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1. 

HYBRD PREDICTIVE MODEL FOR 
ENHANCING PROSODIC EXPRESSIVENESS 

RELATED APPLICATION INFORMATION 

This application claims priority to provisional application 
Ser. No. 61/828,094 filed on May 28, 2013, incorporated 
herein by reference in its entirety. 

BACKGROUND 

1. Technical Field 
The present invention relates to speech synthesis, and 

more particularly to a hybrid parametric/exemplar-based 
predictive model for enhancing prosodic expressiveness for 
speech synthesis. 

2. Description of the Related Art 
Prosody is an inherent feature of spoken languages real 

ized by the pitch, stress duration and other features in 
speech. Data-driven speech synthesis systems can be 
broadly contrasted in terms of the ways in which they make 
use of the data during the learning and run-time stages of the 
process to infer and predict prosodic properties of the 
acoustic waveform. For unit-selection systems, typical 
architectures exploit prosodic models to generate desired 
target values to use as a component of the cost function 
driving the unit search. At the other end of the continuum, 
fully parametric, model-based systems use training data only 
during the learning stage to adapt the model parameters and 
then use the models at run-time to generate prosodic param 
eters that can be used directly in the speech-generation stage. 
Since the data plays no further role after training, these 
systems incur a small footprint size, which is one of their 
desirable properties. 

Fully parametric model-based systems usually rely on 
statistical averaging, leading to predicted prosody that Suf 
fers from low prosodic expressiveness due to flat intonation. 
On the other hand, exemplar-based models tend to be more 
expressive, but less robust, because their selection is based 
on low-level features or high-dimensional features. 

SUMMARY 

A method for prosody prediction includes extracting 
features from runtime data using a parametric model. The 
features from runtime data are compared with features from 
training data using an exemplar-based model to predict 
prosody of the runtime data. The features from the training 
data are paired with exemplars from the training data and 
stored on a computer readable storage medium. 
A system for prosody prediction includes a parametric 

model configured to extract features from runtime data. An 
exemplar-based model is configured to compare the features 
from runtime data with features from training data to predict 
prosody of the runtime data. The features from the training 
data are paired with exemplars from the training data and 
stored on a computer readable storage medium. 

These and other features and advantages will become 
apparent from the following detailed description of illustra 
tive embodiments thereof, which is to be read in connection 
with the accompanying drawings. 

BRIEF DESCRIPTION OF DRAWINGS 

The disclosure will provide details in the following 
description of preferred embodiments with reference to the 
following figures wherein: 
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2 
FIG. 1 is a high-level overview of the hybrid predictive 

model, in accordance with one illustrative embodiment; 
FIG. 2 is a block/flow diagram showing a system for 

prosody prediction, in accordance with one illustrative 
embodiment; 

FIG. 3 shows graphs illustrating performance of the 
hybrid predictive model, in accordance with one illustrative 
embodiment; and 

FIG. 4 is a block/flow diagram showing a method for 
prosody prediction, in accordance with one illustrative 
embodiment. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

In accordance with embodiments of the present invention, 
systems and methods for enhancing prosodic expressiveness 
using a hybrid predictive model are provided. The present 
invention combines the strengths of parametric models and 
exemplar-based models within a single hybrid model while 
alleviating their weaknesses. The parametric model compo 
nent is first used to extract high-level structures from the 
input data and to Summarize such structures Succinctly in the 
form of parameters. The parameters are paired with exem 
plars from the exemplar-based model to form a database of 
exemplars. At runtime, the database of exemplars may be 
exploited to predict new runtime outputs based on the 
relevance or similarity of the runtime inputs to the exemplar 
database. 

Embodiments of the present invention may be used for 
prosody prediction in a speech synthesis system, where fully 
parametric systems by themselves are known to fall short of 
replicating the full range of expressiveness observed in 
natural data. The additional use of exemplars enhances this 
shortcoming. Conversely, the use of the parametric compo 
nent enhances the exemplar-based prediction since the latter 
now relies on the high-level structure extracted by the 
parametric model rather than on the raw inputs. 
As will be appreciated by one skilled in the art, aspects of 

the present invention may be embodied as a system, method 
or computer program product. Accordingly, aspects of the 
present invention may take the form of an entirely hardware 
embodiment or an embodiment combining software and 
hardware aspects that may all generally be referred to herein 
as a “circuit,” “module' or “system.” Furthermore, aspects 
of the present invention may take the form of a computer 
program product embodied in one or more computer read 
able medium(s) having computer readable program code 
embodied thereon. 
Any combination of one or more computer readable 

medium(s) may be utilized. The computer readable medium 
may be a computer readable signal medium or a computer 
readable storage medium. A computer readable storage 
medium may be, for example, but not limited to, an elec 
tronic, magnetic, optical, electromagnetic, infrared, or semi 
conductor system, apparatus, or device, or any Suitable 
combination of the foregoing. More specific examples (a 
non-exhaustive list) of the computer readable storage 
medium would include the following: an electrical connec 
tion having one or more wires, a portable computer diskette, 
a hard disk, a random access memory (RAM), a read-only 
memory (ROM), an erasable programmable read-only 
memory (EPROM or Flash memory), an optical fiber, a 
portable compact disc read-only memory (CD-ROM), an 
optical storage device, a magnetic storage device, or any 
suitable combination of the foregoing. In the context of this 
document, a computer readable storage medium may be any 
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tangible medium that can contain, or store a program for use 
by or in connection with an instruction execution system, 
apparatus, or device. 
A computer readable signal medium may include a propa 

gated data signal with computer readable program code 
embodied therein, for example, in baseband or as part of a 
carrier wave. Such a propagated signal may take any of a 
variety of forms, including, but not limited to, electro 
magnetic, optical, or any Suitable combination thereof. A 
computer readable signal medium may be any computer 
readable medium that is not a computer readable storage 
medium and that can communicate, propagate, or transport 
a program for use by or in connection with an instruction 
execution system, apparatus, or device. 

Program code embodied on a computer readable medium 
may be transmitted using any appropriate medium, includ 
ing but not limited to wireless, wireline, optical fiber cable, 
RF, etc., or any suitable combination of the foregoing. 
Computer program code for carrying out operations for 
aspects of the present invention may be written in any 
combination of one or more programming languages, 
including an object oriented programming language Such as 
Java, Smalltalk, C++ or the like and conventional procedural 
programming languages, such as the 'C' programming 
language or similar programming languages. The program 
code may execute entirely on the user's computer, partly on 
the user's computer, as a stand-alone software package, 
partly on the user's computer and partly on a remote 
computer or entirely on the remote computer or server. In the 
latter scenario, the remote computer may be connected to the 
user's computer through any type of network, including a 
local area network (LAN) or a wide area network (WAN), or 
the connection may be made to an external computer (for 
example, through the Internet using an Internet Service 
Provider). 

Aspects of the present invention are described below with 
reference to flowchart illustrations and/or block diagrams of 
methods, apparatus (systems) and computer program prod 
ucts according to embodiments of the invention. It will be 
understood that each block of the flowchart illustrations 
and/or block diagrams, and combinations of blocks in the 
flowchart illustrations and/or block diagrams, can be imple 
mented by computer program instructions. These computer 
program instructions may be provided to a processor of a 
general purpose computer, special purpose computer, or 
other programmable data processing apparatus to produce a 
machine, such that the instructions, which execute via the 
processor of the computer or other programmable data 
processing apparatus, create means for implementing the 
functions/acts specified in the flowchart and/or block dia 
gram block or blocks. 

These computer program instructions may also be stored 
in a computer readable medium that can direct a computer, 
other programmable data processing apparatus, or other 
devices to function in a particular manner, such that the 
instructions stored in the computer readable medium pro 
duce an article of manufacture including instructions which 
implement the function/act specified in the flowchart and/or 
block diagram block or blocks. The computer program 
instructions may also be loaded onto a computer, other 
programmable data processing apparatus, or other devices to 
cause a series of operational steps to be performed on the 
computer, other programmable apparatus or other devices to 
produce a computer implemented process such that the 
instructions which execute on the computer or other pro 
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4 
grammable apparatus provide processes for implementing 
the functions/acts specified in the flowchart and/or block 
diagram block or blocks. 
The flowchart and block diagrams in the Figures illustrate 

the architecture, functionality, and operation of possible 
implementations of systems, methods and computer pro 
gram products according to various embodiments of the 
present invention. In this regard, each block in the flowchart 
or block diagrams may represent a module, segment, or 
portion of code, which comprises one or more executable 
instructions for implementing the specified logical 
function(s). It should also be noted that, in some alternative 
implementations, the functions noted in the blocks may 
occur out of the order noted in the figures. For example, two 
blocks shown in Succession may, in fact, be executed Sub 
stantially concurrently, or the blocks may sometimes be 
executed in the reverse order, depending upon the function 
ality involved. It will also be noted that each block of the 
block diagrams and/or flowchart illustration, and combina 
tions of blocks in the block diagrams and/or flowchart 
illustration, can be implemented by special purpose hard 
ware-based systems that perform the specified functions or 
acts, or combinations of special purpose hardware and 
computer instructions. 

Reference in the specification to “one embodiment” or 
“an embodiment of the present principles, as well as other 
variations thereof, means that a particular feature, structure, 
characteristic, and so forth described in connection with the 
embodiment is included in at least one embodiment of the 
present principles. Thus, the appearances of the phrase "in 
one embodiment” or “in an embodiment, as well any other 
variations, appearing in various places throughout the speci 
fication are not necessarily all referring to the same embodi 
ment. 

It is to be appreciated that the use of any of the following 
“7”, “and/or, and “at least one of, for example, in the cases 
of “A/B, “A and/or B.’ and “at least one of A and B, is 
intended to encompass the selection of the first listed option 
(A) only, or the selection of the second listed option (B) 
only, or the selection of both options (A and B). As a further 
example, in the cases of “A, B, and/or C and “at least one 
of A, B, and C. Such phrasing is intended to encompass the 
selection of the first listed option (A) only, or the selection 
of the second listed option (B) only, or the selection of the 
third listed option (C) only, or the selection of the first and 
the second listed options (A and B) only, or the selection of 
the first and third listed options (A and C) only, or the 
selection of the second and third listed options (B and C) 
only, or the selection of all three options (A and B and C). 
This may be extended, as readily apparent by one of 
ordinary skill in this and related arts, for as many items 
listed. 

Referring now to the drawings in which like numerals 
represent the same or similar elements and initially to FIG. 
1, a high-level overview of a hybrid predictive model 100 
for prosody prediction is illustratively depicted in accor 
dance with one illustrative embodiment. The hybrid model 
100 includes a parametric model 102 and an exemplar-based 
model 104. In one embodiment, the parametric model 102 
includes a neural network (NN) model and the exemplar 
based model 104 includes a Gaussian process (GP). The 
hybrid model 100 is first trained using training data, then 
employed for prosody prediction of runtime data using 
based on the training. 
The parametric model 102 is first trained to apply trans 

formations T to training data X to reproduce training target 
Y. Additionally, the parametric model 102 extracts high 
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level structures from the input and to Summarize Such 
structures succinctly in the form of features. The features 
may include deep layer features extracted by transforming 
the data up to the layer of the parametric model 102 before 
the output. 

The exemplar-based model 104 receives transformed 
training data X and training targets Y(k) to determine 
exemplars from the training data. The transformations 
applied to the training data X, represented as transforma 
tions T in FIG. 1, refer to parametric transformations up to 
the layer before the output to provide the features (e.g., deep 
layer features). The exemplars are paired with the features 
extracted by the parametric model 102 and stored in an 
exemplar database. 

At runtime, the runtime module 106 employs the trained 
parametric model 102 and trained exemplar-based model 
104. Runtime data X is first transformed to extract runtime 
features (e.g., deep layer features). Runtime outputs Y(k) 
are predicted based on a relevance between the runtime 
features and training features paired with exemplars as 
determined by the exemplar-based model 104. 

Referring now to FIG. 2, a block/flow diagram showing a 
system for prosody prediction 200 is illustratively depicted 
in accordance with one embodiment. The system 200 com 
bines the relative strengths of both parametric and exemplar 
based predictive approaches within a single hybrid model. 
The system 200 includes a parametric module 218 and 
exemplar-based module 220. The parametric module 218 
includes a fixed-size model whose size depends on the 
number of parameters. The exemplar-based module 220 
includes a database of exemplars as large as the available 
training set, which can be trimmed to fit memory require 
ments. The hybrid model is first trained using training data. 
At runtime, the parametric module 218 and the exemplar 
based module 220 are employed based on the training for the 
prosody prediction (e.g., the fundamental frequency (FO) 
contour). The F0 contour represents intonation in speech, 
which can communicate speaker intent and linguistic cues 
for speech perception. 
The system 200 may include a system or workstation 202. 

The system 202 preferably includes one or more processors 
208 and memory 210 for storing applications, modules and 
other data. The system 202 may also include one or more 
displays 204 for viewing. The displays 204 may permit a 
user to interact with the system 202 and its components and 
functions. This may be further facilitated by a user interface 
206, which may include a mouse, joystick, or any other 
peripheral or control to permit user interaction with the 
system 202 and/or its devices. It should be understood that 
the components and functions of the system 202 may be 
integrated into one or more systems or workstations, or may 
be part of a larger system or workstation (e.g., speech 
synthesis system, text to speech system, etc.). 
The system 202 receives input 212, which may include 

training data 214, denoted as X, and runtime data 216, 
denoted as X. The system 202 is trained using training 
date 214 during a training phase to predict prosody of 
runtime data 216 during a runtime phase. The training data 
X and runtime data X are preferably in the form of 
text-based features, such as, e.g., phonetic identity, syllable 
counts, and other features typically used for prosody pre 
diction, and may be in the form of a vector. The input data 
may also be in other forms or configurations (e.g., a parse 
tree produced by a syntactical parser). 

The parametric module 218 is trained using the raw inputs 
X to reproduce the targets Y in the training data. 
Preferably, the parametric module 218 includes an NN 
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6 
model, however other models may also be employed within 
the context of the present invention. The NN non-linearly 
transforms the inputs X by performing a series of n 
transformations to obtain targets Y. In addition to serving 
as a predictive model, the NN can also be used as a 
(non-linear) feature extractor by tapping into the output just 
before the inputs X have been transformed by the n-th 
layer transformation (i.e., the n-1 layer). The n-1 level 
features are referred to as deep layer features Z. These deep 
layer features Z are the result of passing the raw numerical 
inputs through the first n-1 layers of the NN, where each 
layer computes a weighted Sum of the preceding layers 
outputs, followed by a non-linearity. It has been demon 
strated that features extracted from the deepest layer of the 
network (i.e., one layer prior to the target) yielded consis 
tently better results than features extracted from lower levels 
of processing. These deep layer features Z are forwarded to 
the exemplar-based module 220. 
The present invention makes use of recent techniques for 

NN training, in which a two-pass approach combines an 
underlying generative model, trained in an unsupervised 
manner, with standard Supervised techniques for training the 
discriminative model. In the first, or pretraining, phase, all 
but the output layer of a deterministic, feed-forward NN are 
replaced with an undirected, probabilistic, generative model. 
Such a structure, known as a Deep Belief Network (DBN), 
is first trained in an unsupervised manner (i.e., ignoring the 
network targets). After the weights of this structure have 
been learned, they are used to initialize the feed-forward 
structure which, with the output targets now restored, is 
further trained using back-propagation to maximize the loss 
function on the output layer (in this case, mean squared 
error) between the targets and the predictions. 
The training of the DBN is performed layer-wise by 

learning the weights between each pair of layers at a time. 
Each undirected bipartite graph structure resulting from this 
decomposition is known as a Restricted Bolzmann Machine 
and can be trained fairly efficiently using the gradient 
descent with a Contrastive Divergence method. Given that 
all inputs to the model have been encoded as Boolean 
indicators, the RBM only contains connections between 
Bernoulli-distributed variables. 

It should be understood that alternative NN architectures 
may also be employed to construct a parametric model that 
could be used as a feature extractor to generate Suitable 
representations for the exemplar-based model 220. For 
example, in one embodiment, the set of training targets Y, 
could be augmented with additional complementary corre 
lated targets to bias the training of the NN to learn the main 
and complementary tasks jointly. For instance, when learn 
ing to predict F0 contours, the target vector could be 
augmented with duration targets since there is a known 
interaction between duration and intonation that the network 
could exploit to extract better features. 

In another embodiment, an auto-encoder (AE) architec 
ture could be used to generate bottleneck features for the 
exemplar-based model 220. In the AE architecture, the 
outputs are forced to match the inputs X, and the network 
is trained to reproduce the inputs at the outputs after going 
through a pinched or bottleneck layer of reduced dimen 
sionality. Because of the non-linear network of the structure, 
this architecture manages to extract non-linear, lower-di 
mensional features from the inputs that the exemplar-based 
model 220 can then better exploit when assessing relevance. 

In other embodiments, dynamic versions. Such as a recur 
rent NN (where the inner hidden-layers have self-connec 
tions across time), may be employed. This temporal archi 
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tecture could be trained with the basic targets Y, or can be 
further combined with schemes already discussed above. 
Other forms of parametric model 218 are also contemplated. 
The exemplar-based module 220 receives transformed 

raw inputs X and targets Y(k) for each stream k of the 
target F0 vector. The transformed raw inputs X represent 
the raw inputs X being transformed up to the layer before 
the output (i.e., the deepest layer) of the parametric module 
218 to provide deep layer features. Preferably, the exemplar 
based module 220 includes a GP regression model; however, 
the exemplar-based module 220 may include any non 
parametric model. The exemplar-based module 220 is con 
figured to generate a database of exemplars. The exemplars 
in the database are paired with the deep layer features Z from 
the parametric module 218. These augmented exemplars 
may be used to train the Gaussian process to adjust any 
hyperparameters 0(k) that the model might include. Hyper 
parameters referred to herein may refer to any free parameter 
that is part of the exemplar-based model (such as those 
indicated in Eqn. (8) below), and which need to be adjusted 
during the training phase to obtain good-quality predictions. 
The NN of the parametric module 218 assumes the role of 

mapping a heterogeneous combination of categorical and 
numeric raw inputs into a continuous representation that can 
be used directly to score similarity among exemplars in the 
exemplar-based module 220. This approach further allows to 
automatically incorporate dimensionality reduction by sim 
ply constraining the number of nodes in the n-th layer (e.g., 
by imposing a bottleneck structure on the NN). 

To keep the number of parameters in check, the NN is 
trained in a “context-independent’ manner; that is, the 
training tokens consist of the pairs (x, y,}. Context, 
however, can be easily incorporated in the GP regression of 
the exemplar-based model 220 by augmenting each deep 
layer feature Z with a neighborhood of observations 
{Z. . . . . . Z,'. . . . Zal', y, when training the 
hyperparameters 0 of the GP model. Although that increases 
the dimensionality of the input received by the GP, it does 
not increase the number of hyperparameters since GPs are 
considered with dimensionality-independent kernel func 
tions. Once the exemplar database is formed, the hyperpa 
rameters 0 (if any) of the GP are estimated. This completes 
the training phase of the model. 
A GP is a collection of random variables, any finite 

collection of which have a jointly Gaussian distribution, and 
which can be completely specified by its input-dependent 
mean function m(X) and covariance function k(X,x'). The 
underlying samples of the GP is allowed to be corrupted by 
independent, identically distributed Gaussian noise e-N (0, 
O, ), and assume a constant mean to arrive at the model: 

f(X)-W(m, K) (2) 

(3) 

Considering two sets of variables corresponding to the 
observations Y in a set of training cases and the underlying 
function values of a set of test cases f, then it still holds 
that: 

CI-No, ". K(XTR, (4) frE K(Xre, XTR) K(Xre, XTE) 
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8 
from which, after marginalization, the conditional distribu 
tion p(fly) can be shown to follow: 

frE ly-W (fire.cov(fr)) (5) 

Since the conditional is also a Gaussian, equations (6) and 
(7) provide the maximum a posteriori (MAP) estimate and 
error bars for a given set of test cases X based on the 
exemplar pairs {X, Y,. The computation of these equa 
tions involves evaluating (and inverting) matrices whose 
entries are determined by the choice of correlation function 
k(x,x). To ensure positive definiteness, k(*) must be a 
valid kernel (i.e., it can be represented as an inner product 
of functions). A simple squared exponential covariance 
function may be employed: 

(8) k(x, y) = exp-h - xII? 
is -1 p 2O 

where hand O, in addition to O, (the noise-model variance), 
are hyperparameters of the GP (0=h.O.O.). As variations 
in this hyperparameter set can lead to very different output 
processes, it is important for accurate prediction to properly 
estimate them from the training set. This can be done by 
maximizing the marginal likelihood of the training obser 
vations (the evident function), which can be shown to be 
given by: 

log (27) (9) 

It should be clear that, though the test inputs are arranged 
in a pre-defined sequence at runtime, the collection of 
random variables that define this model do not have a 
temporal arrangement among them (i.e., it is not a sequential 
model). There is no implicit notion of time beyond what is 
addressed by the augmented input context. The training 
exemplars contribute to the prediction based on their corre 
lation to the test exemplars, as measured in input space (i.e., 
the text-based features, not time). The dynamic evolution is 
addressed by including the delta sequences and using these 
within a known parameter-generation methods. 
At runtime, the system 202 employs the trained hybrid 

model, which includes parametric module 218 and exem 
plar-based module 220. Runtime data X are processed by 
the first n layers of the NN of the parametric model 218 to 
extract the runtime deep layer features Z. Then, the GP of the 
exemplar-based module 220 generates its prediction as a 
function of these runtime deep layer features as compared 
with the training deep layer features stored in the exemplar 
database. The GP implicitly assesses relevance via a kernel 
functions (such as, e.g., the squared-exponential shown in 
equation 8, etc.) evaluated between an input test case and 
each store input exemplar. The FO contour prediction 224 
may be included as output 222. 
The hybrid model may be built in a genre-specific mode 

or a multi-genre model. Genres may correspond to group 
ings of texts that can have a specific effect on the speaking 
style or prosodic delivery (for instance, e.g., the style of 
reading a literary narrative compared to the style of spon 
taneous sports broadcasting). In a genre-specific mode, a 
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hybrid model is built for each genre or style of interest. In 
a multi-genre mode, data from all genres/styles of interest 
are pooled to build a single hybrid model. The single hybrid 
model includes a genre-indicator features that can be used to 
trigger the appropriate deep layer features. 

The present invention was evaluated by implementing an 
architecture to predict F0 contours for expressive speech 
synthesis. Since the model consists of only single-output 
GPs in the exemplary embodiment, 3 independent GP mod 
els are learned in the training phase, one associated with 
each stream k of the target F0 vector: log F0, delta 
sequences, and delta-delta sequences. The main log F0 
stream represents the pitch contour directly, whereas the 2 
delta sequences encode the variation (difference and accel 
eration) of the F0 temporal sequence over time. These 
sequences represent state-level mean statistics of the respec 
tive frame-level curves, where the state segmentation has 
been previously generated by forced alignment, with 3-state 
hidden Markov models (HMM), between the acoustic wave 
forms and the phonetic transcripts (i.e., the observations 
correspond to roughly /3 of a phone). At runtime, all that is 
needed to generate the predictions from the inputs are the 
transforms associated with the n-th layer (T-ToT ... oT. 
where T. g(Wx), W, are the weights of the j-th layer, x, is 
the inputs arriving at that layer, and g() is the logistic 
function), the GP models hyperparameters 0(k) for each 
stream k, and the exemplars in the training database. 

Referring now to FIG. 3, graphs 300 depicting objective 
metrics for an independent development set (i.e., not used 
for training) after NN deep layer features for 3 different 
structures have been modeled with a GP. The NN is shown 
in the graphs 300 having three different output layer sizes: 
64, 128 and 256. The graphs 300 also show raw data with no 
NN processing before being modeled with the GP. The 
objective metrics may include the log likelihood (LL), 
mean-square error (MSE), variance (VAR), cross-correla 
tion (XCORR), which are shown in graphs 302, 304, 306 
and 308, respectively. Other objective metrics may also be 
employed. The x-axis of the graphs 300 shows the input 
dimensionality to the GP as a result of adding additional 
windows of context. 

The graphs 300 demonstrate the following. The metrics 
improve (i.e., MSE decreases, while LL, VAR, and XCORR 
increase) when the hybrid model is used instead of directly 
using the GP on the raw input features (i.e., the hybrid model 
improves over bypassing the parametric model). The metrics 
improve when the hybrid model is used instead of only the 
NN model (i.e., the hybrid model improves over bypassing 
the exemplar-based model). The additional use of a large 
context window helps improve the metrics, something 
which is readily incorporated by an exemplar based model 
whose number of hyperparameters is independent of the 
input dimensionality. 

Referring now to FIG. 4, a block/flow diagram showing a 
method for prosody prediction 400 is depicted in accordance 
with one illustrative embodiment. In block 402, a hybrid 
model for prosody prediction is trained. The hybrid model 
includes a parametric model and an exemplar-based model. 
In one embodiment, the parametric model includes an NN 
and the exemplar-based model includes a GP. 

In block 404, the parametric model is trained to transform 
training data to training targets. In one embodiment, training 
the parametric model may include replacing all but the 
output layer of the parametric model with a Deep Belief 
Network, training the DBN in an unsupervised manor to 
learn weights, and further training the DBN with back 
propagation using the outputs. In block 406, deep layer 
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10 
features are extracted from the training data using the 
parametric model. Deep layer features are data transformed 
up to layer in the parametric model before the output layer. 
In block 408, the exemplar-based model is trained to deter 
mine exemplars from the training data. In block 410, the 
exemplars are paired with the deep layer features of the 
training data and stored in an exemplar database. In one 
embodiment, dimensionality can be reduced by constraining 
the number of nodes in the deepest layer in the parametric 
model before the output layer. 

In block 412, the trained hybrid model may be used to 
predict prosody of runtime data. In block 414, the runtime 
data is processed using the parametric model to determine 
deep layer features of the runtime data. This may include 
transforming the runtime data up to the layer before the 
output of the parametric model. In block 416, the deep layer 
features of the runtime data are compared with the deep 
layer features of the training data, which is paired with 
exemplars of the training data, using the exemplar-based 
model to predict prosody (e.g., F0 contour) of the runtime 
data. 

Having described preferred embodiments of a system and 
method F0 contour prediction with a deep belief network 
Gaussian process hybrid model (which are intended to be 
illustrative and not limiting), it is noted that modifications 
and variations can be made by persons skilled in the art in 
light of the above teachings. It is therefore to be understood 
that changes may be made in the particular embodiments 
disclosed which are within the scope of the invention as 
outlined by the appended claims. Having thus described 
aspects of the invention, with the details and particularity 
required by the patent laws, what is claimed and desired 
protected by Letters Patent is set forth in the appended 
claims. 

What is claimed is: 
1. A method for prosody prediction, comprising: 
extracting features from runtime data using a parametric 

model; 
comparing the features from runtime data with features 

from training data using an exemplar-based model to 
predict prosody of the runtime data, the features from 
the training data being paired with exemplars from the 
training data and stored on a computer readable storage 
medium; and 

synthesizing speech, by a speech synthesizer, using the 
predicted prosody, 

wherein the parametric model includes a plurality of 
layers, and the features include deep layer features that, 
in turn, include features after data has been transformed 
up to a layer of the parametric model before an output 
layer, and 

wherein a hybrid model including the parametric model 
and the exemplar-based model is built for each genre of 
interest. 

2. The method as recited in claim 1, wherein the para 
metric model includes a neural network model and the 
exemplar-based model includes a Gaussian Process model. 

3. The method as recited in claim 1, wherein the features 
include deep layer features. 

4. The method as recited in claim 1, further comprising 
training the parametric model to transform the training data 
to reproduce training targets. 

5. The method as recited in claim 1, further comprising 
training the exemplar-based model to determine exemplars 
from the training data. 
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6. The method as recited in claim 1, further comprising 
constraining a number of nodes in a deepest layer of the 
parametric model before an output layer to reduce dimen 
sionality. 

7. The method as recited in claim 1, wherein a hybrid 
model including the parametric model and the exemplar 
based model is built for all genres of interest by pooling data 
from the genres of interest. 

8. The method as recited in claim 7, wherein the hybrid 
model includes a genre-indictor feature to trigger appropri 
ate deep layer features. 

9. The method as recited in claim 1, wherein the para 
metric model is trained to apply transformations to training 
data to reproduce a training target, and the features are 
extracted one layer prior to the training target. 

10. The method as recited in claim 1, wherein the features 
extracted one layer prior to the training target are the 
features with training data that are compared to the features 
from runtime data to predict the prosody of the runtime data. 

11. The method as recited in claim 1, wherein exemplars 
of the exemplar-based model are determined from the trans 
formed training data and the training target, and the exem 
plars are paired with the extracted features for comparison to 
the features from the runtime data. 

12. The method of claim 1, wherein the plurality of layers 
include n transforming layers, wherein each of the n trans 
forming layers computes a weighted sum of outputs of a 
preceding layer, followed by a non-linearity. 

13. The method of claim 1, wherein the plurality of layers 
include n transforming layers, and the deep layer features, in 
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turn, include the features after the data has been transformed 
up to an n-1 transforming layer of the parametric model. 

14. The method of claim 13, wherein raw numerical 
inputs are passed through the first n-1 transforming layers of 
the parametric model. 

15. The method of claim 1, wherein the deep layer 
features comprise prosody prediction features. 

16. The method of claim 15, wherein the prosody predic 
tion features comprise phonetic identity and syllable count. 

17. A method for prosody prediction, comprising: 
extracting features from runtime data using a parametric 

model; 
comparing the features from runtime data with features 

from training data using an exemplar-based model to 
predict prosody of the runtime data, the features from 
the training data being paired with exemplars from the 
training data and stored on a computer readable storage 
medium; and 

Synthesizing speech, by a speech synthesizer, using the 
predicted prosody, 

wherein the parametric model includes a plurality of 
layers, and the features include deep layer features that, 
in turn, include features after data has been transformed 
up to a layer of the parametric model before an output 
layer, and 

wherein a hybrid model including the parametric model 
and the exemplar-based model is built for all genres of 
interest by pooling data from hybrid models built for 
each of two or more genres of interest. 


