The cloud manager tool can compare the inventory and

configuration information of the newly provisioned end
point with an approved inventory listing of applications and
configurations. This check helps to ensure that the new end
point has been provisioned with the appropriate application
programs, application program versions, configuration set
tings, and so forth. If the new end point has not been
properly provisioned, the system may prevent the addition
of the end point to the virtual network platform. Instead or
additionally, the cloud manager tool may provide the new
end point with the appropriate application Software, con
figuration settings, end point modules, or combinations of
these so that the end point module can be incorporated into
the virtual network platform.

In a step 1415, the controller, upon discovering the new
end point, automatically updates the virtual routing tables to
include the new end point, inside the new end point as well
as in other existing end points that relate to this new end
point. For example, the controller may make an entry in a
virtual routing table of an existing end point to include an IP
address and a virtual IP address to connect to the new end
point. The IP address can identify the new end point in the
domain. The virtual IP address can identify the source device
for packets originating from the new end point.
As an example, in the case of the first type of end point

connection when adding a new end-point server, the system
will add entries in the static virtual routing table that
represents all other end-point servers in other network
domains that this new server can connect to via the virtual
network.

In a step 1420, the updated virtual routing tables are
distributed throughout the virtual network platform. The
previous virtual routing tables may then be replaced with the
updated virtual routing tables.

FIG. 15 shows a flow 1505 when an end point is deleted
from a network domain. In a step 1510, the system discovers
the deletion of an end point in a network domain. The
method of discovery may be similar to the method described
in step 1410 (FIG. 14). For example, in a specific imple
mentation, deletion of the end point may be through the
cloud manager component of the controller. In this specific
implementation, the cloud manager may include a user
interface that allows the administrator to identify and delete
a particular end point.

In a case where the end point is created in a network
domain of a third-party cloud services provider, the cloud
manager provisioned by the provider may notify the con
troller of the deletion. The notification may be a message,
email, or other alert. The deletion may be under the direction
of the controller or is executed by the external cloud
manager. For example, the controller may programmatically
(e.g., through an API) instruct the cloud services provider to
delete, remove, deactivate, or disable an end point if it is
under the direction of the controller.

In a step 1515, the controller, upon discovering that an
end point has been deleted from the network domain,
automatically updates the virtual routing tables to remove
the deleted end point. For example, the controller may

US 9,525,564 B2
33

remove entries in the virtual routing tables that reference or
are associated with the deleted end point.
As an example, in the case of the first type of end point

connection, when deleting an end point, the system deletes
this end point server and deletes the corresponding entry in
all other end point servers. When the application client
Software is using the virtual network for a connection, the
system will then generate an entry in the dynamic virtual
routing table where each entry includes more information or
updated information as appropriate based on the end point
changes.

In a step 1520, the updated virtual routing tables are
distributed throughout the virtual network platform. The
distribution may be similar to the process described in step
1420 (FIG. 14).
The flow for adding and deleting end points or end point

servers accommodates the “application interlock checking
mechanism. As discussed above, in a specific implementa
tion, the system includes a "client manager that can also
control the validated application client and server software.
In this specific implementation, when the application client
Software is triggering the “dynamic virtual routing table'.
the system will ask or request the client manager to check in
the operating system (OS) if the application client software
that is creating the network traffic is the one validated by the
system. Only the validated applications are allowed when
using VNP and the virtual network.

Referring now to FIGS.5, 7-8, 10, and 12, the architecture
of the virtual network platform shown in these figures offers
a number of benefits and advantages. In a specific imple
mentation, a controller cluster can be implemented to Sup
port control path connections to a very large amount of end
points. There can be a master controller that implements and
maintains security policy (write and read) in the central
database. Cluster controllers may implement read only func
tion for security policy and connect to end points for policy
enforcement. In a specific implementation, one controller
can connect to multiple virtual network Switches in parallel.
However, each VNS may connect to only one controller.
A virtual network switch cluster can be implemented to

Support virtual network connections to a very large amount
of end points. In a specific implementation, a VNS is
considered as a “slave device' fully controlled by the
controller. In this specific implementation, the VNS does not
include security intelligence. All security policies are imple
mented and controlled by the controller. In a specific imple
mentation, there is no inter-dependency among VNS clus
ters. The lack of interdependency eases Scalability. Load
balancing can also be easily implemented.

In a specific implementation, a virtual network proxy
includes a virtual network gate keeper on an end point that
implements the virtual routing table and TCP proxy and
reverse proxy functions. In a specific implementation, there
is no intelligence for security policy. The VNP is responsible
for encryption and decryption of the virtual network trans
port. The VNP works with and is controlled by the control
daemon and client/server manager.

In a modern enterprise environment, the network and
infrastructure security have complex requirements. It can be
challenging to deploy a client-server application across Such
an environment without modifying the underneath infra
structure and setting. The secure virtual network platform as
discussed in this patent application solves this problem
without compromising enterprise security and compliance
requirements.

In a specific implementation, the client-server application
is provisioned at the virtual network layer and does not

10

15

25

30

35

40

45

50

55

60

65

34
require opening the physical firewalls or changing the Sub
nets or network topology underneath. The specific client
server application is provisioned in this virtual layer so that
only a particular application is allowed to connect in this
layer for security control. The security policy and provi
Sioning setting is at a central control. All connections are
automatically verified and executed end-to-end in a closed
system. The burden of managing distributed components
and assembling them together in a coherent framework is
reduced.
The applications of such secure virtual network platform

can be enormous. Any new business applications that need
to be provisioned across a legacy environment can go to the
virtual layer for ease of control, best or good productivity,
fast time to market, and ease of security and compliance
control. In today's market, many industry verticals are
converging and becoming service oriented. There are more
and more business collaborations and IT automations across
enterprise boundaries. Such a secure virtual network can
significantly expedite the business process provisioning and
Save COStS.

As discussed above, the hybrid cloud computing is
another important application that can be benefited by this
new technology. By definition the hybrid cloud infrastruc
ture spans over multiple network domains with more than
one authority. The computing resources in Such an environ
ment are dynamically created and deleted on demand. Effi
ciency in doing so is vital to the Success of enterprise
operations in a hybrid cloud. A virtual network layer is
critical to provision various enterprise applications in Such a
hybrid cloud environment. It is extremely easy for enterprise
IT to provision applications in the proposed virtual network
platform. Once the application is provisioned, the virtual
network connection and deletion are fully automated along
with the dynamic provisioning of end points in the cloud.

FIGS. 16-18 show block diagrams of specific implemen
tations of deployment models for the virtual network plat
form. FIG. 16 shows a first network domain 1610 including
a first set of end points 1615, a second network domain 1620
including a second set of end points 1625, and a virtual
network 1630 connecting the first and second end points.
The first network domain is part of an enterprise 1635. The
second network domain is part of a public cloud provider
1640. In this specific implementation, control 1645 of the
virtual network is with the enterprise.

FIG. 17 shows another specific implementation of a
deployment model for the virtual network platform. FIG. 17
is similar to FIG. 16. In FIG. 17, however, control 1745 of
a virtual network 1730 is with a public cloud provider 1740.

FIG. 18 shows another specific implementation of a
deployment model for the virtual network platform. FIG. 18
is similar to FIG. 16. In FIG. 18, however, control 1845 of
a virtual network 1840 is with a third party 1860 that
provides the services associated with the virtual network.

Referring now to FIG. 11A (step 1125), as discussed
above, in a specific implementation, the static routing tables
define the traffic that may be allowed to use the virtual
network. It should be appreciated, however, that aspects and
principles of the invention can be applied to implement
static routing tables that define traffic not allowed to use the
virtual network. For example, in a specific implementation,
there can be a static routing table that identifies, by IP
address, data that is to be passed to the local TCP/IP
network. In this specific implementation, data not having an
IP address defined in the static routing table is transmitted
through the virtual network.

US 9,525,564 B2
35

In the description above, aspects of the system have been
described in the context of a client in one network domain
communicating with a server in another network domain. It
should be appreciated, however, that aspects of the system
can also be applied to the server communicating with the
client. Aspects of the system can be applied to a computing
node in one network domain communicating with a com
puting node in another network domain, and Vice-versa.

In the description above and throughout, numerous spe
cific details are set forth in order to provide a thorough
understanding of an embodiment of this disclosure. It will be
evident, however, to one of ordinary skill in the art, that an
embodiment may be practiced without these specific details.
In other instances, well-known structures and devices are
shown in block diagram form to facilitate explanation. The
description of the preferred embodiments is not intended to
limit the scope of the claims appended hereto. Further, in the
methods disclosed herein, various steps are disclosed illus
trating some of the functions of an embodiment. These steps
are merely examples, and are not meant to be limiting in any
way. Other steps and functions may be contemplated without
departing from this disclosure or the scope of an embodi
ment.

What is claimed is:
1. A method comprising:
providing a virtual network switch coupled between a first

network domain and a second network domain,
wherein the virtual network switch is separate from the
first and second network domains, and the second
network domain is separate from the first network
domain;

providing a controller coupled to the virtual network
Switch, the first network domain, and the second net
work domain;

receiving at a first end point in the first network domain
a request to make a connection to a second end point in
the second network domain;

determining if the connection should be provided through
a virtual network connecting the first network domain
with the second network domain;

if the connection should be provided through the virtual
network, establishing a virtual network connection
between the first end point and the second end point to
transmit a payload from the first network domain to the
second network domain, wherein the establishing com
prises:
initiating by the first end point, as allowed by the

controller, first traffic from the first network domain
to the virtual network switch, the first traffic being
allowed through a first firewall of the first network
domain because the first traffic is outbound from the
first network domain to the virtual network switch,
the first traffic thereby being first outbound traffic;

initiating by the second end point, as allowed by the
controller, second traffic from the second network
domain to the virtual network switch, the second
traffic being allowed through a second firewall of the
second network domain because the second traffic is
outbound from the second network domain to the
virtual network switch, the second traffic thereby
being second outbound traffic; and

placing by the virtual network switch the payload from
the first outbound traffic established by the first end
point into a reply to the second outbound traffic
established by the second end point residing in the
second network domain; and

10

15

25

30

35

40

45

50

55

60

65

36
if the connection should not be provided through the

virtual network, passing the request outside the virtual
network.

2. The method of claim 1 wherein the passing the request
outside the virtual network comprises:

forwarding the request to a local TCP/IP network inside
the first network domain.

3. The method of claim 1 wherein the passing the request
outside the virtual network comprises:

forwarding the request to a physical networking device
inside the first network domain.

4. The method of claim 1 wherein the determining if the
connection should be provided through a virtual network
connection comprises:

comparing one or more than one Internet Protocol (IP)
addresses associated with the second end point against
a list of IP addresses stored at the first end point,
wherein when the one or more than one IP addresses
associated with the second end point are not listed in
the list of IP addresses, the connection should not be
provided through the virtual network.

5. The method of claim 1 wherein the virtual network
comprises:

a first control daemon and a first virtual network proxy at
the first end point in the first network domain; and

a second control daemon and a second virtual network
proxy at the second end point in the second network
domain, wherein the controller is coupled to the first
and second control daemons, wherein the controller
upon approving the virtual network connection
instructs the first virtual network proxy via the first
control daemon to establish a first outbound connection
of the virtual network connection to the virtual network
Switch,

instructs the second virtual network proxy via the second
control daemon to establish a second outbound con
nection of the virtual network connection to the virtual
network Switch, and

instructs the virtual network switch to allow the first
outbound connection from the first virtual network
proxy, to allow the second outbound connection from
the second virtual network proxy, to place payloads
coming from the first outbound connection into return
traffic of the second outbound connection, and to place
payloads coming from the second outbound connection
into return traffic of the first outbound connection.

6. The method of claim 1 wherein the first end point,
second end point, or both comprises at least one of a physical
server, a virtual machine (VM), or a virtual network edge
gateway.

7. The method of claim 1 wherein the first end point
comprises a client component of an application program that
issues the request, the second end point comprises a server
component of the application program, and the method
comprises:

computing an identifier of the application program;
comparing the identifier with a predetermined identifier

associated with a specific version of the application
program; and

if the identifier does not match the predetermined identi
fier associated with the specific version of the applica
tion program, determining that the connection should
not be provided through the virtual network.

8. The method of claim 1 wherein the first network
domain is coupled to the second network domain via the
Internet.

US 9,525,564 B2
37

9. The method of claim 1 comprising:
storing a list identifying one or more specific application

programs authorized to use the virtual network;
determining that the request is from one of the one or
more specific application programs authorized to use
the virtual network;

after the determination that the request is from a specific
application program authorized to use the virtual net
work, seeking permission from the controller for the
establishment of the virtual network connection; and

receiving an indication that the connection should not be
provided through the virtual network, the permission
thereby being denied by the controller.

10. The method of claim 1 wherein the establishing a
virtual network connection between the first end point and
the second end point comprises:

creating at the first end point a first dynamic routing table
having first routing information, the first routing infor
mation comprising a first session identifier for the
virtual network connection; and

forwarding the first routing information to the virtual
network switch between the first and second network
domains, wherein the virtual network Switch consults a
second dynamic virtual routing table having second
routing information, the second routing information
comprising a second session identifier, wherein when
the second session identifier matches the first session
identifier, the virtual network switch places a first
payload of a first data packet from the first end point
into return traffic to the second end point according to
the second routing information.

11. The method of claim 1 wherein the virtual network
Switch uses a packet Switched protocol.

12. A method comprising:
providing a virtual network switch coupled between a first

network domain and a second network domain,
wherein the virtual network switch is separate from the
first and second network domains, and the second
network domain is separate from the first network
domain;

providing a controller coupled to the virtual network
Switch, the first network domain, and the second net
work domain;

storing a list identifying one or more specific application
programs that are allowed to use a virtual network
connecting the first network domain with the second
network domain;

receiving at a first end point in the first network domain
a request from a client component of an application
program to make a connection to a server component of
the application program, the server component of the
application program being at a second end point in the
second network domain;

determining from the list if the application program is one
of the one or more specific application programs that
are allowed to use the virtual network;

if allowed, establishing for the application program a
virtual network connection between the first end point
and the second end point to transmit a payload from the
first network domain to the second network domain,
wherein the establishing comprises:
initiating by the first end point, as allowed by the

controller, first traffic from the first network domain
to the virtual network switch, the first traffic thereby
being first outbound traffic from the first network
domain;

10

15

25

30

35

40

45

50

55

60

65

38
initiating by the second end point, as allowed by the

controller, second traffic from the second network
domain to the virtual network switch, the second
traffic thereby being second outbound traffic from the
second network domain; and

placing the payload of the first outbound traffic coming
from the first network domain into a reply to the
second outbound traffic from the second network
domain; and

if not allowed, not establishing the virtual network con
nection.

13. The method of claim 12 wherein one of the first or
second network domains comprises a private network
domain, and another of the first or second network domains
comprises a public network domain.

14. The method of claim 12 wherein the one or more
specific application programs comprises at least one of a
GDB Debug Application, a VNCAccess and Collaboration
Application, or a Zshell Secure Access Application.

15. The method of claim 12 wherein the virtual network
comprises a virtual routing table, wherein the virtual net
work switch receives a first data packet from the first end
point, and based on the virtual routing table, forwards a first
payload in the first data packet to the second end point in the
second network domain.

16. The method of claim 12 comprising:
comparing an identifier associated with the application

program to the list identifying the one or more specific
application programs that are allowed to use the virtual
network;

if the identifier associated with the application program
matches an identifier in the list, determining that the
application program is one of the one or more specific
application programs that are allowed to use the virtual
network; and

if the identifier associated with the application program
does not match an identifier in the list, determining that
the application program is not one of the one or more
specific application programs that are allowed to use
the virtual network, and passing the request to a local
TCP/IP network inside the first network domain.

17. The method of claim 12 wherein the establishing for
the application program a virtual network connection com
prises:

creating at the first end point a first dynamic routing table
having first routing information, the first routing infor
mation comprising a first session identifier for the
virtual network connection; and

forwarding the first routing information to the virtual
network switch between the first and second network
domains, wherein the virtual network Switch consults a
second dynamic virtual routing table having second
routing information, the second routing information
comprising a second session identifier, wherein when
the second session identifier corresponds to the first
session identifier, the virtual network switch forwards a
first payload of a first data packet from the client
component to the server component according to the
second routing information.

18. A method comprising:
providing a virtual network Switch coupled to a first

network domain and a second network domain,
wherein the virtual network switch is separate from the
first and second network domains, and the second
network domain is separate from the first network
domain;

US 9,525,564 B2
39

providing a controller coupled to the virtual network
Switch, the first network domain, and the second net
work domain;

storing at a first end point in the first network domain a
static routing table comprising a list of virtual destina
tion Internet Protocol (IP) addresses;

receiving at the first end point a request from a client to
connect to a destination;

Scanning the static routing table to determine whether an
IP address of the destination is listed in the static
routing table;

if the IP address is not listed, passing the request to a
TCP/IP network that is local to the first network
domain;

if the IP address is listed, seeking permission to use a
Virtual network connecting the first network domain to
the second network domain, the destination being in the
second network domain; and

upon a determination that use of the virtual network is
permitted, establishing for the client a virtual network
connection between the first end point and the desti
nation to transmit a payload of the client from the first
network domain to the second network domain,
wherein the establishing comprises:
initiating by the first end point, as allowed by the

controller, first traffic from the first network domain
to the virtual network switch, the first traffic thereby
being first outbound traffic from the first network
domain;

initiating by the destination, as allowed by the control
ler, second traffic from the second network domain to
the virtual network switch, the second traffic thereby
being second outbound traffic from the second net
work domain; and

5

10

15

25

30

40
placing the payload from the first network domain into

a reply to the second outbound traffic from the
second network domain.

19. The method of claim 18 comprising upon the deter
mination that use of the virtual network is permitted, creat
ing at the first end point a first dynamic routing table having
first routing information, the first routing information com
prising a first identifier that identifies the virtual network
connection; and

forwarding the first routing information to the virtual
network switch between the first and second network
domains, wherein the virtual network switch consults a
Second dynamic virtual routing table having second
routing information, the second routing information
comprising a second identifier, wherein when the sec
ond identifier corresponds to the first identifier, the
virtual network switch forwards a first payload of a first
data packet from the client to the destination according
to the second routing information.

20. The method of claim 19 wherein the second dynamic
virtual routing table is provisioned by the controller after the
controller determines that use of the virtual network is
permitted.

21. The method of claim 18 wherein the controller that
grants or denies permission to use the virtual network.
wherein when the controller grants permission to use the
Virtual network, the controller provisions an entry in a
dynamic virtual routing table at the virtual network switch
between the first and second network domains, and wherein
the entry comprises a virtual IP address associated with the
client, a virtual IP address associated with the destination,
and a session identifier for the virtual network connection.

