
(12) United States Patent
Rajendran et al.

USOO949.543OB2

US 9,495,430 B2
Nov. 15, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR BATCH
PROCESSING OF DATA RECORDS IN AN
ON-DEMAND SYSTEM

(71) Applicant: salesforce.com, inc., San Francisco, CA
(US)

(72) Inventors: Raj Rajendran, Pleasanton, CA (US);
Navin K. Ramineni, Pleasanton, CA
(US); Priya Sethuraman, Fremont, CA
(US); Stephen Gesin, Mountain View,
CA (US); Varun Gupta, Berkeley, CA
(US)

(73) Assignee: salesforce.com, San Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 532 days.

(21) Appl. No.: 13/963,541

(22) Filed: Aug. 9, 2013

(65) Prior Publication Data

US 2014/OO6776O A1 Mar. 6, 2014

Related U.S. Application Data
(60) Provisional application No. 61/697.488, filed on Sep.

6, 2012.

(51) Int. Cl.
G06F 7/00 (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC. G06F 17/30575 (2013.01); G06F 17/30286

(2013.01); G06F 17/30374 (2013.01)
(58) Field of Classification Search

CPC ... GO6F 17/3O286
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,577,188 A 11, 1996 Zhu
5,608,872 A 3, 1997 Schwartz
5,649,104 A 7/1997 Carleton
5,715.450 A 2f1998 Ambrose et al.
5,761419 A 6/1998 Schwartz
5,819,038 A 10, 1998 Carleton
5,821,937 A 10, 1998 Tonelli et al.
5,831,610 A 11/1998 Tonelli et al.
5,873,096 A 2f1999 Lim et al.
5,918,159 A 6/1999 Fomukong et al.
5,963,953 A 10, 1999 Cram et al.
6,092,083. A 7/2000 Brodersen et al.
6,169,534 B1 1/2001 Raffel et al.
6,178.425 B1 1/2001 Brodersen et al.
6,189,011 B1 2/2001 Lim et al.
6,216,135 B1 4/2001 Brodersen et al.
6,233,617 B1 * 5/2001 Rothwein HO4L 29,06

709,227
6,266,669 B1 7/2001 Brodersen et al.
6,295,530 B1 9, 2001 Ritchie et al.
6,324,568 B1 11/2001 Diec
6,324,693 B1 1 1/2001 Brodersen et al.
6,336,137 B1 1/2002 Lee et al.
D454,139 S 3/2002 Feldcamp et al.

(Continued)
Primary Examiner — Loan T Nguyen
(74) Attorney, Agent, or Firm — Dergosits & Noah LLP:
Todd A. Noah

(57) ABSTRACT
Systems and methods are provided for batch processing of
data records in an on-demand system. A marker is stored that
identifies a node in an on-demand system and identifies a
most recent data record processed in a relational database
management system by the node. The marker is used to
query the database management system to identify a batch of
records for the node to process. The batch of records is
processed by the node to update a client of data changes
reflected by the batch of records.

16 Claims, 4 Drawing Sheets

Store marker that identifies node in on-demand system and
identifies most recent data record processed in relational database 102

management system by node.

Store second marker that identifies second node in on-demand
system and identifies most recent data record processed in - 104
relational database management system by second node.

Process second batch of records by second node to update second
client of data changes reflected by second batch of records.

or rol
Use marker to query database management system to identify

batch of records for node to process.

Process batch of records by node to update client of data changes
reflected by batch of records.

106

US 9,495.430 B2
Page 2

(56) References Cited 8,275,836 B2 9/2012 Beaven et al.
2001/0044791 A1 11/2001 Richter et al.

U.S. PATENT DOCUMENTS 2002fOO72951 A1 6/2002 Lee et al.
2002fOO82892 A1 6, 2002 Raffel

6,367,077 B1 4/2002 Brodersen et al. 2002/0129352 A1* 9, 2002 Brodersen GO6F 8.65
6,393,605 B1 5/2002 Loomans 717/174
6.405,220 B1 6/2002 Brodersen et al. 2002fO140731 A1 10, 2002 Subramanian et al.
6,434,550 B1 8, 2002 Warner et al. 2002/0143997 A1 10/2002 Huang et al.
6,446,089 B1 9, 2002 Brodersen et al. 2002/0162090 A1 10, 2002 Parnell et al.
6,535,909 B1 3, 2003 Rust 2002fO165742 A1 11, 2002 Robbins
6,549,908 B1 4/2003 Loomans 2003,0004971 A1 1/2003 Gong
6,553,563 B2 4/2003 Ambrose et al. 2003, OO18705 A1 1/2003 Chen et al.
6,560,461 B1 5/2003 Fomukong et al. 2003, OO1883.0 A1 1/2003 Chen et al.
6,574,635 B2 6, 2003 Stauber et al. 2003/0066031 A1 4/2003 Laane et al.
6,577,726 B1 6/2003 Huang et al. 2003/0066032 A1 4/2003 Ramachandran et al.
6,601,087 B1 7, 2003 Zhu 2003, OO69936 A1 4/2003 Warner et al.
6,604,117 B2 * 8/2003 Lim GO6F 17,30575 2003/0070000 A1 4, 2003 Coker et al.
6,604,128 B2 8, 2003 Diec 2003/0070004 A1 4/2003 Mukundan et al.
6,609,150 B2 8, 2003 Lee et al. 2003/0070005 A1 4/2003 Mukundan et al.
6,621,834 B1 9/2003 Scherpbier 2003, OO74418 A1 4/2003 Coker et al.
6,654,032 B1 11/2003 Zhu 2003/O120675 A1 6/2003 Stauber et al.
6,665,648 B2 12/2003 Brodersen et al. 2003/0151633 A1 8/2003 George et al.
6,665,655 B1 12/2003 Warner et al. 2003. O159136 A1 8, 2003 Huang et al.
6,684,438 B2 2, 2004 Brodersen et al. 2003. O187921 A1 10, 2003 Diec et al.
6,711,565 B1 3/2004 Subramaniam et al. 2003/0189600 A1 10, 2003 Guine et al.
6,724,399 B1 4/2004 Katchour et al. 2003/0204427 A1 10, 2003 Guine et al.
6,728,702 B1 4/2004 Subramaniam et al. 2003/0206192 A1 11/2003 Chen et al.
6,728,960 B1 4/2004 Loomans et al. 2004/0001092 A1 1/2004 Rothwein et al.
6,732,095 B1 5/2004 Warshavsky et al. 2004, OO15981 A1 1/2004 Coker et al.
6,732,100 B1 5/2004 Brodersen et al. 2004/0027388 A1 2/2004 Berg et al.
6,732,111 B2 5, 2004 Brodersen et al. 2004.0128001 A1 7/2004 Levin et al.
6,754,681 B2 6/2004 Brodersen et al. 2004/O186860 A1 9, 2004 Lee et al.
6,763,351 B1 7/2004 Subramaniam et al. 2004/O19351.0 A1 9/2004 Catahan et al.
6,763,501 B1 T/2004 Zhu 2004/0199489 A1 10, 2004 Barnes-Leon et al.
6,768,904 B2 7, 2004 Kim 2004/0199536 A1 10, 2004 Barnes Leon et al.
6,782,383 B2 8/2004 Subramaniam et al. 2004/0249854 A1 12/2004 Barnes-Leon et al.
6,804,330 B1 10/2004 Jones et al. 2004/0260534 A1 12, 2004 Pak et al.
853 E. H.38: Ea 2004/0260659 A1 12/2004 Chan et al. was atterjee et al.
6,826,745 B2 11/2004 Coker 2004/0268299 A1 12/2004 Lei et al.

2005/0050555 A1 3/2005 Exley et al.
6.829,655 B1 12/2004 Huang et al. 2005/009 1098 A1 4/2005 Brodersen et all
6,842,748 B1 1/2005 Warner et al. 2008/0249.972 A1 10, 2008 Dillon 6,850,895 B2 2/2005 Brodersen et al.
6.850.949 B2 2/2005 Warner et al. 2009 OO63415 A1 3/2009 Chatfield et al.
7062.502 B1 6/2006 Kesler 2011/0231848 A1* 9/2011 Long GO6F9,546
7.340,411 B2 3/2008 Cook T18, 101
7401,094 B1 7/2008 Kesler 2011/0258225 A1 * 10/2011 Taylor GO6F 17 30336
7,412,455 B2 8, 2008 Dillon 707/769
7.620,655 B2 11/2009 Larsson 2012/0259894 A1* 10/2012 Varley GO6F 17,30575
7,698,160 B2 4/2010 Beaven et al. 707/795
8,010,663 B2 8/2011 Firminger et al. 2013/0297695 A1 * 1 1/2013 Satyanarayanan ... H04L 65/403
8,082,301 B2 12/2011 Ahlgren et al. TO9.204
8,095,413 B1 1/2012 Beaven et al.
8,095,594 B2 1/2012 Beaven et al. * cited by examiner

U.S. Patent Nov. 15, 2016 Sheet 1 of 4 US 9,495,430 B2

Store marker that identifies node in on-demand system and
identifies most recent data record processed in relational database

management system by node.

Store second marker that identifies second node in on-demand
system and identifies most recent data record processed in :- 104
relational database management system by second node.

Use marker to query database management system to identify 106
batch of records for node to process.

108

Use second marker to query database management System to
identify second batch of records for second node to process. 110

- -------------------------------

Process second batch of records by second node to update second : 112
-

U.S. Patent Nov. 15, 2016 Sheet 2 of 4 US 9,495.430 B2

200

1 Client Computer
202

2" Client Computer
204

2"Node

Database Server
210

Database

Table 218

1 Marker 220

FIG. 2

U.S. Patent Nov. 15, 2016

Tenant
Data

Storage
322

Application
Platform
318

Sheet 3 of 4

System
Data

Storage
324

Processor
System
317

Network
Interface
320

US 9,495,430 B2

Program
Code
326

Process
Space
328

Environment

310

U.S. Patent Nov. 15, 2016 Sheet 4 of 4 US 9,495,430 B2

Tenant DB (
Tenant Space

Tenant Data C
Application Meta Data

Application Tenant Management System
Setup Process Process

Mechanism 4.38 410 402

Tenant 1 Tenant 2 Tenant N
Process Process ProceSS

404 404 404

Save

Routines 436

PL/SOOL 434 318
AP 432

Environment
310

PrOCeSSOr
System
312A

US 9,495,430 B2
1.

SYSTEMS AND METHODS FOR BATCH
PROCESSING OF DATA RECORDS IN AN

ON-DEMAND SYSTEM

CLAIM OF PRIORITY 5

This application claims the benefit of U.S. Provisional
Patent Application 61/697,488 entitled METHOD FOR
BATCH PROCESSING OF DATA IN AN ON-DEMAND
SYSTEM, by Rajendran, et al., filed Sep. 6, 2012, the entire 10
contents of which are incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document 15
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright 20
rights whatsoever.

BATCH PROCESSING OF DATA RECORDS IN
AN ON-DEMAND SYSTEM

25

One or more implementations relate generally to batch
processing of data records in an on-demand system.

BACKGROUND
30

The Subject matter discussed in the background section
should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be 35
assumed to have been previously recognized in the prior art.
The Subject matter in the background section merely repre
sents different approaches, which in and of themselves may
also be inventions.
An on-demand system typically includes multiple nodes, 40

Such as application servers, that interact with a relational
database management system. Each of the nodes may con
vey selected data updates from a relational database to
multiple clients that Subscribe to the on-demand system.
Each node typically accesses the relational database man- 45
agement system to identify each of the data updates based on
timestamps corresponding to the data updates. For example,
after an application server conveys selected data updates
from the relational database to Subscribing clients beginning
at 9:00 AM, the relational database management system 50
receives data updates at 9:19 AM, and the application server
checks for additional data updates at 9:30 AM by examining
the timestamps of the data updates in a transaction table
stored in the relational database. The application server skips
the data updates with a timestamp from before 9:00 AM 55
because the application server presumably processed these
data updates already beginning at 9:00 AM, and only
attempts to process the data updates with timestamps
between 9:00 AM and 9:30 AM.

However, the relational database management system 60
may receive data updates in bursts, such as 2 million data
updates between 9:00 AM and 9:30 AM at 9:19 AM, and no
data updates between 9:30 AM and 10:00 AM. Although the
relational database management system may have the capac
ity to receive and process millions of data updates in a short 65
period of time, an application server may not have the
capacity to process millions of data updates before the

2
application server is scheduled to process data updates
again. Therefore, when the application server is scheduled to
process data updates again at 10:00 AM, the application
server may not have completed the processing of the 2
million data updates that the application server began pro
cessing at 9:30 AM. In this situation, the application server
may malfunction, and even crash. The application server
may terminate the 9:30 AM job before all of the 2 million
data updates were processed. Such that the application server
does not process the unfinished data updates because these
unfinished data updates have 9:19 AM timestamps and the
10:00 AM job only processes updates with timestamps after
9:30 AM, when all of the previous data updates were
presumed to have already begun processing. Even though
many data updates remain unprocessed, the application
server may be idle because no data updates exist with a
timestamp between 9:30 AM and 10:00 AM. Alternatively,
the application server may begin reprocessing some of the
data updates that the application server already processed
beginning at 9:30 AM, which may not only waste resources,
but also result in yet another job timeout before all of the
data updates are processed. Further problems may exist
when an application server is taken offline for scheduled
maintenance or to repair a problem. When the application
server is bought back online, the timestamp of the applica
tion server's most recent job may be so long ago relative to
the recent data updates that the application server may
experience many problems, including some of the problems
described above, in an attempt to process all of the data
updates that occurred during the application server's down
time.

BRIEF SUMMARY

In accordance with embodiments, there are provided
systems and methods for batch processing of data records in
an on-demand system. A marker is stored that identifies a
node in an on-demand system and identifies the most recent
data record processed in a relational database management
system by the node. For example, a system stores
“9000000 App01 in a transaction table in a relational
database to identify that application server number 01 last
processed data update record number 9,000,000.

Another marker may be stored that identifies another node
in the on-demand system and identifies the most recent data
record processed in the relational database management
system by the other node. For example, the system may store
“9025000 App02” in the transaction table in the relational
database to identify that application server number 02 last
processed data update record number 9,025,000. The marker
is used to query the database management system to identify
a batch of records for the node to process. For example, the
system uses the marker "9000000 App01 to query the
relational database management system for the next 50,000
data update records that are sequentially greater than the
data update record number 9,000,000 for application server
number 01 to process.
The batch of records is processed by the node to update

a client of data changes reflected by the batch of records. For
example, the application server number 01 processes the
data update records from number 9,000.001 to number
9,050,000, and conveys selected updates to subscribing
clients. The other marker may be used to query the database
management system to identify another batch of records for
the other node to process. For example, the system may use
the marker “9025000 App02 to query the relational data
base management system for the next 50,000 data update

US 9,495,430 B2
3

records that are sequentially greater than the data update
record number 9,025,000 for application server number 02
to process. The other batch of records may be processed by
the other node to update another client of data changes
reflected by the other batch of records. For example, the
application server number 02 may process the data update
records from number 9,025,001 to number 9,075,000, and
convey selected updates to Subscribing clients. Accordingly,
systems and methods are provided for the batch processing
of data records in an on-demand system that enables load
distribution across time, which also enables offline nodes to
catch up with their data update processing when returned
online.

While one or more implementations and techniques are
described with reference to an embodiment in which batch
processing of data records in an on-demand system is
implemented in a system having an application server pro
viding a front end for an on-demand database service
capable of Supporting multiple tenants, the one or more
implementations and techniques are not limited to multi
tenant databases nor deployment on application servers.
Embodiments may be practiced using other database archi
tectures, i.e., ORACLE(R), DB2(R) by IBM and the like
without departing from the scope of the embodiments
claimed.
Any of the above embodiments may be used alone or

together with one another in any combination. The one or
more implementations encompassed within this specifica
tion may also include embodiments that are only partially
mentioned or alluded to or are not mentioned or alluded to
at all in this brief summary or in the abstract. Although
various embodiments may have been motivated by various
deficiencies with the prior art, which may be discussed or
alluded to in one or more places in the specification, the
embodiments do not necessarily address any of these defi
ciencies. In other words, different embodiments may address
different deficiencies that may be discussed in the specifi
cation. Some embodiments may only partially address some
deficiencies or just one deficiency that may be discussed in
the specification, and some embodiments may not address
any of these deficiencies.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following drawings like reference numbers are used
to refer to like elements. Although the following figures
depict various examples, the one or more implementations
are not limited to the examples depicted in the figures.

FIG. 1 is an operational flow diagram illustrating a high
level overview of a method for batch processing of data
records in an on-demand system in an embodiment;

FIG. 2 illustrates a block diagram of an example of a
system for batch processing of data records in an on-demand
system;

FIG. 3 illustrates a block diagram of an example of an
environment wherein an on-demand database service might
be used; and

FIG. 4 illustrates a block diagram of an embodiment of
elements of FIG. 3 and various possible interconnections
between these elements.

DETAILED DESCRIPTION

General Overview
Systems and methods are provided for batch processing of

data records in an on-demand system.

10

15

25

30

35

40

45

50

55

60

65

4
As used herein, the term multi-tenant database system

refers to those systems in which various elements of hard
ware and software of the database system may be shared by
one or more customers. For example, a given application
server may simultaneously process requests for a great
number of customers, and a given database table may store
rows for a potentially much greater number of customers. As
used herein, the term query plan refers to a set of steps used
to access information in a database system.

Next, mechanisms and methods for batch processing of
data records in an on-demand system will be described with
reference to example embodiments.
The following detailed description will first describe a

method for batch processing of data records in an on
demand system.

Next, an example of a system for batch processing of data
records in an on-demand system is described.

FIG. 1 is an operational flow diagram illustrating a high
level overview of a method 100 for batch processing of data
records in an on-demand system. As shown in FIG. 1, a
system can batch process data records in an on-demand
system.

In block 102, a marker is stored that identifies a node in
an on-demand system and identifies the most recent data
record processed in a relational database management sys
tem by the node. For example and without limitation, this
can include an application server number 01 storing
“9000000 App01 in a transaction table in a relational
database to identify that application server number 01 last
processed data update record number 9,000,000. A marker
enables a node to restart the processing of data updates after
the record which the node last processed. A marker may be
a pointer to a unique row identifier in a relational database
management system, and may be a key-value combination.
For example, the key-value pair may be
“last processed id in contact 24hr for mimi 1, 15” or
“last processed id in company 24hr for mmi 2, 14.
The key-value pair combination may be an optimum solu
tion, as it provides advantages of being able to use the key
as a primary-key, and make it easier to do operations on the
value. A key may be a string, which may include a unique
name and a node number. A value may reflect a number that
corresponds to a primary key of a transactions table that lists
data updates to a relational database.
A marker may also identify an object type. For example,

if a database includes a transactions table for updating data
for business contacts and another transactions table for
updating data for companies, a marker may identify whether
it is a marker for “contacts” or a marker for “companies.” In
this situation, a node may process the updates for contacts
separately from processing the updates for companies, and
use the corresponding markers to enable the batch process
ing of each object type independent of the other object type
processing. While these examples depict a process name that
identifies a record based on a numerical value, other iden
tifiers are possible. A marker may be formatted based on a
process name, an object name, and a node name, Such as
“Match Records Job Contacts App01. Although these
examples depict the two object types of contacts and com
panies, nodes may use markers for any number of different
types of objects.

In block 104, another marker is optionally stored that
identifies another node in the on-demand system and iden
tifies the most recent data record processed in a relational
database management system by the other node. By way of
example and without limitation, this can include an appli
cation server number 02 storing “9025000 App02” in the

US 9,495,430 B2
5

transaction table in the relational database to identify that the
application server number 02 last processed data update
record number 9,025,000. Since each node uses its own
corresponding markers, each node may batch process data
records without dependencies on any other nodes. Multiple
nodes may read and push the same data to different clients
independent of the other nodes. This implementation
enables easy horizontal scaling, allowing additional nodes to
be added for servicing additional clients.

In block 106, a marker is used to query a database
management system to identify a batch of records for a node
to process. In embodiments, this can include the application
server number 01 using the marker “9000000 App01” to
query the relational database management system for the
next 50,000 data update records that are sequentially greater
than the data update record number 9,000,000 for applica
tion server number 01 to process. If the application server
number 01 has a batch size of 40,000, then the application
server number 01 queries the relational database manage
ment system for the next 40,000 data update records that are
sequentially greater than the data update record number
9,000,000. If the application server number 01 has a batch
size of 60,000, then the application server number 01 queries
the relational database management system for the next
60,000 data update records that are sequentially greater than
the data update record number 9,000,000. Although these
examples illustrate record numbers that increment as records
are added, the use of record numbers that decrement as
records are added is also possible.
A batch size may be based on the maximum amount of

data update records that an application server can theoreti
cally process before the application server is scheduled to
process data updates again. In contrast, a prior art applica
tion server fails to process all 2 million data updates between
9:30 AM and 10:00 AM, and then sits idle between 10:00
AM and 10:30 AM without processing the previously unpro
cessed data updates. By using batch processing, a node may
process as many data updates as it reasonably can be
expected to process until Scheduled to execute again, and
continue batch processing until any backlog of data updates
has been processed during instances when fewer data
updates are added to the relational database management
system.

In block 108, a batch of records is processed by a node to
update a client of data changes reflected by the batch of
records. For example and without limitation, this can include
the application server number 01 processing the data update
records from number 9,000,001 to number 9,050,000, and
conveying selected updates to Subscribing clients. If only
20,000 data updates have been added to the relational
database since the last processing by the application server
number 01, then the application server number 01 processes
the update records from number 9,000,001 to number 9,020,
000, and stores “9020000 App01” in the transaction table in
the relational database to identify that application server
number 01 last processed update record number 9,020,000.
If an application server is facing a significant backlog of data
updates, the application server may process its maximum
batch size repeatedly over an extended period of time. In
Some embodiments under these significant backlog circum
stances, the application server may temporarily auto-correct
its next scheduled execution time to more quickly reduce the
backlog of data updates if the application server determines
that extra time is left for processing after the previous
processing of updates. Auto-correct Scheduling may assist
offline nodes in catching up with their data update backlogs
more efficiently.

10

15

25

30

35

40

45

50

55

60

65

6
In block 110, another marker is optionally used to query

a database management system to identify another batch of
records for the other node to process. By way of example
and without limitation, this can include the application
server number 02 using the marker “9025000 App02” to
query the relational database management system for the
next 50,000 data update records that are sequentially greater
than the data update record number 9,025,000 for applica
tion server number 02 to process.

In block 112, another batch of records is optionally
processed by the other node to update another client of data
changes reflected by the other batch of records. In embodi
ments, this can include the application server number 02
processing the data update records from number 9,025,001
to number 9,075,000, and conveying selected updates to
Subscribing clients.

Accordingly, systems and methods are provided for the
batch processing of data records in an on-demand system,
which enables load distribution across time, which also
enables offline nodes to catch up with their data update
processing when returned online. The method 100 may be
repeated as desired. Although this disclosure describes the
blocks 102-112 executing in a particular order, the blocks
102-112 may be executed in a different order.

FIG. 2 illustrates a block diagram of an example system
for batch processing of data records in an on-demand
system. As shown in FIG. 2, a system 200 may illustrate a
cloud computing environment in which data, applications,
services, and other resources are stored and delivered
through shared data-centers and appear as a single point of
access for the users. The system 200 may also represent any
other type of distributed computer network environment in
which servers control the storage and distribution of data for
different client users. In an embodiment, the system 200
represents a cloud computing system that includes a first
client computer 202, a second client computer 204, a first
node 206, a second node 208, a database server 210, and a
database 212 that communicate via a network 214. The
client computers 202-204, which may be mobile computing
devices, enable users to communicate with the database
server 210 via the nodes 206-208 in a distributed system.
The database 212 includes data records 216, and a table 218,
which includes a first marker 220 and a second marker 222.
Although FIG. 2. depicts the table 218 and the markers
220-222 residing in the database 212, the table 218 and the
markers 220-222 may reside additionally or alternatively
elsewhere in the system 200. Although FIG. 2 depicts the
system 200 with one of each of the elements 202-222, the
system 200 may include any number of each of the elements
202-222.
A node stores a marker that identifies the node and

identifies the most recent data record processed in a rela
tional database management system by the node. For
example, the first node 206 stores “9000000 Node206' as
the first marker 220 in the table 218 in the database 212 to
identify that the first node 206 last processed data update
record number 9,000,000 in the data records 216. Another
node may store another marker that identifies the other node
and identifies the most recent data record processed in the
relational database management system by the other node.
For example, the second node 208 may store
“9050000 Node208' as the second marker 222 in the table
218 in the database 212 to identify that the second node 208
last processed data update record number 9,025,000 in the
data records 216. The node uses the marker to query the
database management system to identify a batch of records
for the node to process. For example, the first node 206 uses

US 9,495,430 B2
7

the first marker 220, “9000000 Node206,” to query the
database server 210 for the next 50,000 data update records
that are sequentially greater than the data update record
number 9,000,000 for the first node 206 to process.
The batch of records is processed by the node to update

a client of data changes reflected by the batch of records. For
example, the node 206 processes the data update records
from number 9,000,001 to number 9,050,000, and conveys
selected updates to the first client computer 202. The other
node may use the other marker to query the database
management system to identify another batch of records for
the other node to process. For example, the second node 208
uses the second marker 222, “9025000 Node208” to query
the database server 210 for the next 50,000 update records
that are sequentially greater than the update record number
9,025,000 for the second node 208 to process. The other
batch of records may be processed by the other node to
update another client of data changes reflected by the other
batch of records. For example, the second node 208 pro
cesses the update records from number 9,025,001 to number
9,075,000, and convey selected updates to the second client
computer 204. Accordingly, systems and methods are pro
vided for the batch processing of data records in an on
demand system, which enables load distribution across time,
which also enables offline nodes to catch up with their data
update processing when returned online.
System Overview

FIG. 3 illustrates a block diagram of an environment 310
wherein an on-demand database service might be used.
Environment 310 may include user systems 312, network
314, system 316, processor system 317, application platform
318, network interface 320, tenant data storage 322, system
data storage 324, program code 326, and process space 328.
In other embodiments, environment 310 may not have all of
the components listed and/or may have other elements
instead of, or in addition to, those listed above.

Environment 310 is an environment in which an on
demand database service exists. User system 312 may be
any machine or system that is used by a user to access a
database user system. For example, any of user systems 312
can be a handheld computing device, a mobile phone, a
laptop computer, a work Station, and/or a network of com
puting devices. As illustrated in FIG. 3 (and in more detail
in FIG. 4) user systems 312 might interact via a network314
with an on-demand database service, which is system 316.
An on-demand database service, such as system 316, is a

database system that is made available to outside users that
do not need to necessarily be concerned with building and/or
maintaining the database system, but instead may be avail
able for their use when the users need the database system
(e.g., on the demand of the users). Some on-demand data
base services may store information from one or more
tenants stored into tables of a common database image to
form a multi-tenant database system (MTS). Accordingly,
“on-demand database service 316' and “system 316' will be
used interchangeably herein. A database image may include
one or more database objects. A relational database man
agement system (RDMS) or the equivalent may execute
storage and retrieval of information against the database
object(s). Application platform 318 may be a framework that
allows the applications of system 316 to run, such as the
hardware and/or Software, e.g., the operating system. In an
embodiment, on-demand database service 316 may include
an application platform 318 that enables creation, managing
and executing one or more applications developed by the
provider of the on-demand database service, users accessing
the on-demand database service via user systems 312, or

10

15

25

30

35

40

45

50

55

60

65

8
third party application developers accessing the on-demand
database service via user systems 312.
The users of user systems 312 may differ in their respec

tive capacities, and the capacity of a particular user system
312 might be entirely determined by permissions (permis
sion levels) for the current user. For example, where a
salesperson is using a particular user system 312 to interact
with system 316, that user system has the capacities allotted
to that salesperson. However, while an administrator is using
that user system to interact with system316, that user system
has the capacities allotted to that administrator. In systems
with a hierarchical role model, users at one permission level
may have access to applications, data, and database infor
mation accessible by a lower permission level user, but may
not have access to certain applications, database informa
tion, and data accessible by a user at a higher permission
level. Thus, different users will have different capabilities
with regard to accessing and modifying application and
database information, depending on a user's security or
permission level.
Network 314 is any network or combination of networks

of devices that communicate with one another. For example,
network 314 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, Star net
work, token ring network, hub network, or other appropriate
configuration. As the most common type of computer net
work in current use is a TCP/IP (Transfer Control Protocol
and Internet Protocol) network, such as the global internet
work of networks often referred to as the “Internet” with a
capital “I” that network will be used in many of the
examples herein. However, it should be understood that the
networks that the one or more implementations might use
are not so limited, although TCP/IP is a frequently imple
mented protocol.

User systems 312 might communicate with system 316
using TCP/IP and, at a higher network level, use other
common Internet protocols to communicate. Such as HTTP,
FTP, AFS, WAP, etc. In an example where HTTP is used,
user system 312 might include an HTTP client commonly
referred to as a “browser' for sending and receiving HTTP
messages to and from an HTTP server at system 316. Such
an HTTP server might be implemented as the sole network
interface between system 316 and network 314, but other
techniques might be used as well or instead. In some
implementations, the interface between system 316 and
network 314 includes load sharing functionality, Such as
round-robin HTTP request distributors to balance loads and
distribute incoming HTTP requests evenly over a plurality of
servers. At least as for the users that are accessing that
server, each of the plurality of servers has access to the
MTS data; however, other alternative configurations may
be used instead.

In one embodiment, system 316, shown in FIG. 3, imple
ments a web-based customer relationship management
(CRM) system. For example, in one embodiment, system
316 includes application servers configured to implement
and execute CRM software applications as well as provide
related data, code, forms, webpages and other information to
and from user systems 312 and to store to, and retrieve from,
a database system related data, objects, and Webpage con
tent. With a multi-tenant system, data for multiple tenants
may be stored in the same physical database object, how
ever, tenant data typically is arranged so that data of one
tenant is kept logically separate from that of other tenants so
that one tenant does not have access to another tenant's data,
unless such data is expressly shared. In certain embodi

US 9,495,430 B2

ments, system 316 implements applications other than, or in
addition to, a CRM application. For example, system 316
may provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
318, which manages creation, storage of the applications
into one or more database objects and executing of the
applications in a virtual machine in the process space of the
system 316.
One arrangement for elements of system 316 is shown in

FIG. 3, including a network interface 320, application plat
form 318, tenant data storage 322 for tenant data 323, system
data storage 324 for system data 325 accessible to system
316 and possibly multiple tenants, program code 326 for
implementing various functions of system 316, and a pro
cess space 328 for executing MTS system processes and
tenant-specific processes, such as running applications as
part of an application hosting service. Additional processes
that may execute on system 316 include database indexing
processes.

Several elements in the system shown in FIG. 3 include
conventional, well-known elements that are explained only
briefly here. For example, each user system 312 could
include a desktop personal computer, workstation, laptop,
PDA, cell phone, or any wireless access protocol (WAP)
enabled device or any other computing device capable of
interfacing directly or indirectly to the Internet or other
network connection. User system 312 typically runs an
HTTP client, e.g., a browsing program, such as Microsoft’s
Internet Explorer browser, Netscape's Navigator browser,
Opera's browser, or a WAP-enabled browser in the case of
a cell phone, PDA or other wireless device, or the like,
allowing a user (e.g., Subscriber of the multi-tenant database
system) of user system 312 to access, process and view
information, pages and applications available to it from
system 316 over network 314. Each user system 312 also
typically includes one or more user interface devices, such
as a keyboard, a mouse, trackball, touch pad, touch screen,
pen or the like, for interacting with a graphical user interface
(GUI) provided by the browser on a display (e.g., a monitor
screen, LCD display, etc.) in conjunction with pages, forms,
applications and other information provided by system 316
or other systems or servers. For example, the user interface
device can be used to access data and applications hosted by
system 316, and to perform searches on stored data, and
otherwise allow a user to interact with various GUI pages
that may be presented to a user. As discussed above, embodi
ments are suitable for use with the Internet, which refers to
a specific global internetwork of networks. However, it
should be understood that other networks can be used
instead of the Internet, such as an intranet, an extranet, a
virtual private network (VPN), a non-TCP/IP based net
work, any LAN or WAN or the like.

According to one embodiment, each user system 312 and
all of its components are operator configurable using appli
cations, such as a browser, including computer code run
using a central processing unit Such as an Intel Pentium R
processor or the like. Similarly, system 316 (and additional
instances of an MTS, where more than one is present) and
all of their components might be operator configurable using
application(s) including computer code to run using a central
processing unit such as processor System 317, which may
include an Intel Pentium(R) processor or the like, and/or
multiple processor units. A computer program product
embodiment includes a machine-readable storage medium
(media) having instructions stored thereon/in which can be

10

15

25

30

35

40

45

50

55

60

65

10
used to program a computer to perform any of the processes
of the embodiments described herein.
Computer code for operating and configuring system 316

to intercommunicate and to process webpages, applications
and other data and media content as described herein are
preferably downloaded and stored on a hard disk, but the
entire program code, or portions thereof, may also be stored
in any other Volatile or non-volatile memory medium or
device as is well known, such as a ROM or RAM, or
provided on any media capable of storing program code,
Such as any type of rotating media including floppy disks,
optical discs, digital versatile disk (DVD), compact disk
(CD), microdrive, and magneto-optical disks, and magnetic
or optical cards, nanosystems (including molecular memory
ICs), or any type of media or device Suitable for storing
instructions and/or data. Additionally, the entire program
code, or portions thereof, may be transmitted and down
loaded from a software source over a transmission medium,
e.g., over the Internet, or from another server, as is well
known, or transmitted over any other conventional network
connection as is well known (e.g., extranet, VPN, LAN, etc.)
using any communication medium and protocols (e.g., TCP/
IP, HTTP, HTTPS, Ethernet, etc.) as are well known.

It will also be appreciated that computer code for imple
menting embodiments can be implemented in any program
ming language that can be executed on a client system
and/or server or server system Such as, for example, C, C++,
HTML, any other markup language, JavaTM, JavaScript,
ActiveX, any other scripting language, such as VBScript,
and many other programming languages as are well known
may be used. (JavaTM is a trademark of Sun Microsystems,
Inc.).

According to one embodiment, each system 316 is con
figured to provide webpages, forms, applications, data and
media content to user (client) systems 312 to support the
access by user systems 312 as tenants of system 316. As
Such, system 316 provides security mechanisms to keep
each tenant's data separate unless the data is shared. If more
than one MTS is used, they may be located in close
proximity to one another (e.g., in a server farm located in a
single building or campus), or they may be distributed at
locations remote from one another (e.g., one or more servers
located in city A and one or more servers located in city B).
As used herein, each MTS could include one or more
logically and/or physically connected servers distributed
locally or across one or more geographic locations. Addi
tionally, the term "server' is meant to include a computer
system, including processing hardware and process space(s),
and an associated storage system and database application
(e.g., OODBMS or RDBMS) as is well known in the art. It
should also be understood that “server system’’ and “server'
are often used interchangeably herein. Similarly, the data
base object described herein can be implemented as single
databases, a distributed database, a collection of distributed
databases, a database with redundant online or offline back
ups or other redundancies, etc., and might include a distrib
uted database or storage network and associated processing
intelligence.

FIG. 4 also illustrates environment 310. However, in FIG.
4 elements of system 316 and various interconnections in an
embodiment are further illustrated. FIG. 4 shows that user
system 312 may include processor System 312A, memory
system 312B, input system 312C, and output system 312D.
FIG. 4 shows network 314 and system 316. FIG. 4 also
shows that system 316 may include tenant data storage 322.
tenant data 323, system data storage 324, system data 325,
User Interface (UI) 430, Application Program Interface

US 9,495,430 B2
11

(API) 432, PL/SOOL 434, save routines 436, application
setup mechanism 438, applications servers 400-400 sys
tem process space 402, tenant process spaces 404, tenant
management process space 410, tenant storage area 412,
user storage 414, and application metadata 416. In other
embodiments, environment 310 may not have the same
elements as those listed above and/or may have other
elements instead of, or in addition to, those listed above.

User system 312, network 314, system 316, tenant data
storage 322, and system data storage 324 were discussed
above in FIG. 3. Regarding user system 312, processor
system 312A may be any combination of one or more
processors. Memory system 312B may be any combination
of one or more memory devices, short term, and/or long term
memory. Input system 312C may be any combination of
input devices, such as one or more keyboards, mice, track
balls, Scanners, cameras, and/or interfaces to networks.
Output system 312D may be any combination of output
devices, such as one or more monitors, printers, and/or
interfaces to networks. As shown by FIG. 4, system 316 may
include a network interface 320 (of FIG. 3) implemented as
a set of HTTP application servers 400, an application
platform 318, tenant data storage 322, and system data
storage 324. Also shown is system process space 402.
including individual tenant process spaces 404 and a tenant
management process space 410. Each application server 400
may be configured to tenant data storage 322 and the tenant
data 323 therein, and system data storage 324 and the system
data 325 therein to serve requests of user systems 312. The
tenant data 323 might be divided into individual tenant
storage areas 412, which can be either a physical arrange
ment and/or a logical arrangement of data. Within each
tenant storage area 412, user storage 414 and application
metadata 416 might be similarly allocated for each user. For
example, a copy of a user's most recently used (MRU) items
might be stored to user storage 414. Similarly, a copy of
MRU items for an entire organization that is a tenant might
be stored to tenant storage area 412. A UI 430 provides a
user interface and an API 432 provides an application
programmer interface to system 316 resident processes to
users and/or developers at user systems 312. The tenant data
and the system data may be stored in various databases, such
as one or more OracleTM databases.

Application platform 318 includes an application setup
mechanism 438 that Supports application developers cre
ation and management of applications, which may be saved
as metadata into tenant data storage 322 by save routines 436
for execution by Subscribers as one or more tenant process
spaces 404 managed by tenant management process 410 for
example. Invocations to such applications may be coded
using PL/SOOL 34 that provides a programming language
style interface extension to API 432. A detailed description
of some PL/SOOL language embodiments is discussed in
commonly owned U.S. Pat. No. 7,730,478 entitled,
METHOD AND SYSTEM FOR ALLOWING ACCESS TO
DEVELOPED APPLICATIONS VIA A MULTI-TENANT
ON-DEMAND DATABASE SERVICE, by Craig Weiss
man, filed Sep. 21, 2007, which is incorporated in its entirety
herein for all purposes. Invocations to applications may be
detected by one or more system processes, which manages
retrieving application metadata 416 for the subscriber mak
ing the invocation and executing the metadata as an appli
cation in a virtual machine.

Each application server 400 may be communicably
coupled to database systems, e.g., having access to system
data 325 and tenant data 323, via a different network
connection. For example, one application server 400 might

5

10

15

25

30

35

40

45

50

55

60

65

12
be coupled via the network 314 (e.g., the Internet), another
application server 400 might be coupled via a direct
network link, and another application server 400 might be
coupled by yet a different network connection. Transfer
Control Protocol and Internet Protocol (TCP/IP) are typical
protocols for communicating between application servers
400 and the database system. However, it will be apparent to
one skilled in the art that other transport protocols may be
used to optimize the system depending on the network
interconnect used.

In certain embodiments, each application server 400 is
configured to handle requests for any user associated with
any organization that is a tenant. Because it is desirable to be
able to add and remove application servers from the server
pool at any time for any reason, there is preferably no server
affinity for a user and/or organization to a specific applica
tion server 400. In one embodiment, therefore, an interface
system implementing a load balancing function (e.g., an F5
Big-IP load balancer) is communicably coupled between the
application servers 400 and the user systems 312 to distrib
ute requests to the application servers 400. In one embodi
ment, the load balancer uses a least connections algorithm to
route user requests to the application servers 400. Other
examples of load balancing algorithms, such as round robin
and observed response time, also can be used. For example,
in certain embodiments, three consecutive requests from the
same user could hit three different application servers 400,
and three requests from different users could hit the same
application server 400. In this manner, system 316 is multi
tenant, wherein system 316 handles storage of, and access
to, different objects, data and applications across disparate
users and organizations.
As an example of storage, one tenant might be a company

that employs a sales force where each salesperson uses
system 316 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all appli
cable to that user's personal sales process (e.g., in tenant
data storage 322). In an example of a MTS arrangement,
since all of the data and the applications to access, view,
modify, report, transmit, calculate, etc., can be maintained
and accessed by a user system having nothing more than
network access, the user can manage his or her sales efforts
and cycles from any of many different user systems. For
example, if a salesperson is visiting a customer and the
customer has Internet access in their lobby, the salesperson
can obtain critical updates as to that customer while waiting
for the customer to arrive in the lobby.

While each user's data might be separate from other
users’ data regardless of the employers of each user, some
data might be organization-wide data shared or accessible by
a plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 316 that are allocated at the tenant level
while other data structures might be managed at the user
level. Because an MTS might support multiple tenants
including possible competitors, the MTS should have secu
rity protocols that keep data, applications, and application
use separate. Also, because many tenants may opt for access
to an MTS rather than maintain their own system, redun
dancy, up-time, and backup are additional functions that
may be implemented in the MTS. In addition to user-specific
data and tenant specific data, System 316 might also main
tain system level data usable by multiple tenants or other
data. Such system level data might include industry reports,
news, postings, and the like that are sharable among tenants.

US 9,495,430 B2
13

In certain embodiments, user systems 312 (which may be
client systems) communicate with application servers 400 to
request and update system-level and tenant-level data from
system 316 that may require sending one or more queries to
tenant data storage 322 and/or system data storage 324.
System 316 (e.g., an application server 400 in system 316)
automatically generates one or more SQL statements (e.g.,
one or more SQL queries) that are designed to access the
desired information. System data storage 324 may generate
query plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table' is one representation of
a data object, and may be used herein to simplify the
conceptual description of objects and custom objects. It
should be understood that “table' and “object may be used
interchangeably herein. Each table generally contains one or
more data categories logically arranged as columns or fields
in a viewable schema. Each row or record of a table contains
an instance of data for each category defined by the fields.
For example, a CRM database may include a table that
describes a customer with fields for basic contact informa
tion Such as name, address, phone number, fax number, etc.
Another table might describe a purchase order, including
fields for information Such as customer, product, sale price,
date, etc. In some multi-tenant database systems, standard
entity tables might be provided for use by all tenants. For
CRM database applications, such standard entities might
include tables for Account, Contact, Lead, and Opportunity
data, each containing pre-defined fields. It should be under
stood that the word “entity” may also be used interchange
ably herein with "object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for
example by creating custom fields for standard objects,
including custom index fields. U.S. Pat. No. 7,779,039, filed
Apr. 2, 2004, entitled “Custom Entities and Fields in a
Multi-Tenant Database System', which is hereby incorpo
rated herein by reference, teaches systems and methods for
creating custom objects as well as customizing standard
objects in a multi-tenant database system. In certain embodi
ments, for example, all custom entity data rows are stored in
a single multi-tenant physical table, which may contain
multiple logical tables per organization. It is transparent to
customers that their multiple “tables' are in fact stored in
one large table or that their data may be stored in the same
table as the data of other customers.

While one or more implementations have been described
by way of example and in terms of the specific embodi
ments, it is to be understood that one or more implementa
tions are not limited to the disclosed embodiments. To the
contrary, it is intended to cover various modifications and
similar arrangements as would be apparent to those skilled
in the art. Therefore, the scope of the appended claims
should be accorded the broadest interpretation so as to
encompass all such modifications and similar arrangements.
The invention claimed is:
1. An apparatus for batch processing of data records in an

on-demand system, the apparatus comprising:
a processor; and
a non-transitory computer readable medium storing a

plurality of instructions which,
when executed by the processor, cause the processor to

carry out the steps of:
storing a first marker that identifies a first node in an
on-demand system and identifies a most recent data

10

15

25

30

35

40

45

50

55

60

65

14
record processed in a relational database manage
ment system by the first node:

storing a second marker that identifies a second node in
the on-demand system and identifies a most recent
data record processed in the relational database man
agement system by the second node:

using the first and second markers to query the database
management system to identify a first batch of
records for the first node to process and a second
batch of records for the second node to process; and

processing the first batch of records by the first node to
update a first client of data changes reflected by the
first batch of records and the second batch of records
by the second node to update a second client of data
changes reflected by the second batch of records.

2. The apparatus of claim 1, wherein storing the first and
second markers comprises storing the first and second
markers in a transactions table associated with the relational
database management system.

3. The apparatus of claim 1, wherein each of the first and
second markers further identifies a data record type.

4. The apparatus of claim 1, wherein the first and second
batches of records are each based on a maximum batch size.

5. A computer program product, comprising a non-tran
sitory computer-readable medium carrying one or more
sequences of instructions for batch processing of data
records in an on-demand system, which instructions, when
executed by one or more processors, cause the one or more
processors to:

store a first marker that identifies a first node in an
on-demand system and identifies a most recent data
record processed in a relational database management
system by the first node:

store a second marker that identifies a second node in the
on-demand system and identifies a most recent data
record processed in the relational database manage
ment system by the second node:

use the first and second markers to query the database
management system to identify a first batch of records
for the first node to process and a second batch of
records for the second node to process; and

process the first batch of records by the first node to
update a first client of data changes reflected by the first
batch of records and the second batch of records by the
second node to update a second client of data changes
reflected by the second batch of records.

6. The computer program product of claim 5, wherein
storing the first and second markers comprises storing the
first and second markers in a transactions table associated
with the relational database management system.

7. The computer program product of claim 5, wherein
each of the first and second markers further identifies a data
record type.

8. The computer program product of claim 5, wherein the
first and second batches of records are each based on a
maximum batch size.

9. A method for batch processing of data records in an
on-demand system, the method comprising:

storing a first marker that identifies a first node in an
on-demand system and identifies a most recent data
record processed in a relational database management
system by the first node:

storing a second marker that identifies a second node in
the on-demand system and identifies a most recent data
record processed in the relational database manage
ment system by the second node:

US 9,495,430 B2
15

using the first and second markers to query the database
management system to identify a first batch of records
for the first node to process and a second batch of
records for the second node to process; and

processing the first batch of records by the first node to 5
update a first client of data changes reflected by the first
batch of records and the second batch of records by the
second node to update a second client of data changes
reflected by the second batch of records.

10. The method of claim 9, wherein storing the first and 10 second markers comprises storing the first and second
markers in a transactions table associated with the relational
database management system.

11. The method of claim 9, wherein each of the first and
second markers further identifies a data record type.

12. The method of claim 9, wherein the first and second 15
batches of records are each based on a maximum batch size.

13. A method for transmitting code for batch processing
of data records in an on-demand system on a transmission
medium, the method comprising:

transmitting code to store a first marker that identifies a 2O
first node in an on-demand system and identifies a most
recent data record processed in a relational database
management system by the first node,

transmitting code to store a second marker that identifies
a second node in the on-demand system and identifies

16
a most recent data record processed in the relational
database management system by the second node,

transmitting code to use the first and second markers to
query the database management system to identify a
first batch of records for the first node to process and a
second batch of records for the second node to process;
and

transmitting code to process the first batch of records by
the first node to update a first client of data changes
reflected by the first batch of records and the second
batch of records by the second node to update a second
client of data changes reflected by the second batch of
records.

14. The method for transmitting code of claim 13, wherein
storing the first and second markers comprises storing the
first and second markers in a transactions table associated
with the relational database management system.

15. The method for transmitting code of claim 13, wherein
each of the first and second markers further identifies a data
record type.

16. The method for transmitting code of claim 13, wherein
the first and second batches of records are each based on a
maximum batch size.

k k k k k

