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(57) ABSTRACT 
An apparatus comprising a memory and a controller. The 
memory may be configured to process a plurality of read/ 
write operations. The memory comprises a plurality of 
memory modules each having a size less than a total size of 
the memory. The controller is configured to provide a first 
redundancy scheme when user data occupies less than a 
preconfigured limit and a second redundancy scheme that 
protects less than all of the user data when the user data 
occupies greater than the preconfigured limit. 
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1. 

VARABLE REDUNDANCY IN A SOLID 
STATE DRIVE 

This application relates to U.S. Provisional Application 
No. 61/827,190, filed May 24, 2013, which is hereby incor 
porated by reference in its entirety. 

FIELD OF THE INVENTION 

The invention relates to storage devices generally and, 
more particularly, to a method and/or apparatus for imple 
menting variable redundancy in a solid state drive. 

BACKGROUND 

Conventional Solid State Drives (SSDs) have used RAID 
like redundancy to provide results similar to conventional 
hard disk drives (HDDs) to recover from certain types of 
errors. Such redundancy has typically been implemented as 
“1 die out of n” so that an entire NAND die is consumed by 
the redundancy. In an 8 NAND die, one of the NAND die is 
used for RAID-5-like redundancy, reducing capacity by 
/8th, but providing protection against various types of 
COS. 

One issue with redundancy in a SSD is the overall 
capacity of the drive. Consumers want as much drive space 
to be available for data as possible. A SSD is normally 
manufactured with some type of over provisioning, which is 
the difference between the actual capacity and the advertized 
capacity. The over provisioning should be kept as low as 
possible to maintain competitive prices for each unit of 
available storage. 

It would be desirable to implement a controller and/or 
drive in a Solid state drive configuration to reduce over 
provisioning where user data is fully protected by a first 
redundancy scheme when user data occupies less than a 
preconfigured limit and a second redundancy scheme that 
protects less than all of the user data when the user data 
occupies drive space greater than the preconfigured limit. 

SUMMARY 

The invention concerns an apparatus comprising a 
memory and a controller. The memory may be configured to 
process a plurality of read/write operations. The memory 
comprises a plurality of memory modules each having a size 
less than a total size of the memory. The controller is 
configured to provide a first redundancy scheme when user 
data occupies less than a preconfigured limit and a second 
redundancy scheme that protects less than all of the user data 
when the user data occupies greater than the preconfigured 
limit. 

BRIEF DESCRIPTION OF THE FIGURES 

Embodiments of the invention will be apparent from the 
following detailed description and the appended claims and 
drawings in which: 

FIG. 1 is a diagram of a context of the invention; 
FIG. 2 is a diagram of a redundancy scheme; and 
FIG. 3 is a flow diagram illustrating a process for pro 

tecting data. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

Embodiments of the invention include providing elastic 
(or variable) redundancy that may (i) reduce redundancy 
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2 
overhead by ensuring full redundancy protection up to a 
certain amount of user data, (ii) bring redundancy Support to 
lower capacity points and/or reduce over provisioning over 
head, (iii) provide high “full redundancy' type protection for 
most SSD applications that do not consume a large amount 
of the overall physical space, (iv) allow a user configuration 
for choosing which NAND blocks are protected and/or (v) 
allow a user configuration for choosing which type of user 
data is protected. 

Referring to FIG. 1, a block diagram of an example 
apparatus 50 is shown. The apparatus 50 generally com 
prises a block (or circuit) 60, a block (or circuit) 70 and a 
block (or circuit) 80. The circuit 70 may include a circuit 
100. The circuit 100 may be a memory/processor configured 
to store computer instructions (or firmware) or may be logic. 
The instructions, when executed, may perform a number of 
steps. The firmware 100 may include a redundancy control 
module 110 (to be described in more detail in connection 
with FIGS. 2 and 3). The redundancy control module 110 
may be implemented as part of the firmware 100 or as a 
separate module. While an example of redundancy imple 
mented in the firmware 100 is shown, the redundancy may 
be implemented, in another example, in hardware (e.g., logic 
Such as a state machine). 
A signal (e.g., REQ) may be generated by the circuit 60. 

The signal REQ may be received by the circuit 70. The 
signal REQ may be a request signal that may be used to 
access data from the circuit 80. A signal (e.g., I/O) may be 
generated by the circuit 70 to be presented to/from the circuit 
80. The signal REQ may include one or more address bits. 
A signal (e.g., DATA) may be one or more data portions 
received by the circuit 60. 
The circuit 60 is shown implemented as a host circuit. The 

circuit 70 reads and writes data to and from the circuit 80. 
The circuit 80 is generally implemented as a nonvolatile 
memory circuit. The circuit 80 may include a number of 
modules 82a-82n. The modules 82a-82n may be imple 
mented as NAND flash chips. In some embodiments, the 
circuit 80 may be a NAND flash device. In other embodi 
ments, the circuit 70 and/or the circuit 80 may be imple 
mented as all or a portion of a solid state drive 90 having one 
or more nonvolatile devices. The circuit 80 is generally 
operational to store data in a nonvolatile condition. When 
data is read from the circuit 80, the circuit 70 may access a 
set of data (e.g., multiple bits) identified in the signal REQ. 
The signal REQ may request data from the drive 90 or from 
one of a number of additional storage devices. 

Data within the circuit 80 is generally organized in a 
hierarchy of units. A first type of redundancy may be 
implemented as a redundancy block. A redundancy block is 
a combination of blocks (e.g., a block from each nonvolatile 
memory die in the circuit 80) that can be combined to form 
a redundant array of silicon independent elements, similar to 
a redundant array of independent disks for magnetic media. 
The nonvolatile memory locations within the blocks may be 
written in a striped fashion. In some embodiments, organiz 
ing a plurality of blocks in redundancy blocks reduces an 
overhead of block management. A block is generally con 
sidered a smallest quantum of erasing. A page is generally 
considered a smallest quantum of writing. A read unit (or 
codeword or Epage or ECC-page) is a smallest correctable 
quantum of reading and/or error correction. Each block 
includes an integer number of pages. Each page includes an 
integral number of read units. 

In some embodiments, the circuit 80 may be implemented 
as a single-level cell (e.g., SLC) type circuit. An SLC type 
circuit generally stores a single bit per memory cell (e.g., a 
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logical 0 or 1). In other embodiments, the circuit 80 may be 
implemented as a multi-level cell (e.g., MLC) type circuit. 
An MLC type circuit is generally capable of storing multiple 
(e.g., two) bits per memory cell (e.g., logical 00, 01, 10 or 
11). In still other embodiments, the circuit 80 may imple 
ment a triple-level cell (e.g., TLC) type circuit. A TLC 
circuit may be able to store multiple (e.g., three) bits per 
memory cell (e.g., a logical 000, 001, 010, 011, 100, 101, 
110 or 111). 

In general, the controller 70 may include an erase/pro 
gram unit that may implement redundancy across the mod 
ules 82a-82n. For example, multiple blocks may be read 
from multiple dies 82a-82n. The erase/program unit may be 
implemented as part of the firmware (or logic) 100. 

The drive 90 contains multiple NAND Flash or memory 
modules 82a-82n. Each of the memory modules may be 
fabricated as one or more dies (e.g., 1, 2, 4, 8, etc.). The die 
(or modules) 82a-82n may operate to read or to write 
concurrently. The read and write bandwidth depends on how 
many of the die 82a-82n are implemented, as well as the 
bandwidth of each of the dies 82a-82n. If the SSD drive 90 
receives a host command REQ, in order to achieve the best 
performance, and/or to address wear leveling issues, the 
drive 90 will walk through all of the dies 82a-82n (e.g., a 
first page of DIE0, DIE1 . . . DIEn, then a next page of 
DIEO). 

In an example where each of the NAND die 82a-82n are 
each 8 GB, a 256 GB capacity drive needs 32 NAND die. If 
one of the NAND die 82a-82n is used for redundancy, then 
31 are available for all other storage (e.g., user data plus 
system data (such as mapping data)), etc. The total number 
of die 82a-82n implemented is normally a power of 2 (e.g., 
4, 8, 16, 32, etc.). Implementing 33 NAND die is generally 
not practical, since an extra placement, and associated cost, 
would be needed on the circuit 80. Furthermore, the NAND 
die 82a-82n are generally manufactured in multi-die pack 
ages in powers of 2 (e.g., two, four, eight, etc., die per 
package). As a practical matter when implementing the drive 
90, without the circuit 110, 32 die would generate 31 die 
space of usable storage space. 

In a 32 die example, one redundant NAND die would 
consume /32of the storage space of the drive 90, or about 
3.125%. In a 128GB implementation, sixteen 8GB NAND 
die may be implemented. In such an example, a single 
redundant die would use /16=~6.25% of the storage capacity 
of the drive 90. Such an implementation would drive over 
provisioning overhead higher to leave enough extra capacity 
for system data. The problem is exaggerated for lower 
capacity drives. Since only a handful of users actually 
consume a significant part of the physical space of the drive 
90, the adjustable redundancy provided by the circuits 100 
and/or 110 would benefit most users with little down side. A 
typical operating system tends to generate warnings when 
free drive space is low (e.g., below 15%), so users tend to 
naturally leave a significant amount of free space. Such 
implementations benefit from the elastic (or variable) redun 
dancy Scheme provided. 

In some embodiments the above is true even if user did fill 
the drive 90 to the top of the logical capacity (e.g., for all 
Logical Block Addresses—LBAs—up to MAX LBA value, 
reported by the drive 90 to the host 60). In such embodi 
ments, data may be compressed before being written to the 
memory 80, thus occupying only a fraction of physical space 
of the drive 90. 
To maximize the usable space on the drive 90, the 

controller 70 implements a variable redundancy to reduce 
the overall redundancy overhead. The controller 70 may 
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4 
selectively protect portions of user data when drive space 
usage is high while still offering the full redundancy pro 
tection benefits for the entire user data as long as the 
physical space usage is below a certain predefined limit. 

Redundancy is used for higher-level error correction. 
When writing pages in each of the NAND die 82a-82n, a 
first-level error-correcting code (such as a BCH or LDPC 
code) is used to protect the data within the individual pages. 
The redundancy may be implemented as orthogonal, second 
level of redundancy applied across a number of pages 
(generally from a different one of the NAND die 82a-82n) 
to permit recovery from various error conditions. 

For example, errors may include a page that is uncorrect 
able because of too many accumulated errors for the first 
level error-correcting code to correct. A word line in one of 
the die fails, rendering a portion of the data in that die. Such 
as a page, inaccessible. Ablock in one die fails, rendering the 
data in the block inaccessible. An entire die fails, rending all 
data in the die inaccessible. Except for the first type of error, 
the other failure types above are considered physical failure 
mechanisms, and are generally hard (persistent) errors. 

In some embodiments, the redundancy may use an error 
correcting code. In other embodiments, the redundancy uses 
an erasure-correcting code since a location of the error(s) is 
known (e.g., the pages or portions thereof that failed to be 
corrected by the first-level error correcting code). For 
example, a simple parity (XOR) code can correct 1 erasure 
using 1 redundant position out of n. Reed-Solomon (RS) 
codes can be used to correct erasures, and an RS code using 
redundant positions out of n can correct jerasures. Other 

erasure correcting techniques, such as those described in 
co-pending international application WO2012/099937, filed 
Jul. 26, 2012, entitled “HIGHER-LEVEL REDUNDANCY 
INFORMATION COMPUTATION', may be implemented 
and are incorporated by reference. 

Referring to FIG. 2, a diagram of the die 82a-82nis shown 
implemented in a “striped fashion. The die 82a is shown 
having a number of blocks 120a-120m. The die 82b is shown 
having a number of blocks 122a-122n. Similarly, the die 82n 
is shown having a number of blocks 124a-124n. The par 
ticular number of blocks in each of the die 82a-82n may be 
varied to meet the design criteria of a particular implemen 
tation. The block 120n is shown having a number of pages 
130a-130n. Similarly, the block 122n is shown having a 
number of pages 132a-132n. The block 124n is shown 
having a number of pages 134a-134n. A number of stripes 
140a-140n are shown. The stripe 14.0a is shown comprising 
the page 130a, 132a, and 134a. The page 134ais shown 
implemented as a redundancy page. One page from each of 
the NAND die 82a-82n is written in a determined order, 
wrapping around to write the next page in each of the die 
82a-82n, until one block of each of the NAND die 82a-82n 
is full. The redundancy shown has been applied in a “die 
first, page second, block third order that fills one block from 
each die before storing data into a second block in each die. 

Because the striping order fills an entire block in each of 
the die 82a-82n before writing to a second block in each of 
the die 82a-82n in a full redundancy scheme (e.g., collection 
of all blocks with the same block number from all of the die), 
block failures can normally only be handled with a full die 
of redundancy -1 die out of n dedicated to storing the 
redundancy overhead. Or equivalently, 1/n" of the capacity 
distributed among the die 82a-82n. 
As discussed above, using 1 die out of n (or the equivalent 

in capacity distributed among the die) to store redundancy 
information for recovery of block failures has a theoretical 
overhead of 1/n. In a small-capacity drive 90 where n is 
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Small, the overhead becomes a higher percentage of the 
capacity, driving up the over provisioning space used. 

In general, only a small part of the physical space of the 
drive 90 is actually filled by valid user data. Drive usage may 
reflect the tendency of users to not fill the drive 90 to a 
logical capacity. Data compression may also keep overall 
usage of space on the drive 90 down. At the same time, in 
each redundancy stripe, only part of the redundancy infor 
mation, proportional to amount of valid user data in the same 
stripe is actually stored. The rest of the space normally 
reserved for redundancy information can be considered and 
used as part of the free space of the drive 90. During 
recycling, or garbage collection, only redundancy informa 
tion for valid user data will be recreated. 

The stripe 14.0a represents an example of the stripe with 
100% valid user data (shaded pages). The entire redundancy 
page is shown as being in use. When a stripe will be 
rewritten (e.g., due to recycling for wear leveling) the entire 
redundancy page will be recreated on the new location. 
The stripes 140b and 140c are shown having only a 

percentage (e.g., 50%) use of user data space (e.g., the rest 
of the space is stale data, old copies of LBAs, rewritten 
elsewhere). When the stripes 140b and 140c will be over 
written, the overwritten portions of the stripes 140b and 
140c will together occupy only 1 stripe in a new location 
(e.g., stored as the same stripe or as Stripes shared with other 
data). So these 2 stripes (e.g., 140b and 140c) together will 
recreate only one page worth of redundancy data, occupying 
around 50% of a page each. Finally, the stripe 140n is shown 
not having any valid user data. The redundancy page 134n 
is shown completely free. 

In many embodiments, the drive 90 may have a physical 
capacity P with 1 die out of n dedicated to storing the 
redundancy overhead. If U bytes of data are written as user 
data, all with redundancy, the redundancy will consume 

R=U(n-1) bytes (1) 

In each redundancy Stripe 1, redundancy page is used for 
N-1 user data pages. 
For example, consider: 

where k is a number between 0 and (n-1)/n. The value k 
reflects a portion of the entire drive capacity that is filled by 
user data (which will be protected by redundancy). The 
associated redundancy data consumes: 

R=k*P(n-1) bytes (3) 

The goal is to keep redundancy usage below a certain 
limit RL (e.g., 5% of the total capacity P) to be able to “hide' 
the redundancy in the reasonably low over provisioning 
overhead. 
For example, if: 
RL-rP where 0<=r-1/n is relative media usage by the 
redundancy. 

Then a maximum value of k used while still having all 
user data protected by redundancy can be calculated as 
function of n and target value r from the following equation 
(3) 

The maximum amount of user data which can be written 
with redundancy is: 

In the following TABLE 1, the value k is calculated as a 
function of n and r. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

TABLE 1. 

r 

l O.O2 O.04 O.08 O.10 

2 O.O2 O.04 O.08 O.10 
4 O.O6 O.12 O.24 O.30 
8 O.14 O.28 O.S6 O.70 

12 O.22 0.44 O.88 O.92 
16 O.30 O60 O.94 O.94 
24 O46 O.92 O.96 O.96 
32 O.62 0.97 0.97 0.97 
48 O.94 O.98 O.98 O.98 
64 O.98 O.98 O.98 O.98 
128 O.99 O.99 O.99 O.99 

For a wide range of values (n, r) a healthy share of drive 
capacity (e.g., 50-70%) can be filled by user data with full 
redundancy protection. Further, the value of n (e.g., nomi 
nally the number of die 82a-82n) may be treated as doubled 
if redundancy protects twice as many blocks (e.g., using 
fractional redundancy /2), or quadrupled if redundancy 
protects four times as many blocks (e.g., fractional redun 
dancy /4). Fractional redundancy may be implemented in 
accordance with co-pending application Ser. No. 13/675,874 
which is incorporated by reference. 

In some embodiments, the value n is not necessarily the 
same for all of the redundancy stripes 140a-140m. In various 
embodiments, the positions of the redundancy die can be 
also different in different redundancy stripes. In further 
embodiments, both the value n as well as an actual position 
of the redundancy dies change from Stripe to stripe accord 
ing to various rules. 

In the various examples described, the amount of user 
data which can be written to the drive 90 with redundancy 
is normally maximized, while still keeping redundancy 
usage below a certain amount Umax. As long as a user does 
not increase physical space usage above Umax, the entire 
user data can be written with full redundancy. 

Referring to FIG. 3, a flow diagram 300 is shown. The 
method 300 generally comprises a step (or state) 301, a step 
(or state) 302, a decision step (or state) 304, a step (or state) 
306, a decision step (or state) 308, and a step (or state) 310. 
The step 301 may request data from the host 60. The step 
302 may determine an amount of space currently used to 
store data received from the host 60. The decision step 304 
may determine whether the amount of data used is greater 
than a threshold. If not, the method 300 moves to the state 
306. In the state 306, the method 300 uses a first redundancy 
type. If the decision state 304 determines that the data is 
greater than a threshold, the method moves to the state 308. 
The decision state 308 determines if the data has been 
flagged. If so, the method 300 moves to the state 306, which 
uses the first redundancy type. If not, the method 300 moves 
to the state 310 which uses a second redundancy type. The 
second redundancy type may be no redundancy at all, or a 
very low overhead type of redundancy. The second redun 
dancy type is generally less robust than the first redundancy 
type. The type of data flagged by the decision state 308 may 
be particularly user critical data. 

If a user writes more data than allowed for certain (n, r) 
values by formulas above (more than Umax), some part of 
the data must be written without redundancy protection 
(otherwise target r value will be tipped over). 

In some embodiments all user data above Umax limit will 
be written without redundancy. This is the simplest approach 
and if actual failure happens in the redundancy protected 
stripe recovery is possible, otherwise not. Statistically such 
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drive is much better off than the alternative of a drive 
without redundancy at all. Such an approach provides more 
capacity and/or better performance than other alternatives, 
such as a drive with fully protected data. 

In further embodiments when later in drive lifetime user 
data space usage falls below the limit Umax due to rewriting 
Some LBAS with more compressible data or due to trimming 
Some part of it, parts of user data, written without redun 
dancy, can then be overwritten (recycled) with redundancy. 

In other embodiments user can configure drive, dividing 
all LBAS on “important and “not-so-important regions. As 
long as “important LBAS do not consume more than the 
Umax physical space, they will all be protected by redun 
dancy. 

In many embodiments data which stays intact longer 
("cold data) will be given preference in redundancy pro 
tection (this data will be written with redundancy whenever 
possible) because it is generally considered more Vulnerable. 
Cold data may be considered data that has not been changed 
for a predetermined time. 

In some embodiments all user data above Umax limit will 
be written without redundancy. Writing without redundancy 
may be the simplest approach and if actual failure happens 
in the redundancy protected Stripe recovery is possible, 
otherwise recovery may not be possible. Statistically, the 
drive 90 may be much better off than the alternative of a 
drive without redundancy at all. The drive 90 may provide 
more capacity and/or better performance than other alterna 
tives, such as a drive with fully protected data. 

In further embodiments, when in a later lifetime of the 
drive 90, user data space usage may fall below the limit 
Umax due to rewriting some LBAs with more compressible 
data or due to trimming some part of the user data. Parts of 
the user data, written without redundancy, may then be 
overwritten (recycled) with redundancy. 

In other embodiments, the user may configure the drive 
90. For example, by dividing all LBAS on “important” and 
“not-so-important regions. As long as “important LBAS 
do not consume more than the Umax physical space, they 
will all be protected by redundancy. 

In many embodiments data which stays intact longer 
("cold data) may be given preference in redundancy pro 
tection (this data will be written with redundancy whenever 
possible). Cold data is generally considered more Vulner 
able. Cold data may be considered data that has not been 
changed for a predetermined amount of time. 

Practical implementations may differ in selecting bound 
aries where a redundancy mode changes, the way redun 
dancy changes (turned ON/OFF or just n value and die 
position(s) change) and the way information about redun 
dancy is stored. Information about redundancy is stored 
Somehow—since data from a page cannot be read properly 
unless all redundancy die locations are known, even if there 
is no actual failure for which redundancy recovery will be 
applied. 

In general, redundancy information is only changed on a 
redundancy stripe or page boundary. For example, while the 
entire redundancy stripe must be written with the same 
redundancy configuration, a next redundancy stripe might 
have other redundancy settings. 

In some embodiments, the redundancy behavior may be 
changed on the stripe or page boundary (e.g., a trigger for 
change would be an amount of data written and/or the data 
type). In some embodiments, a system may have enough 
memory to store locations and types of all redundancy 
changes which is necessary to read data later. In other 
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8 
embodiments, redundancy settings may be changed once per 
block to reduce the amount of information which needs to be 
stored. 

In further embodiments, redundancy settings may be set 
to change only from ON to OFF and vice versa and on a 
block boundary. For example, settings for an entire redun 
dancy block are the same and there are only two possible 
sets of redundancy blocks. Such an implementation may 
reduce storage requirements (e.g., to track where redun 
dancy is used) even more (e.g., where 1 bit per redundancy 
block is used). 
The functions performed by the diagram of FIG.3 may be 

implemented using one or more of a conventional general 
purpose processor, digital computer, microprocessor, micro 
controller, RISC (reduced instruction set computer) proces 
Sor, CISC (complex instruction set computer) processor, 
SIMD (single instruction multiple data) processor, signal 
processor, central processing unit (CPU), arithmetic logic 
unit (ALU), video digital signal processor (VDSP) and/or 
similar computational machines, programmed according to 
the teachings of the specification, as will be apparent to 
those skilled in the relevant art(s). Appropriate software, 
firmware, coding, routines, instructions, opcodes, micro 
code, and/or program modules may readily be prepared by 
skilled programmers based on the teachings of the disclo 
sure, as will also be apparent to those skilled in the relevant 
art(s). The Software is generally executed from a medium or 
several media by one or more of the processors of the 
machine implementation. 
The invention may also be implemented by the prepara 

tion of ASICs (application specific integrated circuits), Plat 
form ASICs, FPGAs (field programmable gate arrays), 
PLDs (programmable logic devices), CPLDs (complex pro 
grammable logic devices), sea-of-gates, RFICs (radio fre 
quency integrated circuits), ASSPs (application specific 
standard products), one or more monolithic integrated cir 
cuits, one or more chips or die arranged as flip-chip modules 
and/or multi-chip modules or by interconnecting an appro 
priate network of conventional component circuits, as is 
described herein, modifications of which will be readily 
apparent to those skilled in the art(s). 
The invention thus may also include a computer product 

which may be a storage medium or media and/or a trans 
mission medium or media including instructions which may 
be used to program a machine to perform one or more 
processes or methods in accordance with the invention. 
Execution of instructions contained in the computer product 
by the machine, along with operations of Surrounding cir 
cuitry, may transform input data into one or more files on the 
storage medium and/or one or more output signals repre 
sentative of a physical object or Substance, Such as an audio 
and/or visual depiction. The storage medium may include, 
but is not limited to, any type of disk including floppy disk, 
hard drive, magnetic disk, optical disk, CD-ROM, DVD and 
magneto-optical disks and circuits such as ROMs (read-only 
memories), RAMs (random access memories), EPROMs 
(erasable programmable ROMs), EEPROMs (electrically 
erasable programmable ROMs), UVPROM (ultra-violet 
erasable programmable ROMs), Flash memory, magnetic 
cards, optical cards, and/or any type of media Suitable for 
storing electronic instructions. 
The elements of the invention may form part or all of one 

or more devices, units, components, systems, machines 
and/or apparatuses. The devices may include, but are not 
limited to, servers, workstations, storage array controllers, 
storage systems, personal computers, laptop computers, 
notebook computers, palm computers, personal digital assis 
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tants, portable electronic devices, battery powered devices, 
set-top boxes, encoders, decoders, transcoders, compressors, 
decompressors, pre-processors, post-processors, transmit 
ters, receivers, transceivers, cipher circuits, cellular tele 
phones, digital cameras, positioning and/or navigation sys 
tems, medical equipment, heads-up displays, wireless 
devices, audio recording, audio storage and/or audio play 
back devices, video recording, video storage and/or video 
playback devices, game platforms, peripherals and/or multi 
chip modules. Those skilled in the relevant art(s) would 
understand that the elements of the invention may be imple 
mented in other types of devices to meet the criteria of a 
particular application. 
The terms “may' and “generally” when used herein in 

conjunction with “is(are)” and verbs are meant to commu 
nicate the intention that the description is exemplary and 
believed to be broad enough to encompass both the specific 
examples presented in the disclosure as well as alternative 
examples that could be derived based on the disclosure. The 
terms “may” and “generally' as used herein should not be 
construed to necessarily imply the desirability or possibility 
of omitting a corresponding element. 

While the invention has been particularly shown and 
described with reference to embodiments thereof, it will be 
understood by those skilled in the art that various changes in 
form and details may be made without departing from the 
Scope of the invention. 
The invention claimed is: 
1. An apparatus comprising: 
a memory configured to store data, the memory compris 

ing a plurality of memory modules each having a size 
less than a total size of the memory; and 

a controller configured to process a plurality of read/write 
operations to/from the memory and select between (a) 
using a first redundancy scheme on user data to be 
stored across the memory modules when an amount of 
the memory that would be occupied by the user data 
and previously stored data is less than a predetermined 
threshold capacity of the memory and (b) using a 
second redundancy scheme on all or a portion of the 
user data to be stored across the memory modules when 
the amount of the memory that would be occupied by 
the user data and the previously stored data is greater 
than the predetermined threshold capacity of the 
memory, wherein the second redundancy scheme pro 
tects less than all of the data written using the second 
redundancy scheme and data that has not changed for 
a predetermined amount of time is given preference to 
be selected for protection by the first redundancy 
Scheme over data that has changed within the prede 
termined amount of time. 

2. The apparatus according to claim 1, wherein: 
the first redundancy scheme comprises a high level redun 

dancy; and 
the second redundancy comprises a low level redundancy. 
3. The apparatus according to claim 1, wherein (i) the 

second redundancy scheme comprises writing the user data 
with no redundancy and (ii) the controller writes to either a 
portion of the memory with the first redundancy scheme or 
a portion of the memory with no redundancy. 

4. The apparatus according to claim 1, wherein the first 
redundancy scheme fully protects the data. 

5. The apparatus according to claim 1, wherein (i) the 
memory modules are memory dies, (ii) at least one of the 
first redundancy scheme and the second redundancy scheme 
is configured to protect the data using one of the memory 
dies configured to store redundancy information for a 
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10 
respective stripe of the data and (iii) the stripe of the data is 
stored across a plurality of the memory dies. 

6. The apparatus according to claim 5, wherein the 
redundancy information comprises at least one of a parity 
code and a Reed-Solomon code. 

7. The apparatus according to claim 5, wherein only 
redundancy information for data considered to be valid is 
recreated during at least one of recycling and garbage 
collection. 

8. The apparatus according to claim 7, wherein (i) por 
tions of a first stripe having the data considered to be valid 
and portions of a second stripe having the data considered to 
be valid are combined to create a combined stripe and (ii) 
one of the memory dies used for the combined stripe stores 
the redundancy information for the combined stripe. 

9. The apparatus according to claim 1, wherein the data 
stored using the second redundancy scheme is recycled and 
stored using the first redundancy Scheme after the amount of 
the memory occupied by the stored data is less than the 
predetermined threshold capacity of the memory. 

10. The apparatus according to claim 1, wherein the 
apparatus is a Solid-state drive configured to implement a 
variable redundancy across the memory modules within the 
solid-state drive and the predetermined threshold capacity is 
determined based upon the number of memory modules, a 
first value representing a portion of the entire memory that 
is to be filled with user data while being protected by the first 
redundancy scheme, and a second value representing a target 
amount of the entire memory to be used for redundancy. 

11. An apparatus comprising: 
an interface configured to (a) connect to a memory and (b) 

process a plurality of read/write operations, the 
memory comprising a plurality of memory modules 
each having a size less than a total size of the memory; 
and 

a processor configured to select between (a) using a first 
redundancy scheme on user data to be stored across the 
memory modules when an amount of the memory that 
would be occupied by the user data and previously 
stored data is less than a predetermined threshold 
capacity of the memory and (b) using a second redun 
dancy scheme on all or a portion of the user data to be 
written across the memory modules when the amount 
of the memory that would be occupied by the user data 
and the previously stored data is greater than the 
predetermined threshold capacity of the memory, 
wherein the second redundancy Scheme protects less 
than all of the data written using the second redundancy 
Scheme and data that has not changed for a predeter 
mined amount of time is given preference to be selected 
for protection by the first redundancy scheme over data 
that has changed within the predetermined amount of 
time. 

12. The apparatus according to claim 11, wherein (A) the 
second redundancy scheme protects a first portion of the 
user data with redundancy and a second portion of the user 
data is stored without redundancy and (B) a determination of 
the first portion of the user data and the second portion of the 
user data is based on a particular data type. 

13. The apparatus according to claim 12, wherein the first 
portion of the user data comprises recycled data that has not 
been changed for a predetermined amount of time. 

14. The apparatus according to claim 12, wherein the first 
portion of the user data comprises data marked by a user as 
being important. 

15. The apparatus according to claim 12, wherein the 
particular data type is cold data. 
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16. The apparatus according to claim 11, wherein (A) the 
second redundancy scheme protects a first portion of the 
user data with redundancy and a second portion of the user 
data is stored without redundancy and (B) a determination of 
the first portion of the user data and the second portion of the 
user data is based on a logical location of the user data. 

17. The apparatus of claim 11, wherein redundancy set 
tings are different for different parts of the user data written 
with redundancy. 

18. The apparatus according to claim 11, wherein the 
memory comprises a flash memory. 

19. A method for storing data, comprising: 
processing a plurality of read/write operations to/from a 
memory, the memory comprising a plurality of memory 
modules each having a size less than a total size of the 
memory; and 

Selecting between a plurality of redundancy schemes, 
wherein (a) a first of the redundancy schemes stores 
user data to be written across the memory modules with 
full protection when an amount of the memory that 
would be occupied by the user data and previously 
stored data is less than a predetermined threshold 
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capacity of the memory, (b) a second of the redundancy 
Schemes stores the user data to be written across the 
memory modules with less than all of the user data 
protected when the amount of the memory that would 
be occupied by the user data and the previously stored 
data is greater than the predetermined threshold capac 
ity of the memory, and (c) data that has not changed for 
a predetermined amount of time is given preference to 
be selected for protection by the first redundancy 
Scheme over data that has changed within the prede 
termined amount of time. 

20. The method according to claim 19, wherein the 
method implements a variable redundancy across the 
memory modules within a solid-state drive and the prede 
termined threshold capacity is determined based upon the 
number of memory modules, a first value representing a 
portion of the entire memory that is to be filled with user data 
while being protected by the first redundancy scheme, and a 
second value representing a target amount of the entire 
memory to be used for redundancy. 
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