
(12) United States Patent
El-Shimi et al.

US009.495552B2

US 9,495,552 B2
Nov. 15, 2016

(10) Patent No.:
(45) Date of Patent:

(54) INTEGRATED DATA DEDUPLICATION AND
ENCRYPTION

Applicant: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(US)
Ahmed Moustafa El-Shimi, Seattle,
WA (US); Paul Adrian Oltean,
Redmond, WA (US); Ran Kalach,
Bellevue, WA (US); Sudipta Sengupta,
Redmond, WA (US); Jin Li, Bellevue,
WA (US); Roy D'Souza, Bellevue, WA
(US); Omkant Pandey, Austin, TX
(US); Ramarathnam Venkatesan,
Redmond, WA (US)
Microsoft Technology Licensing, LLC,
Redmond, WA (US)
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 39 days.

Appl. No.: 13/731,746
Filed: Dec. 31, 2012

Prior Publication Data

US 2014/O189348 A1 Jul. 3, 2014
Int. C.
H04L 9/00
G6F 2/62
H04L 29/06
U.S. C.
CPC G06F 21/6218 (2013.01); H04L 63/0428

(2013.01); G06F 222 1/2107 (2013.01)
Field of Classification Search
USPC 713/156, 165, 167, 168, 189; 380/44;

726/7
See application file for complete search history.

(71)

(72) Inventors:

(73) Assignee:

Notice: (*)

(21)
(22)
(65)

(51)
(2006.01)
(2013.01)
(2006.01)

(52)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

8,380,681 B2* 2/2013 Oltean GO6F 17,3007
707,692

2002/0150240 A1* 10, 2002 Henson HO4L 9,0618
380/44

Network Resource

Deduplication
Service 106

2006/0080284 A1* 4/2006 Masonis G06F 21,6245
2008. O184350 A1* 7, 2008 Chu G06F 21/10

726/7
2009/0024480 A1 1/2009 Dai G06Q 30/02

TO5, 14.5
2009/0132811 A1* 5/2009 Koster G06F 21 10

T13,156
2010/0106972 A1* 4/2010 Melen HO4L 63,06

713,171
2012/0158672 A1* 6, 2012 Oltean GO6F 17,30091

707,692
2012/0204024 A1* 8/2012 Augenstein G06F 11,1453

T13,150
2013/0305039 A1* 11/2013 Gauda G06F 21,6218

T13,153
2014/0025948 A1 1/2014 Bestler HO4L 9,0863

713/167
2014/0032925 A1 1/2014 Panchbudhe G06F 3/0608

T13, 189
2014/00406 16 A1 2/2014 Barber G06F 11,1453

T13,168
2014/0143213 A1* 5, 2014 Tal GO6F 17,30156

707,692

FOREIGN PATENT DOCUMENTS

WO WO 2012.158654 A2 * 11, 2012 G06F 21,6218

* cited by examiner

Primary Examiner — Joseph P Hirl
Assistant Examiner — Sayed Beheshti Shirazi
(74) Attorney, Agent, or Firm — Aneesh Mehta; Kate
Drakos; Micky Minhas

(57) ABSTRACT

The subject disclosure is directed towards encryption and
deduplication integration between computing devices and a
network resource. Files are partitioned into data blocks and
deduplicated via removal of duplicate data blocks. Using
multiple cryptographic keys, each data block is encrypted
and stored at the network resource but can only be decrypted
by an authorized user, such as domain entity having an
appropriate deduplication domain-based cryptographic key.
Another cryptographic key referred to as a content-derived
cryptographic key ensures that duplicate data blocks encrypt
to Substantially equivalent encrypted data.

20 Claims, 7 Drawing Sheets

Secre
Catc. Blocks

Computing Device

deduplication
domain-Based a 110
Cryptographic

Keys

integration
Component ra. 112

FileData 108 Metadata 102
m 14

Authentication
wen-116
Content
Derived

Cryptographic
Keys

- 118

U.S. Patent Nov. 15, 2016 Sheet 1 of 7 US 9,495,552 B2

NetWork Resource

Deduplication
Service

Secure
Data Blocks

Computing Device

File Data 108 Metadata 102

avian 1
Deduplication
Domain-Based 110 Authentication

Values Cryptographic
Keys

Content
Integration 112 Derived
Component Cryptographic

Keys

FIG. 1

495,552 B2 U.S. Patent

U.S. Patent Nov. 15, 2016 Sheet 3 of 7 US 9,495,552 B2

s

ce
C)
NY
O CO
O

N2 (f)
O
O
-

US 9,495,552 B2 Sheet 4 of 7 Nov. 15, 2016 U.S. Patent

U.S. Patent Nov. 15, 2016 Sheet S of 7 US 9,495,552 B2

502

Issue a Download Request

Decrypt Metadata and Communicate Lookup
Hash Values

504

506

510
Validate

Decrypt Corresponding Cryptographic Keys
and Data BlockS

ReCOnstruct a FileData Stream

FIG. 5

U.S. Patent Nov. 15, 2016 Sheet 6 of 7 US 9,495,552 B2

Computing -
Device 620

d -

Computing Device /

Gesel) Object 624
, / y

7

7 -

Computing
COmmunications Device 628
NetWork/BuS

Object 626

Server Object

Data
Store(s)
650

FIG. 6

US 9,495,552 B2
1.

INTEGRATED DATA DEDUPLICATION AND
ENCRYPTION

BACKGROUND

Organizations typically employ a number of technologies
to meet data storage demands, including local storage
devices, enterprise storage networks and cloud-based Stor
age services. As each organization grows, reducing total
storage space is a Substantial concern. Data deduplication
generally refers to detecting, uniquely identifying and elimi
nating redundant data blocks and thereby reducing the
physical amount of bytes of data that need to be stored on
disk or transmitted across a network. Implementing data
deduplication results in considerable savings in the amount
of bytes which need to be stored and/or transferred between
storage devices.
At the same time, users want their data inaccessible to

others, and thus storage of encrypted data is desirable,
especially on cloud-based storage services where the users
cannot prevent access by others. Because conventional
encryption schemes randomize file data Such that each data
block corresponds to a certain output, it is difficult to
determine if a data block within an encrypted file is a
duplicate of another encrypted data block. Implementing
Such an encryption scheme, therefore, hinders effective data
deduplication and vice versa. Deduplicating encrypted data
is not practical without implementing cumbersome access
control mechanisms for each encrypted file sharing duplicate
data. Even though convergent encryption technologies pro
vide a workable deduplication system that also encrypts
data, each user, regardless of permission, has an encryption
key to each file, which renders impractical the prevention of
unauthorized access through encryption. Hence, a storage
technology's data deduplication capabilities is restricted by
security concerns.

SUMMARY

This Summary is provided to introduce a selection of
representative concepts in a simplified form that are further
described below in the Detailed Description. This Summary
is not intended to identify key features or essential features
of the claimed subject matter, nor is it intended to be used
in any way that would limit the scope of the claimed subject
matter.

Briefly, various aspects of the subject matter described
herein are directed towards deduplicating files into non
redundant data blocks prior to encrypting these data blocks
Such that both deduplication and encryption are combined
into one mechanism. In one aspect, a number of crypto
graphic keys are employed to encrypt a data block, prevent
ing an untrusted resource from reasonably deciphering that
data block while enabling identification of a duplicate data
block, for the purposes of deduplication.

Deduplication using duplicate data blocks may be limited
to finding duplicate data blocks only within the same
domain. A domain refers to a deduplication group, for
instance, a group of entities using computing devices, in
which each deduplication group is separated from other
groups and provided a private hosted service referred to
herein as a deduplication service. In one aspect, a dedupli
cation domain-based cryptographic key defines a scope of
the deduplication and encryption integration to ensure only
entities belonging to a particular domain can view each
other's data and an adversary outside of that particular
domain cannot view any encrypted data. If duplicate data

10

15

25

30

35

40

45

50

55

60

65

2
blocks originated from a same domain, encrypting these data
blocks using such a key results in identical data blocks that
can be differentiated from duplicate data blocks from dif
ferent domains. In one aspect, a content-derived crypto
graphic key ensures that only duplicate data blocks encrypt
to Substantially equivalent data. Hence, deduplication and
encryption compatibility is achieved using a combination of
a content-derived cryptographic key and a deduplication
domain-based cryptographic key. Thus, without the com
bined cryptographic key, the adversary cannot generate a
lookup hash value to query the deduplication service as the
existence of any data block from another domain.
A network resource is configured to store the non-redun

dant data blocks, while encrypted, for a number of domains,
by encrypting file data for one domain with a different
deduplication domain-based cryptographic key than another
domain. In one aspect, authentication values, for instance,
lookup hash values are computed on the encrypted non
redundant data blocks. For this reason, the deduplication
service running on the network resource validates data
integrity on encrypted data instead of unencrypted or clear
data. Thus, the network resource, including any computing
service or device therein, cannot view decrypted file data. In
one aspect, the non-redundant data blocks are compressed
prior to encryption and/or communication to a network
resource for storage, reducing total storage space.

Other advantages may become apparent from the follow
ing detailed description when taken in conjunction with the
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limited in the accompanying figures in which like
reference numerals indicate similar elements and in which:

FIG. 1 is a block diagram illustrating an example system
for integrated deduplication and encryption according to one
example implementation.

FIG. 2 is a functional block diagram illustrating an
example process for securing data blocks of a file for
deduplication according to one example implementation.

FIG. 3 is a functional block diagram illustrating an
example process for computing authentication values for
data blocks according to one example implementation.

FIG. 4 is a functional block diagram illustrating an
example process for uploading at least a portion of a
deduplicated file according to one example implementation.

FIG. 5 is a flow diagram illustrating example steps for
downloading secure file data from a network resource
according to one example implementation.

FIG. 6 is a block diagram representing example non
limiting networked environments in which various embodi
ments described herein can be implemented.

FIG. 7 is a block diagram representing an example
non-limiting computing system or operating environment in
which one or more aspects of various embodiments
described herein can be implemented.

DETAILED DESCRIPTION

Various aspects of the technology described herein are
generally directed towards an integrated deduplication and
encryption mechanism by which a computing device secures
data blocks for storage on a network resource. According to
one example implementation, one or more software/hard
ware components provide interoperability between a dedu
plication service running on the network resource and an

US 9,495,552 B2
3

encryption scheme that employs multiple cryptographic
keys, including a layered cryptographic key.
One example component uses lookup hash values to

identify which data blocks of a given file are duplicates of
previously deduplicated data blocks and then, omit any Such
data block from further compression, communication and/or
storage. For each data block, the example component gen
erates a corresponding cryptographic key based upon that
data block's content, either directly or indirectly via a
hash-based authentication code, and another cryptographic
key, which may be a deduplication domain-based crypto
graphic key. Accordingly, the corresponding cryptographic
key represents the layered cryptographic key for encrypting
this remaining data block and any duplicate data block into
Substantially equivalent data. In one example implementa
tion, the remaining data block may be compressed prior to
encryption, if possible. Such as when this data block is not
already of a compressed type.
Once compressed, encrypted and/or communicated to the

network resource for storage, the deduplication service is
precluded from accessing any original data (e.g., cleartext)
in a secure data block. For one reason, differentiating
between duplicate and non-duplicate data blocks for dedu
plication is performed independent of encryption and there
fore, the deduplication service does not examine decrypted
data block content in order to identify the duplicate data
blocks. Only a computing device within a same domain
controls encryption/decryption of the duplicate data block.
One example implementation uses lookup hash values to
identify the non-duplicate data blocks prior to the encryption
of these data blocks. Another example implementation iden
tifies the non-duplicate data blocks with lookup hash values
that are computed on the encrypted data blocks.

According to one example implementation, a set of con
tent-derived, layered cryptographic keys includes a symmet
ric encryption key for each deduplicated data block. For a
particular undeduplicated data block, the example compo
nent generates the symmetric encryption key by computing
a hash-based message authentication code (HMAC) using
data block content and one example deduplication domain
based lookup key. Producing each symmetric encryption key
from the data block content secures a corresponding
encrypted data block from misappropriation while providing
Such a data block to authorized users. Each symmetric
encryption key may be produced directly from data block
content such that a lookup hash value is computed on the
corresponding encrypted data block instead of the original
data block, which provides additional protection from an
untrusted resource.

The untrusted resource, generally, refers an adversarial
computing device, including any resident Software compo
nent executed therein, which desires access to unencrypted/
clear data without authorization from an owner. To illustrate
one example, an enterprise may acquire a set of configurable
computing resources, by quantity or capability, from a
network resource, which may be referred herein as a private/
public/hybrid cloud resource. By arranging these computing
resources, the network resource provides the enterprise with
one or more hosted services, such as a deduplication service.
In order to prevent another computing device and/or service
connected to or hosted by from deciphering the encrypted
data blocks, the enterprise employs a combination of the
content-derived cryptographic keys and the deduplication
domain-based cryptographic keys as described herein.

In one example implementation where the enterprise does
not trust the network resource (e.g., a public cloud resource),
the example component computes lookup hash values on the

5

10

15

25

30

35

40

45

50

55

60

65

4
encrypted data blocks instead of the same data blocks in
unencrypted/decrypted form. Accordingly, the deduplication
service may validate the data blocks while these blocks
remain encrypted by computing a separate hash-based
authentication code on the encrypted data blocks for com
parison with the previously computed lookup hash values.
Hence, no unauthorized device or service (e.g., in another
domain) running within the network resource is able to
access unencrypted enterprise data when protected with the
set of content-derived cryptographic keys.

It should be understood that any of the examples herein
are non-limiting. As such, the present invention is not
limited to any particular embodiments, aspects, concepts,
structures, functionalities or examples described herein.
Rather, any of the embodiments, aspects, concepts, struc
tures, functionalities or examples described herein are non
limiting, and the present invention may be used various
ways that provide benefits and advantages in computing and
data deduplication in general.

FIG. 1 is a block diagram illustrating an example system
for secure deduplication according to one example imple
mentation. One component of the example system includes
a computing device 102 coupled to a network resource 104.
A deduplication service 106 running within the network
resource 104 is configured to eliminate redundant data
blocks from file data 108 after encryption and/or compres
S1O.

According to one example implementation, a set of dedu
plication domain-based cryptographic keys 110 (herein
referred to as the deduplication domain-based cryptographic
keys 110) includes symmetric secret keys within a particular
deduplication domain. As described herein, an example
deduplication domain may refer to an entire enterprise or a
specific group or Sub-group with that enterprise as defined
by the enterprise's computing environment administrator.
Each Such secret key, hence, may be used by each entity
within that domain to encrypt and/or decrypt various data,
such as the metadata 114, the authentication values 116, the
chunk-derived cryptographic keys 118 and/or the like, in a
manner that prevents a non-domain entity from deciphering
the encrypted data while encrypting duplicate data blocks to
the same encrypted data. A size (e.g., in bits) of the dedu
plication domain-based cryptographic may represent a cryp
tographic strength of a resulting encrypted data.
An integration component 112 is configured to use any of

these domain-based keys to produce a hash-based authenti
cation code, for example, a hash-based message authentica
tion code (HMAC), for validating various data correspond
ing to one or more data blocks of the file data 108, including
the metadata 114 (e.g., an offset, a size in number of bytes
and/or the like), lookup hash values and/or other crypto
graphic keys. The integration component 112 may store each
hash-based authentication code as authentication values 116.
Prior to storage on the network resource 104, for instance,
the integration component 112 may use a symmetric encryp
tion scheme-based mechanism and one of the deduplication
domain-based cryptographic keys 110 to secure the metadata
114 and the authentication values 116.
The integration component 112 may use a first dedupli

cation domain-based cryptographic key and an example data
block's content to compute a first hash-based authentication
code, which may be used as a lookup hash value for
determining whether another data block is identical to that
data block. The integration component 112 may use a second
deduplication domain-based cryptographic key to compute a
second hash-based authentication code based upon the
lookup hash value. One example implementation designates

US 9,495,552 B2
5

the second hash-based authentication code as a symmetric
cryptographic key for securing the example data block Such
that duplicate data blocks are encrypted using the same
symmetric cryptographic key and therefore, encrypt to
equivalent data blocks (e.g., referred to messages or cipher
texts). This is because data block content is used to generate
the lookup hash value, which is specific to the example data
block; and therefore, the symmetric cryptographic key
encrypts the duplicate data blocks to Substantially equivalent
encrypted data blocks. For this reason, decrypting these
encrypted data blocks, with the symmetric cryptographic
key, results in Substantially equivalent data blocks that are
duplicates of the example data block.
The integration component 112 records the symmetric

cryptographic key, in the content-derived cryptographic
keys 118, as an appropriate encryption key for the example
data block and/or any data block having identical content.
According to one alternative implementation, the integration
component 112 further secures the symmetric cryptographic
key by symmetrically encrypting Such a key with a third
deduplication domain-based key to produce layered crypto
graphic keys, as described herein. The integration compo
nent 112 may also use the third deduplication domain-based
cryptographic key to encrypt/decrypt the lookup hash values
and/or data block offset and size attributes.
The following description refers to embodiments where

the deduplication service 106 is running on a private cloud
computing resource or an on-premises computing device to
which the computing device 102 communicates secure data
blocks comprising the file data 108 for storage. The inte
gration component 112 is configured to use the deduplica
tion service 106 to validate these data blocks in addition to
preventing an untrusted resource outside of the domain from
accessing and/or decoding the secure data blocks via sym
metric key encryption schemes. The integration component
112 uses the deduplication service 106 and the third dedu
plication domain-based key to decrypt the encrypted con
tent-derived cryptographic keys 118, which are then used to
decrypt the secure data blocks. After reverting back to
original data blocks, the integration component 112 uses the
deduplication service 106 to compute a hash-based authen
tication code for each secure data block and each authenti
cation code is compared with a corresponding lookup hash
values. The integration component 112 may provide the
corresponding lookup hash values prior to the above com
parison or, alternatively, these values are stored, in
encrypted form, at the public cloud resource or the on
premises cluster.

To illustrate embodiments comprising a hosted dedupli
cation service in a public cloud resource, the integration
component 112 may use the second deduplication domain
based cryptographic key to encrypt/decrypt data blocks prior
to computing the lookup hash values. Instead of using the
lookup hash value to generate the content-derived crypto
graphic key, the integration component 112 uses actual data
block content. In this alternative implementation, the inte
gration component 112 computed the lookup hash values
from the encrypted data blocks in contrast to unencrypted/
clear data blocks.
The integration component 112 may operate in a number

of phases through which deduplication and encryption are
achieved within one pipeline. Optionally, the integration
component 112 incorporate compression into the pipeline by
compressing data blocks prior to encryption and transmis
sion to the network resource for storage. FIGS. 2-4 illustrate
Such an example pipeline involving three (3) phases.

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 2 is a functional block diagram illustrating an

example process for securing data blocks of a file for
deduplication according to one example implementation.
The example process may represent a portion or phase 202
of a deduplication and encryption integration mechanism as
described herein by which a software/hardware component
(e.g., the integration component 112 of FIG. 1) transforms
lookup hash values into symmetric data block content
derived cryptographic keys for securing corresponding
undeduplicated data blocks. These data blocks may be
compressed prior to encryption via Such content-derived
cryptographic keys.

According to one example implementation, the example
process performs a chunking operation (labeled “Chunk” in
FIG. 2) to partition a document 204 into a plurality of data
blocks 206 (herein referred to as the data blocks 206) and
metadata 208. Each of the data blocks 206 may include
multiple data bytes of a variable or fixed block length. Using
an encryption key 210 and a hash-based encryption mecha
nism (labeled "HMAC), the example process transforms
data block content into a hash-based authentication code.
The example process of FIG. 2 proceeds to store each
computed hash-based authentication code in a file key
hashlist 212 for use as a content-derived cryptographic key
in encrypting/decrypting a corresponding undeduplicated
data block. Using these content-derived cryptographic keys,
which may be generated in accordance with a symmetric
secret key encryption scheme and/or defined in scope by a
specific deduplication domain, the example process of FIG.
2 transforms the data blocks 206 into secure data blocks 214.

Producing each content-derived cryptographic key from
(e.g., unencrypted) data block content secures such content
from misappropriation while enabling duplicate data blocks
to encrypt to a substantially equivalent data block. Accord
ingly, the deduplication service stores duplicate data blocks
if these data blocks are encrypted using different domain
based cryptographic keys; in which case, such redundancy
ensures that only authorized domain entities can view exis
tence information or access data, Such as metadata, secured
with a same domain-based cryptographic key. Thus, an
adversary cannot use lookup hash values to determine if a
particular data block exists without the domain-based cryp
tographic key.
As an alternative, the example process of FIG. 2 computes

a first hash-based authentication code (e.g., HMAC) based
upon the data block content and uses that authentication
code as input for generating a second hash-based authenti
cation code to be used as the content-derived cryptographic
key. The first hash-based authentication code and the second
hash-based authentication code may be computed using
same or different domain-based cryptographic keys. As an
example, the first hash-based authentication code includes a
lookup hash value that is computed on unencrypted data
block content. The second hash-based authentication code
secures the lookup hash value from being compromised,
thus ensuring data integrity when a corresponding data block
is downloaded. For instance, an adversary attempting to
surreptitiously provide incorrect data block content to the
user via a fraudulent lookup hash value will be unable to
Successfully manipulate the second hash-based authentica
tion code without the appropriate domain-based crypto
graphic key.

In order to reduce data transmission size and/or network
resource storage, the data blocks, the data blocks 206 may be
compressed prior to encryption. After performing a com
pression operation, the example process of the phase 202
transforms compressed data blocks 216 into the secure data

US 9,495,552 B2
7

blocks 214, according to one alternative implementation.
The example process of FIG. 2 symmetrically encrypts the
compressed data blocks 216 using corresponding keys from
the file key hashlist 212 and produces the secure data blocks
214 for uploading to the network resource.

FIG. 3 is a functional block diagram illustrating an
example process for computing authentication values for
data blocks according to one example implementation. The
example process may represent a portion or phase 302 of a
deduplication and encryption integration mechanism, as
described herein, by which a software/hardware component
(e.g., the integration component 112 of FIG. 1) transforms
encrypted data blocks 304 into hash-based authentication
codes referred to herein as lookup hash values. The
encrypted data blocks 304 may refer to at least a portion of
a deduplicated file. Each unencrypted data block of the
deduplicated file may be encrypted in accordance with the
example process described for FIG. 2. Using the lookup
hash values, such a component may use query a deduplica
tion service to determine which of the encrypted data blocks
304, if any, are redundant (e.g., duplicates of previously
deduplicated data blocks) and which data blocks are new
and are to be uploaded.

Using a lookup key 306 and a hash-based encryption
mechanism (labeled "HMAC), the example process trans
forms encrypted data block content into a lookup hashlist
308 comprising a lookup hash value for each encrypted data
block. As described herein, the lookup key 306 may be a
cryptographic key generated in accordance with a symmetric
secret key encryption scheme and defined in Scope by a
specific deduplication domain. The lookup key 306 ensures
that no adversary, including the network resource, can
generate lookup hash values from a dictionary of data blocks
and probe the lookup hashlist 308 for matching data blocks.
By comparing lookup hash values in the lookup hashlist

308 with stored lookup hashes for previously deduplicated
data blocks, the deduplication service may identify duplicate
data blocks stored in a network resource, such as a private/
public/hybrid cloud resource or on-premises server comput
ing device. A computing device may query the deduplication
service as to the existence of certain data blocks in storage
to which the deduplication service responds with lookup
hash values of undeduplicated data blocks, if any. Generally,
the undeduplicated data blocks refer to data blocks without
duplicates in the network resource. If the deduplication
service indicates that all of the encrypted data blocks 304 are
redundant, the example process of the phase 302 ends
because none of the encrypted data blocks 304 need to be
uploaded in order for the document 204 to be stored at the
network resource.

Producing each lookup hash value from encrypted data
block content precludes the deduplication service running on
the network resource, or any other computing device, from
accessing decrypted content. Accordingly, the deduplication
service may identify deduplicated data blocks without
decrypting the data block content. The deduplication service
also may use the lookup hash values to validate a previously
deduplicated data block, which, for instance, became tainted
or corrupted data block. To illustrate, even if the dedupli
cation service indicates a matching lookup hash value for an
example requested encrypted data block, there is a possibil
ity that a matching deduplicated data block is corrupted
and/or uploaded by an adversary. To validate the matching
deduplicated data blocks integrity, another hash value is
computed on the encrypted data block content from that data
block with the same cryptographic key used to compute the
lookup hash value. By comparing the other hash value with

10

15

25

30

35

40

45

50

55

60

65

8
the lookup hash value generated by the example process of
FIG. 2, the deduplication service determines whether the
matching deduplicated data block includes correct data and
if so, communicates that data block to the user's computing
device. If these hash value do not match, the deduplication
service stops the matching deduplicated data block from
being downloaded because that data block is most likely
compromised/corrupted.

FIG. 4 is a functional block diagram illustrating an
example process for uploading at least a portion of a
deduplicated file according to one example implementation.
The example process may represent a portion or phase 402
of a deduplication and encryption integration mechanism as
described herein by which a software/hardware component
(e.g., the integration component 112 of FIG. 1) encrypts
symmetric content-derived cryptographic keys, lookup hash
values, data block offsets and size attributes and other data
for securing encrypted data blocks prior to communication
to a deduplication service running on a network resource.
As described herein, one example purpose for re-encrypt

ing certain data, including the content-derived cryptographic
keys and/or the lookup hash values, is to protect such data
from inappropriate access by an untrusted resource, which
may include an adversarial computing device outside of a
deduplication domain. One example untrusted resource
includes another entity connected to the network resource,
Such as when different domain members may access com
monly available services running on a private cloud resource
or on-premises computing cluster. An alternative untrusted
resource may be a third-party hosted deduplication service
running on a public cloud resource, on which data from
other domains and/or other organizations also are stored.

FIG. 4 depicts one example implementation of the phase
402 that follows the phase 202 where the key hashlist 212 is
generated to include content-derived cryptographic keys, as
described for FIG. 2, and the phase 302 where the lookup
hashlist 308 is generated, as described for FIG. 3. After
determining which data blocks of the deduplicated file are
duplicates and which are non-duplicates, the example pro
cess of FIG. 4 generates the metadata 208 comprising offset
information for each non-duplicate data block. Using a file
encryption key 404 (e.g., a user password), the example
process of the phase 402 proceeds to transform the file key
hashlist 306 and the metadata 208 into an encrypted file key
hashlist 406 and encrypted metadata 408, respectively. Such
a transformation may be accomplished using any mecha
nism implementing a symmetric key encryption scheme.
The phase 402 is completed after uploading encrypted,
non-duplicate data blocks 410, the encrypted file key
hashlist 406 and the encrypted metadata 408 to the network
SOUC.

Because the file encryption key is user specified, the
encrypted file key hashlist 406 and the encrypted metadata
408 are unlikely to be decoded by an adversary and further
more, allow a domain user to decrypt such data on a client
computing device, identify certain data blocks of the docu
ment 204, and reconstruct a file data stream by concatenat
ing at least one data stream comprising data blocks for at
least a portion of the document 204 using a metadata stream
(e.g., a steam map) comprising data block offset and/or size
attributes. Furthermore, the deduplication service may be
instructed to use the lookup hash values to validate the
certain data blocks for maintaining data integrity.

FIG. 5 is a flow diagram illustrating example steps for
downloading secure file data from a network resource
according to one example implementation. The example
steps may be executed after a deduplication service removes

US 9,495,552 B2
9

redundancies from the file data and uploads only non
duplicate data blocks, if any, to the network resource.
One or more Software/hardware components (e.g., the

integration component 112 of FIG. 1) of a deduplication and
encryption integration mechanism, as described herein, may
initiate the example steps, which commence at step 502 and
proceed to step 504, by issuing a download request to the
deduplication service. One example component running on
a computing device coupled to the network resource may
communicate the download request for at least a portion of
the Secure file data. In response, the deduplication service
may return metadata associated with the secure file data,
which is used to select and/or download one or more secure
data blocks, as described further below with respect to steps
SO6 to S16 of FIG. S.

Step 506 decrypts the returned metadata, identifies one or
more secure data blocks to download and communicates
corresponding lookup hash values to the deduplication ser
vice. In response to an inputted password (e.g., the file
encryption key 404 of FIG. 4), the example component
permits a user to access to the returned metadata according
to one example implementation. It is appreciated that the
“user described herein may refer to a specific role per
formed by a group of users. The metadata includes a data
stream map between the secure data blocks and offset/size
attributes from which the example component may deter
mine which secure data blocks are to be downloaded. The
one or more secure data blocks may comprise an entire file
or only a portion needed of a file. A secure data block,
generally, refers to an encrypted data block that is stored at
the network resource. Each secure data block may be
encrypted using a corresponding content-derived crypto
graphic key, which may be referred to as a layered encryp
tion key due to being generated with a deduplication
domain-based cryptographic key.

Step 508 determines whether the corresponding lookup
hash values match any hash values in a deduplication hash
index. The deduplication service, in one example implemen
tation, persists a lookup hash value associated with each
deduplicated data block in the deduplication hash index. By
maintaining Such an index, the deduplication service may
determine whether the one or more secure data blocks are
stored in the network resource without re-computing a
previously deduplicated data block's lookup hash value.

Step 510 represents secure data block validation. Without
being decrypted, an example secure data block may be
examined for data integrity via a relevant authentication
technique. For instance, the deduplication service verifies
data integrity by computing a separate hash authentication
code based upon a deduplication domain-based lookup key
and encrypted data block content from the secure data block
and compares that authentication code with the example
secure data block's lookup hash value, as provided during
step 506. A match between these values indicates a correct
secure data block while a mismatch implies incorrect data in
the secure data block. If step 510 determines that the one or
more secure data blocks are valid based upon hash authen
tication codes, step 510 proceeds to step 512. If step 510
cannot validate the one or more data blocks, step 510 issues
an error and terminates the example steps at step 516.

Step 512 is directed towards decrypting the content
derived cryptographic keys and the one or more secure data
blocks. Some example implementations involve the dedu
plication service communicating the encrypted content-de
rived cryptographic keys and the one or more secure data
blocks to the computing device and the example component
decrypting each at the computing device. Other example

10

15

25

30

35

40

45

50

55

60

65

10
implementations, including those involving a public/private/
hybrid cloud resource, select an appropriate deduplication
domain-based symmetric key to the deduplication service in
order to first decrypt the content-derived cryptographic keys
and then, the one or more secure data blocks using the
content-derived cryptographic keys.

Step 514 refers to reconstructing a file data stream com
prising the one or more secure data blocks for communica
tion to the computing device. To illustrate one example, the
example component instructs the deduplication service as to
an ordering of the one or more secure data blocks within the
requested file, as indicated by the returned metadata. In
response, the deduplication service may return the requested
portion of the file data in the form of a reconstructed file data
stream comprising the secure data blocks. Using offset
information, the deduplication service may locate and then,
concatenate individual encrypted data blocks into one or
more data streams that are transmitted to the computing
device. Step 514 proceeds to step 516 where the example
steps depicted in FIG. 5 end.

Example Networked and Distributed Environments

One of ordinary skill in the art can appreciate that the
various embodiments and methods described herein can be
implemented in connection with any computer or other
client or server device, which can be deployed as part of a
computer network or in a distributed computing environ
ment, and can be connected to any kind of data store or
stores. In this regard, the various embodiments described
herein can be implemented in any computer system or
environment having any number of memory or storage units,
and any number of applications and processes occurring
across any number of storage units. This includes, but is not
limited to, an environment with server computers and client
computers deployed in a network environment or a distrib
uted computing environment, having remote or local Stor
age.

Distributed computing provides sharing of computer
resources and services by communicative exchange among
computing devices and systems. These resources and Ser
vices include the exchange of information, cache storage and
disk storage for objects, such as files. These resources and
services also include the sharing of processing power across
multiple processing units for load balancing, expansion of
resources, specialization of processing, and the like. Dis
tributed computing takes advantage of network connectivity,
allowing clients to leverage their collective power to benefit
the entire enterprise. In this regard, a variety of devices may
have applications, objects or resources that may participate
in the resource management mechanisms as described for
various embodiments of the subject disclosure.

FIG. 6 provides a schematic diagram of an example
networked or distributed computing environment. The dis
tributed computing environment comprises computing
objects 610, 612, etc., and computing objects or devices 620,
622, 624, 626, 628, etc., which may include programs,
methods, data stores, programmable logic, etc. as repre
sented by example applications 630, 632, 634, 636, 638. It
can be appreciated that computing objects 610, 612, etc. and
computing objects or devices 620, 622, 624, 626, 628, etc.
may comprise different devices, such as personal digital
assistants (PDAs), audio/video devices, mobile phones,
MP3 players, personal computers, laptops, etc.

Each computing object 610, 612, etc. and computing
objects or devices 620, 622, 624, 626, 628, etc. can com
municate with one or more other computing objects 610,

US 9,495,552 B2
11

612, etc. and computing objects or devices 620, 622, 624,
626, 628, etc. by way of the communications network 640,
either directly or indirectly. Even though illustrated as a
single element in FIG. 6, communications network 640 may
comprise other computing objects and computing devices
that provide services to the system of FIG. 6, and/or may
represent multiple interconnected networks, which are not
shown. Each computing object 610, 612, etc. or computing
object or device 620, 622, 624, 626, 628, etc. can also
contain an application, such as applications 630, 632, 634,
636, 638, that might make use of an API, or other object,
software, firmware and/or hardware, suitable for communi
cation with or implementation of the application provided in
accordance with various embodiments of the subject disclo
SUC.

There are a variety of systems, components, and network
configurations that Support distributed computing environ
ments. For example, computing systems can be connected
together by wired or wireless systems, by local networks or
widely distributed networks. Currently, many networks are
coupled to the Internet, which provides an infrastructure for
widely distributed computing and encompasses many dif
ferent networks, though any network infrastructure can be
used for example communications made incident to the
systems as described in various embodiments.

Thus, a host of network topologies and network infra
structures, such as client/server, peer-to-peer, or hybrid
architectures, can be utilized. The "client' is a member of a
class or group that uses the services of another class or group
to which it is not related. A client can be a process, e.g.,
roughly a set of instructions or tasks, that requests a service
provided by another program or process. The client process
utilizes the requested service without having to “know’ any
working details about the other program or the service itself.

In a client/server architecture, particularly a networked
system, a client is usually a computer that accesses shared
network resources provided by another computer, e.g., a
server. In the illustration of FIG. 6, as a non-limiting
example, computing objects or devices 620, 622, 624, 626,
628, etc. can be thought of as clients and computing objects
610, 612, etc. can be thought of as servers where computing
objects 610, 612, etc., acting as servers provide data ser
vices, such as receiving data from client computing objects
or devices 620, 622, 624, 626, 628, etc., storing of data,
processing of data, transmitting data to client computing
objects or devices 620, 622, 624, 626, 628, etc., although
any computer can be considered a client, a server, or both,
depending on the circumstances.
A server is typically a remote computer system accessible

over a remote or local network, Such as the Internet or
wireless network infrastructures. The client process may be
active in a first computer system, and the server process may
be active in a second computer system, communicating with
one another over a communications medium, thus providing
distributed functionality and allowing multiple clients to
take advantage of the information-gathering capabilities of
the server.

In a network environment in which the communications
network 640 or bus is the Internet, for example, the com
puting objects 610, 612, etc. can be Web servers with which
other computing objects or devices 620, 622, 624, 626, 628,
etc. communicate via any of a number of known protocols,
such as the hypertext transfer protocol (HTTP). Computing
objects 610, 612, etc. acting as servers may also serve as
clients, e.g., computing objects or devices 620, 622, 624,
626, 628, etc., as may be characteristic of a distributed
computing environment.

10

15

25

30

35

40

45

50

55

60

65

12
Example Computing Device

As mentioned, advantageously, the techniques described
herein can be applied to any device. It can be understood,
therefore, that handheld, portable and other computing
devices and computing objects of all kinds are contemplated
for use in connection with the various embodiments.
Accordingly, the below general purpose remote computer
described below in FIG. 7 is but one example of a computing
device.

Embodiments can partly be implemented via an operating
system, for use by a developer of services for a device or
object, and/or included within application software that
operates to perform one or more functional aspects of the
various embodiments described herein. Software may be
described in the general context of computer executable
instructions, such as program modules, being executed by
one or more computers, such as client workstations, servers
or other devices. Those skilled in the art will appreciate that
computer systems have a variety of configurations and
protocols that can be used to communicate data, and thus, no
particular configuration or protocol is considered limiting.

FIG. 7 thus illustrates an example of a suitable computing
system environment 700 in which one or aspects of the
embodiments described herein can be implemented,
although as made clear above, the computing system envi
ronment 700 is only one example of a suitable computing
environment and is not intended to Suggest any limitation as
to scope of use or functionality. In addition, the computing
system environment 700 is not intended to be interpreted as
having any dependency relating to any one or combination
of components illustrated in the example computing system
environment 700.

With reference to FIG. 7, an example remote device for
implementing one or more embodiments includes a general
purpose computing device in the form of a computer 710.
Components of computer 710 may include, but are not
limited to, a processing unit 720, a system memory 730, and
a system bus 722 that couples various system components
including the system memory to the processing unit 720.
Computer 710 typically includes a variety of computer

readable media and can be any available media that can be
accessed by computer 710. The system memory 730 may
include computer storage media in the form of volatile
and/or nonvolatile memory Such as read only memory
(ROM) and/or random access memory (RAM). By way of
example, and not limitation, System memory 730 may also
include an operating system, application programs, other
program modules, and program data.
A user can enter commands and information into the

computer 710 through input devices 740. A monitor or other
type of display device is also connected to the system bus
722 via an interface, such as output interface 750. In addition
to a monitor, computers can also include other peripheral
output devices such as speakers and a printer, which may be
connected through output interface 750.
The computer 710 may operate in a networked or distrib

uted environment using logical connections to one or more
other remote computers, such as remote computer 770. The
remote computer 770 may be a personal computer, a server,
a router, a network PC, a peer device or other common
network node, or any other remote media consumption or
transmission device, and may include any or all of the
elements described above relative to the computer 710. The
logical connections depicted in FIG. 7 include a network
772, such local area network (LAN) or a wide area network
(WAN), but may also include other networks/buses. Such

US 9,495,552 B2
13

networking environments are commonplace in homes,
offices, enterprise-wide computer networks, intranets and
the Internet.
As mentioned above, while example embodiments have

been described in connection with various computing
devices and network architectures, the underlying concepts
may be applied to any network system and any computing
device or system in which it is desirable to improve effi
ciency of resource usage.

Also, there are multiple ways to implement the same or
similar functionality, e.g., an appropriate API, toolkit, driver
code, operating system, control, standalone or downloadable
Software object, etc. which enables applications and services
to take advantage of the techniques provided herein. Thus,
embodiments herein are contemplated from the standpoint
of an API (or other software object), as well as from a
software or hardware object that implements one or more
embodiments as described herein. Thus, various embodi
ments described herein can have aspects that are wholly in
hardware, partly in hardware and partly in Software, as well
as in Software.
The word “exemplary” is used herein to mean serving as

an example, instance, or illustration. For the avoidance of
doubt, the subject matter disclosed herein is not limited by
Such examples. In addition, any aspect or design described
herein as “exemplary' is not necessarily to be construed as
preferred or advantageous over other aspects or designs, nor
is it meant to preclude equivalent exemplary structures and
techniques known to those of ordinary skill in the art.
Furthermore, to the extent that the terms “includes,” “has,'
“contains,” and other similar words are used, for the avoid
ance of doubt, such terms are intended to be inclusive in a
manner similar to the term “comprising as an open transi
tion word without precluding any additional or other ele
ments when employed in a claim.
As mentioned, the various techniques described herein

may be implemented in connection with hardware or soft
ware or, where appropriate, with a combination of both. As
used herein, the terms “component,” “module.” “system
and the like are likewise intended to refer to a computer
related entity, either hardware, a combination of hardware
and software, software, or software in execution. For
example, a component may be, but is not limited to being,
a process running on a processor, a processor, an object, an
executable, a thread of execution, a program, and/or a
computer. By way of illustration, both an application run
ning on computer and the computer can be a component.
One or more components may reside within a process and/or
thread of execution and a component may be localized on
one computer and/or distributed between two or more com
puters.
The aforementioned systems have been described with

respect to interaction between several components. It can be
appreciated that such systems and components can include
those components or specified Sub-components, some of the
specified components or Sub-components, and/or additional
components, and according to various permutations and
combinations of the foregoing. Sub-components can also be
implemented as components communicatively coupled to
other components rather than included within parent com
ponents (hierarchical). Additionally, it can be noted that one
or more components may be combined into a single com
ponent providing aggregate functionality or divided into
several separate Sub-components, and that any one or more
middle layers, such as a management layer, may be provided
to communicatively couple to Such sub-components in order
to provide integrated functionality. Any components

10

15

25

30

35

40

45

50

55

60

65

14
described herein may also interact with one or more other
components not specifically described herein but generally
known by those of skill in the art.

In view of the example systems described herein, meth
odologies that may be implemented in accordance with the
described subject matter can also be appreciated with ref
erence to the flowcharts of the various figures. While for
purposes of simplicity of explanation, the methodologies are
shown and described as a series of blocks, it is to be
understood and appreciated that the various embodiments
are not limited by the order of the blocks, as some blocks
may occur in different orders and/or concurrently with other
blocks from what is depicted and described herein. Where
non-sequential, or branched, flow is illustrated via flowchart,
it can be appreciated that various other branches, flow paths,
and orders of the blocks, may be implemented which
achieve the same or a similar result. Moreover, some illus
trated blocks are optional in implementing the methodolo
gies described hereinafter.

CONCLUSION

While the invention is susceptible to various modifica
tions and alternative constructions, certain illustrated
embodiments thereof are shown in the drawings and have
been described above in detail. It should be understood,
however, that there is no intention to limit the invention to
the specific forms disclosed, but on the contrary, the inten
tion is to cover all modifications, alternative constructions,
and equivalents falling within the spirit and scope of the
invention.

In addition to the various embodiments described herein,
it is to be understood that other similar embodiments can be
used or modifications and additions can be made to the
described embodiment(s) for performing the same or
equivalent function of the corresponding embodiment(s)
without deviating therefrom. Still further, multiple process
ing chips or multiple devices can share the performance of
one or more functions described herein, and similarly,
storage can be effected across a plurality of devices. Accord
ingly, the invention is not to be limited to any single
embodiment, but rather is to be construed in breadth, spirit
and scope in accordance with the appended claims.

What is claimed is:
1. in a computing environment, a method performed at

least in part on at least one processor, comprising:
integrating encryption and deduplication for at least one

computing device, including, processing at least one
data block corresponding to a file or a stream for
deduplication;
generating a set of cryptographic keys based upon

content of the at least one data block and at least one
deduplication domain-based cryptographic key,
wherein generating the set of cryptographic keys
further comprises:
computing a first hash-based authentication value

using a first deduplication domain-based crypto
graphic key of the at least one deduplication
domain-based cryptographic key:

generating a second hash-based authentication value
using a second deduplication domain-based cryp
tographic key of the at least one deduplication
domain-based cryptographic key and the first
hash-based authentication value; and

US 9,495,552 B2
15

encrypting a lookup hash value using a third dedu
plication domain-based cryptographic key of the
at least one deduplication domain-based crypto
graphic key; and

encrypting the at least one data block using the set of
cryptographic keys to produce at least one encrypted
data block, wherein the at least one encrypted data
block is identifiable without decrypting content of the
at least one encrypted data block.

2. The method of claim 1, wherein the first hash-based
authentication value and the second hash-based authentica
tion value are computed using different deduplication
domain-based cryptographic keys.

3. The method of claim 1, further comprising:
computing the lookup hash value for the at least one

encrypted data block using the at least one deduplica
tion domain-based cryptographic key.

4. The method of claim 1, further comprising:
encrypting the set of cryptographic keys and metadata

using at least one password, the metadata defining an
offset and a size for each encrypted data block.

5. The method of claim 4, further comprising, communi
cating the at least one encrypted data block, the set of
cryptographic keys and the metadata to a network resource.

6. The method of claim 1, further comprising:
compressing the at least one data block prior to encrypting

the at least one data block.
7. The method of claim 1, wherein generating the set of

cryptographic keys further comprises:
generating a content-derived encryption key for each of

the at least one data block.
8. The method of claim 1, further comprising:
computing the lookup hash value for the at least one data

block using data block content and a symmetric secret
key within a deduplication key domain.

9. The method of claim 1, further comprising:
downloading at least a portion of the file from a network

reSOl Ce.

10. The method of claim 1, further comprising:
computing the lookup hash value and a content-derived

cryptographic key for the at least one encrypted data
block using the at least one deduplication domain
based key and data block content.

11. In a computing environment, a system comprising:
an integration component running within a computing

device coupled to a network resource comprising:
a deduplication service, the integration component

being configured to issue a file download request
comprising data block metadata for one or more
encrypted data blocks and instructing the deduplica
tion service to process offset information in the data
block metadata, locate the one or more encrypted
data blocks within the network resource using the
offset information, and communicate the one or more
encrypted data blocks, the integration component
being further configured to use a set of deduplication
domain-based keys to decrypt content-derived cryp
tographic keys and use the decrypted content-de
rived cryptographic keys to decrypt the one or more
encrypted data blocks, the set of deduplication
domain-based keys including a first deduplication
domain-based cryptographic key used to compute a
first hash-based authentication value, a second dedu
plication domain-based cryptographic key used to
generate a second hash-based authentication value,
and a third deduplication domain-based crypto

5

10

15

25

30

35

40

45

50

55

60

65

16
graphic key to encrypt a lookup hash value, wherein
at least one of the one or more encrypted data blocks
are identifiable without decrypting content of the at
least one of the one or more encrypted data blocks.

12. The system of claim 11, wherein the integration
component is further configured to:

use the deduplication service to reconstruct a file using a
data stream comprising the one or more encrypted data
blocks and the data block metadata.

13. The system of claim 11, wherein the integration
component is further configured to:

download file metadata, decrypt the file metadata with a
user credential, identify at least one data block of the
file that is not present in the computing device, and
access the offset information and the content-derived
cryptographic keys from the file metadata that corre
sponds to the one or more encrypted data blocks.

14. The system of claim 11, wherein the integration
component is further configured to:

instruct the deduplication service to validate a data block
using a corresponding lookup hash value.

15. The system of claim 11, wherein the deduplication
service is further configured to:

provide encrypted content-derived cryptographic keys
and at least one of the one or more encrypted data
blocks that correspond to the data block metadata.

16. The system of claim 14, wherein the deduplication
service is instructed to validate the lookup hash value or the
one or more encrypted data blocks using a deduplication
domain-based cryptographic key.

17. The system of claim 11, wherein the integration
component is further configured to:

query the deduplication service using one of the first
has-based authentication value and the second hash
based authentication value to determine whether at
least one of the one or more encrypted data blocks is a
duplicate data block.

18. In a computing environment, a method performed at
least in part on at least one processor comprising:

integrating encryption and deduplication for at least one
computing device, including:

generating a lookup hash value based on a first dedupli
cation domain-based cryptographic key and content of
a data block;

using a second deduplication domain-based cryptographic
key to compute a symmetric cryptographic key based
upon the lookup hash value:

encrypting the data block using the symmetric crypto
graphic key to produce an encrypted data block; and

encrypting the symmetric cryptographic key based on a
third deduplication domain-based cryptographic key to
produce a layered cryptographic key, the third dedu
plication domain-based cryptographic key is used to
encrypt the lookup hash value, wherein one or more
deduplicated data blocks are identifiable without
decrypting the content of the one or more deduplicated
data blocks.

19. The system of claim 11, wherein the first hash-based
authentication value and the second hash-based authentica
tion value are computed using different deduplication
domain-based cryptographic keys.

20. The method of claim 18, wherein the first hash-based
authentication value and the second hash-based authentica
tion value are computed using different deduplication
domain-based cryptographic keys.

