
(12) United States Patent
Doering et al.

USO095O1541B2

US 9,501,541 B2
Nov. 22, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SEPARATION OF POD PROVISIONING AND
SERVICE PROVISIONING

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

(72) Inventors: Jeffrey Ryan Doering, Bend, OR (US);
Nirmalya Sen, San Jose, CA (US);
Ying Gao, San Jose, CA (US);
Khushboo Bhatia, Mars, PA (US);
Gopalan Arun, Saratoga, CA (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 434 days.

(21) Appl. No.: 13/844,018

(22) Filed: Mar. 15, 2013

(65) Prior Publication Data

US 2014/OO75O31 A1 Mar. 13, 2014

Related U.S. Application Data
(60) Provisional application No. 61/698,413, filed on Sep.

7, 2012, provisional application No. 61/698,459, filed
on Sep. 7, 2012, provisional application No.
61/785,299, filed on Mar. 14, 2013.

(51) Int. Cl.
G06F 9/455 (2006.01)
G06F 7/30 (2006.01)

(Continued)
(52) U.S. Cl.

CPC. G06F 17/30575 (2013.01); G06F 17/30082
(2013.01); G06F 17/30283 (2013.01);

(Continued)
(58) Field of Classification Search

CPC ... G06F 9/5072; G06F 9/45558; G06F 8/60;
G06F 2009/45562; H04L 67/10

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,939,723 A
5,892.909 A

7/1990 Harley, Jr. et al.
4/1999 Grasso et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1046042O1 A 5/2O15
CN 104.737.517 A 6, 2015

(Continued)

OTHER PUBLICATIONS

Ranganathan, Sridhar. Architecting the Oracle VM solution using
the Oracle Sun ZFS Storage Appliances and Oracle Sun Servers.
Sep. 2010 retrieved on Jun. 2, 2015). Retrieved from the Internet
<URL: http://www.oracle.com/technetwork/articles/systems-hard
ware-architecture/vm-solution-using-zfs-storage-174070.pdf>.*

(Continued)

Primary Examiner — Kevin Bates
Assistant Examiner — Dae Kim
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT
A method for POD provisioning and service provisioning is
disclosed. The method may comprise storing, by a cloud
infrastructure system, Subscription order information from a
customer identifying a service from a set of cloud services
provided by the cloud infrastructure system, the cloud
infrastructure system comprising one or more computing
devices, wherein the subscription order information includes
customer-specific configuration. Additionally, the method
may comprise determining, by a computing device from the
one or more computing devices, a service associated with
the subscription order information. Moreover, the method
may comprise mapping a pre-provisioned anonymous
deployment to the subscription order information, wherein
the pre-provisioned anonymous deployment is specifically
pre-provisioned for the determined service. Furthermore, the
method may comprise creating, by a computing device from
the one or more computing devices, a service instance
specifically for the customer by configuring the pre-provi
Sioned anonymous deployment with the customer-specific
configuration.

20 Claims, 23 Drawing Sheets

US 9,501,541 B2
Page 2

(51) Int. Cl. 2002/009 1863 Al 7/2002 Schug
G06O IO/06 2012.O1 2004/0243941 A1 12, 2004 Fish
GOC 30/06 3. 3. 2005/0086239 A1 4/2005 Swann et al.

O (2012.01) 2005/0144033 A1 6/2005 Vreeke et al.
H04L 12/24 (2006.01) 2005/0273346 A1 12/2005 Frost

H04L 2/26 (2006.01) 38-66A '558. SRarea aShikumar et al.
H04L 2/9II (2013.01) 2006.0143704 A1 6, 2006 Rits et al.
H04L 29/06 (2006.01) 2006/0277595 A1 12/2006 Kinser et al.

(52) U.S. Cl. 2007,0005536 A1 1/2007 Caswell et al.
CPC G06F17/30339 (2013.01); G06O 10/0633 2007/0028.098 A1 2/2007 Baartman et al.

(2013,01); G06Q 10/06315 (201301), GoGo 3:28: A 932 Wing et al.
30/0633 (2013.01); G06O 30/0635 (2013.01); 2007/0283147 A1 12/2007 Fried et al.

H04L 4I/00 (2013.01); H04L 4I/0686 2008/0080718 A1 4/2008 Meijer et al.
(2013.01); H04L 4I/50 (2013.01); H04L 2008, 0083.036 A1 4/2008 OZZie et al.

41/5041 (2013.01); H04L 41/5054 (2013.01); 2008.0089.520 A1 4, 2008 Kessler

H04L 41/5064 (2013.01), H04L 43/0876 E. R. E. E.
(2013.01); H04L 47/70 (2013.01); H04L 63/10 2008. O1892.50 A1 8, 2008 Cha et al.

(2013.01); H04L 63/20 (2013.01); G06F 2008, O250.074 A1 10, 2008 Parkinson
17/30.174 (2013.01) 2008/0256.606 A1 10, 2008 Koikara et al.

2008/0281617 A1 11/2008 Conrad et al.
2008/0313716 A1 12/2008 Park

(56) References Cited 2009/0024522 A1 1/2009 Reunert et al.
2009/00894.07 A1* 4/2009 Chalupa G06F 15/16 U.S. PATENT DOCUMENTS TO9.220
2009/0097657 A1 4, 2009 Scheidt et al.

5,911,143 A 6/1999 Deinhart et al. 2009/0126007 A1 5/2009 Zamberlan et al.
88. A 2.99 hm al 2009, O144729 A1 6, 2009 Guizar
6,322.832 B1 4/2001 E. ann et al. 2009/0178102 A1 7/2009 Alghathbar et al.

4 4-4 f E. 2009/0205018 A1 8/2009 Ferraiolo et al.
g: R 58. &E et al 2009, 0217267 A1* 8, 2009 Gebhart GO6F 9/5027

- kW T18, 100

6,526,513 B1 33. Shrader et al. 2009/0259683 A1* 10/2009 Murty GO6F 17,306O7
R 58. N. 1 2009,0265753 A1 10, 2009 Anderson et al.

6.650.433 B1 1/2003 E. sal 2009,0293,046 A1 11/2009 Cheriton
6,976.79s B3 2/2005 E. et I. 2009/0300604 Al 12/2009 Barringer

- w f R et A. 2009/0320093 A1 12/2009 Glazier et al.
78.8% R $39. VR 2010.0114618 A1 5, 2010 Wilcock et al.
7.130836 B2 10/2006 E. sal 2010.0125477 A1 5/2010 Mousseau et al.

k - W f R T.A. 2010/019 1774 Al 7/2010 Mason, Jr. et al.
7,136,867 B1 11/2006 Chatterjee et al. 2010, 0198730 A1 8/2010 Ahmed et al.
7.32 R: 1939, S5.al 2010/0211781 A1 8, 2010 Auradkar et al.
7790,393 B2 9.2010 Lyamichev et al. 2010/0306818 A1 12/2010 Li et al.

f tha et al 2010/0333116 A1 12/2010 Prahladet al.
78. R :2. WR it al. 2011 0035444 A1 2/2011 Hill
7.99.294 B2 s/20 ST ity 1 2011/0126207 A1 5/2011 Wipfel et al.

- - 4 f als ar et al. 2011 0131146 A1 6, 2011 Skutnik
is: R: 58-3 Y. el 2011/0131309 A1 6/2011 Akiyama et al.

865.152 B2 4/2012 SN et al. al 2011 0138051 A1 6, 2011 Dawson et al.
824,747 B1 7/2012 SE, al 2011/0138055 A1 6/2011 Daly et al.

4. r. I 2011 0145199 A1 6, 2011 Prasad
8,266,616 B1* 9/2012 Jacquot GES 2011/0288968 Al 11/2011 King et al.

2011 O295998 A1 12, 2011 Ferris et al.
8,291,490 B1 1929: As et al 2011/0296000 A1 12/2011 Ferris et al.
S.E. R 1438: ls it al. 2011/02960 18 A1 12/2011 Deng et al.

838737 B3 2/2013 et I. 2011/0307523 A1 12/2011 Balani et al.
- w f et al. al 2011/0313902 A1 12/2011 Liu et al.

Sis R 58. R et al 2011/0314466 Al 12/2011 Berg et al.
8.468,244 B2 6/2013 Fr. 2011/0320605 A1 12/2011 Kramer et al.

sy f e et 2012/0005341 A1 1/2012 Seago et al.
8.499,005 B2 658, ps S s 2012/0032945 A1 2/2012 Dare et al.

s: R 1938. 8. tOn cal 2012/0036220 A1 2/2012 Dare et al.
w - J. f E. et A. 2012/0036245 A1 2/2012 Dare et al.

8,631,478 B2 1 28 R ". 2012/0036440 A1 2/2012 Dare et al.
896 R: 2.38 s Ea 2012/0036442 A1 2/2012 Dare et al.

8.789,157 B2 7/2014 Si ada et al. 2012/0036552 A1 2/2012 Dare et al.
8.806.593 B1 8, 2014 Riel 1 2012/0041844 A1 2/2012 Shen et al.
8,843,997 B1 9/2014 H phel et al. 2012/0047357 A1 2/2012 Bealkowski
8.856,082 B2 10/2014 E. et al 2012/0066755 A1 3, 2012 Peddada et al.
9,053,302 B2 62015 Sasirvetal 2012/0072555 A1 3/2012 DeLuca et al.
90.58.471 B2 6/2015 SE et al. 2012, 0079134 A1* 3, 2012 Outhred HO4L 12.4641
9,203,866 B2 12/2015 Chatterjee et al. TO9,244
9,219,749 B2 12/2015 Khalsa et al. 2012, 0096521 A1 4/2012 Peddada
9,336,030 B1 5, 2016 Marr et al. 2012/013 1166 A1 5, 2012 Barbedette et al.
9,336,483 B1 5/2016 Abeysooriya et al. 2012/013 1194 A1* 5/2012 Morgan GO6F 9/5072

2002/0004390 A1 1/2002 Cutaia et al. TO9,226
2002fOO5921.0 A1 5, 2002 Makus et al. 2012/0136936 A1 5/2012 Quintuna

US 9,501,541 B2
Page 3

(56) References Cited EP 289.3685 A 7/2015
JP 2015-529366 A 10/2015

U.S. PATENT DOCUMENTS JP 2015-529367 A 10/2015
WO 2009/O18584 A1 2, 2009

2012/0221454 A1 8/2012 Morgan WO 2010149222 12/2010
2012/0226796 A1 9/2012 Morgan WO 2010.151273 12/2010
2012/0226808 A1 9/2012 Morgan WO 2012070993 5, 2012
2012/0233220 A1 9/2012 Kaschenvsky et al. WO 201403.9772 3, 2014
2012fO246248 A1 9, 2012 Arita WO 2014039882 3, 2014
2012fO27 1949 A1 10, 2012 Radhakrishnan et al. WO 20140399.18 3, 2014
2012/0284776 A1 11/2012 Sundaram et al. WO 20140399.19 3, 2014
2012/0297441 A1 11/2012 Boldyrev et al. WO 20140399.21 3, 2014
2012/0304.191 Al 11/2012 Morgan WO 2015.191119 12/2015
2012/0311154 Al 12/2012 Morgan
2013,0007195 A1 1/2013 Rinard et al.
2013,0007265 A1 1/2013 Benedetti et al. OTHER PUBLICATIONS

38.8% A. 58 E. al. Haslam, Simon. 'Virtualisation arrives for Exalogic 2–Details
2013,0054763 A1 2/2013 Van der Merwe et al. from Launch Event. Jul. 26, 2012 retrieved on Jun. 2, 2015.
2013/0110943 A1 5, 2013 Menon et al. Retrieved from the Internet <URL: http://www.veriton.co.uk/roller?

388-39, A. ck 3. P Real coloss fmwentry exalogic 2 details from launch."
all T18, 1 Non-Final Office Action mailed on Aug. 28, 2014 in U.S. Appl. No.

2013/0152183 Al 6, 2013 Plewnia et al. 13/838,113, 14 pages.
2013/0204994 A1 8, 2013 Deshmukh et al. Non-Final Office Action mailed on Sep. 11, 2014 in U.S. Appl. No.
2013,0212160 A1 8/2013 Lawson et al. 13/838,537, 22 pages.
2013,0212420 A1 8/2013 Lawson et al. Written Opinion mailed on Sep. 11, 2014 in International Applica
2013/0227137 A1* 8/2013 Damola GO6F9,5072 tion. No. PCT/US2013/058642, 8 pageS.

2013,0254882 A1 9/2013 Kannappan et al TO9,224 An Introduction to Role-Based Access Control, NISTITL Bulletin,
2013/02684.80 A1 10, 2013 Dorman retrieved from the Internet: URL: http://csrc.nist.gov/groups/SNS/
2013/0268491 A1 10/2013 Chung et al. rbac/documents, design implementation/Intro role based ac
2013/0275509 A1 10, 2013 Micucci et al. cess.htm on Oct. 22, 2013, Dec. 1995, 5 pages.
2013,0283350 A1 10, 2013 Afek et al. Basic Traversals, The Neo4.J. Manual, Neo Technology, Inc. (copy

38.933. A 1929. Eital. right 2012), 7 Pages. C. a.

2013/0318241 Al 11/2013 Acharya et al. Ethnication Overview, Juniper Networks, Inc. (copyright
2013/0332984 A1 12/2013 Sastry et al.), 4 pages.
2013/0332985 Al 12/2013 Sastry et al. Oracle Internet Directory Administrator's Guide: Introduction to
2014.0020054 A1 1/2014 Lim LDAP and Oracle Internet Directory, Oracle, 10g Release 2.
2014/0059002 A1 2/2014 Lockhart et al. B14082-02, retrieved from the Internet: URL: http://docs.oracle.
2014/0059226 A1 2/2014 Messerli et al. com/cd/B14099 19/idmanage. 1012/b14082/intro.htm on Oct. 1,
2014f0074539 A1 3/2014 Doering et al. 2013, 1999, 9 pages.
33.82. A. 33 SSR. al Using Idapsearch, Red Hat Directory Server 8.2 Administration
2014/OO74659 A1 3/2014 Chatterjee et al. Guide for managing Directory Server instances Edition 8.2.8, Red
2014/0074788 A1 3/2014 Chatterjee et al. Hat, Inc. (copyright), 2 pages.
2014/OO74793 A1 3/2014 Doering et al. XACML v3.0 Heirarchical Resource Profile Version 1.0, Oasis,
2014/OO74999 A1 3/2014 Khalsa et al. Working Draft 7, retrieved from the Internat: URL: http://xml.
2014f0075016 A1 3/2014 Chatterjee et al. coverpages.org/XACML-v30-HierarchicalResource Profile-WD7.
2014/OO75O27 A1 3/2014 Chatterjee et al. pdf on Aug. 29, 2013. Apr. 1, 2009, 22 pages.
2014/OO75032 A1 3/2014 Vasudevan et al. Afgan et al., CloudMan as a Tool Execution Framework for the
2014/OO75033 A1 3/2014 Doering et al. Cloud, IEEE Proceedings of the 35". International Convention on
2014f0075034 A1 3, 2014 Vasudevan et al. Information and Communication Technology, Electronics and
2014/OO75239 A1 3/2014 Prathipati et al. Microelectronics (MIPRO 2012), pp. 437-441.
2014/OO75499 A1 3/2014 Arun et al. Anthonv et al. Consolidation Best Practices: Oracle Database 12c
2014/OO755O1 A1 3/2014 Srinivasan et al. yet al.,
2014/OO75565 A1 3/2014 Srinivasan et al. plugs you into the cloud, Oracle White Paper, retrieved from the
2014f0082749 A1 3/2014 Holland et al. Internet: URL: http://www.oracle.com/us/products/database/data
2014/0141743 A1 5, 2014 Shaw base-private-cloud-wp- 360048.pdf on Oct. 1, 2013, Jul. 2013, 30
2014.0143083 A1 5/2014 Prathipati et al. pageS.
2014/0201345 A1 7/2014 Abuelsaad et al. Bastos et al., Towards a Cloud-Based Environment for Space
2014/02375O2 A1 8/2014 Kelsen et al. Systems Concept Design, IEEE International Conference on Infor
2014/0280943 A1 9, 2014 Bobrov et al. mational Society (I-Society 2012), pp. 478-483.
2015. OO67171 A1 3/2015 Yum et al. Bierman et al., Network Configuration Protocol (NETCONF)
2015,0074279 A1* 3, 2015 Maes G06:59: Access Control Model, Internet Engineering Task Force, RFC 6536,

2015/0363724 Al 12/2015 Chatterjee et al. sts, s", R.?tools.ietforg/html/rfc6536
2015/0365301 Al 12/2015 Chatterjee et al. s: ~~ - - - ,
2016/0028581 A1 1/2016 Khalsa et al. Chanliau et al., Oracle Fusion Middleware: Oracle Platform Secu

rity Services (OPSS) FAQ, Oracle Corporation, retrieved from the
Internet: URL: http://www.oracle.com/technetwork/testcontent/

FOREIGN PATENT DOCUMENTS opss-faq-131489.pdf on Oct. 1, 2013, Jul. 2010, 6 pages.
Chiba et al., Dynamic Authorization Extension to Remote Authen

ES 1956 A Ais tication Dial in User Service (RADIUS), Network Working Group,
EP 1914951 A1 4/2008 RFC 5176, retrieved from the Internet: URL: http://tools.ietforg/
EP 2458548 A1 5, 2012 html/rfc5176 on Aug. 29, 2013, Jan. 2008, 35 pages.
EP 2893.683. A 7/2015 Clemm et al., Web Distributed Authoring and Versioning
EP 2893.684 7/2015 (WebDAV). Access Control Protocol, Network Working Group,

US 9,501,541 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

RFC 3744, retrieved from the Internet: URL: http://www.ietforg/
rfc/rfc3744.txt on Aug. 29, 2013, May 2004, 66 pages.
Datta et al., Oracle Fusion Middleware Developer's Guide for
Oracle Identity Manager, Oracle Corporation, 11g Release 2.
E27150-08, retrieved from the Internet: URL: http://docs.oracle.
com/cd/E37115 01/dev. 1112/e27150/toc.htm on Oct. 1, 2013, Sep.
2013, 1102 pages.
Demarest et al., Oracle Cloud Computing. An Oracle White Paper,
Oracle Corporation, Redwood Shores, CA, May 2010, 22 pages.
Hunter. LDAP Searching Setting the SCOPE Parameters, avail
able at http://www.idevelopment.info/data LDAP LDAP Re
sources/SEARCH Setting the SCOPE Parameter.shtml, (copy
right 1998-2013), 2 pages.
Paul et al., Architectures for the future networks and the next
generation Internet: A Survey, Computer Communications 34: 2-42
(2011).
International Patent Application No. PCT/US2013/058426, Inter
national Search Report and Written Opinion mailed on Nov. 8,
2013, 9 pages.
International Patent Application No. PCT/US2013/058596, Inter
national Search Report and Written opinion mailed on Nov. 22.
2013, 9 pages.
International Patent Application No. PCT/US2013/058638, Inter
national Search Report and Written Opinion mailed on Jan. 8, 2014.
11 pages.
International Patent Application No. PCT/US2013/058639, Inter
national Search Report and Written Opinion mailed on Jan. 8, 2014.
10 pages.
International Patent Application No. PCT/US2013/058642, Inter
national Search Report & Written Opinion mailed on Feb. 7, 2014,
17 pages.
Subi et al., Oracle Fusion Middleware Application Security Guide,
Oracle Corporation, 11g Release 1, E10043-09, retrieved from the
Internet: URL: http://docs.oracle.com/cd/E21764 01/core. 1111/
e10043/undegps.htm on Oct. 1, 2013, May 2011, 834 pages.
Teger et al., Oracle Fusion Middleware Developer's Guide for
Oracle Access Management, Oracle Corporation, 11g Release 2.
E27134-06, retrieved from the Internet: URL: http://docs.oracle.
com/cd/E37115 01/dev. 1112/e27134/toc.htm on Oct. 1, 2013, Jul.
2013, 372 pages.
Teger, Oracle Fusion Middleware Developer's Guide for Oracle
Entitlements Server, Oracle Corporation, 11g Release 1, E27154
01, retrieved from the Internet: URL: http://docs.oracle.com/cd/
E27559 01/dev. 1112/e27154/handle auth calls.htm on Oct. 1,
2013, Jul. 2012, 132 pages.
U.S. Appl. No. 13/842,269, Non Final Office Action mailed on Jun.
5, 2014, 12 pages.
U.S. Appl. No. 13/838,813, Non Final Office Action mailed on Aug.
14, 2014, 22 pages.
International Application No. PCT/US2013/058642, Invitation to
restrict or pay additional fees mailed on Jul. 23, 2014, 3 pages.
International Patent Application No. PCT/US2013/058426, Written
Opinion, mailed Aug. 19, 2014, 7 pages.
International Patent Application No. PCT/US2013/058596, Written
Opinion, mailed Aug. 19, 2014, 6 pages.
U.S. Appl. No. 13/907,689. Non-Final Office Action mailed on Jan.
7, 2015, 11 pages.
Oracle—Breaking Cloud Security Barriers with Identity Manage
ment, Oracle, 2010, 37 pages.
Oracle Identity Management 11 g An Oracle Whitepaper, Oracle,
Jul. 2010, 61 pages.
Alcaraz, Calero, Jose M. et al., “Toward a Multi-Tenancy Authori
zation System for Cloud Services', IEEE Computer and Realibily
Societies, Nov./Dec. 2010, pp. 48-55.
Tsai, Wei-Tek et al., “Role-Based Access Control Using Reference
Ontology in Clouds”, IEEE, 2011 Tenth International Symposium
on Autonomous Decentralized Systems, 2011, pp. 121-128.
Wainwright, Steve, “Oracle Public Cloud—An Enterprise Cloud for
Business Critical Applications'. Oracle, 2011, 39 pages.

Oracle Unveils Oracle Public Cloud, Oracle, Oct. 5, 2011, 2 pages.
Lau, Christina et al., “Best Practices for access control in multi
tenant cloud solutions using Tivoli Access Manager. IBM,
DeveloperWorks, May 1, 2011, 8 pages.
Rashee, Haroon et al., “Multi-Tenancy on Private Cloud'.
Enlighten, Feb. 2012, 20 pages.
The Oracle Identity Management Platform: Identity Services at
Internet Scale, Oracle, Jul. 2012, 20 pages.
U.S. Appl. No. 13/842,269. Notice of Allowance mailed on Nov. 3,
2014, 8 pages.
U.S. Appl. No. 14/019,051. Non-Final Office Action mailed on Nov.
20, 2014, 5 pages.
U.S. Appl. No. 13/838,813, Final Office Action mailed on Dec. 4.
2014, 24 pages.
U.S. Appl. No. 13/842,833, Notice of Allowance mailed on Dec. 15,
2014, 11 pages.
U.S. Appl. No. 13/840,943, Non-Final Office Action mailed on Dec.
18, 2014, 10 pages.
U.S. Appl. No. 13/843,613, Non-Final Office Action mailed on Jan.
23, 2015, 17 pages.
International Application No. PCT/US2013/058426. International
Preliminary Report on Patentability mailed on Dec. 5, 2014, 6
pageS.
International Application No. PCT/US2013/058596, International
Preliminary Report on Patentability mailed on Dec. 5, 2014, 6
pageS.
International Application No. PCT/US2013/058638, International
Preliminary Report on Patentability mailed on Jun. 12, 2015, 8
pageS.
U.S. Appl. No. 13/907,728. Non-Final Office Action mailed on Jul.
2, 2015, 14 pages.
U.S. Appl. No. 13/907,689. Non-Final Office Action mailed on Sep.
16, 2015, 17 pages.
Notice of Allowance issued Jun. 29, 2015 in U.S. Appl. No.
13/840,943, 13 pages.
Notice of Allowance issued Jul. 7, 2015 in U.S. Appl. No.
13/835,307, 11 pages.
Final Office Action mailed Jul. 21, 2015 in U.S. Appl. No.
13/838,813, 22 pages.
Non-Final Office Action mailed Feb. 18, 2015 in U.S. Appl. No.
13/835,307, 12 pages.
Written Opinion mailed Apr. 22, 2015 in International Patent
Application No. PCT/US2013/058638, 7 pages.
Final Office Action mailed May 21, 2015 in U.S. Appl. No.
13/907,689, 12 pages.
Non-Final Office Action mailed Jun. 19, 2015 in U.S. Appl. No.
13/836,625, 41 pages.
Koved et al., Access Rights Analysis for Java, Proceedings of the
17th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, 2002, pp. 359-372.
Kagal et al., A Policy Language for a Pervasive Computing Envi
ronment, Proceedings of the 4th IEEE International Workshop on
Policies for Distributed Systems and Networks, 2003, pp. 63-74.
Emig et al. An Access Control Metamodel for Web Service
Oriented Architecture, IEEE, 2007, pp. 1-8.
Jahidet al., MyABDAC: Compiling XACML Policies for Attribute
Based Database Access Control, ACM, Feb. 23, 2011, pp. 97-108.
Notice of Allowance mailed Feb. 4, 2015 in U.S. Appl. No.
13/838,537, 19 pages.
Notice of Allowance mailed Feb. 23, 2015 in U.S. Appl. No.
13/838,113, 15 pages.
Non-Final Office Action mailed Mar. 12, 2015 in U.S. Appl. No.
13/838,813, 21 pages.
Oracle, Identity Manager Design Console Guide, Release 9.1.0, Jun.
2008, 208 pages.
Buyya, Cloud Computing Principles and Paradigms, 2011, 674
pageS.
Chong et al., ISVs are from Mars, and Hosters are from Venus,
https://msdn.microsoft.com/en-us/library, bb891759.aspx. Nov.
2007, 28 pages.
Dan et al., Web services on demand: WSLA-driven automated
management, IBM Systems Journal Volume: 43 Issue: 1, 2004, pp.
136-158.

US 9,501,541 B2
Page 5

(56) References Cited

OTHER PUBLICATIONS

Keahey et al., Virtual Workspaces for Scientific Applications, 2007.
pp. 1-5.
International Application No. PCT/US2013/058639. International
Preliminary Report on Patentability mailed on Sep. 24, 2015, 8
pageS.
International Application No. PCT/US2013/058639, Written Opin
ion mailed on Jul. 7, 2015, 6 pages.
International Application No. PCT/US2013/058642, International
Preliminary Report on Patentability mailed on Jan. 20, 2015, 10
pageS.
International Application No. PCT/US2015/016214, International
Search Report and Written Opinion mailed on May 11, 2015, 11
pageS.
U.S. Appl. No. 13/907.689, Advisory Action mailed on Aug. 12,
2015, 2 pages.
U.S. Appl. No. 13/907,616, Non-Final Office Action mailed on Dec.
4, 2015, 9 pages.
U.S. Appl. No. 13/907,728, Final Office Action mailed on Dec. 17,
2015, 16 pages.

U.S. Appl. No. 13/836,625, Final Office Action mailed on Jan. 13,
2016, 46 pages.
EP Patent Application No. 137667770, Office Action mailed on
Feb. 10, 2016, 5 pages.
U.S. Appl. No. 13/907,689. Notice of Allowance mailed Apr. 22.
2016, 8 pages.
U.S. Appl. No. 14/877,835, Non-Final Office Action mailed Jun. 17,
2016, 12 pages.
U.S. Appl. No. 13/907,616, Final Office Action mailed Jun. 28,
2016, 9 pages.
International Patent Application No. PCT/US2015/016214, Written
Opinion mailed Jun. 3, 2016, 5 pages.
International Application No. PCT/US2015/016214, International
Preliminary Report on Patentability mailed on Sep. 19, 2016, 44
pageS.
U.S. Appl. No. 14/624.356, Non-Final Office Action mailed on Sep.
15, 2016, 9 pages.
U.S. Appl. No. 13/907.728. Notice of Allowance mailed on Aug. 25.
2016, 13 pages.

* cited by examiner

U.S. Patent

CC
fANAGEMEN
FNC CRAY A. 8

Q8

Nov. 22, 2016 Sheet 1 of 23

CO) NFRASKCURE SYSE, CO

SOFTWARE ASA SERVICE (SAAS)

CRW -Cyff AEN
SERVICES O SERVCES 2

US 9,501,541 B2

PLATFORMAS A SERVICE (PAAS)
- ACRV O4.

CAA8ASE EWARE
CC SRVCES ... O SERVCES

AVA COO
SERVCES 6

NFRASTRUCTURE AS A SERVICE (AAS)
2AM

NRASRCR RESORCES O6

FiG. A

US 9,501,541 B2 Sheet 2 of 23 Nov. 22, 2016 U.S. Patent

U.S. Patent Nov. 22, 2016 Sheet 4 of 23

3CO

ROCESS
St BSCRPON

CRE:
3O2

ENY BSNESS
PROCESS

ASSOCAEW
ORER

3O4.

EXECE BUSNESS
ROCESS

ASSOCAEW
CROER
308

SEN NCCAON
REGARNG SAS
O ROWSOMEO

CRE:
3O8

fr. 3A

US 9,501,541 B2

US 9,501,541 B2 U.S. Patent

U.S. Patent Nov. 22, 2016 Sheet 6 of 23 US 9,501,541 B2

SERVCE ADVN
COO U

32

AACENER

ACCON
AVN

SORE CO) 212
30

SERVE AWN.
COU Ui
22

C}{RDER ASCENTRAL
MANAGEMENT COMPONEN:

C}}}. 24 48)

AA CENER 2

CENTRADEPOYVEN
SERVCE AWN.
CO
22

OAA CENEK 3

c. 4

U.S. Patent Nov. 22, 2016 Sheet 7 of 23 US 9,501,541 B2

AS fCE
204

SO MEDE
2O6

AfASERVCE
ROWSO-NG

CONROC) WAE VOE AEX EPOYER WOE
SCO 5C2 iOE 2O

SO4.

SA S S Ef3.Y fW ASSEMBLY

O8 ASSEBY

Wf f.OE y
806 NFRASRCRE

RESORCES O6
NFRASTR (RE
RESOURCES 8

. .

U.S. Patent Nov. 22, 2016 Sheet 8 of 23 US 9,501,541 B2

SOAP JMX UDBC

SD SD DATA
SD-WS MODULE MONITORING ACCESS

600 MODULE MODULE
606 608

SDIREOUEST
CONTROLLER
MODULE

602

SDTASK
MANAGER
MODULE

604
SD

COMMON
LIBRARY
MODULE

610

VAB
624
SD CONNECTOR
MODULE 612

HS
628

PLUG-N
626

WCC MA NUVAO
616 618 62O

SD MODULE 2.06

F.G. 6

U.S. Patent Nov. 22, 2016 Sheet 9 of 23

700

RECEIVE BUSINESS
PROCESS

ASSOCATED WITH
ORDER
702

TRANSLATE BUSINESS
PROCESS INTO

SERIES OF TASKS
704

PROVISION
RESOURCES BASED
ON SERIES OF TASKS

7O6

FIG. 7A

US 9,501,541 B2

US 9,501,541 B2 Sheet 10 of 23 Nov. 22, 2016 U.S. Patent

US 9,501,541 B2 Sheet 11 of 23 Nov. 22, 2016 U.S. Patent

34
×

× × × × × × × × × × ×

‘º. :::***************************

* ! : • ; :

&

· · · · · · · · · · :

* * *

S.
s
S.
&

×

US 9,501,541 B2 Sheet 12 of 23 Nov. 22, 2016 U.S. Patent

F. D.

US 9,501,541 B2 Sheet 13 of 23 Nov. 22, 2016

æpo?? ænd?a?o oépo?? e??? d?uoro

U.S. Patent

U.S. Patent Nov. 22, 2016 Sheet 14 of 23

SORNG SBSCRCN ORDER
MFORAON ROW A CSOVER
EN.YNG ASERVCE ROW ASE. O.

SERVICES, WHEREN THE
SBSCRPON ORDER NORWAON
NCES CSOMER-SPECFC

CON GRAON
802

EER?NNG ASERVCE ASSOCAE
W - SBSCRON ORDER

NFORMAON
804.

WAMG A KOWSOMEO
ANONYWOS EYEN C
SUBSCRIPTION ORDER NFORMATION,
WEREN E RE-PROWSONE
ANONYWOS EOY VEN S

SOEC CAY PRE-ROWSONE FOR
- EERVNEO SERVICE

806

CREANG A SERVCE NSANCE
SECCAY FOR - CSOf BY
CONGRNG E RE-PROWS ONE
ANONYWOS EOY is W. E.
C SDER-S-ECC CONGRAON

808

FIG. 8A

US 9,501,541 B2

8O

U.S. Patent Nov. 22, 2016 Sheet 15 Of 23 US 9,501,541 B2

850
ACORE - ADRESS

853

CREAE WRA ASSESY BOER
OVE
854

CrEAE ECYVEN AN
856

CrEAE 2FS WOMES
858

EOY ASSEMBY
86

ASSEV8Y S SE O FREE NS
AA3ASE

882

FIG. 8B

US 9,501,541 B2 Sheet 16 of 23 Nov. 22, 2016 U.S. Patent

US 9,501,541 B2 Sheet 17 Of 23 Nov. 22, 2016 U.S. Patent

**xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx3xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
i. &rarrararaaaaaaaaaaaaaaaaaaaaa.

rrrrrrrrr.
as:

****….……..

US 9,501,541 B2 Sheet 18 of 23 Nov. 22, 2016 U.S. Patent

501,541 B2 9 Sheet 19 Of 23 US 9 Nov. 22, 2016 U.S. Patent

U.S. Patent Nov. 22, 2016 Sheet 20 of 23 US 9,501,541 B2

8:3: 8: 888 &gs: 8: 8:a:::8: 888: 833xx.

FIG 11 C

U.S. Patent Nov. 22, 2016 Sheet 21 of 23 US 9,501,541 B2

Compute Node Compute Node

Schenna 20

Data Fie Data Fie

Storage

FIG. 12

U.S. Patent Nov. 22, 2016 Sheet 22 of 23

CUSOWER RECRES AABASE
SERVCE FROM CO . OR SORE

1302

COO SENS - CS OVER
RECES O AS VCE

13O4.

AS WOOLE NAE ROWSONNG BY
CANGS VOE WA 3PE.

1306

S. MOE CAS PSOAP'S M -
COUD Ui TO ASSOCATE A SCHEMA
FOR - REQUESTNG CSOMER

3O8.

SD MODE NOFES AS MODE,
AN AS VOE NOFES (CSOWER

3 O

FIG. 13

US 9,501,541 B2

3OO

US 9,501,541 B2

{}{}{}}

U.S. Patent

US 9,501,541 B2
1.

SEPARATION OF POD PROVISIONING AND
SERVICE PROVISIONING

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application is a non-provisional of and claims
the benefit and priority under 35 U.S.C. 119(e) of the
following applications, the entire contents of which are
incorporated herein by reference for all purposes:
(1) U.S. Provisional Application No. 61/698,413, filed Sep.

7, 2012, entitled TENANT AUTOMATION SYSTEM;
(2) U.S. Provisional Application No. 61/698,459, filed Sep.

7, 2012, entitled SERVICE DEVELOPMENT INFRA
STRUCTURE;

U.S. Provisional Application No. 61/785,299, filed Mar. 14,
2013, entitled CLOUD INFRASTRUCTURE;

(4) U.S. Provisional Application No. 61/801,160, filed Mar.
15, 2013, entitled SEPARATION OF POD PROVISION
ING AND SERVICE PROVISIONING: and

(5) U.S. Provisional Application No. 61/794,427, filed Mar.
15, 2013, entitled CLOUD INFRASTRUCTURE.

BACKGROUND

The present disclosure relates to computer systems and
Software, and more particularly to techniques for facilitating
and automating the provision of services in a cloud envi
rOnment.

Cloud computing is a model for enabling convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, appli
cations, and services). The services provided or accessed
through the cloud (or network) are referred to as cloud
services. There is a lot of processing that needs to be
performed by a cloud service provider to make cloud
services available to a subscribing customer. Due to its
complexity, much of this processing is still done manually.
For example, provisioning resources for providing Such
cloud services can be a very labor intensive process.

SUMMARY

This Summary is not intended to identify key or essential
features of the claimed subject matter, nor is it intended to
be used in isolation to determine the scope of the claimed
subject matter. The subject matter should be understood by
reference to appropriate portions of the entire specification
of this patent, any or all drawings and each claim.

According to some embodiments, a method for POD
provisioning and service provisioning is disclosed. The
method may comprise storing, by a cloud infrastructure
system, Subscription order information from a customer
identifying a service from a set of cloud services provided by
the cloud infrastructure system, the cloud infrastructure
system comprising one or more computing devices, wherein
the Subscription order information includes customer-spe
cific configuration. Additionally, the method may comprise
determining, by a computing device from the one or more
computing devices, a service associated with the Subscrip
tion order information. Moreover, the method may comprise
mapping a pre-provisioned anonymous deployment to the
Subscription order information, wherein the pre-provisioned
anonymous deployment is specifically pre-provisioned for
the determined service. Furthermore, the method may com
prise creating, by a computing device from the one or more
computing devices, a service instance specifically for the

10

15

25

30

35

40

45

50

55

60

65

2
customer by configuring the pre-provisioned anonymous
deployment with the customer-specific configuration.

According to another embodiment, a system comprising:
one or more computing device configurable to offer a set of
cloud services; a memory configurable to store subscription
order information from a customer identifying a service
from a set of cloud services, wherein the subscription order
information includes customer-specific configuration; and
wherein a computing device from the one or more comput
ing devices is configurable to: determine a service associated
with the Subscription order information; map a pre-provi
Sioned anonymous deployment to the Subscription order
information, wherein the pre-provisioned anonymous
deployment is specifically pre-provisioned for the deter
mined service; and create a service instance specifically for
the customer by configuring the pre-provisioned anonymous
deployment with the customer-specific configuration.

According to another embodiment, one or more com
puter-readable media storing computer-executable instruc
tions for a cloud infrastructure system configured to offer a
set of cloud services that, when executed, cause one or more
computing devices in the cloud infrastructure system to:
store Subscription order information from a customer iden
tifying a service from a set of cloud services, wherein the
Subscription order information includes customer-specific
configuration; determine a service associated with the Sub
Scription order information; map a pre-provisioned anony
mous deployment to the Subscription order information,
wherein the pre-provisioned anonymous deployment is spe
cifically pre-provisioned for the determined service; and
create a service instance specifically for the customer by
configuring the pre-provisioned anonymous deployment
with the customer-specific configuration.

BRIEF DESCRIPTION OF THE DRAWINGS

Illustrative embodiments of the present invention are
described in detail below with reference to the following
drawing figures:

FIG. 1A is a logical view of a cloud infrastructure system
according to one embodiment of the present invention.

FIG. 1B is a simplified block diagram of a hardware/
Software stack that may be used to implement a cloud
infrastructure system according to an embodiment of the
present invention.

FIG. 2 is a simplified block diagram of a system envi
ronment for implementing the cloud infrastructure system
shown in FIG. 1A.

FIG. 3A depicts a simplified flowchart 300 depicting
processing that may be performed by the TAS module in the
cloud infrastructure system, in accordance with an embodi
ment of the present invention.

FIG. 3B depicts a simplified high level diagram of one or
more sub-modules in the TAS module in the cloud infra
structure system, in accordance with an embodiment of the
present invention.

FIG. 4 depicts an exemplary distributed deployment of
the TAS component, according to an embodiment of the
present invention.

FIG. 5 is a simplified block diagram illustrating the
interactions of the SDI module with one or more modules in
the cloud infrastructure system, in accordance with an
embodiment of the present invention.

FIG. 6 depicts a simplified high level diagram of sub
modules of the SDI module according to an embodiment of
the present invention.

US 9,501,541 B2
3

FIG. 7A depicts a simplified flowchart depicting process
ing that may be performed by the SDI component in the
cloud infrastructure system, in accordance with an embodi
ment of the present invention.

FIG. 7B depicts a simplified block diagram showing the
high-level architecture of a Nuviaq system 710 and its
relationships with other cloud infrastructure components
according to an embodiment of the present invention.
FIG.7C depicts an example sequence diagram illustrating

steps of a provisioning process using a Nuviaq System
according to an embodiment of the present invention.

FIG. 7D depicts an example sequence diagram illustrating
steps of a deployment process using a Nuviaq System
according to an embodiment of the present invention.

FIG. 7E depicts an example of database instances provi
Sioned for a database service according to an embodiment of
the present invention.

FIGS. 8A-B depict simplified flowcharts depicting pro
cessing that may be performed by SDI module in the cloud
infrastructure system, in accordance with an embodiment of
the present invention.

FIG. 9 illustrates a provisioning request flow, according to
Some embodiments.

FIG. 10 illustrates an end-to-end flow of provisioning a
Java service and a database service together for a customer.

FIG. 11A illustrates the provisioning of a Java cloud
service instance, according to one embodiment.

FIG. 11B illustrates the provisioning of a Java cloud
service instance and a Fusion application association,
according to one embodiment.

FIG. 11C illustrates a PaaS and a SaaS service association
process, according to some embodiments of the invention.

FIG. 12 illustrates a high level logical view of a database
cloud service, according to some embodiments.

FIG. 13 illustrates a service provisioning flow for a
multi-tenant database service, according to some embodi
mentS.

FIG. 14 is a simplified block diagram of a computing
system 1000 that may be used in accordance with embodi
ments of the present invention.

DETAILED DESCRIPTION

In the following description, for the purposes of expla
nation, specific details are set forth in order to provide a
thorough understanding of embodiments of the invention.
However, it will be apparent that various embodiments may
be practiced without these specific details. The figures and
description are not intended to be restrictive.

Certain embodiments of the present invention provide
techniques for automating the provisioning, managing and
tracking of services provided by a cloud infrastructure
system.

In certain embodiments, a cloud infrastructure system
may include a Suite of applications, middleware and data
base service offerings that are delivered to a customer in a
self-service, Subscription-based, elastically scalable, reli
able, highly available, and secure manner. An example of
such a cloud infrastructure system is the Oracle Public
Cloud provided by the present assignee.
A cloud infrastructure system may provide many capa

bilities including, but not limited to, provisioning, managing
and tracking a customer's Subscription for services and
resources in the cloud infrastructure system, providing pre
dictable operating expenses to customers utilizing the Ser
vices in the cloud infrastructure system, providing robust
identity domain separation and protection of a customer's

5

10

15

25

30

35

40

45

50

55

60

65

4
data in the cloud infrastructure system, providing customers
with a transparent architecture and control of the design of
the cloud infrastructure system, providing customers assured
data protection and compliance with data privacy standards
and regulations, providing customers with an integrated
development experience for building and deploying services
in the cloud infrastructure system and providing customers
with a seamless integration between business Software,
middleware, database and infrastructure services in the
cloud infrastructure system.

In certain embodiments, services provided by the cloud
infrastructure system may include a host of services that are
made available to users of the cloud infrastructure system on
demand Such as online data storage and backup solutions,
Web-based e-mail services, hosted office suites and docu
ment collaboration services, database processing, managed
technical support services and the like. Services provided by
the cloud infrastructure system can dynamically scale to
meet the needs of its users. A specific instantiation of a
service provided by cloud infrastructure system is referred to
herein as a service instance. In general, any service made
available to a user via a communication network Such as the
Internet from a cloud service provider's system is referred to
as a cloud service. Typically, in a public cloud environment,
servers and systems that make up the cloud service provid
er's system are different from the customer's own on
premises servers and systems. For example, a cloud service
provider's system may host an application and a user may,
via a communication network Such as the Internet, on
demand, order and use the application.
A service in a computer network cloud infrastructure

includes protected computer network access to storage, a
hosted database, a hosted web server, a Software application,
or other service provided by a cloud vendor to a user, or as
otherwise known in the art. For example, a service can
include password-protected access to remote storage on the
cloud through the Internet. As another example, a service
can include a web service-based hosted relational database
and Script-language middleware engine for private use by a
networked developer. As another example, a service can
include access to an email software application hosted on a
cloud vendors web site.

FIG. 1A is a logical view of a cloud infrastructure system
according to one embodiment of the present invention.
Cloud infrastructure system 100 may provide a variety of
services via a cloud or networked environment. These
services may include one or more services provided under
Software as a Service (SaaS) category, Platform as a Service
(PaaS) category, Infrastructure as a Service (IaaS) category,
or other categories of services including hybrid services. A
customer, via a Subscription order, may order one or more
services provided by cloud infrastructure system 100. Cloud
infrastructure system 100 then performs processing to pro
vide the services in the customer's subscription order.

Cloud infrastructure system 100 may provide the cloud
services via different deployment models. For example,
services may be provided under a public cloud model where
cloud infrastructure system 100 is owned by an organization
selling cloud services (e.g., owned by Oracle) and the
services are made available to the general public or different
industry enterprises. As another example, services may be
provided under a private cloud model where cloud infra
structure system 100 is operated solely for a single organi
Zation and may provide services for one or more entities
within the organization. The cloud services may also be
provided under a community cloud model where cloud
infrastructure system 100 and the services provided by

US 9,501,541 B2
5

system 100 are shared by several organizations in a related
community. The cloud services may also be provided under
a hybrid cloud model, which is a combination of two or more
different models.
As shown in FIG. 1A, cloud infrastructure system 100

may comprise multiple components, which working in con
junction, enable provision of services provided by cloud
infrastructure system 100. In the embodiment illustrated in
FIG. 1A, cloud infrastructure system 100 includes a SaaS
platform 102, a PaaS platform 104, an IaaS platform 110.
infrastructure resources 106, and cloud management func
tionality 108. These components may be implemented in
hardware, or software, or combinations thereof.

SaaS platform 102 is configured to provide cloud services
that fall under the SaaS category. For example, SaaS plat
form 102 may provide capabilities to build and deliver a
Suite of on-demand applications on an integrated develop
ment and deployment platform. SaaS platform 102 may
manage and control the underlying software and infrastruc
ture for providing the SaaS services. By utilizing the ser
vices provided by SaaS platform 102, customers can utilize
applications executing on cloud infrastructure system 100.
Customers can acquire the application services without the
need for customers to purchase separate licenses and Sup
port.

Various different SaaS services may be provided.
Examples include without limitation services that provide
Solutions for sales performance management, enterprise
integration and business flexibility for large organizations,
and the like. In one embodiment, the SaaS services may
include Customer Relationship Management (CRM) ser
vices 110 (e.g., Fusion CRM services provided by the Oracle
cloud), Human Capital Management (HCM)/Talent Man
agement services 112, and the like. CRM services 110 may
include services directed to reporting and management of a
sales activity cycle to a customer, and others. HCM/Talent
services 112 may include services directed to providing
global workforce lifecycle management and talent manage
ment services to a customer.

Various different PaaS services may be provided by PaaS
platform 104 in a standardized, shared and elastically scal
able application development and deployment platform.
Examples of PaaS services may include without limitation
services that enable organizations (such as Oracle) to con
Solidate existing applications on a shared, common archi
tecture, as well as the ability to build new applications that
leverage the shared services provided by the platform. PaaS
platform 104 may manage and control the underlying soft
ware and infrastructure for providing the PaaS services.
Customers can acquire the PaaS services provided by cloud
infrastructure system 100 without the need for customers to
purchase separate licenses and Support. Examples of PaaS
services include without limitation Oracle Java Cloud Ser
vice (JCS), Oracle Database Cloud Service (DBCS), and
others.
By utilizing the services provided by PaaS platform 104,

customers can utilize programming languages and tools
supported by cloud infrastructure system 100 and also
control the deployed services. In some embodiments, PaaS
services provided by the cloud infrastructure system 100
may include database cloud services 114, middleware cloud
services (e.g., Oracle Fusion Middleware services) 116 and
Java cloud services 117. In one embodiment, database cloud
services 114 may support shared service deployment models
that enable organizations to pool database resources and
offer customers a database-as-a-service in the form of a
database cloud, middleware cloud services 116 provides a

10

15

25

30

35

40

45

50

55

60

65

6
platform for customers to develop and deploy various busi
ness applications and Java cloud services 117 provides a
platform for customers to deploy Java applications, in the
cloud infrastructure system 100. The components in SaaS
platform 102 and PaaS platform 104 illustrated in FIG. 1A
are meant for illustrative purposes only and are not intended
to limit the scope of embodiments of the present invention.
In alternate embodiments, SaaS platform 102 and PaaS
platform 104 may include additional components for pro
viding additional services to the customers of cloud infra
structure system 100.

Various different IaaS services may be provided by IaaS
platform 110. The IaaS services facilitate the management
and control of the underlying computing resources such as
storage, networks, and other fundamental computing
resources for customers utilizing services provided by the
SaaS platform and the PaaS platform.

In certain embodiments, cloud infrastructure system 100
includes infrastructure resources 106 for providing the
resources used to provide various services to customers of
the cloud infrastructure system 100. In one embodiment,
infrastructure resources 106 includes pre-integrated and
optimized combinations of hardware such as servers, storage
and networking resources to execute the services provided
by the PaaS platform and the SaaS platform.

In certain embodiments, cloud management functionality
108 provides comprehensive management of cloud services
(e.g., SaaS, PaaS, IaaS services) in the cloud infrastructure
system 100. In one embodiment, cloud management func
tionality 108 includes capabilities for provisioning, manag
ing and tracking a customer's subscription received by the
cloud infrastructure system 100, and the like.

FIG. 1B is a simplified block diagram of a hardware/
Software stack that may be used to implement cloud infra
structure system 100 according to an embodiment of the
present invention. It should be appreciated that implemen
tation depicted in FIG. 1B may have other components than
those depicted in FIG. 1B. Further, the embodiment shown
in FIG. 1B is only one example of a cloud infrastructure
system that may incorporate an embodiment of the inven
tion. In some other embodiments, cloud infrastructure sys
tem 100 may have more or fewer components than shown in
FIG. 1B, may combine two or more components, or may
have a different configuration or arrangement of compo
nents. In certain embodiments, the hardware and software
components are stacked so as to provide vertical integration
that provides optimal performance.

Various types of users may interact with cloud infrastruc
ture system 100. These users may include, for example, end
users 150 that can interact with cloud infrastructure system
100 using various client devices such as desktops, mobile
devices, tablets, and the like. The users may also include
developers/programmers 152 who may interact with cloud
infrastructure system 100 using command line interfaces
(CLIS), application programming interfaces (APIs), through
various integrated development environments (IDES), and
via other applications. User may also include operations
personnel 154. These may include personnel of the cloud
service provider or personnel of other users.

Application services layer 156 identifies various cloud
services that may be offered by cloud infrastructure system
100. These services may be mapped to or associated with
respective software components 160 (e.g., Oracle WebLogic
server for providing Java services, oracle database for pro
viding database services, and the like) via a service integra
tion and linkages layer 158.

US 9,501,541 B2
7

In certain embodiments, a number of internal services 162
may be provided that are shared by different components or
modules of cloud infrastructure system 100 and by the
services provided by cloud infrastructure system 100. These
internal shared services may include, without limitation, a
security and identity service, an integration service, an
enterprise repository service, an enterprise manager service,
a virus Scanning and white list service, a high availability,
backup and recovery service, service for enabling cloud
Support in IDEs, an email service, a notification service, a
file transfer service, and the like.

Runtime infrastructure layer 164 represents the hardware
layer on which the various other layers and components are
built. In certain embodiments, runtime infrastructure layer
164 may comprise one Oracle’s Exadata machines for
providing storage, processing, and networking resources. An
Exadata machine may be composed of various database
servers, storage Servers, networking resources, and other
components for hosting cloud-services related Software lay
ers. In certain embodiments, the Exadata machines may be
designed to work with Oracle Exalogic, which is an engi
neered system providing an assemblage of storage, compute,
network, and software resources. The combination of Exa
data and Exalogic provides a complete hardware and soft
ware engineered solution that delivers high-performance,
highly available, Scalable, secure, and a managed platform
for providing cloud services.

FIG. 2 is a simplified block diagram of a system envi
ronment for implementing the cloud infrastructure system
shown in FIG. 1A according to an embodiment of the
present invention. In the illustrated embodiment, system
environment 230 includes one or more client computing
devices 224, 226 and 228 that may be used by users to
interact with cloud infrastructure system 100. A client device
may be configured to operate a client application Such as a
web browser, a proprietary client application (e.g., Oracle
Forms), or some other application, which may be used by a
user of the client device to interact with cloud infrastructure
system 100 to utilize services provided by cloud infrastruc
ture system 100.

It should be appreciated that cloud infrastructure system
100 depicted in FIG. 2 may have other components than
those depicted in FIG. 2. Further, the embodiment shown in
FIG. 2 is only one example of a cloud infrastructure system
that may incorporate an embodiment of the invention. In
some other embodiments, cloud infrastructure system 100
may have more or fewer components than shown in FIG. 2,
may combine two or more components, or may have a
different configuration or arrangement of components.

Client computing devices 224, 226 and 228 may be
general purpose personal computers (including, by way of
example, personal computers and/or laptop computers run
ning various versions of Microsoft Windows and/or Apple
Macintosh operating systems), cell phones or PDAS (run
ning software such as Microsoft Windows Mobile and being
Internet, e-mail, SMS, Blackberry, or other communication
protocol enabled), workstation computers running any of a
variety of commercially-available UNIX or UNIX-like oper
ating systems (including without limitation the variety of
GNU/Linux operating systems), or any other computing
device. For example, client computing devices 224, 226 and
228 may be any other electronic device, such as a thin-client
computer, Internet-enabled gaming system, and/or personal
messaging device, capable of communicating over a net
work (e.g., network 232 described below). Although exem
plary system environment 230 is shown with three client
computing devices, any number of client computing devices

10

15

25

30

35

40

45

50

55

60

65

8
may be supported. Other devices such as devices with
sensors, etc. may interact with cloud infrastructure system
1OO.

A network 232 may facilitate communications and
exchange of data between clients 224, 226 and 228 and
cloud infrastructure system 100. Network 232 may be any
type of network familiar to those skilled in the art that can
Support data communications using any of a variety of
commercially-available protocols, including without limita
tion TCP/IP, SNA, IPX, AppleTalk, and the like. Merely by
way of example, network 232 can be a local area network
(LAN) such as an Ethernet network, a Token-Ring network
and/or the like, a wide-area network, a virtual network,
including without limitation a virtual private network
(VPN), the Internet, an intranet, an extranet, a public
switched telephone network (PSTN), an infra-red network,
a wireless network (e.g., a network operating under any of
the IEEE 802.1X suite of protocols, the Bluetooth protocol
known in the art, and/or any other wireless protocol), and/or
any combination of these and/or other networks.

Cloud infrastructure system 100 may comprise one or
more computers and/or servers which may be general pur
pose computers, specialized server computers (including, by
way of example, PC servers, UNIX servers, mid-range
servers, mainframe computers, rack-mounted servers, etc.),
server farms, server clusters, or any other appropriate
arrangement and/or combination. The computing devices
that make up cloud infrastructure system 100 may run any
of operating systems or a variety of additional server appli
cations and/or mid-tier applications, including HTTP serv
ers, FTP servers, CGI servers, Java servers, database servers,
and the like. Exemplary database servers include without
limitation those commercially available from Oracle, Micro
soft, Sybase, IBM and the like.

In various embodiments, cloud infrastructure system 100
may be adapted to automatically provision, manage and
track a customer's subscription to services offered by cloud
infrastructure system 100. In one embodiment, as depicted
in FIG. 2, the components in cloud infrastructure system 100
include an Identity Management (IDM) module 200, a
services module 202, a Tenant Automation System (TAS)
module 204, a Service Deployment Infrastructure (SDI)
module 206, an Enterprise Manager (EM) module 208, one
or more front-end web interfaces such as a store user
interface (UI) 210, a cloud user interface (UI) 212, and a
Support user interface (UI) 216, an order management mod
ule 214, sales personnel 218, operator personnel 220 and an
order database 224. These modules may include or be
provided using one or more computers and/or servers which
may be general purpose computers, specialized server com
puters, server farms, server clusters, or any other appropriate
arrangement and/or combination. In one embodiment, one or
more of these modules can be provided by cloud manage
ment functionality 108 or IaaS platform 110 in cloud infra
structure system 100. The various modules of the cloud
infrastructure system 100 depicted in FIG. 2 are meant for
illustrative purposes only and are not intended to limit the
scope of embodiments of the present invention. Alternative
embodiments may include more or fewer modules than
those shown in FIG. 2.

In an exemplary operation, at (1) a customer using a client
device such as client device 224 or 226 may interact with
cloud infrastructure system 100 by browsing the various
services provided by cloud infrastructure system 100 and
placing an order for a Subscription for one or more services
offered by cloud infrastructure system 100. In certain

US 9,501,541 B2
9

embodiments, the customer may access store UI 210 or
cloud UI 212 and place a subscription order via these user
interfaces.
The order information received by cloud infrastructure

system 100 in response to the customer placing an order may
include information identifying the customer and one or
more services offered by the cloud infrastructure system 100
that the customer intends to Subscribe to. A single order may
include orders for multiple services. For instance, a cus
tomer may login to cloud UI 212 and request a subscription
for a CRM service and a Java cloud service in the same
order.

Additionally, the order may also include one or more
service levels for the ordered services. As used herein, and
as will be discussed in greater detail below, a service level
for a service determines the amount of resources to be
allocated for providing the requested service in the context
of the Subscription, such as the amount of storage, amount
of computing resources, data transfer facilities, and the like.
For example, a basic service level may provide a minimum
level of storage, data transmission, or number of users, and
higher service levels may include additional resources.

In addition, in some instances, the order information
received by cloud infrastructure system 100 may include
information indicative of a customer level, and the time
period during which the service is desired. The customer
level specifies the priority of the customer making the
Subscription request. In one example, the priority may be
determined based on the quality of service that the cloud
infrastructure system 100 guarantees or promises the cus
tomer as specified by a Service Level Agreement (SLA)
agreed to between the customer and the provider of the cloud
services. In one example, the different customer levels
include a basic level, a silver level and a gold level. The time
period for a service may specify the start date and time for
the service and the time period for which the service is
desired (e.g., a service end date and time may be specified).

In one embodiment, a customer may request a new
subscription via store UI 210 or request for a trial subscrip
tion via cloud UI 212. In certain embodiments, store UI 210
may represent the service provider's eCommerce store front
(e.g., www.oracle.com/store for Oracle Cloud services).
Cloud UI 212 may represent a business interface for the
service provider. Consumer can explore available services
and sign up for interested services through cloud UI 212.
Cloud UI 212 captures user input necessary for ordering trial
subscriptions provided by cloud infrastructure system 100.
Cloud UI 212 may also be used to view account features and
configure the runtime environment located within cloud
infrastructure system 100. In addition to placing an order for
a new subscription, store UI 210 may also enable the
customer to perform other Subscription-related tasks Such as
changing the service level of a Subscription, extending the
term of the Subscription, increasing the service level of a
Subscription, terminating an existing Subscription, and the
like.

After an order has been placed per (1), at (2), the order
information that is received via either store UI 210 or cloud
UI 212 is stored in order database 224, which can be one of
several databases operated by cloud infrastructure system
100 and utilized in conjunction with other system elements.
While order database 224 is shown logically as a single
database in FIG. 2, in actual implementation, this may
comprise one or more databases.

At (3), the order is forwarded to order management
module 214. Order management module 214 is configured
to perform billing and accounting functions related to the

10

15

25

30

35

40

45

50

55

60

65

10
order Such as Verifying the order and upon verification,
booking the order. In certain embodiments, order manage
ment module 214 may include a contract management
module and an install base module. The contract manage
ment module may store contract information associated with
the customer's Subscription order Such as the customer's
service level agreement (SLA) with cloud infrastructure
system 100. The install base module may include detailed
descriptions of the services in the customer's Subscription
order. In addition to order information, the install base
module may track installation details related to the services,
product status and Support service history related to the
services. As a customer orders new services or upgrades
existing ones, the install base module may automatically add
new order information.
At (4), information regarding the order is communicated

to TAS module 204. In one embodiment, TAS module 204
utilizes the order information to orchestrate the provisioning
of services and resources for the order placed by the cus
tomer. At (5), TAS component 204 orchestrates the provi
Sioning of resources to Support the Subscribed services using
the services of SDI module 206. At (6) TAS module 204
provides information related to the provisioned order
received from SDI module 206 to services module 202. In
some embodiments, at (7), SDI module 206 may also use
services provided by services module 202 to allocate and
configure the resources needed to fulfill the customer's
Subscription order.
At (8), services module 202 sends a notification to the

customers on client devices 224, 226 and 228 regarding the
status of the order.

In certain embodiments, TAS module 204 functions as an
orchestration component that manages business processes
associated with each order and applies business logic to
determine whether an order should proceed to provisioning.
In one embodiment, upon receiving an order for a new
subscription, TAS module 204 sends a request to SDI
module 206 to allocate resources and configure those
resources needed to fulfill the subscription order. SDI mod
ule 206 enables the allocation of resources for the services
ordered by the customer. SDI module 206 provides a level
of abstraction between the cloud services provided by cloud
infrastructure system 100 and the physical implementation
layer that is used to provision the resources for providing the
requested services. TAS module 204 may thus be isolated
from implementation details such as whether or not services
and resources are actually provisioned on the fly or pre
provisioned and only allocated/assigned upon request.

In certain embodiments, a user may use store UI 210 to
directly interact with order management module 214 to
perform billing and accounting related functions such as
verifying the order and upon verification, booking the order.
In some embodiments, instead of a customer placing an
order, at (9), the order may instead be placed by sales
personnel 218 on behalf of the customer such as a custom
er's service representative or sales representative. Sales
personnel 218 may directly interact with order management
module 214 via a user interface (not shown in FIG. 2)
provided by order management module 214 for placing
orders or for providing quotes for the customer. This, for
example, may be done for large customers where the order
may be placed by the customer's sales representative
through order management module 214. The sales represen
tative may set up the subscription on behalf of the customer.
EM module 208 is configured to monitor activities related

to managing and tracking a customer's Subscription in cloud
infrastructure system 100. EM module 208 collects usage

US 9,501,541 B2
11

statistics for the services in the subscription order such as the
amount of storage used, the amount data transferred, the
number of users, and the amount of system up time and
system down time. At (10), a host operator personnel 220,
who may be an employee of a provider of cloud infrastruc
ture system 100, may interact with EM module 208 via an
enterprise manager user interface (not shown in FIG. 2) to
manage systems and resources on which services are pro
visioned within cloud infrastructure system 100.

Identity management (IDM) module 200 is configured to
provide identity services Such as access management and
authorization services in cloud infrastructure system 100. In
one embodiment, IDM module 200 controls information
about customers who wish to utilize the services provided by
cloud infrastructure system 100. Such information can
include information that authenticates the identities of such
customers and information that describes which actions
those customers are authorized to perform relative to various
system resources (e.g., files, directories, applications, com
munication ports, memory segments, etc.) IDM module 200
can also include the management of descriptive information
about each customer and about how and by whom that
descriptive information can be accessed and modified.

In one embodiment, information managed by the identity
management module 200 can be partitioned to create sepa
rate identity domains. Information belonging to a particular
identity domain can be isolated from all other identity
domains. Also, an identity domain can be shared by multiple
separate tenants. Each Such tenant can be a customer Sub
scribing to services in the cloud infrastructure system 100.
In some embodiments, a customer can have one or many
identity domains, and each identity domain may be associ
ated with one or more Subscriptions, each Subscription
having one or many services. For example, a single cus
tomer can represent a large entity and identity domains may
be created for divisions/departments within this large entity.
EM module 208 and IDM module 200 may in turn interact
with order management module 214 at (11) and (12) respec
tively to manage and track the customer's Subscriptions in
cloud infrastructure system 100.

In one embodiment, at (13), Support services may also be
provided to the customer via a support UI 216. In one
embodiment, support UI 216 enables support personnel to
interact with order management module 214 via a Support
backend system to perform Support services at (14). Support
personnel in the cloud infrastructure system 100 as well as
customers can Submit bug reports and check the status of
these reports via support UI 216.

Other interfaces, not shown in FIG. 2 may also be
provided by cloud infrastructure system 100. For example,
an identity domain administrator may use a user interface to
IDM module 200 to configure domain and user identities. In
addition, customers may log into a separate interface for
each service they wish to utilize. In certain embodiments, a
customer who wishes to subscribe to one or more services
offered by cloud infrastructure system 100 may also be
assigned various roles and responsibilities. In one embodi
ment, the different roles and responsibilities that may be
assigned for a customer may include that of a buyer, an
account administrator, a service administrator, an identity
domain administrator or a user who utilizes the services and
resources offered by cloud infrastructure system 100. The
different roles and responsibilities are described more fully
in FIG. 4 below.

FIG. 3A depicts a simplified flowchart 300 depicting
processing that may be performed by the TAS module in the
cloud infrastructure system, in accordance with an embodi

10

15

25

30

35

40

45

50

55

60

65

12
ment of the present invention. The processing depicted in
FIG. 3A may be implemented in software (e.g., code,
instructions, program) executed by one or more processors,
hardware, or combinations thereof. The software may be
stored in memory (e.g., on a memory device, on a non
transitory computer-readable storage medium). The particu
lar series of processing steps depicted in FIG. 3A is not
intended to be limiting. Other sequences of steps may also
be performed according to alternative embodiments. For
example, alternative embodiments of the present invention
may perform the steps outlined above in a different order.
Moreover, the individual steps illustrated in FIG. 3A may
include multiple sub-steps that may be performed in various
sequences as appropriate to the individual step. Furthermore,
additional steps may be added or removed depending on the
particular applications. One of ordinary skill in the art would
recognize many variations, modifications, and alternatives.
In one embodiment, the processing depicted in FIG. 3A may
be performed by one or more components in TAS compo
nent 204 as will be described in detail in FIG. 3B.
At 302, a customer's subscription order is processed. The

processing may include validating the order, in one example.
Validating the order includes ensuring that the customer has
paid for the Subscription and ensuring that the customer does
not already have Subscriptions with the same name or that
the customer is not attempting to create multiple Subscrip
tions of the same type in the same identity domain for
Subscription types for which this is disallowed (Such as, in
the case of a CRM service). Processing may also include
tracking the status of an order for each order that is being
processed by cloud infrastructure system 100.
At 304, a business process associated with the order is

identified. In some instances, multiple business processes
may be identified for an order. Each business process
identifies a series of steps for processing various aspects of
the order. As an example, a first business process may
identify one or more steps related to provisioning physical
resources for the order, a second business process may
identify one or more steps related to creating an identity
domain along with customer identities for the order, a third
business process may identify one or more steps for related
to performing back office functions such as creating a
customer record for the user, performing accounting func
tions related to the order, and the like. In certain embodi
ments, different business processes may also be identified
for processing different services in an order. For example,
different business process may be identified to process a
CRM service and a database service.
At 306, the business process identified for the order in 304

is executed. Executing the business process associated with
the order may include orchestrating the series of steps
associated with the business process identified in step 304.
For example, executing a business process related to provi
Sioning physical resources for the order may include sending
a request to SDI module 206 to allocate resources and
configure those resources needed to fulfill the subscription
order.
At 308, a notification is sent to the customer regarding the

status of the provisioned order. Additional description
related to performing steps 302, 304, 306 and 308 is pro
vided in detail in FIG. 3B.

FIG. 3B depicts a simplified high level diagram of one or
more sub-modules in the TAS module in the cloud infra
structure system, in accordance with an embodiment of the
present invention. In one embodiment, the modules depicted
in FIG. 3B perform the processing described in steps 302
308 discussed in FIG. 3A. In the illustrated embodiment,

US 9,501,541 B2
13

TAS module 204 comprises an order processing module
310, a business process identifier 312, a business process
executor 316, an overage framework 322, a workflow iden
tification module 324, and a bundled subscription generator
module 326. These modules may be implemented in hard
ware, or software, or combinations thereof. The various
modules of the TAS module depicted in FIG. 3B are meant
for illustrative purposes only and are not intended to limit
the scope of embodiments of the present invention. Alter
native embodiments may include more or fewer modules
than those shown in FIG. 3B.

In one embodiment, order processing module 310
receives an order from a customer from one or more input
sources 321. For example, order processing module 310 may
directly receive an order via cloud UI 212 or store UI 210,
in one embodiment. Alternatively, order processing module
310 may receive an order from order management module
214 or order database 224. Order processing module 310
then processes the order. In certain embodiments, processing
the order includes generating a customer record which
includes information about the order Such as a service type,
a service level, a customer level, the type of resources, the
amount of the resources to be allocated to the service
instance and a time period during which the service is
desired. As part of the processing, order processing module
310 also determines whether the order is a valid order. This
includes ensuring that the customer does not already have
Subscriptions with the same name or that the customer is not
attempting to create multiple Subscriptions of the same type
in the same identity domain for Subscription types where this
is disallowed (such as, in the case of a fusion CRM service).

Order processing module 310 may also perform addi
tional processing on the order. Processing may include
tracking the status of an order for each order that is being
processed by cloud infrastructure system 100. In one
embodiment, order processing module 310 may process
each order to identify a number of States pertaining to the
order. In one example, the different states of an order may be
an initialized state, a provisioned State, an active state, an
administration required State, an error State, and the like. An
initialized state refers to the state of a new order; a provi
sioned state refers to the state of an order once the services
and resources for the order have been provisioned. An order
is in an active state when the order has been processed by
TAS module 204 and a notification to that effect has been
delivered to the customer. An order is in an administration
required state when intervention by an administrator is
needed to resolve the issue. The order is in an error state
when the order cannot be processed. In addition to main
taining the order progress status, order processing module
310 also maintains detailed information about any failures
encountered during process execution. In other embodi
ments, and as will be discussed in detail below, the addi
tional processing performed by order processing module 310
may also include changing the service level for a service in
the Subscription, changing the services included in the
Subscription, extending the time period of the Subscription,
and canceling the Subscription or specifying different service
levels for different time periods in the subscription.

After an order has been processed by order processing
module 310, business logic is applied to determine whether
the order should proceed to provisioning. In one embodi
ment, as part of orchestrating the order, business process
identifier 312 receives the processed order from order pro
cessing module 310 and applies business logic to identify a
particular business process to use for the order being pro
cessed. In one embodiment, business process identifier 312

10

15

25

30

35

40

45

50

55

60

65

14
may utilize information stored in a service catalog 314 to
determine the particular business process to be used for the
order. In one embodiment, and as discussed in FIG. 3A,
multiple business processes may be identified for an order
and each business process identifies a series of steps for
processing various aspects of the order. In another embodi
ment, and as discussed above, different business processes
may be defined for different types of services, or combina
tions of services such as a CRM service or a database
service. In one embodiment, service catalog 314 may store
information mapping an order to a particular type of busi
ness process. Business process identifier 312 may use this
information to identify a specific business process for the
order being processed.
Once a business process has been identified, business

process identifier 312 communicates the particular business
process to be executed to business process executor 316.
Business process executor 316 then executes steps of the
identified business process by operating in conjunction with
one or more modules in the cloud infrastructure system 100.
In some embodiments, business process executor 316 acts as
an orchestrator for performing the steps associated with a
business process. For example, the business process execu
tor may interact with order processing module 310 to
execute steps in a business process that identifies workflows
related to the order, determines the overage of services in the
order or identifies service components related to the order.

In one example, business process executor 316 interacts
with SDI module 206 to execute steps in a business process
for allocating and provisioning resources for services
requested in the subscription order. In this example, for each
step in the business process, business process executor 316
may send a request to SDI component 206 to allocate
resources and configure resources needed to fulfill the
particular step. SDI component 206 is responsible for the
actual allocation of the resources. Once all the steps of the
business processes of an order have been executed, business
process executor 316 may send a notification to the customer
of the processed order by utilizing the services of services
component 202. The notification may include sending an
email notification to the customer with details of the pro
cessed order. The email notification may also include
deployment information related to the order to enable the
customer to access the Subscribed services.

In certain embodiments, TAS module 204 may provide
one or more TAS Application Programming Interfaces
(APIs) 318 that enable TAS module 204 to interact with
other modules in cloud infrastructure system 100 and for
other modules to interact with TAS module 204. For
example, the TAS APIs may include a system provisioning
API that interacts with SDI module 206 via an asynchronous
Simple Object Access Protocol (SOAP) based web services
call to provision resources for the customer's Subscription
order. In one embodiment, TAS module 204 may also utilize
the system provisioning API to accomplish system and
service instance creation and deletion, Switch a service
instance to an increased service level, and associate service
instances. An example of this is the association of a Java
service instance to a fusion applications service instance to
allow secure web service communications. The TAS APIs
may also include a notification API that interacts with the
services module 202 to notify the customer of a processed
order. In certain embodiments, the TAS module 204 also
periodically propagates Subscription information, outages,
and notifications (e.g. planned downtime) to services com
ponent 202.

US 9,501,541 B2
15

In certain embodiments, TAS module 204 periodically
receives usage statistics for each of the provisioned services
Such as the amount of storage used, the amount data trans
ferred, the number of users, and the amount of system up
time and system down time from EM module 208. Overage
framework 322 utilizes the usage statistics to determine
whether over use of a service has occurred, and if so, to
determine how much to bill for the overage, and provides
this information to order management module 214.

In certain embodiments, TAS module 204 includes an
order workflow identification module 324 that is configured
to identify one or more workflows associated with process
ing a customer's Subscription order. In certain embodiments,
TAS module 204 may include a subscription order genera
tion framework 326 for generating subscription orders for a
customer when the customer places a Subscription order for
one or more services offered by the cloud infrastructure
system 100. In one embodiment, a subscription order
includes one or more service components responsible for
providing the services requested by a customer in the
Subscription order.

Additionally, TAS module 204 may also interact with one
or more additional databases Such as a Tenant Information
System (TIS) database 320 to enable the provisioning of
resources for one or more services subscribed by the cus
tomer while taking into consideration historical information,
if any, available for the customer. TIS database 320 may
include historical order information and historical usage
information pertaining to orders subscribed by the customer.
TAS module 204 may be deployed using different deploy

ment models. In certain embodiments, the deployment
includes a central component that interfaces with one or
more distributed components. The distributed components
may, for example, be deployed as various data centers and
accordingly may also be referred to as data center compo
nents. The central component includes capabilities to pro
cess orders and co-ordinate services in cloud infrastructure
system 100, while the data center components provide
capabilities for provisioning and operating the runtime sys
tem that provides the resources for the subscribed services.

FIG. 4 depicts an exemplary distributed deployment of
the TAS module, according to an embodiment of the present
invention. In the embodiment depicted in FIG. 4, the dis
tributed deployment of TAS module 204 includes a TAS
central component 400 and one or more TAS Data Centers
(DCs) components 402, 404 and 406. These components
may be implemented in hardware, or Software, or combina
tions thereof.

In one embodiment, the responsibilities of TAS central
component 400 include, without limitation, to provide a
centralized component for receiving customer orders, per
forming order-related business operations such as creating a
new Subscription, changing the service level for a service in
the Subscription, changing the services included in the
Subscription, and extending the time period of the Subscrip
tion, or canceling the Subscription. The responsibilities of
TAS central component 400 may also include maintaining
and serving Subscription data needed by cloud infrastructure
system 100 and interfacing with order management module
214, support UI 216, cloud UI 212 and store UI 210 to
handle all the back-office interactions.

In one embodiment, the responsibilities of TAS DCs 402,
404 and 406 include, without limitation, performing runtime
operations for orchestrating the provisioning the resources
for one or more services subscribed by the customer. TAS
DCs 402, 404 and 406 also include capabilities to perform
operations such as locking, unlocking, enabling, or disabling

10

15

25

30

35

40

45

50

55

60

65

16
a Subscription order, collecting metrics related to the order,
determining the status of the order, and sending notification
events related to the order.

In an exemplary operation of the distributed TAS system
shown in FIG. 4, TAS central component 400 initially
receives an order from a customer via cloud UI 212, store UI
210, via order management system 214, or via order data
base 224. In one embodiment, the customer represents a
buyer who has financial information and the authority to
order and/or change a Subscription. In one embodiment, the
order information includes information identifying the cus
tomer, the type of services that the customer wishes to
subscribe to, and an account administrator who will be
responsible for handling the request. In certain embodi
ments, the account administrator may be nominated by the
customer when the customer places an order for a Subscrip
tion to one or more services offered by cloud infrastructure
system 100. Based on the order information, the TAS central
component 400 identifies the data region of the world such
as Americas, EMEA, or Asia Pacific in which the order
originates and the particular TAS DCs (for e.g., 402, 404 or
406) that will be deployed for provisioning the order. In one
embodiment, the particular TAS DC (for e.g., from among
DCs 402, 404 or 406) that will be deployed for provisioning
the order is determined based on the geographical data
region in which the request originated.
TAS central component 400 then sends the order request

to the particular TAS DC in which to provision services for
the order request. In one embodiment, TAS DCs 402,404 or
406 identify a service administrator and an identity domain
administrator responsible for processing the order request at
the particular TAS DC. The service administrator and the
identity administrator may be nominated by the account
administrator identified in the subscription order. TAS DCs
402, 404 or 406 communicate with SDI module 204 to
orchestrate the provisioning of physical resources for the
order. SDI component 204 in respective TAS DCs 402,404
or 406 allocates resources and configures those resources
needed to fulfill the subscription order.

In certain embodiments, TAS DCs, 402, 404 or 406
identify an identity domain associated with the Subscription.
SDI component 206 may provide the identity domain infor
mation to IDM component 200 (shown in FIG. 2) for
identifying an existing identity domain or creating a new
identity domain. Once the order is provisioned by the SDI
module at respective TAS DCs, 402,404 or 406, TAS central
component 400 may place information regarding the provi
Sioned resources in a Support system, via Support UI 216.
Information may include, for example, displaying resource
metrics related to the services and usage statistics of the
services.
Once in operation, at each data center, EM module 208 to

periodically collects usage statistics for each of the provi
Sioned services provisioned at that data center. Such as the
amount of storage used, the amount data transferred, the
number of users, and the amount of system up time and
system down time. These statistics are provided to the TAS
DC that is local to EM module 208 (i.e., at the same data
center). In an embodiment, the TAS DCs may use the usage
statistics to determine whether overuse of a service has
occurred, and if so, to determine how much to bill for the
overage, and provide the billing information to order man
agement system 214.

FIG. 5 is a simplified block diagram illustrating the
interactions of the SDI module with one or more modules in
the cloud infrastructure system, in accordance with an
embodiment of the present invention. In one embodiment,

US 9,501,541 B2
17

SDI module 206 interacts with TAS module 204 to provision
resources for services in a subscription order received by
TAS module 204. In certain embodiments, one or more of
the modules illustrated in FIG. 5 may be modules within
cloud infrastructure system 100. In other embodiments, one
or more of the modules that interact with SDI module 206
may be outside cloud infrastructure system 100. In addition,
alternative embodiments may have more or less modules
than those shown in FIG. 5. These modules may be imple
mented in hardware, or software, or combinations thereof.

In one embodiment, the modules in SDI module 206 may
include one or more modules in SaaS platform 102 and PaaS
platform 104 in cloud infrastructure system 100. In order to
perform provisioning of resources for various services, SDI
module 206 may interact with various other modules, each
customized to help with provisioning resources for a par
ticular type of service. For example, as illustrated in FIG. 5,
SDI module 206 may interact with a Java service provision
ing control module 500 to provision Java cloud services. In
one embodiment, Java service provisioning control compo
nent 500 may deploy a Java Cloud Service (JCS) assembly
specified by SDI module 206 that includes a set of tasks to
be performed to provision Java cloud services. Infrastructure
resources 106 then determines the resources needed to
provision the Java cloud services.
As other examples, SDI module 206 may interact with

one or more modules such as a Virtual Assembly Builder
(VAB) module 502, an Application Express (APEX)
deployer module 504, a Virtual Machine (VM) module 506,
an IDM module 200, and a database machine module 118.
VAB module 502 includes capabilities to configure and
provision complete multi-tier application environments. In
one embodiment, VAB module 502 deploys a Middleware
(MW) service assembly specified by SDI module 206 to
provision a MW service in cloud infrastructure system 100
using the services provided by VM module 506. APEX
deployer module 504 includes capabilities to configure and
provision database services. In one embodiment, APEX
deployer module 504 deploys a database service assembly
specified by SDI module 206 to provision a database service
in cloud infrastructure system 100 using the resources
provided by infrastructure resources 106. SDI module 206
interacts with IDM module 200 to provide identity services
Such as access management across multiple applications in
cloud infrastructure system 100.

FIG. 6 depicts a simplified high level diagram of sub
modules of the SDI module according to an embodiment of
the present invention. In the embodiment depicted in FIG. 6,
SDI module 206 includes a SDI-Web Services (WS) module
600, an SDI request controller module 602, an SDI task
manager module 604, an SDI monitoring module 606, an
SDI data access module 608, an SDI common library
module 610, and an SDI connector module 612. These
modules may be implemented in hardware, or Software, or
combinations thereof. SDI module 206 depicted in FIG. 6
and its various modules are meant for illustrative purposes
only and are not intended to limit the scope of embodiments
of the present invention. Alternative embodiments may have
more or less modules than those shown in FIG. 6. These
modules and their functions are described in detail below.
SDI-WS module 600 includes capabilities for receiving a

step in the business associated with an order from business
process executor 316 of TAS component 204. In one
embodiment, SDI-WS module 600 parses each step of the
business process and converts the step into an internal
representation used by SDI module 206. In one embodiment,
each step of the business process associated with the order

10

15

25

30

35

40

45

50

55

60

65

18
arrives through a web service processing layer (for example,
via System Provisioning API discussed in FIG. 3B) in the
form of a SOAP request to SDI-WS module 600.
SDI request controller module 602 is the internal request

processing engine in SDI module 206 and includes capa
bilities for performing asynchronous request processing,
concurrent request processing, concurrent task processing,
fault tolerant and recovery and plug-in Support related to the
order requests. In one embodiment, SDI request controller
module 602 accepts each step of the business process
associated with the order from SDI-WS module 600 and
submits the step to SDI task manager module 604.
SDI task manager module 604 translates each step speci

fied in the business process into a series of tasks for
provisioning the particular step. Once the set of tasks for a
specific step have been provisioned, SDI task manager
module 604 responds to business process executor 316 in
TAS module 204 with operation results that includes an
order payload with details of the resources provisioned to
fulfill the particular step. SDI task manager module 604
repeats this process until all the steps of the particular
business process associated with the order are complete.

In certain embodiments, SDI task manager module 604
translates each step specified in the business process into a
series of tasks by utilizing the services of SDI connector
module 612. SDI connector module 612 includes one or
more connectors for handling the deployment of tasks
specified by SDI task manager module 604 to provision one
or more services related to the order request. In certain
embodiments, one or more of the connectors may handle
tasks that are specific to a particular service type while other
connectors may handle tasks that are common across dif
ferent service types. In one embodiment, SDI connector
module 612 includes a set of connectors (wrapper APIs) that
interface with one or more of the external modules (shown
in FIG. 5) in cloud infrastructure system 100 to provision the
services and resources related to the order request. For
example, Application Express (APEX) connector 614 inter
faces with APEX deployer module 504 to provision database
services. Web Center Connector 616 (WCC) interfaces with
a web center module in cloud infrastructure system 100 to
provision web services. The web center module is a user
engagement platform and includes capabilities for deliver
ing connectivity between people and information in cloud
infrastructure system 100.

In certain embodiments, Middleware Applications (MA)
connector 618 interfaces with VAB module 502 in cloud
infrastructure system 100 to provision middleware applica
tion services. NUVIAQ connector 620 interfaces with VAB
module 502 to provision Java services. IDM connector 622
interfaces with IDM module 200 to provide identity and
access management for users Subscribing to services and
resources in cloud infrastructure system 100. Virtual Assem
bly Builder (VAB) connector 624 interfaces with VAB
module 502 in cloud infrastructure system 100 to configure
and provision complete multi-tier application environments.
Plug-in connector 626 interfaces with EM module 208 to
manage and monitor the components in cloud infrastructure
system 100. HTTP server connector 628 interfaces with one
or more web servers in the PaaS platform to provide
connection services to users in cloud infrastructure system
1OO.
SDI monitoring module 606 in SDI module 206 provides

an inbound interface for receiving Java Management Exten
sions (JMX) requests. SDI monitoring module 606 also
provides tools for managing and monitoring applications,
system objects and devices in cloud infrastructure system

US 9,501,541 B2
19

100. SDI-data access module 608 provides an inbound
interface for receiving Java Database Connectivity (JDBC)
requests. SDI-data access module 608 Supports data access
and provides object relational mapping, java transaction API
services, data access objects, and connection pooling in
cloud infrastructure system 100. The SDI-common library
module 610 provides configuration support for the modules
in SDI module 206.
The embodiment of FIG. 6 discussed above describes

modules in the SDI module according to an embodiment of
the present invention. FIG. 7A depicts a simplified flowchart
700 depicting processing that may be performed by the
modules of the SDI module in the cloud infrastructure
system, in accordance with an embodiment of the present
invention. The processing depicted in FIG. 7A may be
implemented in Software (e.g., code, instructions, program)
executed by one or more processors, hardware, or combi
nations thereof. The Software may be stored in memory (e.g.,
on a memory device, on a non-transitory computer-readable
storage medium). The particular series of processing steps
depicted in FIG. 7A is not intended to be limiting. Other
sequences of steps may also be performed according to
alternative embodiments. For example, alternative embodi
ments of the present invention may perform the steps
outlined above in a different order. Moreover, the individual
steps illustrated in FIG. 7A may include multiple sub-steps
that may be performed in various sequences as appropriate
to the individual step. Furthermore, additional steps may be
added or removed depending on the particular applications.
One of ordinary skill in the art would recognize many
variations, modifications, and alternatives. In one embodi
ment, the processing depicted in FIG. 7A may be performed
by one or more modules in the SDI module 206 discussed in
detail in FIG. 6.
At 702, a business process associated with a subscription

order is received. In one embodiment, SDI-WS module 600
in SDI module 206 receives one or more steps in the
business process associated with the Subscription order from
business process executor 316. At 704, each step in the
business process is translated into a series of tasks for
provisioning resources for the Subscription order. In one
embodiment, SDI task manager module 604 in SDI module
206 translates each step specified in the business process
into a series of tasks by utilizing the services of SDI
connector module 612. At 706, the subscription order is
provisioned based on the series of tasks. In one embodiment,
and as discussed in FIG. 6, SDI connector module 612
includes one or more connectors for handling the deploy
ment of tasks specified by SDI task manager module 604 to
provision resources for the services in the subscription order.
As described above with respect to FIG. 6, SDI task

manager module 604 translates each step specified in a
business process into a series of tasks by utilizing the
services of SDI connector module 612, which may include
one or more connectors for handling the deployment of tasks
specified by SDI task manager module 604 to provision one
or more services related to the order request. One or more of
the connectors may handle tasks that are specific to a
particular service type while other connectors may handle
tasks that are common across different service types. In one
embodiment, SDI connector module 612 includes a set of
connectors (wrapper APIs) that interface with one or more of
the external modules (shown in FIG. 5) in cloud infrastruc
ture system 100 to provision the services and resources
related to the order request. For example, a NUVIAQ
connector 620 interfaces with VAB module 502 to provision
Java services.

5

10

15

25

30

35

40

45

50

55

60

65

20
FIG. 7B depicts a simplified block diagram showing the

high-level architecture of a Nuviaq system 710 and its
relationships with other cloud infrastructure components
according to an embodiment of the present invention. It
should be appreciated that Nuviaq system 710 depicted in
FIG. 7B may have other components than those depicted in
FIG. 7B. Further, the embodiment shown in FIG. 7B is only
one example of a cloud infrastructure system that may
incorporate an embodiment of the invention. In some other
embodiments, Nuviaq system 710 may have more or fewer
components than shown in FIG. 7B, may combine two or
more components, or may have a different configuration or
arrangement of components.

In certain embodiments, Nuviaq system 710 may be
configured to provide a runtime engine for orchestrating
PaaS operations. Nuviaq system 710 may provide a web
service API to facilitate integration with other products and
services. Nuviaq system 710 also provides support for
complex workflows in System provisioning, application
deployment and associated lifecycle operations and inte
grates with management and monitoring Solutions.

In the embodiment depicted in FIG. 7B, Nuviaq system
710 comprises a Nuviaq proxy 712, a Nuviaq manager 714,
and a Nuviaq database 716. In certain embodiments, Nuviaq
manager 714 provides an entry point into Nuviaq system
710, providing secure access to PaaS operations via the web
service API. Internally, it tracks system state in the database
and controls job execution on the workflow engine. In a
public cloud, Nuviaq manager 714 may be accessed by the
Tenant Provisioning system (SDI 206) and the Tenant Con
sole, to drive provisioning and deployment operations
respectively.

In one embodiment, Nuviaq manager 714 executes jobs
asynchronously via an internal workflow engine. A job may
be a sequence of actions specific to a given PaaS workflow.
Actions may be performed in order, with failure in any step
resulting in failure of the overall job. Many workflow
actions delegate to external systems relevant to the work
flow, such as the EM command line interface (cli). In one
implementation, Nuviaq manager 714 application may be
hosted in a 2-node WebLogic cluster with associated HTTP
server (e.g., Oracle HTTP Server or OHS) instance, running
inside a firewall.

In certain embodiments, Nuviaq proxy 712 is the public
access point to the Nuviaq API. In one embodiment, only
Public API may be exposed here. Requests received by
proxy 712 may be forwarded to Nuviaq manager 714. In one
embodiment, Nuviaq proxy 712 runs outside the firewall,
whereas manager 714 runs within the firewall. In one
implementation, Nuviaq proxy 712 application runs on a
WebLogic cluster running outside the firewall.

In certain embodiments, Nuviaq database 716 tracks
various domain entities such as, without limitation, platform
instance, deployment plan, application, WebLogic domain,
jobs, alerts, and the like. Primary keys may be aligned with
the Service Database where appropriate.

In one embodiment, Platform Instance 718 may contain
all resources required for a WebLogic service for a given
tenant.

Nuviaq system 710 may rely on additional systems of
cloud infrastructure system 100 to carry out the workflows
used the WebLogic cloud service. These dependencies may
include dependencies on SDI 206, IDM 200, a virus scan
system, a service database, CRM instances, and the like. For
example, Nuviaq System 710 may depend upon functions
performed by an Assembly Deployer in SDI 206. In one
embodiment, the Assembly Deployer is a system to manage

US 9,501,541 B2
21

interactions with OVAB (Oracle Virtual Assembly Builder)
and OVM (Oracle Virtual Machine). Capabilities of the
Assembly Deployer used by Nuviaq system 710 may
include, without limitation, functions for deploying an
assembly, un-deploying an assembly, describing assembly
deployment, Scaling appliance, and the like. In one imple
mentation, Nuviaq system 710 accesses the Assembly
Deployer via a web service API.

In certain embodiments, security policies may require
certain artifacts to be scanned for viruses before being
deployed to an application. Cloud infrastructure system 100
may provide a virus scan system for this purpose that
provides Scanning as a service for multiple components of
the public cloud.

In certain embodiments, a public cloud infrastructure may
maintain a Service Database containing information about
tenants (e.g., customers) and their service Subscriptions.
Nuviaq workflows may access to this data in order to
properly configure a WebLogic service as a client to other
services that the tenant also subscribes to.

Nuviaq system 710 may depend on IDM 200 for its
security integration. In certain embodiments, Java Service
instances can be associated with a CRM instance. The
association allows user applications deployed to their Java
Service instance to access a CRM instance though Web
Service calls.

Various entities may use services provided by Nuviaq
system 710. These clients of NuViaq system 710 may
include: a Tenant Console, which is an management server
(e.g., Oracle Management Server) based user interface that
customers may access to manage their applications on their
platform instances; several IDEs such as Oracle IDEs (JDe
veloper, NetBeans, and OEPE) have been extended to offer
access to application lifecycle management operations; one
or more Command Line Interfaces (CLIs) that are available
to access lifecycle operations on the platform instances.

Provisioning use case for Nuviaq system 710 A Provi
sion Platform Instance use case is realized via the Create
Platform Instance operation of the Nuviaq API. In the
context of cloud infrastructure system 100, a service
instance with respect to the Nuviaq system corresponds to a
Nuviaq platform instance. A platform instance is assigned a
unique identifier is used on all Subsequent operations related
to this instance. A Platform Deployment descriptor provided
to the Create Platform Instance action allows for properties
to be set that modify the configuration of the platform
instance to meet the Subscription requirements of the tenant.
These properties may include for example:
Property #1: oracle.cloud.service.weblogic.size

Values: BASIC, STANDARD, ENTERPRISE
Description: Specifies the subscription type. This impacts

the number of servers, database limits and quality of
service settings.

Property#2: oracle.cloud.service.weblogic.trial
Values: TRUE, FALSE
Description: Indicates whether or not this is a trial sub

Scription.
Property#3: oracle.cloud.service.weblogic.crim

Values: CRM Service ID
Description: Identifies a CRM service to be associated

with this WebLogic service instance.
FIG.7C depicts an example sequence diagram illustrating

steps of a provisioning process using a Nuviaq System
according to an embodiment of the present invention. The
sequence diagram depicted in FIG. 7C is only an example
and is not intended to be limiting.

10

15

25

30

35

40

45

50

55

60

65

22
Install/Update Application use case—The Install Appli

cation operation deploys an application to a running Web
Logic Server after validating that the application archive
meets the security requirements of the Public Cloud. In one
embodiment, the Application Deployment descriptor pro
vided to the Install Application action allows for properties
to be set that modify the configuration of the application to
meet the Subscription requirements of the tenant. These
properties may include for example:
Property: oracle.cloud.service.weblogic.state
Values: RUNNING, STOPPED
Description: Specifies the initial state of the application after

deployment.
FIG. 7D depicts an example sequence diagram illustrating

steps of a deployment process using a Nuviaq System
according to an embodiment of the present invention. The
sequence diagram depicted in FIG. 7D is only an example
and is not intended to be limiting.

Referring back to FIG. 2, in certain embodiments, TAS
204 and SDI 206 working in cooperation are responsible for
provisioning resources for one or more services ordered by
a customer from a set of services offered by cloud infra
structure system 100. For example, in one embodiment, for
provisioning a database service, the automated provisioning
flow may be as follows for a paid subscription:
(1) Customer places an order for a paid Subscription to a

Service via Store UI 210.
(2) TAS 204 receives the subscription order.
(3) When services are available TAS 204 initiates provision

ing by using the services of SDI 206. TAS 204 may
perform business process orchestration, which will
execute the relevant business process to complete the
provisioning aspect of the order. In one embodiment, TAS
204 may use a BPEL (Business Process Execution Lan
guage) Process Manager to orchestrate the steps involved
in the provisioning and handle the lifecycle operations.

(4) In one embodiment, to provision a database service, SDI
206 may call PLSQL APIs in the CLOUD UI to associate
a schema for the requesting customer.

(5) After Successful association of a schema to the customer,
SDI signals TAS and TAS send a notification to the
customer that the database service is now available for use
by the customer.

(6) The customer may log into cloud infrastructure system
100 (e.g., using an URAL Such as cloud.oracle.com) and
activate the service.
In some embodiments, a customer may also be allowed to

Subscribe to a service on a trial basis. For example, Such a
trial order may be received via cloud UI 212 (e.g., using
cloud.oracle.com).

In certain embodiments, cloud infrastructure system 100
enables underlying hardware and service instances to be
shared between customers or tenants. For example, the
database service may be provisioned as shown in FIG. 7E in
one embodiment. FIG. 7E depicts multiple Exadata compute
nodes 730 and 732, each providing a database instance
provisioned for the database service. For example, compute
node 730 provides a database instance 734 for a database
service. Each Exadata compute node may have multiple
database instances.

In certain embodiments, each database instance can com
prise multiple schemas and the schemas may be associated
with different customers or tenants. For example, in FIG. 7E,
database instance 734 provides two schemas 736 and 738,
each with its own tables. Schema 736 may be associated
with a first customer or tenant Subscribing to a database
service and schema 738 may be associated with a second

US 9,501,541 B2
23

customer or tenant Subscribing to the database service. Each
tenant gets a completely isolated Schema. Each schema acts
like a container that can manage database objects including
tables, views, stored procedures, triggers, etc. for the asso
ciated tenant. Each schema may have one dedicated
tablespace, with each tablespace having one data file.

In this manner, a single database instance can provide
database services to multiple tenants. This not only enables
sharing of underlying hardware resources but also enables
sharing of service instance between tenants.

In certain embodiments, such a multi-tenancy system is
facilitated by IDM 200, which beneficially enables multiple
separate customers, each having their own separate identity
domains, to use hardware and Software that is shared in the
cloud. Consequently, there is no need for each customer to
have its own dedicated hardware or software resources, and
in some cases resources that are not being used by some
customers at a particular moment can be used by other
customers, thereby preventing those resources from being
wasted. For example, as depicted in FIG. 7E, a database
instance can service multiple customers each with their
respective identity domains. Although each Such database
service instance can be a separate abstraction or view of a
single physical multi-tenant database system that is shared
among the many separate identity domains, each Such data
base service instance can have a separate and potentially
different schema than each other database service instance
has. Thus, the multi-tenant database system can store map
pings between customer-specified database schemas and the
identity domains to which those database schemas pertain.
The multi-tenant database system can cause the database
service instance for a particular identity domain to use the
schema that is mapped to that particular identity domain.
The multi-tenancy can also be extended to other services

Such as the Java Service. For example, multiple customers
can have a JAVA service instance placed within their respec
tive identity domains. Each Such identity domain can have
a JAVA virtual machine, which can be viewed as being a
virtual "slice' of hardware. In one embodiment, a job
monitoring service (e.g., Hudson) can be combined with a
JAVA enterprise edition platform (e.g., Oracle WebLogic) in
the cloud to enable each separate identity domain to have its
own separate virtual “slice' of the JAVA enterprise edition
platform. Such a job-monitoring service can, for example,
monitor the execution of repeated jobs, such as building a
Software project or jobs run by an operating systems
time-based job scheduler. Such repeated jobs can include the
continuous building and/or testing of Software projects.
Additionally or alternatively, Such repeated jobs can include
the monitoring of executions of operating system-run jobs
that are executed on machines that are remote from the
machine on which the job-monitoring service executes.
POD Provisioning and Service Provisioning
According to some embodiments, SDI can coordinate

separate POD provisioning and service provisioning for
services. A POD is a logical entity that can represent one of
the following: a pre-provisioned anonymous single-tenant
deployment (as is the case for the Java service); or a
multi-tenant stack (physical or virtualized) that serves mul
tiple tenants (as is the case for the database service). For
example, a POD is a deployment of a service on a physical
stack. A POD can house one or more service instances.
PODS can be created a priori or can be created on-demand
when a service instance is created for a given customer.

In some instances, a POD is an instantiation of a software
stack for running a service. A POD is thus used to run a
service. For example, a POD corresponding to Java service

5

10

15

25

30

35

40

45

50

55

60

65

24
may comprise a stack of virtual machines. As another
example, a POD for a database service may comprise an
instance of a database. A POD may be considered as a
subsystem that is capable of hosting a service. Different pods
may be used for different services.
The task of creating a POD for a service is referred to as

POD provisioning. As it will be illustrated in FIG. 8B, POD
provisioning can facilitated by SDI module 206. POD pro
visioning is the act of creating an anonymous instance of the
software component. A POD can be fully installed and wired
from an infrastructure point of view. A POD does not have
customer specific configuration data or integration (e.g., not
connected to any customer stripe in LDAP).
The physical POD provisioning may contain three broad

aspects:
1. POD definition schema to define the physical footprint
of a Service

2. Service definition schema to capture service specific
plug-ins and

3. Service configuration schema to capture Entreprise
Management (EM), Identity Management (IDM), Uni
form Resource Locator (URL) routing and other ser
vice specific configuration

A different POD may be created for each service. For
example, for Java service, a POD may map to a set of VMs
running middleware technology (e.g., running Fusion
middleware). Different automated flows may be used by SDI
module 206 for POD provisioning. In some instances, a
POD can also be an almost entirely virtual concept.
An example of a POD can include a set of data center

resources that have been wired together to provide a par
ticular service for a particular customer. A POD can include
a dedicated resource in shared infrastructure. For example,
in the case of services that are deployed using VAB tech
nology such as Oracle Virtual Assembly Builder (OVAB)
technology, the OVAB assembly is the POD. Another
example of a POD can include the core set of VMs that
makes up a Java assembly in a domain. For Fusion appli
cations, the POD can be the set of virtual machines that are
dedicated to that particular installation of fusion applica
tions, which can include the database and the VMs. For the
database service, a POD can include the Exadata along with
the DB instances on the Exadata.

FIG. 8A depicts a simplified flowchart 800 depicting
processing that may be performed by SDI module 206 in the
cloud infrastructure system, in accordance with an embodi
ment of the present invention. The processing depicted in
FIG. 8A may be implemented in software (e.g., code,
instructions, program) executed by one or more processors,
hardware, or combinations thereof. The software may be
stored in memory (e.g., on a memory device, on a non
transitory computer-readable storage medium). The particu
lar series of processing steps depicted in FIG. 8 is not
intended to be limiting. Other sequences of steps may also
be performed according to alternative embodiments. For
example, alternative embodiments of the present invention
may perform the steps outlined above in a different order.
Moreover, the individual steps illustrated in FIG. 8 may
include multiple sub-steps that may be performed in various
sequences as appropriate to the individual step. Furthermore,
additional steps may be added or removed depending on the
particular applications. One of ordinary skill in the art would
recognize many variations, modifications, and alternatives.
In one embodiment, the processing depicted in FIG. 8A may
be performed by one or more modules in the SDI module
206 discussed in detail in FIG. 6.

US 9,501,541 B2
25

Flowchart 800 can be performed for each POD assembly
that is pre-provisioned. SDI module 206 can use manage
ment algorithms and selection algorithms to provision the
PODS in the background, and then determine a POD for a
particular tenant when a request comes in. For example, as
illustrated in FIG. 8B, SDI module 206 can pre-provision a
POD before receiving a customer order. Once a service
request is received, SDI module 206 can then add customer
information to the POD and customize the POD based on the
request, as illustrated in FIG. 8A.

At 802, SDI module 206 can store subscription order
information from a customer identifying a service from a set
of services. For example, the subscription order information
can be a customer request from the store UI 210 for a
database service. The Subscription order information can
include customer-specific configuration.

At 804, SDI module 206 can determine a service associ
ated with the subscription order information. For example,
SDI module 206 can determine that the customer order is for
a database service. Therefore, when a customer order is
received, SDI module 206 determines the type of service
that has been requested in order to map a POD, which is
service-specific, to the customer request.
At 806, SDI module 206 can map a pre-provisioned

anonymous deployment to the Subscription order informa
tion. The pre-provisioned anonymous deployment can be a
POD. As discussed herein, a POD can be pre-provisioned
and created for a specific service.
A service can map to the Subscription of a particular

customer. For example, a service can be the Java instance for
a particular customer. A service instance is a particular
subscription ID for a particular type of service, such as a
Java service. A service instance can belong to a particular
customer and lives on a pod. Only one service instance lives
on a single-tenant POD, and multiple instances can live on
a multiple-tenant POD. Furthermore, the service instance
always lives in a POD and never spans two pods. On the
other hand, the service instance may require more than just
the POD to exist.

At 808, SDI module 206 can create a service instance
specifically for the customer by configuring the pre-provi
Sioned anonymous deployment with the customer specific
configuration. For example, SDI module 206 can introduce
customer-specific configuration into the POD using person
ality injection. Service provisioning is the process of binding
a particular customer to a particular POD. This introduces
customer-specific configuration into the POD (e.g., person
ality injection). A POD may support one or more tenants
simultaneously (single or multi-tenant). In the case of a POD
Supporting multiple tenants, multiple personalities may be
injected into the POD, one for each supported tenant.

According to another embodiment, a particular service
can use multiple PODs. For example, a Java service can be
requested. SDI module 206 can have pre-provisioned mul
tiple Java PODS. Based on the requested size of the service,
SDI module 206 can determine that multiple PODs are
needed to support the requested service.
The processes of service provisioning and POD provi

Sioning are separate and independent of each other and are
coordinated by SDI module 206. This enables, for example,
POD provisioning to be performed in the background. Spare
pooling of pods may be based on administrator configurable
options to anticipate future demand. Service provisioning is
generally much faster than POD provisioning and happens
on demand when SDI receives an order from TAS. SDI
coordinates POD provisioning and service provisioning,
while also handling the pooling and registration.

10

15

25

30

35

40

45

50

55

60

65

26
Pre-Provisioning PODS
According to some embodiments, fully-automated POD

provisioning handled by SDI can create instance of the
software component without a request from TAS. This can
be a background activity run in advance of customer order.
Standing up a POD can be slow, therefore POD Provisioning
is done ahead of time, so when a customer orders a service,
the customer can receive the order quickly (e.g., within
seconds or minutes). A POD may support one or more
tenants simultaneously (single or multi-tenant). The pro
cesses are independent such that POD provisioning can be
performed in the background. Spare pooling of pods is based
on administrator configurable options to anticipate future
demand.
SDI module 206 can create new PODS if the resources

become low. As later discussed, by using Min Used thresh
olds, SDI module 206 can monitor usage and allocation.
Based on the monitoring, SDI can pre-provision new PODS.

For example, when an SDI timer job runs and notifies SDI
module 206 that number of free assemblies for a given
service size (basic, standard, enterprise) has fallen below the
Min Used thresholds specified in the current configuration,
additional assemblies can be pre-provisioned until the
thresholds have been reached.

FIG. 8B depicts a simplified flowchart 850 depicting
processing that may be performed by SDI module 206 in the
cloud infrastructure system, in accordance with an embodi
ment of the present invention. The processing depicted in
FIG. 8B may be implemented in software (e.g., code,
instructions, program) executed by one or more processors,
hardware, or combinations thereof. The software may be
Stored in memory (e.g., on a memory device, on a non
transitory computer-readable storage medium). The particu
lar series of processing steps depicted in FIG. 8B is not
intended to be limiting. Other sequences of steps may also
be performed according to alternative embodiments. For
example, alternative embodiments of the present invention
may perform the steps outlined above in a different order.
Moreover, the individual steps illustrated in FIG. 8B may
include multiple sub-steps that may be performed in various
sequences as appropriate to the individual step. Furthermore,
additional steps may be added or removed depending on the
particular applications. One of ordinary skill in the art would
recognize many variations, modifications, and alternatives.
In one embodiment, the processing depicted in FIG. 8B may
be performed by one or more modules in the SDI module
206 discussed in detail in FIG. 6.

Flowchart 850 can be performed for each pre-provisioned
assembly. An assembly is one type of POD. For example,
assembly is a specific technology used by OVAB for creat
ing. OVAB creates assemblies or deploys assemblies. The
pre-provisioning of PODS can continue indefinitely until the
Min used thresholds are reached, or until the timer job is
Suspended by an operator.

Additionally, if a failure occurs at any step, the preceding
operations can be rolled back. SDI module 206 can then
retry the sequence again.
At 802. SDI module 206 can acquire IP addresses for

pre-provisioning a POD assembly. For example, eight IP
addresses (e.g., four from the FRONTEND, four from the
BACKEND) can be reserved in the SDI database. The
operation can be atomic. In some instances, if the system
does not have Sufficient IP addresses, an administrator can
add more capacity to the environment.
At 804, SDI module can create a virtual assembly builder

home (e.g., Oracle Virtual Assembly Builder (OVAB)). For
example, a new directory can be created under the root (e.g.,

US 9,501,541 B2
27

ovab.virtual.root) directory and various symlinks can be
created back to the home directory (e.g., ovab.master home).
The home directory can be used as the virtual assembly
builder home for the single deployment. This can allows SDI
module 206 to perform parallel virtual assembly builder
(e.g., OVAB) operations without locking issues.
At 806, SDI module 206 can create a deployment plan

(e.g., deploymentPlan.xml) file into the new virtual assem
bly builder (e.g., OVAB) home. The deployment plan can
contain the configuration information that will be injected
into virtual machines (VMs) deployed by virtual assembly
builder (e.g., OVAB) for the deployment such as, but not
limited to, IP addresses, network file sharing (NFS) mounts,
and VM bridge names.

At 808, SDI module 206 can create ZFS volumes. ZFS is
a combined file system and logical volume manager. The
features of ZFS include protection against data corruption,
Support for high storage capacities, integration of the con
cepts of file system and Volume management, Snapshots and
copy-on-write clones, continuous integrity checking and
automatic repair. For example, three Volumes are created in
the ZFS filer for the deployment. The volumes are mounted
on each VM booted as part of this deployment.

At 810, SDI module 206 can a deploy command (e.g.,
abct1 deploy) to deploy assembly. For example, the deploy
command can boot one to four VMs via VM Manager.

At 812, SDI module 206 can set the assembly to free in
SDI database. For example, SDI module 206 can set
USED=0 for the PRE PROV JAVA ASSEMBLY row,
which indicates that the POD assembly is read to be assigned
to a service instance.
As previously mentioned, standing up a POD can be slow,

therefore POD assembly is done ahead of time, so when a
customer orders a service, the customer can receive the order
quickly (e.g., within seconds or minutes). Spare pooling of
pods is based on administrator configurable options (e.g.,
Min Used thresholds) to anticipate future demand.

Service Instance Creation
SDI module 206 provides the automation for creating and

destroying service instances. It also provides monitoring
ability of Service instances to Support specific business
activities such as trial expiration.
The service instance creation API can be used to create

new systems and/or service instances. It can be used to
create a new system along with one or more service
instances that belong to that system or it can be used to
create one or more service instances to a pre-existing sys
tem. The API can be asynchronous since it may be a long
running operation taking minutes or hours depending on our
implementation decisions and potential failures that require
manual intervention to resolve. Hence this API must take a
call back address as one of its arguments. The immediate
return value of the call can simply be a request ID that
identifies the request for identification for the duration of the
fulfillment of the request. The results of the request can be
provided via a call back to the address provided. When the
callback is made with the response body the system and
service instances created by the request can be fully opera
tional and ready for use.

The call back address and the service order document are
inputs for the service instance creation API. The call back
address can be an address to call back to TAS when the
operation has been completed. The service order document
can be an XML document that describes an order as pro
cessed by the TAS system. The service order document can
provide the following information:

10

15

25

30

35

40

45

50

55

60

65

28
Call back address—Address to call back to TAS when the

operation has been completed.
System name—name for the new or existing system.

System names must be unique across all of cloud
architecture as this value will be used for the tenancy
name within the shared IDM instance.

Is new system indicator—Boolean value indicating
whether this is an order that will create a new system
or add services instances to an existing system

(Optional) System admin user name Name of the Sys
tem/Tenancy administrator account to be created if a
new System is being created.

List of service instance orders—1-N system instance
orders where each system instance order contains:
Service Instance Name—name of the service instance

to be created. System instance names is be unique
within a given System.

Admin user name—of the service instance administra
tor account to be created for this Service Instance

Service Instance Type type of service to be created
such as FA CRM, FA HCM, Java, WCC, APEX

Service Instance Size—small/medium/large. Every ser
Vice instance currently has some notion of size

Service specific properties—Set of properties that are
specific to the type of service that is being created.

The service order fulfillment document can be the output
for the service instance creation API. As described above,
the return value from this asynchronous call can be a request
id that can be used for tracking this request during its
lifetime. The response to the request can be sent as a
callback to the call back address provided as input. The
service order fulfillment document can be an XML docu
ment that contains the following information:

Request id—request id returned synchronously to the
original API call

System name—System name created or added to by this
request

(Optional) System/tenancy admin username and tempo
rary password—If this request created a new System,
these values can be returned as part of the response. The
values may not be returned if the request only resulted
in the addition of new services to an existing System.

(Optional) System IDM console URL If this request
create a new System, a URL for the IDM console for
this system can be returned.

List of service instance orders—where each service
instance order contains:
Service instance name—name of the service instance

that was created
Service instance admin username and temporary pass
word—service instance admin account information

(Optional) Service instance admin URL If applicable
for the service, a URL to the administrative console
for the service instance. For instance, in the case of
the Java service this should be a URL leading to the
EM console for the Java service.

Service instance URL URL that takes the user to their
newly created service instance.

Additionally, SDI module 206 can have the ability to
pre-deploy and associate service instances. Depending on
the length of time required to deploy various service
instances, the assemblies may be pre-deployed for these
services. Therefore, when a user requests a service instance,
all that SDI module 206 may need to do is to put any user
specific “personality” into the assembly and return it to the
USC.

US 9,501,541 B2
29

Provisioning Request Flow
Once a customer request an order, an SDI provisioning

request is requested by TAS in a single SOAP operation. A
Provisioning Request can include a bundle of Systems/
Services create, read, update and delete (CRUD) operations.
A Provisioning Request can be uniquely identified by its
Request Id.

FIG. 9 illustrates a provisioning request flow, according to
Some embodiments. For example, a provisioning request can
be initiated by TAS module 204. At 902, TAS module 204
can invokes the relevant provisioning SOAP operation
(CRUD) and set the Request id by sending a SOAP request.
At 904, upon receiving the SOAP request, SDI can respond
with HTTP 202 Code and starts processing the request
asynchronously. Additionally, at 906, SDI module 206 can
first check if this is a new request, which can be determined
by the Request Id. The check at 906 prevents the same
request (i.e. a request with the same Request Id) from being
re-processed (e.g., when a request is resubmitted the "Reply
To address and “Correlation ID' values, which are used for
the TAS callback, are updated to the values of that latest
SOAP request).

If the request is not new, at 908, SDI module 206 checks
the request state (e.g., from existing SDI database entry). For
example, if the state is “completed, then the request was
successfully processed before. Then at 910, SDI module 206
can invoke the relevant TAS “orderCompleteCallback.”
Alternatively, if the state is “cancelled, then the request was
unsuccessfully processed before. Then at 912, SDI module
206 can invoke the relevant TAS “onFaultCallback with
fault information.

If the request is new, at 914, the request is continues to be
processed. TAS module 204 can be notified when processing
completes. SDI module 206 can validate the request. For
example, there may be three validation categories Such as:
input validation, state validation and locks Validation. At
916, if the request is invalid, SDI module 206 can invoke the
TAS “onFaultCallback' with the relevant fault information.

If the request is valid, at 918, SDI module creates a new
request and the state is set to ready. SDI module 206 starts
and continues executing the request. For example, the next
task in the task queue is run, after which the next task, and
so on until all tasks are completed.
At 920, if all the tasks that are associated with this request

were successfully executed, then SDI module 206 can
invoke the relevant TAS “orderCompleteCallback” with the
order fulfillment.

In the error Scenarios, if a request is not completed and a
single task has failed, Subsequent tasks in the request may
not be executed. At 922, SDI module 206 can determine if
the error is recoverable. At 924, if the error is non-recover
able, the request state is changed to a canceled State and SDI
module 206 can invoke the TAS “onFaultCallback with the
relevant fault information. Additionally, SDI module 206
can add entry to internal error queue. This queue will be
polled by EM module 208 to update dashboard and send an
alert email to administrator. At 926, if the error is recover
able, SDI module 206 can change the state to a pausing state
and from that state to paused state. Additionally, SDI module
206 can add entry to internal error queue. This queue will be
polled by EM module 208 to update dashboard and send an
alert email to administrator.
Once a new request for a service is received and validated

by SDI module 206, then SDI module 206 provisions the
requested service. FIG. 10 illustrates a detail flow of a
provisioning example, according to Some embodiments. The
provisioning process is managed by SDI module 206.

10

15

25

30

35

40

45

50

55

60

65

30
For example, TAS can integrate with the system provi

sioning module from within the BPEL process. Specifically
the system provisioning interface can be exposed as an
asynchronous SOAP-based Web Services call and the TAS
BPEL processes for the various lifecycle operations can
directly call the system provisioning endpoints to perform
the provisioning tasks.

Additionally, system provisioning can use callback APIs
to send the result to the BPEL process on success or to
inform the BPEL process that the operation failed with a
fault. On receiving the callbacks, the BPEL process either
continues its normal flow with the result, or follows the fault
policy to handle the fault.
Example of Provisioning a Java Service and a Database

Service
FIG. 10 illustrates an end-to-end flow of provisioning a

Java service and a database service together for a customer.
For example, at 1050, a customer can order a trial subscrip
tion. A customer using the cloud UI can sign up for a free
trial of the Java service. The cloud UI can make a PLSQL
call to submit the order. In this case, the call may be for two
different subscriptions which include a Java service sub
Scription and a database service Subscription. It can be
submit to TAS module 204 via PLSQL.
At 1055, onboarding can be initiated and TAS module can

create tenant call. In the tenant the service type and size can
be passed. In this example, there can be two types because
the order is for a Java and database service. The correspond
ing size for a trial may be equals Small. Alternatively the size
may be larger if the order was a paid order. The create tenant
call gets passed to SDI module 206 for provisioning.
At 1060, local candidate machines loop call allows SDI

module 206 to look at the available resources to potentially
find a pre-provisioned POD. Depending on the service type,
the resources may have been pre-pooled and mostly already
set up. Alternatively, if the service has not been pre-provi
sioned, then SDI module 206 may have to start from scratch
for provisioning the requested service. For example, for the
Java service, SDI module 206 can support pre-provisioning
of PODs, where the work of creating virtual machines and
standing them up is all done in advance. Therefore, when a
customer request comes in, SDI module 206 simply has a
Smaller step of personality injection. Personal injection
includes customizing the pre-provisioned POD with the
configuration for a particular customer at runtime. For the
database service, SDI module 206 can create the customer
footprint on demand. On the other hand, the customer
footprint can be a fairly virtual footprint since the database
service is using schemas within an existing database. For
fusion applications, the personality injection can include
rewiring the configuration to match a particular customer's
details. In this example, SDI module 206 can choose exist
ing VMs pre-provisioned for the Java service or provision
ing a new Java service, which includes pick a rack that has
enough resources to stand up a new VM.
At 1065, SDI module 206 can update registry. SDI

module 206 can have bookkeeping on board the physical
hardware resources to keep track of the underlying virtual
machine manager and the virtual machine pools. Addition
ally, SDI module can keep track of all of the assemblies and
VMs that have been created and whether they are, for
example, an anonymous assembly that has not been assigned
to a customer or an assembly that is bound to a particular
customer Subscription.
At 1070, the Build ID flows back to the onboarding layer.

This can inform TAS module 204 that a system that is being
produced or a service is being produced for a particular

US 9,501,541 B2
31

request. TAS module can asynchronously determine
whether the provisioning is done. At 1075, TAS module 204
can poll SDI module 206 and check whether or not a
particular request is complete. Alternatively, an asynchro
nous SOAP request by TAS module 204 can also determine
if the request is complete, where TAS 204 waits for a call
back.

At 1080, SDI module can use an API (e.g., OVAB Java
API) to deploy the weblogic server (WLS) assembly. For
example, OVAB can internally make calls to a VM manager
in order to create the individual VMs in the assembly.
Additionally OVAB can have additional logic when there
are multiple VMs in order to interface the multiple VMs in
order for the VMs to support a whole WLS domain topology.
At 1080 and 1085, SDI module 206 can create the WLS
machine pool and DB machine pool. Once the WLS assem
bly is actually deployed and comes back Successfully
through VM manager and back through OVAB, SDI module
can determine that an anonymous assembly has been cre
ated.

Additionally, the anonymous assembly can be incorpo
rated with Nuviaq-based personality injection. For example,
SDI module 206 can call the Nuviaq connector and pass
physical details and customer specific details in order for
Nuviaq to make runtime calls to the running VMs. Nuviaq
can reconfigure the web logic domain to match the customer
specific information (e.g., the identity domain name chosen
by the customer into the URLs).

At 1085, SDI module 206 can provision a database
service. For example, the database service can be backed by
Exadata hardware database instances that can be preconfig
ured on Exadata hardware. As further described in FIG. 12,
each instance can Support many customers. SDI module 206
can register the Exadatas with the DB service itself and
manage the Exadata PODs. Furthermore, SDI module 206
can provision the database service using an APEX connec
tor. APEX is application express programming engine on top
of the database. The SDI module 206 can pass along relevant
information to the APEX connector to provision the data
base. Such as the size of the database service, the customer
identity domain name, and so on. Then the APEX connector
can allocate additional schemas and table spaces for the
customer on the fly. Additionally, a particular Exadata
machine may be chosen based on load, and sizing, and so on.
The actual schema is returned back to SDI module 206,
which can include the connecting information to the schema.
SDI module 206 can generates a random credential and
passes the credential back to TAS module 204.

At 1090, SDI module 206 can initiate a soft HTTP server
(e.g., OHS) restart. SDI module 206 can dynamically gen
erates configuration files with the specific binding for a
specific customer which can require a soft restart of OHS. A
soft restart allows all the in-flight requests to be completed
before restarting. Once the OHS is restarted, then inbound
traffic to the POD through the routing tier is possible.

At 1095, a response is sent back to TAS module 204 with
the URL for the requested service and the passwords that
were generated. The password can be the service adminis
trator or the identity domain administrator password that can
be provided to the customer via e-mail for access to the
service environment.

Service Provisioning a Java Cloud Service Instance
FIG. 11 illustrates the provisioning of a Java cloud service

instance, according to one embodiment. Provisioning of a
Java cloud service instance can be performed by Java
Service Provisioning Control (JSPC). For example, the
provision platform instance use case can be realized by the

10

15

25

30

35

40

45

50

55

60

65

32
create platform instance operation of the Java service pro
visioning control API. In the context of the Public Cloud, a
Java cloud service instance corresponds to a JSPC platform
instance. A platform instance is assigned a unique identifier
that can be used on all Subsequent operations related to this
instance.
The platform deployment descriptor provided to the cre

ate platform instance action allows for properties to be set
that modify the configuration of the platform instance to
meet the subscription requirements of the tenant. Properties
can be used for the following purposes: specify the Sub
Scription type/size (the Subscription type/size can impact the
number of servers, database limits and quality of service
settings); indicate whether or not this is a trial Subscription;
and identify a CRM service to be associated with this
WebLogic service instance.

According to one embodiment, SDI module 206 can use
a continuous integration server (e.g., Hudson) as the con
figuration manager. Continuous integration server allow for
automating build and deployment. Additionally, continuous
integration server can enable interface with cloud services
and virtualization technologies such that users can improve
resource utilization, reduce maintenance overhead, and
respond automatically to Sudden system load spikes.

FIG. 11B illustrates a high level overview of the various
interactions for the provisioning of a Java cloud service
instance and a Fusion application association, according to
one embodiment. The provisioning of a Java service can be
a process which can personalizes a VM based on the
requirements of a customer or tenant. As illustrated in FIG.
11B, a Java service can provide extensions to a Fusion
application SaaS environment.

FIG. 11B describes how an anonymous assembly is
hydrated with personalization information of a tenant. For
example, a Java service VM image can be provided as an
OVAB assembly. The deployment of such an assembly
results in an anonymous instance. As mentioned in FIG. 8B,
SDI module can pre-provision an anonymous instance of a
service. The anonymous instance is a live VM, but is not
associated with any tenant. As previously described, SDI
module 206 can pre-provision anonymous VMs to speed up
the process of creating a tenant environment or service
instance.
At 1101, TAS module 204 can send a tenant request for

Java service to SDI module 206. At 1102, SDI module 206
can request for anonymous assembly from an assembly
builder via the assembly builder connector. At 1103, the
assembly builder can deploy the anonymous assembly using
OVM. At 1104, the anonymous assembly is sent to SDI
module 206. At 1105, SDI module 206 can create IDM slice
via the IDM connector. At 1106, IDM can return the IDM
coordinates to SDI module 206. At 1107, SDI module 206
can create a database slice via the database connector. At
1108, the database can return the database coordinate to SDI
module 206. In some instances, the database can be an
APEX database service.
At 1109, SDI module 206 can request to configure Java

service with the received IDM, database and EM coordinates
via the Nuviaq connector. At 1110, Nuviaq can store all the
service instance data into a Nuviaq database. At 1111,
Nuviaq can configure Java service instance, which may also
include starting the EM agent. In some instances, Nuviaq
can be a Java service orchestrator.

Furthermore, using Fusion applications (FA) SaaS envi
ronment can require Java service to be properly provisioned
according to the FA SaaS tenant. Therefore, the provisioning

US 9,501,541 B2
33

process described in FIG. 11B may have to account for
certain differences related to Identity Management.

In a typical cloud PaaS (e.g., Java service, database
service) provisioning environment, there can be single
shared IDM servicing all tenants. Each tenant's security
information can be segregated in a IDM Stripe (e.g., identity
domain) which can be kept separate from the other tenants.
In the case of FA SaaS, the IDM may be different and
dedicated to each SaaS instance. Therefore, the integration
of the Java service and FA service can require that there is
an interaction between the IDMs in order to support func
tionality like single sign-on.

According to Some embodiments, during the provisioning
of associated services, SDI module can use a shared IDM
between SaaS and PaaS services. Based on the shared IDM
between SaaS and PaaS services, the following are use-cases
that can be supported: partners/customers building applica
tions in Java cloud services that integrate with FA web
services; partners/customers building applications in Java
cloud services that have a user-interface which get embed
ded in FA; impact due to test and production instances;
migration between test and production instances; federation
of user with on-premise; and federation of actual user with
on-premise for some users with cloud identity store for other
USCS.

FIG. 11C illustrates a PaaS and a SaaS service association
process, according to Some embodiments of the invention.
The PaaS (e.g., Java) service and SaaS (e.g., FA) service
association process can include a PaaS environment hydra
tion. For example, the Java service PaaS environment can
include hydration scripts which are invoked during provi
sioning. The scripts can be capable of performing various
tasks like configuring the PaaS domain and so on. The tasks
can include: changing firewall rules to allow PaaS and SaaS
interactions; investigate the changes required for authenti
cation servlet filters; add necessary hooks to the puppet
repository for execution during hydration; shared IDM inte
gration; and web services configuration changes.

Service Provisioning a Database Cloud Service
FIG. 12 illustrates a high level logical view of a database

cloud service, according to Some embodiments. A cloud
database service can be provisioned by SDI module 206.
The database cloud service can have three main compo
nents: web service access, which allows access to the data in
the database cloud service through simple URIs. Application
Express, for creating and deploying all varieties of applica
tions in a browser-based environment; and a set of business
productivity applications that can be easily installed (e.g.,
with just a few clicks).
Some key attributes of the multi-tenant shared architec

ture can include: each tenant gets a completely isolated
schema; each Exadata compute node has multiple database
instances; each instance has multiple schemas (e.g., tenants);
each Schema/tenant is a container that can manage database
objects including tables, views, stored procedures, triggers;
each schema has one dedicated tablespace; and each
tablespace has one data file.

FIG. 12, which is similar to FIG. 7E, illustrates an
example of having multiple compute nodes (e.g., EXA
DATA compute node 1202, EXADATA compute node 1204)
within the same physical machine. Additionally, a database
instance 1206 can reside within each compute node. Fur
thermore, two separate schemas (e.g., schema 1208, Schema
1210) can be included within each database instance 1206.
According to another embodiment, more than two schemas
can be included in one database instance. Each schema (e.g.,
schema 1208, schema 1210) can be for a different customer.

10

15

25

30

35

40

45

50

55

60

65

34
Therefore, in Some embodiments, multiple schemas that are
associated with different customers can reside within the
same database instance.

In current database implementations, only one customer
can reside within each database instance. Therefore, mul
tiple customers require multiple database instances. Alter
natively, according to the embodiments of the present inven
tion, the database instance can be shared among multiple
customers, since multiple schemas are included in one
database instance. Each schema can represent a tenant;
therefore, one database instance can have multiple tenants.

For example, Fusion applications and Java service are
single tenant services. Single tenant services are assigned to
one customer. The database service is a multi-tenant service.
The POD for a database service is an Exadata rack with a
couple of database instances on the rack. In this case, many
customers can use one POD. Therefore, a database service
is a multi-tenant service, because a POD can have multiple
customers. This allows for a one-time setup of a POD and
then the runtime provisioning by SDI module 206 to add
multiple tenants to the POD at runtime.

FIG. 13 illustrates a service provisioning flow 1300 for a
multi-tenant database service, according to some embodi
ments. As illustrated in FIG. 12, a database service is an
example of a multi-tenant service, since one database
instance can have multiple schemas that are associated with
different customers.
At 1302, a customer requests a database service from

cloud UI 212 for a trial service. Alternatively, a customer can
request a database service from the store UI 210 for a paid
service. At 1304, cloud UI 212 sends the customer request
to TAS module 204. At 1306, TAS module 204 can initiate
provisioning by calling SDI module 206 via BPEL. In some
instances, TAS module 204 can initiate provisioning only
when services are available. At 1308, SDI module 206 can
call PLSQL APIs in the CLOUD UI to associate a schema
for the requesting customer. At 1310, after successful asso
ciation, SDI module 206 can notify TAS module 204, and
TAS module 204 can notify (e.g., email) customer. Subse
quently, the customer logs into webserver and activates the
database service.

According to another embodiment, a service provisioning
for a Fusion application can be implemented. For example,
a new Fusion application Subscription order is received by
SDI module 206. Upon approval of the order, a Fusion
application POD is provisioned. The customer (e.g., tenant)
provides key information to enable the tenant to be setup in
that pod. Upon creation of the initial user, the Fusion
applications cloud service emails the user ID and password
to the initial user. Furthermore, the tenant provisioning to an
allocation pod is a Subset of the standard setup process an
on-premise customer would follow.

FIG. 14 is a simplified block diagram of a computing
system 1000 that may be used in accordance with embodi
ments of the present invention. For example, cloud infra
structure system 100 may comprise one or more computing
devices. System 1000 depicted in FIG. 14 may be an
example of one such computing device. Computer system
1000 is shown comprising hardware elements that may be
electrically coupled via a bus 1024. The components may
include one or more processing units 1002, an input Sub
system 1004, an output subsystem 1006, storage devices
1008, a computer-readable storage media reader 1012 con
nected to a computer-readable storage medium 1010, a
communication Subsystem 1014, a processing acceleration
subsystem 1016, and working memory 1018.

US 9,501,541 B2
35

Bus subsystem 1024 provides a mechanism for letting the
various components and Subsystems of computer system
1000 communicate with each other as intended. Although
bus Subsystem 1024 is shown Schematically as a single bus,
alternative embodiments of the bus subsystem may utilize
multiple busses.

Input subsystem 1004 may include one or more input
devices Such as a mouse, a keyboard, a pointing device, a
touchpad, etc. In general, input Subsystem 1004 may include
any device or mechanism for inputting information to com
puter system 1000.

Output subsystem 1006 may include one or more output
devices for outputting information from computer system
1000. Examples of output devices include without limitation
a display device, a printer, a projection device, etc. In
general, output subsystem 1006 may include any device or
mechanism for outputting information from computer sys
tem 1000.

Processing unit(s) 1002 can include one or more proces
sors, one or more cores of processors, combinations thereof,
and the like. In some embodiments, processing unit(s) 1002
can include a general purpose primary processor as well as
one or more special purpose co-processors such as graphics
processors, digital signal processors, or the like. In some
embodiments, some or all processing units 1002 can be
implemented using customized circuits, such as application
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs). In some embodiments, such integrated
circuits execute instructions that are stored on the circuit
itself. In other embodiments, processing unit(s) 1002 can
execute instructions stored in working memory 1018 or on
storage devices 1008. In various embodiments, processing
units 1002 can execute a variety of programs or code
instructions and can maintain multiple concurrently execut
ing programs or processes. At any given time, Some or all of
the program code to be executed can be resident in system
working memory 1018, storage devices 1008, and/or on
computer-readable storage media 1010. Through suitable
programming, processing units 1002 can provide various
functionalities described above for performing event stream
related processing. In some embodiments, computer system
1000 may also include a processing acceleration unit 1016,
which can include a digital signal processor (DSP), a spe
cial-purpose processor, and/or the like.

Storage device(s) 1008 may include memory devices such
as disk drives, optical storage devices, and Solid-state Stor
age devices such as a random access memory (RAM) and/or
a read-only memory (ROM), which can be programmable,
flash-updateable and/or the like. Software (programs, code
modules, instructions), which when executed by processing
unit(s) 1002 to provide the functionality described above,
may be stored on storage devices 1008. Storage devices
1008 may also provide a repository for storing data used in
accordance with embodiments of the present invention.

Computer-readable storage media reader 1012 can further
be connected to a computer-readable storage medium 1010,
together (and, optionally, in combination with storage
device(s) 1008) comprehensively representing remote, local,
fixed, and/or removable memory storage devices plus Stor
age media for temporarily and/or more permanently con
taining computer-readable information.

Communications subsystem 1014 may permit data to be
exchanged with network and/or any other computers. Com
munication subsystem 1014 serves as an interface for receiv
ing data from and transmitting data to other systems from
computer system 1000. The communication may be pro
vided using wired or wireless protocols. For example, com

10

15

25

30

35

40

45

50

55

60

65

36
munication subsystem 1014 may enable computer 1000 to
connect to a client device via the Internet. Communication
Subsystem 1014 may comprise a modem, a network card
(wireless or wired), an infra-red communication device, a
GPS receiver, etc.
Working memory subsystem 1018 may include a number

of memories including a main random access memory
(RAM) for storage of instructions and data during program
execution and a read only memory (ROM) in which fixed
instructions are stored. Software elements such as an oper
ating system 1020 and/or other code 1022, such as an
application program (which may be a client application,
Web browser, mid-tier application, RDBMS, etc.), may be
stored in working memory 1018. In an exemplary embodi
ment, working memory 1018 may include executable code
and associated data structures (such as caches) used for
processing events and enabling variable duration windows
processing as described above.

It should be appreciated that alternative embodiments of
computer system 1000 may have more or less components
with numerous variations from that described above. For
example, customized hardware might also be used and/or
particular elements might be implemented in hardware,
Software (including portable software, such as applets), or
both. Further, connection to other computing devices such as
network input/output devices may be employed.

Although specific embodiments of the invention have
been described, various modifications, alterations, alterna
tive constructions, and equivalents are also encompassed
within the scope of the invention. Embodiments of the
present invention are not restricted to operation within
certain specific data processing environments, but are free to
operate within a plurality of data processing environments.
Additionally, although embodiments of the present inven
tion have been described using a particular series of trans
actions and steps, it should be apparent to those skilled in the
art that the scope of the present invention is not limited to the
described series of transactions and steps.

Further, while embodiments of the present invention have
been described using a particular combination of hardware
and software, it should be recognized that other combina
tions of hardware and software are also within the scope of
the present invention. Embodiments of the present invention
may be implemented only in hardware, or only in Software,
or using combinations thereof. The various processes
described herein can be implemented on the same processor
or different processors in any combination. Accordingly,
where components or modules are described as being con
figured to perform certain operations, such configuration can
be accomplished, e.g., by designing electronic circuits to
perform the operation, by programming programmable elec
tronic circuits (such as microprocessors) to perform the
operation, or any combination thereof. Processes can com
municate using a variety of techniques including but not
limited to conventional techniques for interprocess commu
nication, and different pairs of processes may use different
techniques, or the same pair of processes may use different
techniques at different times.
The specification and drawings are, accordingly, to be

regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that additions, subtractions, dele
tions, and other modifications and changes may be made
thereunto without departing from the broader spirit and
Scope as set forth in the claims. Thus, although specific
invention embodiments have been described, these are not
intended to be limiting. Various modifications and equiva
lents are within the scope of the following claims.

US 9,501,541 B2
37

That which is claimed is:
1. A method comprising:
storing, by a cloud infrastructure system comprising one

or more computing devices, Subscription order infor
mation associated with a customer, the Subscription
order information identifying a first service from a set
of cloud services provided by the cloud infrastructure
system, wherein the Subscription order information
includes a customer-specific configuration for the first
service identified by the subscription order informa
tion;

providing a first set of pre-provisioned anonymous
deployments for a first service type, each pre-provi
sioned anonymous deployment in the first set compris
ing one or more resources enabling a service instance
of the first service type:

providing a second set of pre-provisioned anonymous
deployments for a second service type, each pre-pro
visioned anonymous deployment in the second set
comprising one or more resources enabling a service
instance of the second service type;

determining, by the one or more computing devices, that
the first service identified by the subscription order
information is associated with a first service type;

in response to the determining, selecting, by the one or
more computing devices, a first pre-provisioned anony
mous deployment for enabling the first service; and

creating, by the one or more computing devices, a service
instance using the selected first pre-provisioned anony
mous deployment based on the subscription order
information associated with the customer, wherein the
creating includes customizing the selected first pre
provisioned anonymous deployment with the cus
tomer-specific configuration.

2. The method of claim 1, wherein the first service is a
database service, and wherein the deployment includes one
or more virtual machines (VMs) created using a virtual
assembly builder, and wherein the method further com
prises:

creating a deployment plan file, wherein the deployment
plan file includes configuration information for inject
ing the customer-specific configuration into the one or
more VMS.

3. The method of claim 2, further comprising:
creating a virtual assembly builder home to allow parallel

virtual assembly builder operations.
4. The method of claim 1, wherein the first pre-provi

Sioned anonymous deployment is for a multi-tenant service,
and wherein the multi-tenant service includes service
instances for a plurality of customers.

5. The method of claim 4, wherein the multi-tenant
service is a database service instance, and wherein multiple
schemas are included in the database service instance,
wherein each of the schemas is associated with a different
CuStOmer.

6. The method of claim 1, wherein the first pre-provi
Sioned anonymous deployment is for a single-tenant service
wherein the single-tenant service is a Java instance for a
particular customer.

7. The method of claim 1, wherein the first pre-provi
Sioned anonymous deployment includes one or more soft
ware resources, one or more hardware resources, or a
combination thereof for enabling the service of the service
type.

5

10

15

25

30

35

40

45

50

55

60

65

38
8. The method of claim 1, further comprising:
enabling the first service identified by the subscription

order information by assigning the created service
instance to the customer based on the pre-provisioned
anonymous deployment.

9. The method of claim 1, wherein the first pre-provi
Sioned anonymous deployment is created prior to the Sub
Scription order information being stored.

10. A system comprising:
one or more computing devices configured to offer a set

of cloud services;
a memory configured to store Subscription order informa

tion associated with a customer, the Subscription order
information identifying a first service from a set of
cloud services, wherein the subscription order infor
mation includes a customer-specific configuration for
the first service identified by the subscription order
information; and

wherein the one or more computing devices is configured
tO:

provide a first set of pre-provisioned anonymous
deployments for a first service type, each pre-provi
Sioned anonymous deployment in the first set com
prising one or more resources enabling a service
instance of the first service type:

provide a second set of pre-provisioned anonymous
deployments for a second service type, each pre
provisioned anonymous deployment in the second
set comprising one or more resources enabling a
service instance of the second service type;

determine that the first service identified by the sub
Scription order information is associated with a first
service type;

in response to the determining, select a first pre
provisioned anonymous deployment for enabling the
first service; and

create a service instance using the selected first pre
provisioned anonymous deployment based on the
subscription order information associated with the
customer, wherein the creating includes customizing
the selected first pre-provisioned anonymous deploy
ment with the customer-specific configuration.

11. The system of claim 10, wherein the first service is a
database service, and the deployment includes one or more
virtual machines (VMs) created using a virtual assembly
builder, and wherein the method further configured to:

create a deployment plan file, wherein the deployment
plan file includes configuration information for inject
ing the customer-specific configuration into the one or
more VMS.

12. The system of claim 11, wherein the one or more
computing devices are further configured to:

create a virtual assembly builder home to allow parallel
virtual assembly builder operations.

13. The system of claim 10, wherein the first pre-provi
Sioned anonymous deployment is for a multi-tenant service,
wherein the multi-tenant service includes service instances
for a plurality of customers.

14. The system of claim 10, wherein the first pre-provi
Sioned anonymous deployment is for a single-tenant service,
wherein the single-tenant service is a Java instance for a
particular customer.

15. One or more non-transitory computer-readable media
storing computer-executable instructions for a cloud infra
structure system configured to offer a set of cloud services,
wherein the computer-executable instructions, when

US 9,501,541 B2
39

executed by one or more computing devices in the cloud
infrastructure system, cause the one or more computing
devices to:

store subscription order information associated with a
customer identifying a first service from a set of cloud
services, wherein the subscription order information
includes a customer-specific configuration for the first
service identified by the subscription order informa
tion;

provide a first set of pre-provisioned anonymous deploy
ments for a first service type, each pre-provisioned
anonymous deployment in the first set comprising one
or more resources enabling a service instance of the
first service type:

provide a second set of pre-provisioned anonymous
deployments for a second service type, each pre-pro
visioned anonymous deployment in the second set b
comprising one or more resources enabling a service
instance of the second service type;

determine that the first service identified by the subscrip
tion order information is associated with a first service
type;

in response to the determining, select a first pre-provi
sioned anonymous deployment from the first set for
enabling the first service; and

create a service instance using the selected first pre
provisioned anonymous deployment based on the Sub
Scription order information associated with the cus
tomer, wherein the creating includes customizing the
Selected first pre-provisioned anonymous deployment
with the customer-specific configuration.

10

15

25

30

40
16. The one or more non-transitory computer-readable

media of claim 15, wherein the first pre-provisioned anony
mous deployment includes one or more virtual machines
(VMs) created using a virtual assembly builder, the one or
more computer-readable media, and wherein the computer
readable media further comprises instructions to:

create a deployment plan file, wherein the deployment
plan file includes configuration information for inject
ing the customer-specific configuration into the one or
more VMS.

17. The one or more non-transitory computer-readable
media of claim 16, wherein the computer-executable
instructions, when executed by the one or more computing
devices, further cause the one or more computing devices to:

create a virtual assembly builder home to allow parallel
virtual assembly builder operations.

18. The one or more non-transitory computer-readable
media of claim 15, wherein first the pre-provisioned anony
mous deployment is for a multi-tenant service, wherein the
multi-tenant service includes service instances for a plurality
of customers.

19. The one or more non-transitory computer-readable
media of claim 18, wherein the multi-tenant service is a
database service instance, wherein multiple schemas are
included in the database service instance, wherein each of
the schemas is associated with a different customer.

20. The one or more non-transitory computer-readable
media of claim 15, wherein the first pre-provisioned anony
mous deployment is for a single-tenant service, wherein the
single-tenant service is a Java instance for a particular
CuStOmer.

