
USOO948943OB2 

(12) United States Patent (10) Patent No.: US 9.489.430 B2 
Procopio et al. (45) Date of Patent: *Nov. 8, 2016 

(54) SYSTEM AND METHOD FOR IDENTIFYING (56) References Cited 
APPLICABLE THIRD-PARTY 
APPLICATIONS TO ASSOCATE WITH A U.S. PATENT DOCUMENTS 

FILE 6,047.312 A 4/2000 Brooks et al. 
6,952,714 B2 10/2005 Peart 

(71) Applicant: Google Inc., Mountain View, CA (US) 7,409,405 B1 8/2008 Masinter et al. 
7.461,096 B1 12/2008 Hurren et al. 

f2012 Averett et al. (72) Inventors: Michael Jeffrey Procopio, Boulder, CO 8,250,518 B2 ck 8 
(US); Eric Benson Schoeffler, Boulder, 8,694,607 B2 * 4/2014 Darnell et al. ................ TO9.218 
CO (US) (Continued) 

(73) Assignee: Google Inc., Mountain View, CA (US) FOREIGN PATENT DOCUMENTS 
EP O911745 A2 4f1999 

(*) Notice: Subject to any disclaimer, the term of this EP 1360581 11/2003 
patent is extended or adjusted under 35 EP 238.3649 11/2011 
U.S.C. 154(b) by 395 days. 
This patent is Subject to a terminal dis- OTHER PUBLICATIONS 
claimer. PCT/US2014/03.7625 International Search Report, dated Jul. 22, 

2014. 

(21) Appl. No.: 13/893,989 (Continued) 

(22) Filed: May 14, 2013 Primary Examiner — Susan Chen 
(74) Attorney, Agent, or Firm — Ropes & Gray LLP 

(65) Prior Publication Data (57) ABSTRACT 

US 2014/0344247 A1 Nov. 20, 2014 Systems and methods are disclosed herein for identifying an 
application for opening a file. A first user input indicative of 

(51) Int. Cl. a file selected by a user is received over a user interface. The 
G06F 7/00 (2006.01) selected file has an input file type and is an attachment to an 
G06F 7700 (2006.01) email. Data indicative of the input file type is transmitted 
G06F 7/30 (2006.01) over a communications network. A reference list of appli 
G06F 9/445 (2006.01) cations is obtained by combining association requests from 

(52) U.S. Cl. application developers to associate respective applications 
CPC ..... G06F 17/30554 (2013.01); G06F 9/44505 with one or more file types, and a matched list is obtained 

(2013.01) by removing applications from the reference list, each of the 
(58) Field of Classification Search removed applications being associated with a set of one or 

CPC GO6F 17/30O29 GO6F 17/3OO56 more file types that each mismatch the input file type. The 
- - - - - - - - -G06F17/30064. G06f 7,30905. G06F matched list is displayed over the user interface, which 
17730749 GO6F 17/3O861 GO6F 17/3O106: receives a second user input indicative of a selected appli 

GO6F 17/3O126 GO6F 17/30554 cation from the matched list. 

See application file for complete search history. 20 Claims, 7 Drawing Sheets 

USERDEVICE 
114 SERVER 

04: 
PROCESSR USERNTERFACE PROCESSOR 

115 116 105 

es 

APPLICATION 
DATABASE 

106 
e 

APPLICATION 
SERVER 
18 

PROCESSOR 
es 

110 DEVELOPER 
DEVICE USERDATABASE 

12 19 
PROCESSOR ee 

  

  



US 9,489.430 B2 
Page 2 

(56) References Cited 2011/0208822 A1* 8, 2011 Rathod ......................... TO9,206 
2013, OO67600 A1 3/2013 Graham 

U.S. PATENT DOCUMENTS 2013/0110905 A1 5, 2013 Howe et al. 
2013/0282755 A1 10/2013 Procopio et al. 

9,002,808 B1 4/2015 Liu et al. 
2004/O155901 A1 8, 2004 McKee et al. OTHER PUBLICATIONS 
2005/013 1992 A1* 6/2005 Goldstein et al. ............ TO9,202 
2006/005.9174 A1 3, 2006 Mese et al. International Search Report and Written Opinion dated Sep. 2, 2013 
2006/007OO29 A1 3, 2006 Laborczfalvi et al. in International Application No. PCT/US2013/043255. 
2008/0256634 A1* 10, 2008 Pichler ............................ T26/23 
2010.0035682 A1 2/2010 Gentile et al. .................. 463,30 * cited by examiner 



US 9,489.430 B2 Sheet 1 of 7 Nov. 8, 2016 U.S. Patent 

G?T ESWEW LWO >JEST) 

  



US 9,489.430 B2 U.S. Patent 

  



U.S. Patent Nov. 8, 2016 Sheet 3 of 7 US 9,489.430 B2 

2 
O 
s 
Co ce 

fL 
fL 
a 

3 U1 

  



U.S. Patent Nov. 8, 2016 Sheet 4 of 7 US 9,489.430 B2 

4 O O 

402 

RECEIVE ANASSOCATION REQUEST TO 
ASSOCATEAFILETYPE WITH A FIRST APPLICATION 

404 

RECEIVE AREQUEST FROMA USER TO OPEN AFILE 
HAVING THE FILE TYPE 

406 
IDENTIFYAMATCHEDLIST OF APPLICATIONS 

INCLUDING THE FIRST APPLICATION, WHERE EACH 
APPLICATION IN THE MATCHEDLIST IS ASSOCATED 

WITH THE FILETYPE 

4.08 

TRANSMIT DATA INDICATIVE OF THE MATCHEDLIST 
FOR DISPLAY TO THE USER 

410 

RECEIVE DATA INDICATIVE OF A SELECTED 
APPLICATION FROM THE MATCHEDLIST 

FIG. 4 

  



U.S. Patent Nov. 8, 2016 Sheet S of 7 US 9,489.430 B2 

502 

IDENTIFY REFERENCE LIST OF 
APPLICATIONS 

504 

IDENTIFY ANY MISMATCHES 
BETWEEN THE INPUT FILE TYPE 
AND THE CORRESPONDING FILE 
TYPES FOR THE APPLICATIONS IN 

THE REFERENCE LIST 

506 

REMOVE ANY MISMATCHED 
APPLICATIONS FROM THE 

REFERENCE LIST TO OBTAIN THE 
MATCHEDLIST 

FIG. 5 

  



U.S. Patent Nov. 8, 2016 Sheet 6 of 7 US 9,489.430 B2 

602 

IDENTIFY ANY MATCHED 
APPLICATIONS ALREADY 

ASSOCATED WITH THE USER 

INCLUDE 
APPLICATIONS ALREADY 
ASSOCATED WITH THE 

USERT 
REMOVE ANY MATCHED 
APPLICATIONS ALREADY 

ASSOCATED WITH THE USER 
FROM THE MATCHED LIST 

606 
HIGHLIGHT THE 

APPLICATIONS THAT ARE 
ASSOCIATED WITH THE 

USER2 

608 

HIGHLIGHT THE APPLICATIONS 
ASSOCATED WITH THE USER IN 

THE MATCHEDLIST 

FIG. 6 

    

  

  

    

  



US 9,489.430 B2 Sheet 7 Of 7 Nov. 8, 2016 U.S. Patent 

?JI (S)ESVGVIWO 

AHOWEW WE|| SÅS 

  



US 9,489,430 B2 
1. 

SYSTEMAND METHOD FOR IDENTIFYING 
APPLICABLE THIRD-PARTY 

APPLICATIONS TO ASSOCATE WITH A 
FILE 

TECHNICAL FIELD 

In general, this disclosure relates to web-based applica 
tions, in particular, to systems and methods for identifying 
applicable third-party applications to associate with a file. 

BACKGROUND 

When a user receives an attachment in an email or a link 
to a file that is stored at a location remote to the user's 
device, it is often desirable for the user to view or edit the 
contents of the file. One way for the user to view or edit the 
contents of the file is to download the file and determine an 
application that is locally installed on the user's device to 
open the file. Furthermore, if the user attempts to access the 
same file from a second user device or a different machine, 
the file needs to be downloaded again to the second user 
device, and the process of identifying a locally installed 
application on the second user device needs to be repeated. 
This process can be time consuming and inefficient, espe 
cially for a user with multiple user devices, which can each 
have different sets of locally installed applications. 

SUMMARY 

Systems and methods are disclosed herein for identifying 
applicable third-party applications to associate with a file. 
One aspect relates to a system or method for identifying an 
application for opening a file. A reference database is 
configured to store a reference list of applications, where 
each application in the reference list is associated with one 
or more corresponding file types. A processing system is 
configured to receive an association request to associate a 
file type with a first application and receive a request from 
a user to open a file having the file type. The reference list 
is filtered to obtain a matched list of one or more applica 
tions including the first application, where each application 
in the matched list is associated with the file type. Data 
indicative of the matched list is transmitted for display to the 
user, and data indicative of a selected application from the 
matched list is received. 

In one embodiment, at least a Subset of the applications in 
the reference list are web-based applications. An application 
server is configured to provide a user interface to the user to 
allow the user to interact with the contents of the file 
corresponding to the user's request. 

In one embodiment, the processing system is further 
configured to update the reference database based on the 
association request. The reference database includes a listing 
of multiple applications and an associated set of one or more 
file types corresponding to each application in the listing. 

In one embodiment, the processing system filters the 
reference list by identifying a mismatched application in the 
reference list by identifying a mismatch between the file 
type and the corresponding file types of an application in the 
reference list and removing the mismatched application 
from the reference list. 

In one embodiment, a user database stores associations, 
where each association is between a user in a plurality of 
users and an application in a plurality of applications. The 
processing system is further configured to use the user 
database to determine whether the user is associated with 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
any application in the matched list. The data indicative of the 
matched list includes an indication of whether the user is 
associated with any application in the matched list. The 
matched list is additionally filtered to remove any applica 
tions determined to be associated with the user. 

According to another aspect of the disclosure, systems 
and methods are disclosed herein for identifying an appli 
cation for opening a file. A first user input indicative of a file 
selected by a user is received over a user interface. The 
selected file is received by the user as an email attachment 
and has an input file type. Data indicative of the input file 
type is transmitted over a communications network, and a 
matched list of applications of one or more applications is 
displayed over the user interface. In particular, a reference 
list of applications is obtained by combining association 
requests from application developers to associate respective 
applications with one or more file types, and the matched list 
is obtained by removing applications from the reference list, 
each of the removed applications being associated with a set 
of one or more file types that each mismatch the input file 
type. The user interface receives a second user input indica 
tive of a selected application from the matched list. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The above and other features of the present disclosure, 
including its nature and its various advantages, will be more 
apparent upon consideration of the following detailed 
description, taken in conjunction with the accompanying 
drawings in which: 

FIG. 1 is a block diagram of a computerized system for 
identifying applicable third-party applications to associate 
with a file, according to an illustrative embodiment. 

FIG. 2 is an example data structure stored on an appli 
cations database that includes data related to applications, 
according to an illustrative embodiment. 

FIG. 3 is an example data structure stored on a user 
database that includes data related to links between users 
and applications, according to an illustrative embodiment. 

FIG. 4 is a flowchart of a method used by a processor to 
identify an application to open a file, according to an 
illustrative embodiment. 

FIG. 5 is a flowchart of a method used by a processor to 
filter a reference list of applications to obtain a matched list 
of applications, according to an illustrative embodiment. 

FIG. 6 is a flowchart of a method used by a processor to 
display a matched list of applications to a user, according to 
an illustrative embodiment. 

FIG. 7 is a block diagram of a computing device for 
performing any of the processes described herein, according 
to an illustrative embodiment. 

DETAILED DESCRIPTION 

To provide an overall understanding of the systems and 
methods described herein, certain illustrative embodiments 
will now be described, including a system for identifying an 
appropriate application. However, it will be understood by 
one of ordinary skill in the art that the systems and methods 
described herein may be adapted and modified as is appro 
priate for the application being addressed and that the 
systems and methods described herein may be employed in 
other Suitable applications, and that such other additions and 
modifications will not depart from the scope thereof. Gen 
erally, the computerized systems described herein may com 
prise one or more engines, which include a processing 
device or devices, such as a computer, microprocessor, logic 



US 9,489,430 B2 
3 

device or other device or processor that is configured with 
hardware, firmware, and Software to carry out one or more 
of the computerized methods described herein. 
The present disclosure provides systems and methods for 

identifying applicable third-party applications to associate 
with a file. Sometimes, it is desirable for a user to view or 
edit the contents of a file that is stored remotely from the 
user's device and is accessible via a network. In particular, 
the user may receive the file as an attachment to a message 
Such as an email or as a link to a location on a web-based 
storage system. One way for the user to view or edit the 
contents of the file is to download the file and determine an 
application that is locally installed on the user's device to 
open the file. This process can be time consuming and 
inefficient. The systems and methods disclosed herein iden 
tify a set of one or more web-based applications that may be 
used to display the contents of the file to the user and allow 
the user to interact with the file, without requiring the 
downloading of the file and installation of local software on 
the user device. In particular, the present disclosure relates 
to a system that identifies a file with a particular file type and 
a matched list of applications, where each application in the 
matched list is associated with the particular file type. Such 
that any application in the matched list is configured to open 
the file. The systems and methods disclosed herein are 
described in terms of a web-based storage system, which 
may communicate with other systems over a network to 
store and share user data. In general, one of ordinary skill in 
the art will understand that the systems and methods 
described herein are applicable to systems that are locally 
interconnected without departing from the scope thereof. 

FIG. 1 depicts an example of a network and database 
structure that may be used to implement the systems and 
methods herein. FIG. 1 is a block diagram of a computerized 
system 100 for identifying appropriate applications to open 
a selected file. The system 100 includes a server 104 
including a processor 105, a user device 114 including a 
processor 115, a developer device 112 including a processor 
113, an application server 108 including a processor 110, an 
application database 106, and a user database 109. The 
components of system 100 are configured to communicate 
with one another over a network 102. As used herein, the 
term “processor or “computing device' refers to one or 
more computers, microprocessors, logic devices, servers, or 
other devices configured with hardware, firmware, and soft 
ware to carry out one or more of the computerized tech 
niques described herein. Processors and processing devices 
may also include one or more memory devices for storing 
inputs, outputs, and data that are currently being processed. 
An illustrative computing device 700, which may be used to 
implement any of the processors and servers described 
herein, is described in detail with reference to FIG. 7. As 
used herein, “developer device' and “user device' include, 
without limitation, any Suitable combination of one or more 
input devices (e.g., keypads, touch screens, trackballs, Voice 
recognition systems, etc.) and/or one or more output devices 
(e.g., visual displays, speakers, tactile displays, printing 
devices, etc.). As used herein, “server” includes, without 
limitation, any suitable combination of one or more devices 
configured with hardware, firmware, and Software to carry 
out one or more of the computerized techniques described 
herein. Only one server 104, one user device 114, and one 
application server 108, and one developer device 112 are 
shown in FIG. 1 to avoid complicating the drawing. In 
general, the system 100 can Support multiple servers, user 
devices, developer servers, developer devices, and data 
bases. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
In particular, the file may not necessarily be locally stored 

on the user device 114. Instead, the file may be provided to 
the user over the network 102, such as in an email attach 
ment or as a link provided by another user, for example. 
When the user selects to view the contents of the file, the 
server 104 interprets the selection as a request from the user 
to view a list of applications, where each application in the 
displayed list is capable of opening, rendering, editing, 
and/or displaying the contents of the file. Generally, the 
system 100 allows users to store, retrieve, and modify data 
via one or more user devices such as the user device 114. 
This data may be referred to as a user's web data. As an 
example, the system 100 may be stored on a single server 
system or in a distributed system. In particular, the system 
100 may use cloud storage to store user data, file data, and/or 
application data. 
As an example, the file may be an editable document with 

text and figures that is sent to the user as an attachment to 
an email or as a link to a remote location. The processor 105 
identifies the matched list of applications by filtering a 
reference list of applications to identify only those applica 
tions that are configured to open or provide a visual render 
ing of the text and figures of the document over a web 
browser. The matched list is displayed to the user, and the 
user selects an application from the matched list. Upon 
receiving the indication of the selected application, the 
server 104 identifies the appropriate application server 108 
for interacting with the user device 114 over a web browser. 
The web browser may generate a display screen with the 
user interface 116, where the display screen corresponds to 
the web-based application. For example, the application 
server 108 is configured to host one or more web-based 
applications. In particular, the application server 108 may 
run the application and provide an interface (or data indica 
tive of the desired user interface, for example) to the server 
104, which then provides the user interface to the user 
device 114. Alternatively, the application server 108 may 
display the user interface directly to the user device 114 over 
the network 102. In either case, the application server 108 
provides an interface with the user device 114 to display 
over the user interface 116 the contents of a file to the user 
and allow the user to make changes to the file. In this case, 
the user interacts with the selected application over the 
provided user interface without requiring the software to be 
locally installed on the user device 114. 
The application database 106 stores several types of data. 

In particular, the application database 106 stores data asso 
ciated with applications. The applications may be third-party 
applications, which are stored and updated in the application 
database 106 based on input received from developers over 
the developer device 112 and/or the application server 108. 
When the user selects an application from a displayed list of 
applications, the server 104 may update the user database 
109 to reflect an association between the user and the 
selected application, and the application server 108 provides 
an interface with the user device 114 to display the contents 
of the file to the user and allow the user to make changes to 
the file. The third-party applications may be web-based 
applications that may be used to open, preview, or edit a file. 
The application database 106 may store metadata associated 
with one or more applications. The metadata may include a 
shortcut, a reference, or a pointer to data associated with the 
application. For example, the metadata may include a list of 
one or more file types, MIME types, and/or file extensions 
that are compatible with the applications. As used herein, a 
file type may correspond to a type of a file, an extension of 
a file and/or a MIME type of a file. An example data 



US 9,489,430 B2 
5 

structure 200 of five applications and their compatible file 
types and/or MIME types is shown in FIG. 2. The data 
structure 200 may be stored on any of the databases shown 
in FIG. 1 or any other suitable database without departing 
from the scope of the disclosure. In an example, the appli 
cation database 106 stores binary files and/or reference files 
associated with the applications. The applications stored on 
the application database 106 may be first-party applications 
(i.e., associated with the server 104), third-party applications 
(i.e., associated with one or more developer servers 108 and 
developer devices 112), or a combination thereof. 
The user database 109 stores data associated with a list of 

users who are registered with the system 100. In particular, 
the data stored in the user database 109 may include a list of 
user identifiers and a set of applications associated with each 
user. Alternatively, the data stored in the user database 109 
may include a list of applications and a set of users associ 
ated with each application. An example data structure 300 of 
five applications and their associated users is shown in FIG. 
3. The data structure 300 may be stored on any of the 
databases shown in FIG. 1 or any other suitable database 
without departing from the scope of the disclosure. 

The user device 114 communicates with the server 104 
over the network 102 to identify an appropriate application 
to use to open, preview, or view the contents of a file. To 
identify the appropriate application, the processor 115 on the 
user device 114 receives a selection of a file from the user 
and transmits metadata associated with the file to the server 
104. In particular, the metadata may include one or more file 
types corresponding to the file, one or more file extensions, 
one or more MIME types, one or more file identifiers, any 
other suitable type of metadata associated with the file that 
can be useful for identifying an application to open the file, 
or a combination thereof. When the server 104 receives the 
metadata, the processor 105 queries the application database 
106 for one or more applications that are associated with 
matching metadata. For example, when the metadata 
includes a file type, the processor 105 identifies one or more 
applications from the application database 106 associated 
with a matching file type. In another example, when the 
metadata includes a file extension, the processor 105 iden 
tifies one or more applications associated with a matching 
file extension. The list of applications identified by the 
processor 105 thus includes only applications that are con 
figured to operate on the file contents of the file selected by 
the user. 

The list of all applications stored in the application 
database 106 may be referred to as a reference list of 
applications, and the list of applications identified by the 
processor 105 may be referred to as a matched list of 
applications. The process of identifying the matched list of 
applications may be referred to as filtering the reference list 
of applications by identifying and removing mismatched 
applications (i.e., those applications in the reference list that 
are not associated with a file type, file extension, MIME 
type, or any other Suitable metadata associated with the file. 
An example of this process is described in more detail in 
relation to FIG. 5. When the matched list of applications is 
identified, the processor 105 is configured to transmit data 
indicative of the matched list over the network 102 to the 
user device 114. In particular, the transmitted data may 
include a name of each application in the matched list, and 
the user device 114 is configured to display the matched list 
of applications to the user and prompt the user to select an 
application from the matched list. The processor 115 then 
transmits an indication of the selected application over the 
network 102 to the server 104. If the user is not already 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
associated with the selected application, the processor 105 
may update the user database 109 such that the user is 
associated the selected application. Then the server 104 
communicates with the application server 108 to indicate 
that the user has selected to view the contents of a file with 
the selected application. The application server 108 then 
communicates with the user device 114 (i.e., directly or 
through the server 104) to allow the user to interact with the 
contents of the file. 
The configuration of the system 100 is advantageous for 

the user because the system 100 allows a user to access files 
stored remotely using an application run at a different 
location (i.e., the application server 108). In this manner, 
there is no need for the software application to be installed 
locally on the user device 114. Installing software on a 
device takes up space in the local memory and takes time to 
install. In addition, the user may use the web-based appli 
cations to access the same files using any number of different 
user devices, as long as each user device is configured to 
communicate with the network 102. By allowing any user 
device 114 in communication with the network 102 to use 
web-based applications to access representations of files that 
are not necessarily locally stored on the user device 114, the 
systems and methods described herein allow for flexible and 
convenient access to the user's web data. 

In some embodiments, the user selects one or more 
options to vary the display of the matched list of applica 
tions. In particular, the displayed list of applications may be 
Sorted or one or more applications in the display may be 
highlighted or otherwise displayed differently from other 
applications. In some embodiments, the matched list of 
applications is sorted according to a method, such as by 
popularity, user ranking, alphabetically, or any other method 
for sorting a list of applications for display. The desired 
method of sorting may be an option selected by the user. In 
Some embodiments, the displayed list does not include the 
entire matched list. In this case, the matched list may be 
filtered Such that only the most popular applications are 
displayed, for example. In some embodiments, the displayed 
list includes certain items that are displayed differently than 
other items. In this case, certain applications may be high 
lighted or displayed in a different section (i.e., a separate row 
or column) of the user interface 116 compared to other 
applications. The highlighted applications may correspond 
to applications that are most popular with other users or 
applications that are already associated with the user, for 
example. It may be desirable to display applications that are 
already associated with the user differently from applica 
tions that are not associated with the user. In particular, an 
application associated with the user may be determined by 
querying the user database 109. The user may be familiar 
with applications already associated with the user, because 
the user may have previously opened files using the asso 
ciated applications. It may be desirable to highlight those 
applications that the user is unfamiliar with, so as to intro 
duce different applications to the user that are configured to 
open files of the desired file type. In general, the matched list 
of applications is displayed to the user and may be sorted, 
filtered, or include highlighted Subsets using any Suitable 
method as described herein. 

In some embodiments, the applications are third-party 
"cloud' versions of a software. The application server 108 
may run the application version and provide a user interface 
over the network 102 to the user device 114 (over a web 
browser, for example). In this case, the user interacts with 
the selected application over the provided user interface 
without requiring the third-party software to be locally 



US 9,489,430 B2 
7 

installed on the user device 114. In some embodiments, the 
application is related to a software application that is 
installed locally on the user device 114. For example, the 
Software may include a document editor or viewer, and the 
user may locally install the Software on a device Such as a 
personal computer. 

In some embodiments, a database referred to herein as a 
“storefront database' may be used. The storefront database 
may correspond to a database that stores the reference list of 
applications (i.e., the list of all applications in the application 
database 106), but in addition, also stores logo information 
related to the applications. In particular, the storefront data 
base may be easily accessible by the user device 114 such 
that the processor 115 may efficiently access the application 
data so as to render the display of the applications quickly. 
In addition to displaying the list of applications, logo infor 
mation associated with one or more applications stored on 
the storefront database may also be displayed to the user. In 
some embodiments, the storefront database includes all the 
same data as is stored in the application database. In general, 
the reference list of applications may be stored in the 
storefront database and/or the application database 106, and 
either the storefront database or the application database 106 
may be referred to as the “reference database'. 

In some embodiments, the user database 109 is stored on 
the same system as the server 104 and the storefront data 
base is stored on the same system as the user device 114. 
Either database may be used to render the reference list of 
applications to obtain the matched list. It may be desirable 
to have the local processor (i.e., the processor 105 for the 
application database 106 and the processor 115 for the 
storefront database) to perform the filtering of the reference 
list to reduce the cost of communication over the network 
102. In this case, the storefront database may be periodically 
updated to include all applications that are capable of being 
associated with the user. 

FIG. 2 is an example data structure 200 stored on the 
application database 106 that includes data related to appli 
cations, according to an illustrative embodiment. As 
described herein, the data structure 200 is stored on the 
application database 106, but in general, the data structure 
200 or similar data may be stored on the storefront database 
as described in relation to FIG. 1. The data structure 200 
includes a list of five application identifiers, each corre 
sponding to an application. For each application, the data 
structure 200 has a field entry for one or more compatible 
file types and one or more compatible MIME types. As 
shown in the data structure 200, different field entries are 
shown, but the file types, MIME types, and/or file extensions 
may be stored in the same or in different field entries. As an 
example, the application V is configured to open plaintext 
and opendocument files, as well as files with MIME type 
text/plain. In another example, the application X includes 
jpeg and bmp as compatible file types and image/jpeg and 
image/bmp as compatible MIME types. In general, either the 
list of compatible file types or the list of compatible MIME 
types may be empty, as is shown for the applications W and 
Y. In addition to or in place of the fields shown in the data 
structure 200, additional fields may be included, such as a 
list of users associated with each application, data related to 
a location of the applications server 108 associated with 
each application, any other Suitable data related to the 
application, or a combination thereof. 
The application database 106 may be stored on the same 

system as the server 104, on the same system as the user 
device 114, or on a separate system remote to both the server 
104 and the user device 114. When the application is a 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
third-party application, one or more developers associated 
with the third-party application may request to update the 
data structure 200. In particular, the developer of an appli 
cation that was previously not in the data structure 200 may 
transmit a request to the server 104 to update the data 
structure 200. This type of request may be referred to as a 
registration or an association request. In particular, the 
association request may include an identifier for the appli 
cation and a set of file types and/or MIME types that the 
application is configured to open. The server 104 may 
update the data structure 200 accordingly by adding the 
appropriate entries to the data structure 200. When there are 
multiple developers for an application, the processor 105 
may maintain a list for each developer and/or for each 
application associated with a developer. These lists may be 
stored together or separately in one or more databases. 

In another example, a developer of an application that 
already has an entry in the data structure 200 may submit a 
request to the server 104 to update the data structure 200. For 
example, the developer of the application Y may have 
recently configured the application Y to open opendocument 
files in addition to xls files. In this case, the developer 
submits a request to update the data structure 200. The 
request may include data indicative of the new compatible 
file type to append to the list of compatible file types. 
Similarly, the developer may submit requests to update the 
data structure 200 to remove a file type or MIME type from 
the corresponding field entry. The developer may use an API 
to communicate between the developer device 112 and the 
server 104. As an example, the developer may use one or 
more APIs to register a corresponding application with the 
server 104 for initial access to any file, to update a list of 
importable formats and/or a list of exportable formats asso 
ciated with an application, to provide a user interface to the 
user device 114, or any other suitable interaction between 
the application server 108, the server 104, and the user 
device 114. 

FIG. 3 is an example data structure 300 stored on a user 
database 109 that includes data related to links between 
users and applications, according to an illustrative embodi 
ment. The data structure 300 includes a list of five applica 
tion identifiers, each corresponding to an application. The 
five applications shown in the data structure 300 are the 
same applications as shown in the data structure 200 of FIG. 
2. For each application, the data structure 300 has a field 
entry for users associated with the application. The users 
may be listed according to user identifiers, which are shown 
as numbers in the data structure 300. However, in general, 
any suitable identifier may be used, such as a string of 
characters, numbers, letters, or a combination thereof. As 
shown in the data structure 300, the application V is asso 
ciated with three users: 126 (who is also associated with the 
application Z), 485, and 695 (who is also associated with the 
application Y). In general, the list of associated users may be 
empty, as is shown for the application X. In addition to or in 
place of the fields shown in the data structure 300, additional 
fields may be included, such as a list of compatible file types 
or file extensions, a list of compatible MIME types, user 
data, any other Suitable data related to the application, or a 
combination thereof. As is described in relation to FIG. 2, 
the information stored in the data structure 300 may be 
stored in data structure 200, in the same database as the data 
structure 200, or in a separate database like the user database 
109. 
The user database 109 may be stored on the same system 

as the server 104 or on a system remote to the server 104. 
The data structure 300 may be updated when a request to 



US 9,489,430 B2 

open a file is received from a user. In particular, the user may 
transmit a request to open a file from the user device 114 to 
the server 104 by selecting an application from a displayed 
list of applications on the user interface 116. As an example, 
the user 485 may receive a video file as an email attachment 
and may select to open the video file using the application 
Z. The server 104 may treat the selection of the application 
Z as a request to update the data structure 300 to reflect an 
association between the user 485 and the application Z. In 
another example, a user may transmit a request to be 
associated with an application without having first selected 
a file. In this case, the user may wish to be generally 
associated with any number of applications even without 
having a particular file in consideration. Similarly, the user 
may transmit a request to dissociate himself with one or 
more applications. As shown in the data structure 300, the 
entries include a list of applications and a set of users 
associated with each application. Alternatively, the data 
structure 300 may include a list of users and a set of 
applications associated with each user. Depending on the 
relative number of applications and users, it may be desir 
able to use either scenario (the former for a smaller number 
of applications and the latter for a smaller number of users, 
for example), or a combination of both. 

FIGS. 4-6 are flowcharts of methods that may be used by 
a processor such as processor 105 for performing the tech 
niques described herein. In particular, FIG. 4 is a flowchart 
of a high level method 400 for identifying an application to 
open a file. FIG. 5 is a flowchart of a more detailed method 
500 for filtering a reference list of applications to obtain a 
matched list of applications, and FIG. 6 is a flowchart of a 
method 600 for displaying a matched list of applications to 
a U.S. 

As will be described in relation to FIGS. 4-6, the steps of 
the methods 400, 500, and 600 may each be implemented by 
the processor 105 on the server 104. This may be desirable 
when it is relatively cheap or convenient for the server 104 
to access the application database 106 or when there are a 
large number of applications. However, in general, any 
processor may perform one or more steps of the methods 
described herein. As an example, the processor 115 at the 
user device 114 may perform steps 404, 406, 408, and 410 
of the method 400, and/or all of the steps of the methods 500 
and 600, by interacting with the user interface 116 at the user 
device 114. It may be desirable for the processor 115 to 
identify the matched list of applications when there is a 
Small number of applications or when communication 
between the user device 114 and the server 104 is relatively 
expensive. When the user interface 116 is provided over a 
web browser, it may be desirable to have the processor 115 
at the user device 114 execute the steps of the methods 
described herein, such as filtering the reference list of 
applications, identifying and removing mismatched appli 
cations, or determining how to render the display of the list 
of applications. In particular, the reference list of applica 
tions may be stored on a storefront database, which includes 
a list of the applications that are able to be associated with 
the user or the application database 106, which includes a 
list of all applications. 

FIG. 4 is a flowchart of a method 400, as performed by the 
processor 105, for identifying an application to open a file, 
according to an illustrative embodiment. The method 400 
includes the steps of receiving an association request from a 
developer to associate a file type with a first application (step 
402), receiving a request from a user to open a file having 
the file type (step 404), identifying a matched list of appli 
cations including the first application, where each applica 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
tion in the matched list is associated with the file type (406), 
transmitting data indicative of the matched list for display to 
the user (408), and receiving data indicative of a selected 
application from the matched list (410). 
At step 402, the processor 105 receives an association 

request from a developer to associate a file type with a first 
application. For example, the developer may have a devel 
oper account with the system 100 which associates the 
developer with one or more applications. In particular, a 
developer may log into the system 100 by providing authen 
tication information Such as a username and password via 
the developer device 112. Upon determining that a devel 
oper has logged in, the processor 105 may access one or 
more lists associated with the developer. In particular, the 
developer may be associated with one or more applications 
in the application database 106, and a data structure Such as 
the data structure 200 may be stored for each developer. The 
developer may select one of the applications with which he 
is already associated, or the developer may indicate that a 
new application is ready to be input to the application 
database 106. As an example, the same application may have 
different release versions, and the different versions of the 
same application may have different lists of Supported file 
types and/or MIME types. Thus, at step 402, the developer 
may specify a version identifier in addition to an identifier 
for an application. As an example, after logging in, the 
developer may be presented with a menu of associated 
applications and their version identifiers. The developer may 
select an application by selecting an option from the menu. 
In another example, the developer may add an application or 
a new version of an application to the developer's account. 
In this case, the developer provides data indicative of the 
new application or version, and the server 104 may associate 
the developer's account with the new application or version. 

After receiving the association request from the developer 
at step 402, the processor 105 determines whether to grant 
the developer's request. As an example, the processor 105 
may deny the association request if it is determined that the 
developer does not have appropriate access levels to make 
Such a request for the corresponding application. Alterna 
tively, if the developer does have appropriate permissions to 
make Such a request, the processor 105 may update a data 
structure such as the data structure 200 to reflect the 
requested association. In some embodiments, the request at 
step 402 is a request to delete or replace an existing file type 
or MIME type in the application database 106, and the 
database may be updated accordingly. In general, the sys 
tems and methods disclosed herein for the interaction 
between a developer and the server 104 may include the use 
of an API for providing an interface between the two 
systems. 
At step 404, the processor 105 receives a request from a 

user to open a file having the file type. In particular, the file 
may not necessarily be locally stored on the user device 114. 
Instead, the file may be provided to the user over the network 
102. Such as in an email attachment or as a link provided by 
another user or system, for example. In this case, the user 
may provide user authentication information (i.e., by pro 
viding a username and password or other identification 
information to a user interface 116 on a web browser, for 
example) at the user device 114. After authentication, the 
user interface 116 may display the user's email inbox or a 
list of folders and files associated with the user. The 
requested file may be an attachment to an email in the user's 
inbox or a file in the list associated with the user. In another 
example, the requested file may be associated with another 
user (i.e., user B), who has given access to the user (i.e., user 



US 9,489,430 B2 
11 

A). In this case, the user B may provide the user A with a link 
or shortcut to the requested file. The user interface 116 
displays metadata associated with the file. In particular, the 
metadata may include a file name, a date and time created, 
a file type, or any other Suitable metadata associated with a 
file. 
When the user selects to view the contents of the file, the 

server 104 identifies the selection as a request from the user 
to open the file. Implicitly, the request to open the file is 
treated as a request to view a set of applications that are each 
configured to open the file so that the user may make a 
selection of an application from the displayed list. In par 
ticular, in response to the request to open the file, the 
processor 105 identified a matched list of applications for 
display to the user. 

At step 406, the processor 105 identifies a matched list of 
applications including the first application, where each 
application in the matched list is associated with the file type 
of the file corresponding to the request received at step 404. 
In particular, each application in the matched list is capable 
of opening, rendering, editing, and/or displaying the con 
tents of the file. To identify the matched list, the processor 
105 may first identify a reference list of applications, which 
may include all the applications listed in the application 
database 106. The reference list may then be filtered to 
obtain the matched list of applications by identifying and 
removing any applications that are not associated with the 
file type of the requested file. Each application in the 
matched list of applications is thus associated with a file 
type, a file extension, and/or a MIME type corresponding to 
those of the requested file. This process of identifying the 
matched list of applications is described in further detail in 
relation to FIG. 5. 
At step 408, the processor 105 transmits data indicative of 

the matched list for display to the user. In particular, the 
transmitted data may include reference data of the applica 
tions in the matched list, Such as a listing of the names of the 
applications, logo data of the applications, or any other 
suitable information related to the matched list. The logo 
data may include a thumbnail image of an object that may 
remind the user of the application and may include color 
data. The user device 114 receives the data and displays the 
matched list over the user interface 116. 
As described in relation to FIG. 1, the displayed list may 

be sorted according to a method, such as by popularity, user 
ranking, alphabetically, or any other method for Sorting a list 
of applications for display. The desired method of sorting 
may be an option selected by the user. As an example, the 
popularity of each application may be determined by an 
overall usage of the application, which may be determined 
based on the overall number of users associated with the 
application as shown in FIG. 3, for example. As another 
example, the popularity of an application may be determined 
based on a number of times the application has been used to 
open a file of the particular file type. In another example, the 
popularity of an application may be based on a ranking 
system that receives rankings or scores from multiple users. 
In particular, the users may provide feedback after using the 
application a specified number of times. The feedback from 
multiple users regarding the particular application is aggre 
gated across the users and may be combined to form an 
aggregate score, which may then be displayed alongside the 
corresponding matched application in the display. In another 
example, the popularity of an application may be based on 
data associated with the user's contacts on the server 104. In 
particular, the user may be associated with a list of contacts 
including multiple other users who, like the user, maybe 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
interact with the server 104 and the application server 108 
over the network 102. The order in which the matched list 
of applications is sorted on the user's display may corre 
spond to a popularity specified at least in part by the user's 
contacts. For example, the display may include an indication 
that one of the user's contacts recently used the application 
X to open a file of the same or a similar file type as the 
requested file. 

In some embodiments, the displayed list includes certain 
applications that are highlighted with respect to other appli 
cations. In this case, the highlighted applications may cor 
respond to those applications that are already associated 
with the user. In particular, the user may select to display all 
or a Subset of the applications that are capable of opening the 
desired file. In particular, the user may wish to display, all 
the matched applications, including those that are already 
associated with the user. In this case, the applications that are 
already associated with the user may be displayed differently 
than other applications, such as in a different section of the 
display, or the applications may be marked with a special 
character Such as an asterisk. In some embodiments, the 
displayed list includes only the matched applications that are 
already associated with the user. In this case, it may be 
desirable to show the user what applications with which the 
user may already be familiar. In some embodiments, the 
displayed list includes only the matched applications that are 
not already associated with the user. In this case, it may be 
desirable to introduce or suggest new applications to the 
user. This is described in more detail in relation to FIG. 6. 
At step 410, the processor 105 receives data indicative of 

a selected application from the matched list. Upon receiving 
this data, the processor 105 may update the user database 
109 if the user is not already associated with the selected 
application and communicates with the appropriate applica 
tion server 108 such that the application server 108 interacts 
with the user device 114 to provide a visual rendering of the 
file contents over the user interface 116. In some embodi 
ments, when the user selects the application, the user may 
select an option Such that the selected application may be 
used by default or may be a preferred application the next 
time that the user requests to open a file of the same file type. 

FIG. 5 is a flowchart of a method used by a processor 105 
to filter a reference list of applications to obtain a matched 
list of applications, according to an illustrative embodiment. 
The method 500 includes the steps of identifying a reference 
list of applications (step 502), identifying any mismatches 
between the input file type and the corresponding file types 
for the applications in the reference list (step 504), and 
removing any mismatched applications from the reference 
list to obtain the matched list (step 506). 
At step 502, the processor 105 identifies a reference list of 

applications. The reference list of applications may include 
all applications stored on the application database 106 or on 
a storefront database. In particular, the reference list may 
include all applications stored in a data structure Such as the 
data structure 200, for which a developer has previously 
registered the application for one or more file types and/or 
one or more MIME types, indicating the types of files that 
the corresponding application is configured to open, view, 
display, and/or edit. In some embodiments, the reference list 
includes only those applications 

In some embodiments, the reference list of applications 
corresponds to a pre-filtered list of applications. In particu 
lar, the reference list of applications may be the result of a 
filtering process, such that the applications in the reference 
list correspond to applications that are popular with users or 
commonly used applications, for example. In another 



US 9,489,430 B2 
13 

example, the reference list of applications may be pre 
filtered to exclude any applications for which no compatible 
file types, file extensions, or MIME types are identified. This 
case may occur when a developer has registered an appli 
cation but has not yet specified the compatible file types. In 
some embodiments, the reference list is filtered to include 
only those applications which are not already associated 
with the user. In this case, it may be desirable to display new 
applications for the user in order to provide Suggested 
applications for opening the file. In other embodiments, the 
reference list is filtered to include only those applications 
which are already associated with the user. In this case, the 
user may already be associated with an application that the 
user wishes to use to open the requested file. Determining 
whether or how to filter the reference list can be determined 
by user options selected on the user interface 116. 

At step 504, the processor 105 identifies any mismatches 
between the input file type and the corresponding file types 
for the applications in the reference list. The input file type 
corresponds to a file type, a file extension, and/or a MIME 
type associated with the requested file. The processor 105 
may parse a data structure Such as the data structure 200 to 
identify any mismatched applications. Mismatched applica 
tions correspond to those applications which have no over 
lap between the compatible file types or MIME types and the 
specified file type of the requested file. 
At step 506, the processor 105 removes the identified 

mismatched applications from the reference list to obtain the 
matched list. In an example, the processor 105 may generate 
a copy of the reference list of applications and update the 
copied reference list by removing any mismatched applica 
tions as they are identified in step 504. Alternatively, for N 
applications in the reference list, the processor 105 may 
generate a binary vector with length N, initialize all N values 
to zero, iterate n=1 to n=N, and update the n" value to one 
when the n" application is a mismatched application. If it is 
expected that more mismatched applications will be identi 
fied than matched applications, the processor 105 may 
instead update the n' value to one when a matched appli 
cation is identified to save on cost and delay. Thus, after 
considering each application in the reference list, the result 
ing vector with size N provides an efficient mapping from 
the reference list to a matched list of applications. 

FIG. 6 is a flowchart of a method 600 used by a processor 
105 to display a matched list of applications to a user, 
according to an illustrative embodiment. The method 600 
includes the steps of identifying any matched applications 
already associated with the user (step 602) and determining 
whether to include applications already associated with the 
user (decision block 604). If yes, the processor 105 deter 
mines whether to highlight the applications that are associ 
ated with the user (decision block 606), and if so, the 
processor 105 highlights the applications associated with the 
user in the matched list (step 608). Alternatively, if the 
processor 105 determines not to include applications already 
associated with the user, then the processor 105 removes any 
matched applications associated with the user (step 610) and 
provides the matched list to the user (step 612). 

At step 602, the processor 105 identifies any matched 
applications already associated with the user. To do this, the 
processor 105 may use the user database 109 to determine if 
any of the applications in the matched list of applications are 
associated with the user. At decision block 604, the proces 
sor 105 determines whether to include applications already 
associated with the user identifies any matched applications 
already associated with the user. If so, then the associated 
applications are included in the display, and at decision 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
block 606, the processor 105 determines whether to high 
light those associated applications in the display. The deci 
sions made at decision block 604 and 606 may be based on 
a user selected option. In particular, the user may provide an 
indication of one or more user settings indicating whether to 
include Such applications in the display, and if so, whether 
to display Such applications differently from other applica 
tions. The user settings may be associated with the user's 
account, such that upon logging into the system 100, the user 
settings are retrieved for easy access. 

If it is desirable to include and highlight the applications 
already associated with the user in the display, the processor 
105 proceeds to step 608 to highlight the specified applica 
tions in the matched list. As described in relation to FIGS. 
1 and 4, the highlighted applications may be displayed 
differently from other applications, such as by being dis 
played in a separate section of the display, or indicated in 
Some way such as by using an asterisk or a different color to 
highlight the specified applications. Then, the processor 105 
provides the matched list including the highlighted applica 
tions to the user at step 612. Otherwise, if it is desirable to 
include but not highlight the applications already associated 
with the user, the processor 105 proceeds directly from the 
decision block 606 to the step 612 to provide the matched 
list to the user. 

Alternatively, if it is undesirable to include applications 
already associated with the user in the displayed list, the 
processor 105 proceeds to step 610 to remove any matched 
applications that are already associated with the user from 
the matched list of applications. The processor 105 may use 
a similar method as that described in relation to FIG. 5 for 
removing mismatched applications to remove applications 
that are already associated with the user. In an example, for 
Mapplications in the matched list, the processor 105 may 
generate a binary vector with length M, initialize all M 
values to zero, iterate m=1 to m=M, and update the m” value 
to one when the m'application is an application associated 
with the user. If it is expected that more associated appli 
cations will be identified than unassociated applications, the 
processor 105 may instead update them" value to one when 
an unassociated application is identified to save on cost and 
delay. Thus, after considering each application in the 
matched list, the resulting vector with size M provides an 
efficient mapping from the matched list to a list of applica 
tions for display to the user. At step 612, the processor 105 
provides the resulting matched list to the user for display. 
As is described in relation to FIG. 6, the highlighted 

applications in the display correspond to those applications 
that are already associated with the user. However, in 
general, any of the displayed applications may be high 
lighted according to any category. For example, it may be 
desirable to highlight those applications that are not already 
associated with the user (and are therefore new or Suggested 
to the user). Similarly, as described above, it may be 
desirable to highlight those applications that are popular 
generally or are popular with the user's contacts. 

In general, the systems and methods disclosed herein for 
the interaction between a developer and the web-based 
storage system 101 may include the use of an API for 
providing an interface between the two systems. 
The components of the system 100 of FIG. 1 may be 

arranged, distributed, and combined in any of a number of 
ways. FIG. 7 is a block diagram of a computing device. Such 
as any of the components of the system of FIG. 1, for 
performing any of the processes described herein, according 
to an illustrative embodiment. Each of the components of 
these systems may be implemented on one or more com 



US 9,489,430 B2 
15 

puting devices 700. In certain aspects, a plurality of the 
components of these systems may be included within one 
computing device 700. In certain implementations, a com 
ponent and a storage device may be implemented across 
several computing devices 700. 
The computing device 700 comprises at least one com 

munications interface unit, an input/output controller 710, 
system memory, and one or more data storage devices. The 
system memory includes at least one random access memory 
(RAM 702) and at least one read-only memory (ROM 704). 
All of these elements are in communication with a central 
processing unit (CPU 706) to facilitate the operation of the 
computing device 700. The computing device 700 may be 
configured in many different ways. For example, the com 
puting device 700 may be a conventional standalone com 
puter or alternatively, the functions of computing device 700 
may be distributed across multiple computer systems and 
architectures. In FIG. 7, the computing device 700 is linked, 
via network or local network, to other servers or systems. 
The computing device 700 may be configured in a dis 

tributed architecture, wherein databases and processors are 
housed in separate units or locations. Some units perform 
primary processing functions and contain at a minimum a 
general controller or a processor and a system memory. In 
distributed architecture implementations, each of these units 
may be attached via the communications interface unit 708 
to a communications hub or port (not shown) that serves as 
a primary communication link with other servers, client or 
user computers and other related devices. The communica 
tions hub or port may have minimal processing capability 
itself, serving primarily as a communications router. A 
variety of communications protocols may be part of the 
system, including, but not limited to: Ethernet, SAP, SASTM, 
ATP, BLUETOOTHTM, GSM and TCP/IP. 

The CPU 706 comprises a processor, such as one or more 
conventional microprocessors and one or more Supplemen 
tary co-processors such as math co-processors for offloading 
workload from the CPU 706. The CPU 706 is in commu 
nication with the communications interface unit 708 and the 
input/output controller 710, through which the CPU 706 
communicates with other devices such as other servers, user 
terminals, or devices. The communications interface unit 
708 and the input/output controller 710 may include mul 
tiple communication channels for simultaneous communi 
cation with, for example, other processors, servers or client 
terminals in the network 718. 

The CPU 706 is also in communication with the data 
storage device. The data storage device may comprise an 
appropriate combination of magnetic, optical or semicon 
ductor memory, and may include, for example, RAM 702, 
ROM 704, flash drive, an optical disc such as a compact disc 
or a hard disk or drive. The CPU 706 and the data storage 
device each may be, for example, located entirely within a 
single computer or other computing device; or connected to 
each other by a communication medium, Such as a USB port, 
serial port cable, a coaxial cable, an Ethernet cable, a 
telephone line, a radio frequency transceiver or other similar 
wireless or wired medium or combination of the foregoing. 
For example, the CPU 706 may be connected to the data 
storage device via the communications interface unit 708. 
The CPU 706 may be configured to perform one or more 
particular processing functions. 
The data storage device may store, for example, (i) an 

operating system 712 for the computing device 700; (ii) one 
or more applications 714 (e.g., computer program code or a 
computer program product) adapted to direct the CPU 706 
in accordance with the systems and methods described here, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
and particularly in accordance with the processes described 
in detail with regard to the CPU 706; or (iii) database(s) 716 
adapted to store information that may be utilized to store 
information required by the program. 
The operating system 712 and applications 714 may be 

stored, for example, in a compressed, an uncompiled and an 
encrypted format, and may include computer program code. 
The instructions of the program may be read into a main 
memory of the processor from a computer-readable medium 
other than the data storage device, such as from the ROM 
704 or from the RAM 702. While execution of sequences of 
instructions in the program causes the CPU 706 to perform 
the process steps described herein, hard-wired circuitry may 
be used in place of, or in combination with, software 
instructions for implementation of the processes of the 
present disclosure. Thus, the systems and methods described 
are not limited to any specific combination of hardware and 
software. 

Suitable computer program code may be provided for 
performing one or more functions in relation to identifying 
an appropriate web-based application to open a file, as 
described herein. The program also may include program 
elements such as an operating system 712, a database 
management system and “device drivers' that allow the 
processor to interface with computer peripheral devices 
(e.g., a video display, a keyboard, a computer mouse, etc.) 
via the input/output controller 710. 
The term “computer-readable medium' as used herein 

refers to any non-transitory medium that provides or par 
ticipates in providing instructions to the processor of the 
computing device 700 (or any other processor of a device 
described herein) for execution. Such a medium may take 
many forms, including but not limited to, non-volatile media 
and volatile media. Non-volatile media include, for 
example, optical, magnetic, or opto-magnetic disks, or inte 
grated circuit memory, Such as flash memory. Volatile media 
include dynamic random access memory (DRAM), which 
typically constitutes the main memory. Common forms of 
computer-readable media include, for example, a floppy 
disk, a flexible disk, hard disk, magnetic tape, any other 
magnetic medium, a CD-ROM, DVD, any other optical 
medium, punch cards, paper tape, any other physical 
medium with patterns of holes, a RAM, a PROM, an 
EPROM or EEPROM (electronically erasable program 
mable read-only memory), a FLASH-EEPROM, any other 
memory chip or cartridge, or any other non-transitory 
medium from which a computer can read. 

Various forms of computer readable media may be 
involved in carrying one or more sequences of one or more 
instructions to the CPU 706 (or any other processor of a 
device described herein) for execution. For example, the 
instructions may initially be borne on a magnetic disk of a 
remote computer (not shown). The remote computer can 
load the instructions into its dynamic memory and send the 
instructions over an Ethernet connection, cable line, or even 
telephone line using a modem. A communications device 
local to a computing device 700 (e.g., a server) can receive 
the data on the respective communications line and place the 
data on a system bus for the processor. The system bus 
carries the data to main memory, from which the processor 
retrieves and executes the instructions. The instructions 
received by main memory may optionally be stored in 
memory either before or after execution by the processor. In 
addition, instructions may be received via a communication 
port as electrical, electromagnetic or optical signals, which 
are exemplary forms of wireless communications or data 
streams that carry various types of information. 



US 9,489,430 B2 
17 

While various embodiments of the present disclosure 
have been shown and described herein, it will be obvious to 
those skilled in the art that such embodiments are provided 
by way of example only. Numerous variations, changes, and 
substitutions will now occur to those skilled in the art 
without departing from the disclosure. It should be under 
stood that various alternatives to the embodiments of the 
disclosure described herein may be employed in practicing 
the disclosure. 

The invention claimed is: 
1. A system to identify an application to open a file, the 

system comprising: 
an application database configured to store metadata that 

includes a shortcut reference list of applications includ 
ing a first application and a second application, the 
metadata including first metadata and second metadata, 
the first application in the reference list being associ 
ated with a first set of file types that are referenced by 
the first metadata and the second application in the 
reference list being associated with a second set of file 
types that are referenced by the second metadata; and 

a central processing unit configured to communicate with 
an input/output controller to: 
receive, from a first developer of the first application, a 

first association request to associate the first set of 
file types with the first application; 

receive, from a second developer of the second appli 
cation, a second association request to associate the 
second set of file types with the second application; 

receive a request from a user to open a file having a file 
type, wherein the user is different from the first 
developer and the second developer; 

determine whether the file type is in the first set of file 
types; 

determine whether the file type is in the second set of 
file types: 

filter the reference list to remove the first application if 
the file type is not in the first set of file types that are 
referenced by the first metadata and to remove the 
second application if the file type is not in the second 
set of file types that are referenced by the second 
metadata, to obtain a matched list of one or more 
applications, each of which is associated with the file 
type, at least a Subset of the applications in the 
reference list being web-based applications that are 
not required to be downloaded or installed on a 
device used by the user; 

transmit data indicative of the matched list to be 
displayed to the user, and 

receive data indicative of a selected application from 
the matched list. 

2. The system of claim 1, wherein the processing system 
is further configured to update the reference database based 
on the association request, where the association request 
includes the first set of file types to be associated with the 
first application. 

3. The system of claim 1, further comprising a user 
database that stores associations, each association between a 
user in a plurality of users and an application in a plurality 
of applications, wherein the processing system is further 
configured to use the user database to determine whether the 
user is associated with any application in the matched list. 

4. The system of claim 3, wherein the data indicative of 
the matched list includes an indication of whether the user 
is associated with any application in the matched list, and the 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
processing system is further configured to filter the matched 
list to remove any applications determined to be associated 
with the user. 

5. The system of claim 3, wherein the data indicative of 
the matched list includes information indicative of whether 
the user is associated with any application in the matched 
list, such that when the matched list is displayed, applica 
tions that are associated with the user are displayed differ 
ently from applications not associated with the user. 

6. The system of claim 1, wherein the file type is defined 
by a MIME type of the file and/or a file extension of the file. 

7. The system of claim 1, wherein the file is (i) an 
attachment to an email received by the user, or (ii) stored on 
a web-based storage system. 

8. The system of claim 1, wherein the processing system 
is further configured to open the file using the selected 
application. 

9. The system of claim 1, wherein the request to open the 
file from the user includes a request to view the matched list 
of applications, each application in the matched list being 
configured to open, render, edit and display contents of the 
file to the user. 

10. The system of claim 1, wherein the reference list of 
applications is obtained by combining association requests 
from application developers to associate respective applica 
tions with one or more file types. 

11. A method to identify an application to open a file, the 
method comprising: 

receiving, by a processor from a first developer of the first 
application, a first association request to associate a 
first set of file types with a first application, wherein the 
first set of file types are referenced by first metadata 
associated with the first application; 

receiving, by the processor from a second developer of the 
second application, a second association request to 
associate a second set of file types with a second 
application, wherein the second set of file types are 
referenced by second metadata associated with the 
second application; 

receiving, by the processor, a request from a user to open 
a file having a file type, wherein the user is different 
from the first developer and the second developer; 

determining, by the processor, whether the file type is in 
the first set of file types: 

determining, by the processor, whether the file type is in 
the second set of file types; 

filtering a reference list including at least the first appli 
cation and the second application, each application in 
the reference list being associated with one or more 
corresponding file types, to remove the first application 
if the file type is not in the first set of file types that are 
referenced by the first metadata and to remove the 
second application if the file type is not in the second 
set of file types that are referenced by the second 
metadata, to obtain a matched list of one or more 
applications, each of which is associated with the file 
type, at least a Subset of the applications in the refer 
ence list being web-based applications that do not 
require to be downloaded installed on the user's device; 

transmitting data indicative of the matched list to be 
displayed to the user; and 

receiving data indicative of a selected application from 
the matched list. 

12. The method of claim 11, further comprising updating 
the reference list based on the association request, where the 
association request includes the first set of file types to be 
associated with the first application. 



US 9,489,430 B2 
19 

13. The method of claim 11, further comprising: 
determining whether the user is associated with any 

application in the matched list, wherein the data indica 
tive of the matched list includes an indication of 
whether the user is associated with any application in 5 
the matched list; and 

filtering the matched list to remove any applications 
determined to be associated with the user. 

14. The method of claim 13, wherein the data indicative 
of the matched list includes information indicative of 
whether the user is associated with any application in the 
matched list, such that when the matched list is displayed, 
applications that are associated with the user are displayed 
differently from applications not associated with the user. 

15. The method of claim 11, wherein the file type is 
defined by a MIME type of the file and/or a file extension of 15 
the file. 

16. The method of claim 11, wherein the file is (i) an 
attachment to an email received by the user, or (ii) stored on 
a web-based storage system. 

17. The method of claim 11, further comprising opening 20 
the file using the selected application. 

18. The method of claim 11, wherein the request to open 
the file from the user includes a request to view the matched 
list of applications, each application in the matched list 
being configured to open, render, edit and display contents as 
of the file to the user. 

19. The method of claim 11, wherein the reference list of 
applications is obtained by combining association requests 
from application developers to associate respective applica 
tions with one or more file types. 30 

20. A method to identify an application to open a file, the 
method comprising: 

receiving, by a user interface, a first user input indicative 
of a file selected by a user, the file being received by the 
user as an email attachment and having an input file 
type; 

20 
transmitting data indicative of the input file type over a 

communications network; 
determining whether the file type is in a first set of file 

types associated with a first application, wherein the 
first set of file types are referenced by first metadata 
associated with the first application or in a second set 
of file types associated with a second application, 
wherein the second set of file types are referenced by 
second metadata associated with the second applica 
tion; 

displaying, over the user interface, a matched list of one 
or more applications, each of which is associated with 
the file type wherein: 

a reference list of applications was obtained by combining 
association requests from application developers to 
associate respective applications with one or more file 
types, wherein the application developers are different 
from the user, and wherein at least a subset of the 
applications in the reference list are web-based appli 
cations that are not required to be downloaded or 
installed on a device used by the user; 

the matched list was obtained by removing the first 
application from the reference list if the file type was 
not in the first set of file types that are referenced by the 
first metadata and removing the second application 
from the reference list if the file type was not in the 
second set of file types that are referenced by the 
second metadata, each of the removed applications 
being associated with a set of one or more file types that 
each mismatch the input file type; and 

receiving, by the user interface, a second user input 
indicative of a selected application from the matched 
list. 


