
(12) United States Patent
Matsugashita

USOO9521 14.4B2

US 9,521,144 B2
Dec. 13, 2016

(10) Patent No.:
(45) Date of Patent:

(54) AUTHORITY DELEGATE SYSTEM,
AUTHORIZATION SERVER SYSTEM,
CONTROL METHOD, AND PROGRAM

(71) Applicant: CANON KABUSHIKI KAISHA,
Tokyo (JP)

(72) Inventor: Hayato Matsugashita, Kawasaki (JP)

(73) Assignee: Canon Kabushiki Kaisha, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 37 days.

(21) Appl. No.: 14/308,502

(22) Filed: Jun. 18, 2014

(65) Prior Publication Data

US 2014/038.0429 A1 Dec. 25, 2014

(30) Foreign Application Priority Data

Jun. 21, 2013 (JP) 2013-13O857

(51) Int. Cl.
H04L 29/06

(52) U.S. Cl.
CPC H04L 63/0884 (2013.01); H04L 63/0823

(2013.01)

(2006.01)

(58) Field of Classification Search
CPC. H04L 63/0884; H04L 63/08; H04L 63/0823;

H04L 63/0807; H04L 63/102; G06F
21/30

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,402,508 B2 * 3/2013 Rouskov et al. 726/2
2007/007.9369 A1 4/2007 Grinstein T26/19

400

TERMINAL

400

TERMINAL

102

2009/0254745 A1 * 10, 2009 Ganesan T13/151
2010, O257578 A1* 10, 2010 Shukla et al. 726, 1
2013/0086645 A1 4/2013 Srinivasan et al. ... 726/4
2014/0007198 A1 1/2014. Durbha et al. 726/4
2014, OO13396 A1* 1/2014 Field-Eliot et al. ... 726/4
2014/0189797 A1* 7, 2014 Nori et al. T26/4

(Continued)

OTHER PUBLICATIONS

Jones, M. and D. Hardt, “The OAuth 2.0 Authorization Framework:
Bearer Token Usage”, Oct. 2012, Internet Engineering Task Force,
RFC 6750.*

(Continued)

Primary Examiner — Eleni Shiferaw
Assistant Examiner — Nelson Giddins
(74) Attorney, Agent, or Firm — Canon USA, Inc. IP
Division

(57) ABSTRACT

An authority delegate system, including a server system
which provides a service to a device having an application,
and an authorization server system which performs autho
rization processing to delegate user authority in the service
to a usage source of the service, includes a management unit,
and a providing unit. The management unit identifies author
ity of the application, in accordance with having received a
request to register the application as the usage source, and
manages the identified authority, and an identifier of the
application, in an associated manner. The providing unit
provides the service, in a case where an authorization
operation has been performed to permit delegating of the
user authority to the application transmitting a request to use
the service, and an authority which the application uses is
included in authorities associated with the identifier of the
application.

13 Claims, 15 Drawing Sheets

g t
AUTHORIZATION DATABASE

SERVER SERVER

RESOURCE
SERVER

5
300

US 9,521,144 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2014/0245013 A1* 8, 2014 Kim HO4L 67.34
713,171

OTHER PUBLICATIONS

D. Hardt, “The OAuth 2.0 Authorization Framework', Oct. 2012,
Internet Engineering Task Force, RFC 6749.*
D. Hardt, Ed., The OAuth 2.0 Authorization Framework, Internet
Engineering Task Force (IETF), Oct. 2012, pp. 1-18.

* cited by examiner

US 9,521,144 B2

00900||

Sheet 1 of 15 Dec. 13, 2016 U.S. Patent

US 9,521,144 B2 Sheet 2 of 15 Dec. 13, 2016 U.S. Patent

|

OOG ‘007 '009 '00Z

US 9,521,144 B2

00900Z
U.S. Patent

US 9,521,144 B2

00Z |

U.S. Patent

US 9,521,144 B2 Sheet 5 Of 15 Dec. 13, 2016 U.S. Patent

U.S. Patent Dec. 13, 2016 Sheet 6 of 15 US 9,521,144 B2

FIG. 4C
1400

DEFAULTAUTHORITY MANAGEMENT TABLE

1401 1402

TENANT ID DEFAULTAUTHORTY ID

10001AA USER PROVISIONING

1OOO2AA PAY DATA CONVERSION

FIG. 4D
1500

CLIENT AUTHORITY TABLE

1501

CLIENT ID AUTHORITY ID

01d7e3139d4e4e628203e 179e1401 de2010001AA USER PROVISIONING
O53753a39d3e4e648213f 17eb1331a31(O)100O2AA PAYDATA CONVERSION

U.S. Patent Dec. 13, 2016 Sheet 7 Of 15 US 9,521,144 B2

FIG. 5A 1600

SCOPE TABLE

1602 1603

SCOPEID TYPE DESCRIPTION AUTHORITY ID

OWNER SCOPE USER INFORMATION TENANT MANAGER

client UserProvisioning CLIENTSCOPE - USER PROVISIONING
client PaidService CLIENTSCOPE - PAYDATA CONVERSION
client FreeService CLIENTSCOPE I - I -

FIG. 5B 1700

USER MANAGEMENT TABLE

1701 1702

USER ID PASSWORD TENANT ID

user001 Quser.com 1001AA

1800
FIG. 5C

USER AUTHORITY TABLE

1801 1802

USER ID AUTHORITY ID

userO01(Ouser.com TENANT MANAGER

US 9,521,144 B2 U.S. Patent

US 9,521,144 B2 Sheet 9 Of 15 Dec. 13, 2016 U.S. Patent

99000 UO|

US 9,521,144 B2 Sheet 10 of 15 Dec. 13, 2016 U.S. Patent

U.S. Patent Dec. 13, 2016 Sheet 11 of 15 US 9,521,144 B2

FIG. 8A

LOGIN SCREEN

USER ID

PASSWORD

AUTHORIZATION CONFIRMATION SCREEN

YOU ARE BEING REQUESTED TO PERMIT
ACCESS TO YOUR DATA.
CONFIRM THE CONTENTS, AND CLICK
THE PERMIT ORDECLINE BUTTON.

ORIGIN OF ACCESS
"CLIENT NAME ASSOCATED WITH CLIENT ID" 2101
DESTINATION OF ACCESS
"DESCRIPTION OF SPECIFIED OWNER SCOPE" 2102

PERMIT 2103 DECLINE 2104

2300
FIG. 8C

AUTHORITY ERROR SCREEN

NOAUTHORITY.

US 9,521,144 B2 U.S. Patent

U.S. Patent Dec. 13, 2016 Sheet 13 of 15 US 9,521,144 B2

AUTHORIZATION TOKEN FIG 10 VERIFICATION PROCESSING 600

RECEIVECOMMISSIONING OF S4.1
AUTHORIZATION TOKENVERIFICATION

OBTAN AUTHORIZATION TOKEN S42
AND SCOPE TO BE VERIFED

OBTAIN INFORMATION OF S4.3
AUTHORIZATION TOKEN

S4.4
NVALID ISAUTHORIZATION

TOKEN VALID?
S4.5 VALID

RETURN TOKE OBTAIN INFORMATION OF S46
NVALIDERROR SCOPETO BE VERIFED

S4.7

IS THERE ANOWNER NO
SCOPE FORTHESCOPETO

BEVERIFED?
YES S4.8

OBTAINAUTHORITY IDWHICH THE OWNER
ID OF THE AUTHORIZATION TOKEN HAS

S4.9

NVALID VERIFY AUTHORITY
OFOWNER SCOPE

S4.10 VALID

RETURN AUTHORITY
ERROR NO

S4.11

IS THEREACLIENT
SCOPE FORTHE SCOPETO

BE VERIFED,

YES
OBTAN AUTHORTY ID WHICH THE CLIENT S4, 12
ID OF THE AUTHORIZATION TOKEN HAS

S4.13
NVALID VERIFY AUTHORITY

OFCLENT SCOPE
S4.14

RETURN RETURN AUTHORITY
AUTHORIZED ERROR

END

US 9,521,144 B2

+--->|

U.S. Patent

U.S. Patent Dec. 13, 2016 Sheet 15 Of 15 US 9,521,144 B2

FIG. 12

REGISTRATION AUTHORITY
VERIFICATION PROCESSING

RECEIVE COMMISSIONING OF
REGISTRATION AUTHORITY VERIFICATION

600

S6.1

OBTAIN INFORMATION OF
SPECIFIED CLIENT SCOPE S6.2

S63
IS THERE A CLIENT

SCOPE FOR THE SPECIFIED
SCOPE2

RETURNVALID, AND
DEFAULTAUTHORITY ID

S6.5

SAUTHORITY ID
OF SPECIFIED CLIENT SCOPE

INCLUDED INDEFAULT
AUTHORITY ID?

S6.6

RETURN
NVALID

RETURNVALID, AND AUTHORITY
ID OF SPECIFIED CLIENT SCOPE

US 9,521,144 B2
1.

AUTHORITY DELEGATE SYSTEM,
AUTHORIZATION SERVER SYSTEM,
CONTROL METHOD, AND PROGRAM

BACKGROUND OF THE INVENTION

Field of the Invention
The present invention relates to an authority delegate

system which performs client registration, an authorization
server system, a control method, and a program.

Description of the Related Art
There is a standard protocol to realize coordination of

authorization, called OAuth 2.0 ("The OAuth 2.0 Authori
zation Framework”, online D. Hardt, May 2013 <URL
http://tools.ietforg/html/rfcó749). OAuth 2.0 enables an
application B which has been authorized by a user and which
is installed in a terminal operated by the user, to access data
of the user which a service A on the Internet manages, for
example. OAuth 2.0 refers to a subject to which authority is
delegated, like the application B, as an “OAuth client’, or
simply “client'. The service A is supposed to obtain explicit
user authorization regarding access by the application B.
upon having clarified the range of access by the application
B. The action of the user giving explicit authorization is
called “authorization operation'.
Once the user has performed an authorization operation,

the application B receives a token certifying that access has
been permitted by service A (hereinafter referred to as
“authorization token'). Access thereafter can be realized
using this authorization token. The application B which uses
the authorization token can access the service A under the
authority of the user which has performed the authorization
operation, without prompting the user for input of authori
Zation information. Accordingly, the application B which
has been authorized by the user and acquired the authori
Zation token is bound responsible to manage the authoriza
tion token in a secure and proper manner.
OAuth 2.0 has to authenticate the application B and grant

predefined authority before the authorization operation is
performed, in order to prevent spoofing of the application B.
In order to authenticate the application B, the service A has
to issue and manage authentication information of the appli
cation B beforehand. This authentication information is a
client ID and secret. Further, this authentication information
has to be set in the application B. An online application
registration protocol is being studied as a specification
pertaining to OAuth 2.0, called Dynamic Client Registration
Protocol. According to this Dynamic Client Registration
Protocol, a requestor for each client registration is dynami
cally Subjected to client registration by transmitting meta
data to an endpoint for client registration, and thus authen
tication information can be obtained. The endpoint is an
authorization service provided to a server side implementing
OAuth 2.0. This mechanism enables the trouble of perform
ing individual settings to be avoided, since each application
Subjectively obtains authentication information, rather than
authentication information being set to each of a great
number of applications which have been distributed. When
confirming an authorization token, not only is the authority
delegated from the user confirmed, but also the authority of
the application B itself is confirmed, and whether to permit
or deny usage of the user is thus decided.

SUMMARY OF THE INVENTION

Registration protocols of application involving authority
delegate processing, such as OAuth 2.0, grant uniformly

10

15

25

30

35

40

45

50

55

60

65

2
identical authority to all applications being registered. For
example, in the event that an unnecessary authority is
granted to a certain application, and user authority is grated
to that application, there is the concern that the certain
application may use a service which was not expected to be
used.

It has been found a benefit to provide an authorization
server which grants Suitable authority in accordance with
applications being registered by an application registration
protocol in authority delegate processing.

According to an aspect of the present invention, an
authority delegate system, including a server system which
provides a service to a device having an application, and an
authorization server system which performs authorization
processing to delegate user authority in the service to a usage
Source of the service, includes a management unit config
ured to identify authority of the application, in accordance
with having received a request to register the application as
the usage source, and manage the identified authority, and an
identifier of the application, in an associated manner, and a
providing unit configured to provide the service, in a case
where an authorization operation has been performed to
permit delegating of the user authority to the application
transmitting a request to use the service, and an authority
which the application uses is included in authorities asso
ciated with the identifier of the application.

Further features of the present invention will become
apparent from the following description of exemplary
embodiments with reference to the attached drawings.

According to the present invention, Suitable authority can
be granted in accordance with applications being registered
by an application registration protocol in authority delegate
processing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system according to a first
embodiment.

FIG. 2 is a block diagram of hardware of components.
FIG. 3 is a block diagram of software modules of com

ponents.
FIGS. 4A through 4D illustrate client-related table struc

tures managed at an authorization server.
FIGS. 5A through 5D illustrate token-related table struc

tures managed at an authorization server.
FIG. 6 illustrates a sequence from client registration to
SOUC acCSS.

FIG. 7 illustrating an authorization token issuing
sequence in a case of Authorization Code Grant.

FIGS. 8A through 8C are examples of screens.
FIG. 9 illustrates an authorization token issuing sequence

in a case of Client Credentials Grant.
FIG. 10 is an authorization token verification process

flow.
FIG. 11 illustrates a registration sequence according to a

second embodiment.
FIG. 12 illustrates a registration authority verification

process flow.

DESCRIPTION OF THE EMBODIMENTS

Terminology used in the present invention, an outline of
service which the system in the embodiments of the present
invention have, and applications cooperating with the Ser
vice, will be described. The service is a function provided to
a server connected via a network, and can Supplement
functions not provided to accessing terminals. The phrase

US 9,521,144 B2
3

“provide service' means to allow an accessing source and/or
a user to use functions provided to the server. In an example,
service is provided in a case where an authority used by an
application is within authority associated with an identifier
of the application.

Services include pay services for which the user is billed
for using, and free services with no billing. A pay service
basically can be used by a user entering into contract
therewith, and the service is bound responsible to provide
the service in accordance with the contents of the contract in
a stable manner. For example, there is a system to ensure the
quality of service, called Service Level Agreement (SLA).
SLA defines the minimum speed, upper limit of down time,
and so forth, of the service being provided. The user pays
usage fees as the price of the service quality defined in the
SLA. The SLA also defines actions to be taken in a caser
where the defined quality is not delivered, including penal
ties for the service provider, and guaranteeing the user Such
as discounting usage fees, for example. Accordingly, it is
very important for pay services to deliver the quality defined
in the SLA. Free services have interface specifications
disclosed for receiving services, and third parties have
opportunities to develop applications. No terms like those of
the SLA exist for free services.

There are at least three services which the system in the
embodiments of the present invention provides. One is a pay
service, in which a user provisioning service for provision
ing user data registered on the Internet is installed in a server
on the Internet. A second is a pay service, in which a pay data
conversion service to convert document data which a ter
minal holds into printable data, is installed in a server on the
Internet. The third is a free service, and in the same way as
with the second service, in that a free data conversion
service to convert document data which a terminal holds into
printable data, is installed in a server on the Internet. Each
of these servers will be referred to as a “resource server'.
These are servers configuring the system which the present
invention assumes. While description will be made regard
ing an arrangement where one service is provided to each
resource server, two or more different services may be
provided to one resource server.

Further, there are both pay applications and free applica
tions for applications which are provided to terminals such
as Smartphones and tablets and which are coordinated with
the service. A pay application has to guarantee quality to the
user, in the same way as with the pay service. Moreover,
there is the need to create the application coordinating with
the service to a high level of quality in order to deliver on
the SLA for the pay service, which is costly. In other words,
the service providers pay a great deal of money create
applications to achieve the SLA for the pay service. The pay
applications are provided to user to have paid, while the free
applications are distributed free of cost.

In the case of Such a system, there are the following
specific problems. In a case where a conventional applica
tion registration protocol is provided to the user in the
authority delegate processing, to avoid the trouble of dis
tributing applications, it becomes difficult to prevent a free
application created by a third party from using the pay
service. If the user authority for a pay service is delegated to
a free application, the free application has the authority to
use the service, no different from the pay application, which
is unpreventable. As a result, the pay service provider finds
it difficult to achieve the SLA, and consequently the pay
service business may collapse. Moreover, the application
which the provider has paid a great amount of money to

5

10

15

25

30

35

40

45

50

55

60

65

4
develop in order to achieve the SLA is not used, and
recovering this investment becomes difficult.

First Embodiment

A first embodiment is directed to detailed description of a
system to solve the above-described problem. The authority
delegate system according to the present embodiment is
realized on a network configuration Such as illustrated in
FIG. 1. Reference numeral 100 denotes a wide area network
(hereinafter “WAN 100). A World Wide Web (WWW)
system is configured in the present invention. Reference
numeral 101 denotes a local area network (LAN 101)
connecting the components, and 102 denotes a public net
work connecting the components.

Reference numeral 200 denotes an authorization server to
realize OAuth 2.0, and includes an authorization server
module which performs authorization processing to issue
tokens. Reference numeral 300 denotes a resource server,
and includes resource server modules Such as a user provi
Sioning service, pay data conversion service, free data
conversion service, and so forth. Note that the number of
resource server modules installed in one resource server may
be one, or may be multiple. Reference numeral 400 denotes
a device such as a Smartphone, portable terminal, image
formation apparatus, or the like. One or more application
modules are installed therein. The user uses the application
modules to communicate with the resource server. Refer
ence numeral 500 denotes a database server, which is
connected to the authorization server 200 via the LAN 101,
and stores data which the authentication server module uses.
The authorization server 200, resource server 300, and

terminal 400 are each connected via the WAN 100 and LAN
101. The authorization server 200, resource server 300, and
terminal 400 may each be configured on separate LANs, or
may be configured on the same LAN. The authorization
server 200, resource server 300, and database server 500
may be configured on the same server. Each server may be
configured of multiple servers, and there is no restriction on
the number of servers. A server configured including one or
multiple servers is called a “server system’, and the term
“authorization server system’ means one or multiple autho
rization servers.
The authority delegate system according to the present

embodiment is realized on a system including servers con
figured such as illustrated in FIG. 2, and terminals. FIG. 2
illustrates the hardware configuration of the authorization
server 200, resource server 300, terminal 400, and database
server 500. The hardware block diagram illustrated in FIG.
2 is equivalent to a hardware block diagram of a common
information processing apparatus, so common information
processing apparatus hardware configurations can be
applied to the servers and terminals of the present embodi
ment.

In FIG. 2, a CPU 201 executes programs, such as an
operating system (OS) and applications and the like, stored
in program read only memory (ROM) of ROM 203, or
external memory 211 such as a hard disk (HD) and loaded
to random access memory (RAM) 202, thereby controlling
the blocks connected to a system bus 204. The later
described sequences can be realized by executing these
programs. The RAM 202 functions as main memory, work
area, and so forth for the CPU 201. A keyboard controller
(KBC) 205 controls key input from a keyboard 209 or a
pointing device which is omitted from illustration. A cathode
ray tube (CRT) controller (CRTC) 206 controls display on a
CRT display 210. A disk controller (DKC) 207 controls data

US 9,521,144 B2
5

access of external memory 211 such as the HD storing
various types of data. A network controller (NC) performs
communication control processing with other devices con
nected over the WAN 100, LAN 101, or public circuit 102.
Note that in the following description, unless specifically
stated otherwise, the hardware subject is the CPU 201, and
the Software Subject is application programs installed in the
external memory 211.

FIG. 3 is a diagram illustrating the modular configuration
of the authorization server 200, resource server 300, and
terminal 400 according to the present embodiment. Note that
the authorization server 200, resource server 300, and ter
minal 400 are the same as illustrated in FIG. 2. The
authorization server 200 includes an authorization server
module 600 and an HTTP server module 610. The HTTP
server module 610 is a module for performing HTTP
communication with terminals 400 connecting thereto via
the WAN 100. The HTTP server module 610 is configured
So as to be capable of communication by secure socket layer
(SSL)/transport layer security (TLS), and has a function of
saving certificates (not illustrated). The present embodiment
is configured Such that endpoints, which accept later-de
scribed client registration requests, request authentication by
X.509 format certificate of the requestor. Next, the autho
rization server module 600 receives a request from a termi
nal 400 via the HTTP server module 610, processes the
request and responds. In the present embodiment, in the
event that the HTTP server module 610 accepts a client
registration request and Succeeds in authenticating the
requestor, the HTTP server module 610 notifies the autho
rization server module 600 of the certificate received from
the client.

The resource server 300 illustrated in FIG. 3 includes a
resource server module 700 and an HTTP server module
710. The HTTP server module 710 has the same functions
as the HTTP server module 610. The resource server module
700 receives requests from terminals 400 via the HTTP
server module 710, processes the requests, and responds.
The terminal 400 in FIG. 3 includes an application

managing module 810, a Web browser 820, and one or more
application modules 800. The application managing module
810 manages the life cycle of application modules 800 to be
managed which are running on the terminal 400. “Life
cycle” means the state of the application, including instal
lation, startup, quitting, and uninstalling. An example of the
application managing module 810 is Open Services Gate
way initiative (OSGi, a registered trademark) stipulated by
the OSGi alliance.

The application managing module 810 is an application
which runs in an application execution environment which
the terminal 400 provides. The life cycle of applications is
managed by the application managing module 810. The
application module 800 may be initially provided to the
terminal 400, or may be installed through the application
managing module 810 later. The Web browser 820 is a user
agent which is provided to the terminal 400 using the
WWW. The application module 800 also has an X.509
certificate and the secret key thereof to certify itself. Thus,
the HTTP server module 610 can certify that a request from
the application module 800 in communication therewith is a
request from an application module, by using the X.509
certificate and the secret key at the time of establishing
communication.

FIGS. 4A through 4D are data tables stored in external
memory of the database server 500. The data tables are
configured so as to be communicated by the authorization

10

15

25

30

35

40

45

50

55

60

65

6
server 200 over the LAN 101. These data tables may be
configured in external memory of the authorization server
200 instead.

FIG. 4A illustrates a certificate management table 1200.
X.509 format certificates are used in the present embodi
ment. The certificate management table 1200 includes a
certificate serial No. 1201, certificate issuer 1202, a subject
1203, a start date 1204, an end data 1205, and a distin
guished name (DN) of a later-described tenant master user
that is correlated. FIG. 4B illustrates a client management
table 1300. The client management table 1300 includes a
client ID 1301, client secret 1302, tenant ID 1303, type
1304, DN 1305, client name 1306, and redirect URL 1307.
The authorization server 200 has a function of verifying the
set of the information in the client ID 1301 and client secret
1302, and generating authentication information if correct,
thereby authenticating clients. The client name 1306 and
redirect URL 1307 are values used in a later-described
sequence. The type 1304 stores data to identify whether or
not the client of this record is the master user of a tenant.

FIG. 4C illustrates a default authority management table
1400. The default authority management table 1400 includes
a tenant ID 1401 and default authority ID 1402. The tenant
ID 1401 and tenant ID 1303 of the client management table
1300 are configured so as to be mutually referenced. FIG.
4D illustrates a client authority table 1500. The client
authority table 1500 includes a client ID 1501 and authority
ID 1502. The client ID 1501 and the client ID 1301 of the
client management table 1300 are configured so as to be
mutually referenced. The authority ID 1502 stores the
authority ID set in the default authority ID 1402 of the
default authority management table 1400. Registration of
the authority ID to the authority ID 1502 will be described
later. The information illustrated in FIG. 4D is set by
authority associated with certificates being identified using
FIGS. 4A through 4C, based on the certificate received from
the client. That is to say, the authority differs depending on
the certificate which the client transmits. Note that the IDs
in the present embodiment are one form of identifiers, and
that other forms may be used. The term “client ID, for
example, means information by which a client can be
uniquely identified.

FIGS. 5A through 5D are data tables stored in external
memory of the database server 500 configured so as to be
communicable with the authorization server 200 via the
LAN 101. These data tables may be configured in the
external memory of the authorization server 200 instead.
FIG. 5A illustrates a scope table 1600. The term “scope'
here refers to an accessible range of resources which can be
referenced by an issued authorization token, which consti
tutes authorization information in the OAuth 2.0 authority
delegate protocol. The format of expressing the authoriza
tion information does not have to be an authorization token
(string of alphanumeric characters). The scope table 1600
includes a scope ID 1601, scope type 1602, description 1603
of the scope to be used in a later-described screen example,
and authority ID 1604. Two types of scopes are defined here
as the scope type 1602, owner scope and client scope. An
owner Scope indicates a resource access range of the author
ity delegate source (resource owner) in the later-described
OAuth 2.0 authority delegate flow. A client scope indicates
a resource access range of the authority delegate destination
(client) in the later-described OAuth 2.0 authority delegate
flow. While the increments of resource access range will be
described as being in increments of services in the first
embodiment, functions within the service may be further
broken down, or conversely, several services may be

US 9,521,144 B2
7

grouped together as a service group. The resource access
range which can be referenced by an authorization token
will be referred to as “authority”. Applications or services
can use functions such as authority delegate source services
or service groups by holding a certain authority.
The term “resource owner as used here differs depending

on the OAuth 2.0 flow. More specifically, in a case of an
authorization token acquisition flow by Authorization Code
Grant, the resource owner is the user. In a case of an
authorization token acquisition flow by Client Credentials
Grant, the resource owner is the client itself. The authority
ID 1604 in the scope table 1600 indicates the authority
necessary to access the scope which that scope ID indicates,
with which 0 or more authority IDs can be associated. In a
case where multiple authority IDs are associated therewith,
the resource indicated by the scope can be accessed by
having at least one authority of the multiple authority IDs.
If Zero authority IDs are associated, i.e., if not even one
authority ID is associated therewith, this means that anyone
can access the resource as long as a Subject authenticated
regarding this scope.

FIG. 5B illustrates a user management table 1700. The
user management table 1700 includes a user ID 1701,
password 1702, and tenant ID 1703. The authorization
server 200 has a function of verifying the set of the infor
mation in the user ID 1701 and password 1702, and gener
ating authentication information if correct, thereby authen
ticating users. FIG. 5C is a user authority table 1800. The
user authority table 1800 includes a user ID 1801 and
authority ID 1802. The user ID 1801 and the user ID 1701
of the user management table 1700 are configured so as to
be mutually referenced. While the user authority table 1800
and client authority table 1500 are described as separate
tables in the present embodiment, these may be managed as
a single table in the table column configuration. FIG. 5D
illustrates an authorization token management table 1900.
The authorization token management table 1900 includes an
authorization token ID 1901, token type 1902, expiration
date 1903, scope ID 1904, client ID 1905, and owner ID
1906. Details of processing regarding the authorization
token management table 1900 will be described later.
A sequence according to the present embodiment, relating

to client registration through resource acquisition at the
application module 800, will be described with reference to
FIG. 6. This sequence illustrates a flow of a user of a
terminal 400 using an application module 800 which is not
registered at the authorization server module 600. An
arrangement may be made wherein, for example, client
registration at the application module 800 of the terminal
400 only needs to be performed once, and thereafter can be
performed from an authorization token acquisition
Sequence.

First, description will be made regarding the client reg
istration sequence at the application module 800, with
reference to FIG. 6. In S1.1, the application module 800 of
the terminal 400 makes a client registration request to the
HTTP server module 610 of the authorization server 200, to
register the application module 800 of the usage source of a
resource server module 330. The resource server module
330 is not restricted to one and may be multiple, as described
above. Description will be made in the present embodiment
in which the trigger for the client registration request of the
application module 800 is the timing at which the user first
installs the application module 800 in the terminal 400 and
starts it up. Other conceivable triggers might include the
timing of the user selecting a function of the application
module 800, causing a resource request to the resource

10

15

25

30

35

40

45

50

55

60

65

8
server 300. Another is where the application module 800 has
an explicit start operation, and the user has performed this
operation at the terminal 400. Note that a client registration
request includes the client name, and a redirect URL to use
Authorization Code Grant. Other information which may be
included are a text string to describe the client, a URL of a
site which is described, and other like attached information.
The HTTP server module 610 which has received the

client registration request from the application module 800
starts SSL/TSL communication negotiation. At this time, the
application module 800 is requested to present a certificate,
since settings are configured such that client authentication
is to be requested for a client registration request. In S1.2,
the HTTP server module 610 uses a certificate set in a
certificate store omitted from illustration, to verify the
acquired certificate, and authenticate the application module
800 as the requestor for client registration. While authenti
cation of the requestor for the client registration request is
described here as being performed by certificate through
SSL/TLS in the present embodiment, other methods using
IDS and passwords may be used, such as Basic authentica
tion and Digest authentication. An arrangement may be
made where a mechanism to issue an authorization token to
an authenticated Subject for client registration, and accept
client registration by Verifying the authorization token,
having passed through a mechanism to authenticate these
subjects. In a case where authentication fails, the HTTP
server module 610 returns an error response to the applica
tion module 800.

In S1.3, after having authenticated the application module
800, the HTTP server module 610 notifies the authorization
server module 600 of the client registration request received
from the application module 800. The HTTP server module
610 also notifies the authorization server module 600 of
information to identify the authenticated application module
800 at this time. More specifically, the HTTP server module
610 notifies the authorization server module 600 of the
information of the acquired certificate. In S1.4, the autho
rization server module 600 obtains the information of the
certificate notified thereto by the HTTP server module 610.
In the following S1.5, the authorization server module 600
identifies the information in the certificate management table
1200 using the serial No., issuer, and subject in the acquired
certificate as a key, and acquires information of the tenant
master DN 1206. The start date 1204 and end date 1205 may
also be used as a valid period for verification. In a case
where there is no record in the certificate management table
1200, or verification of the valid period fails, the authori
zation server module 600 returns an error response to the
application module 800 via the HTTP server module 610.

Next, in S1.6 the authorization server module 600
acquires the tenant ID 1303 from the client management
table 1300 using the acquired tenant master DN 1206 as a
key. The authorization server module 600 then acquires the
default authority ID 1402 from the default authority man
agement table 1400, using the acquired tenant ID 1303 as a
key. There may be cases where multiple default authority
IDs 1402 are acquired. In a case where there is none
registered in the default authority management table 1400,
later-described registration to the client authority table 1500
is not performed. Accordingly, authority associated with the
authentication information which the application module
800 that is the client transmits, is granted to the application
module 800.

In S1.7, the authorization server module 600 newly reg
isters the client in the client management table 1300, based
on the acquired information. More specifically, the authori

US 9,521,144 B2

zation server module 600 issues a client ID and secret,
creates a DN, and stores these in the client ID 1301, client
secret 1302, and DN 1305. The authorization server module
600 also stores the acquired client name, redirect URL, and
tenant ID identified from the tenant master DN 1206, in the
client name 1306, redirect URL 1307, and tenant ID 1303.
The type 1304 is set to general at this time. In S1.8 the
authorization server module 600 stores the issued and reg
istered client ID and the default authority ID acquired form
the default authority management table 1400 in the client
authority table 1500. If multiple default authority IDs have
been acquired, multiple records will be stored.

After this registration has been completed, in S1.9 the
authorization server module 600 returns the issued client ID
and secret to the application module 800 via the HTTP
server module 610, thus ending the flow of client registra
tion. This sequence enables online registration of clients to
be performed such that the application module 800 is
identified, and appropriate authority is granted.

Next, authorization token acquisition through usage of the
authorization token to acquire a resource at the application
module 800 will be described with reference to FIG. 6. Note
that in FIG. 6, “Ref indicates a reference, meaning that this
will be described with reference to another drawing. “Alt”
indicates a branch, meaning that this is a branch according
to results upstream in the sequence.

In S1.10, the application module 800 starts authorization
token acquisition. The trigger for starting the authorization
token acquisition may be the timing at which the user starts
the application module 800 at the terminal 400. Another
conceivable trigger is where the application module 800 has
an explicit start operation, and the user has performed this
operation at the terminal 400. The authorization token
issuing processing is carried out following the flow defined
in OAuth 2.0. Cases of Authorization Code Grant and Client
Credentials Grant will be described in the present embodi
ment. A case of authorization token issuing processing
according to Authorization Code Grant will be described
later with reference to FIGS. 7 through 8C. A case of
authorization token issuing processing according to Client
Credentials Grant will be described later with reference to
FIG. 9. In S1.11, the application module 800 acquires an
authorization token by way of authorization token acquisi
tion flow. In S1.12, the application module 800 makes a
resource request to the resource server module 700 using the
acquired authorization token. The resource server module
700 then receives the request and transmits a response via
the HTTP server module 710 which is omitted from illus
tration in FIG. 6.

In S1.13, the resource server module 700 makes an
authorization token verification request to the authorization
server module 600. While description will be made here
regarding the communication between the resource server
module 700 and the authorization server module 600 being
carried out over the LAN 101 in the present embodiment, a
configuration may be made where this is carried out over the
WAN 100. In this case, communication is carried out
through the HTTP server modules 610 and 710. The autho
rization token verification processing performed when the
authorization token verification request is accepted at the
authorization server module 600 will be described later with
reference to FIG. 10.

In S1.14, the resource server module 700 receives an
authorization token verification response from the authori
zation server module 600. In the event that the verification
result is valid, in S1.15 resource acquisition processing is
performed. The acquired resource is then returned to the

10

15

25

30

35

40

45

50

55

60

65

10
application module 800 in S1.16, and the processing ends.
On the other hand, in a case where the authorization token
verification response result is invalid, an error response is
returned to the application module 800 n S1.17, and the
processing ends, thus ending the flow of authorization token
acquisition through resource acquisition using the authori
zation token at the application module 800.

Next, authorization token issuing processing in a case of
Authorization Code Grant in OAuth 2.0 will be described
with reference to FIGS. 7 through 8C. In S2.1, the applica
tion module 800 makes an authorization request to the
HTTP server module 610 via the Web browser 820. Note
that settings are made at the HTTP server module 610 so that
the endpoint accepting the authorization request is to request
user authorization, not client authorization. An authorization
request includes one or more scope IDs, including at least
client ID acquired as the result of client registration, regis
tered redirect URL, and at least one owner scope indicating
the intended resource range. The resource intended for
acquisition i.e., the authority which the application module
800 requests, differs depending on which function of the
application module 800 the user has selected. For example,
if the user has selected secure printing, this requires the
security function and the printing function which the
resource server provides, so the two authorities need to be
requested accordingly.

In S2.2, the HTTP server module 610 accepts the autho
rization request. In S2.3, the HTTP server module 610
returns a login screen, which is an authentication screen, to
the Web browser 820 so as to authenticate the user. FIG. 8A
is an example of a login screen 2000 which the HTTP server
module 610 returns. In the present embodiment, the user
inputs the user ID and password, and authentication is made
in a case where this set matches a set of information
registered in the user management table 1700. Note that user
authentication is not restricted to this arrangement, and other
ways of user authentication may be used, such as an X.509
certificate, multi-step authentication where passwords are
input multiple times, or the like. The login screen 2000
illustrated in FIG. 8A includes a user ID entry field 2001 to
input a user ID, a password entry field 2002 to input a
password, and a login button 2003 to execute the login
operation.

In S2.4, the user inputs necessary information in the login
screen 2000 illustrated in FIG. 8A which is displayed on the
Web browser 820, and presses the login button 2003. In
S2.5, the Web browser 820 transmits the input information
to the HTTP server module 610. In S2.6, the HTTP server
module 610 acquires the user ID and password, and verifies
these by comparing with the information set of user ID 1701
and password 1702 in the user management table 1700, thus
authenticating the user. In a case where the user authenti
cation fails, i.e., in a case where the acquired information is
not registered in the user management table 1700, the HTTP
server module 610 returns an authentication error screen,
omitted from illustration, to the Web browser 820. In a case
where user authentication is successful, the HTTP server
module 610 generates an authentication token. This authen
tication token is saved in nonvolatile memory of the HTTP
server module 610, correlated with the user ID. In S2.7, the
HTTP server module 610 notifies the authorization server
module 600 of the authorization request received from the
application module 800. This notification is made with the
generated authentication token attached.

In S2.8 the authorization server module 600 verifies
whether the set of client ID and redirect URL in the
authorization request which it has received is correct. Spe

US 9,521,144 B2
11

cifically, the authorization server module 600 verifies
whether the set of the client ID 1301 and the redirect URL
1307 registered in the client management table 1300 is
correct. In the case of a non-match, the authorization server
module 600 returns an error screen, omitted from illustra
tion, to the Web browser 820 via the HTTP server module
610. If matching, the authorization server module 600
acquires user information in S2.9. More specifically, the
authorization server module 600 acquires an associated user
ID from the HTTP server module 610, using the authenti
cation token notified thereto from the HTTP server module
610. The authority ID 1802 is then obtained from the user
authority table 1800 based on this user ID. The number of
authority IDs 1802 acquired here may be none, one, or
multiple. While an example has been described in the
present embodiment where user information acquisition is
performed by the authorization server module 600 acquiring
the user ID based on the authentication token and then
obtaining user information, but user information acquisition
is not restricted thusly. For example, an arrangement may be
made where necessary user information is notified from the
HTTP server module 610, or where necessary user infor
mation is acquired by handing the authentication token to
the HTTP server module 610.

In S2.10, the authorization server module 600 acquires, of
the scopes included in the authorization request, the author
ity ID 1604 for each owner scope from the scope table 1600
with the owner scope ID as a key. In S2.11 the authorization
server module 600 verifies whether the authority ID 1604 for
each owner Scope that has been acquired is included in the
authority ID 1802 acquired from the user authority table
1800. If there are multiple authority IDs 1604 associated to
the owner scope ID in the scope table 1600, the verification
is deemed to be valid if at least one of the multiple authority
IDs 1604 is set to the user. Of course, an arrangement may
be made where verification is deemed to be valid if all of the
multiple authority IDs 1604 are set to the user. What is
pertinent is that the requested authority is included in the
authority defined beforehand. In a case where authority ID
associated with the owner scope ID has not been set, a valid
result is given regardless of user authority. In a case where
an invalid result is given for one or more authority IDs of
owner Scopes included in the authorization request, in S2.28
the authorization server module 600 returns an authority
error to the Web browser 820. In S2.29, the Web browser
820 returns the authority error to the application module
800. More specifically, the authorization server module 600
makes a redirect response to the Web browser 820 so as to
redirect the Web browser 820 to the redirect URL acquired
in the authorization request. In S2.30, the application mod
ule 800 returns an authority error screen 2300 exemplarily
illustrated in FIG. 8C to the Web browser 820, and the flow
ends.

In a case where a valid result is given for all owner Scopes
included in the authorization request, the authorization
server module 600 returns an authorization confirmation
Screen 2100 to the Web browser 820 in S2.12. The autho
rization confirmation screen 2100 includes an access Source
display area 2101 which is an area to display the client name
1306 acquired from the client management table 1300, using
the client ID included in the authorization request as a key.
The authorization confirmation screen 2100 also includes a
Scope display area 2102 which is an area to display descrip
tion 1603 of the scope obtained from the scope table 1600
with the owner scope ID included in the authorization
request as a key. The authorization confirmation screen 2100
further includes a permit button 213 for the user to execute

10

15

25

30

35

40

45

50

55

60

65

12
authorization operation of contents of the information listed
above, and a decline button 2104 to decline execution. In a
case where the user presses the decline button 2104, the
authorization server module 600 returns an authority error to
the application module 800 in S2.28, in the same way as a
case where the result of owner authority verification is
invalid. Note that such authority error response may be of a
configuration of a screen to display on the application
module 800 receiving the response, or of a configuration
where the contents of the error response can be selected, to
change the expression.

In a case where the user has pressed the permit button
2103 on the authorization confirmation screen 2100 in
S2.13, i.e., has performed an authorization operation, the
authorization server module 600 is notified in S2.14 via the
Web browser 820 that permission has been granted. In S2.15
the authorization server module 600 issues an authorization
code. More specifically, the authorization server module 600
issues an authorization token ID, and registers the scope ID
and client ID included in the authorization request, and the
user ID of the user which has been authenticated and which
has granted permit, as the owner ID, in the authorization
token management table 1900. The token type 1902 at this
time is authorization code, and the date and time when this
authorization code will cease to be valid is registered in the
expiration date 1903. In S2.16 and S2.17 the authorization
server module 600 returns an authorization to the application
module 800 via the Web browser 820, with the authorization
token ID of the issued authorization code attached thereto.
More specifically, the authorization server module 600
makes a redirect response to the Web browser 820 so as to
redirect the Web browser 820 to the redirect URL acquired
in the authorization request.

In S2.18, the application module 800 requests the autho
rization server module 600 for an authorization token. This
authorization token request includes at least the acquired
authorization code, client ID, secret, and redirect URL
transmitted at the time of transmitting the authorization
request.

In S2.19 the authorization server module 600 authenti
cates the client by the set of client ID and secret that has been
obtained. More specifically, the authorization server module
600 authenticates the client by verifying whether or not the
obtained set of client ID and secret match the set of client ID
1301 and secret 1302 in the client management table 1300.
In a case where the client authentication fails, the authori
zation server module 600 returns an authentication error
response to the application module 800. If the client authen
tication is successful, in S2.20 the authorization server
module 600 verifies the obtained authorization code.
The authorization code verification involves whether the

authorization token ID of the acquired authorization code is
registered in the authorization token management table
1900, and if registered, whether within the range of the
expiration date. Further, the authorization server module 600
verifies whether the redirect URL acquired in the authori
zation token request matches the redirect URL 1307 regis
tered in the client management table 1300 with the client ID
1905 associated with the authorization token ID as a key. In
a case where the result of authorization code verification is
invalid, the authorization server module 600 returns a token
invalid error reply to the application module 800. In a case
where the result of authorization code verification is valid,
in S2.21 the authorization server module 600 acquires client
information. More specifically, the authorization server
module 600 acquires the authority ID 1502 from the client
authority table 1500 with the authenticated client ID as a

US 9,521,144 B2
13

key. At this time, the number of acquired authority IDs 1502
may be none, one or multiple.

In S2.22, the authorization server module 600 acquires the
scope ID 1904 from the authorization token management
table 1900, with the acquired authorization token ID of the
authorization code as a key. Next, the authorization server
module 600 acquires the authority ID 1604 of each client
scope from the scope table 1600, with the client scope ID of
the acquired scopes as a key. At this time, if no client scope
is included in the scope ID acquired from the authorization
token management table 1900, the client authority verifica
tion result is valid.

In S2.23, the authorization server module 600 verifies
whether the authority ID 1604 for each acquired client scope
is included in the authority ID 1502 acquired from the client
authority table 1500. In a case where there are multiple
authority ID, 1604 associated with the client scope ID in the
scope table 1600, if at least one authority ID of the multiple
authority IDs 1604 is set to the client, the result is deemed
to be valid. In a case where authority ID associated with the
client scope ID has not been set, a valid result is given
regardless of client authority. In a case where an invalid
result is given for one or more authority IDs of client scopes
associated with the authorization code, in S2.26 the autho
rization server module 600 returns an authority error to the
application module 800. In S2.27, the application module
800 returns the authority error screen 2300 illustrated in
FIG. 8C to the Web browser 820, and the processing ends.

In a case where a valid result is given for all client scopes
associated to the authorization code, in S2.24 the authori
zation server module 600 issues an authorization token.
More specifically, the authorization server module 600
issues an authorization token ID, and registers the scope ID
associated to the authorization code, owner ID, and authen
ticated client ID. in the authorization token management
table 1900. At this time, the token type 1902 is set to
authorization token, and the date and time at which the
authorization token expires is registered in the expiration
date 1903. In S2.24 the authorization server module 600
returns the authorization token ID of the authorization token
that has been issued to the application module 800, and the
processing ends. An arrangement may be made where the
expiration date of the authorization token is returned as well.
An example of not issuing a refresh token to update the
authorization token has been described in the present
embodiment, but an arrangement may be made where the ID
and expiration date of refresh tokens are managed at the
authorization token management table 1900. At this time, a
configuration may be made where a refresh token is issue at
the same time as issuing the authorization token, and return
ing the ID of the issued refresh token when returning the
authorization token.

Description will now be made regarding authorization
token issuing processing in the case of Client Credentials
Grant in OAuth 2.0, with reference to FIG. 9. In S3.1 the
application module 800 requests the authorization server
module 600 for an authorization token. This authorization
token request includes at least client ID, secret, and at least
one owner Scope indicating resource range intended for
acquisition or range of service to be used.

In S3.2, the authorization server module 600 authenticates
the client using the set of client ID and secret that has been
acquired. More specifically, the authorization server module
600 performs this authentication by verifying whether the
set of client ID and secret match the set of client ID 1301 and
secret 1302 in the client management table 1300. In a case
of failing client authentication here, the authorization server

10

15

25

30

35

40

45

50

55

60

65

14
module 600 returns an authentication error to the application
module 800. If client authentication is successful, in S3.3 the
authorization server module 600 acquires client information.
More specifically, the authorization server module 600
acquires the authority ID 1502 from the client authority table
1500 with the authenticated client ID as a key. The number
of authority IDs 1502 may be none, one, or multiple.

In S3.4, the authorization server module 600 acquires, of
the scopes included in the authorization token request, the
authority ID 1604 for each owner scope from the scope table
1600 with the owner scope ID as a key. In S3.5 the
authorization server module 600 verifies whether the author
ity ID 1604 for each owner scope that has been acquired is
included in the authority ID 1502 acquired from the client
authority table 1500. At this time, if there are multiple
authority IDs 1604 associated with the owner scope ID in the
scope table 1600, the result is deemed to be valid if at least
one authority ID of the multiple authority IDs 1604 is set to
the client. If no authority ID associated to the owner scope
ID is set, the result is deemed to be valid regardless of client
authority.

In a case where the result is valid for all owner scopes
included in the authorization token request, the flow
advances to S3.6. In S3.6, the authorization server module
600 acquires the authority ID 1604 of each client scope from
the scope table 1600, with the client scope ID of the scopes
included in the authorization token request as a key. At this
time, if no client scope is included in the scope IDs in the
authorization token request, the result of client authority
verification is valid. The authorization server module 600
then verifies in S3.7 whether the acquired authority ID 1604
for each client scope is included in the authority ID 1502
acquired from the client authority table 1500. At this time,
if there are multiple authority IDs 1604 associated with the
client scope ID in the scope table 1600, the result is deemed
to be valid if at least one authority ID of the multiple
authority IDs 1604 is set to the client. If no authority ID
associated to the client scope ID is set, the result is deemed
to be valid regardless of client authority.

In a case where, the result of this verification is invalid for
one or more authority IDs of the owner scopes and client
Scopes included in the authorization token request, the flow
advances to S3.10. In S3.10, the authorization server module
600 returns an authority error reply to the application
module 800 and the processing ends. In a case where the
result is valid for all owner Scopes and client scopes included
in the authorization token request, in S3.8 the authorization
server module 600 issues an authorization token. More
specifically, the authorization server module 600 issues an
authorization token ID, and registers the scope ID included
in the authorization request, the client ID of the client which
has been authenticated, and the client ID as the ownerID, in
the authorization token management table 1900. The token
type 1902 at this time is authorization token, and the date
and time when this authorization code will cease to be valid
is registered in the expiration date 1903. In S3.9 the autho
rization server module 600 returns the authorization token
ID of the issued authorization token to the application
module 800, and ends the processing. A configuration may
also be made where the expiration date of the authorization
token is returned at this time as well.

Next, authorization token verification processing will be
described with reference to FIG. 10. FIG. 10 is a flowchart
illustrating the authorization token verification processing
executed at the authorization server module 600. In S4.1, the
authorization server module 600 is commissioned by the
resource server module 700 to verify an authorization token.

US 9,521,144 B2
15

This authorization token verification commissioning
includes the authorization token ID of the authorization
token to be verified, and one or more scope IDs. In S4.2, the
authorization server module 600 acquires the authorization
token ID and scope ID. Next, in S4.3 the authorization
server module 600 acquires information of the authorization
token based on the acquired authorization token ID. More
specifically, the authorization server module 600 acquires
the expiration date 1903 from the authorization token man
agement table 1900 with the authorization token ID and
“token type: authorization token as a key. In S4.4, the
authorization server module 600 verifies whether or not the
authorization token exists in the authorization token man
agement table 1900, and whether or not the authorization
token is yet unexpired. If the verification result is that the
authorization token does not exist, or does exist but has
expired, the authorization token is determined to be invalid,
so in S4.5 the authorization server module 600 returns a
token invalid error, and ends the processing. If the verifica
tion finds that the authorization token exists and is still valid,
the processing continues.

In S4.6 the authorization server module 600 obtains scope
information included in the verification commission. More
specifically, the authorization server module 600 acquires
the type 1602 and authority ID 1604 of each scope in the
scope table 1600 with the scope ID as the key. In S4.7,
whether one or more owner scope is included in the type
1602 of the one or multiple scopes acquired, is confirmed. If
none, the flow advances to S4.11. If there is one or more
included, in S4.8 the authorization server module 600
acquires owner information. More specifically, the authori
zation server module 600 acquires owner ID 1908 from the
authorization token management table 1900 with the autho
rization token ID as a key. The authorization server module
600 then acquires the authority ID 1502 and authority ID
1802 from the client authority table 1500 and user authority
table 1800 respectively, with the acquired owner ID as a key.
The number of authority IDs 1502 acquired here may be
none, one, or multiple.

Next, in S4.9 the authorization server module 600 per
forms authority verification of the owner scope acquired in
S4.6. More specifically, the authorization server module 600
acquires the authority ID 1604 of each owner scope from the
scope table 1600 with the owner scope ID acquired in S4.6
as a key. The authorization server module 600 then verifies
each authority ID 1604 of each owner scope that has been
acquired regarding whether included in the authority ID
1502 acquired in S4.8, or the authority ID 1802. At this time,
if there are multiple authority IDs 1604 associated with the
owner scope ID in the scope table 1600, the result is deemed
to be valid if at least one authority ID of the multiple
authority IDs 1604 is set to the owner. If no authority ID
associated to the owner scope ID is set, the result is deemed
to be valid regardless of client authority. In a case where the
result of verification is invalid for one or more authority ID,
in S4.10 the authorization server module 600 returns an
authority error response to the resource server module 700
and ends the processing. In a case where the verification
result is that all owner scopes acquired in S4.6 are valid, the
flow advances to S4.11.

In S4.11, the authorization server module 600 confirms
whether the one or multiple scope types 1602 acquired in
S4.6 include at least one client scope. If none, the flow
advances to S4.15. If there is one or more included, in S4.12
the authorization server module 600 acquires client infor
mation. More specifically, the authorization server module
600 acquires client ID 1907 from the authorization token

5

10

15

25

30

35

40

45

50

55

60

65

16
management table 1900 with the authorization token ID as
a key, and acquires the authority ID 1502 from the client
authority table 1500 with the acquired client ID as a key. The
number of authority IDs 1502 acquired here may be none,
one, or multiple.

Next, in S4.13, the authorization server module 600
authority verification of the client scope acquired in S4.6.
More specifically, the authorization server module 600
acquires the authority ID 1604 of each client scope from the
scope table 1600 with the client scope ID acquired in S4.6
as a key. The authorization server module 600 then verifies
each authority ID 1604 of each client scope that has been
acquired regarding whether included in the authority ID
1502 acquired in S4.12. At this time, if there are multiple
authority IDs 1604 associated with the client scope ID in the
scope table 1600, the result is deemed to be valid if at least
one authority ID of the multiple authority IDs 1604 is set to
the client. If no authority ID associated to the owner scope
ID is set, the result is deemed to be valid regardless of client
authority. In a case where the result of verification is invalid
for one or more authority ID, in S4.14 the authorization
server module 600 returns an authority error response to the
resource server module 700 and ends the processing.

In a case where the result of verification is valid for all
client scopes obtained in S4.6, the flow advances to S4.15.
In S4.15 the authorization server module 600 returns to the
resource server module 700 that the authority is valid as a
result of the authorization token validation processing, and
ends the processing. This sequence enables the resource
server module 700 to validate only accesses with proper
authority from the application module 800 to be validated,
and prevent accesses from unintended application modules
800 to be handled as authority errors.

According to the present embodiment, authority granted
to an application module 800 registered online can be
granted while identifying the application module 800. Thus,
usage of the resource server module 700 from an unintended
application module 800 can be prevented. For example, with
regard to a pay service of a resource server module 700, a
certificate enabling the pay services is assembled in the
application module 800 (pay application) which can use the
pay service beforehand, so only such application modules
800 can use the resource server module 700.

Second Embodiment

The client registration sequence described in FIG. 6
involved the authorization server module 600 side deciding
the authority ID set to the client. However, this processing
flow may result in a situation where client registration is
successful, but thereafter authority errors occur at the time
of making an authorization token issue request. In this case,
the client registration process is useless. On the other hand,
the client knows the client scope ID specified for an autho
rization request or authorization token issue request.
Accordingly, an arrangement may be made where the client
Scope to be used is requested at the time of client registra
tion, and if authority is insufficient, a registration error is
returned at that point. Thus, useless client registration can be
avoided.
A second embodiment which deals with this will be

described with reference to FIGS. 11 and 12. Note that the
second embodiment is no different from the first embodi
ment except for the client registration sequence in FIG. 6. So
description of the same portions will be omitted. Steps
which are the same as those in FIG. 6 will also be denoted
by the same numerals and description will be omitted.

US 9,521,144 B2
17

FIG. 11 illustrates the client registration sequence accord
ing to the second embodiment. In S5.1, the application
module 800 of the terminal 400 makes a client registration
request to the HTTP server module 610 of the authorization
server 200. Note that the trigger for the client registration
request of the application module 800 is the timing at which
the user first installs the application module 800 in the
terminal 400 and starts it up. Other conceivable triggers
include the timing of the user selecting a function of the
application module 800, causing a resource request to the
resource server 300. Another is where the application mod
ule 800 has an explicit start operation, and the user has
performed this operation at the terminal 400. Note that a
client registration request includes the client name, a redirect
URL to use Authorization Code Grant, and client scope ID
to specify at the time of an authorization request or autho
rization token request. Other information which may be
included are a text string to describe the client, a URL of a
site which is described, and other like attached information.

Next, description of the client authentication processing
S1.2 at the HTTP server module 610 upon having accepted
the client registration request from the application module
800 will be omitted. In S5.2, after having authenticated the
application module 800, the HTTP server module 610
notifies the authorization server module 600 of the client
registration request received from the application module
800. At this time, the HTTP server module 610 also notifies
the authorization server module 600 of information to iden
tify the authenticated application module 800. More specifi
cally, the HTTP server module 610 notifies the authorization
server module 600 of information of the acquired certificate.
After S1.4, S1.5, and S1.6, the authorization server module
600 acquires the default authority ID 1402. Details are as
described earlier.

Next, in S5.3 the authorization server module 600 starts
registration authority verification. This registration authority
verification will be described with reference to FIG. 12. FIG.
12 is a flow of the registration authority verification pro
cessing at the authorization server module 600. In S6.1, the
authorization server module 600 accepts a registration
authority verification commission. Next, in S6.2, the autho
rization server module 600 acquires client scope information
regarding which the client registration request has been
received. More specifically, the authorization server module
600 acquires the authority ID 1604 from the scope table
1600 with the specified scope ID and "scope type: client
Scope as a key. In a case where no client scope is included
in the specified scope ID in S6.3, the flow advances to S6.4.
the default authority ID acquired in S1.6 due to the verifi
cation result being valid is returned, and the process ends. In
a case where a client scope is included in the specified scope
ID, the flow advances to S6.5.

In S6.5 the authorization server module 600 verifies
whether the authority ID 1604 of the acquired client scope
is included in the default authority ID acquired in S1.6. If
one or more authority IDs 1604 is not included in the default
authority ID, an authority error is returned in S6.6 and the
processing ends. In a case where all authority IDs 1604
acquired in S6.2 are included in the default authority ID, in
S6.7 the authorization server module 600 returns all author
ity IDs 1604 acquired in S6.2 since the verification result is
valid, and the processing ends.

Returning to FIG. 11, in S5.4 the authorization server
module 600 acquires the results of the registration authority
verification processing having ended. If the result is invalid,
in S5.6 a client registration error response is returned to the
application module 800. In a case where the registration

10

15

25

30

35

40

45

50

55

60

65

18
authority verification result is valid, in S1.7 the authorization
server module 600 newly registers the client. Details of the
processing are as described earlier. Next, in S5.5 the autho
rization server module 600 issues a client ID and secret, and
stores the registered client ID and authority ID obtained as
the result of the registration authority verification in the
client authority table 1500. In a case where multiple author
ity IDs have been acquired, multiple records will be stored.
After this registration has been completed, in S1.9 the
authorization server module 600 returns the issued client ID
and secret to the application module 800 via the HTTP
server module 610. This ends description of the client
registration according to the second embodiment.

According to the above-described processing, the autho
rization server module 600 accepts a request for a scope to
be used at the time of client registration, and if the authority
thereof is insufficient, and perform processing to return a
registration error at that point. Thus, useless client registra
tion can be avoided.

Other Embodiments

The embodiments of the present invention have been
described by way of examples of pay services, free services,
pay applications, and free applications. However, services
and applications are not necessarily restricted to these. Any
sort of services and applications may be used, as long an
application registration protocol can be restricted in author
ity delegate processing so that a particular application does
not unnecessarily access a particular service.

Also, the embodiments of the present invention have been
described with regard to a method of authority delegate in
processing between an application in a terminal and a
service on the Internet. However, this is not restricted to
applications in terminals, and may also be applied to server
type services connected over the Internet. Accordingly, in
the present embodiment, Subject of the Source of coordina
tion is called “service'.
The present invention is realized by executing the fol

lowing processing. Software (program) realizing the func
tions of the above-described embodiments is supplied to a
system or device via network or various types of storage
media, and a computer (or CPU or MPU) of the system or
device reads and executes the program.

Other Embodiments

Embodiments of the present invention can also be realized
by a computer of a system or apparatus that reads out and
executes computer executable instructions recorded on a
storage medium (e.g., non-transitory computer-readable
storage medium) to perform the functions of one or more of
the above-described embodiment(s) of the present invention,
and by a method performed by the computer of the system
or apparatus by, for example, reading out and executing the
computer executable instructions from the storage medium
to perform the functions of one or more of the above
described embodiment(s). The computer may comprise one
or more of a central processing unit (CPU), micro processing
unit (MPU), or other circuitry, and may include a network of
separate computers or separate computer processors. The
computer executable instructions may be provided to the
computer, for example, from a network or the storage
medium. The storage medium may include, for example, one
or more of a hard disk, a random-access memory (RAM), a
read only memory (ROM), a storage of distributed comput
ing systems, an optical disk (such as a compact disc (CD),

US 9,521,144 B2
19

digital versatile disc (DVD), or Blu-ray Disc (BD)TM), a
flash memory device, a memory card, and the like.

While the present invention has been described with
reference to exemplary embodiments, it is to be understood
that the invention is not limited to the disclosed exemplary
embodiments. The scope of the following claims is to be
accorded the broadest interpretation so as to encompass all
Such modifications and equivalent structures and functions.

This application claims the benefit of Japanese Patent
Application No. 2013-130857, filed Jun. 21, 2013, which is
hereby incorporated by reference herein in its entirety.

What is claimed is:
1. An authority delegate system, including a provider

server system which provides a service to a device having an
application, and an authorization server system which per
forms authorization processing to delegate user authority in
the service to a usage source of the service, the authority
delegate system comprising:

at least one processor coupled to a memory;
a management unit of the authorization server system

configured to receive a request from the device to
register the application as the usage source of the
service, to identify authority of the application in
accordance with the received request, and to manage, in
an associated manner, an identifier of the application
and the identified authority; and

a providing unit of the provider server system configured
to provide the service in a case where

(i) an authorization operation has been performed to
permit delegating the user authority to the application
that will be transmitting a request to use the service,
and

(ii) the management unit issues an authorization code to
the application in response to permitting delegating the
user authority to the application, and

(iii) the issued authorization code is received by the
providing unit from the application, wherein a scope
identification (ID) is acquired based on the authoriza
tion code, and

(iv) a range authorization ID, identified by the acquired
Scope ID, is included in range authorization IDs set in
the application,

wherein the management unit and the providing unit are
implemented by the at least one processor.

2. The authority delegate system according to claim 1,
wherein the management unit receives authentication infor
mation of the application along with the request to register
the application as the usage source, and identifies the author
ity of the application based on the received authentication
information.

3. The authority delegate system according to claim 1,
wherein an authentication screen is provided to input

authentication information of the user, and the authority
of the user is identified based on the authentication
information input by way of the authentication screen,
and

wherein the providing unit provides the service in a
further case where the authority which the application
uses is included within the identified authority of the
USC.

4. The authority delegate system according to claim 3,
wherein, in a case where the authorization operation to

permit delegating the user authority to the application
transmitting a request to use the service has not been
performed, an error response is transmitted,

10

15

25

30

35

40

45

50

55

60

65

20
wherein, in a case where an authority which the applica

tion uses is not included in authorities associated with
the identifier of the application, an error response is
transmitted, or

wherein, in a case where the authority which the appli
cation uses is not included within the identified author
ity of the user, an error response is transmitted.

5. The authority delegate system according to claim 1,
wherein the management unit receives information of the

authority which the application uses and authentication
information of the application along with the request to
register the application as the usage source,

wherein, in a case where the authority that the application
uses is included within the authority of the application
identified based on the authentication information of
the application, the management unit manages the
identified authority and the identifier of the application
in an associated manner, and

wherein, in a case where the authority that the application
uses is not included within the authority of the appli
cation identified based on the authentication informa
tion of the application, the management unit does not
register the application but instead transmits an error
response.

6. The authority delegate system according to claim 1,
wherein the identified authority of the application differs
depending on a certificate that the application transmits.

7. The authority delegate system according to claim 1,
wherein, in response to a user installing and then starting the
application in the device, the management unit receives the
request from the device to register the application as the
usage source of the service.

8. The authority delegate system according to claim 1,
wherein, authority associated with the authentication infor
mation which the application transmits, is granted by the
management unit of the authorization server system to the
application module.

9. The authority delegate system according to claim 8.
wherein the management unit obtains a tenant master dis
tinguished name (DN) based on the authentication informa
tion and uses the tenant master DN to obtain a tenant
identification (ID), wherein the management unit uses the
tenant ID to obtain the authority associated with the authen
tication information.

10. The authority delegate system according to claim 1,
wherein the device is at least one of a Smartphone, a portable
terminal, and an image formation apparatus.

11. The authority delegate system according to claim 1,
wherein the authorization server system is configured to be
in communication with a database server and the authori
Zation server, the provider server system, and database
server are configured on the same server.

12. A control method to control an authority delegate
system, including a provider server system which provides
a service to a device having an application, and an autho
rization server system which performs authorization pro
cessing to delegate user authority in the service to a usage
Source of the service, the control method comprising:

in a management unit of the authorization server system,
receiving a request from the device to register the
application as the usage source of the service, identi
fying authority of the application in accordance with
the received request, and managing, in an associated
manner, an identifier of the application and the identi
fied authority; and

providing, via a providing unit of the provider server
system, the service in a case where

US 9,521,144 B2
21

(i) an authorization operation has been performed to
permit delegating the user authority to the application
that will be transmitting a request to use the service,
and

(ii) the management unit issues an authorization code to
the application in response to permitting delegating the
user authority to the application, and

(iii) the issued authorization code is received by the
providing unit from the application, wherein a scope
identification (ID) is acquired based on the authoriza
tion code, and

(iv) a range authorization ID, identified by the acquired
Scope ID, is included in range authorization IDs set in
the application.

13. A non-transitory computer-readable storage medium
storing a program to cause an authority delegate system to
perform a control method, wherein the authority delegate
system includes a provider server system which provides a
service to a device having an application, and an authori
Zation server system which performs authorization process
ing to delegate user authority in the service to a usage source
of the service, the control method comprising:

in a management unit of the authorization server system,
receiving a request from the device to register the

10

15

22
application as the usage source of the service, identi
fying authority of the application in accordance with
the received request, and managing, in an associated
manner, an identifier of the application and the identi
fied authority; and

providing, via a providing unit of the provider server
system, the service in a case where

(i) an authorization operation has been performed to
permit delegating the user authority to the application
that will be transmitting a request to use the service,
and

(ii) the management unit issues an authorization code to
the application in response to permitting delegating the
user authority to the application, and

(iii) the issued authorization code is received by the
providing unit from the application, wherein a scope
identification (ID) is acquired based on the authoriza
tion code, and

(iv) a range authorization ID, identified by the acquired
Scope ID, is included in range authorization IDs set in
the application.

