
(12) United States Patent
Kim

USOO9507794B2

US 9,507,794 B2
Nov. 29, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR
DISTRIBUTED PROCESSING OF FILE

(71) Applicant: ELECTRONICS AND
TELECOMMUNICATIONS
RESEARCH INSTITUTE, Daejeon
(KR)

(72) Inventor: Kang-Ho Kim, Daejeon (KR)

(73) Assignee: ELECTRONICS AND
TELECOMMUNICATIONS
RESEARCH INSTITUTE, Daejeon
(KR)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 235 days.

(21) Appl. No.: 14/282,340

(22) Filed: May 20, 2014

(65) Prior Publication Data

US 2014/0351298 A1 Nov. 27, 2014

(30) Foreign Application Priority Data

May 23, 2013 (KR) 10-2013-OO58231

(51) Int. Cl.
G06F 7/30

(52) U.S. Cl.
CPC. G06F 17/30165 (2013.01); G06F 17/30II5

(2013.01); G06F 17/30194 (2013.01)
(58) Field of Classification Search

(2006.01)

CPC G06F 17/30067; G06F 17/30165;
G06F 17/30115; G06F 17/301.94

USPC 707/609, 694, 705, 758, 821–831;
711/154, 173, 209

See application file for complete search history.

f1

(56) References Cited

U.S. PATENT DOCUMENTS

7,197,598 B2*
2004/O105332 A1*

3/2007 Kim et al. 711 114
6/2004 Crow et al. 365,202

FOREIGN PATENT DOCUMENTS

KR 10-2002-00925.50
KR 10-2007-0016331

12/2002
2, 2007

OTHER PUBLICATIONS

Damien Le Moal et al., Stable Disk Performance With Non
Sequential Data Block Placement, 2010, IEEE, 6 Pages.*
David Quigley et al., “Unionfs: User- and Community-Oriented
Development of a Unification File System”, 2006 Linux Sympo
sium, vol. 2, pp. 349-362.

* cited by examiner

Primary Examiner — Jean B Fleurantin
(74) Attorney, Agent, or Firm — Kile Park Reed &
Houtteman PLLC

(57) ABSTRACT
A method and apparatus for the distributed processing of a
file are disclosed. The apparatus includes a shared data block
selection unit, a modified data block selection unit, a first file
distributed-processing unit, and a second file distributed
processing unit. The shared data block selection unit selects
at least one first data block to remain without change after
distributed processing of a file. The modified data block
selection unit selects at least one second data block to be
modified after the distributed processing of a file. The first
file distributed-processing unit allows an inode after the
distributed processing of a file to point to the first data blocks
so that the first data block is shared before and after the
distributed processing of a file. The second file distributed
processing unit allows the inode after the distributed pro
cessing of a file to point to at least one third data block.

8 Claims, 6 Drawing Sheets

DATA
BLOCK 2% 2%

Z W

U.S. Patent Nov. 29, 2016 Sheet 1 of 6 US 9,507,794 B2

S100

S200

S300

S400

DATA
BLOCK

U.S. Patent Nov. 29, 2016 Sheet 2 of 6 US 9,507,794 B2

f1

DATA
BLOCK

3, . /
Z W

FIG 3

6
DATA

FIG. 4

U.S. Patent Nov. 29, 2016 Sheet 3 of 6 US 9,507,794 B2

fA.

DATA
BLOCK

f2 f3

FIG. 5

U.S. Patent Nov. 29, 2016 Sheet 4 of 6 US 9,507,794 B2

DATA
BLOCK 22

FIG. 6

S: FRONT-ADDED DATA

4. 5 6

2 DATA
BLOCK

f3

FIG. 7

U.S. Patent Nov. 29, 2016 Sheet S of 6 US 9,507,794 B2

N: FRONT-ADDED DATA

1.
DATA
BLOCK

FIG. 8

U.S. Patent Nov. 29, 2016 Sheet 6 of 6 US 9,507,794 B2

110 130

SECOND FILE
DISTRIBUTED

PROCESSING UNIT

MODIFIED DATA BLOCK
SELECTION UNIT

120 140

FIG. 9

US 9,507,794 B2
1.

METHOD AND APPARATUS FOR
DISTRIBUTED PROCESSING OF FILE

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of Korean Patent
Application No. 10-2013-0058231, filed on May 23, 2013,
which is hereby incorporated by reference in its entirety into
this application.

BACKGROUND OF THE INVENTION

1. Technical Field
The present invention relates generally to a method and

apparatus for the distributed processing of a file and, more
particularly, to a method and apparatus for the distributed
processing of a file that are capable of efficiently performing
segmentation, merging, and front addition in connection
with a large file.

2. Description of the Related Art
A conventional file system provides only file open, read,

write, end-add, end-truncate, and close operations. In com
puter systems used in genome and protein analyses, efficient
tasks cannot be performed using only the operations that are
provided by the conventional file system as described above.
The size of an input data file for a genome analysis

application is very large (e.g., 218 GB), and the time it takes
to analyze the content of the data file is very long. In order
to reduce analysis time, a data file is segmented into a
plurality of small files, the small files are processed in
parallel, the processed files are merged into a single large
file, and the single large file is used as input in a Subsequent
Stage.
As described above, the conventional file system offsets a

data parallelism effect because it consumes a lot of time to
perform the tasks of segmenting a large file and merging
small files.

Furthermore, in the conventional file system, in order to
fragment a file, the large input/output bandwidths of a data
storage device are used because the original file needs to be
read and written into multiple files, thereby deteriorating
system efficiency and performance.

In connection with this, Korean Patent Application Pub
lication No. 10-2002-0092550 discloses a mass file storage
system and a method of deleting and adding the data blocks
of dynamic multi-level inodes using the system.

SUMMARY OF THE INVENTION

Accordingly, the present invention has been made keep
ing in mind the above problems occurring in the conven
tional art, and an object of the present invention is to provide
a method and apparatus for the distributed processing of a
file that are capable of performing segmentation, merging,
and front addition in connection with a large file only by
using inode information and manipulating a small number of
data blocks.

In accordance with an aspect of the present invention,
there is provided a method for the distributed processing of
a file, including selecting at least one first data block to
remain without change after distributed processing of a file;
selecting at least one second data block to be modified after
the distributed processing of a file; pointing, by an inode
after the distributed processing of a file, to the first data
block so that the first data block is shared before and after
the distributed processing of a file; and pointing, by the

10

15

25

30

35

40

45

50

55

60

65

2
inode after the distributed processing of a file, to at least one
third data block modified from the second data block.
The distributed processing of a file may correspond to any

one of file segmentation, file merging, and addition into a
front of a file.

If the distributed processing of a file corresponds to the
file segmentation, the third data block may correspond to
two data blocks copied from two block fragments of the
second data block that has been internally fragmented after
the file segmentation.

If the distributed processing of a file corresponds to the
file merging and the Sum of sizes of data fragments of the
internally fragmented second data block is equal to or
smaller than a size of one data block, the at least third data
block is one in number.

If the distributed processing of a file corresponds to the
addition into the front of a file, the second data block is a first
data block of a file before the distributed processing of a file
and there is an empty space corresponding to a size of new
data to be added to the first data block, the third data block
may correspond to a data block that is obtained by moving
existing data of the first data block backward and copying
the new data in front of the existing data.

If the distributed processing of a file corresponds to the
addition into the front of a file, the second data block is a first
data block of a file before the distributed processing of a file
and there is no empty space corresponding to a size of new
data to be added to the first data block, the third data block
may become an index block, and an inode of the index block
may sequentially point to a data block including the new
data and the first data block.

In accordance with an aspect of the present invention,
there is provided an apparatus for the distributed processing
of a file, including a shared data block selection unit
configured to select at least one first data block to remain
without change after distributed processing of a file; a
modified data block selection unit configured to select at
least one second data block to be modified after the distrib
uted processing of a file; a first file distributed-processing
unit configured to allow an inode after the distributed
processing of a file to point to the first data blocks so that the
first data block is shared before and after the distributed
processing of a file; and a second file distributed-processing
unit configured to allow the inode after the distributed
processing of a file to point to at least one third data block
modified from the second data block.
The distributed processing of a file may correspond to any

one of file segmentation, file merging, and addition into the
front of a file.

If the distributed processing of a file corresponds to the
file segmentation, the third data block may correspond to
two data blocks copied from two block fragments of the
second data block that has been internally fragmented after
the file segmentation.

If the distributed processing of a file is the file merging
and a sum of sizes of data fragments of the internally
fragmented second data block is equal to or Smaller than a
size of one data block, the at least third data block is one in
number.

If the distributed processing of a file corresponds to the
addition into the front of a file, the second data block is a first
data block of a file before the distributed processing of a file
and there is an empty space corresponding to a size of new
data to be added to the first data block, the third data block
may correspond to a data block that is obtained by moving
existing data of the first data block backward and copying
the new data in front of the existing data.

US 9,507,794 B2
3

If the distributed processing of a file corresponds to the
addition into the front of a file, the second data block is a first
data block of a file before the distributed processing of a file
and there is no empty space corresponding to a size of new
data to be added to the first data block, the third data block
may become an index block, and an inode of the index block
may sequentially point to a data block including the new
data and the first data block.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of
the present invention will be more clearly understood from
the following detailed description taken in conjunction with
the accompanying drawings, in which:

FIG. 1 is a flowchart illustrating a method for the distrib
uted processing of a file according to an embodiment of the
present invention;

FIG. 2 is a diagram illustrating the configuration of the
data blocks of an original file according to an embodiment
of the present invention;

FIG. 3 is a diagram illustrating the configuration of data
blocks when an original file having the configuration of FIG.
2 is segmented into two files;

FIG. 4 is a diagram illustrating the configuration of the
data blocks of two original files to be merged according to
an embodiment of the present invention;

FIGS. 5 and 6 are diagrams illustrating the configurations
of data blocks when original files having the construction of
FIG. 4 are merged;

FIGS. 7 and 8 are diagrams illustrating the configuration
of data blocks when data is added to the front of an original
file having the construction of FIG. 4; and

FIG. 9 is a block diagram of an apparatus for the distrib
uted processing of a file according to an embodiment of the
present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Embodiments of the present invention will be described
with reference to the accompanying drawings in order to
describe the present invention in detail so that those having
ordinary knowledge in the technical field to which the
present pertains can easily practice the present invention. It
should be noted that same reference numerals are used to
designate the same or similar elements throughout the
drawings. In the following description of the present inven
tion, detailed descriptions of known functions and construc
tions which are deemed to make the gist of the present
invention obscure will be omitted.
A method and apparatus for the distributed processing of

a file according to embodiments of the present invention will
be described in detail below with reference to the accom
panying drawings.

FIG. 1 is a flowchart illustrating a method for the distrib
uted processing of a file according to an embodiment of the
present invention.

Referring to FIG. 1, in the method for the distributed
processing of a file according to this embodiment of the
present invention, first, at least one first data block that will
remain without change after the distributed processing of a
file is selected at step S100. The distributed processing of a
file may correspond to any one of file segmentation, file
merging, and addition into the front of a file.

5

10

15

25

30

35

40

45

50

55

60

65

4
Thereafter, at least one second data block to be modified

after the distributed processing of a file is selected at step
S2OO.

Thereafter, in order for the first data block to be shared
before and after the distributed processing of a file, an inode
after the distributed processing of a file points to the first
data block at step S300.

Finally, the inode after the distributed processing of a file
points to at least one third data block modified from the
second data block at step S400.

If the distributed processing of a file corresponds to file
segmentation, the third data block corresponds to two blocks
that are copied from two block fragments into which the
second data block that has been internally fragmented after
the file segmentation. The configuration of data blocks
attributable to file segmentation will be described in detail
below with reference to FIG. 3.

Furthermore, if the distributed processing of a file corre
sponds to file merging and the Sum of the data fragments of
the internally fragmented second data block is equal to or
Smaller than the size of a single data block, the at least one
third data block may be one in number. The configuration of
data blocks attributable to file merging will be described in
detail below with reference to FIGS. 5 and 6.

Furthermore, if the distributed processing of a file corre
sponds to addition into the front of a file, the second data
block is the first data block of a file before the distributed
processing of a file, and the configuration of the third data
block may vary depending on whether or not there is an
empty space corresponding to the size of new data to be
added to the first data block.

For example, the second data block is the first data block
of a file before the distributed processing of a file, and the
third data block corresponds to a data block that is obtained
by moving the existing data of the first data block backward
and then copying the new data in front of the existing data
if there is an empty space corresponding to the size of new
data to be added to the first data block. The configuration of
data blocks attributable to addition into the front of a file
when there is an empty space will be described in detail
below with reference to FIG. 7.
The second data block is the first data block of a file

before the distributed processing of a file, the third data
blocks is an index block if there is no empty space corre
sponding to the size of new data to be added to the first data
block, and the inode of the index block sequentially points
a data block including the new data and the first data block.
The configuration of data blocks attributable to addition into
the front of a file if there is no empty space will be described
in detail below with reference to FIG. 8.

FIG. 2 is a diagram illustrating the configuration of the
data blocks of an original file according to an embodiment
of the present invention.

Referring to FIG. 2, a file 1 f1 is an original file, and
includes a plurality of data blocks, that is, data blocks 1, 2,
3, 4 and 5, and an inode indicative of the file 1 fl’. The
inode points to the plurality of data blocks 1, 2, 3, 4 and 5.
In FIG. 3, which will be described later, an example in which
the file 1 f1 is segmented into two files will be described.
An inode is a data structure that is used in existing

Unix-series file systems. The inode includes information
about a file system, such as a normal file or a directory. Each
file has a single inode, and the inode includes information
about a corresponding file, such as an owner group, access
inode (e.g., a read, write, or execution right), file type, and
an inode number (or an i-number). The files of a file system
may be identified by unique inode numbers. In general,

US 9,507,794 B2
5

when a file system is generated, about one percent of the
overall space is assigned to inodes. Since the space for
inodes is limited, the maximum number of files of a file
system is also limited. In most cases, however, a user feels
that an almost infinite number of files may be generated and
managed.

FIG. 3 is a diagram illustrating the configuration of data
blocks when an original file having the configuration of FIG.
2 is segmented into two files.

Referring to FIG. 3, the original file having the configu
ration of FIG. 2 is segmented into two files: a file 2 f2 and
a file 3 f3 having the same size. The file 2 f2 and the file
3 f3 generate respective inodes indicative of the two files,
and the generated inodes are set Such that they point to the
data blocks of the file 1 fl. In this case, since the file 1 fl’
is segmented into two files in the middle of the data block
3 of the file 1 f1, two new blocks, that is, a data block 3"
and a data block 3", are generated, the front half of the data
block 3 is copied to the data block 3", and the rear half
thereof is copied to the data block 3". That is, the data block
3 of the file 1 f1 corresponds to the second data block, the
data block 3" and the data block 3" generated from the data
block 3 correspond to the third data block, and the remaining
data blocks 1, 2, 4, and 5 correspond to the first data block.
Thereafter, the inode of the file 2 f2 points to the data
blocks 1, 2 and 3' of the file 1 f1, and the inode of the file
3 fl points to the data block 3", 4 and 5 of the file 1 f1.
thereby completing file segmentation. Accordingly, the file 2
f2 and the file 3 f3 share the data blocks 1, 2, 4 and 5 of
the file 1 f1 . If any one of the shared blocks is modified,
all the blocks are copied and then the content of each file is
stored.

FIG. 4 is a diagram illustrating the configuration of the
data blocks of two original files to be merged according to
an embodiment of the present invention.

Referring to FIG.4, a file system according to an embodi
ment the present invention merges files by permitting inter
nal fragmentation to a first block. Accordingly, a file 2 f2
includes a plurality of data blocks, that is, data blocks 1, 2
and 3, and an inode indicative of the file 2 f2. Furthermore,
a file 3 f3 includes a plurality of data blocks, that is, data
blocks 4, 5 and 6, and an inode indicative of the file 3 f3.
A file 4 fa’ that points to all the data blocks of the files 2 f2
and 3 f3 configured as described above is generated, and
the file 2 f2 and the file 3 f3 are merged using the file 4
f4 in two forms, as illustrated in FIGS. 5 and 6.
FIGS. 5 and 6 are diagrams illustrating the configurations

of data blocks when original files having the construction of
FIG. 4 are merged.

Referring to FIG. 5, a file 2 f2 includes data blocks 1, 2,
and 3 and an inode indicative of the file 2 f2, and the file
3 “f” includes data blocks 4, 5, and 6 and an inode indicative
of the file 3 f3. Furthermore, a file 4f1 including an inode
that points to the data blocks of the file 2 f2 and the file 3
f3 is generated. In this case, if the sum of the data
fragments of the data block 3 of the file 2 f2 and the data
block 4 of the file 3 f3 is equal to or smaller than the size
of one data block, a new data block, that is, one data block
7, is generated. In this case, if a memory location is assigned
to a file, the data block 3 of the file 2 f2 and the data block
4 of the file 3 f3 are internally fragmented data blocks that
have been assigned and consumed to maintain block units
because all basic input and output operations are performed
on a block basis. Furthermore, the data block 7 corresponds
to a third data block, the data blocks 1 and 2 of the file 2 f2
and the data blocks 5 and 6 of the file 3 f3 correspond to
a first data block, and the data block 3 of the file 2 f2 and

10

15

25

30

35

40

45

50

55

60

65

6
the data block 4 the file 3 f correspond to a second data
block. Thereafter, the inode of the file 4 is allowed to point
to the data blocks 1, 2, 5, 6 and 7 of the file 2 f2 and the
file 3 f3, thereby completing file merging.

Referring to FIG. 6, a file 2 f2 includes data blocks 1, 2,
and 3 and an inode indicative of the file 2 f2, and a file 3
f3 includes data blocks 4, 5, and 6 and an inode indicative
of the file 3 f3. Furthermore, a file 4f1 including an inode
that points to the data blocks of the file 2 f2 and the file 3
f3 is generated. In this case, if the sum of the data
fragments of the data block 3 of the file 2 f2 and the data
block 4 of the file 3 f3 is larger than the size of one data
block, the file 4 fa points to the data block 3 of the file 2
f2, the data block 4 of the file 3 f3 and other data blocks,
thereby completing file merging. In this case, a third data
block is not generated, the data blocks 1 and 2 of the file 2
f2 and the data blocks 5 and 6 of the file 3 f3 correspond
to a first data block, and the data block 3 of the file 2 f2 and
the data block 4 of the file 3 f3 correspond to a second data
block.

FIGS. 7 and 8 are diagrams illustrating the configuration
of data blocks when data is added to the front of an original
file having the construction of FIG. 4.

Referring to FIG. 7, front addition may be implemented
using an empty space because the data block 4 of the file 3
f3 of FIG. 4 includes the empty space. That is, if there is
an empty space corresponding to the size of new data to be
added to the data block 4, the existing data of the data block
4 is moved backward and the new data is then copied,
thereby completing addition into the front of a file. In this
case, the data blocks 5 and 6 of the file 3 “f corresponds to
a first data block, and the data block 4 corresponds to a
second data block. In this case, the front-added data block
portion of the data block 4 corresponds to a third data block.

Referring to FIG. 8, front addition may be implemented
by changing the data block 1 into an index block, that is, a
data block 0, because there is an empty space in the data
block 1 of the file 2 f2 of FIG. 4. That is, if there is no
empty space corresponding to the size of new data to be
added to the data block 1, the data block 1 is changed into
an index block and the inode of the index block is allowed
to sequentially point to a data block including the new data
and the data block 1, thereby completing addition into the
front of a file. In this case, the data blocks 2 and 3 of the file
2 f2 correspond to a first data block, the data block 1
correspond to a second data block, and the data block 0
correspond to a third data block.

FIG. 9 is a block diagram of an apparatus 100 for the
distributed processing of a file according to an embodiment
of the present invention.

Referring to FIG. 9, the apparatus 100 for the distributed
processing of a file according to the present invention
includes a shared data block selection unit 110, a modified
data block selection unit 120, a first file distributed-process
ing unit 130, and a second file distributed-processing unit
140.
The shared data block selection unit 110 selects a first data

block that will remain without change after the distributed
processing of a file. The distributed processing of a file may
correspond to any one of file segmentation, file merging, and
addition into the front of a file.
The modified data block selection unit 120 selects at least

one second data block to be modified after the distributed
processing of a file.
The first file distributed-processing unit 130 allows an

inode after the distributed processing of a file to point to the

US 9,507,794 B2
7

first data block so that the first data block is shared before
and after the distributed processing of a file.
The second file distributed-processing unit 140 allows an

inode after the distributed processing of a file to point to one
or more third data blocks modified from the second data
blocks.

If the distributed processing of a file corresponds to file
segmentation, the third data block corresponds to two blocks
copied from the two block fragments of the second data
block that has been internally fragmented after the file
segmentation.

Furthermore, if the distributed processing of a file corre
sponds to file merging and the Sum of the data fragments of
the internally fragmented second data block is equal to or
smaller than the size of one data block, the number of third
data blocks may be one.

Furthermore, if the distributed processing of a file corre
sponds to addition into the front of a file, the second data
block corresponds to the first data block of a file before the
distributed processing of a file, and the third data block may
have a different configuration depending on whether or not
there is an empty space corresponding to the size of new data
to be added to the first data block. For example, if the second
data block is the first data block of a file before the
distributed processing of a file and there is an empty space
corresponding to the size of new data to be added to the first
data block, the third data block may correspond to a data
block that has been obtained by moving the existing data of
the first data block backward and then copying the new data
in front of the existing data. If the second data block is the
first data block of a file before the distributed processing of
a file and there is no empty space corresponding to the size
of new data to be added to the first data block, the third data
block may become an index block and the inode of the index
block may be allowed to sequentially point to a data block
including the new data and the first data block.
As described above, in accordance with the method and

apparatus for the distributed processing of a file according to
the present invention, segmentation, merging, and front
addition are performed on a large file by using inode
information and manipulating a small number of data
blocks, thereby reducing the time it takes to read and write
data blocks and the number of times that data blocks are read
and written and also improving the efficiency of a file
system.

Furthermore, in accordance with the method and appara
tus for the distributed processing of a file according to the
present invention, parallelism is increased by segmenting a
large file into a large number of files if there are many
available resources, and parallelism is reduced by segment
ing a large file into a small number of files if there are small
available resources, thereby making the best use of paral
lelism of data blocks and thus improving performance of a
file system.

Furthermore, in accordance with the method and appara
tus for the distributed processing of a file according to the
present invention, a file memory space can be efficiently
used by allowing an original file and a segmented or merged
file to share most of data blocks.

Accordingly, in accordance with the method and appara
tus for the distributed processing of a file according to the
present invention, in a genome analysis application, the time
it takes to perform file segmentation, file merging and front
addition, that is, additional tasks for data analysis, can be
reduced, thereby preventing a main data analysis task from

10

15

25

30

35

40

45

50

55

60

65

8
being interrupted, and the numbers of segmented files and
merged files can be expected, thereby reducing the burden of
a file storage space.

Although the preferred embodiments of the present inven
tion have been disclosed for illustrative purposes, those
skilled in the art will appreciate that various modifications,
additions and Substitutions are possible, without departing
from the scope and spirit of the invention as disclosed in the
accompanying claims.

What is claimed is:
1. A computer-implemented method for distributed pro

cessing of a file stored in a memory space, comprising:
selecting at least one first data block stored in the memory

space to remain without change after distributed pro
cessing of a file;

selecting at least one second data block stored in the
memory space to be modified after the distributed
processing of a file;

pointing, by an inode after the distributed processing of a
file, to the first data block so that the first data block is
shared before and after the distributed processing of a
file; and

pointing, by the inode after the distributed processing of
a file, to at least one third data block stored in the
memory space and modified from the second data
block,

wherein the distributed processing of a file corresponds to
any one of file segmentation, file merging, and addition
into a front of a file, and

wherein if the distributed processing of a file corresponds
to the addition into the front of a file, the second data
block is a first data block of a file before the distributed
processing of a file and there is an empty space corre
sponding to a size of new data to be added to the second
data block, the third data block corresponds to a data
block that is obtained by moving existing data of the
second data block backward and copying the new data
in front of the existing data.

2. The method of claim 1, wherein if the distributed
processing of a file corresponds to the file segmentation, the
third data block corresponds to two data blocks copied from
two block fragments of the second data block that has been
internally fragmented after the file segmentation.

3. The method of claim 1, wherein if the distributed
processing of a file corresponds to the file merging and a
Sum of sizes of data fragments of the internally fragmented
second data block is equal to or Smaller than a size of one
first data block, the at least third data block is one in number.

4. The method of claim 1, wherein if the distributed
processing of a file corresponds to the addition into the front
of a file, the second data block is a first data block of a file
before the distributed processing of a file and there is no
empty space corresponding to a size of new data to be added
to the second data block, the third data block becomes the
index block, and an inode of the index block sequentially
points to a data block including the new data and the first
data block.

5. A computer system for distributed processing of a file
stored in a memory space, having a processor, comprising:

a shared data block selection unit configured to select at
least one first data block stored in the memory space to
remain without change after distributed processing of a
file;

a modified data block selection unit configured to select at
least one second data block stored in the memory space
to be modified after the distributed processing of a file;

US 9,507,794 B2

a first file distributed-processing unit configured to allow
an inode after the distributed processing of a file to
point to the first data blocks so that the first data block
is shared before and after the distributed processing of
a file; and

a second file distributed-processing unit configured to
allow the inode after the distributed processing of a file
to point to at least one third data block stored in the
memory space and modified from the second data
block,

wherein the distributed processing of a file corresponds to
any one of file segmentation, file merging, and addition
into a front of a file, and

wherein if the distributed processing of a file corresponds
to the addition into the front of a file, the second data
block is a first data block of a file before the distributed
processing of a file and there is an empty space corre
sponding to a size of new data to be added to the second
data block, the third data block corresponds to a data
block that is obtained by moving existing data of the
second data block backward and copying the new data
in front of the existing data.

10

15

10
6. The apparatus of claim 5, wherein if the distributed

processing of a file corresponds to the file segmentation, the
third data block corresponds to two data blocks copied from
two block fragments of the second data block that has been
internally fragmented after the file segmentation.

7. The apparatus of 5, wherein if the distributed process
ing of a file is the file merging and a sum of sizes of data
fragments of the internally fragmented second data block is
equal to or Smaller than a size of one first data block, the at
least third data block is one in number.

8. The apparatus of claim 5, wherein if the distributed
processing of a file corresponds to the addition into the front
of a file, the second data block is a first data block of a file
before the distributed processing of a file and there is no
empty space corresponding to a size of new data to be added
to the second data block, the third data block becomes the
index block, and an mode of the index block sequentially
points to a data block including the new data and the first

20 data block.

