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PROCESSING UNKNOWN RADAR 
EMITTERS 

BACKGROUND 

As is known in the art, radar warning systems can receive 
signals transmitted by a threat (victim) radar and attempt to 
identify the emitter. The proliferation of digitally program 
mable radar and communication hardware has resulted in an 
increasing number of threat emitters that are not known, e.g., 
contained in a library of known emitters of an electronic 
attack system. Typically, a radar warning system character 
izes a received signal and looks up in a table to determine an 
appropriate electronic attack response, for example. If the 
received signal is from an unknown emitter, potential threats 
may not be detected and will not be thwarted. This can result 
in an unsuccessful military mission and/or can harm lives. 

SUMMARY 

Embodiments of the invention provide methods and appa 
ratus to provide electronic situation awareness with the 
ability to learn unknown emitters and determine intent of the 
unknown emitter. In embodiments, a system hierarchically 
builds threat radar models based on features of observed 
pulse sequences, which are referred as observations, with the 
assumption that each radar has its own language. Based on 
this, tools developed for natural language processing for 
e.g., automatic speech recognition are used to learn and 
characterize behavior of unknown threat emitters. Analo 
gous to speech, the radar language comprises pulse 
sequences, which are analogous to speech phonemes, i.e., 
units of Sound in human speech, waveform sequences— 
combination of pulse sequences, which are analogous to 
words in human speech, i.e., combinations of phonemes, and 
phrases—sequence of words, which are analogous to 
phrases in human speech, and States, which are analogous to 
a sentence in human speech. 
The tools developed for natural language processing are 

based on formal language theory, which uses the concept of 
finite state machines (FSMs) and different operators that can 
be operated on different types of finite state machines. The 
types of finite state machines for example, are finite State 
automaton (FSA) and finite state transducer (FST). 
Examples of operators that can be operated on these are: 
union, concatenation, minimize, etc. Starting from a simple 
finite state machine, highly complex finite state machines 
can be built hierarchically by applying different operators. 
An example of this for speech is shown in FIG. 20. A system 
starting with a finite state machine of pulses and channel, 
builds (learns) the complex finite state machine of a threat 
radar hierarchically by applying those operators mentioned 
above as shown in FIGS. 13-17, for example. The weights— 
probability of being in a state and state transition probabili 
ties of the finite State machine are learned using the Expec 
tation-Maximization processing, for example. The system 
estimates the state or radar mode from the observed pulse 
sequences by using the learned radar threat models. In one 
embodiment, Viterbi decoding is used for this. The state 
identification is used in estimating the intent of the emitting 
radar. 

Based on the current estimated State, the next state is 
predicted, which provides the ability to proactively deter 
mine what actions may be taken based on how the threat 
emitter may respond. For this prediction, in one embodi 
ment, maximum likelihood processing is used. When the 
features of the observed pulse sequences do not match any 
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2 
of the threat models, the system learns the unknown pulse 
sequence using the above-described hierarchical approach. 

In illustrative embodiments, a reasoning engine can deter 
mine emitter intent by unsupervised learning of emitting 
threat radar behavior. Radar behavior models can be auto 
matically generated using machine learning techniques 
based on finite state automaton/transducer and computation 
ally efficient formal language operations which are part of 
the tools developed for natural language processing. 
Unknown radar behavior or unknown threats can be learned 
in real time using relatively few observation samples. An 
integrated de-interleaver, track parsing and reasoning mod 
ule can determine the intent of multiple threats present at the 
same time. 

In one aspect of the invention, a method comprises: 
receiving radar pulses; processing the received pulses using 
weighted finite state automata to learn a model of an 
unknown emitter generating the received radar pulses; and 
estimating a state/function of the unknown emitter based on 
the received radar pulses using the learned model. 
The method can further include one or more of the 

following features: determining weights for the weighted 
finite state automation using expectation-maximization pro 
cessing, estimating a mode of the unknown emitter as search 
or track from the received pulses, predicting a next state for 
the unknown emitter from a current estimated state of the 
unknown emitter, interleaving the received pulses based on 
adaptive stochastic weights, performing parsing, tracking 
and association of emitters, automatically building finite 
state machines using FSTs, using tools developed for human 
speech recognition/text processing to process the received 
pulses where a radar language comprises pulse sequences, 
which are analogous to speech phonemes, waveform 
sequences, which are analogous to words in human speech, 
and phrases, which are analogous to phrases in human 
speech, and States, which are analogous to a sentence in 
human speech, and/or estimating a state/function of the 
unknown emitter from combinations of the received pulses. 

In another aspect of the invention, an article comprises: a 
non-transitory computer readable medium having stored 
instructions that enable a machine to: receive radar pulses; 
process the received pulses using weighted finite State 
machine to learn a model of an unknown emitter generating 
the received radar pulses; and estimate a state/function of the 
unknown emitter based on the received radar pulses using 
the learned model. 
The article can further include one or more of the fol 

lowing features: instructions to determine weights for the 
weighted finite state machine using expectation-maximiza 
tion processing, instructions to estimate a mode of the 
unknown emitter as search or track from the received pulses, 
instructions to predict a next state for the unknown emitter 
from a current estimated State of the unknown emitter, 
instructions to interleave the received pulses based on adap 
tive stochastic weights, instructions to perform parsing, 
tracking and association of emitters, instructions to auto 
matically build finite state machines using FSTs, instructions 
to use tools applied for human speech recognition/text 
processing to process the received pulses where a radar 
language comprises pulse sequences, which are analogous to 
speech phonemes, waveform sequences, which are analo 
gous to words in human speech, and phrases, which are 
analogous to phrases in human speech, and states, which are 
analogous to a sentence in human speech, and/or instruc 
tions to estimate a state/function of the unknown emitter 
from combinations of the received pulses. 
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In a further aspect of the invention, a system comprises: 
a memory; and a processor coupled to the memory, the 
processor and the memory configured to: process received 
radar pulses using weighted finite state machine to learn a 
model of an unknown emitter generating the received radar 5 
pulses; and estimate a state/function of the unknown emitter 
based on the received radar pulses using the learned model. 

The system can further include the processor and memory 
further configured to include one or more of the following 
features: determine weights for the weighted finite state 10 
machine using expectation-maximization processing, esti 
mate a mode of the unknown emitter as search or track from 
the received pulses, predict a next state for the unknown 
emitter from a current estimated state of the unknown 
emitter, interleave the received pulses based on adaptive 15 
stochastic weights, perform parsing, tracking and associa 
tion of emitters, automatically build finite state machines 
using FSTs, use tools developed for human speech recog 
nition/text processing to process the received pulses where 
a radar language comprises pulse sequences, which are 20 
analogous to speech phonemes, waveform sequences, which 
are analogous to words in human speech, and phrases, which 
are analogous to phrases in human speech, and states, which 
are analogous to a sentence in human speech, and/or instruc 
tions to estimate a state/function of the unknown emitter 25 
from combinations of the received pulses. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing features of this invention, as well as the 30 
invention itself, may be more fully understood from the 
following description of the drawings in which: 

FIG. 1 is a representation of a finite state model of a 
multi-function radar; 

FIG. 2 is a representation of illustrative grammar of the 35 
multi-function radar of FIG. 1; 

FIG. 3 is a schematic representation of a cognitive elec 
tronic situational awareness system; 

FIG. 4 is a graphical representation of illustrative learned 
distributions of observations from different threats; 40 

FIG. 5 is a cluster plot of first and second parameters of 
the observations from six threats; 

FIG. 6 is a flow diagram for ES reasoning with speech 
processing analogs; 

FIG. 7 is a schematic representation of an ES system; 45 
FIG. 8 is a simplified finite state machine example of a 

radar model with search and acquisition states; 
FIGS. 9A and 9B show a phrase to word FST generated 

from search and phrase to word FSTs; 
FIGS. 10A and 10B show a radar State to word FST 50 

generated from composition of a radar mode FSM and a 
phrase to word FST: 

FIG. 10C shows a state to observation transducer gener 
ated from the radar State to word FST of FIGS. 10A and 10B 
and a channel model; 55 

FIG. 11 shows a state estimation/prediction example via 
composition with an observation vector; 

FIG. 12 is a radar mode model represented by a weighted 
finite state transducer, 

FIGS. 13A and 13B show generation of a search phrase 60 
from word FST: 

FIGS. 14A and 14B show generation of an acquisition 
phrase from word FST: 

FIGS. 15A and 15B show a track maintenance track 
phrase from word FST: 65 

FIG. 16 shows a phrase to word FST: 
FIG. 17 shows a state to word FST: 

4 
FIG. 18 shows a channel model; 
FIG. 19 shows generation of a decoded observation to 

state model; 
FIG. 20 shows application of finite state machine opera 

tions for speech recognition; and 
FIG. 21 is an illustrative representation of a computer that 

can perform at least a portion of the processing described 
herein. 

DETAILED DESCRIPTION 

FIG. 1 shows an illustrative finite state machine model for 
a multi-function radar having a search mode 10, an acqui 
sition mode 12, a non-adaptive track mode 14, a range 
resolution mode 16, and a track maintenance mode 18. As 
can be seen, the various states can transition from one to 
another. Finite state machine (FSM) models for radars can 
be automatically generated using tools developed for natural 
language processing, as described more fully below. 
As is known in the art, human speech received as acoustic 

signals can be broken into a hierarchy of phonemes, words, 
phrases, and sentences, each of which imposes constraints. 
Hidden Markov Models (HMMs) are used for processing a 
speech signal since human speech production can be con 
sidered as a doubly stochastic process and quasi-stationary 
or short-time stationary signal. A HMM is a doubly stochas 
tic Markov model in which the system being modeled is 
assumed to be a Markov process with unobserved (hidden) 
states. In Markov models the state is directly visible to the 
observer so that the state transition probabilities are the only 
parameters to be learned. In a hidden Markov model, the 
state is not directly visible, but the output that may have 
produced by a state, is visible. The output, which can be 
observed, provides information on the possible sequence of 
states. In the context of embodiments of the invention, the 
received pulses can be observed and processed to estimate 
the states of emitters. 

FIG. 2 shows illustrative grammar for the multi-function 
radar of FIG. 1 having states, phrases, words, and pulse 
sequences. As can be seen, states includes search 20, acqui 
sition (ACQ) 22, non-adaptive track (NAT) 24, range reso 
lution (RR) 26, and track maintenance (TM) 28. The search 
state 20 includes a phrase 30 for search mode and phrase32 
for acquisition mode. As can be seen, the search State 20 can 
remain in the search state or transition to the acquisition state 
22. Similarly, the ACQ 22, NAT 24, RR 26 and TM28 states 
have phrases associated with them and the other states that 
they can transition to. 
From FIGS. 2, 13 and 15, it can be seen that different 

combination of words (i.e. phrases) are associated with 
different modes/functions of a radar. For example, a search 
phrase can include either a 4 or 3 word combinations such 
as W1, W2, W4, W5 and W1, W3, W5, W1, respectively. 
Finite state machines associated with these phrases can be 
built using finite state machine operations as illustrated in 
FIG.s. in 13 and 15. The observable features of pulse 
sequences correspond to one of the words that a radar uses 
in its “language.” For the radar shown in FIG. 1, it corre 
sponds to w1, w2, w8, wa, wis, w8, w7, w8, w9. These are 
the building blocks that are used in learning the complex 
radar finite state machine hierarchically. 

FIG. 3 shows an illustrative cognitive electronic situation 
(ES) system 300. A series of intercepted pulses 302 are 
received and processed by an interleaver module 304. Illus 
trative pulse parameters include dwell length, frequency, 
pulse width, angle of arrival, pulse repetition interval, Scan 
rate, received energy, etc. In one embodiment, an adaptive 
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statistical weights clustering interleaver module includes a 
configuration module 304a and an adaptive weight process 
ing module 304b. The output of the interleaver 304 includes 
groups of pulses with a weighted relationship between 
parameters. Clustering of received pulses is well known in 
the art. A novel technique is used herein which learns the 
adaptive weights or the distribution function from the data to 
cluster received pulses. 
The system 300 includes a model learning module 306 

that receives an output from the interleaver module 304. In 
one embodiment, finite state machine (FSM) and Hidden 
Markov Mode (HMM) processing is used to generate new 
models for unknown emitters. The new models can be stored 
in a model library 308 for later use. A reasoning module 310 
receives inputs from the library 308 and the interleaver 
module 304 and outputs a set of most likely emitters and 
most likely states, as described more fully below. The 
reasoning module 310 also provides unknowns to the inter 
leaver 304. 

In one embodiment, a kernel distribution provides a 
nonparametric and data dependent representation of the 
probability density function (pdf). Kernel distribution is 
used when a parametric distribution cannot properly 
describe the data. This distribution is defined by a smoothing 
function and a bandwidth, which controls the smoothness of 
the resulting density curve. The kernel density estimator can 
be defined as: 

where n is the sample size, K is the kernel Smoothing 
function, his the bandwidth. The smoothing function defines 
the shape of the curve used to generate the pdf. A Bayesian 
decision can be made by computing a posterior probability 
aS 

where h is a cluster id., X is the new test data. p(x) can be 
approximated as: 

A cluster ID can be assigned with the highest posterior 
probability p(hlx). 
An illustrative embodiment was simulated with six threat 

emitters with feature vectors for the pulses that include 
{PRI, ERP, Frequency, PW, AOA, IMOP. In the simula 
tion, these features were varied randomly. Fifty sample 
points were considered to learn the Kernel based distribution 
function. Performance was tested using twenty-five new set 
of sample points. 

FIGS. 4A-F show example learned distributions for each 
of the six features {PRI, ERP, Frequency, PW, AOA, IMOP} 
for a first threat. FIG. 5 shows a cluster plot for an amplitude 
feature versus a PRI feature. As can be seen, clusters 1-6 are 
found illustrating processing is able to group the features 
associated with different emitters. These clusters are then 
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6 
used to track and separate multiple emitters present at the 
same time. From the cluster ids and the features within a 
cluster, words, phrases and radar finite state machines are 
built hierarchically. 

FIG. 6 shows an illustrative hierarchical radar model 600 
with speech recognition analogues for ES intent recognition. 
Radar mode scheduling 602 includes various states followed 
by a phrase model 604, followed by a word model 606, 
followed by a channel model 608 generating pulses that are 
observable. The radar modes include States such as search, 
acquisition and track. The phrase model 604 has a waveform 
sequence with a grammar analog in speech processing. A 
pulse sequence of the word model 606 has an analog of 
speech phonemes. 
As is known in the art, automatic speech recognition 

(ASR) approaches include weighted finite state transducers 
(WFST) that have a common framework with shared pro 
cessing for hierarchical representation and processing. The 
AT&T FSM library facilitates tools available for different 
operators to be operated on finite state automaton and 
transducer in generating complex FSMs/HMMs. These tools 
comprise approximately 30 operations. HMMs have been 
Successfully used in real-time speech recognition and most 
commercially available speech recognition systems are 
based on this technology. 

FIG. 7 shows an illustrative ES reasoning engine 700 in 
simulation. The left hand side of the figure “HMM Radar 
Model is used to simulate data for the purposes of learning 
and verifying the performance. This HMM radar model 702 
includes a radar mode FSM 704 with a simulated state 
sequence received by a phrase model 706 that outputs a 
simulated word sequence. A current channel model 708 
includes a word model 710, a channel model 712, a de 
interleaver module 714, and a pulse processing module 716. 
The current channel model 708 outputs a simulated received 
word sequence from the radar model 702. These simulated 
word sequences are used in “Model Learning upper part of 
left hand side of FIG. 7. For learning these are input to 
Expectation maximization HMM parameter estimation 720. 
The output is learned HMM model which includes radar 
mode FSM 726, phrase model 728 and channel model 730. 
The learned model and the estimated word sequence are 
input to a state estimation/prediction 718. The output of 718 
is an estimated State sequence. This is also input to perfor 
mance scoring 732 with the state sequence truth to verify 
how close the estimated/predicted state is to the truth. This 
helps in benchmarking the accuracy of state prediction/ 
estimation from the learned models. 

FIG. 8 shows an illustrative weighted finite state trans 
ducer (WFST) radar mode representation 800 having a 
search mode 802 and an acquisition mode 804 for a two 
state Finite State Machine. Each branch includes an input 
and an output and a negative log(probability). As can be 
seen, in the search mode 802, the mode can remain in search 
mode 802 or transition to the acquisition mode 804 with the 
listed probabilities, and similarly for the acquisition mode 
804. It is understood that additional states, such as track and 
range resolution can be readily added. 

FIGS. 9A and 9B show an illustrative phrase production 
model construction 900. A search phrase to word FST 902 
includes branches having an input, output, and probability 
for generating first and second words w1, w2. Similarly, an 
acquisition phrase to word FST 904 generates first and 
second words w1, w2. The two FSTs 902, 904 can be 
combined, such as by performing a union operation, to 
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generate a phrase to word FST 906, which can be minimized 
using minimize operation to form a minimized phrase to 
word FST 908. 

FIGS. 10A and 10B show a state-to-observation trans 
ducer construction using composition operator. Composition 
of the radar mode FSM 800 of FIG. 8 and the minimized 
phrase to word FST 908 of FIGS. 9A and 9B results in a 
radar State to word FST 1000. The radar State to word FST 
1000 can be combined with a channel model 1002 via 
composition operation to provide a state-to-observation FST 
1004 shown in FIG. 10C. 

FIG. 11 shows a state estimation/prediction 1100 example 
using composition with an observation vector having pre 
dicted future states appended. An observation vector FST 
1102 is composed with an observation-to-state FST to 
provide an output 1104, on which best path processing is 
performed to generate an output 1106. Output projection 
yields a state sequence 1108 having predicted States. 

FIG. 12 shows an illustrative learned radar model repre 
sented by a weighted radar mode FST 1200 for the radar of 
FIG. 1 having search mode 1202, an acquisition mode 1204, 
a non-adaptive track mode 1206, a range resolution mode 
1208, and a track maintenance mode 1210. As noted above, 
the branches having an input, output and log probability. In 
the illustrative FST, there is a uniformly distributed random 
initial state 1212. As can be seen, all states except the initial 
state 1212 can be final states. 

FIGS. 13A and 13B show composition of search phrase 
FSTs of FIG. 1. Composition is performed on a three word 
search 1300 and a four word search 1302 to generate a 
search phrase to word FST 1304. FIGS. 14A and 14B show 
the acquisition phrase 1400 composed with a quad word 
definition 1402 to provide an acquisition phrase to word FST 
1404. FIGS. 15A and 15B shows a track maintenance phrase 
1500 along with a three Word TM 1502 and a four Word TM 
1504. Composition generates a TM track phrase to word 
FST 1506. An illustrative MATLAB script 1508 shows the 
composition process. FIG. 16 shows a phrase to word FST 
1600 from a union of individual mode phrase FSTs. An 
illustrative script 1602 is shown to perform the process. FIG. 
17 shows a state to word FST 1700 from a composition of 
the state to phrase FST and phrase to word FST (1600). FIG. 
18 shows a channel model 1800 with a probability of 
observation/transmitted word. The model 1800 models the 
effects of receiver noise, e.g., receiver decision errors, and 
de-interleaver errors, as well as drop outs (phi). Composition 
of the state to word FST with the channel model 1800 yields 
state to observation information. Inversion yields mapping 
from observation to state FST. An illustrative MATLAB 
script 1802 is shown. 

FIG. 19 shows an illustrative overall MLE process of 
decoding states (uncovering State sequence) from observa 
tions. It starts with decoding phrases 1902 from the obser 
vations FST 1900 and ends with decoding states 1904 from 
the decoded phrases. The FST operations applied in this 
MLE process are shown 1902A and 1904A. 

FIG. 21 shows an exemplary computer 2100 that can 
perform at least part of the processing described herein. The 
computer 2100 includes a processor 2102, a volatile 
memory 2104, a non-volatile memory 2106 (e.g., hard disk), 
an output device 2107 and a graphical user interface (GUI) 
2108 (e.g., a mouse, a keyboard, a display, for example). The 
non-volatile memory 2106 stores computer instructions 
2112, an operating system 2116 and data 2118. In one 
example, the computer instructions 2112 are executed by the 
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8 
processor 2102 out of volatile memory 2104. In one embodi 
ment, an article 2120 comprises non-transitory computer 
readable instructions. 

Processing may be implemented in hardware, Software, or 
a combination of the two. Processing may be implemented 
in computer programs executed on programmable comput 
ers/machines that each includes a processor, a storage 
medium or other article of manufacture that is readable by 
the processor (including Volatile and non-volatile memory 
and/or storage elements), at least one input device, and one 
or more output devices. Program code may be applied to 
data entered using an input device to perform processing and 
to generate output information. 
The system can perform processing, at least in part, via a 

computer program product, (e.g., in a machine-readable 
storage device), for execution by, or to control the operation 
of data processing apparatus (e.g., a programmable proces 
Sor, a computer, or multiple computers). Each Such program 
may be implemented in a high level procedural or object 
oriented programming language to communicate with a 
computer system. However, the programs may be imple 
mented in assembly or machine language. The language may 
be a compiled or an interpreted language and it may be 
deployed in any form, including as a stand-alone program or 
as a module, component, Subroutine, or other unit Suitable 
for use in a computing environment. A computer program 
may be deployed to be executed on one computer or on 
multiple computers at one site or distributed across multiple 
sites and interconnected by a communication network. A 
computer program may be stored on a storage medium or 
device (e.g., CD-ROM, hard disk, or magnetic diskette) that 
is readable by a general or special purpose programmable 
computer for configuring and operating the computer when 
the storage medium or device is read by the computer. 
Processing may also be implemented as a machine-readable 
storage medium, configured with a computer program, 
where upon execution, instructions in the computer program 
cause the computer to operate. 

Processing may be performed by one or more program 
mable processors executing one or more computer programs 
to perform the functions of the system. All or part of the 
system may be implemented as, special purpose logic cir 
cuitry (e.g., an FPGA (field programmable gate array) and/or 
an ASIC (application-specific integrated circuit)). 
One skilled in the art will appreciate further features and 

advantages of the invention based on the above-described 
embodiments. Accordingly, the invention is not to be limited 
by what has been particularly shown and described, except 
as indicated by the appended claims. All publications and 
references cited herein are expressly incorporated herein by 
reference in their entirety. 
What is claimed is: 
1. A method, comprising: 
receiving radar pulses from an unknown radar emitter at 

an input of a radar warning system; 
processing the received pulses using a weighted finite 

state machine implemented in the radar warning system 
to learn a model of the unknown radar emitter, storing 
the learned model in memory on the radar warning 
system; 

estimating, using a computer processor on the radar 
warning system, a state/function of the unknown radar 
emitter based on the received radar pulses using the 
stored learned model; and 

automatically building finite state machines using finite 
state transducers based on instructions stored in the 
memory. 
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2. The method according to claim 1, further including 
determining weights for the weighted finite state machine 
using expectation-maximization processing. 

3. The method according to claim 1, further including 
estimating a mode of the unknown emitter as search or track 
from the received pulses. 

4. The method according to claim 1, further including 
predicting a next state for the unknown emitter from a 
current estimated State of the unknown emitter. 

5. The method according to claim 1, further including 
interleaving the received pulses based on adaptive stochastic 
weights. 

6. The method according to claim 1, further including 
performing parsing, tracking and association of emitters. 

7. The method according to claim 1, further including 
using human speech recognition/text processing to process 
the received pulses where a radar language comprises pulse 
sequences, which are analogous to speech phonemes, wave 
form sequences, which are analogous to words in human 
speech, and phrases, which are analogous to phrases in 
human speech, and States, which are analogous to a sentence 
in human speech. 

8. The method according to claim 7, further including 
estimating a state/function of the unknown emitter from 
combinations of the received pulses. 

9. An article, comprising: 
a non-transitory computer readable medium having 

instructions stored thereon Such that in response to the 
instructions executed by a processor, the processor 
performs steps which enable the processor to: 

receive radar pulses from an unknown radar emitter at an 
input of a radar warning system; 

process the received pulses using a weighted finite state 
machine implemented in the radar warning system to 
learn a model of the unknown radar emitter; 

store the learned model in memory on the radar warning 
system; 

estimate a state/function of the unknown radar emitter 
based on the received radar pulses using the stored 
learned model; and 

automatically build finite state machines using finite state 
transducers based on instructions stored in the memory. 

10. The article according to claim 9, wherein in response 
to the instructions executed by the processor, the processor 
further performs steps which enable the processor to deter 
mine weights for the weighted finite state machine using 
expectation-maximization processing. 

11. The article according to claim 9, wherein in response 
to the instructions executed by the processor, the processor 
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further performs steps which enable the processor to esti 
mate a mode of the unknown emitter as search or track from 
the received pulses. 

12. The article according to claim 9, wherein in response 
to the instructions executed by the processor, the processor 
further performs steps which enable the processor to predict 
a next state for the unknown emitter from a current estimated 
state of the unknown emitter. 

13. The article according to claim 9, wherein in response 
to the instructions executed by the processor, the processor 
further performs steps which enable the processor to inter 
leave the received pulses based on adaptive stochastic 
weights. 

14. The article according to claim 9, wherein in response 
to the instructions executed by the processor, the processor 
further performs steps which enable the processor to per 
form parsing, tracking and association of emitters. 

15. The article according to claim 9, wherein in response 
to the instructions executed by the processor, the processor 
further performs steps which enable the processor to use 
human speech recognition/text processing to process the 
received pulses where a radar language comprises pulse 
sequences, which are analogous to speech phonemes, wave 
form sequences, which are analogous to words in human 
speech, and phrases, which are analogous to phrases in 
human speech, and States, which are analogous to a sentence 
in human speech. 

16. The article according to claim 15, wherein in response 
to the instructions executed by the processor, the processor 
further performs steps which enable the processor to esti 
mate a state/function of the unknown emitter from combi 
nations of the received pulses. 

17. A radar warning system, comprising: 
a memory; and 
a processor coupled to the memory, the processor and the 
memory configured to: 

receive radar pulses from an unknown radar emitter, 
process the received radar pulses using a weighted finite 

state machine implemented in the radar warning system 
to learn a model of the unknown radar emitter; 

store the learned model in the memory; 
estimate, using the processor, a state/function of the 
unknown radar emitter based on the received radar 
pulses using the stored learned model; and 

automatically build finite State machines using-finite state 
transducers based on instructions stored in the memory. 

18. The system according to claim 17, wherein the pro 
cessor and the memory are further configured to determine 
weights for the weighted finite state machine using expec 
tation-maximization processing. 

k k k k k 


