
(12) United States Patent
McMillen et al.

US00948361 OB2

US 9.483,610 B2
*Nov. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

(56)

8,209,130 B1
8,594,951 B2

2005, 0131649 A1
2007/0O8851.0 A1
2008, OO86274 A1
2008, O250016 A1
2011 0004413 A1
2011 O184235 A1
2012fOOO1615 A1
2012.0089339 A1
2012/0109849 A1
2012/0149981 A1
2013/009 1121 A1
2013/0110407 A1
2013/O124100 A1

BIOINFORMATICS SYSTEMS,
APPARATUSES, AND METHODS EXECUTED
ON AN INTEGRATED CIRCUIT
PROCESSING PLATFORM

Applicant: EDICO GENOME CORP., La Jolla,
CA (US)

Inventors: Robert McMillen, San Diego, CA
(US); Michael Ruehle, San Diego, CA
(US)

Assignee: Edico Genome, Corp.

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 420 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 14/158,758

Filed: Jan. 17, 2014

Prior Publication Data

US 2014/0309944 A1 Oct. 16, 2014

Related U.S. Application Data
Provisional application No. 61/753,775, filed on Jan.
17, 2013, provisional application No. 61/822,101,
filed on May 10, 2013, provisional application No.
61/823,824, filed on May 15, 2013, provisional
application No. 61/826,381, filed on May 22, 2013,
provisional application No. 61/910,868, filed on Dec.
2, 2013.

Int. C.
GOIN 33/48 (2006.01)
G06F 9/22 (2011.01)
U.S. C.
CPC G06F 19/22 (2013.01)
Field of Classification Search
CPC ... GO6F 19722
USPC .. 702/20
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6/2012 Kennedy et al.
11/2013 Homer
6/2005 Larsen et al.
4/2007 Li et al.
4/2008 Chamberlain et al.
10/2008 Farrar
1/2011 Carnevali et al.
7, 2011 SchoStek et al.
1/2012 Levine
4/2012 Ganeshalingam et al.
5/2012 Chamberlain et al.
6, 2012 Khait et al.
4/2013 Galinsky
5/2013 Baccash et al.
5/2013 Drmanac et al.

2013/0204851 A1
2013,0245958 A1
2013/0311106 A1

8, 2013 Bhola et al.
9/2013 Forster et al.
11/2013 White et al.

2013/0316331 A1 11/2013 Isakov et al.
2013/0324417 A1 12/2013 Kennedy et al.
2013/0332081 A1 12/2013 Reese et al.
2013/0338934 A1 12/2013 Asadi et al.
2014.0024537 A1
2014.?00457.05 A1
2014/0051588 A9
2014/O114582 A1
2014/O121116 A1
2014/0200166 A1
2014/0236490 A1
2014/0309944 A1
2014/031671.6 A1
2014/0371109 A1
2014.?037.1110 A1
2015. O142334 A1
2015, 01544.06 A1
2015,0286495 A1
2015,0310163 A1

1/2014 Rigatti et al.
2/2014 Bustamante et al.
2/2014 Drmanac et al.
4/2014 Mittelman et al.
5, 2014 Richards et al.
7/2014 McMillen et al.
8, 2014 McMillen et al.
10/2014 Van Rooyen et al.
10/2014 Jiang et al.
12/2014 McMillen et al.
12/2014 Van Rooyen et al.
5, 2015 Mishra
6/2015 Naehrig et al.
10/2015 Lee
10/2015 Kingsmore et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 2313523 A2 4, 2011
WO 2012122546 A2 9, 2012
WO WO-2013 1283.71 A2 9, 2013

(Continued)

OTHER PUBLICATIONS

International Search Report dated Jun. 18, 2014 for PCT application
No. PCT/US2014/O12144.
S. Angiuoli and S. Salzberg. Mugsy: fast multiple alignment of
closely related whole genomes. Bioinformatics (2011) 27 (3):
334-342. First published online: Dec. 9, 2010. http://bioinformatics.
Oxfordjournals.org/content/27/3/334, full. Retrieved May 25, 2016.
G. Auwera et al. From FastO data to high confidence variant calls:
the Genome Analysis Toolkit best practices pipeline. HHS Public
Access. Published online Oct. 15, 2013. http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4243306/. Retrieved May 25, 2016.

(Continued)

Primary Examiner — Jerry Lin
(74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris
Glovsky and Popeo, P.C.

(57)
A system, method and apparatus for executing a sequence
analysis pipeline on genetic sequence data includes an
integrated circuit formed of a set of hardwired digital logic
circuits that are interconnected by physical electrical inter
connects. One of the physical electrical interconnects forms
an input to the integrated circuit connected with an elec
tronic data Source for receiving reads of genomic data. The
hardwired digital logic circuits are arranged as a set of
processing engines, each processing engine being formed of
a Subset of the hardwired digital logic circuits to perform one
or more steps in the sequence analysis pipeline on the reads
of genomic data. Each Subset of the hardwired digital logic
circuits is formed in a wired configuration to perform the one
or more steps in the sequence analysis pipeline.

ABSTRACT

35 Claims, 8 Drawing Sheets

US 9.483.610 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2016,004.6986 A1
2016/0092631 A1

2/2016 Eltoukhy et al.
3, 2016 Yandell et al.

FOREIGN PATENT DOCUMENTS

WO WO 2014/113736 1, 2014
WO WO-2014060305 A1 4/2014
WO WO 2014, 186604 5, 2014
WO WO-2014O7424.6 A1 5, 2014
WO 2014121.091 A1 8, 2014
WO 2015051006 A2 4/2015
WO 2015089.333 A1 6, 2015
WO 2015100.427 A1 7/2015
WO 20151236OO A1 8, 2015

OTHER PUBLICATIONS

T. Derrien et al. Fast Computation and Applications of Genome
Mappability. PLOS One. Published: Jan. 19, 2012. http://journals.
plos.org/plosone/article?id=10.1371journal.pone.003.0377.
Retrieved May 25, 2016.
E. Fernandez, W. Najjar, E. Harris, and S. Lonardi. Exploration of
Short Reads Genome Mapping in Hardwares. Field Programmable
Logic and Applications (FPL), 20th Int. Conf. Milano, Italy, Aug.
2010.
T. Hardcastle and K. Kelly, baySeq: Empirical Bayesian methods
for identifying differential expression in sequence count data. Pub
lished Aug. 10, 2010. BMC Bioinformatics. http://bmcbioinformat
ics.biomedcentral.com/articles/10.1186/1471-2105-11-422.
Retrieved May 25, 2016.
N. Homer, B. Merriman, and S. Nelson. BFAST: An Alignment Tool
for Large Scale Genome Resequencing. PLOS One. Published: Mar.
14, 2011. http://journals.plos.org/plosone/article?id=10.1371/jour
nal.pone.0007767. Retrieved May 25, 2016.

B. Langmead et al. Searching for SNPs with cloud computing.
Genome Biology 2009, vol. 10: Iss, II: R134. Published: Nov. 20,
2009.
Clive Maxfield. Impulse achieves 16X speed-up of genome analysis
on S2,500 FPGA module. EE Times. http://www.eetimes.com/
document.asp?doc id=1317288&print=yes. Retrieved Mar. 29.
2016.
A. McKenna et al. The Genome Analysis Toolkit: A MapReduce
framework for analyzing next-generation DNA sequencing data.
Genomet Research. Published in advance Jul. 19, 2010. http://
genome.cshlp.org/content/20/9/1297 full.html. Retrieved May 25,
2016.
M. Ruffalo, T. LaFramboise, and M. Koyutlirk. Comparative analy
sis of algorithms for next-generation sequencing read alignment.
Bioinformatics (2011) 27 (20): 2790-2796. First published online:
Aug. 19, 2011. https://bioinformatics.oxfordjournals.org/content/
27/20/2790, full. Retrieved May 25, 2016.
Michael Schatz. CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics (2009) 25 (11): 1363-1369. First pub
lished online: Apr. 8, 2009. http://bioinformatics.oxfordjournals.
org/content/25/11/1363.full. Retrieved May 25, 2016.
M. Schatz, B. Langmead, and S. Salzberg. Cloud Computing and
the DNA Data Race. HHS Public Access. Published Nat Biotechnol.
Jul. 2010; 28(7): 691-693. http://www.ncbi.nlm.nih.gov/pmc/ar
ticles/PMC2904649/. Retrieved May 25, 2016.
M. Schatz, C. Trapnell, A. Delcher, and A. Varshney. High-through
put sequence alignment using Graphics Processing Units. Published
Dec. 10, 2007. BMC Bioinformatics. http://bmcbioinformatics.
biomedcentral.com/articles/10.1186,1471-2105-8-474. Retrieved
May 25, 2016.
W. Zhang et al. A Practical Comparison of De Novo Genome
Assembly Software Tools for Next-Generation Sequencing Tech
nologies. PLOS One. Published: Mar. 14, 2011. http://journals.plos.
org/plosone/article?id=10.1371/journal.pone.0017915. Retrieved
May 25, 2016.
U.S. Appl. No. 14/179.513, filed Feb. 12, 2014.
U.S. Appl. No. 14/180.248, filed Feb. 13, 2014.
U.S. Appl. No. 14/279,063, filed May 15, 2014.
U.S. Appl. No. 14/284,307, filed May 21, 2014.

US 9.483,610 B2 Sheet 1 of 8

Z || ||

JeqSSOJO

Nov. 1, 2016 U.S. Patent

US 9.483,610 B2 U.S. Patent

US 9.483,610 B2 U.S. Patent

US 9.483,610 B2

8], 7

U.S. Patent

Senulu-7 Senulu 8

US 9.483,610 B2 Sheet S of 8 Nov. 1, 2016 U.S. Patent

U.S. Patent Nov. 1, 2016 Sheet 6 of 8 US 9.483,610 B2

U.S. Patent Nov. 1, 2016 Sheet 7 of 8 US 9.483,610 B2

CD
S

||||||||
III

E E N.

E E
E E s L

UUUUUUUUUUUUU
III

E s
E s 3

||||||

p1000}} 70G----

US 9.483,610 B2

ZOG_^

U.S. Patent

809

US 9,483,610 B2
1.

BIOINFORMATICS SYSTEMS,
APPARATUSES, AND METHODS EXECUTED

ON AN INTEGRATED CIRCUIT
PROCESSING PLATFORM

CROSS REFERENCE TO RELATED
APPLICATION

This application is related to and claims the benefit of
priority under 35 U.S.C. 119(e) of U.S. Provisional Appli
cation Ser. No. 61/753,775, titled, “System and Method for
Bioinformatics Processor, filed Jan. 17, 2013: U.S. Provi
sional Application Ser. No. 61/822,101, titled, “Bioinfor
matics Processor Pipeline Based on Population Inference.”
filed May 10, 2013: U.S. Provisional Application Ser. No.
61/823,824, titled, “Bioinformatics Processing System.”
filed May 15, 2013: U.S. Provisional Application Ser. No.
61/826.381 titled, “System and Method for Computation
Genomics Pipeline.” filed May 22, 2013; and U.S. Provi
sional Application Ser. No. 61/910,868, titled, “BioInfor
matics Systems and Methods Executed On a Hardware
Processing Platform.” filed Dec. 2, 2013. The disclosures of
the above-identified patent applications are hereby incorpo
rated by reference in their entirety.

TECHNICAL FIELD

The subject matter described herein relates to bioinfomat
ics, and more particularly to systems, apparatuses, and
methods for implementing bioinformatic protocols, such as
performing one or more functions for analyzing genomic
data on an integrated circuit, such as on a hardware pro
cessing platform.

BACKGROUND

A goal for health care researchers and practitioners is to
improve the safety, quality, and effectiveness of health care
for every patient. Personalized health care is directed to
achieving these goals on an individual level. For instance,
“genomics' and/or “bioinformatics’ are fields of study that
aim to facilitate the safety, the quality, and the effectiveness
of prophylactic and therapeutic treatments on a personal
ized, individual level. Accordingly, by employing genomics
and/or bioinformatics techniques, the identity of an indi
vidual’s genetic makeup, e.g., his or hers genes, may be
determined and that knowledge may be used in the devel
opment of therapeutic and/or prophylactic regimens, includ
ing drug treatments, that are personalized to the individual,
thus, enabling medicine to be tailored to meet each person’s
individual needs.
The desire to provide personalized care to individuals is

transforming the health care system. This transformation of
the health care system is likely to be powered by break
through innovations at the intersection of medical Science
and information technology Such as is represented by the
fields of genomics and bioinformatics. Accordingly, genom
ics and bioinformatics are key foundations upon which this
future will be built. Science has evolved dramatically since
the first human genome was fully sequenced in 2000 at a
total cost of over $1 Billion. Today, we are on the verge of
high resolution sequencing at a cost of less than S1K per
genome, making it economically feasible for the first time to
move out of the research lab and into widespread adoption
for medical care. Genomic data, therefore, may become a
Vital input to diagnostic screening, therapeutic and/or pro
phylactic drug discovery, and/or disease treatment.

10

15

25

30

35

40

45

50

55

60

65

2
More particularly, genomics and bioinformatics are fields

concerned with the application of information technology
and computer Science to the field of molecular biology. In
particular, bioinformatics techniques can be applied to pro
cess and analyze various genomic data, Such as from an
individual so as to determine qualitative and quantitative
information about that data that can then be used by various
practitioners in the development of prophylactic and thera
peutic methods for preventing or at least ameliorating dis
eased States, and thus, improving the safety, quality, and
effectiveness of health care on an individualized level.

Because of its focus on advancing personalized health
care, bioinformatics, therefore, promotes individualized
healthcare that is proactive, instead of reactive, and this
gives the patient the opportunity to become more involved
in their own wellness. Typically, this can be achieved
through two guiding principles. First, federal leadership can
be provided to support research that addresses these indi
vidual aspects of disease and disease prevention, Such as
with the ultimate goal of shaping diagnostic and preventa
tive care to match each person's unique genetic character
istics. Additionally, a “network of networks’ may be created
to aggregate health care data to help researchers establish
patterns and identify genetic "definitions to existing dis
CaSCS.

An advantage of employing bioinformatics technologies
in Such instances is that the qualitative and/or quantitative
analyses of molecular biological data can be performed on
a broader range of sample sets at a much higher rate of speed
and often times more accurately, thus expediting the emer
gence of a personalized healthcare system.

Accordingly, in various instances, the molecular data to
be processed in a bioinformatics based platform typically
concerns genomic data, Such as Deoxyribonucleic acid
(DNA) data. For example, a well-known method for gener
ating DNA data involves DNA sequencing. DNA sequenc
ing can be performed manually, such as in a lab, or may be
performed by an automated sequencer, such as at a core
sequencing facility, for the purpose of determining the
genetic makeup of a sample of an individual's DNA. The
person’s genetic information may then be used in compari
son to a referent so as to determine its variance therefrom.
Such variant information may then be subjected to further
processing and used to determine or predict the occurrence
of a diseased state in the individual.

For instance, manual or automated DNA sequencing may
be employed to determine the sequence of nucleotide bases
in a sample of DNA, such as a sample obtained from a
Subject. Using various different bioinformatics techniques
these sequences may then be strung together to generate the
genomic sequence of the Subject. This sequence may then be
compared to a reference genomic sequence to determine
how the genomic sequence of the Subject varies from that of
the reference. Such a process involves determining the
variants in the sampled sequence and presents a central
challenge to bioinformatics methodologies.

For example, a central challenge in DNA sequencing is
building full-length genomic sequences, e.g., chromosomal
sequences, from a sample of genetic material that can be
compared to a reference genomic sequence Such as to
determine the variants in the sampled full-length genomic
sequences. In particular, the methods employed in sequenc
ing protocols do not produce full-length chromosomal
sequences of the sample DNA.

Rather, sequence fragments, typically from 100-1,000
nucleotides in length, are produced without any indication as
to where in the genome they align. Therefore, in order to

US 9,483,610 B2
3

generate full length chromosomal genomic constructs, these
fragments of DNA sequences need to be mapped, aligned,
merged, and/or compared to a reference genomic sequence.
Through Such processes the variants of the sample genomic
sequences from the reference genomic sequences may be
determined.

However, as the human genome is comprised of approxi
mately 3.1 billion base pairs, and as each sequence fragment
is typically only from 100 to 500 nucleotides in length, the
time and effort that goes into building such full length
genomic sequences and determining the variants therein is
quite extensive often requiring the use of several different
computer resources applying several different algorithms
over prolonged periods of time.

In a particular instance, thousands to millions of frag
ments of DNA sequences are generated, aligned, and merged
in order to construct a genomic sequence that approximates
a chromosome in length. A step in this process may include
comparing the DNA fragments to a reference sequence to
determine where in the genome the fragments align.
A number of Such steps are involved in building chromo

Some length sequences and in determining the variants of the
sampled sequence. Accordingly, a wide variety of methods
have been developed for performing these steps. For
instance, there exist commonly used software implementa
tions for performing one or a series of Such steps in a
bioinformatics system. However, a common characteristic
of such software based bioinformatics methods and systems
is that they are labor intensive, take a long time to execute
on general purpose processors, and are prone to errors.

Abioinformatics system, therefore, that could perform the
algorithms implemented by such software in a less labor
and/or processing intensive manner with a greater percent
age accuracy would be useful. However, even as we
approach the “S1000 Genome', the cost of analyzing, stor
ing and sharing this raw digital data has far outpaced the cost
of producing it. This data analysis bottleneck is a key
obstacle standing between these ever-growing raw data and
the real medical insight we seek from it.

Accordingly, presented herein are systems, apparatuses,
and methods for implementing a genomics and/or bioinfor
matic protocols, such as for performing one or more func
tions for analyzing genomic data, for instance, on an inte
grated circuit. Such as on a hardware processing platform.
For example, as set forth herein below, in various imple
mentations, a hardware accelerator, Such as an integrated
circuit, may be employed in performing Such bioinformatics
related tasks where the integrated circuit may be formed of
one or more hardwired digital logic circuits, which may be
interconnected by a plurality of physical electrical intercon
nects, that can be arranged as a set of processing engines,
wherein each processing engine is capable of being config
ured to perform one or more steps in a bioinformatics
genetic analysis protocol. An advantage of this arrangement
is that the bioinformatics related tasks may be performed in
a manner that is faster than the Software typically engaged
for performing Such tasks. Such hardware accelerator tech
nology, however, is currently not typically employed in the
genomics and/or bioinformatics space.

SUMMARY

This present disclosure is related to performing a task
Such as in a bioinformatics protocol. In various instances, a
plurality of tasks are performed, and in Some instances these
tasks are performed in a manner So as to form a pipeline,
wherein each task and/or its Substantial completion acts as a

10

15

25

30

35

40

45

50

55

60

65

4
building block for each Subsequent task until a desired end
result is achieved. Accordingly, in various embodiments, the
present disclosure is directed to performing one or more
methods on one or more apparatuses wherein the apparatus
has been optimized for performing those methods. In certain
embodiments, the one or more methods and/or one or more
apparatuses are formulated into one or more systems.

For instance, in certain aspects, the present disclosure is
directed to systems, apparatuses, and methods for imple
menting genomics and/or bioinformatic protocols such as, in
various instances, for performing one or more functions for
analyzing genetic data on an integrated circuit, such as
implemented in a hardware processing platform. For
example, in one aspect, a bioinformatics system is provided.
The system may involve the performance of various bio
analytical functions that have been optimized so as to be
performed faster and/or with increased accuracy. The meth
ods for performing these functions may be implemented in
Software or hardware solutions. Accordingly, in certain
instances, methods are presented where the method involves
the performance of an algorithm where the algorithm has
been optimized in accordance with the manner in which it is
to be implemented. In particular, where the algorithm is to
be implemented in a software solution, the algorithm and/or
its attendant processes, has been optimized so as to be
performed faster and/or with better accuracy for execution
by that media. Likewise, where the functions of algorithm
are to be implemented in a hardware solution, the hardware
has been designed to perform these functions and/or their
attendant processes in an optimized manner so as to be
performed faster and/or with better accuracy for execution
by that media.

Accordingly, in one aspect, presented herein are systems,
apparatuses, and methods for implementing bioinformatic
protocols, such as for performing one or more functions for
analyzing genetic data, for instance, via one or more opti
mized algorithms and/or on one or more optimized inte
grated circuits, such as on one or more hardware processing
platforms. Hence, in one instance, methods are provided for
implementing one or more algorithms for the performance
of one or more steps for analyzing genomic data in a
bioinformatics protocol. In another instance, methods are
provided for implementing the functions of one or more
algorithms for the performance of one or more steps for
analyzing genomic data in a bioinformatics protocol,
wherein the functions are implemented on an integrated
circuit formed of one or more hardwired digital logic
circuits. In Such an instance, the hardwired digital logic
circuits may be interconnected. Such as by one or a plurality
of physical electrical interconnects, and may be arranged to
function as one or more processing engines. In various
instances, a plurality of hardwired digital logic circuits are
provided, which hardwired digital logic circuits are config
ured as a set of processing engines, wherein each processing
engine is capable of performing one or more steps in a
bioinformatics genetic analysis protocol.
More particularly, in one instance, a system for executing

a sequence analysis pipeline such as on genetic sequence
data is provided. The system may include one or more of an
electronic data source, a memory, and an integrated circuit.
For instance, in one embodiment, an electronic data source
is included, where in the electronic data source may be
configured for providing one or more digital signals. Such as
a digital signal representing one or more reads of genetic
data, for example, where each read of genomic data includes
a sequence of nucleotides. Further, the memory may be
configured for storing one or more genetic reference

US 9,483,610 B2
5

sequences, and may further be configured for storing an
index, Such as an index of the one or more genetic reference
Sequences.

Further still, the integrated circuit may be formed of a set
of hardwired digital logic circuits such as where the hard
wired digital logic circuits are interconnected, e.g., by a
plurality of physical electrical interconnects. In various
instances, one or more of the plurality of physical electrical
interconnects may include an input, such as to the integrated
circuit, and may further be connected with the electronic
data source, so as to be able to receive the one or more reads
of genomic data. In various embodiments, the hardwired
digital logic circuits may be arranged as a set of processing
engines, such as where each processing engine is formed of
a Subset of the hardwired digital logic circuits, and is
configured so as to perform one or more steps in the
sequence analysis pipeline, such as on the plurality of reads
of genomic data. In Such instances, each Subset of the
hardwired digital logic circuits may be in a wired configu
ration so as to perform the one or more steps in the sequence
analysis pipeline.

Accordingly, in various instances, a plurality of hardwired
digital logic circuits are provided wherein the hardwired
digital logic circuits are arranged as a set of processing
engines, wherein one or more of the processing engines may
include one or more of a mapping module and/or an align
ment module and/or a sorting module. For instance, in
various embodiments, the one or more of the processing
engines may include a mapping module, which mapping
module may be in a wired configuration and further be
configured for accessing the index of the one or more genetic
reference sequences from the memory, such as by one or
more of the plurality of physical electronic interconnects, for
example, so as to map the plurality of reads to one or more
segments of the one or more genetic reference sequences.

Additionally, in various embodiments, the one or more of
the processing engines may include an alignment module,
which alignment module may be in the wired configuration
and may be configured for accessing the one or more genetic
reference sequences from the memory, such as by one or
more of the plurality of physical electronic interconnects, for
example, so as to align the plurality of reads to the one or
more segments of the one or more genetic reference
sequences. Further, in various embodiments, the one or more
of the processing engines may include a sorting module,
which sorting module may be in the wired configuration and
may be configured for accessing the one or more aligned
reads from the memory, such as by one or more of the
plurality of physical electronic interconnects, for example,
So as to sort each aligned read, such as according to its one
or more positions in the one or more genetic reference
sequences. In Such instances, the one or more of the plurality
of physical electrical interconnects may include an output
from the integrated circuit, such as for communicating result
data from the mapping module and/or the alignment module
and/or the sorting module.

In various instances, the integrated circuit may include a
master controller so as to establish the wired configuration
for each subset of the hardwired digital logic circuits, for
instance, for performing the one or more of mapping,
aligning, and/or sorting, which functions may be configured
as one or steps in a sequence analysis pipeline. Further, in
various embodiments, the integrated circuit may be config
ured as a field programmable gate array (FPGA) having
hardwired digital logic circuits, such as where the wired
configuration may be established upon manufacture of the
integrated circuit, and thus may be non-volatile. In other

10

15

25

30

35

40

45

50

55

60

65

6
various embodiments, the integrated circuit may be config
ured as an application specific integrated circuit (ASIC)
having hardwired digital logic circuits.

In certain instances, the integrated circuit and/or the
memory may be housed on an expansion card, such as a
peripheral component interconnect (PCI) card, for instance,
in various embodiments, the integrated circuit may be a chip
having a PCIe card. In various instances, the integrated
circuit and/or chip may be a component within a sequencer,
Such as an automated sequencer, and/or in other embodi
ments, the integrated circuit and/or expansion card may be
accessible via the internet, e.g., cloud. Further, in some
instances, the memory may be a volatile random access
memory (RAM).

Accordingly, in one aspect, an apparatus for executing
one or more steps of a sequence analysis pipeline. Such as on
genetic data, is provided wherein the genetic data includes
one or more of a genetic reference sequence(s), an index of
the one or more genetic reference sequence(s), and/or a
plurality of reads, such as of genetic data. In various
instances, the apparatus may include an integrated circuit,
which integrated circuit may include one or more, e.g., a set,
of hardwired digital logic circuits, wherein the set of hard
wired digital logic circuits may be interconnected, Such as
by one or a plurality of physical electrical interconnects. In
certain instances, the one or more of the plurality of physical
electrical interconnects may include an input, such as for
receiving the plurality of reads of genomic data. Addition
ally, the set of hardwired digital logic circuits may further be
in a wired configuration, so as to access the index of the one
or more genetic reference sequences, via one of the plurality
of physical electrical interconnects, and to map the plurality
of reads to one or more segments of the one or more genetic
reference sequences, such as according to the index.

In various embodiments, the index may include one or
more hash tables, such as a primary and/or secondary hash
table. For instance, a primary hash table may be included,
wherein in Such an instance, the set of hardwired digital
logic circuits may be configured to do one or more of
extracting one or more seeds of genetic data from the
plurality of reads of genetic data; executing a primary hash
function, such as on the one or more seeds of genetic data
So as to generate a lookup address for each of the one or
more seeds; and accessing the primary hash table using the
lookup address So as to provide a location in the one or more
genetic reference sequences for each of the one or more
seeds of genetic data. In various instances, the one or more
seeds of genetic data may have a fixed number of nucleo
tides.

Further, in various embodiments, the index may include a
secondary hash table, such as where the set of hardwired
digital logic circuits is configured for at least one of extend
ing at least one of the one or more seeds with additional
neighboring nucleotides, so as to produce at least one
extended seed of genetic data; executing a hash function,
e.g., a secondary hash function, on the at least one extended
seed of genetic data, so as to generate a second lookup
address for the at least one extended seed; and accessing the
secondary hash table, e.g., using the second lookup address,
So as to provide a location in the one or more genetic
reference sequences for each of the at least one extended
seed of genetic data. In various instances, the secondary
hash function may be executed by the set of hardwired
digital logic circuits, such as when the primary hash table
returns an extend record instructing the set of hardwired
digital logic circuits to extend the at least one of the one or
more seeds with the additional neighboring nucleotides. In

US 9,483,610 B2
7

certain instances, the extend record may specify the number
of additional neighboring nucleotides by which the at least
one or more seeds is extended, and/or the manner in which
the seed is to be extended, e.g., equally by an even number
of 'x' nucleotides to each end of the seed.

Additionally, in one aspect, an apparatus for executing
one or more steps of a sequence analysis pipeline on genetic
sequence data is provided, wherein the genetic sequence
data includes one or more of one or a plurality of genetic
reference sequences, an index of the one or more genetic
reference sequences, and a plurality of reads of genomic
data. In various instances, the apparatus may include an
integrated circuit, which integrated circuit may include one
or more, e.g., a set, of hardwired digital logic circuits,
wherein the set of hardwired digital logic circuits may be
interconnected, such as by one or a plurality of physical
electrical interconnects. In certain instances, the one or more
of the plurality of physical electrical interconnects may
include an input, such as for receiving the plurality of reads
of genomic data. Additionally, the set of hardwired digital
logic circuits may further be in a wired configuration, so as
to access the one or more genetic reference sequences, via
one of the plurality of physical electrical interconnects, to
receive location information specifying one or more seg
ments of the one or more reference sequences, and to align
the plurality of reads to the one or more segments of the one
or more genetic reference sequences.

In various instances, the wired configuration of the set of
hardwired digital logic circuits, are configured to align the
plurality of reads to the one or more segments of the one or
more genetic reference sequences, and further include a
wave front processor that me be formed of the wired
configuration of the set of hardwired digital logic circuits. In
certain embodiments, the wave front processor may be
configured to process an array of cells of an alignment
matrix, such as a matrix defined by a subset of the set of
hardwired digital logic circuits. For instance, in certain
instances, the alignment matrix may define a first axis, e.g.,
representing one of the plurality of reads, and a second axis,
e.g., representing one of the segments of the one or more
genetic reference sequences. In Such an instance, the wave
front processor may be configured to generate a wave front
pattern of cells that extend across the array of cells from the
first axis to the second axis; and may further be configured
to generate a score, such as for each cell in the wave front
pattern of cells, which score may represent the degree of
matching of the one of the plurality of reads and the one of
the segments of the one or more genetic reference
Sequences.

In Such an instance, the wave front processor may further
be configured so as to steer the wave front pattern of cells
over the alignment matrix Such that the highest score may be
centered on the wave front pattern of cells. Additionally, in
various embodiments, the wave front processor may further
be configured to backtrace one or more, e.g., all, the posi
tions in the scored wave front pattern of cells through
previous positions in the alignment matrix; track one or
more, e.g., all, of the backtraced paths until a convergence
is generated; and generate a CIGAR string based on the
backtrace from the convergence.

In certain embodiments, the wired configuration of the set
of hardwired digital logic circuits to align the plurality of
reads to the one or more segments of the one or more genetic
reference sequences may include a wired configuration to
implement a Smith-Waterman and/or Burrows-Wheeler
scoring algorithm. In such an instance, the Smith-Waterman
and/or Burrows-Wheeler scoring algorithm may be config

10

15

25

30

35

40

45

50

55

60

65

8
ured to implement a scoring parameter that is sensitive to
base quality scores. Further, in certain embodiments, the
Smith-Waterman scoring algorithm may be an affine Smith
Waterman scoring algorithm.

Accordingly, in one aspect, a method for executing a
sequence analysis pipeline Such as on genetic sequence data
is provided. The genetic data may include one or more
genetic reference sequences, one or more indexes of the one
or more genetic reference sequences, and/or a plurality of
reads of genomic data. The method may include one or more
of receiving, accessing, mapping, aligning, and/or sorting
various iterations of the genetic sequence data. For instance,
in certain embodiments, the method may include receiving,
on an input to an integrated circuit from an electronic data
Source, one or more of a plurality of reads of genomic data,
wherein each read of genomic data may include a sequence
of nucleotides. In Such an instance, the integrated circuit
may be formed of a set of hardwired digital logic circuits
Such as are interconnected by a plurality of physical elec
trical interconnects, which physical electrical interconnects
may include one or more of the plurality of physical elec
trical interconnects comprising the input.
The method may further include accessing, by the inte

grated circuit on one or more of the plurality of physical
electrical interconnects from a memory, the index of the one
or more genetic reference sequences. In Such an instance the
method may include mapping, by a first Subset of the
hardwired digital logic circuits of the integrated circuit, the
plurality of reads to one or more segments of the one or more
genetic reference sequences. Additionally, the method may
include accessing, by the integrated circuit on one or more
of the plurality of physical electrical interconnects from the
memory, the one or more genetic reference sequences; and
aligning, by a second Subset of the hardwired digital logic
circuits of the integrated circuit, the plurality of reads to the
one or more segments of the one or more genetic reference
Sequences.

In various embodiments, the method may additionally
include accessing, by the integrated circuit on one or more
of the plurality of physical electrical interconnects from a
memory, the aligned plurality of reads. In Such an instance
the method may include sorting, by a third subset of the
hardwired digital logic circuits of the integrated circuit, the
aligned plurality of reads according to their positions in the
one or more genetic reference sequences. In certain
instances, the method may further include outputting, Such
as on one or more of the plurality of physical electrical
interconnects of the integrated circuit, result data from the
mapping and/or the aligning and/or the Sorting, Such as
where the result data includes positions of the mapped
and/or aligned and/or sorted plurality of reads.

Hence, in various instances, implementations of various
aspects of the disclosure may include, but are not limited to:
apparatuses, systems, and methods including one or more
features as described in detail herein, as well as articles that
comprise a tangibly embodied machine-readable medium
operable to cause one or more machines (e.g., computers,
etc.) to result in operations described herein. Similarly,
computer systems are also described that may include one or
more processors and one or more memories coupled to the
one or more processors. Accordingly, computer imple
mented methods consistent with one or more implementa
tions of the current subject matter can be implemented by
one or more data processors residing in a single computing
system or multiple computing systems. Such multiple com
puting systems can be connected and can exchange data
and/or commands or other instructions or the like via one or

US 9,483,610 B2

more connections, including but not limited to a connection
over a network (e.g. the Internet, a wireless wide area
network, a local area network, a wide area network, a wired
network, or the like), via a direct connection between one or
more of the multiple computing systems, etc. A memory,
which can include a computer-readable storage medium,
may include, encode, store, or the like one or more programs
that cause one or more processors to perform one or more of
the operations described herein.

The details of one or more variations of the subject matter
described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims. While cer
tain features of the currently disclosed subject matter are
described for illustrative purposes in relation to an enterprise
resource Software system or other business Software solution
or architecture, it should be readily understood that such
features are not intended to be limiting. The claims that
follow this disclosure are intended to define the scope of the
protected Subject matter.

DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, show certain
aspects of the Subject matter disclosed herein and, together
with the description, help explain some of the principles
associated with the disclosed implementations. In the draw
ings,

FIG. 1 is a block diagram of a hardware processor
architecture in accordance with an implementation.

FIG. 2 is a block diagram of a hardware processor
architecture in accordance with another implementation.

FIG. 3 is a block diagram of a hardware processor
architecture in accordance with yet another implementation

FIG. 4 shows a genetic sequence analysis pipeline.
FIG. 5 illustrates processing steps using a genetic

sequence analysis hardware platform.
FIG. 6 illustrates an apparatus in accordance with an

implementation.
FIG. 7 illustrates an apparatus in accordance with an

alternative implementation.
FIG. 8 illustrates a genomics processing system in accor

dance with an implementation.
When practical, similar reference numbers denote similar

structures, features, or elements.

DETAILED DESCRIPTION

To address these and potentially other issues with cur
rently available solutions, methods, systems, articles of
manufacture, and the like consistent with one or more
implementations of the current Subject matter can, among
other possible advantages, provide a sequence analysis
apparatus for executing a sequence analysis pipeline on
genetic sequence data.
The following provides details of various implementa

tions of a sequence analysis pipeline and platform.
In its most basic form, the body is comprised of cells, the

cells form tissues, tissues form organs, organs form systems,
and these systems function together to ensure the body
operates to sustain the life of the individual. The cells of the
body, therefore, are the building blocks of life. More par
ticularly, each cell has a nucleus, and within the nucleus of
every cell reside chromosomes. Chromosomes are formed
from Deoxyribonucleic Acid, which has an organized but

5

10

15

25

30

35

40

45

50

55

60

65

10
winding double helix structure. The DNA itself is comprised
of two opposed, but complementary strands of nucleotides,
which nucleotides comprise the genes that code for the
proteins that give the cells their structures and mediate the
functions and regulations of the body's tissues and organs.
Basically, proteins do most of the work of cells in main
taining the body's normal processes and functions.

Given the multiplicity of components of the body and the
complexity involved in how they interact with one another
to maintain the body's various processes and functions,
there are a multiplicity of ways that the body may malfunc
tion on any one of these different levels. For instance, in one
Such instance, there may be a malfunction in the way a
particular gene codes for a given protein, which dependent
on the protein and the nature of its malfunctioning can result
in the onset of a diseased State.

Accordingly, in diagnosing, preventing, and/or curing
Such diseased States, determining the genetic makeup of a
Subject may be extremely useful. For instance, once known,
a person's genetic makeup, e.g., his or her genomic com
position, can be used for purposes of diagnostics and/or for
determining whether a person has or has the potential for a
diseased State. Likewise, the knowledge of a person’s
genome may be useful in determining various potential
therapeutic modalities, such as drugs, that can or cannot be
used in a prophylactic or therapeutic regimen without caus
ing harm to the user. In various instances, knowledge of a
person’s genome may also be employed to determine drug
efficacy and/or problematic side effects of such drug use may
be predicted and/or identified. Potentially, the knowledge of
a person’s genome can be used to produce designer drugs,
such as drugs tailor made and optimized in accordance with
a person’s specific genetic makeup. In particular, in one
instance, an engineered protein or nucleotide sequence can
be fabricated to an individuals unique genetic characteris
tics So as to turn off or turn on the transcription of genes that
either over or under produce proteins and thereby ameliorate
diseased States.

Hence, in some instances, it is a goal of bioinformatics
processing to determine individual genomes of people,
which determinations may be used in gene discovery pro
tocols as well as for prophylaxis and/or therapeutic regimes
to better enhance the livelihood of each particular person
and human kind as a whole. Further, knowledge of an
individual’s genome may be used such as in drug discovery
and/or FDA trials to better predict with particularity which,
if any, drugs will be likely to work on an individual and/or
which would be likely to have deleterious side effects, such
as by analyzing the individual’s genome and/or a protein
profile derived therefrom and comparing the same with
predicted biological response from Such drug administra
tion.

Such bioinformatics processing usually involves three
well defined, but typically separate phases of information
processing. The first phase involves DNA sequencing, where
a subject’s DNA is obtained and subjected to various pro
cesses whereby the Subject's genetic code is converted to a
machine-readable digital code, e.g., a FASTQ file. The
second phase involves using the Subject’s generated digital
genetic code for the determination of the individuals
genetic makeup, e.g., determining the individual’s genomic
nucleotide sequence. And the third phase involves perform
ing one or more analyses on the Subject's genetic makeup so
as to determine therapeutically useful information there
from.

Preliminarily to Phase I, or primary processing, the
genetic material must be preprocessed, so as to derive usable

US 9,483,610 B2
11

genetic sequence data. This preprocessing may be done
manually or via an automated sequencer. Typically, prepro
cessing involves obtaining a biological sample from a Sub
ject, such as through Venipuncture, hair, etc. and treating the
sample to isolate the DNA therefrom. Once isolated the
DNA may be denatured, strand separated, and/or portions of
the DNA may then be multiplied, e.g., via polymerase chain
reaction (PCR), so as to build a library of replicated strands
that are now ready to be read, Such as by an automated
sequencer, which sequencer is configured to read the repli
cate Strands, e.g., by Synthesis, and thereby determine the
nucleotide sequences that makes up the DNA. Further, in
various instances, such as in building the library of repli
cated Strands, it may be useful to provide for over-coverage
when preprocessing a given portion of the DNA. To perform
this over-coverage, e.g., using PCR, may require increased
sample preparation resources and time, and therefore be
more expensive, but it often gives an enhanced probability
of the end result being more accurate.
Once the library of replicated strands has been generated

they may be injected into an automated sequencer that may
then read the strands, Such as by Synthesis, so as to deter
mine the nucleotide sequences thereof. For instance, the
replicated single stranded DNA may be attached to a glass
bead and inserted into a test vessel, e.g., an array. All the
necessary components for replicating its complementary
Strand, including labeled nucleotides, are also added to the
vessel but in a sequential fashion. For example, all labeled
“A”, “C”, “G”, and “T's are added, either one at a time or
all together to see which of the nucleotides is going to bind
at position one. After each addition a light, e.g., a laser, is
shone on the array. If the composition fluoresces then an
image is produced indicating which nucleotide bound to the
subject location. More particularly, where the nucleotides
are added one at a time, if a binding event occurs, then its
indicative fluorescence will be observed. If a binding event
does not occur, the test vessel may be washed and the
procedure repeated until the appropriate one of the four
nucleotides binds to its complement at the Subject location,
and its indicative fluorescence is observed. Where all four
nucleotides are added at the same time, each may be labeled
with a different fluorescent indicator, and the nucleotide that
binds to its complement at the Subject position may be
determined, such as by the color of its fluorescence. This
greatly accelerates the synthesis process.
Once a binding event has occurred, the complex is then

washed and the synthesis steps are repeated for position two.
For example, a marked nucleotide “A” may be added to the
mix to determine if the complement at position one is an
'A', and if so, all the sequences having that complement
will bind to the labeled “A” and will therefore fluoresce, and
the samples will all be washed. Where the binding happened
the bound nucleotide is not washed away, and then this will
be repeated for all nucleotides for all positions until all the
over-sampled nucleic acid segments, e.g., reads, have been
sequenced and the data collected. Alternatively, where all
four nucleotides are added at the same time, each labeled
with a different fluorescent indicator, only one nucleotide
will bind to its complement at the subject position, and the
others will be washed away, such that after the vessel has
been washed, a laser may be shone on the vessel and which
nucleotide bound to its complement may be determined,
such as by the color of its fluorescence.

This continues until the entire strand has been replicated
in the vessel. Usually a typical length of a sequence repli
cated in this manner is from about 100 to about 500 base
pairs, such as between 150 to about 400 base pairs, including

5

10

15

25

30

35

40

45

50

55

60

65

12
from about 200 to about 350 base pairs, such as about 250
base pairs to about 300 base pairs dependent on the sequenc
ing protocol being employed. Further, the length of these
segments may be predetermined, e.g., engineered, to accord
with any particular sequencing machinery and/or protocol
by which it is run. The end result is a readout, or read, that
is comprised of a replicated DNA segment, e.g., from about
100 to about 1,000 nucleotides in length, that has been
labeled in such a manner that every nucleotide in the
sequence, e.g., read, is known because of its label. Hence,
since the human genome is comprised of about 3.2 billion
base pairs, and various known sequencing protocols usually
result in labeled replicated sequences, e.g., reads, from about
100 or 101 bases to about 250 or about 300 or about 400
bases, the total amount of segments that need to be
sequenced, and consequently the total number of reads
generated, can be anywhere from about 10,000,000 to about
40,000,000, such as about 15,000,000 to about 30,000,000,
dependent on how long the label replicated sequences are.
Therefore, the sequencer may typically generate about
30,000,000 reads, such as where the read length is 100
nucleotides in length, so as to cover the genome once.

However, as indicated above, in Such procedures, it may
be useful to oversample the DNA such by about 5x, or about
10x, or about 20x, or about 25x, or about 30x, or about 40x,
or about 50x, or about 100x, or about 200x, or about 250x,
or about 500x, or about 1,000x, or about 5,000x, or even
about 10,000x or more, and as such the amount of primary
processing needed to be done and the time taken to do this
can be quite extensive. For instance, with 40x oversampling,
wherein the various synthesized reads are designed to over
lap to some extent, up to about 1.2 billion reads may need
to be synthesized. Typically, a large majority if not all of
these labeled sequences can be generated in parallel. The
end result is that the initial biological genetic material is
processed, e.g., by sequencing protocols such as those
Summarized herein, and a digital representation of that data
is generated, which digital representation of data may be
Subjected to a primary processing protocol. Particularly, the
genetic material of a Subject may be replicated and
sequenced in Such a manner that a measurable electrical,
radioactive and/or optical signal is generated, which signal
is then converted, e.g., by the sequencer, into a digital
representation of the Subject's genetic code. More particu
larly, primary processing may include the conversion of
images, such as recorded flashes of light or other electrical
signal data, into FASTQ file data. Accordingly, this infor
mation is stored as a FASTQ file, which may then be sent for
further, e.g., secondary processing. A typical FASTQ file
includes a large collection of reads representing digitally
encoded nucleotide sequences wherein each predicted base
in the sequence has been called and given a probability score
that the called base at the indicated position is incorrect.

In many instances, it may be useful to further process the
digitally encoded sequence data obtained from the sequencer
and/or sequencing protocol, Such as by Subjecting the digi
tally represented data to secondary processing. This second
ary processing, for instance, can be used to assemble an
entire genomic profile of an individual. Such as where the
individual’s entire genetic makeup is determined, for
instance, where each and every nucleotide of each and every
chromosome is determined in sequential order Such that the
composition of the individual’s entire genome has been
identified. In such processing, the genome of the individual
may be assembled such as by comparison to a reference
genome, such as a standard, e.g., one or more genomes
obtained from the human genome project, so as to determine

US 9,483,610 B2
13

how the individuals genetic makeup differs from that of the
referent(s). This process is commonly known as variant
calling. As the difference between the DNA of any one
person to another is 1 in 1,000 base pairs, such a variant
calling process can be very labor and time intensive.

Accordingly, in a typical secondary processing protocol,
a subject's genetic makeup is assembled by comparison to a
reference genome. This comparison involves the reconstruc
tion of the individuals genome from millions upon millions
of short read sequences and/or the comparison of the whole
of the individual's DNA to an exemplary DNA sequence
model. In a typical secondary processing protocola FASTQ
file is received from the sequencer containing the raw
sequenced read data. For instance, in certain instances, there
can be up to 30,000,000 reads or more covering the subjects
genome, assuming no oversampling, Such as where each
read is about 100 nucleotides in length. Hence, in such an
instance, in order to compare the Subject's genome to that of
the standard reference genome, it needs to be determined
where each of these reads map to the reference genome. Such
as how each is aligned with respect to one another, and/or
how each read can also be sorted by chromosome order So
as to determine at what position and in which chromosome
each read belongs. One or more of these functions may take
place prior to performing a variant call function on the entire
full-length sequence. Once it is determined where in the
genome each read belongs, the full length genetic sequence
may be determined, and then the differences between the
subjects genetic code and that of the referent can be
assessed.
As the human genome is over 3 billion base pairs in

length, efficient automated sequencing protocols and
machinery have been developed so as to effectuate the
sequencing of Such a genome within a time period that could
be clinically useful. Such innovations in automated sequenc
ing have resulted in the capabilities of sequencing an entire
genome in a matter of hours to days dependent on the
number of genomes being sequenced, the amount of over
sampling involved, and the number of processing resources
being dedicated to the job. Hence, given these advancements
in sequencing, a large amount of sequencing data is capable
of being generated in a relatively short period of time. A
result of these advancements, however, is the development
of a bottleneck at the secondary processing stage. In efforts
to help overcome this bottleneck various software based
algorithms have been developed to help expedite the process
of assembling a Subject's sequenced DNA such as by a
reference based assembly process.

For instance, reference based assembly is a typical sec
ondary processing assembly protocol involving the compari
Son of sequenced genomic DNA of a Subject to that of one
or more standards, e.g., known reference sequences. Various
algorithms have been developed to help expedite this pro
cess. These algorithms typically include Some variation of
one or more of mapping, aligning, and/or sorting the
millions of reads received from the FASTQ file communi
cated by the sequencer, to determine where on each chro
mosome each particular read is located. Often a common
feature behind the functioning of these various algorithms is
their use of an index and/or an array to expedite their
processing function.

For instance, with respect to mapping, a large quantity,
e.g., all, of the sequenced reads may be processed to
determine the possible locations in the reference genome to
which those reads could possibly align. One methodology
that can be used for this purpose is to do a direct comparison
of the read to the reference genome so as to find all the

10

15

25

30

35

40

45

50

55

60

65

14
positions of matching. Another methodology is to employ a
prefix or suffix array, or to build out a prefix or suffix tree,
for the purpose of mapping the reads to various positions in
the reference genome. A typical algorithm useful in per
forming such a function is a Burrows-Wheeler transform,
which is used to map a selection of reads to a reference using
a compression formula that compresses repeating sequences
of data. A further methodology is to employ a hash table,
Such as where a selected Subset of the reads, a k-mer of a
selected length 'k', e.g., a seed, are placed in a hash table
as keys and the reference sequence is broken into equivalent
k-mer portions and those portions and their location are
inserted by an algorithm into the hash table at those locations
in the table to which they map according to a hashing
function. A typical algorithm for performing this function is
“BLAST, a Basic Local Alignment Search Tool. Such hash
table based programs compare query nucleotide or protein
sequences to one or more standard reference sequence
databases and calculates the statistical significance of
matches. In Such manners as these, it may be determined
where any given read is possibly located with respect to a
reference genome. These algorithms are useful because they
require less memory, fewer look ups, and therefore require
fewer processing resources and time in the performance of
their functions, than would otherwise be the case, such as if
the Subject's genome were being assembled by direct com
parison, Such as without the use of these algorithms.

Additionally, an aligning function may be performed to
determine out of all the possible locations a given read may
map to on a genome, such as in those instances where a read
may map to multiple positions in the genome, which is in
fact the location to which it actually was derived, such as by
being sequenced therefrom by the original sequencing pro
tocol. This function may be performed on a number of the
reads of the genome and a string of ordered nucleotide bases
representing a portion or the entire genetic sequence of the
subject’s DNA may be obtained. Along with the ordered
genetic sequence a score may be given for each nucleotide
position, representing the likelihood that for any given
nucleotide position, the nucleotide, e.g., “A”, “C”, “G”, “T”
(or “U”), predicted to be in that position is in fact the
nucleotide that belongs in that assigned position. Typical
algorithms for performing alignment functions are Needle
man-Wunsch and Smith-Waterman. In either case, these
algorithms perform sequence alignments between a string of
the Subject’s query genomic sequence and a string of the
reference genomic sequence whereby instead of comparing
the entire genomic sequences, one with the other, segments
of a selection of possible lengths are compared.
Once the reads have been assigned a position, Such as

relative to the reference genome, which may include iden
tifying to which chromosome the read belongs and/or its
offset from the beginning of that chromosome, the reads may
be sorted by position. This may enable downstream analyses
to take advantage of the oversampling described above. All
of the reads that overlap a given position in the genome will
be adjacent to each other after sorting and they can be
organized into a pileup and readily examined to determine if
the majority of them agree with the reference value or not.
If they do not, a variant can be flagged.

Although these algorithms and the others like them go a
ways to resolving the bottlenecks inherent in secondary
processing, faster performance time and better accuracy are
still desirable. More particularly, although there has been
advancement in the generation of raw data, such as sequence
data, the advancements in information technologies have not
kept up pace, leading to a data analysis bottleneck. This

US 9,483,610 B2
15

bottleneck is somewhat lessened by the development of
various algorithms, such as those described above, which
help accelerate these analyses, but there still exists a need for
new technologies to handle the computation, storage, and/or
analysis of Such data, especially as it relates to genomic
sequence analysis, such as in a secondary processing stage.

For instance, employing standard protocols for perform
ing secondary processing on obtained genomic sequencing
data, can take up to three (3) days or even up to a week or
more to process the sequenced data so as to generate
clinically relevant genomic sequence information of an
individual. Employing various different optimized algo
rithms, such as those described above, the time expended for
secondary processing can be brought down to a mere 27 to
48 hours. However, in order to achieve such rapid results
typically requires virtually all the generated reads, e.g., 30
million reads of 100 nucleotides each, to be processed in
parallel and at the same time. Such parallel processing
requires extensive processing power involving massive CPU
resources and still takes a relatively long time.

Further, in various instances, enhanced accuracy of results
is desired. Such enhanced accuracy can be achieved through
providing some amount of oversampling of the sequenced
genome. For example, as described above, it may be desir
able to process the subject’s DNA in such a manner that at
any given location of a sequence of nucleotides, there is an
oversampling of that region. As indicated above, it may be
desired to oversample any given region of the genome up to
10x, or 15x, or 20x, or 25x, or 30x, or 40x, 50x, 100x, 250x
or even 500x or 1,000 times or more. However, where the
genome is oversampled. Such as by 40x, the amount of reads
to be processed is roughly 30 Millionx40 (dependent on the
length of the reads), which amounts to about 1.2 billion
reads that need to be processed, when the entire genome is
oversampled by 40x. Hence, although Such oversampling
typically results in greater accuracy, it is at a cost of taking
more time and requiring more extensive processing
resources as each section of the genome is covered by
anywhere from 1 to 40 times. Moreover, for certain oncol
ogy applications in which a clinician is trying to distinguish
between the mutated genome of cancer cells in the blood
stream as distinct from the genome of healthy cells, over
sampling of as much as 500x, or 1,000x, or 5,000x, or even
10,000x may be employed.
The present disclosure, therefore, is directed to such new

technologies that may be implemented in one or a series of
genomics and/or bioinformatics protocols for performing
genetic analysis, such as secondary processing, on obtained
genomic sequencing data or a portion thereof. The sequenc
ing data may be obtained directly from an automated high
throughput sequencer system, such as by a 'Sequencing by
Synthesis' 454 automated sequencer from ROCHE, a
HiSeqxTen or a Solexia automated sequencer from ILLU
MINA, a “Sequencing by Oligonucleotide Ligation and
Detection” (SOLiD) or Ion Torrent sequencer by LIFE
TECHNOLOGIES, and/or a “Single Molecule Fluorescent
Sequencing sequencer by HELICOS GENETIC ANALY
SIS SYSTEMS, or the like, such as by a direct linkage with
the sequencing processing unit, or the sequencing data may
be obtained remotely, Such as from a database, for instance,
accessible via the internet or other remote location acces
sible through a wireless communications protocol. Such as
Wi-Fi, Bluetooth, or the like.

In certain aspects, these genetic analysis technologies
may employ improved algorithms that may be implemented
by Software that is run in a less processing intensive and/or
less time consuming manner and/or with greater percentage

10

15

25

30

35

40

45

50

55

60

65

16
accuracy. For instance, in certain embodiments, improved
algorithms for performing Such secondary processing, as
disclosed herein, is provided. In various particular embodi
ments, the improved algorithms are directed to more effi
ciently and/or more accurately performing one or more of
mapping, aligning, and/or sorting functions. Such as on a
digital representation of DNA sequence data obtained from
a sequencing platform, Such as in a FASTQ file format
obtained from an automated sequencer Such as one of those
set forth above.

In certain embodiments, improved algorithms directed to
more efficiently and/or more accurately performing one or
more of local realignment, duplicate marking, base quality
score recalibration, variant calling, compression, and/or
decompression functions are provided. Further, as described
in greater detail herein below, in certain aspects, these
genetic analysis technologies may employ on or more algo
rithms. Such as improved algorithms, that may be imple
mented by hardware that is run in a less processing intensive
and/or less time consuming manner and/or with greater
percentage accuracy than various Software implementations
for doing the same.

In particular embodiments, a platform of technologies for
performing genetic analyses are provided where the plat
form may include the performance of one or more of
mapping, aligning, sorting, local realignment, duplicate
marking, base quality score recalibration, variant calling,
compression, and/or decompression functions. In certain
instances, the implementation of one or more of these
platform functions is for the purpose of performing one or
more of determining and/or reconstructing a Subjects con
sensus genomic sequence, comparing a subject's genomic
sequence to a referent sequence, e.g., a reference or model
genetic sequence, determining the manner in which the
subject’s genomic DNA differs from a referent, e.g., variant
calling, and/or for performing a tertiary analysis on the
Subject's genomic sequence, such as for genome-wide varia
tion analysis, gene function analysis, protein function analy
sis, e.g., protein binding analysis, quantitative and/or assem
bly analysis of genomes and/or transcriptomes, as well as for
various diagnostic, and/or a prophylactic and/or therapeutic
evaluation analyses.

Further, in various embodiments, a bioinformatics pro
cessing regime, as disclosed herein, may be employed for
the purpose of creating one or more masks. Such as a genome
reference mask, a default mask, a disease mask, and/or an
iterative feedback mask, which may be added to the mapper
and/or aligner, e.g., along with a reference, wherein the mask
set is configured so as to identify a particular area or object
of interest. For instance, in one embodiment, the methods
and apparatuses described herein may be employed so as to
create genome reference mask, such as by creating a mask
set that can be loaded into the mapper and/or aligner along
with a reference, wherein the mask set is configured so as to
identify areas of high importance and/or relevance, e.g., to
the practitioner or Subject, and/or so as to identify areas
having increased Susceptibility to errors. In various embodi
ments, the mask-set may provide intelligent guidance to the
mapper and/or aligner Such as on which areas of the genome
to focus on to improve quality. Masks, therefore, can be
created in a layered manner to provide varying levels or
iterations of guidance based on various specific applications.
Each mask accordingly could identify the areas of interest
and provide a minimum quality target for the area. Addi
tionally, a default mask may be employed to provide guid
ance. Such as on an identified, e.g., typical, "high value'
areas of the genome. Such areas could include known coding

US 9,483,610 B2
17

areas, control areas, etc. as well as areas that are well known
to produce errors. Further, a disease mask, or application
specific mask, may be employed to the mask-set that iden
tifies areas of high importance, Such as areas that require
very high levels of accuracy based on known markers, e.g.,
Cancer. Further still, iterative feedback masking may be
employed. Such as by adding a new, ad-hoc mask, that may
be specifically designed by using feedback from a tertiary
analysis system (like Cypher Genomics) that has identified
areas of concern based on observed errors or inconsistencies.
As indicated above, in one aspect one or more of these

platform functions, e.g., mapping, aligning, Sorting, realign
ment, duplicate marking, base quality score recalibration,
variant calling, compression, and/or decompression func
tions is configured for implementation in Software. In
another embodiment, one or more of these platform func
tions, e.g., mapping, aligning, Sorting, local realignment,
duplicate marking, base quality score recalibration, decom
pression, variant calling, compression, and/or decompresion
functions is configured for implementation in hardware.

Accordingly, in certain instances, methods are presented
herein where the method involves the performance of an
algorithm, Such as an algorithm for performing one or more
genetic analysis functions such as mapping, aligning, Sort
ing, realignment, duplicate marking, base quality score
recalibration, variant calling, compression, and/or decom
pression where the algorithm has been optimized in accor
dance with the manner in which it is to be implemented. In
particular, where the algorithm is to be implemented in a
Software solution, the algorithm and/or its attendant pro
cesses, has been optimized so as to be performed faster
and/or with better accuracy for execution by that media.
Likewise, where the functions of the algorithm are to be
implemented in a hardware solution, the hardware has been
designed to perform these functions and/or their attendant
processes in an optimized manner So as to be performed
faster and/or with better accuracy for execution by that
media. These methods, for instance, can be employed Such
as in an iterative variant calling procedure.

Hence, in one aspect, presented herein are systems, appa
ratuses, and methods for implementing bioinformatic pro
tocols, such as for performing one or more functions for
analyzing genetic data, Such as genomic data, for instance,
via one or more optimized algorithms and/or on one or more
optimized integrated circuits. Such as on one or more hard
ware processing platforms. Hence, in one instance, systems
and methods are provided for implementing one or more
algorithms for the performance of one or more steps for
analyzing genomic data in a bioinformatics protocol. Such as
where the steps may include the performance of one or more
of mapping, aligning, Sorting, local realignment, duplicate
marking, base quality score recalibration, variant calling,
compression, and/or decompression. In another instance,
systems and methods are provided for implementing the
functions of one or more algorithms for the performance of
one or more steps for analyzing genomic data in a bioin
formatics protocol, as set forth herein, wherein the functions
are implemented on a hardware accelerator, which may or
may not be coupled with one or more general purpose
processors and/or Super computers.
More specifically, in Some instances, methods for per

forming secondary analytics on data pertaining to the
genetic composition of a subject are provided. In one
instance, the analytics to be performed may involve refer
ence based reconstruction of the Subject genome. For
instance, referenced based mapping involves the use of a
reference genome, which may be generated from sequencing

10

15

25

30

35

40

45

50

55

60

65

18
the genome of a single or multiple individuals, or it may be
an amalgamation of various people's DNA that have been
combined in Such a manner so as to produce a prototypical,
standard reference genome to which any individual’s DNA
may be compared, for example, so as to determine and
reconstruct the individual’s genetic sequence and/or for
determining the difference between their genetic makeup
and that of the standard reference, e.g., variant calling.
More particularly, a reason for performing a secondary

analysis on a Subject's sequenced DNA is to determine how
the subject’s DNA varies from that of the reference. More
specifically, to determine one, a multiplicity, or all the
differences in the nucleotide sequence of the subject from
that of the reference. For instance, the differences between
the genetic sequences of any two random persons is 1 in
1,000 base pairs, which when taken in view of the entire
genome of over 3 billion base pairs amounts to a variation
of up to 3,000,000 divergent base pairs per person. Deter
mining these differences may be useful Such as in a tertiary
analysis protocol, for instance, so as to predict the potential
for the occurrence of a diseased state. Such as because of a
genetic abnormality, and/or the likelihood of Success of a
prophylactic or therapeutic modality, Such as based on how
a prophylactic or therapeutic is expected to interact with the
subject’s DNA or the proteins generated therefrom. In
various instances, it may be useful to perform both a de novo
and a reference based reconstruction of the Subjects genome
So as to confirm the results of one against the other, and to,
where desirable, enhance the accuracy of a variant calling
protocol.

In various instances, as set forth above, it may be useful
in performing a primary sequencing protocol to produce
oversampling for one or more regions of the Subjects
genome. These regions may be selected based on known
areas of increased variability, Suspected regions of variabil
ity, Such as based on the condition of the Subject, and/or on
the entire genome generally. In its basic form, as indicated
above, based on the type of sequencing protocols performed,
sequencing produces readouts, e.g., reads, that are digital
representations of the Subject's genetic sequence code.
These read lengths are typically designed based on the type
of sequencing machinery being employed. For instance, the
454 automated sequencer from ROCHE, typically produces
read lengths from 100 or 150 base pairs in length to about
1,000 base pairs; for ILLUMINA the read lengths are
typically engineered to be from about 100 or 101 to about
150 base pairs in length for some of their technology, and
250 base pairs in length for other of their technology; for
LIFETECHNOLOGIES the read lengths are typically engi
neered to be from about 50 to about 60 base pairs in length
for their SOLiD technology and from 35 to 450 base pairs
in length for their Ion Torrent technology; and for the
HELICOS GENETIC ANALYSIS SYSTEMS the read
lengths may vary but may typically be less than 1,000
nucleotides in length.

However, because the processing of the DNA sample
required to produce engineered read lengths of a specific
size is both labor and chemistry intensive, and because the
sequencing itself often depends on the functioning of the
sequencing machinery, there is some possibility that errors
may be made throughout the sequencing process thereby
introducing an abnormality into that portion of the
sequenced genome where the error occurred. Such errors can
be problematic especially where a purpose for reconstruct
ing the Subject's genome is to determine how it or at least a
portion of the genome varies from a standard or model
reference. For instance, a machine or chemistry error result

US 9,483,610 B2
19

ing in the change of one nucleotide, e.g., in a read, for
another will give a false indication of a variation that is not
really there. This can result in an incorrect variant call and
may further result in the false indication of a diseased state
and the like. Accordingly, because of the possibility of
machine, chemistry, and/or even human error in the execu
tion of a sequencing protocol, in many instances, it is
desirable to build redundancy into an analysis system, Such
as by oversampling portions of or the entire genome. More
particularly, as an automated sequencer produces a FASTQ
file calling out a sequence of reads having nucleotides at a
given position along with the probability that the call for a
given nucleotide being at the called position is actually
incorrect, e.g., a base call, it is often desirable to employ
methods, such as oversampling, for ensuring that base calls
made by the sequencing processes can be detected and
corrected.

Hence, in performing the methods herein described, in
certain instances, a primary sequencing protocol is per
formed in Such a manner so as to produce a sequenced
genome where a portion or the entire genome is over
sampled by about 10x, about 15x, about 20x, about 25x,
about 30x about 40x, such as about 50x or more. Accord
ingly, where the read lengths are engineered to be about
50-60 base pairs in length, this oversampling can result in
about 2 to about 2.5 billion reads, or where the read lengths
are about 100 or 101 base pairs in length, oversampling may
result in about 1 to about 1.2 billion reads, and where the
read lengths are about 1,000 base pairs in length, about 50
to about 100 million reads may be generated by the
sequencer, such as where the oversampling is about 40x.
More particularly, in such an instance, because of the 40x
oversampling, at any given point in the genome it is
expected that there will be 40 reads to cover any one position
albeit, the given position might be at the beginning of one
read, the middle of another, and the end of another, but it is
expected to be covered about 40 times.

Therefore, Such oversampling produces regions of the
sequenced genome that are covered by a multiplicity of
reads, e.g., duplications, such as up to about 40 reads, for
instance, where the oversampling is about 40x. These at
least partial duplications are useful in determining whether
any given variation in any particular read is in fact an actual
genomic variation or rather a machine or chemistry artifact.
Hence, oversampling can be employed to improve the
accuracy in reconstructing the Subject’s genome, especially
in instances where the Subject's genome is to be compared
against a reference genome so as to determine those
instances where the Subject's genetic sequence differs from
that of the reference genetic sequence. In a manner Such as
this, as described in greater detail herein below, it can be
confirmed that any given variation between the recon
structed sequence and the model is in fact due to the
presence of an actual variant and not an error in the initial
processing of Sample DNA, or read alignment Software, etc.

For instance, in building the genetic sequence of the
individual’s sequenced DNA, it must be determined what
nucleotide goes where in the growing string of nucleotides.
In order to determine what nucleotide goes where, the
various reads can be organized and a pile up of reads
covering duplicate locations can be built up. This allows for
a comparison to be made of all the reads covering the same
locations so as to more accurately determine if there is an
actual variation at any given position or if there may be an
error in any one read at the position in question in the pileup.
For example, if there is only one or two of the reads out of
the 40 that has a particular nucleotide at position X, and all

5

10

15

25

30

35

40

45

50

55

60

65

20
38 or 39 other reads agree on a different nucleotide being at
that position, then the two outlying reads may be excluded
as being in error, at least at this specific location.
More particularly, where there are a multiplicity of reads

generated for any one location of the Subjects genome, there
are likely to be multiple overlaps or pile-ups for any given
nucleotide position. These pile-ups represent the coverage
for any particular location and may be useful for determin
ing with better accuracy the correct sequence of the Subjects
genome. For instance, as indicated, sequencing results in the
production of reads, and in various instances, the reads
produced are over sampled, and so at various positions
various particular reads will overlap. This overlapping is
useful for determining the actual sample genome such as
with a high probability of correctness.
The purpose, therefore, may be to scan over the reference

genome incrementally multiple times, as described in
greater detail herein below, so as to more accurately recon
struct the Subject's genome, and where it is desirable to
determine how the subjects genome differs from a different
genome, e.g., a model genome, the use of pile-ups can more
accurately identify errors, such as chemical, machine, or
read errors, and distinguish them from actual variants. More
specifically, where the Subject has an actual variation at
position X, the majority of reads in the pile up should verify,
e.g., include, that variation. Statistical analysis procedures,
Such as those described herein, may then performed to
determine the actual genetic sequence of the Subject with all
its variants from a reference genome.

For instance, where the Subject's genetic sequence is to be
rebuilt with respect to the use of a reference genome, once
the reads, e.g., a pile-up of reads, have been generated, the
next steps may be to map and/or align and/or sort the reads
to one or more reference genomes (e.g., the more exemplary
reference genomes available as models the better the analy
sis is likely to be) and thereby rebuild the genome of the
subject, this results in a series of reads that have been
mapped and/or aligned with the reference genome(s) at all
possible positions along the chain where there is a match,
and at each Such position they are given a probability score
as to the probability that they actually belong in that posi
tion.

Accordingly, in various instances, once the reads have
been generated, their positions mapped, e.g., the potential
locations in the reference genome to which the reads may
map have been determined, and their sequential order
aligned, the actual genetic sequence of the Subject's genome
may be determined. Such as by performing a sorting function
on the aligned data. Further, once the actual sample genome
is known and compared to the reference genome, the varia
tions between the two can be determined, a list of all the
variations/deviations between the reference genome and the
sample genome are determined and called out. Such varia
tions between the two genetic sequences may be due to a
number of reasons.

For instance, there may be a single nucleotide polymor
phism (SNP), such as wherein one base in the subjects
genetic sequence has been Substituted for another, there may
be more extensive substitutions of a plurality of nucleotides:
there may be an insertion or a deletion, such as where one
or a multiplicity of bases have been added to or deleted from
the Subject's genetic sequence, and/or there may be a
structural variant, e.g., Such as caused by the crossing of legs
of two chromosomes, and/or there may simply be an offset
causing a shift in the sequence. In various instances, a
variant call file containing all the variations of the subjects
genetic sequence to the reference sequence is generated.

US 9,483,610 B2
21

More particularly, in various embodiments, the methods of
the disclosure include generating a variant call file (VCF)
identifying one or more, e.g., all of the genetic variants in the
individual whose DNA was sequenced, e.g., relevant to one
or more reference genomes. The VCF in its basic form is a
list of locations of variants and their type: e.g., chromosome
3, at position X, an 'A' is substituted for a “T”, etc.

However, as indicated above, in order to generate such a
file, the genome of the Subject must be sequenced and rebuilt
prior to determining its variants. There are, however, several
problems that may occur when attempting to generate Such
an assembly. As noted above, there may be problems with
the chemistry, the sequencing machine, and/or human error
that occurs in the sequencing process. Additionally, there
may be genetic artifacts that make Such reconstructions
problematic. For instance, a problem with performing Such
assemblies is that there are sometimes huge portions of the
genome that repeat themselves, such as long sections of the
genome that include the same strings of nucleotides. Hence,
because any genetic sequence is not unique everywhere, it
may be difficult to determine where in the genome an
identified read actually maps and aligns.

For instance, dependent on the sequencing protocol
employed shorter or longer reads may be produced. Longer
reads are useful in that the longer the read the less likely it
is to show up in multiple locations in the genome. Having
fewer possible locations to evaluate can also speed up the
system. However, the longer the reads the more problematic
they may be because the more likely they are to include a
real or false variation, e.g., caused by an SNP. In Del
(insertion or deletion), or a machine error, or the like,
resulting in a no match between the read and the reference
genome. On the other hand, shorter reads are useful because
the shorter the read the less likely it is to cover a position that
codes for a variant. A problem with shorter reads however is
that the shorter the read the more likely it is to show up at
multiple positions in the genome, thus requiring additional
processing time and resources so as to determine which out
of all possible positions is the most likely actual position to
where it aligns. Ideally what may be achieved. Such as by
practicing the methods herein disclosed, is that a variant call
file may be produced wherein a list of the sequenced genome
(the query sequence) is generated that shows where all the
variant base pairs are, making Sure each variant called is an
actual variant and not simply a chemistry or machine read or
other human based error.

There are, therefore, two main possibilities for variation.
For one, there is an actual variation at the particular location
in question, for instance, where the person’s genome is in
fact different at a particular location than that of the refer
ence, e.g., there is a natural variation due to an SNP (one
base substitution), an Insertion or Deletion (of one or more
nucleotides in length), and/or there is a structural variant,
such as where the DNA material from one chromosome gets
crossed onto a different chromosome or leg, or where a
certain region gets copied twice in the DNA. Alternatively,
a variation may be caused by there being a problem in the
read data, either through chemistry or the machine,
sequencer or aligner, or other human error. Accordingly, the
methods disclosed herein may be employed in a manner So
as to compensate for these types of errors, and more par
ticularly so as to distinguish errors in variation due to
chemistry, machine or human, and real variations in the
sequenced genome. More specifically, the methods, appara
tuses, and systems for employing the same, as here in
described, have been developed so as to clearly distinguish
between these two different types of variations and therefore

10

15

25

30

35

40

45

50

55

60

65

22
to better ensure the accuracy of any call files generated so as
to correctly identify true variants.

Further, in various embodiments, once the subjects
genome has been reconstructed and/or a VCF has been
generated, such data may then be subjected to tertiary
processing so as to interpret it, Such as for determining what
the data means with respect to identifying what diseases this
person may or may have the potential for suffer from and/or
for determining what treatments or lifestyle changes this
Subject may want to employ so as to ameliorate and/or
prevent a diseased State. For example, the Subject's genetic
sequence and/or their variant call file may be analyzed to
determine clinically relevant genetic markers that indicate
the existence or potential for a diseased state and/or the
efficacy of a proposed therapeutic or prophylactic regimen
may have on the Subject. This data may then be used to
provide the subject with one or more therapeutic or prophy
lactic regimens So as to better the Subject’s quality of life,
Such as treating and/or preventing a diseased state.
More particularly, medical science technologies have

advanced in conjunction with the advancement of informa
tion technologies, which advancement has enhanced our
ability to store and analyze medical data. Hence, once one or
more of an individual’s genetic variations are determined,
such variant call file information can be used to develop
medically useful information, which in turn can be used to
determine, e.g., using various known statistical analysis
models, health related data and/or medical useful informa
tion, e.g., for diagnostic purposes, e.g., diagnosing a disease
or potential therefore, clinical interpretation (e.g., looking
for markers that represent a disease variant), whether the
subject should be included or excluded in various clinical
trials, and other such purposes. As there are a finite number
of diseased States that are caused by genetic malformations,
in tertiary processing variants of a certain type, e.g., those
known to be related to the onset of diseased states, can be
queried for, such as by determining if one or more genetic
based diseased markers are included in the variant call file
of the subject.

Consequently, in various instances, the methods herein
disclosed may involve analyzing, e.g., Scanning, the VCF
and/or the generated sequence, against a known disease
sequence variant, Such as in a database of genomic markers
therefore, so as to identify the presence of the genetic marker
in the VCF and/or the generated sequence, and if present to
make a call as to the presence or potential for a genetically
induced diseased state. As there are a large number of known
genetic variations and a large number of individual’s Suf
fering from diseases caused by Such variations, in some
embodiments, the methods disclosed herein may entail the
generation of one or more databases linking sequenced data
for an entire genome and/or a variant call file pertaining
thereto, e.g., Such as from an individual or a plurality of
individuals, and a diseased State and/or searching the gen
erated databases to determine if a particular subject has a
genetic composition that would predispose them to having
Such diseased state. Such searching may involve a compari
Son of one entire genome with one or more others, or a
fragment of a genome, such as a fragment containing only
the variations, to one or more fragments of one or more other
genomes such as in a database of reference genomes or
fragments thereof.

Further, it is understood that the genetic sequences to be
employed in these manners may be DNA, ssDNA, RNA,
mRNA, rRNA, tRNA, or the like. Hence, although through
out the present disclosure various mention is made to
various methods and apparatuses for analyzing genomic

US 9,483,610 B2
23

DNA, in various instances, the systems, apparatuses and
methods disclosed herein are equally suitable for performing
their respective functions, e.g., analysis, on all types of
genetic material including DNA, ssDNA, RNA, mRNA,
rRNA, tRNA, and the like. Additionally, in various
instances, the methods of the disclosure may include ana
lyzing the generated genetic sequence, e.g., DNA, ssDNA,
RNA, mRNA, rRNA, tRNA, and the like, from the subject
and determining therefrom the protein variations which are
likely to be caused by the genetic sequence and/or deter
mining and/or predicting the potential for a diseased State
therefrom, such as due to an error in protein expression. It
is to be noted that the genetic sequence obtained can
represent an intron or an exon, for instance, the genetic
sequence can be for a coding portion of the DNA only. Such
as where an exome is obtained and using known processing
techniques only the coding regions, or non-coding regions,
may be sequenced, which can lead to faster sequencing
and/or faster processing times, albeit involving a more
difficult sample preparation procedure.

Currently, Such steps and analyses herein described are
typically performed in various distinct and unrelated steps
often employing different analytic machines at different
locations. Accordingly, in various aspects the methods and
systems of the disclosure are performed by a single appa
ratus and/or at one location, such as in conjunction with an
automated sequencer or other apparatus configured to gen
erate genetic sequence data. In various instances, a plurality
of apparatuses may be employed at the same location, or a
multiplicity of remote locations, and in Some instances, the
methods may involve two or more processing units being
deployed at two or more locations.

For instance, in various aspects a pipeline may be pro
vided wherein the pipeline includes performing one or more
analytic functions, as described herein, on a genomic genetic
sequence of one or more individuals, such as data obtained
in a digital, e.g., FASTQ, file format from an automated
sequencer. A typical pipeline to be executed may include one
or more of sequencing genetic material. Such as a portion or
an entire genome, of one or more Subjects, which genetic
material may include DNA, ssDNA, RNA, rRNA, tRNA,
and the the like, and/or in some instances the genetic
material may represent coding or non-coding regions. Such
as exomes, episomes of the DNA. The pipeline may include
one or more of performing a base calling and/or error
correction operation, such as on the digitized genetic data,
and/or may include one or more of performing a mapping,
an alignment, and/or a sorting function on the genetic data.
In certain instances, the pipeline may include performing
one or more of a realignment, a deduplication, a base quality
or score recalibration, a reduction and/or compression, and/
or a decompression on the digitized genetic data. In certain
instances the pipeline may include performing a variant
calling operation on the genetic data.

Therefore, in various instances, a pipeline of the disclo
Sure may include one or more modules, wherein the modules
are configured for performing one or more functions, such as
a base calling and/or error correction operation and/or a
mapping and/or an alignment and/or a sorting function on
genetic data, e.g., sequenced genetic data. And in various
instances, the pipeline may include one or more modules,
wherein the modules are configured for performing one
more of a local realignment, a deduplication, a base quality
score recalibration, a variant calling, a reduction and/or
compression, and/or a decompression on the genetic data.
Many of these modules may either be performed by software

10

15

25

30

35

40

45

50

55

60

65

24
or on hardware or remotely, e.g., via Software or hardware,
Such as on the cloud or a remote server and/or server bank.

Additionally, many of these steps and/or modules of the
pipeline are optional and/or can be arranged in any logical
order and/or omitted entirely. For instance, the software
and/or hardware disclosed herein may or may not include a
base calling or sequence correction algorithm, such as where
there may be concern that such functions may result in a
statistical bias. Consequently the system will either include
or will not include the base calling and/or sequence correc
tion function, respectively, dependent on the level of accu
racy and/or efficiency desired. And as indicated above, one
or more of the pipeline functions may be employed in the
generation of a genomic sequence of a subject such as
through a reference based genomic reconstruction. Also as
indicated above, in certain instances, the output from the
pipeline is a variant call file indicating a portion or all the
variants in a genome or a portion thereof.

Accordingly, as indicated above, the output of performing
a sequencing protocol. Such as one or more of those set forth
above, is typically a digital representation of the Subjects
genetic material, such as in a FASTQ file format. However,
an autorad that has been digitally transcribed may also be
employed. More particularly, the output from a sequencing
protocol may include a plurality of reads, where each read
includes a sequence, e.g., a string, of nucleotides where the
position of every nucleotide has been called, and a quality
score representing the probability that the called nucleotide
is wrong. However, the quality of these outputs may be
improved by various pre-processing protocols So as to
achieve higher quality of Scores, which one or more of Such
protocols may be employed in the methods disclosed herein.

For instance, in certain instances, the raw FASTQ file data
may be processed to clean up the initial base calls obtained
from the sequencer/reader, such as in a primary processing
stage, e.g., prior to the secondary processing described
herein above. Specifically, the sequencer/reader typically
analyzes the sequencing data, Such as the fluorescent data
indicating which nucleotide is at what position, and converts
the image data into a base call with a quality Score. Such as
where the quality Score is based on the comparative bright
ness of the fluorescence at each position. A specialized
algorithm may be employed, such as in a primary processing
stage, to correctly analyze these distinctions in fluorescence
So as to more accurately make the appropriate base call. As
indicated above, this step may be included in a pipeline of
steps and may be implemented via Software or hardware or
both, however, in this instance would be part of a primary
processing platform.
An additional preprocessing step may include an error

correction function, which may include an attempt to take
the millions to billions of reads in the FASTQ file and
correct some proportion of any mechanical sequencing error
with the information pertaining to the base call and quality
score available prior to any further processing Such as
mapping, alignment, and/or sorting functions, etc. For
instance, the reads within the FASTQ file may be analyzed
to determine if there are any Sub-sequences in any of the
reads that appear in other reads, which because of the
duplicate coverage can increase confidence that the Subse
quences in the reads may be correct. This may be imple
mented by building a hash table containing all possible
k-mers of a selected length, k, from every read, and storing
with each one its frequency and also which bases immedi
ately follow it and with what probability. Then, using the
hash table each read can be rescanned. As each k-mer in a
particular read is looked up in the hash table, and evaluation

US 9,483,610 B2
25

can be made as to whether the base immediately following
that k-mer is likely to be correct or not. If it is unlikely, then
it can be replaced with the most likely one to follow from the
table. Subsequent k-mers for that read will then include the
corrected base as the value at that position and the process
is repeated. This can be highly effective in correcting errors
because oversampling enables gathering accurate statistics
for predicting what comes next after each k-mer. However,
as indicated above, Such corrections could add statistical
biasing to the system, such as due to false corrections, to the
data, and so these procedures can be skipped if desired.

Accordingly, in accordance with the aspects of the dis
closure, in various instances, the methods, apparatuses,
and/or systems of the disclosure, may include obtaining read
data, that either have or have not been preprocessed. Such as
by being obtained directly from a FASTQ file of an auto
mated sequencer, and Subjecting the obtained data to one or
more of a mapping, aligning, and/or sorting function. The
performance of Such functions may be useful, for instance,
because, as set forth above, in various instances, the
sequencing data typically generated by various automated
sequencers, e.g., reads, have lengths that are substantially
shorter than the entire genomic sequence being analyzed,
and since the human genome typically has a multiplicity of
repetitive sections, and is known to have various repeating
patterns in it, there may be therefore a multiplicity of
locations that any given read sequence may correspond to a
segment in the human genome. Consequently, given all the
possibilities a given read may match to the sequence of the
genome, such as because of various repeating sequences in
the genome, etc. the raw read data may not clearly indicate
which one of the possibilities is in fact the correct location
from which it was derived. Hence, for each read it will need
to be determined to where in the genome the reads actually
map. Additionally, it may also be useful to determine the
sequential alignment of the reads, so as to determine the
actual sequence identity of the Subject, and/or it may also be
useful to determine the chromosomal location for each
portion of the sequence.

Accordingly, in various instances, the methods of the
disclosure may be directed to mapping, aligning, and/or
sorting the raw read data of the FASTQ files so as to find all
the likely places that a given read may be aligned, and/or to
determine the actual sequence identify of a Subject, and/or to
determine the chromosome location for each portion of the
sequence. For example, mapping may be employed so as to
map the generated reads to the reference genome and
thereby find the location where each read appears to match
well to the genome, e.g., finding all the places where there
might be a good score for aligning any given read to the
reference genome. Mapping therefore may involve taking
one or more, e.g., all, of the raw or preprocessed reads
received from the FASTQ file and comparing the reads with
one or more reference genomes and determining where the
read may match with the reference genome(s). In its basic
from, mapping involves finding the location(s) in the refer
ence genome where one or more of the FASTQ reads
obtained from the sequencer appears to match.

Likewise, alignment may be employed so as to evaluate
all the candidate locations of the individual reads against a
window of the reference genome to determine where and
how the read sequences best align to the genome. However,
performing an alignment may be difficult due to Substitu
tions, insertions, deletions, structural variations, and the like
which may prevent the read from aligning exactly. There are,
therefore, several different ways to get an alignment, but to
do so may require making changes in the read, where each

10

15

25

30

35

40

45

50

55

60

65

26
change that needs to be made to get the appropriate align
ment results in a lower confidence score. For instance, any
given read may have substitutions, insertions, and/or dele
tions as compared to the reference genome, and these
variations need to be accounted for in performing an align
ment.

Accordingly, along with the predicted alignment a prob
ability score that the predicted alignment is correct may also
be given. This score indicates the best alignment for any
given read amongst multiple locations where that read may
align. For example, the alignment score is predicated upon
how well a given read matches a potential map location and
may include stretching, condensing, and changing bits and
pieces of the read so as to get the best alignment.
The score will reflect all the ways the read was changed

So as to accommodate the reference. For instance, in order
to generate an alignment between the read and the reference
one or more gaps in the read may need to be inserted,
wherein the insertion of each gap represents a deletion in the
read over the reference. Likewise, deletions may need to be
made in the read, wherein each deletion represents an
insertion in the read over the reference. Additionally, various
bases may need to be changed such as due to one or more
Substitutions. Each of these changes are made to make the
read(s) more exactly align to the reference, but each change
comes with a cost to the quality score, which score is a
measure as to how well the entire read matches to some
region of the reference. The confidence in Such quality
scores is then determined by looking at all the locations the
read can be made to map to the genome and comparing the
scores at each location, and choosing the one with the
highest score. More particularly, where there are multiple
positions with high quality scores, then confidence is low,
but where the difference between the first and second best
scores is large, then confidence is high. At the end, all the
proposed reads and confidence scores are evaluated and the
best fit is selected.
Once the reads are assigned a position relative to the

reference genome, which consists of identifying to which
chromosome the read belongs and its offset from the begin
ning of that chromosome, they may be sorted, such as by
position. This enables downstream analyses to take advan
tage of the various oversampling protocols described herein.
All of the reads that overlap a given position in the genome
maybe be adjacent to each other after sorting and they can
be piled up and readily examined to determine if the
majority of them agree with the reference value or not. If
they do not, as indicated above, a variant can be flagged.
As indicated above, the FASTQ file obtained from the

sequencer is comprised of a plurality, e.g., millions to a
billion or more, of reads consisting of short strings of
nucleotide sequence data representing a portion or the entire
genome of an individual. Mapping, in general, involves
plotting the reads to all the locations in the reference genome
to where there is a match. For example, dependent on the
size of the read there may be one or a plurality of locations
where the read Substantially matches a corresponding
sequence on the reference genome. Accordingly, the map
ping and/or other functions disclosed herein may be config
ured for determining where out of all the possible locations
one or more reads may match to in the reference genome is
actually the true location to where they map.

It is possible to compare every read with every position in
the 3.2 billion reference genome to determine where, if any,
the reads match to the reference genome. This may be done,
for instance, where the read lengths approach about 100,000
nucleotides, about 200,000 nucleotides, about 400,000

US 9,483,610 B2
27

nucleotides, about 500,000 nucleotides, even about 1,000,
000 or more nucleotides in length. However, where the reads
are substantially shorter in length, such as where there are 50
million reads or more, e.g., 1 billion reads, this process could
take a very long time and require a large amount of com
puting resources. Accordingly, there are several methods,
such as described herein, that have been developed for
aligning the FASTQ reads to the reference genome in a
much quicker manner. For instance, as disclosed above, one
or more algorithms may be employed so as to map one or
more of the reads generated by the sequencer, e.g., in a
FASTQ file, and match them to the reference genome, so as
to determine where in the reference genome the subject
reads potentially map.

For instance, in various methods, an index of the refer
ence is generated, so that the reads or portions of the reads
may be looked up in the index, retrieving indications of
locations in the reference, so as to map the reads to the
reference. Such an index of the reference can be constructed
in various forms and queried in various manners. In some
methods, the index may include a prefix and/or a Suffix tree.
In other various methods, the index may include a Burrows/
Wheeler transform of the reference. In further methods, the
index may include one or more hash tables, and a hash
function may be performed on one or more portions of the
reads in an effort to map the reads to the reference. In various
instances, one or more of these algorithms may be per
formed sequentially or at the same time so as to accurately
determine where one or more, e.g., a Substantial portion or
every, read correctly matches with the reference genome.

Each of these algorithms may have advantages and/or
disadvantages. For example, a prefix and/or suffix Tree
and/or a Burrows/Wheeler transformation may be per
formed on the sequence data in Such a manner that the index
of the reference genome is constructed and/or queried as a
tree-like data structure, where starting from a single-base or
short Subsequence of a read, the Subsequence is incremen
tally extended within the read, each incremental extension
stimulating accesses to the index, tracing a path through the
tree-like data structure, until the Subsequence becomes
unique enough, e.g., an optimal length has been attained,
and/or a leaf node is reached in the tree-like data structure,
the leaf or last-accessed tree node indicating one or more
positions in the reference genome from which the read may
have originated. These algorithms, therefore, typically do
not have a fixed length for the read Subsequences that may
be mapped by querying the index. A hash function, however,
often employs a fixed length comparison unit that may be the
entire length of the read, but is often times a length that is
some sub-portion thereof, which sub-portion is termed a
seed. Such seeds can be shorter or longer, but unlike with the
prefix and/or suffix trees and/or the Burrows/Wheeler trans
formations, the seeds of the reads employed in a hash
function are typically of a preselected, fixed length.
A prefix and/or suffix tree is a data structure that is built

up from the reference genome, such that each link from a
parent node to a child node is labeled or associated with a
nucleotide or sequence of nucleotides, and each path from a
root node through various links and nodes traces a path
whose associated aggregate nucleotide sequence matches
Some continuous Subsequence of the reference genome. The
node reached by Such a path is implicitly associated with the
reference subsequence traced by its path from the root.
Proceeding from the root node, Subsequences in a prefix tree
grow forward in the reference genome, whereas Subse
quences in a Suffix tree grow backward in the reference
genome. Both a prefix tree and a Suffix tree may be used in

10

15

25

30

35

40

45

50

55

60

65

28
a hybrid prefix/suffix algorithm, so that Subsequences may
grow in either direction. Prefix and suffix trees may also
contain additional links, such as jumping from a node
associated with one reference Subsequence to another node
associated with a shorter reference Subsequence.

For instance, a tree-like data structure serving as an index
of the reference genome may be queried by tracing a path
through the tree, corresponding to a Subsequence of a read
being mapped, that is built up by adding nucleotides to the
Subsequence, using the added nucleotides to select next links
to traverse in the tree, and going as deep as necessary until
a unique sequence has been generated. This unique sequence
may also be termed a seed, and may represent a branch
and/or root of the sequence tree data structure. Alternatively,
the tree descent may be terminated before the accumulated
Subsequence is fully unique, so that a seed may map to
multiple locations in the reference genome. Particularly, the
tree may be built out for every starting position for the
reference genome, then the generated reads may be com
pared against the branches and/or roots of the tree and these
sequences may be walked through the tree to find where in
the reference genome the read fits. More particularly, the
reads of the FASTQ file may be compared to the branches
and roots of the reference tree and once matched therewith
the location of the reads in the reference genome may be
determined. For example, a sample read may be walked
along the tree until a position is reached whereby it is
determined that the accumulated Subsequence is unique
enough so as to identify that the read really does align to a
particular position in the reference. Such as walking through
the tree until a leaf node is reached.
A disadvantage, however, of such a prefix and/or suffix

tree is that it is a huge data structure that must be accessed
a multiplicity of times as the tree is walked so as to map the
reads to the reference genome. An advantage of a hash table
function, on the other hand, as described in greater detail
herein below, is that once built, it typically only takes one
look up to determine where, if anywhere, there may be a
match between a seed and the reference. A prefix and/or
Suffix tree will typically take a plurality of lookups, e.g., 5.
10, 15, 20, 25, 50, 100, 1,000, or more, etc., in determining
if and where there is a match. Further, due to the double
helix structure of DNA, a reverse complement tree may also
need to be built and searched, as the reverse complement to
the reference genome may also need to be found. With
respect to the above, the data tree is described as being built
from the reference genome which is then compared with the
reads from the subject’s sequenced DNA, however, it is to
be understood that the data tree may initially be built from
either the reference sequence or the sample reads, or both,
and compared one to the other as described above.

Alternatively, or in addition to employing a prefix or a
suffix tree, a Burrows/Wheeler transform can be performed
on the data. For instance, a Burrows/Wheeler transform may
be used to store a tree-like data structure abstractly equiva
lent to a prefix and/or suffix tree, in a compact format. Such
as in the space allocated for storing the reference genome. In
various instances, the data stored is not in a tree-like
structure, but rather the reference sequence data is in a linear
list that may have been scrambled into a different order so
as to transform it in a very particular way Such that the
accompanying algorithm allows the reference to be searched
with reference to the sample reads so as to effectively walk
the “tree'. An advantage of the Burrows/Wheeler transform,
such as over a prefix and/or suffix tree, is that it typically
requires less memory to store, and an advantage over a hash
function is that it supports a variable seed length, and hence

US 9,483,610 B2
29

it can be searched until a unique sequence is determined and
a match found. For instance, as with the prefix/suffix tree,
however many nucleotides it takes for a given sequence to
be unique, or to map to a sufficiently Small number of
reference positions, determines the length of the seed.
Whereas for a hash table, the seeds are all of the same
predetermined length. A disadvantage, however, for the
Burrows/Wheeler transform is that it typically requires a
multiplicity of lookups, such as two or more look ups. Such
as for every step down the tree.

Alternatively, or in addition to utilizing one or both a
prefix/suffix tree and/or a Burrows/Wheeler transform on the
reference genome and Subject sequence data, so as to find
where the one maps against the other, another Such method
involves the production of a hash table index and/or the
performance of a hash function. The hash table index may be
a large reference structure that is built up from sequences of
the reference genome that may then be compared to one or
more portions of the read to determine where the one may
match to the other. Likewise, the hash table index may be
built up from portions of the read that may then be compared
to one or more sequences of the reference genome and
thereby used to determine where the one may match to the
other.
More particularly, in any of the mapping algorithms

described herein, Such as for implementation in any of the
method steps herein disclosed, one or all three mapping
algorithms, or others known in the art, may be employed, in
Software or hardware, so as to map one or more sequences
of a sample of sequenced DNA with one or more sequences
of one or more reference genomes. As described herein in
greater detail below, all of these operations may be per
formed via software or by being hardwired, such as into an
integrated circuit, such as on a chip, for instance as part of
a circuit board. For instance, the functioning of one or more
of these algorithms may be embedded onto a chip. Such as
into a FPGA (field programmable gate array) or ASIC
(application specific integrated circuit) chip, and may be
optimized so as to perform more efficiently because of their
implementation in Such hardware.

Additionally, one or more, e.g., two or all three, of these
mapping functions may form a module. Such as a mapping
module, that may form part of a system, e.g., a pipeline, that
is used in a process for determining an actual entire genomic
sequence, or a portion thereof, of an individual. The output
returned from the performance of a mapping function may
be a list of possibilities as to where one or more, e.g., each,
read maps to one or more reference genomes. For instance,
the output for each mapped read may be a list of possible
locations the read may be mapped to a matching sequence in
the reference genome. In various embodiments, an exact
match to the reference for at least a piece, e.g., a seed of the
read, if not all of the read may be sought. Accordingly, in
various instances, it is not necessary for all portions of all the
reads to match exactly to all the portions of the reference
genome.

Further, one or all of these functions may be programmed
in Such a manner that exact or approximate matching and/or
editing, such as editing of the results, may be performed.
Hence, all of these processes can be configured to do inexact
matching as well, where desired, such as in accordance with
a preselected variance, such as 80% matching, 85% match
ing, 90% matching, 95% matching, 99% matching, or more.
However, as described in greater detail herein below, inexact
matching may be a lot more expensive Such as in time and
processing power requirements, because it may require any
number of edits, e.g., where the edit may be a SNP or

5

10

15

25

30

35

40

45

50

55

60

65

30
insertion or deletion of one or more bases, e.g., 1 or 2 or 3
or 5 or more edits, to be performed so as to achieve an
acceptable match. Such editing is likely to be used more
extensively in implementing hashing protocols or when
implementing prefix and/or suffix trees and/or performing a
Burrows/Wheeler transform.
With respect to hash tables, a hash table may be produced

in many different ways. In one instance, a hash table may be
built by breaking the reference genome into segments of
standard length, e.g., seeds of about 16 to about 30 nucleo
tides or more in length, such as about 18 to about 28
nucleotides, formatting them into a searchable table, and
making an index of all the reference segments from which
sequenced DNA, e.g., one or more reads, or a portion
thereof, may be compared to determine matching. More
particularly, a hash table index may be generated by break
ing down the reference genome into segments of nucleotide
sequences of known, uniform length, e.g., seeds, and storing
them in random order into individual cubicles in the refer
ence table. This may be done for a portion or the entire
reference genome so as to build an actual reference index
table that may be used to compare portions of the reference
genome with portions of one or more reads, such as from a
FASTQ file, for the purpose of determining matching.

This method may then be repeated in approximately the
same manner for a portion, e.g., a majority or all, of the reads
in the FASTQ file, so as to generate seeds of the appropriate,
e.g., selected, length. For instance, the reads of the FASTQ
file may be used to produce seeds of a predetermined length,
which seeds may be converted into binary form and fed
through a hash function and fit into a hash table index where
the binary form of the seeds may match up with the binary
segments of the reference genome, so as to give the location
as to where in the genome the sample seeds match with the
position in the reference genome.

For example, where the read is approximately 100 bases
long, a typical seed may be about half or a about a third, e.g.,
about 27 to about 30 bases, as long. Hence, in such an
instance, for each read a multiplicity of seeds, e.g., approxi
mately 3 or 4 seeds dependent on the length of the read
and/or the length of the seeds, may be generated to cover the
read. Each seed may then be converted into a binary form
and/or then be fed into the hash table and a possible result
as to its position with respect to the reference genome may
be obtained. In such instances, the entire read need not be
compared to every possible position in the entire reference
genome, rather only a portion of the reads, e.g., one or more
of the generated sample seeds per read, need only be
compared Such as to an index containing equivalent seed
portions of the reference genome. Hence, in various
instances, a hash table may be configured Such that by only
one memory look up it can typically be determined where
the sample seed and therefore read is positioned relative to
the reference genome. However, in certain instances, it may
be desirable to perform a hash function and look up on one
or more overlapping sections of seeds from one read. In Such
instances, the seeds to be generated may be formed in Such
a manner that at least a portion of their sequence overlaps
one another. This may be useful for instance in getting
around machine and/or human errors or differences between
the Subject and the reference genome and may promote
exact matching.

In certain instances, the building of the hash table as well
as the performance of one or more of the various compari
sons is executed by the hash function. The hash function is
in part a scrambler. It takes an input and gives what appears
to be a random order to it. In this instance, the hash function

US 9,483,610 B2
31

scrambler breaks down the reference genome into segments
of a preselected length and places them randomly in the hash
table. The data may then be stored evenly across the whole
storage space. Alternatively, the storage space may be seg
mented and/or storage therein may be weighted differently.
More particularly, the hash function is a function that takes
any input and gives a number, Such as a binary pattern out,
which number may typically random except that for any one
given input the same output is always returned. Hence, even
if two inputs that are fed into the hash table are almost the
same, because they are not an exact match, two completely,
randomly different outputs will be returned.

Further, since genetic material may be composed of four
basic nucleotides, e.g., “A”, “C”, “G”, and “T” (or “U” in the
case of RNA), the individual nucleotides of the sequences,
e.g., the reference segments and or reads, or portions thereof,
to be fed into the hash table may be digitized and represented
in binary format, such as where each of the four bases
represents a two bit digital code, e.g., “A”-00, “C”-01,
“G'=11, and “T/“U”=10. In certain instances, it is this
binary “seed' value that is then randomly placed in the hash
table at a known location having a value equal to its binary
representation. The hash function, therefore, works to break
down the reference genome into binary representations of
reference seeds and inserts each binary seed data into a
random space, e.g., cubicle, in the hash table based on its
numeric value. Along with this digital binary code, e.g.,
access key, each cubicle may also include the actual entry
points to where the segment originated from in the actual
reference genome, e.g., the reference position. The reference
position therefore may be a number indicating the position
of the original reference seed in the genome. This may also
be done for overlapping positions, which are put into the
table in random order but at known location, such as by the
hash function. In a manner Such as this, a hash table index
may be generated, wherein the index includes the digital
binary code for a portion or all of a plurality of segments of
one or more reference genomes, which may then be refer
enced by one or more sequences of genetic material, e.g.,
one or more reads, or portions thereof, from one or more
individuals.
When implementing the hash table and/or function as a

module, such as a module in a pipeline of modules, on
software (such as where the bit width is 2x the number of
bases in the seed described above) and/or hardware, as
referenced above, the hash table can be built so that the
binary representation of the reference seeds can be any bit
width desired. As the seeds can be long or short, the binary
representations can be greater or lesser, but typically the
seed length should be chosen so as to be long enough to be
unique, but not too long that it is too hard to find matches
between the seeds of the genome reference and the seeds of
the sample reads, such as because of errors or variants. For
instance, as indicated above, the human genome is made up
of about 3.1 billion base pairs, and a typical read may be
about 100 nucleotides in length. Hence, a useful seed length
may be between about 16 or about 18 nucleotides or less in
length to about 28 or about 30 nucleotides or more in length.
For example, in certain instances, the seed length may be a
segment of 20 nucleotides in length. In other instances, the
seed length may be a segment of 28 nucleotides in length.

Consequently, where the seed length is a segment of 20
nucleotides, each segment may be represented digitally by a
40 bit output, e.g., a 40 bit binary representation of the seed.
For example, where 2 bits are selected to represent each
nucleotide, e.g., such as where A-00, C-01, G=10, and
T=11, a seed of 20 nucleotidesx2 bits per nucleotide-a 40 bit

10

15

25

30

35

40

45

50

55

60

65

32
(5 byte) vector, e.g., number. Where the seed length may be
28 nucleotides in length, the digital, e.g., binary, represen
tation of the seed may be a 56 bit vector. Hence, where the
seed length is approximately 28 nucleotides in length, 56
bits can be employed to handle a 28 nucleotide seed length.
More particularly, where the 56 bits represents the binary
form of the seeds of the reference genome that have been
randomly positioned in the hash table, a further 56 bits can
be used to digitally represent the seeds of the read that are
to be matched against the seeds of the reference. These 56
bits may be run through a polynomial that converts the 56
bits in to 56 bits out in a 1:1 correspondence. Without
increasing or decreasing the number of bits of output,
performing this operation randomizes the storage location of
adjacent input values so that the various seed values will be
uniformly distributed among all possible storage locations.
This also serves to minimize collisions among values that
hash to the same location. In particular, in a typical hash
table implementation described herein, only a portion of the
56 bits is used as a lookup address to select a storage location
and the remaining bits are stored in that location for con
firmation of a match. If a hashing function were not used, a
great many patterns having the same address bits, but
different stored bits would have to share the same hash
location.
More specifically, there is similarity between the way the

hash table is constructed, e.g., by Software and/or hardware
placing the reference genome seeds randomly in the hash
table, and the way the hash table is accessed by the seeds of
the reads being hashed such that they both access the table
in the same way. Hence, seeds of the reference and seeds of
the sample read that are the same, e.g., have the same binary
code, will end up in the same location, e.g., address, in the
table because they access the hash table in the same manner,
e.g., for the same input pattern. This is the fastest known
method for performing a pattern match. Each lookup takes
a nearly constant amount of time to perform. This may be
contrasted with a Burrows-Wheeler method which may
require many probes (the number may vary depending on
how many bits are required to find a unique pattern) per
query to find a match, or a binary search method that takes
log(N) probes where N is the number of seed patterns in the
table.

Further, even though the hash function can break the
reference genome down into segments of seeds of any given
length, e.g., 28 base pairs, and can then convert the seeds
into a digital, e.g., binary, representation of 56 bits, not all
56 bits need be accessed entirely at the same time or in the
same way. For instance, the hash function can be imple
mented in Such a manner that the address for each seed is
designated by a number less than 56 bits, such as about 20
to about 45 bits, such as about 25 to about 40 bits, such as
about 28 to about 35 bits, including about 28 to about 30 bits
may be used as an initial key or address so as to access the
hash table.

For example, in certain instances, about 26 to about 29
bits may be used as a primary access key for the hash table,
leaving about 27 to about 30 bits left over, which may be
employed as a means for double checking the first key, e.g.,
if both the first and second keys arrive at the same cell in the
hash table, then it is relatively clear that said location is
where they belong. Specifically, in order to save space and
reduce the memory requirements and/or processing time of
the hash module, such as when the hash table and/or hash
function are implemented in hardware, the about 26 to about
29 bits representing the primary access key derived from the
original 56 bits representing the digitized seed of a particular

US 9,483,610 B2
33

sequenced read may be employed by the hashing function to
comprise the primary address, leaving about 27 to about 30
bits that can be used in a double checking method.
More particularly, in various instances, about 26 to about

29 bits from the 56 bits representing the binary form of a
reference seed may be employed to comprise a primary
address, which designated 26 to 29 bits may then be given
a randomized location in the hash table, which in turn may
then be populated with the location of where the reference
seed originally came from along with the remaining 27 to 30
bits of the seed so that an exact match may be ascertained.
The query seeds representing the reads of the Subject
genome converted into binary form may also be hashed by
the same function in Such a manner that they as well are
represented by 29 bits comprising a primary access key. If
the 29 bits representing the reference seed are an exact
match to the 29 bits representing the query seeds, they both
will be directed to the same position in the hash table. If
there was an exact match to the reference seed, then we
expect to find an entry at that location containing the same
remaining 27 to 30 bits. In such an instance, the 29 desig
nated address bits of the reference sequence may then be
looked up to identify the position in the reference to where
the query read from which the query seed was derived,
aligns.

However, with respect to the left over 27 to 30 bits, these
bits may represent a secondary access key that may also be
imported into the hash table as well, such as for the purpose
of ensuring the results of the first 26 to 29 bits of the primary
access key. Because the hash table represents a perfect 1:1
scrambling of the 28 nucleotide/56 bit sequence, and only
about 26 to about 29 of the bits are used to determine the
address, these 26 to 29 bits of the primary access key have
basically been checked, thereby determining the correct
address in a first go around. This data, therefore, does not
need to be confirmed. However, the remaining about 27 to
about 30 bits of the secondary access key must be checked.
Accordingly, the remaining about 27 to 30 bits of the query
seeds are inserted into the hash table as a means for
completing the match. Such an implementation may be
shorter than storing the 56 bit whole key, and thus, saves
space and reduces over all memory requirements and pro
cessing time of the module.
The hash table, therefore, can be configured as an index

where known sequences of one or more reference genomes
that have been broken down into sequences of predeter
mined lengths, e.g., seeds, such as of 28 nucleotides in
length, are organized into a table randomly, and one or more
sequenced reads, or “seed’ portions thereof, derived from
the sequencing of a Subject's genomic DNA or RNA, may
be passed through the hash table index. Such as in accor
dance with a hash function, so as to look up the seed in the
index, and one or more positions, e.g., locations in the
reference genome, may be obtained from the table where the
sample seed matches positions in the reference genome.
Using a brute force linear search to Scan the reference
genome for locations where a seed matches, over 3 billion
locations would have to be checked. However, by using a
hashing approach, each seed lookup can occur in approxi
mately a constant amount of time. Often, the location can be
ascertained in a single access. In cases where multiple seeds
map to the same location in the table, a few additional
accesses may be made to find the seed being currently
looked up. Hence, even though there can be 30M or more
possible locations for a given 100 nucleotide length read to
match up to, with respect to a reference genome, the hash
table and hash function can quickly determine where that

5

10

15

25

30

35

40

45

50

55

60

65

34
read is going to show up in the reference genome. By using
a hash table index, therefore, it is not necessary to search the
whole reference genome to determine where the read aligns.
As indicted above, chromosomes have a double helix

structure that is comprised of two opposed, complementary
Strands of nucleic acid sequences that are bound together so
as to form the double helix. For instance, when the double
helix structure is formed these complementary base pairs
bind one with the other in accordance with the following
formula: “A binds to “T”, and “G” binds to “C”. Accord
ingly, this results in two equal and opposite strands of
nucleic acid sequences that are the complement of each
other. More particularly, the bases of a nucleotide sequence
of one strand will be mirrored by their complementary bases
on the opposed strand resulting in two complementary
strands. However, transcription of DNA takes place in one
direction only, starting from one end of the DNA and
moving towards the other. Hence, as it turns out, for one
strand of the DNA, transcription takes place in one direction,
and for its complement Strand, transcription takes place in
the opposite direction. Consequently, the two strands of
DNA sequences turn out to be reverse complemented, that is
if the sequence order of one strand of the DNA is compared
to the other what can be seen is two strands where the
nucleotide letters of one strand are switched for their
complement in the other strand, e.g., “As for “Ts’ and “Gs”
for “Cs' and vice versa, and their order is reversed.

Because of the double helix structure of the DNA, during
the sample prep step prior to sequencing the DNA, the
chromosomes are pulled apart, e.g., de natured, separated
into separate Strands, and then lysed into Smaller segments
of a predetermined length, e.g., of 100-300 bases long,
which are then sequenced. It is possible to separate the
Strands prior to sequencing so that only one strand is
sequenced, but typically the Strands of DNA are not sepa
rated and so both strands of DNA are sequenced. Accord
ingly, in Such an instance, about half of the reads in the
FASTQ file may be reverse complemented.
Of course, both strands of the reference genome, e.g., the

complement and the reverse complement, may be processed
and hashed as described above, however this would make
the hash table twice as big, and make the performance of the
hash function take twice as long, e.g., it could require about
twice the amount of processing to compare both comple
ment and reverse complemented sequences of the two
genomic sequences. Accordingly, to save memory space,
reduce processing power, and/or decrease the time of pro
cessing, in various instances, only one strand of the model
genomic DNA need be stored in the hash table as a refer
CCC.

However, because in accordance with typical sequencing
protocols, such as where the two strands of the subject DNA
have not been isolated from one another, any read generated
from the sequenced DNA can be from either strand, the
complement or its reverse complement, it may be difficult to
determine which Strand is being processed, the complement
of the reverse complement. More specifically, in various
instances, since only one strand of the reference genome
need be used to generate the hash table, half of the reads
generated by the sequencing protocol may not match the
particular Strand, e.g., either the complement or its reverse
complement, of the model genome reference, e.g., because
half the time the read being processed is a reverse comple
ment with respect to the hashed segments of the reference
genome. Hence, only the reads generated from one strand of
the DNA will match the indexed sequences of the reference
genome, while the reads generated from the other strand will

US 9,483,610 B2
35

theoretically be their reverse complements and will not
match anywhere in the reference genome. Further, an addi
tional complication can be that for any given read that is
reverse complemented to the stored reference genome
Strand, the read may still, erroneously, match to a portion of
the reference genome, such as by mere chance. In view of
the above, in order for mapping to proceed efficiently, in
various instances, it not only must be determined where the
read matches in the reference genome it must also be
determined if the read is reverse complemented. Therefore,
the hash table and/or function module should be constructed
So as to be able to minimize these complications and/or the
types of errors that may result therefrom.

For instance, as indicated above, in one instance, the hash
table could be populated with both the complement and the
reverse complement for the reference genome so that every
read or its reverse complement of the Subject's sequenced
DNA can be matched to its respective strand in the genomic
reference DNA. In Such an instance, for any given seed in a
read, the seed should theoretically match with one strand or
the other, the complement or the reverse complement of the
reference, assuming no errors or variations. However, Stor
ing both Strands of the reference genome in the hash index
can require about twice as much storage space (e.g., instead
of 32 gigabytes 64 gigabytes may be necessary), and may
require twice the amount of processing resources and/or
twice as much time for processing. Further, such a solution
doesn’t solve the problem of palindromes that can match in
both directions, e.g., the complement and reverse comple
ment Strands.

Accordingly, although the hash table index may be con
structed to include both strands of the genomic reference
sequence. In various instances, the hash table may be
constructed so as to only include one strand of the model
genome as a reference. This may be useful because storing
the hash table in memory will require half of the storage
and/or processing resources than would be required if both
Strands were to be stored and processed, and thus, the time
required for a look up should also require less time. How
ever, storing only one strand of the genome as a reference
could cause complications because, as indicated above,
where the sequenced subject DNA is double stranded, it is
not typically known from which strand any given read was
generated. In Such an instance, therefore, the hash table
should be constructed to account for the fact the read being
mapped may be from either strand and thus can be the
complement or reverse complement of the stored segments
of the reference genome.

Accordingly, in various instances. Such as where only one
orientation of seeds from the reference are populated into the
hash table, when performing the hash function on the seeds
generated from the reads of the FASTQ file, the seed may
first be looked up in its present orientation, and/or may then
be reverse complemented and the reverse complement may
be looked up. This may require two looks up in the hash
index, e.g., twice as many, but one of the seed or its reverse
complement should match its complementary segment in the
reference genome, assuming no errors or variations, and it
should reduce the overall processing resources, e.g., less
memory is used, as well as reducing time, e.g., not as many
sequences need to be compared.
More particularly, such as where a seed in one particular

orientation is comprised of 28 nucleotides, e.g., digitally
represented in a 56 bit binary format, as described above, the
seed can be reverse complemented and the reverse comple
ment can also be represented digitally in a 56 bit binary
format. The binary format for each representation of the seed

5

10

15

25

30

35

40

45

50

55

60

65

36
sequence and its complement results in a number, e.g., an
integer, having a value represented by that number. These
two values, e.g., the two integers, may be compared and the
number with the higher or lower value, e.g., higher or lower
absolute value, may be selected as the canonical choice of
orientation and that is the one that can be stored in the hash
table and/or subjected to the hash function. For instance, in
certain instances, the number with the higher value may be
selected for being processed by the hash function.

Another method that may be employed is to construct
seeds wherein each seed is comprised of an odd number of
bases. The canonical orientation to be selected then may be
those strands having a middle base being an “A” or a “G”.
but not a “T” or a “C”, or vice versa. The hash function then
will be performed on the seeds meeting the requirements of
the canonical orientation. In Such a manner, it is only the two
bits representing the middle base that needs to be compared
to see which has the higher value and it is only the 2 bits of
that sequence that are looked up. Hence, you only have to
look at the bits representing the middle two bases. Typically,
this can work well because if the seed is an odd length, then
it always reverse complements the center base. However,
although this may work for odd seed lengths, hashing those
seeds having a higher, or lower, value, as described above,
should work for all seed lengths, albeit such a method may
require having to process, e.g., look up, more bits of data.

These methods may be performed for any number of
seeds, e.g., all seeds of the reference and/or any number of
seeds, e.g., all, derived from all or a portion of the reads of
the FASTQ file. Approximately half of the time the binary
representation of the seeds of a given orientation, e.g., the
complement, will have a higher value, and approximately
half the time the binary representation of the seeds of the
opposite orientation, e.g., the reverse complement, will have
the higher value. But, when looking at the binary numbers,
whichever one has the higher value, that is the one that gets
fed into the hash table. For instance, the binary integers for
each read and its complement may be compared, and the
sequence having the first 1 encountered is the one of the two
strands selected to be stored as the strand in the hash table
and/or be subjected to the hash function. If both strands have
a first 1 in the same position, then the Strand having the
second 1 that comes first is selected, and so on. Of course,
the read with the lower value may also be selected, in which
case the strand having the first and/or larger number of initial
0's will be selected. An indication, e.g., a flag, may also be
inserted into the hash table where the flag indicates which
orientation, complement or reverse complement, the stored
and/or hashed Strand represents, e.g., a 1 RC flag, if reverse
complemented.
More particularly, when performing the hash function and

accessing the hash table, seeds from the genomic reference
DNA and seeds derived from the reads of the sequence data
are subjected to these same operations, such as converted
into binary form and compared with its reverse complement
where the integers having the higher, or lower, values are
selected as the canonical orientations and Subjected to the
hash function and fed into the hash table to be looked up and
matched against each other. However, because it is the same
operation being performed in Substantially the same manner
on the reference sequences and the read sequences, the same
record will be derived, if the two sequences, the reference
and the Subject seeds, have the same sequence to begin with,
even if one was reverse complemented, they will all be
directed to the same cell in the hash table.

Consequently, if a certain seed in the reference having a
given sequence in a particular orientation is converted to

US 9,483,610 B2
37

binary form and hashed, and then a seed derived from a
sample read having the same sequence, but in its reverse
orientation, e.g., reverse complemented, and it is subjected
to the above protocols, because of the above disclosed
methods, when the binary value is determined and the hash
function performed, the look up will be directed to the very
same address in the hash table as if the hash function were
performed on the complimentary seed to begin with. Hence,
in this manner it doesn't matter which orientation the seed
being processed is in because it will always be directed to
the same address.

Therefore, in a manner Such as this, the methods herein
disclosed are able to hash and thereby determine the location
of the seed within the table despite its orientation, and
because of the flag in the record it will also be known if any
given seeds is reverse complemented. For instance, it will be
known if the seed was flipped from the reference and it will
also be known if the seed derived from the subject read had
to be flipped as well. Consequently, if the decision was the
same on both sides then the orientation is the same between
the read and the reference. However, if one side is flipped
and the other is not, then it can be concluded that the read
maps reverse complemented to the reference. Hence, by
using a hash table it may be determined where in the genome
a given read, or portion thereof, e.g., a seed, matches and/or
if it is reverse complimented. Further, it is to be understood
that although the above is described with respect to gener
ating the hash table from the reference genome and per
forming various ancillary hash function processes on the
seeds generated from the reads, e.g., from a FASTQ file, the
system can also be structured such that the hash table index
is generated from seeds derived from the reads of the
subjects sequenced DNA, and the various ancillary hash
function processes, as herein described, are performed on
seeds generated from the reference genome.
As set forth above, an advantage of employing a hash

table and/or a hash function is that by employing the use of
seeds, a majority of the reads of the sequenced DNA can be
matched to the reference genome often by employing single
hash lookups, and in various instances, not all seeds derived
from a read need be hashed and/or looked up. Seeds may be
of any Suitable length, such as relatively short, e.g., 16
nucleotides or less, Such as about 20 nucleotides. Such as
about 24 nucleotides, such as about 28 nucleotides, such as
about 30 or about 40 or about 50, or 75 or about 100
nucleotides, or even up to 250 or 500, or 750, or even 999
or even about 1,000 nucleotides in length; or relatively long
such as over about 1,000 nucleotides or over about 10,000,
or over about 100,000 or over 1,000,000 or more nucleotides
in length. However, as described above, there are some
disadvantages to using seeds. Such as in a hash table, in
particular with respect to selecting seeds of the appropriate
length.

For instance, any Suitable seed length may be employed
in a mapping function, however there are advantages and
disadvantages of using relatively short or relatively long
seed lengths. For example, the shorter the seed length the
less likely it is to incorporate an error or a variation that can
prevent finding a match within the hash table. However, the
shorter the seed length, the less unique it is, and the more
matching is to be expected between the seeds of the refer
ence genome and the seeds derived from the reads of the
subjects sequenced DNA. Further, the shorter the seed
length the more lookups will have to be performed by the
hash function, taking more time and increased processing
power.

10

15

25

30

35

40

45

50

55

60

65

38
On the other hand, the longer the seed length the more

unique it is and the less likely there is to be multiple
matching positions between the seeds between the seeds of
the reference and the query. Also, with a longer seed, there
need be fewer seeds within the read, so fewer look ups,
thereby taking less time and requiring less processing power.
The longer the seed, however, the more likely it is that the
seeds derived from the sequenced DNA may include an
error, such as a sequencing error and/or may incorporate a
variation as compared to the reference thus preventing a
match from being made. Longer seeds further have the
disadvantage of being more likely to hit the end of the read
and/or the end of the chromosome. Hence, where a seed is
only 20-100 nucleotides in length, there may be several
matches within the hash table, however, where the seed is
1,000 or more nucleotides in length there may be much
fewer matches, but there may be no matches at all.

There are some methods for helping to minimize these
issues. One method is to ensure there is appropriate over
sampling generated in the DNA processing steps prior to
sequencing. For instance, as it is known that there is typi
cally at least one variation within every 1,000 base pairs, the
seed length may be chosen to maximize matches, while at
the same time minimizing non-matches due to the incorpo
ration of errors and/or variants. Additionally, the use of
oversampling, Such as in the pre-sequencing and/or sequenc
ing steps, can be employed as a further method for mini
mizing various problems that are inherent to using seeds,
Such as within a hash function.
As indicated above, oversampling produces pileups. Pile

ups are those collections of reads that map in an overlapping
fashion generally to the same place in the genome. For the
majority of sample reads, such pileups may not be necessary,
Such as where the reads, and/or seeds generated therefrom,
do not include a variant and/or do not map to multiple
positions in the hash table (e.g., are not exactly duplicated in
the genome). However, for those reads and/or seeds that may
include a variant and/or an error and/or other mismatch
between the seed and/or read and the reference genome, the
production of pileups for any given region of the genome
may be useful. For instance, even though only one exact hit
between a seed generated from a read of the sample genome
is necessary So as to be able to map the sample read to the
reference genome, however, the fact that there may be a
machine error or a true variant in the sample DNA sequence
that could prevent Such an exact match between the read and
the reference from occurring, often times makes the pro
duction of overlapping pileups in the pre-sequencing and
sequencing steps useful.

For example, for those instances where a sample seed
does in fact contain a variant or an error, the production of
read pileups may be useful in distinguishing between actual
variance and machine and/or chemistry errors. In Such an
instance, a pileup can be employed to determine whether an
apparent variation is in fact a real variation. For instance, if
95% of the reads in the pileup indicate that there is a “C” in
a certain position, then odds are that is the correct call, even
if the reference genome has a “T” at that location. In such
an instance, the mismatch may be due to a SNP, e.g., a
substitution of a “C” for a “T” in that position in the genome,
where the genetic code for the individual actually varies
from that of the reference. In such an instance, the depth of
the pileup may be employed so as to compare the overlap
ping portions of the reads of the pileup at a position where
there is variance, and based on the percentage of reads in the
pileup having the variance, it can be determined whether the
variance is in fact due to an actual variation in the sample

US 9,483,610 B2
39

sequence. Accordingly, the actual sequence of the reads that
best fits the genomic sequence, may in part be determined
based on what is reflected in the pileup depths. The disad
vantage of using pileups, however, is that it requires more
processing time to process all the excess reads and/or seeds
generated thereby.

Another method for minimizing the issues inherent in
short or long reads is to employ a secondary hash table along
with or in conjunction with the first, e.g., primary hash table.
For instance, a second hash table and/or hash function may
be employed for those seeds that do not have any hits in the
primary hash table, or for those seeds that have multiple hits
in the primary hash table. For example, when comparing one
seed with another there are several outcomes that may result.
In one instance, a no hit, e.g., a no match anywhere between
the two sequences, may result, in which case this suggests a
possible error or variation such as in the seed of a read of the
Subject as compared against a seed derived from the refer
ence genome. Or there may be one or a plurality of matches
found. If a large number of matches are found, however, this
could be problematic.

For instance, with respect to the primary hash table, if
each seed in the reference being hashed appears only a few
times, e.g., once, twice, or three times, etc. then there may
not be a need for a secondary hash table and/or hash
function. However, if one or more of the seeds occurs a
greater number of times, e.g., 5, 10, 15, 20, 25, 50, 100,
1,000, or more times, this could be problematic. For
example, there are known regions in the sequence of the
human genome that have been determined to be mathemati
cally significant in that they are repeated a multiplicity of
times. Consequently, any seed mapping to one of these
positions, may in fact inadvertently map to a multiplicity of
these positions, such as where the seed comprises the
nucleotides of the overlapping sequences. In such an
instance, determining which out of all the possibilities the
seed actually aligns to may be difficult. However, as these
repeating regions are known, and/or become known, any
seed that would typically map to one or more of these
regions may be demarcated to be allocated to a secondary
hash table for processing by the first or a secondary hash
function, so as to not waste time and processing power
trying to use a primary hashing function to determine
something that is likely to be indeterminable.
More particularly, when comparing the seeds of the

genomic reference to the seeds generated from the Subjects
genomic reads, anywhere from 1 to hundreds or even
thousands of match positions may result. The present sys
tem, however, may be configured to handle a certain number
of duplicative matches, such as without the need for further
processing steps, such as where the number of matches is
below about 50, or below about 40, or below about 30, such
as below about 25 or about 20, such as below about 16
matches or below about 10 or about 5 matches. However, if
there are more matches of viable hits than this that are
returned, then the system can be configured to implement a
secondary hash function, e.g., using a secondary hash table.

Accordingly, rather than placing such seeds known to
have an increased likelihood of redundancy in the primary
hash table, such seeds can be placed in a secondary hash
table, or a secondary region in the first hash table. Addi
tionally, in some instances, a record that doesn’t communi
cate anything about the multiplicity of potential map posi
tions for that seed, but rather communicates a command to
access a secondary hash table, e.g., an extend record, can be
placed in the primary hash table. For example, the extend
record can be an instruction, such as an instruction to extend

10

15

25

30

35

40

45

50

55

60

65

40
the primary, e.g. non unique or duplicative, seed length to a
longer, more unique seed length, Such as by adding on one
or more additional bases next to it, e.g., on the end(s) of the
seed, to make it a longer seed sequence that can then get
hashed and looked up. Such as in the secondary table.
The record can be configured such that it informs or

otherwise instructs how much to extend the known redun
dant seed by a given amount, and may also instruct as to
where and/or how to extend the seed. For instance, because
the hash table is usually precomputed, e.g., originally con
structed from the seeds generated from the reference
genome(s), it may be known prior to constructing the table,
which, if any, of the seeds generated from the reference
genome are going to occur a multiplicity of times. Hence, in
various instances, it may be predetermined which seeds are
going to need to be shifted over to the secondary hash table.
For example, when constructing the hash table index, the
characteristics of the reference seed sequences being input
into the hash table as an index are known, so for every
potential seed it may be determined whether its a case that
is going to give a multiplicity of hits, e.g., from 10-10,000
hits.
More particularly, in various instances, an algorithm can

be performed to determine all the predicted matches a given
seed derived from the reference and/or the subject's reads
may have. If it is determined that for any particular seed that
it is likely to return a multiplicity of matches, a flag, e.g., a
record, may be generated. Such as within a cell of the hash
table, indicating that this particular seed is a high frequency
hit. In Such an instance, the record can further instruct that
the primary hashing of this seed, and Such seeds like it,
should be skipped over because it is not practical to perform
the number, e.g., 20-10,000 or more evaluations on such a
seed needed to accurately determine where the seed actually
maps. In such an instance, the primary hash function may
not be able to accurately determine which position out of all
the possible positions to where the seed may match, is the
one to where the read actually aligns, and thus for practical
purposes, because the seed cannot accurately be mapped at
this stage, the primary hash function may not be likely to
return a useable result, such as a result indicating accurately
where the seed actually matches in the genome.

In Such an instance, the hash function algorithm may be
configured to calculate what would need to be done to make
the redundant seed more unique. For example, the secondary
hash function may determine by how many bases the seed
needs to be extended, and in what order, and in what
location, so as to ensure that the seed is no longer redundant,
but rather Suitably unique so as to be hashed. Accordingly,
the record may also include an instruction to extend the
redundant seed, e.g., extend by two, by four, by six, etc., on
one or both ends of the seed so as to achieve a predetermined
level of uniqueness. In Such a manner as this, seeds that at
first appear to be identical can be determined to be non
identical.

For example, in Some instances, a typical record can
instruct that the duplicative seed be extended by up to X
number of odd or even bases, but in some instances,
extended by an even number of bases, such as from about 2
to 4 to about 8 to 16 to about 32 or about 64 or more bases,
Such as equally on each side. For instance, where the
extension is to be by 64 bases, the record could instruct that
32 bases be added on each side of the seed. The number of
bases by which the seed is to be extended is configurable and
may be any Suitable number dependent on how the system
is constructed. In certain instances, the secondary hash
function may be employed to determine by how many bases

US 9,483,610 B2
41

the seed should be extended so as to get a more reasonable
number of match results back. Therefore, the extension may
be to the point of relative uniqueness, such as to where there
is only 1, 2, 3, or even up to 16 or 25 or 50 match positions
where the pattern shows up. In various instances, extending
the seed equally from both ends may be useful such as to
avoid problems with reverse reads, but in various instances
the seed may be extended by the addition of one or more
bases unequally to both sides.
More particularly, such as in one example, if the seed

includes 28 bases, and an extend record, Such as an extend
record positioned within a cell in the primary hash table,
instructs the hash function to extend the seed, such as by 64
bases, then the record may further direct the hash function
as to how to extend the seed, such as by adding 32 bases on
each side of the seed. However, the extension can take place
at any Suitable position on the read and may be done in a
symmetrical or asymmetrical fashion. In certain instances,
the record may instruct the hash function to extend the seed
symmetrically because in certain instances Such a symmetri
cal extension may work better. Such as with reverse comple
ments, discussed herein. In such an instance, the same
number of bases will be added such as to the opposite sides
of the seed when extending. Although in other instances
extension may be performed by adding an even or an odd
number of bases in a non-symmetrical format, and hence, it
is not necessary to extend the seed by same number of bases
on each side. Typically, the primary hash table is configured
such that it is not completely full. For example it is desirable
to configure it not to exceed 80% or 90% of its capacity. This
is to maintain high performance of the lookup rate. When
there are a high number of collisions in hashing seeds to the
same location when constructing the table, the storing
mechanism will create a chain of references to other loca
tions so that the lookup mechanism will be able to find the
one assigned to the overflowed seed. The denser the table,
the higher the number of collisions and the longer the chains
to be followed to find the actual match.

In various instances, such as where the initial, redundant
seed is 28 bases long, and the record instructs for it to be
extended, such as from 18 to 32 to 64 bases, such as on each
opposed side of the seed, the digital representation of the
seed may be about 64 basesx2 bits per base=128 bits.
Accordingly, dependent on how the mapping module is set
up, this may be too big for the primary hash table to process.
Hence, in certain instances, to deal with the need for Such
extensive processing, in certain embodiments, the secondary
hashing module can be configured to store the information
associated with larger seeds. Since the number of seeds
requiring extension is a fraction of the total number of seeds,
the secondary hash table may be smaller than the primary
hash table. However, in other instances, such as to reduce the
processing requirements of the module, e.g., to save bits, the
known redundant portion of the sequence, e.g., the primary
sequence, may be replaced by a preselected variable Such as
of a predetermined sequence length. In Such an instance,
since the redundant sequence is already known and identi
fied, it does not need to be digitally represented in its
entirety. Rather, in various instances, all that is really needed
to be done is to Substitute the known, redundant sequence
with a known variable sequence, and all that really needs to
be looked up are the extension portions, e.g., wings, that
have been added to either side of the variable sequence,
since those are the only portions of the initial sequence that
are non-redundant and new. Hence, in certain instances, the
primary sequence may be replaced by a shorter unique
identifier code (such as a 24 bit proxy instead of 56 bit

10

15

25

30

35

40

45

50

55

60

65

42
representation) and then the extension bases can be added to
the proxy, Such as a 36 bit extension (e.g., totaling 60 bits)
that can then be put into the extend record in the primary
table. In a manner Such as this, the disadvantages of having
too short and/or too long of reads can be minimized and the
benefit of having only one or a few lookups in the hash table
can be maintained.
As indicated above, the implementation of the above

described hash function may be executed in software of
hardware. An advantage of implementing the hash module
in hardware is that the processes may be accelerated and
therefore performed in a much faster manner. For instance,
where software may include various instructions for per
forming one or more of these various functions, the imple
mentation of Such instructions often requires data and
instructions to be stored and/or fetched and/or read and/or
interpreted. Such as prior to execution. As indicated above,
however, and described in greater detail herein below, a chip
can be hardwired to perform these functions without having
to fetch, interpret, and/or perform one or more of a sequence
of instructions. Rather, the chip may be wired to perform
Such functions directly. Accordingly, in various aspects, the
disclosure is directed to a custom hardwired machine that
may be configured such that portions or all of the above
described hashing module may be implemented by one or
more network circuits, such as integrated circuits hardwired
on a chip, such as an FPGA or ASIC.

For instance, in various instances, the hash table index
may be constructed and the hash function may be performed
on a chip, and in other instances, the hash table index may
be generated off of the chip, such as via software run by a
host CPU, but once generated it is loaded onto and employed
by the chip. Such as in running the hash module. In certain
instances, the chip may include any suitable number of
gigabytes, such as 8 gigabytes, such as 16 gigabytes. Such as
32 gigabytes, such as 64 gigabytes, such as about 128
gigabytes. In various instances, the chip may be configurable
Such that the various processes of the hash module are
performed employing only a portion or all the memory
resources. For example, where a custom reference genome
may be built, a large portion of the memory may be
dedicated to storing the hash reference index and/or for
storing reads and/or for reserving space for other functional
modules to use, such as where 16 gigabytes are dedicated to
storing the reads, 8 gigabytes may be dedicated to storing the
hash index and another 8 gigabytes may be dedicated to
other processing functions. In another example, where 32
gigabytes are dedicated to storing reads, 26 gigabytes may
be dedicated for storing the primary hash table, 2.5 giga
bytes may be dedicated for storing the secondary table, and
1.5 gigabytes may be dedicated for the reference genome.

In certain embodiments, the secondary hash table may be
constructed so as to have a digital presence that is larger than
the primary hash table. For instance, in various instances, the
primary hash table can be configured to store hash records
of 8 bytes each with 8 records per hash bucket totaling 64
bytes per bucket, and the secondary hash table can be
configured to store 16 hash records totaling 128 bytes per
bucket. For each hash record containing overflow hash bits
matching the same bits of the hash key a possible matching
position in the reference genome is reported. For the primary
hash table therefore, up to 8 positions may be reported. For
the secondary hash table up to 16 positions may be reported.

Regardless of being implemented in hardware or soft
ware, in many instances, it may be useful to structure the
hash table to avoid collisions. For instance, there may be
multiple seeds that, because of various system artifacts will

US 9,483,610 B2
43

want to be inserted into the hash table at the same place
regardless of whether there is a match there or not. Such
instances are termed collisions. Often times, collisions can
be avoided, in part, by the way the hash table is structured.
Accordingly, in various instances the hash table may be
structured so as to avoid collisions, and therefore may be
configured to include one or more virtual hash buckets.

In various instances, the hash table can be structured Such
that it is represented in an 8 byte, 16 byte, 32 byte, 64 byte,
128 byte format, or the like. But in various exemplary
embodiments it may be useful to represent the hash table in
a 64 byte format. This may be useful, for instance, where the
hash function is to make use of accessing a memory. Such as
a DRAM, e.g., in a standard DIMM or SODIMM form
factor, Such as where the minimum burst size is typically 64
bytes. In Such an instance, the design of the processor for
accessing a given memory will be such that the number of
bytes needed to form a bucket in the hash table is also 64,
and therefore a maximized efficiency may be realized.
However, if the table were to be structured in a 32 byte
format, this would be inefficient because about half the bytes
delivered in a burst would contain information not needed
by the processor. That would cut the effective byte delivery
rate in half. Conversely, if the number of bytes used to form
a bucket in the hash table is a multiple of the minimum burst
size, e.g., 128, there is no performance penalty as long as the
processor actually needs all of the information returned in a
single access. Therefore, in instances where the optimal
burst size of the memory access is at a given size, e.g., 64
bytes, the hash table can be structured so burst size of the
memory is optimally exploited, such as where the bytes
allocated for representing bins in the hash table and pro
cessed by the mapping function, e.g., 64 bytes, are coinci
dent with the burst size of the memory. Consequently, where
the memory bandwidth is a constraint, the hash table can be
structured so as to optimally exploit Such constraints.

Further, it is to be noted, that although a record may be
crammed into 8 bytes, the hash function can be constructed
such that it is not the case that 8 bytes from the table are read
So as to process one record, as this could be inefficient.
Rather, all 8 records in a bucket can be read at once, or some
sub-portion thereof. This may be useful in optimizing the
processing speed of the system as, given the architecture
described above, it would cost the same time at the same
speed to process all 8 records as it would for simply
processing 1 record. Accordingly, in certain instances, the
mapping module may include a hash table that itself may
include one or more Subsections, e.g., virtual sections or
buckets, wherein each bucket may have 1 or more slots. Such
as 8 slots, such that one or more different records can be
inserted therein such as to manage collisions. However, in
certain circumstances, one or more of Such buckets may fill
up with records, so a means may be provided for storing
additional records in other buckets and recording informa
tion in the original bucket indicating that the hash table
lookup mechanism needs to look further to find a match.

Hence, in certain instances it may also be useful to
employ one or more additional methods such as for man
aging collisions, one such method may include one or more
of linear probing and/or hash chaining. For instance, if it is
not known what exactly is being searched in the hash table
or a portion thereof, such as in one bucket of the hash table,
and the particular bucket is full, then the hash lookup
function can be configured such that if one bucket is full and
is searched and the desired record not found, then the
function can be directed to step to the next bucket, e.g., the
+1 bucket, and that bucket can then be checked. In such a

10

15

25

30

35

40

45

50

55

60

65

44
manner, all buckets can be searched when looking for a
particular record. Such searching, therefore, can be per
formed sequentially looking through one bucket to another
until what is being looked for is found or it becomes clear
that it is not going to be found. Such as where an empty slot
in at least one of the buckets is found. Particularly, where
each bucket is filled sequentially, and each bucket is
searched according to the sequence of filling, if an empty
slot is found. Such as when searching sequentially through
buckets looking for a particular record, then the empty slot
could be indicative of the record not existing, because if it
did exist, it would at least have been positioned in the empty
slot, if not in the preceding buckets.
More particularly, where 64 bytes are designated for

storing the information in a hash bucket wherein 8 records
are contained, upon receiving a fetched bucket, the mapping
processor can operate on all 8 records simultaneously to
determine which are matches and which are not. For
instance, when performing a look up Such as of a seed from
a read obtained from the sequenced sample DNA against a
seed generated from the reference genome, the digital rep
resentation of the sample seed can be compared against the
reference seeds in all, e.g., 8, records so as to find a match.
In Such an instance, several outcomes may result. A direct
match may be found. A sample seed may go into the hash
table and, in Some instances, no match is found, e.g., because
it is just not exactly the same as any corresponding seed in
the reference. Such as because there was a machine or
sequencing error with respect to that seed or the read from
which it is generated, or because the person has a genetic
sequence that is different from the reference genome. Or a
the seed may go into the hash table and a plurality of
matches may be returned, such where the sample seed
matches to 2, 3, 5, 10, 15, 20, or more places in the table. In
Such an instance, multiple records may be returned all
pointing to various different locations in the reference
genome where that particular seed matches, the records for
these matches may either be in the same bucket, or a
multiplicity of buckets may have to be probed to return all
of the significant, e.g., match, results.

In certain instances, such as where space may become a
limiting factor in the hash table, e.g., in the hash table
buckets, an additional mechanism for resolving collisions
and/or for saving space may implemented. For instance,
when space becomes limited. Such as when more than 8
records need to be stored in a bucket, or when for other
instances it is desirable, a hash chaining function may be
performed. Hash chaining can involve, for example, replac
ing a record containing a specific position location in the
genomic sequence with a record containing a chain pointer
that instead of pointing to a location in the genome points to
Some other address, e.g., a second bucket in the current hash
table e.g. a primary or a secondary hash table. This has the
advantage over the linear probing method of enabling the
hash lookup mechanism to directly access the bucket con
taining the desired record rather than checking buckets
sequentially in order.

Such a process may be useful given the system architec
ture. For instance, the primary seeds being hashed. Such as
in a primary lookup, are positioned at a given location in the
table, e.g., their original position, whereas the seeds being
chained are being put in a position that may be different from
their original bucket. Hence, as indicated above, a first
portion of the digitally represented seed, e.g., about 26 to
about 29 bits, can be hashed and may be looked up in a first
step. And, in a second step, the remaining about 27 to about
30 bits can be inserted into the hash table, such as in a hash

US 9,483,610 B2
45

chain, as a means for confirming the first pass. Accordingly,
for any seed, its original address bits may be hashed in a first
step, and the secondary address bits may be used in a second,
confirmation step. Hence, the first portion of the seeds can
be inserted into primary record location, and the second
portion may be fit into the table in secondary record chain
location. And, as indicated above, in various instances, these
two different record locations may be positionally separated,
Such as by a chain format record. Therefore, in any desti
nation bucket of chaining a chain format record may posi
tionally separate the entries/records that are for local pri
mary first bucket accesses and probing and those records
that are for the chain.

Such hash chains can be continued for a multiplicity of
lengths. An advantage of Such chaining is that where one or
more of the buckets include one or more, e.g., 2, 3, 4, 5, 6,
or more empty record slots, these empty slots can be used to
store the hash chain data. Accordingly, in certain instances,
hash chaining may involve starting with an empty slot in one
bucket and chaining that slot to another slot in another
bucket, where the two buckets may be at remote locations in
the hash table. Additional care may be taken to avoid
confusion between records placed in a remote bucket as part
of a hash chain, and “native' records that hash directly into
the same bucket. As usual, the remaining about 27 to about
30 bits of the secondary access key are checked against
corresponding about 27 to 30 bits stored in the records
placed remotely in the chained bucket, but due to the distant
placement of the chained bucket from the original hash
bucket, confirming these about 27 to 30 bits would not be
enough to guarantee that a matching hash record corre
sponds to the original seed reaching this bucket by chaining,
as opposed to Some other seed reaching the same bucket by
direct access. (e.g., confirming the about 27 to 30 bits may
be a full verification when the about 26 to 29 bits used for
hash table addressing are implicitly checked by proximity to
the initial hash bucket accessed.)

To prevent retrieving a wrong hash record without need
ing to store entire hash keys in the records, a positional
system may be used in a chained bucket. Accordingly, a
chained bucket must contain a chain continuation format
record, which contains a further chain pointer to continue the
bucket chain if required; this chain continuation record must
appear in a slot of the bucket after all “native' records
corresponding to direct hash access, and before all remote
records belonging to the chain. During queries, before
following any chain pointer, any records appearing after a
chain continuation record should be ignored, and after
following any chain pointer, any records appearing before a
chain continuation record should be ignored.

For example, where the buckets are about 75%-85% full,
8 buckets may be scanned and only 15-25 slots may be
found that can be used, whereas with hash chaining these
slots may be found over 2 or 3 or 4 buckets. In such an
instance, the number of probe or chain steps required to store
a hash record matters because it influences the speed of the
system. At run time, if probing is necessary to find the
record, a multiplicity of hash look up accesses, e.g., a 64
byte bucket read, may need to be performed which slows the
system down. Hash chaining helps to minimize the average
number of accesses that have to be performed, because more
excess hash records can generally be populated per chained
bucket, which can be selected from a wide region, than per
probing bucket, which must be sequentially next. Therefore,
a given number of excess hash records can typically be
populated into a shorter sequence of chained buckets than
the necessary sequence of probing buckets, which likewise

10

15

25

30

35

40

45

50

55

60

65

46
limits the number of accesses required to locate those excess
records in a query. Nevertheless, probing remains valuable
for Smaller quantities of excess hash records, because prob
ing does not require a bucket slot to be sacrificed for a chain
pointer.

For example, after it has been determined where all the
possible matches are for the seeds against the reference
genome, it must be determined which out of all the possible
locations a given read may match to is in fact the correct
position to which it aligns. Hence, after mapping there may
be a multiplicity of positions that one or more reads appear
to match in the reference genome. Consequently, there may
be a plurality of seeds that appear to be indicating the exact
same thing, e.g., they may match to the exact same position
on the reference, if you take into account the position of the
seed in the read.
The actual alignment, therefore, must be determined for

each given read. This determination may be made in several
different ways. In one instance, all the reads may be evalu
ated so as to determine their correct alignment with respect
to the reference genome based on the positions indicated by
every seed from the read that returned position information
during the hash lookup process. However, in various
instances, prior to performing an alignment, a seed chain
filtering function may be performed on one or more of the
seeds. For instance, in certain instances, the seeds associated
with a given read that appear to map to the same general
place as against the reference genome may be aggregated
into a single chain that references the same region. All of the
seeds associated with one read may be grouped into one or
more seed chains such that each seed is a member of only
one chain. It is such chain(s) that then cause the read to be
aligned to each indicated position in the reference genome.
Specifically, in various instances, all the seeds that have the
same Supporting evidence indicating that they all belong to
the same general location(s) in the reference may be gath
ered together to form one or more chains. The seeds that
group together, therefore, or at least appear as they are going
to be near one another in the reference genome, e.g., within
a certain band, will be grouped into a chain of seeds, and
those that are outside of this band will be made into a
different chain of seeds.
Once these various seeds have been aggregated into one

or more various seed chains, it may be determined which of
the chains actually represents the correct chain to be aligned.
This may be done, at least in part, by use of a filtering
algorithm that is a heuristic designed to eliminate weak seed
chains which are highly unlikely to be the correct one.
Generally, longer seed chains, in terms of length spanned
within the read, are more likely to be correct, and further
more, seed chains with more contributing seeds are more
likely to be correct. In one example, a heuristic may be
applied wherein a relatively strong "Superior seed chain,
e.g. long or having many seeds, filters out a relatively weak
“inferior seed chain, e.g. short or having few seeds. In one
variation, the length of an inferior chain determines a
threshold length, e.g. twice as long, such that a Superior
chain of at least the threshold length can filter it out. In
another variation, the seed count of an inferior chain deter
mines a threshold seed count, e.g. five times as many seeds,
such that a superior chain of at least the threshold seed count
can filter it out. In another variation, the length of an inferior
chain determines a threshold seed count, e.g. two times the
seed count minus the seed length, such that a Superior chain
of at least the threshold seed count can filter it out. In some
variations, such as when chimeric alignments of reads are

US 9,483,610 B2
47

desired, only Superior seed chains Substantially overlapping
inferior seed chains within the read may filter them out.

This process weeds out those seeds that have a low
probability of having identified a region of the reference
genome where a high quality alignment of the read can be
found. It, therefore, may be useful because it reduces the
number of alignments that need to be performed for each
read thereby accelerating the processing speed and saving
time. Accordingly, this process may be employed, in part, as
a tuning feature, whereby when greater speed is desired, e.g.,
high speed mode, more detailed seed chain filtering is
performed, and where greater overall accuracy is desired,
e.g., enhanced accuracy mode, less seed chain filtering is
performed, e.g., all the seed chains are evaluated.

In various embodiments, seed editing may be performed,
Such as prior to a seed chain filtering step. For instance, for
each read, if all of the seeds of that read are subjected to a
mapping function and none of them returned a hit, then there
may be a high probability that there was one or more errors
in the read, for instance, an error that the sequencer made.
In Such an instance, an editing function, Such as a one
change editing process, e.g., an SNP editing process, can be
performed on each seed, such as where a no match outcome
was returned. For example, at position X, a one change edit
function may instruct that the designated nucleotide be
substituted for one of the other 3 nucleotides and it is
determined whether a hit, e.g., a match, is obtained by
making that change, e.g., a SNP Substitution. This one
change editing may be performed in the same manner on
every position in the seed and/or on every seed of the read,
e.g., Substituting each alternative base for each position in
the seed. Additionally, where one change is made in one
seed, the effects that change would have on every other
overlapping seed may be determined in view of that one
change.

Such editing may also be performed for inserts, such as
where one of the four nucleotides is added at a given insert
position, X, and it is determined if a hit was obtained by
making the substitution. This may be done for all four
nucleotides and/or for all positions (X, X-1, X-2, X-3, etc.)
in the seed and/or all the seeds in the reads. Such editing may
also be performed for deletions, such as where one of the
four nucleotides is deleted at a given position, X, in the seed,
and it is determined if a hit was obtained by making the
deletion. This may then be repeated for all positions X-1,
X+2, X-3, etc. Such editing, however, can result in a lot of
extra processing work and time, Such as by requiring a
multiplicity of additional lookups. Such as 2, or 3, or 4, or 5.
or 10, or 50, or 100, or 200, etc. Nevertheless, such extra
processing and time may be useful if by Such editing an
actual hit can be determined, e.g., a match made, where
before there was no match. In such an instance, it can then
typically be determined that an error was made and further
that it was corrected, thereby salvaging the read.

Additionally, a further heuristic may be employed so as to
determine whether an editing function should be performed
or not, whereby the algorithm performs a calculation to
determine the probability that a hit will be obtained if such
editing were to be performed. If a certain threshold prob
ability is met, such as 85% likelihood, then such seed chain
editing may be performed. For instance, the system can
generate various statistics on the seed chains, such as
calculating how many high frequency hits are present and/or
how many seed chains contain high frequency hits, and
thereby determine if seed chain editing is likely to make a
difference in determining matches. For example, if it is
determined that there are a large proportion of high fre

10

15

25

30

35

40

45

50

55

60

65

48
quency hits, then, in Such an instance, seed chain editing
may be skipped because it is unlikely to make various of the
sequences unique enough to give a hit within a reasonable
number of hash table look ups, such as 100 or fewer, 50 or
fewer, 40 or fewer, 30 or fewer, 20 or fewer, or 10 or fewer.
Such statistics can be reviewed and it may then be deter
mined whether to do seed editing or not. For instance, if the
statistics show that for any one read, if half the positions
show no match, and the others show high frequency
matches, then it is probably worth doing seed editing,
because where no matches are returned, there is probably an
error, but if a lot of high frequency matches are returned it
may simply not be worth performing seed editing.
The outcome from performing one or more of these

mapping, filtering, and/or editing functions is a list of reads
which includes for each read a list of all the possible
locations to where the read may matchup with the reference
genome. Hence, a mapping function may be performed so as
to quickly determine where the reads of the FASTQ file
obtained from the sequencer map to the reference genome,
e.g., to where in the whole genome the various reads map.
However, if there is an error in any of the reads or a genetic
variation, you may not get an exact match to the reference
and/or there may be several places one or more reads appear
to match. It, therefore, must be determined where the various
reads actually align with respect to the genome as a whole.

Accordingly, after mapping and/or filtering and/or edit
ing, the location positions for a large number of reads have
been determined, where for some of the individual reads a
multiplicity of location positions have been determined, and
it now needs to be determined which out of all the possible
locations is in fact the true or most likely location to which
the various reads align. Such aligning may be performed by
one or more algorithms, such as a dynamic programming
algorithm that matches the mapped reads to the reference
genome and runs an alignment function thereon.
An exemplary aligning function compares one or more,

e.g., all of the reads, to the reference. Such as by placing
them in a graphical relation to one another, e.g., Such as in
a table, e.g., a virtual array or matrix, where the sequence of
one of the reference genome or the mapped reads is placed
on one dimension or axis, e.g., the horizontal axis, and the
other is placed on the opposed dimensions or axis, such as
the vertical axis. A conceptual scoring wave front is then
passed over the array So as to determine the alignment of the
reads with the reference genome, such as by computing
alignment scores for each cell in the matrix.
The scoring wave front represents one or more, e.g., all,

the cells of the matrix, or a portion of those cells, which may
be scored independently and/or simultaneously according to
the rules of dynamic programming applicable in the align
ment algorithm, such as Smith-Waterman, and/or Needle
man-Wunsch, and/or related algorithms. For example, tak
ing the origin of the matrix (corresponding to the beginning
of the read and/or the beginning of a reference window of
the conceptual scoring wave front) to be at the top-left
corner, first only the top-left cell at coordinates (0,0) of the
matrix may be scored, e.g., a 1-cell wavefront; next, the two
cells to the right and below at coordinates (0,1) and (1,0)
may be scored, e.g., a 2-cell wave front; next the three cells
at (0.2). (1,1), and (2,0) may be scored, e.g., a 3-cell wave
front. These exemplary wave fronts may then extend diago
nally in Straight lines from bottom-left to top-right, and the
motion of the wavefront from step to step is diagonally from
top-left to bottom-right through the matrix. Alignment
scores may be computed sequentially or in other orders. Such
as by computing all the scores in the top row from left to

US 9,483,610 B2
49

right, followed by all the scores in the next row from left to
right, etc. In this manner the diagonally Sweeping diagonal
wave front represents an optimal sequence of batches of
scores computed simultaneously or in parallel in a series of
wave front steps.

For instance, in one embodiment, a window of the refer
ence genome containing the segment to which a read was
mapped is placed on the horizontal axis, and the read is
positioned on the vertical axis. In a manner Such as this an
array or matrix is generated, e.g., a virtual matrix, whereby
the nucleotide at each position in the read may be compared
with the nucleotide at each position in the reference window.
As the wave front passes over the array, all potential ways
of aligning the read to the reference window are considered,
including if changes to one sequence would be required to
make the read match the reference sequence, such as by
changing one or more nucleotides of the read to other
nucleotides, or inserting one or more new nucleotides into
one sequence, or deleting one or more nucleotides from one
Sequence.
An alignment score, representing the extent of the

changes that would be required to be made to achieve an
exact alignment, is generated, wherein this score and/or
other associated data may be stored in the given cells of the
array. Each cell of the array corresponds to the possibility
that the nucleotide at its position on the read axis aligns to
the nucleotide at its position on the reference axis, and the
score generated for each cell represents the partial alignment
terminating with the cell's positions in the read and the
reference window. The highest score generated in any cell
represents the best overall alignment of the read to the
reference window. In various instances, the alignment may
be global, where the entire read must be aligned to some
portion of the reference window, such as using a Needle
man-Wunsch or similar algorithm; or in other instances, the
alignment may be local, where only a portion of the read
may be aligned to a portion of the reference window, Such
as by using a Smith-Waterman or similar algorithm.
The size of the reference window may be any suitable

size. For instance, since a typical read may be from about
100 to about 1,000 nucleotides long, the length of the
reference window accordingly, in some instances, may be
from about 100 to 1,000 nucleotides long or longer. How
ever, in Some instances, the length of the reads may be
greater, and/or the length of the reference window can be
greater such as about 10,000, 25,000, 50,000, 75,000, 100,
000, 200,000 nucleotides long or more. It may be advanta
geous for the reference window to be padded somewhat
longer than the read, such as including 32 or 64 or 128 or
200 or even 500 extra nucleotides in the reference window
beyond the extremes of the reference genome segment to
which the read was mapped. Such as to permit insertions
and/or deletions near the ends of the read to be fully
evaluated. For instance, if only a portion of the read was
mapped to a segment of the reference, extra padding may be
applied to the reference window corresponding to the
unmapped portions of the read, or longer by Some factor,
such as 10% or 15% or 20% or 25% or even 50% or more,
So as to allow the unmapped portions of the read space to
fully align to the reference window. In some instances,
however, the length of the reference window may be
selected to be shorter than the length of the reads, such as
where a long portion of the read is not mapped to the
reference, such as more or less than 1000 nucleotides at one
end of the read, such as in order to focus the alignment on
the mapped portion.

5

10

15

25

30

35

40

45

50

55

60

65

50
The alignment wave front may be of unlimited length, or

limited to any suitable fixed length, or of variable length. For
instance, all cells along the entire diagonal line of each wave
front step extending fully from one axis to the other axis may
be scored. Alternatively, a limited length, such as 64 cells
wide, may be scored on each wave front step. Such as by
tracing a diagonally 64-cell wide band of scored cells
through the matrix, and leaving cells outside of this band
unscored. In some instances, it may be unnecessary to
calculate scores far from a band around the true alignment
path, and Substantial work may be saved by computing
scores only in a limited bandwidth, using a fixed length
scoring wave front, as herein described.

Accordingly, in various instances, an alignment function
may be performed, such as on the data obtained from the
mapping module. Hence, in various instances, an alignment
function may form a module. Such as an alignment module,
that may form part of a system, e.g., a pipeline, that is used,
Such as in addition with a mapping module, in a process for
determining the actual entire genomic sequence, or a portion
thereof, of an individual. For instance, the output returned
from the performance of the mapping function, Such as from
a mapping module, e.g., the list of possibilities as to where
one or more or all of the reads maps to one or more positions
in one or more reference genomes, may be employed by the
alignment function so as to determine the actual sequence
alignment of the subject’s sequenced DNA.

Such an alignment function may at times be useful
because, as described above, often times, for a variety of
different reasons, the sequenced reads do not always match
exactly to the reference genome. For instance, there may be
an SNP (single nucleotide polymorphism) in one or more of
the reads, e.g., a Substitution of one nucleotide for another at
a single position; there may be an “indel.” insertion or
deletion of one or more bases along one or more of the read
sequences, which insertion or deletion is not present in the
reference genome; and/or there may be a sequencing error
(e.g., errors in sample prep and/or sequencer read and/or
sequencer output, etc.) causing one or more of these appar
ent variations. Accordingly, when a read varies from the
reference, such as by an SNP or indel, this may be because
the reference differs from the true DNA sequence sampled,
or because the read differs from the true DNA sequence
sampled. The problem is to figure out how to correctly align
the reads to the reference genome given the fact that in all
likelihood the two sequences are going to vary from one
another in a multiplicity of different ways.

Accordingly, in various instances, the input into an align
ment function, Such as from a mapping function, such as a
prefix/suffix tree, or a Burrows/Wheeler transform, or a hash
table and/or hash function, may be a list of possibilities as
to where one or more reads may match to one or more
positions of one or more reference sequences. For instance,
for any given read, it may match any number of positions in
the reference genome. Such as at 1 location or 16, or 32, or
64, or 100, or 500, or 1,000 or more locations where a given
read maps to in the genome. However, any individual read
was derived, e.g., sequenced, from only one specific portion
of the genome. Hence, in order to find the true location from
where a given particular read was derived, an alignment
function may be performed, e.g., a Smith-Waterman gapped
alignment, a Needleman-Wunsch alignment, etc., so as to
determine where in the genome one or more of the reads was
actually derived. Such as by comparing all of the possible
locations where a match occurs and determining which of all
the possibilities is the most likely location in the genome

US 9,483,610 B2
51

from which the read was sequenced, on the basis of which
locations alignment score is greatest.
As indicated, typically, an algorithm is used to perform

Such an alignment function. For example, a Smith-Water
man and/or a Needleman-Wunsch alignment algorithm may
be employed to align two or more sequences against one
another. In this instance, they may be employed in a manner
so as to determine the probabilities that for any given
position where the read maps to the reference genome that
the mapping is in fact the position from where the read
originated. Typically these algorithms are configured so as to
be performed by Software, however, in various instances,
Such as herein presented, one or more of these algorithms
can be configured so as to be executed in hardware, as
described in greater detail herein below.

In particular, the alignment function operates, at least in
part, to align one or more, e.g., all, of the reads to the
reference genome despite the presence of one or more
portions of mismatches, e.g., SNPs, insertions, deletions,
structural artifacts, etc. So as to determine where the reads
are likely to fit in the genome correctly. For instance, the one
or more reads are compared against the reference genome,
and the best possible fit for the read against the genome is
determined, while accounting for Substitutions and/or indels
and/or structural variants. However, to better determine
which of the modified versions of the read best fits against
the reference genome, the proposed changes must be
accounted for, and as such a scoring function may also be
performed.

For instance, a scoring function may be performed, e.g.,
as part of an overall alignment function, whereby as the
alignment module performs its function and introduces one
or more changes into a sequence being compared to another,
e.g., so as to achieve a better or best fit between the two, for
each change that is made so as to achieve the better
alignment, a number is detracted from a starting score, e.g.,
either a perfect score, or a Zero starting score, in a manner
Such that as the alignment is performed the score for the
alignment is also determined. Such as where matches are
detected the score is increased, and for each change intro
duced a penalty is incurred, and thus, the best fit for the
possible alignments can be determined, for example, by
figuring out which of all the possible modified reads fits to
the genome with the highest score. Accordingly, in various
instances, the alignment function may be configured to
determine the best combination of changes that need to be
made to the read(s) to achieve the highest scoring alignment,
which alignment may then be determined to be the correct
or most likely alignment.

In view of the above, there are, therefore, at least two
goals that may be achieved from performing an alignment
function. One is a report of the best alignment, including
position in the reference genome and a description of what
changes are necessary to make the read match the reference
segment at that position, and the other is the alignment
quality score. For instance, in various instances, the output
from a the alignment module may be a Compact Idiosyn
cratic Gapped Alignment Report, e.g., a CIGAR String,
wherein the CIGAR string output is a report detailing all the
changes that were made to the reads so as to achieve their
best fit alignment, e.g., detailed alignment instructions indi
cating how the query actually aligns with the reference. Such
a CIGAR string readout may be useful in further stages of
processing so as to better determine that for the given
Subject’s genomic nucleotide sequence, the predicted varia

10

15

25

30

35

40

45

50

55

60

65

52
tions as compared against a reference genome are in fact true
variations, and not just due to machine, Software, or human
eO.

As set forth above, in various embodiments, alignment is
typically performed in a sequential manner, wherein the
algorithm receives read sequence data, Such as from a
mapping module, pertaining to a read and one or more
possible locations where the read may potentially map to the
one or more reference genomes, and further receives
genomic sequence data, Such as from one or more memories,
pertaining to the one or more positions in the one or more
reference genomes to which the read may map. In particular,
in various embodiments, the mapping module processes the
reads, such as from a FASTQ file, and maps each of them to
one or more positions in the reference genome to where they
may possibly align. The aligner then takes these predicted
positions and uses them to align the reads to the reference
genome. Such as by building a virtual array by which the
reads can be compared with the reference genome.

In performing this function the aligner evaluates each
mapped position for each individual read and particularly
evaluates those reads that map to multiple possible locations
in the reference genome and scores the possibility that each
position is the correct position. It then compares the best
scores, e.g., the two best scores, and makes a decision as to
where the particular read actually aligns. For instance, in
comparing the first and second best alignment scores, the
aligner looks at the difference between the scores, and if the
difference between them is great, then the confidence score
that the one with the bigger score is correct will be high.
However, where the difference between them is small, e.g.,
Zero, then the confidence score in being able to tell from
which of the two positions the read actually is derived is low,
and more processing may be useful in being able to clearly
determine the true location in the reference genome from
where the read is derived. Hence, the aligner in part is
looking for the biggest difference between the first and
second best confidence scores in making its call that a given
read maps to a given location in the reference genome.
Ideally, the score of the best possible choice of alignment is
significantly greater than the score for the second best
alignment for that sequence.

There are many different ways an alignment scoring
methodology may be implemented, for instance, each cell of
the array may be scored or a Sub-portion of cells may be
scored, such as in accordance with the methods disclosed
herein. Typically, each alignment match, corresponding to a
diagonal step in the alignment matrix, contributes a positive
score, Such as +1, if the corresponding read and reference
nucleotides match; and a negative score, Such as -4, if the
two nucleotides mismatch. Further, each deletion from the
reference, corresponding to a horizontal step in the align
ment matrix, contributes a negative score, such as -7. and
each insertion into the reference, corresponding to a vertical
step in the alignment matrix, contributes a negative score,
Such as -7.

In various instances, scoring parameters for nucleotide
matches, nucleotide mismatches, insertions, and deletions
may have any various positive or negative or Zero values. In
various instances, these scoring parameters may be modified
based on available information. For instance, in certain
instances, alignment gaps (insertions or deletions) are penal
ized by an affine function of the gap length, for example -7
for the first deleted (resp. inserted) nucleotide, but only -1
for each additional deleted (resp. inserted) nucleotide in
continuous sequence. In various implementations, afline gap
penalties may be achieved by splitting gap (insertion or

US 9,483,610 B2
53

deletion) penalties into two components, such as a gap open
penalty, e.g. -6, applied to the first step in a gap; and a gap
extend penalty, e.g. -1, applied to every or further steps in
the gap. Afline gap penalties may yield more accurate
alignments, such as by letting alignments containing long
insertions or deletions achieve appropriately high scores.
Further, each lateral move may have the same or different
costs, such as the same cost per step, and/or where gaps
occur, Such gaps can come at a higher or lower costs. Such
that the cost for lateral movements of the aligner may be less
expensive than the costs for gaps. Accordingly, in various
embodiments, affine gap scoring may be implemented, how
ever, this can be expensive in Software and/or hardware,
because it typically requires a plurality, e.g., 3 scores, for
each cell to be scored, and hence, in various embodiments
afline gap scoring is not implemented.

In various instances, scoring parameters may also be
sensitive to “base quality scores' corresponding to nucleo
tides in the read. Some sequenced DNA read data, in formats
Such as FASTQ, may include a base quality score associated
with each nucleotide, indicating an estimated probability
that the nucleotide is incorrect, e.g. due to a sequencing
error. In some read data, base quality scores may indicate the
likelihood that an insertion and/or deletion sequencing error
is present in or adjacent to each position, or additional
quality scores may provide this information separately.
More accurate alignments, therefore, may be achieved by
making scoring parameters, including any or all of nucleo
tide match scores, nucleotide mismatch scores, gap (inser
tion and/or deletion) penalties, gap open penalties, and/or
gap extend penalties, vary according to a base quality score
associated with the current read nucleotide or position. For
example, score bonuses and/or penalties could be made
Smaller when a base quality score indicates a high probabil
ity a sequencing or other error being present. Base quality
sensitive scoring may be implemented, for example, using a
fixed or configurable lookup-table, accessed using a base
quality score, which returns corresponding scoring param
eters.

In a hardware implementation in an integrated circuit,
such as an FPGA or ASIC, a scoring wave front may be
implemented as a linear array of scoring cells, such as 16
cells, or 32 cells, or 64 cells, or 128 cells or the like. Each
of the scoring cells may be built of digital logic elements in
a wired configuration to compute alignment scores. Hence,
for each step of the wave front, for instance, each clock
cycle, or some other fixed or variable unit of time, each of
the scoring cells, or a portion of the cells, computes the score
or scores required for a new cell in the virtual alignment
matrix. Notionally, the various scoring cells are considered
to be in various positions in the alignment matrix, corre
sponding to a scoring wave front as discussed herein, e.g.,
along a straight line extending from bottom-left to top-right
in the matrix. As is well understood in the field of digital
logic design, the physical scoring cells and their comprised
digital logic need not be physically arranged in like manner
on the integrated circuit.

Accordingly, as the wave front takes steps to Sweep
through the virtual alignment matrix, the notional positions
of the scoring cells correspondingly update each cell, for
example, notionally “moving a step to the right, or for
example, a step downward in the alignment matrix. All
scoring cells make the same relative notional movement,
keeping the diagonal wave front arrangement intact. Each
time the wave front moves to a new position, e.g., with a
vertical downward step, or a horizontal rightward step in the
matrix, the scoring cells arrive in new notional positions,

10

15

25

30

35

40

45

50

55

60

65

54
and compute alignment scores for the virtual alignment
matrix cells they have entered.

In Such an implementation, neighboring scoring cells in
the linear array are coupled to communicate query (read)
nucleotides, reference nucleotides, and previously calcu
lated alignment scores. The nucleotides of the reference
window may be fed sequentially into one end of the wave
front, e.g., the top-right scoring cell in the linear array, and
may shift from there sequentially down the length of the
wave front, so that at any given time, a segment of reference
nucleotides equal in length to the number of scoring cells is
present within the cells, one successive nucleotide in each
Successive scoring cell.

Accordingly, each time the wave front steps horizontally,
another reference nucleotide is fed into the top-right cell,
and other reference nucleotides shift down-left through the
wave front. This shifting of reference nucleotides may be the
underlying reality of the notional movement of the wave
front of scoring cells rightward through the alignment
matrix. Hence, the nucleotides of the read may be fed
sequentially into the opposite end of the wave front, e.g. the
bottom-left scoring cell in the linear array, and shift from
there sequentially up the length of the wave front, so that at
any given time, a segment of query nucleotides equal in
length to the number of scoring cells is present within the
cells, one Successive nucleotide in each Successive scoring
cell.

Likewise, each time the wave front steps vertically,
another query nucleotide is fed into the bottom-left cell, and
other query nucleotides shift up-right through the wave
front. This shifting of query nucleotides is the underlying
reality of the notional movement of the wavefront of scoring
cells downward through the alignment matrix. Accordingly,
by commanding a shift of reference nucleotides, the wave
front may be moved a step horizontally, and by commanding
a shift of query nucleotides, the wave front may be moved
a step vertically. Accordingly, to produce generally diagonal
wave front movement, such as to follow a typical alignment
of query and reference sequences without insertions or
deletions, wave front steps may be commanded in alternat
ing vertical and horizontal directions.

Accordingly, neighboring scoring cells in the linear array
may be coupled to communicate previously calculated align
ment scores. In various alignment scoring algorithms. Such
as a Smith-Waterman or Needleman-Wunsch, or such vari
ant, the alignment score(s) in each cell of the virtual align
ment matrix may be calculated using previously calculated
scores in other cells of the matrix, such as the three cells
positioned immediately to the left of the current cell, above
the current cell, and diagonally up-left of the current cell.
When a scoring cell calculates new score(s) for another
matrix position it has entered, it must retrieve Such previ
ously calculated scores corresponding to Such other matrix
positions. These previously calculated scores may be
obtained from storage of previously calculated scores within
the same cell, and/or from storage of previously calculated
scores in the one or two neighboring scoring cells in the
linear array. This is because the three contributing score
positions in the virtual alignment matrix (immediately left,
above, and diagonally up-left) would have been scored
either by the current scoring cell, or by one of its neighbor
ing scoring cells in the linear array.

For instance, the cell immediately to the left in the matrix
would have been scored by the current scoring cell, if the
most recent wave front step was horizontal (rightward), or
would have been scored by the neighboring cell down-left in
the linear array, if the most recent wave front step was

US 9,483,610 B2
55

vertical (downward). Similarly, the cell immediately above
in the matrix would have been scored by the current scoring
cell, if the most recent wave front step was vertical (down
ward), or would have been scored by the neighboring cell
up-right in the linear array, if the most recent wavefront step
was horizontal (rightward). Similarly, the cell diagonally
up-left in the matrix would have been scored by the current
scoring cell, if the most recent two wave front steps were in
different directions, e.g., down then right, or right then
down, or would have been scored by the neighboring cell
up-right in the linear array, if the most recent two wave front
steps were both horizontal (rightward), or would have been
scored by the neighboring cell down-left in the linear array,
if the most recent two wave front steps were both vertical
(downward).

Accordingly, by considering information on the last one
or two wave front step directions, a scoring cell may select
the appropriate previously calculated scores, accessing them
within itself, and/or within neighboring scoring cells, ulti
lizing the coupling between neighboring cells. In a variation,
scoring cells at the two ends of the wavefront may have their
outward score inputs hard-wired to invalid, or Zero, or
minimum-value scores, so that they will not affect new score
calculations in these extreme cells.
A wave front being thus implemented in a linear array of

scoring cells, with Such coupling for shifting reference and
query nucleotides through the array in opposing directions,
in order to notionally move the wave front in vertical and
horizontal steps, and coupling for accessing scores previ
ously computed by neighboring cells in order to compute
alignment score(s) in new virtual matrix cell positions
entered by the wave front, it is accordingly possible to score
a band of cells in the virtual matrix, the width of the wave
front, such as by commanding Successive steps of the wave
front to sweep it through the matrix. For a new read and
reference window to be aligned, therefore, the wave front
may begin positioned inside the scoring matrix, or, advan
tageously, may gradually enter the scoring matrix from
outside, beginning e.g., to the left, or above, or diagonally
left and above the top-left corner of the matrix.

For instance, the wave front may begin with its top-left
scoring cell positioned just left of the top-left cell of the
virtual matrix, and the wave front may then Sweep rightward
into the matrix by a series of horizontal steps, scoring a
horizontal band of cells in the top-left region of the matrix.
When the wave front reaches a predicted alignment rela
tionship between the reference and query, or when matching
is detected from increasing alignment scores, the wave front
may begin to Sweep diagonally down-right, by alternating
vertical and horizontal steps, scoring a diagonal band of cells
through the middle of the matrix. When the bottom-left
wave front scoring cell reaches the bottom of the alignment
matrix, the wave front may begin Sweeping rightward again
by Successive horizontal steps, until some or all wave front
cells Sweep out of the boundaries of the alignment matrix,
scoring a horizontal band of cells in the bottom-right region
of the matrix.

In a variation, increased efficiency may be obtained from
the alignment wave front by sharing its scoring cells
between two Successive alignment operations. A next align
ment matrix having been established in advance, as the
top-right portion of the wave front exits the bottom-right
region of the current alignment matrix, it may enter, imme
diately, or after crossing a minimum gap Such as one cell or
three cells, the top-right region of the next alignment matrix.
In this manner, the horizontal wave front sweep out of one
alignment matrix can be the same motion as the horizontal

5

10

15

25

30

35

40

45

50

55

60

65

56
wave front Sweep into the next alignment matrix. Doing this
may include the reference and query bases of the next
alignment to be fed into those scoring cells crossing into the
next alignment matrix, and can reduce the average time
consumed per alignment by the time to execute a number of
wave front steps almost equal to the number of alignment
cells in the wave front, e.g., Such as 64 or 63 or 61 steps,
which may take e.g. 64 or 63 or 61 clock cycles.
The number of Scoring cells in an implementation of an

alignment wave front may be selected to balance various
factors, including alignment accuracy, maximum insertion
and deletion length, area, cost, and power consumption of
the digital logic, clock frequency of the aligner logic, and
performance of the overall integrated circuit. A long wave
front is desirable for good alignment accuracy, especially
because a wave front of N cells can align across indels
approximately N nucleotides long, or slightly shorter. But a
longer wave front costs more logic, which consumes more
power. Further, a longer wave front can increase wire
routing complexity and delays on the integrated circuit,
leading to lower maximum clock frequencies, reducing net
aligner performance. Further still, if an integrated circuit has
a limited size or power consumption, using a longer wave
front may require less logic to be implemented on the IC
elsewhere. Such as replicating fewer entire wave fronts, or
other aligner or mapper logic components, this decreasing
net performance of the IC. In one particular embodiment, 64
scoring cells in the wave front may give an acceptable
balance of these factors.

Accordingly, where the wave front is X, e.g., 64 scoring
cells wide, the scored band in the alignment matrix will
likewise be 64 cells wide (measured diagonally). The matrix
cells outside of this band do not necessarily need to be
processed nor their scores calculated, provided that the
optimal (best-scoring) alignment path through the matrix
stays within the scored band. In a relatively small matrix,
therefore, used to align relatively short reads, e.g., 100
nucleotide or 250 nucleotide reads, this may be a safe
assumption, Such as if the wave front Sweeps a perfect
diagonal along the predicted aligned position of the read.

However, in Some instances, such as in a large alignment
matrix used to align long reads, e.g., 1000 or 10,000 or
100,000 nucleotides, there may be a substantial risk of
accumulated indels causing the true alignment to deviate
from a perfect diagonal, Sufficiently far in aggregate that it
may escape the scored band. In Such instances, it may be
useful to steer the wave front so that the highest set of scores
will be near the center of the wave front. Consequently, as
the wave front performs its sweep, if the highest scores start
to move one way or the other, e.g., left to right, the wave
front is shifted over to track this move. For instance, if the
highest scores are observed in scoring cells Substantially
up-right from the center of the wave front, the wave front
may be steered some distance straight rightward by Succes
sive horizontal steps, until the highest scores return near the
center of the wave front.

Accordingly, an automatic steering mechanism may be
implemented in the wave front control logic, to determine a
steering target position within the length of the wave front,
based on current and past scores observed in the wave front
scoring cells, and to steer the wave front toward this target
if it is off-center. More particularly, the position of the
maximum score in the most recently scored wave front
position may be used as a steering target. This is an effective
method in some instances. In some instances, however, the
maximum score position may be a poor steering target. For
instance, with some combinations of alignment scoring

US 9,483,610 B2
57

parameters, when a long indel commences, and scores
accordingly begin to decline, a pattern of two higher-score
peaks with a lower-score valley between them can form
along the wavefront, the two peaks drifting apart as the indel
continues.

Because it cannot be easily determined whether the event
in progress is an insertion or a deletion, it is important for the
wave front to track diagonally until Successful matching
commences again, either some distance to the right for a
deletion, or some distance downward for an insertion. But if 10
two spreading score peaks form, one of them is likely to be
slightly higher than the other, and could pull the automatic
steering in that direction, causing the wave front to lose the
alignment if the actual indel was in the other direction. A
more robust method, therefore, may be to subtract a delta
value from the maximum observed wave front score to
determine a threshold score, identify the two extreme scor
ing cells at least equal to this threshold score, and use the
midpoint between these extreme cells as the steering target.
This will tend to guide diagonally between a two-peak score
pattern. Other steering criteria can readily be applied, how
ever, which serve to keep higher scores near the center of the
wave front. If there is a delayed reaction between obtaining
scores from wave front scoring cells and making a corre
sponding steering decision, hysteresis can advantageously
be applied to compensate for steering decisions made in the
intervening time, to avoid oscillating patterns of automatic
wave front steering.
One or more of Such alignment procedures may be

performed by any suitable alignment algorithm, Such as a
Needleman-Wunsch alignment algorithm and/or a Smith
Waterman alignment algorithm that may have been modified
to accommodate the functionality herein described. In gen
eral both of these algorithms and those like them basically
perform, in some instances, in a similar manner. For
instance, as set forth above, these alignment algorithms
typically build the virtual array in a similar manner Such
that, in various instances, the horizontal top boundary may
be configured to represent the genomic reference sequence,
which may be laid out across the top row of the array
according to its base pair composition. Likewise, the vertical
boundary may be configured to represent the sequenced and
mapped query sequences that have been positioned in order,
downwards along the first column, Such that their nucleotide
sequence order is generally matched to the nucleotide
sequence of the reference to which they mapped. The
intervening cells may then be populated with scores as to the
probability that the relevant base of the query at a given
position, is positioned at that location relative to the refer
ence. In performing this function, a Swath may be moved
diagonally across the matrix populating scores within the
intervening cells and the probability for each base of the
query being in the indicated position may be determined.

With respect to a Needleman-Wunsch alignment function,
which generates optimal global (or semi-global) alignments,
aligning the entire read sequence to some segment of the
reference genome, the wave front Steering may be config
ured such that it typically sweeps all the way from the top
edge of the alignment matrix to the bottom edge. When the
wave front Sweep is complete, the maximum score on the
bottom edge of the alignment matrix (corresponding to the
end of the read) is selected, and the alignment is back-traced
to a cell on the top edge of the matrix (corresponding to the
beginning of the read). In various of the instances disclosed
herein, the reads can be any length long, can be any size, and
there need not be extensive read parameters as to how the
alignment is performed, e.g., in various instances, the read

15

25

30

35

40

45

50

55

60

65

58
can be as long as a chromosome. In Such an instance,
however, the memory size and chromosome length may be
limiting factor.

With respect to a Smith-Waterman algorithm, which gen
erates optimal local alignments, aligning the entire read
sequence or part of the read sequence to Some segment of the
reference genome, this algorithm may be configured for
finding the best scoring possible based on a full or partial
alignment of the read. Hence, in various instances, the wave
front-scored band may not extend to the top and/or bottom
edges of the alignment matrix, Such as if a very long read
had only seeds in its middle mapping to the reference
genome, but commonly the wave front may still score from
top to bottom of the matrix. Local alignment is typically
achieved by two adjustments. First, alignment scores are
never allowed to fall below zero (or some other floor), and
if a cell score otherwise calculated would be negative, a zero
score is Substituted, representing the start of a new align
ment. Second, the maximum alignment score produced in
any cell in the matrix, not necessarily along the bottom edge,
is used as the terminus of the alignment. The alignment is
backtraced from this maximum score up and left through the
matrix to a Zero score, which is used as the start position of
the local alignment, even if it is not on the top row of the
matrix.

In view of the above, there are several different possible
pathways through the virtual array. In various embodiments,
the wave front starts from the upper left corner of the virtual
array, and moves downwards towards identifiers of the
maximum score. For instance, the results of all possible
aligns can be gathered, processed, correlated, and scored to
determine the maximum score. When the end of a boundary
or the end of the array has been reached and/or a compu
tation leading to the highest score for all of the processed
cells is determined (e.g., the overall highest score identified)
then a backtrace may be performed so as to find the pathway
that was taken to achieve that highest score.

For example, a pathway that leads to a predicted maxi
mum score may be identified, and once identified an audit
may be performed so as to determine how that maximum
score was derived, for instance, by moving backwards
following the best score alignment arrows retracing the
pathway that led to achieving the identified maximum score,
Such as calculated by the wave front scoring cells. This
backwards reconstruction or backtrace involves starting
from a determined maximum score, and working backward
through the previous cells navigating the path of cells having
the scores that led to achieving the maximum score all the
way up the table and back to an initial boundary, such as the
beginning of the array, or a Zero score in the case of local
alignment.

During a backtrace, having reached a particular cell in the
alignment matrix, the next backtrace step is to the neigh
boring cell, immediately leftward, or above, or diagonally
up-left, which contributed the best score that was selected to
construct the score in the current cell. In this manner, the
evolution of the maximum score may be determined,
thereby figuring out how the maximum score was achieved.
The backtrace may end at a corner, or an edge, or a
boundary, or may end at a Zero score. Such as in the upper
left hand corner of the array. Accordingly, it is such a back
trace that identifies the proper alignment and thereby pro
duces the CIGAR strand readout, e.g., 3M, 2D, 8M. 4I, 16M,
etc., that represents how the sample genomic sequence
derived from the individual, or a portion thereof, matches to,
or otherwise aligns with, the genomic sequence of the
reference DNA.

US 9,483,610 B2
59

Accordingly, once it has been determined where each read
is mapped, and further determined where each read is
aligned, e.g., each relevant read has been given a position
and a quality score reflecting the probability that the position
is the correct alignment, such that the nucleotide sequence
for the subject’s DNA is known, then the order of the various
reads and/or genomic nucleic acid sequence of the Subject
may be verified. Such as by performing a back trace function
moving backwards up through the array so as to determine
the identity of every nucleic acid in its proper order in the
sample genomic sequence. Consequently, in Some aspects,
the present disclosure is directed to a back trace function,
Such as is part of an alignment module that performs both an
alignment and a back trace function, such as a module that
may be part of a pipeline of modules, such as a pipeline that
is directed at taking raw sequence read data, Such as form a
genomic sample form an individual, and mapping and/or
aligning that data, which data may then be sorted.

To facilitate the backtrace operation, it is useful to store a
scoring vector for each scored cell in the alignment matrix,
encoding the score-selection decision. For classical Smith
Waterman and/or Needleman-Wunsch scoring with linear
gap penalties, the scoring vector can encode four possibili
ties, which may optionally be stored as a 2-bit integer from
0 to 3, for example: 0 new alignment (null score selected):
1=vertical alignment (score from the cell above selected,
modified by gap penalty); 2 horizontal alignment (score
from the cell to the left selected, modified by gap penalty):
3-diagonal alignment (score from the cell up and left
selected, modified by nucleotide match or mismatch score).
Optionally, the computed score(s) for each scored matrix
cell may also be stored (in addition to the maximum
achieved alignment score which is standardly stored), but
this is not generally necessary for backtrace, and can con
Sume large amounts of memory. Performing backtrace then
becomes a matter of following the scoring vectors; when the
backtrace has reached a given cell in the matrix, the next
backtrace step is determined by the stored scoring vector for
that cell, e.g.: 0-terminate backtrace; 1 =backtrace upward;
2=backtrace leftward; 3=backtrace diagonally up-left.

Such scoring vectors may be stored in a two-dimensional
table arranged according to the dimensions of the alignment
matrix, wherein only entries corresponding to cells scored
by the wave front are populated. Alternatively, to conserve
memory, more easily record scoring vectors as they are
generated, and more easily accommodate alignment matri
ces of various sizes, scoring vectors may be stored in a table
with each row sized to store scoring vectors from a single
wave front of scoring cells, e.g. 128 bits to store 64 2-bit
scoring vectors from a 64-cell wave front, and a number of
rows equal to the maximum number of wave front steps in
an alignment operation.

Additionally, for this option, a record may be kept of the
directions of the various wavefront steps, e.g., storing an
extra, e.g., 129", bit in each table row, encoding e.g. 0 for
vertical wavefront step preceding this wavefront position,
and 1 for horizontal wavefront step preceding this wavefront
position. This extra bit can be used during backtrace to keep
track of which virtual scoring matrix positions the scoring
vectors in each table row correspond to, so that the proper
scoring vector can be retrieved after each Successive back
trace step. When a backtrace step is vertical or horizontal,
the next scoring vector should be retrieved from the previous
table row, but when a backtrace step is diagonal, the next
scoring vector should be retrieved from two rows previous,

5

10

15

25

30

35

40

45

50

55

60

65

60
because the wavefront had to take two steps to move from
scoring any one cell to scoring the cell diagonally right
down from it.

In the case of afline gap scoring, scoring vector informa
tion may be extended, e.g. to 4 bits per scored cell. In
addition to the e.g. 2-bit score-choice direction indicator,
two 1-bit flags may be added, a vertical extend flag, and a
horizontal extend flag. According to the methods of afline
gap scoring extensions to Smith-Waterman or Needleman
Wunsch or similar alignment algorithms, for each cell, in
addition to the primary alignment score representing the
best-scoring alignment terminating in that cell, a vertical
score should be generated, corresponding to the maximum
alignment score reaching that cell with a final vertical step,
and a horizontal score should be generated, corresponding
to the maximum alignment score reaching that cell with a
final horizontal step; and when computing any of the three
scores, a vertical step into the cell may be computed either
using the primary score from the cell above minus a gap
open penalty, or using the vertical score from the cell above
minus a gap-extend penalty, whichever is greater, and a
horizontal step into the cell may be computed either using
the primary score from the cell to the left minus a gap-open
penalty, or using the horizontal score from the cell to the left
minus a gap-extend penalty, whichever is greater. In cases
where the vertical score minus a gap extend penalty is
selected, the vertical extend flag in the scoring vector should
be set, e.g. 1, and otherwise it should be unset, e.g. 0. In
cases when the horizontal score minus a gap extend penalty
is selected, the horizontal extend flag in the scoring vector
should be set, e.g. 1, and otherwise it should be unset, e.g.
'0'. During backtrace for affine gap scoring, any time
backtrace takes a vertical step upward from a given cell, if
that cell's scoring vector's vertical extend flag is set, the
following backtrace step must also be vertical, regardless of
the scoring vector for the cell above. Likewise, any time
backtrace takes a horizontal step leftward from a given cell,
if that cells scoring vector's horizontal extend flag is set, the
following backtrace step must also be horizontal, regardless
of the scoring vector for the cell to the left.

Accordingly, Such a table of scoring vectors, e.g. 129 bits
per row for 64 cells using linear gap scoring, or 257 bits per
row for 64 cells using afline gap scoring, with some number
NR of rows, is adequate to Support backtrace after conclud
ing alignment scoring where the scoring wavefront took NR
steps or fewer. For example, when aligning 300-nucleotide
reads, the number of wavefront steps required may always
be less than 1024, so the table may be 257x1024 bits, or
approximately 32 kilobytes, which in many cases may be a
reasonable local memory inside the IC. But if very long
reads are to be aligned, e.g. 100,000 nucleotides, the
memory requirements for scoring vectors may be quite
large, e.g. 8 megabytes, which may be very costly to include
as local memory inside the IC. For Such support, scoring
vector information may be recorded to bulk memory outside
the IC, e.g. DRAM, but then the bandwidth requirements,
e.g. 257 bits per clock cycle per aligner module, may be
excessive, which may bottleneck and dramatically reduce
aligner performance.

Accordingly, it is desirable to have a method for disposing
of Scoring vectors before completing alignment, so their
storage requirements can be kept bounded, e.g. to perform
incremental backtraces, generating incremental partial
CIGAR strings for example, from early portions of an
alignment's scoring vector history, so that such early por
tions of the scoring vectors may then be discarded. The
challenge is that the backtrace is Supposed to begin in the

US 9,483,610 B2
61

alignment's terminal, maximum scoring cell, which
unknown until the alignment scoring completes, so any
backtrace begun before alignment completes may begin
from the wrong cell, not along the eventual final optimal
alignment path.

Accordingly, a method is given for performing incremen
tal backtrace from partial alignment information, e.g. com
prising partial scoring vector information for alignment
matrix cells scored so far. From a currently completed
alignment boundary, e.g., a particular scored wave front
position, backtrace is initiated from all cell positions on the
boundary. Such backtrace from all boundary cells may be
performed sequentially, or advantageously, especially in a
hardware implementation, all the backtraces may be per
formed together. It is not necessary to extract alignment
notations, e.g., CIGAR Strings, from these multiple back
traces; only to determine what alignment matrix positions
they pass through during the backtrace. In an implementa
tion of simultaneous backtrace from a scoring boundary, a
number of 1-bit registers may be utilized, corresponding to
the number of alignment cells, initialized e.g., all to 1's,
representing whether any of the backtraces pass through a
corresponding position. For each step of simultaneous back
trace, scoring vectors corresponding to all the current 1's in
these registers, e.g. from one row of the scoring vector table,
can be examined, to determine a next backtrace step corre
sponding to each 1 in the registers, leading to a following
position for each 1 in the registers, for the next simulta
neous backtrace step.

Importantly, it is easily possible for multiple '1's in the
registers to merge into common positions, corresponding to
multiple of the simultaneous backtraces merging together
onto common backtrace paths. Once two or more of the
simultaneous backtraces merge together, they remain
merged indefinitely, because henceforth they will utilize
scoring vector information from the same cell. It has been
observed, empirically and for theoretical reasons, that with
high probability, all of the simultaneous backtraces merge
into a singular backtrace path, in a relatively small number
of backtrace steps, which e.g. may be a small multiple, e.g.
8, times the number of scoring cells in the wavefront. For
example, with a 64-cell wavefront, with high probability, all
backtraces from a given wavefront boundary merge into a
single backtrace path within 512 backtrace steps. Alterna
tively, it is also possible, and not uncommon, for all back
traces to terminate within the number, e.g. 512, of backtrace
steps.

Accordingly, the multiple simultaneous backtraces may
be performed from a scoring boundary, e.g. a scored wave
front position, far enough back that they all either terminate
or merge into a single backtrace path, e.g. in 512 backtrace
steps or fewer. If they all merge together into a singular
backtrace path, then from the location in the scoring matrix
where they merge, or any distance further back along the
singular backtrace path, an incremental backtrace from
partial alignment information is possible. Further backtrace
from the merge point, or any distance further back, is
commenced, by normal singular backtrace methods, includ
ing recording the corresponding alignment notation, e.g., a
partial CIGAR String. This incremental backtrace, and e.g.
partial CIGAR string, must be part of any possible final
backtrace, and e.g. full CIGAR string, that would result after
alignment completes, unless such final backtrace would
terminate before reaching the scoring boundary where
simultaneous backtrace began, because if it reaches the

10

15

25

30

35

40

45

50

55

60

65

62
scoring boundary, it must follow one of the simultaneous
backtrace paths, and merge into the singular backtrace path,
now incrementally extracted.

Therefore, all scoring vectors for the matrix regions
corresponding to the incrementally extracted backtrace, e.g.,
in all table rows for wave front positions preceding the start
of the extracted singular backtrace, may be safely discarded.
When the final backtrace is performed from a maximum
scoring cell, if it terminates before reaching the scoring
boundary (or alternatively, if it terminates before reaching
the start of the extracted singular backtrace), the incremental
alignment notation, e.g. partial CIGAR String, may be
discarded. If the final backtrace continues to the start of the
extracted singular backtrace, its alignment notation, e.g.,
CIGAR string, may then be grafted onto the incremental
alignment notation, e.g., partial CIGAR String.

Furthermore, in a very long alignment, the process of
performing a simultaneous backtrace from a scoring bound
ary, e.g., scored wave front position, until all backtraces
terminate or merge, followed by a singular backtrace with
alignment notation extraction, may be repeated multiple
times, from various successive scoring boundaries. The
incremental alignment notation, e.g. partial CIGAR String,
from each Successive incremental backtrace may then be
grafted onto the accumulated previous alignment notations,
unless the new simultaneous backtrace or singular backtrace
terminates early, in which case accumulated previous align
ment notations may be discarded. The eventual final back
trace likewise grafts its alignment notation onto the most
recent accumulated alignment notations, for a complete
backtrace description, e.g. CIGAR string.

Accordingly, in this manner, the memory to store scoring
vectors may be kept bounded, assuming simultaneous back
traces always merge together in a bounded number of steps,
e.g. 512 steps. In rare cases where simultaneous backtraces
fail to merge or terminate in the bounded number of steps,
various exceptional actions may be taken, including failing
the current alignment, or repeating it with a higher bound or
with no bound, perhaps by a different or traditional method,
Such as storing all scoring vectors for the complete align
ment, such as in external DRAM. In a variation, it may be
reasonable to fail such an alignment, because it is extremely
rare, and even rarer that such a failed alignment would have
been a best-scoring alignment to be used in alignment
reporting.

In an optional variation, scoring vector storage may be
divided, physically or logically, into a number of distinct
blocks, e.g. 512 rows each, and the final row in each block
may be used as a scoring boundary to commence a simul
taneous backtrace. Optionally, a simultaneous backtrace
may be required to terminate or merge within the single
block, e.g. 512 steps. Optionally, if simultaneous backtraces
merge in fewer steps, the merged backtrace may neverthe
less be continued through the whole block, before com
mencing an extraction of a singular backtrace in the previous
block. Accordingly, after scoring vectors are fully written to
block N, and begin writing to block N+1, a simultaneous
backtrace may commence in block N, followed by a singular
backtrace and alignment notation extraction in block N-1. If
the speed of the simultaneous backtrace, the singular back
trace, and alignment scoring are all similar or identical, and
can be performed simultaneously, e.g., in parallel hardware
in an IC, then the singular backtrace in block N-1 may be
simultaneous with scoring vectors filling block N+2, and
when block N+3 is to be filled, block N-1 may be released
and recycled.

US 9,483,610 B2
63

Thus, in Such an implementation, a minimum of 4 scoring
vector blocks may be employed, and may be utilized cycli
cally. Hence, the total scoring vector storage for an aligner
module may be 4 blocks of 257x512 bits each, for example,
or approximately 64 kilobytes. In a variation, if the current
maximum alignment score corresponds to an earlier block
than the current wavefront position, this block and the
previous block may be preserved rather than recycled, so
that a final backtrace may commence from this position if it
remains the maximum score; having an extra 2 blocks to
keep preserved in this manner brings the minimum, e.g., to
6 blocks. In another variation, to Support overlapped align
ments, the scoring wave front crossing gradually from one
alignment matrix to the next as described above, additional
blocks, e.g. 1 or 2 additional blocks, may be utilized, e.g., 8
blocks total, e.g., approximately 128 kilobytes. Accordingly,
if such a limited number of blocks, e.g., 4 blocks or 8 blocks,
is used cyclically, alignment and backtrace of arbitrarily
long reads is possible, e.g., 100,000 nucleotides, or an entire
chromosome, without the use of external memory for scor
ing vectors.

It is to be understood, such as with reference to the above,
that although a mapping function may in some instances
have been described, such as with reference to a mapper,
and/or an alignment function may have in some instances
been described, such as with reference to an aligner, these
different functions may be performed sequentially by the
same architecture, which has commonly been referenced in
the art as an aligner. Accordingly, in various instances, both
the mapping function and the aligning function, as herein
described may be performed by a common architecture that
may be understood to be an aligner, especially in those
instances wherein to perform an alignment function, a
mapping function need first be performed.
The output from the alignment module is a SAM (Text) or

BAM (e.g., binary version of a SAM) file along with a
mapping quality score (MAPQ), which quality Score reflects
the confidence that the predicted and aligned location of the
read to the reference is actually where the read is derived.
Accordingly, once it has been determined where each read is
mapped, and further determined where each read is aligned,
e.g., each relevant read has been given a position and a
quality score reflecting the probability that the position is the
correct alignment, Such that the nucleotide sequence for the
subjects DNA is known as well as how the subject’s DNA
differs from that of the reference (e.g., the CIGAR string has
been determined), then the various reads representing the
genomic nucleic acid sequence of the Subject may be sorted
by chromosome location, so that the exact location of the
read on the chromosomes may be determined. Consequently,
in Some aspects, the present disclosure is directed to a
sorting function, Such as may be performed by a sorting
module, which sorting module may be part of a pipeline of
modules, such as a pipeline that is directed at taking raw
sequence read data, Such as form a genomic sample form an
individual, and mapping and/or aligning that data, which
data may then be sorted.
More particularly, once the reads have been assigned a

position, such as relative to the reference genome, which
may include identifying to which chromosome the read
belongs and/or its offset from the beginning of that chro
mosome, the reads may be sorted by position. Sorting may
be useful, Such as in downstream analyses, whereby all of
the reads that overlap a given position in the genome may be
formed into a pile up so as to be adjacent to one another,
Such as after being processed through the Sorting module,
whereby it can be readily determined if the majority of the

10

15

25

30

35

40

45

50

55

60

65

64
reads agree with the reference value or not. Hence, where the
majority of reads do not agree with the reference value a
variant call can be flagged. Sorting, therefore, may involve
one or more of sorting the reads that align to the relatively
same position, Such as the same chromosome position, so as
to produce a pileup, Such that all the reads that cover the
same location are physically grouped together, and may
further involve analyzing the reads of the pileup to deter
mine where the reads may indicate an actual variant in the
genome, as compared to the reference genome, which vari
ant may be distinguishable, such as by the consensus of the
pileup, from an error, such as a machine read error or error
an error in the sequencing methods which may be exhibited
by a small minority of the reads.
Once the data has been obtained there are one or more

other modules that may be run so as to clean up the data. For
instance, one module that may be included, for example, in
a sequence analysis pipeline, such as for determining the
genomic sequence of an individual, may be a local realign
ment module. For example, it is often difficult to determine
insertions and deletions that occur at the end of the read.
This is because the Smith-Waterman or equivalent align
ment process lacks enough context beyond the indel to allow
the scoring to detect its presence. Consequently, the actual
indel may be reported as one or more SNPs. In such an
instance, the accuracy of the predicted location for any given
read may be enhanced by performing a local realignment on
the mapped and/or aligned and/or sorted read data.

In Such instances, pileups may be used to help clarify the
proper alignment. Such as where a position in question is at
the end of any given read, that same position is likely to be
at the middle of some other read in the pileup. Accordingly,
in performing a local realignment the various reads in a
pileup may be analyzed so as to determine if some of the
reads in the pile up indicate that there was an insertion or a
deletion at a given position where an other read does not
include the indel, or rather includes a substitution, at that
position, then the indel may be inserted. Such as into the
reference, where it is not present, and the reads in the local
pileup that overlap that region may be realigned to see if
collectively a better score is achieved then when the inser
tion and/or deletion was not there. Accordingly, if there is an
improvement, the whole set of reads in the pileup may be
reviewed and if the score of the overall set has improved
then it is clear to make the call that there really was an indel
at that position. In a manner Such as this, the fact that there
is not enough context to more accurately align a read at the
end of a chromosome, for any individual read, may be
compensated for. Hence, when performing a local realign
ment, one or more pileups where one or more indels may be
positioned are examined, and it is determined if by adding
an indel at any given position the overall alignment score
may be enhanced.

Another module that may be included, for example, in a
sequence analysis pipeline. Such as for determining the
genomic sequence of an individual, may be a duplicate
marking module. For instance, a duplicate marking function
may be performed so as to compensate for chemistry errors
that may occur during the sequencing phase. For example, as
described above, during some sequencing procedures
nucleic acid sequences are attached to beads and built up
from there using labeled nucleotide bases. Ideally there will
be only one read per bead. However, sometimes multiple
reads become attached to a single bead and this results in an
excessive number of copies of the attached read. This
phenomenon is known as read duplication.

US 9,483,610 B2
65

Such read duplication may throw off the statistics and
create a statistical bias because instead of having an equal
representation of all reads, various reads have been dupli
cated. Such as because of the duplicate template sequences
attached to more than one bead are over represented. 5
Accordingly, these may be determined because any read that
aligns to the exact same position, and has the exact same
length, is likely a duplicate. Once this is identified by the
system, only one read need be subjected to further process
ing and the others may be marked as duplicates and, 10
therefore, can be discarded or ignored. A typical situation
where this occurs is where there is not enough genetic
material to process from the very beginning and the system
attempts to overcompensate for that.

Another module that may be included, for example, in a 15
sequence analysis pipeline. Such as for determining the
genomic sequence of an individual, may be a base quality
score recalibrater. For instance, every base of every read has
a Phred score that indicates the probability that the called
base at that position is incorrect. For example, the Phred 20
score for any base is due in part to the nature of the base that
precedes it and the error profile will be different depending
on which base precedes the base in question. Further, there
is a greater likelihood of an error occurring at the ends of a
read, e.g., such as where at the ends of the reads the 25
chemistry is starting to lose its performance. A base quality
score recalibration is a covariant analysis that may go back
and measures the empirical quality of the base quality score
as a function of all those things by which it varies.

In various instances, it involves two passes, the first 30
gathers all the actual, empirical measured data and statistics
on the error rate observed as a function of all the variables,
and the second pass involves the actual recalibration of the
scores by flowing all the reads through a filter modifying the
quality scores for every single base as a function of the 35
variables based on what was actually empirically measured
in the data set. This compensates for all the differences in the
data due to the various variables and cleans up that data and
score. The purpose of all this cleanup is to ensure the best
possible variant calling is achieved. Many variant callers 40
base their decisions in part on the reported quality of each of
the nucleotides that pile up at each position in the genome.
If the quality scores are not accurate, there could easily
result a wrong call.

Another module that may be included, for example, in a 45
sequence analysis pipeline. Such as for determining the
genomic sequence of an individual, may be a compression
module, that executes a compression function. As indicated
above, it may be useful at Some point to take the generated
and processed data and transmit it to a remote location, Such 50
as the cloud, and hence, the data may need to be compressed
at a particular stage of processing, whereby once com
pressed it may be transmitted and/or otherwise uploaded,
Such as on to the cloud or to a server farm, etc., for instance,
for the performance of the variant calling module. The 55
results once obtained may then be decompressed and/or
stored in the memory, on a database on the cloud, Such as
an electronic health and/or research database, and the like,
which in turn, can be made available for tertiary processing,
etc. 60

Accordingly, as set forth herein above, in various aspects,
this present disclosure is directed to systems, apparatuses,
and methods for implementing genomics and/or bioinfor
matic protocols such as, in various instances, for performing
one or more functions for analyzing genetic data on an 65
integrated circuit, such as implemented in a hardware pro
cessing platform. For example, in one aspect, a bioinfor

66
matics system is provided, wherein the system may involve
the performance of various bioanalytical functions that have
been optimized so as to be performed faster and/or with
increased accuracy in a hardware implementation. Accord
ingly, in various instances, the methods and systems herein
described may include the performance of one or more
algorithms for executing these functions, wherein the algo
rithms may be implemented in a hardware solution, such as
where the algorithm has been optimized so as to be imple
mented by an integrated circuit formed of one or more
hardwired digital logic circuits. In Such an instance, the
hardwired digital logic circuits may be interconnected. Such
as by one or a plurality of physical electrical interconnects,
and may be arranged to function as one or more processing
engines. In various instances, a plurality of hardwired digital
logic circuits are provided, which hardwired digital logic
circuits are configured as a set of processing engines,
wherein each processing engine is capable of performing
one or more steps in the bioinformatics genetic analysis
protocol.
More particularly, in one instance, a system for executing

a sequence analysis pipeline such as on genetic sequence
data is provided. The system may include one or more of an
electronic data source, a memory, and an integrated circuit.
For instance, in one embodiment, an electronic data source
is included, where in the electronic data source may be
configured for providing one or more digital signals. Such as
a digital signal representing one or more reads of genetic
data, for example, where each read of genomic data includes
a sequence of nucleotides. Further, the memory may be
configured for storing one or more genetic reference
sequences, and may further be configured for storing an
index. Such as an index of the one or more genetic reference
Sequences.

Further still, in various instances, one or more of the
plurality of physical electrical interconnects may include an
input, such as to the integrated circuit, and may further be
connected with the electronic data source, so as to be able to
receive the one or more reads of genomic data. In various
embodiments, the hardwired digital logic circuits may be
arranged as a set of processing engines, such as where each
processing engine is formed of a Subset of the hardwired
digital logic circuits, and is configured so as to perform one
or more steps in the sequence analysis pipeline. Such as on
digitized genetic data, e.g., on the plurality of reads of
genomic data. In Such instances, each Subset of the hard
wired digital logic circuits may be in a wired configuration
So as to perform the one or more steps in the sequence
analysis pipeline, such as where the one or more steps may
include performing one or more of a base calling and/or
error correction operation, such as on the digitized genetic
data, and/or may include one or more of performing a
mapping, an alignment, and/or a sorting function on the
genetic data. In certain instances, the pipeline may include
performing one or more of a realignment, a deduplication, a
base quality Score recalibration, a reduction and/or compres
Sion, and/or a decompression on the digitized genetic data.
In certain instances the pipeline may include performing a
variant calling operation on the genetic data.

Accordingly, in various embodiments, the systems, appa
ratuses, and methods for implementing genomics and/or
bioinformatic protocols, as herein described, may involve
taking processes that may have typically been performed on
Software, and embedding those functions into an integrated
circuit. Such as on a chip, for instance as part of a circuit
board, such as where the functions have been optimized to
enhance its performance on the chip. Hence, in one embodi

US 9,483,610 B2
67

ment, as can be seen with respect to FIG. 1 a chip is provided
wherein the chip has been designed so as to efficiently
perform the functions of the pipeline. In various particular
embodiments the chip may be a field programmable gate
array (FPGA), or an application specific integrated circuit
(ASIC), or the like.

For instance, the functioning of one or more of these
algorithms may be embedded onto a chip. Such as into an
FPGA or ASIC chip, and may be optimized so as to perform
more efficiently because of their implementation in such
hardware. Accordingly, in one embodiment a FPGA chip is
provided wherein the chip is capable of being configurable,
e.g., its programming may be changed, so as to be more
adaptable in meeting a given user's needs with respect to
performing the various genomic functions detailed herein. In
Such an instance, the user can change and/or modify the
algorithms employed dependent on the key parameters
desired to be emphasized in the overall system, Such as to
give additional functionality or change out what was first
presented on the chip, e.g., Such as re-configuring the chip
to employ a different algorithm. In accordance with another
embodiment an ASIC is provided, such as where the FPGA
is converted to an ASIC chip where its functionality is
locked down into the chip. In Such an instance, various
parameters, such as various parameters regarding the func
tion of one or more of the algorithms set forth herein, may
be user selected, for instance, governing how the various
modules are Supposed to function, but the way those mod
ules actually function is locked in.

In various embodiments, as seen with respect to FIG. 1,
the chip may be part of a circuit board, Such as part of an
expansion card, for instance, a peripheral component inter
connect (PCI) card, including a PCIe card, which in various
embodiments may be associated, Such as, communicably
coupled, e.g., electrically connected, with an automated
sequencer device so as to function part and parcel with the
sequencer, Such as where the data files, e.g., FASTQ files,
generated by the sequencer is transferred directly over to the
chip, such as for secondary genomic processing, such as
immediately subsequent to the FASTQ file generation and/or
primary processing, e.g., immediately after the sequencing
function has been performed.

Accordingly, in certain instances, a PCI card is provided
wherein the PCI card may include a chip with a PCIe bus,
where the chip may include one or more of a configuration
manager, Such as a configuration control (Cent-Com); a
direct memory access engine (e.g., a driver); an API; a client
level interface (CLI), a library; a memory, such as a random
access memory (RAM) or a dynamic random access
memory (DRAM); and/or a chip level interconnect, such as
a DDR3. For instance, in various instances a configuration
manager may be included wherein the configuration man
ager is driven, such as by a parameter file. In Such an
instance the configuration manager may be adapted so as to
configure the various modules of the pipeline. In various
instances, it may be user editable, and thereby allow a user
to determine which modules of the pipeline are going to be
used, e.g., from all of them to a Subset of less than all of
them, such as for a particular dataset, such as a particular set
of FASTQ files.

For example, in various embodiments, the functioning of
the pipeline is very configurable such that one or more of the
modules, such as structured into the chip, may be run or not
run, as desired. Further, each module in use can also be
configured so as to run in accordance with one or more
preselected parameters, which the user may have control
over, Such as regarding how the module is going to perform

10

15

25

30

35

40

45

50

55

60

65

68
and behave. Hence, there may be two different sets of
configuration files. Such as one that controls the basic
operations of the system as a whole, and may be hidden from
the user, and another that is capable of being manipulated by
the user, thereby allowing the user to select various of the
parameters by which one or more of the Subsystems, e.g.,
modules, of the chip will be run.

Further still, various of the above described modules may
be hardwired into the chip, or may be external to the chip,
but positioned in a coupling relationship therewith, such as
on a PCI board, or they may be located remotely from the
chip, such as on a different PCI board, or even on a different
server, such as on a server that may be accessed via the
cloud. For instance, in certain implementations, one or more
of the above described modules may be hardwired onto a
chip and the chip installed onto the circuit board of a
stand-alone device, or coupled to a sequencer, whereby the
user configures and runs the system directly by themselves
according to their own preselected parameters. Alterna
tively, as indicated herein, one or more of the above
described modules may be present on a system that is
accessible via the cloud, wherein the directing of the func
tioning of the pipeline, and/or the modules thereof, may
include the user logging on to a server, e.g., a remote server,
and transmitting data to and therefrom, and thereby selects
which modules to be run on the data set. In certain instances,
one or more of the modules may be performed remotely,
Such as via the cloud accessed server.

In various instances, in configuring the system, the chip,
e.g., the chip on an expansion card, such as a PCI card, may
be included in a server, whereby the server runs the various
applications of the system. In certain instances, the server
may have a terminal connectable there with, whereby a
windows interface may be presentable to the user such that
the user may select the modules to be run and the parameters
by which they are to be run, such as by selecting a box from
a menu of boxes. In other instances, however, the parameter
file may be a text file detailing categories by module under
file names that the user can then edit, so as to select which
modules will be run in accordance with which parameters.
For instance, in various embodiments, each chip may
include all or a selection of the modules, such as one or more
of a base calling, error correcting, a mapping, an alignment,
a sorting, a local realignment, a duplicate marking, a reca
libration, a variant calling, a compression, and/or a decom
pression module, from which the user may select which
modules will run, when, and to various extents how it will
run, without changing the functioning of the underlying
algorithms by which the individual modules are operated.

Additionally, in various instances, a direct memory access
(DMA) engine in the chip, and a DMA driver, may be
included wherein the DMA driver includes code that runs in
the kernel. Accordingly, the DMA driver may be the foun
dation of the overall operating system. For instance, where
the kernel runs in a literal addressing space, layered above
that may be a virtual user space. This operating system
software, therefore operates in between these layers man
aging the mapping from the virtual to the physical space.
More particularly, the kernel represents the lowest level of
code that gives the platform access to the PCI, e.g., PCIe,
bus, to which the chip is coupled. Accordingly, since, in
various embodiments, the chip may be configured as an
expansion card with a PCIe expansion bus, which expansion
card may be coupled with various hardware of a device, such
as a sequencer, the DMA driver may function so as to
communicate with the hardware of the sequencer, and may
further be configured for running at the kernel level on the

US 9,483,610 B2
69

CPU, so as to also communicate with the DMA engine in the
chip, and/or be configured for operating in the virtual user
space so as to receive instructions from the user.
To facilitate this communication within the chip and/or

between the chip and one or more cards, every single
configurable parameter of a module may be assigned to a
register address. In such an instance, the card may have its
own address space, which address space may be different
from the address space for one or more memories, such as
64 gigabytes of memory, and/or additionally every module
may have registers and local memory associated with it,
each with its own address space. Accordingly, the driver
knows where everything is, all the addresses, and knows
how to communicate between the chip, the PCI card, and/or
the hardware of the server. Further, knowing where all the
addresses are and communicating with an API the driver can
read the parameter file that a user generates, and can look up
for that parameter where the file is actually located in the
host computer system and will read and interpret the value
in the file and will deliver that value in the right register in
the right place in the chip. Hence, the driver may handle
delivering the selected parameter instructions, such as with
respect to various user selected configurations, and ships
that data to the chip via the DMA engine to configure any of
its processing functions.

Further, in various instances, an API may be included
wherein the API is configured so as to include a list of
function calls that the user can make, so as to configure and
operate the system. For instance, an API may be defined in
a header file that describes the functionality and determines
how to call a function, Such as the parameters that are
passed, the inputs and outputs, what comes in, what goes
out, and what gets returned. For example, in various embodi
ments, one or more of the elements of the pipeline may be
configurable Such as by instructions entered by a user and/or
one or more third party applications. These instructions may
be communicated to the chip via the API which communi
cates with the driver, instructing the driver as to which parts
of the chip, e.g., which modules are to be activated, when,
and in what order, given a preselected parameter configu
ration.
As indicated above, the DMA driver runs at the kernel

level, and has its own very low level, basic API that provides
access to the hardware and functions so as to access appli
cable registers and modules. On top of this layer is built a
virtual layer of service functions, that form the building
blocks that are used for a multiplicity of functions that send
files down to the kernel and gets results back, and further
performs more higher level functions. On top of that layer is
an additional layer that uses those service functions, which
is the API level that a user will interface with and it functions
primarily for configuration, downloading files, and upload
ing results. Such configuration may include communicating
with registers and also performing function calls.

For example, as described herein above, one function call
may be to generate the hash table via the hashing algorithm.
Specifically, because in certain embodiments this function
may be based on a reference genome, once for every
reference genome, the hash tables that are used in the
mapper may need to be constructed, based on the reference,
there is therefore a function call that performs this function,
which function call will accept a file name of where the
reference file is stored and it will then generate one or more
data files that contain the hash table and the reference.
Another function call may be to load the hash table that was
generated via the hashing algorithm and transfer that down
to the memory on the chip, and/or put it at the right spot

5

10

15

25

30

35

40

45

50

55

60

65

70
where the hardware is expecting them to be. Of course, the
reference itself will need to be downloaded onto the chip, as
well for the performance of the alignment function, and the
configuration manager can perform that function Such as by
loading everything that needs to be there in order for the
modules of the chip to perform their functions into a
memory on to the chip or attached to the chip.

Additionally, the API may be configured to allow the chip
to interface with the circuit board of the sequencer, when
included therewith, so as to receive the FASTQ sequencing
files directly from the sequencer Such as immediately once
they have been generated and then transfers that information
to the configuration manager which then directs that infor
mation to the appropriate memory banks in the hardware
that makes that information available to the pertinent mod
ules of the hardware so that they can perform their desig
nated functions on that information so as to call bases, map.
align, sort, etc. the sample DNA with respect to the reference
genome.

Further still, a client level interface (CLI) may be included
wherein the CLI may allow the user to call one or more of
these functions directly. In various embodiments, the CLI
may be a software application that is adapted to configure
the use of the hardware. The CLI, therefore, may be a
program that accepts instructions, e.g., arguments, and
makes functionality available simply by calling an applica
tion program. As indicated above, the CLI can be command
line based or GUI (graphical user interface) based. The line
based commands happen at a level below the GUI, where the
GUI includes a windows based file manager with click on
function boxes that delineate which modules will be used
and the parameters of their use. For example, in operation,
if instructed, the CLI will locate the reference, will deter
mine if a hash table and/or index needs to be generated, or
if already generated locate where it is stored, and direct the
uploading of the generated hash table and/or index, etc.
These type of instructions may appear as user options at the
GUI that the user can select the chip to perform.

Furthermore, a library may be included wherein the
library may include pre-existing, editable, configuration
files, such as files orientated to the typical user selected
functioning of the hardware, Such as with respect to a
portion or whole genome analysis, for instance, for ancestry
analysis, or disease diagnostics, or drug discovery, or protein
profiling, etc. These types of preset parameters, such as for
performing Such analyses, may be stored in the library. For
example, if the platform herein described is employed such
as for oncology research, the preset parameters may be
configured differently than if the platform were directed
simply to researching a genealogy.
More particularly, for oncology, accuracy may be an

important factor, therefore, the parameters of the system
may be set to ensure increased accuracy albeit in exchange
for possibly a decrease in speed. However, for other genom
ics applications, speed may be the key determinant and
therefore the parameters of the system may be set to maxi
mize speed, which however may sacrifice Some accuracy.
Accordingly, in various embodiments, often used parameter
settings for performing different tasks can be preset into the
library to facilitate ease of use. Such parameter settings may
also include the necessary Software applications employed
in running the system. For instance, the library may contain
the code that executes the API, and may further include
sample files, Scripts, and any other ancillary information
necessary for running the system. Hence, the library may be
configured for compiling Software for running the API as
well as various executables.

US 9,483,610 B2
71

In various instances, the chip may also include a memory,
such as a Random Access Memory (RAM) or a Dynamic
Rapid Access Memory with e.g. a DDR3 interface, such as
a memory that may be used for facilitating the performance
of the various modules described herein, for instance, the
mapper, aligner, and/or sorter. For example, the DRAM may
be where the reference, the hash table, and/or the hash table
index, and/or reads may be stored. Further, the memory may
be used for facilitating the performance of various other
modules described herein, for instance, the deduper, local
realigner, base quality score recalibrator, variant caller,
compressor, and/or decompresor. For example, the DRAM
may be where sorted reads, annotated reads, compressed
reads, and/or variant calls may be stored. Further, the
memory may be configured so as to include a separate
interface for each of the various memory modules employed
by the aligner and/or any other module. Such as where each
memory may include a file layer and logical layer. As
indicated above, because there may be multiple memories
and/or multiple modules, a chip level interconnect may be
included so as to facilitate communication through the chip.

Accordingly, in various instances, an apparatus of the
disclosure may include a chip, wherein the chip includes an
integrated circuit that is formed of a set of hardwired digital
logic circuits that may be interconnected by one or more
physical electrical interconnects. In various embodiments,
the one or more physical electrical interconnects include an
input to the integrated circuit that may be connected with an
electronic data source for receiving data. Further, in certain
embodiments, the hardwired digital logic circuits may be
arranged as a set of processing engines, such as wherein
each processing engine may be formed of a subset of the
hardwired digital logic circuits, which are configured to
perform one or more of the steps in the sequence analysis
pipeline. More particularly, each subset of the hardwired
digital logic circuits may be in a wired configuration so as
to perform the one or more steps in the sequence analysis
pipeline.

In various instances, the set of processing engines may
include one or more of a mapping module, an alignment
module, and/or a sorting module. Such as where the one or
more of these modules are in the wired configuration. For
instance, a mapping module may be included, where in the
wired configuration, the mapping module may access an
index, such as of one or more genetic reference sequences,
e.g., from a memory. Such as via one or more of the plurality
of physical electronic interconnects, so as to map the plu
rality of reads to one or more segments of the one or more
genetic reference sequences. Further, in various instances,
an alignment module may be included, wherein the wired
configuration, the alignment module may access the one or
more genetic reference sequences, e.g., from the memory,
Such as via one or more of the plurality of physical electronic
interconnects, so to align the plurality of reads to the one or
more segments of the one or more genetic reference
sequences. Further still, in various instances, a sorting
module may be included, wherein the wired configuration,
the sorting module may access the one or more aligned
sequences, e.g., from the memory, Such as via one or more
of the plurality of physical electronic interconnects, so to
sort the plurality of reads to a chromosome. Such as from the
one or more genetic reference sequences. In like manner, in
various instances, one or more of local realignment, dupli
cate marking, base quality score recalibration, and/or variant
calling modules may be included in the chip. Such as in the
wired configuration consistent as with the modules
described above, so as to perform their respective functions.

10

15

25

30

35

40

45

50

55

60

65

72
Further, as indicated above, in various instances a chip of

the disclosure may be configured as an expansion card, Such
as where the chip includes a PCIe bus and is positioned so
as to be in communication with one or more memories. Such
as being Surrounding by memories, such as being Substan
tially Surrounded by memories, such as being entirely Sur
rounded by memories. In various embodiments, the chip
may be a dense and/or fast FPGA chip, that in various
instances, may be convertible to an ASIC. As indicated
above, the modules herein disclosed may be implemented in
the hardware of the chip, such as by being hardwired therein,
and in Such instances their implementation may be such that
their functioning may take place at a faster speed as com
pared to when implemented in software, such as where there
are minimal instructions to be fetched, read, and/or
executed. Hence, given the unique hardware implementa
tion, the modules of the disclosure may function directly in
accordance with their operations parameters, such as with
out needing to fetch, read, and/or execute instructions.
Additionally, memory requirements and processing times
may be reduced. Such as where the communications within
chip is via files rather than through accessing a memory. Of
course, in some instances, the chip and/or card may be sized
So as to include more memory, such as more on board
memory, so as to enhance parallel processing capabilities,
thereby resulting in even faster processing speeds. For
instance, in certain embodiments, a chip of the disclosure
may include an embedded DRAM, so that the chip does not
have to rely on external memory, which would therefore
result in a further increase in processing speed, such as
where a Burrows-Wheeler algorithm may be employed,
instead of a hash table and hash function, which may in
various instances, rely on external, e.g., host memory. In
Such instances, the running of the entire pipeline can be
accomplished in 6 minutes or less, such as from start to
finish.
As indicated above, there are various different points

where any given module can be positioned on the hardware,
or be positioned remotely therefrom, such as on a server
accessible on the cloud. Where a given module is positioned
on the chip, e.g., hardwired into the chip, its function may
be performed by the hardware, however, where desired, the
module may be positioned remotely from the chip, at which
point the platform may include the necessary instrumentality
for sending the relevant data to a remote location, such as a
server accessible via the cloud, so that the particular mod
ule’s functionality may be engaged for further processing of
the data, in accordance with the user selected desired pro
tocols. Accordingly, part of the platform may include a
web-based interface for the performance of one or more
tasks pursuant to the functioning of one or more of the
modules disclosed herein. For instance, where mapping,
alignment, and/or sorting are all modules that may occur on
the chip, in various instances, one or more of local realign
ment, duplicate marking, base quality core recalibration,
and/or variant calling may take place on the cloud.

Additionally, in various embodiments, all of mapping,
aligning, and Sorting, may take place on the chip, and local
realignment, duplicate marking, and/or base quality score
recalibration may, in various embodiments, also take place
on the chip, and in various instances, various compression
protocols, such as BAM and CRAM, may also take place on
the chip. However, once the data is compressed it may be
sent up to the cloud, Such as for the performance of the
variant calling module. This might be useful especially
given the fact that variant calling can be a moving target,
e.g., there is not one standardized agreed upon algorithm that

US 9,483,610 B2
73

the industry uses. Hence, different algorithms can be
employed to achieve a different type of result, and as Such
having a cloud based module for the performance of this
function may be useful for allowing the flexibility to select
which algorithm is useful at any particular given moment,
and also as for serial and/or parallel processing. Accord
ingly, any one of the modules disclosed herein can be
implemented as either hardware, e.g., on the chip, or soft
ware, e.g., on the cloud, but in certain embodiments, all of
the modules may be configured so that their function may be
performed on the chip, or all of the modules may be
configured so that their function may be performed remotely,
such as on the cloud, or there will be a mixture of modules
wherein some are positioned on the chip and some are
positioned on the cloud. Further, as indicated, in various
embodiments, the chip itself may be configured so as to
function in conjunction with, and in Some embodiments, in
immediate operation with a genetic sequencer.
More specifically, in various embodiments, an apparatus

of the disclosure may be a chip. Such as a chip that is
configured for processing genomics data, Such as by
employing a pipeline of data analysis modules. According,
as can be seen with respect to FIG. 1, a genomics pipeline
processor chip 100 is provided along with associated hard
ware of a genomics pipeline processor system 10. The chip
100 has one or more connections to external memory 102 (at
“DDR3 Mem Controller), and a connection 104 (e.g.,
“PCIe Interface') to the outside world, such as a host
computer 106, for example. A crossbar 108 (e.g., switch)
provides access to the memory interfaces to various request
ors. DMA engines 110 transfer data at high speeds between
the host and the processor chip's 100 external memories 102
(via the crossbar 108), and/or between the host and a central
controller 112. The central controller 112 controls chip
operations, especially coordinating the efforts of multiple
processing engines. The processing engines are formed of a
set of hardwired digital logic circuits that are interconnected
by physical electrical interconnects, and are organized into
engine clusters 114. In some implementations, the engines in
one cluster share one crossbar port, via an arbiter. The
central controller 112 has connections to each of the engine
clusters. Each engine cluster 114 has a number of processing
engines for processing genomic data, including a mapper
120 (or mapping module), an aligner 122 (or aligning
module), and a sorter 124 (or sorting module). An engine
cluster 114 can include other engines or modules, as well.

In accordance with one data flow model consistent with
implementations described herein, the host sends commands
and data via the DMA engines 110 to the central controller
112, which load-balances the data to the processing engines.
The processing engines return processed data to the central
controller 112, which streams it back to the host via the
DMA engines 110. This data flow model is suited for
mapping and alignment.

In accordance with an alternative data flow model con
sistent with implementations described herein, the host
streams data into the external memory, either directly via
DMA engines 110 and the crossbar 108, or via the central
controller 112. The host sends commands to the central
controller 112, which sends commands to the processing
engines, which instruct the processing engines as to what
data to process. The processing engines access input data
from the external memory, process it, and write results back
to the external memory, reporting status to the central
controller 112. The central controller 112 either streams the

10

15

25

30

35

40

45

50

55

60

65

74
result data back to the host from the external memory, or
notifies the host to fetch the result data itself via the DMA
engines 110.

FIG. 2 illustrates a genomics pipeline processor system
20, showing a full complement of processing engines inside
an engine cluster 214. The pipeline processor System 20 may
include one or more engine clusters 214. In some imple
mentations, the pipeline processor System 20 includes four
our more engine clusters 214. The processing engines or
processing engine types can include, without limitation, a
mapper, an aligner, a sorter, a local realigner, a base quality
recalibrater, a duplicate marker, a variant caller, a compres
sor and/or a decompressor. In some implementations, each
engine cluster 214 has one of each processing engine type.
Accordingly, all processing engines of the same type can
access the crossbar 208 simultaneously, through different
crossbar ports, because they are each in a different engine
cluster 214. Not every processing engine type needs to be
formed in every engine cluster 214. Processing engine types
that require massive parallel processing or memory band
width, Such as the mapper (and attached aligner(s)) and
Sorter, may appear in every engine cluster of the pipeline
processor system 20. Other engine types may appear in only
one or Some of the engine clusters 214, as needed to satisfy
their performance requirements or the performance require
ments of the pipeline processor System 20.

FIG. 3 illustrates a genomics pipeline processor system
30, showing, in addition to the engine clusters described
above, one or more embedded central processing units
(CPUs) 302. Examples of such embedded CPUs include
Snapdragons(R or standard ARMR) cores. These CPUs
execute fully programmable bio-IT algorithms, such as
advanced variant calling. Such processing is accelerated by
computing functions in the engine clusters, which can be
called by the CPU cores 302 as needed. Furthermore, even
engine-centric processing. Such as mapping and alignment,
can be managed by the CPU cores 302, giving them height
ened programmability.

FIG. 4 illustrates a processing flow for a genomics pipe
line processor System and method. In some preferred imple
mentations, there are three passes over the data. The first
pass includes mapping 402 and alignment 404, with the full
set of reads streamed through the engines. The second pass
includes sorting 406, where one large block to be sorted
(e.g., a Substantial portion or all reads previously mapped to
a single chromosome) is loaded into memory, Sorted by the
processing engines, and returned to the host. The third pass
includes downstream stages (local realignment 408, dupli
cate marking 410, base quality score recalibration (BQSR)
412, BAM output 414, reduced BAM output 416, and/or
CRAM compression 418). The steps and functions of the
third pass may be done in any combination or Subcombina
tion, and in any order, in a single pass. A virtual pipeline
architecture. Such as described above, is used to stream reads
from the host into circular buffers in memory, through one
processing engine after another in sequence, and back out to
the host. In some implementations, CRAM decompression
can be a separate streaming function. In some implementa
tions, the BAM output 414, reduced BAM output 416,
and/or CRAM compression 418 can be replaced with variant
calling, compression and decompression.

FIG. 5 shows a general block diagram of the current
invention. In Block 1 a hardware implementation of a
sequence analysis pipeline is described. This can be done in
a number of different ways such as an FPGA or ASIC
implementation. The functional blocks that are implemented
by the FPGA or ASIC are shown in FIG. 5. FIG. 5 includes

US 9,483,610 B2
75

a number of blocks or modules to do sequence analysis. The
input to the hardware realization can be a FASTQ file, but is
not limited to this format. In addition to the FASTQ file, the
input to the FPGA or ASIC consists of side information,
Such as Flow Space Information from technology Such as the
Ion Torrent. The blocks or modules in FIG. 5 illustrate the
following blocks: Error Control, Mapping, Alignment, Sort
ing, Local Realignment, Duplicate Marking, Base Quality
Recalibration, BAM and Side Information reduction and
variant calling.

These blocks or modules can be present inside, or imple
mented by, the hardware, but some of these blocks may be
omitted or other blocks added to achieve the purpose of
realizing a sequence analysis pipeline. Blocks 2 and 3
describe two alternatives of a The sequence analysis pipeline
platform. The sequence analysis pipeline platform compris
ing an FPGA or ASIC and software assisted by a host (i.e.,
PC, server, cluster or cloud computing) with cloud and/or
cluster storage. Blocks 4-7 describe different interfaces that
the sequence analysis pipeline can have. In Blocks 4 and 6
the interface can be a PCIe interface, but is not limited to a
PCIe interface. In Blocks 5 and 7 the hardware (FPGA or
ASIC) can be directly integrated into a sequencing machine.
Blocks 8 and 9 describe the integration of the hardware
sequence analysis pipeline integrated into a host system Such
as a PC, server cluster or sequencer. Surrounding the hard
ware FPGA or ASIC are lots of DDR3 memory elements and
a PCIe interface. The board with the FPGA/ASIC connects
to a host computer, consisting of a host CPU, that could be
either a low power CPU such as an ARMR, Snapdragon(R),
or any other processor. Block 10 illustrates a hardware
sequence analysis pipeline API that can be accessed by third
party applications to perform tertiary analysis.

Accordingly, in various embodiments, an apparatus of the
disclosure may include a computing architecture. Such as
embedded in a silicon application specific integrated circuit
(ASIC) 100 as seen in FIGS. 6 and 7. The ASIC 100 can be
integrated into a printed circuit board (PCB) 104, such as a
Peripheral Component Interface Express (PCIe) card, that
can be plugged into a computing platform. In various
instances, as shown in FIG. 6, the PCIe card 104 may
include a single ASIC 100, which ASIC may be surrounded
by local memories 105, however, in various embodiments,
the PCIe card 104 may include a plurality of ASICs 100A,
100B and 100C. In various instances, the PCI card may also
include a PCIe bus. This PCIe card 104 can be added to a
computing platform to execute algorithms on extremely
large data sets. Accordingly, in various instances, the overall
work flow of genomic sequencing involving the ASIC may
include the following: Sample preparation, Alignment (in
cluding mapping and alignment), Variant analysis, Biologi
cal Interpretation, and/or Specific Applications.

Hence, in various embodiments, an apparatus of the
disclosure may include a computing architecture that
achieves the high performance execution of algorithms. Such
as mapping and alignment algorithms, that operate on
extremely large data sets, such as where the data sets exhibit
poor locality of reference (LOR). These algorithms are
designed to reconstruct a whole genome from millions of
short read sequences, from modern so-called next generation
sequencers, require multi-gigabyte data structures that are
randomly accessed. Once reconstruction is achieved, as
described herein above, further algorithms with similar
characteristics are used to compare one genome to libraries
of others, do gene function analysis, etc.

Currently, there are two major approaches in use, general
purpose multicore CPUs and general purpose Graphic Pro

10

15

25

30

35

40

45

50

55

60

65

76
cessing Units (GPGPUs). In such an instance ach CPU in a
multicore system may have a classical cache based archi
tecture, wherein instructions and data are fetched from a
level 1 cache (L1 cache) that is small but has extremely fast
access. Multiple L1 caches may be connected to a larger but
slower shared L2 cache. The L2 cache may be connected to
a large but slower DRAM (Dynamic Random Access
Memory) system memory, or may be connected to an even
larger but slower L3 cache which may then connected to
DRAM. An advantage of this arrangement may be that
applications in which programs and data exhibit locality of
reference behave nearly as if they are executing on a
computer with a single memory as large as the DRAM but
as fast as the L1 cache. Because full custom, highly opti
mized CPUs operate at very high clock rates, e.g., 2 to 4
GHZ, this architecture may be essential to achieving good
performance.

Further, GPGPUs may be employed to extend this archi
tecture, Such as by implementing very large numbers of
small CPUs, each with their own small L1 cache, wherein
each CPU executes the same instructions on different sub
sets of the data. This is a so called SIMD (Single Instruction
stream, Multiple Data stream) architecture. Economy is
gained by sharing the instruction fetch and decode logic
across a large number of CPUs. Each cache has access to
multiple large external DRAMs via an interconnection net
work. Assuming the computation to be performed is highly
parallelizable, GPGPUs have a significant advantage over
general purpose CPUs due to having large numbers of
computing resources. Nevertheless, they still have a caching
architecture and their performance is hurt by applications
that do not have a high enough degree of locality of
reference. That leads to a high cache miss rate and proces
sors that are idle while waiting for data to arrive from the
external DRAM.

For instance, in various instances, Dynamic RAMs may
be used for system memory because they are more economi
cal than Static RAMs (SRAM). The rule of thumb used to be
that DRAMs had 4x the capacity for the same cost as
SRAMs. However, due to declining demand for SRAMs in
favor of DRAMs, that difference has increased considerably
due to the economies of scale that favor DRAMs which are
in high demand. Independent of cost, DRAMs are 4x as
dense as SRAMs laid out in the same silicon area because
they only require one transistor and capacitor per bit com
pared to 4 transistors per bit to implement the SRAM's
flip-flop. The DRAM represents a single bit of information
as the presence or absence of charge on a capacitor. A
problem with this arrangement is that the charge decays over
time, so it has to be refreshed periodically. The need to do
this has led to architectures that organize the memory into
independent blocks and access mechanisms that deliver
multiple words of memory per request. This compensates for
times when a given block is unavailable while being
refreshed. The idea is to move a lot of data while a given
block is available. This is in contrast to SRAMs in which any
location in memory is available in a single access in a
constant amount of time. This characteristic allows memory
accesses to be single word oriented rather than block ori
ented. DRAMs work well in a caching architecture because
each cache miss leads to a block of memory being read in
from the DRAM. The theory of locality of reference is that
if just accessed word N, then probably going to access words
N+1, N+2, N-3 and so on, soon.

FIG. 8 illustrates a system 500 for executing a sequence
analysis pipeline on genetic sequence data. The system 500
includes a configuration manager 502 that includes a com

US 9,483,610 B2
77

puting system. The computing system of the configuration
manager 502 can include a personal computer or other
computer workstation, or can be implemented by a Suite of
networked computers. The configuration manager 502 can
further include one or more third party applications con
nected with the computing system by one or more APIs,
which, with one or more proprietary applications, generate
a configuration for processing genomics data from a
sequencer or other genomics data source. The configuration
manager 502 further includes drivers that load the configu
ration to the genomics pipeline processor system 10. The
genomics pipeline processor system 10 can output result
data to, or be accessed via, the Web 504 or other network,
for storage of the result data in an electronic health record
506 or other knowledge database 508.

In some implementations, the chip implementing the
genomics pipeline processor can be connected or integrated
in a sequencer. The chip can also be connected or integrated
on an expansion card, e.g. PCIe, and the expansion card can
by connected or integrated in a sequencer. In other imple
mentations, the chip can be connected or integrated in a
server computer that is connected to a sequencer, to transfer
genomic reads from the sequencer to the server. In yet other
implementations, the chip can be connected or integrated in
a server in a cloud computing cluster of computers and
servers. A system can include one or more sequencers
connected (e.g. via Ethernet) to a server containing the chip,
where genomic reads are generated by the multiple sequenc
ers, transmitted to the server, and then mapped and aligned
in the chip.
The memory architecture can consist of M memory

modules that interface with an ASIC. The ASIC may be
implemented using many different technologies, including
FPGAs (Field Programmable Gate Arrays), standard cells,
or full custom logic. Within the ASIC are a Memory
Subsystem (MSS) and Functional Processing Units (FPUs).
The MSS contains M memory controllers (MCs) for the
memory modules, N system memory interfaces (SMIs) for
the FPUs, and an NXM crossbar that allows any SMI to
access any MC. Arbitration is provided in the case of
contention.

Each memory module is constructed from DRAM chips
that are addressed by an A bit word and Support data
transfers D. bits wide. The memory has 2'" address
locations. A key characteristic of DRAM is that it performs
reads/writes in W word bursts using the supplied address as
the base address, B, and fetching or storing locations B+1,
B+2. . . . B+W-1 as well. A typical value for W is 8.

In the MSS of the ASIC, each memory controller supplies
the required control signals and performs any necessary
multiplexing/demultiplexing between the system word
width, Dss, and the memory word width, D as well as
handling the requirements for read/write bursts. It can con
tain extra buffering so that multiple memory requests can be
queued up and processed in a pipelined fashion to maximize
throughput. This compensates for multiple clock cycles of
latency between presentation of an address and completion
of a memory operation (read or write).
The MC necessarily operates at the speed of the attached

DRAM in a memory module. Assume its clock rate is C.
This is often several times faster than the core speed at
which the majority of the logic in the ASIC operates which
is Css. Hence the multiplexing/demultiplexing logic is
placed close to its associated interface pins to minimize
signal distances. Demultiplexing is the first operation per
formed on incoming data and multiplexing is the last opera
tion performed on outgoing data. The remainder of the MSS

10

15

25

30

35

40

45

50

55

60

65

78
operates on Dss width data which is wider than D,
enabling use of the slower Css clock speed.

Each system memory interface in the MSS presents an
Ass bit address bus and a Dss bit data bus to any attached
FPU. The SMI is designed to make it appear to an attached
FPU that it has random access to a single large fast memory.
The FPU has no awareness of the existence of separate
memory modules. Ass is large enough to allow access to
any memory location in any attached memory module. The
mapping from system address space to memory module
address space is explained below.
The N system memory interfaces are cross connected to

the M memory modules via an NxM crossbar. The crossbar
provides min(MN) simultaneous connections among the
SMIs and MCs, provides arbitration for conflicts, and facili
tates translation of system address space into memory mod
ule address space.
The organization of FPUs is highly flexible. One or more

FPUs can share the same system memory interface. To
maximize performance, FPUs that do not operate at the same
time should share an SMI. Those that operate concurrently,
should be attached to different SMIs. An FPU that operates
on a data structure larger than Dss can use multiple SMIs
to access the whole data structure in a single memory
operation. Hence this memory architecture Supports a wide
range of computation architectures. Each FPU may be
identical and thus an array of them may be implemented in
a two dimensional structure. This is illustrated in Error
Reference source not found. where FPU(i,j) is the j' unit
attached to SMI i, 0<i-N, 0sj<k. In this case, all the k, are
the same size and k, may be as Small as 1. This Supports
SIMD (single instruction stream, multiple data stream) and
MIMD architectures (multiple instruction stream, multiple
data stream) depending on whether the FPUs fetch instruc
tions from the same or individual instruction memories.
One or more aspects or features of the subject matter

described herein can be realized in digital electronic cir
cuitry, integrated circuitry, specially designed application
specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs) computer hardware, firmware, soft
ware, and/or combinations thereof.

These various aspects or features can include implemen
tation in one or more computer programs that are executable
and/or interpretable on a programmable system including at
least one programmable processor, which can be special or
general purpose, coupled to receive data and instructions
from, and to transmit data and instructions to, a storage
system, at least one input device, and at least one output
device. The programmable system or computing system
may include clients and servers. A client and server are
generally remote from each other and typically interact
through a communication network. The relationship of cli
ent and server arises by virtue of computer programs run
ning on the respective computers and having a client-server
relationship to each other.

These computer programs, which can also be referred to
as programs, software, Software applications, applications,
components, or code, include machine instructions for a
programmable processor, and can be implemented in a
high-level procedural and/or object-oriented programming
language, and/or in assembly/machine language. As used
herein, the term “machine-readable medium” refers to any
computer program product, apparatus and/or device. Such as
for example magnetic discs, optical disks, memory, and
Programmable Logic Devices (PLDs), used to provide
machine instructions and/or data to a programmable proces
Sor, including a machine-readable medium that receives

US 9,483,610 B2
79

machine instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to
provide machine instructions and/or data to a programmable
processor. The machine-readable medium can store Such
machine instructions non-transitorily, such as for example as
would a non-transient Solid-state memory or a magnetic hard
drive or any equivalent storage medium. The machine
readable medium can alternatively or additionally store such
machine instructions in a transient manner, such as for
example as would a processor cache or other random access
memory associated with one or more physical processor
COCS.

To provide for interaction with a user, one or more aspects
or features of the subject matter described herein can be
implemented on a computer having a display device. Such as
for example a cathode ray tube (CRT), a liquid crystal
display (LCD) or a light emitting diode (LED) monitor for
displaying information to the user and a keyboard and a
pointing device. Such as for example a mouse or a trackball,
by which the user may provide input to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well. For example, feedback provided to the user
can be any form of sensory feedback, Such as for example
visual feedback, auditory feedback, or tactile feedback; and
input from the user may be received in any form, including,
but not limited to, acoustic, speech, or tactile input. Other
possible input devices include, but are not limited to, touch
screens or other touch-sensitive devices such as single or
multi-point resistive or capacitive trackpads, voice recogni
tion hardware and Software, optical scanners, optical point
ers, digital image capture devices and associated interpre
tation software, and the like.

The subject matter described herein can be embodied in
systems, apparatus, methods, and/or articles depending on
the desired configuration. The implementations set forth in
the foregoing description do not represent all implementa
tions consistent with the subject matter described herein.
Instead, they are merely some examples consistent with
aspects related to the described subject matter. Although a
few variations have been described in detail above, other
modifications or additions are possible. In particular, further
features and/or variations can be provided in addition to
those set forth herein. For example, the implementations
described above can be directed to various combinations and
subcombinations of the disclosed features and/or combina
tions and subcombinations of several further features dis
closed above. In addition, the logic flows depicted in the
accompanying figures and/or described herein do not nec
essarily require the particular order shown, or sequential
order, to achieve desirable results. Other implementations
may be within the scope of the following claims.
What is claimed is:
1. An apparatus for executing a sequence analysis pipeline

on a plurality of reads of genomic data, one or more genetic
reference sequences, and an index of the one or more genetic
reference sequences, each read of genomic data and each
genetic reference sequence comprising a sequence of
nucleotides, the system comprising:

an integrated circuit formed of a set of pre-configured
hardwired digital logic circuits that are interconnected
by a plurality of physical electrical interconnects, one
or more of the plurality of physical electrical intercon
nects comprising an input to the integrated circuit
connected with an electronic data source for receiving
the plurality of reads of genomic data, one or more of
the plurality of physical electrical interconnects further
comprising a memory interface for the integrated cir

10

15

25

30

35

40

45

50

55

60

65

80
cuit to access a memory storing the plurality of reads of
genomic data, the one or more genetic reference
sequences, and the index of the one or more genetic
reference sequences, the hardwired digital logic circuits
being arranged as a set of processing engines, each
processing engine being formed of a Subset of the
hardwired digital logic circuits to perform at least one
step in the sequence analysis pipeline on the plurality of
reads of genomic data, the set of processing engines
comprising:
a mapping module in a first pre-configured hardwired

configuration to access from the memory, according
to at least some of the sequence of nucleotides in a
selected read of the plurality of reads, the index of
the one or more genetic reference sequences to map
the selected read to one or more segments of the one
or more genetic reference sequences based on the
index;

an alignment module in a second pre-configured hard
wired configuration to access from the memory the
one or more genetic reference sequences to align the
selected read to one or more positions in the one or
more segments of the one or more genetic reference
sequences from the mapping module to produce one
or more aligned reads; and

a variant calling module in a third pre-configured
hardwired configuration to access from the memory
the one or more aligned reads and the one or more
genetic reference sequences, compare the nucleo
tides in the aligned reads to the nucleotides of the one
or more genetic reference sequences to determine
one or more differences between the sequences of
nucleotides in the one or more aligned reads and the
sequence of nucleotides in the one or more genetic
reference sequences, and generate one or more vari
ant calls representing the one or more differences;
and

one or more of the plurality of physical electrical inter
connects comprising an output from the integrated
circuit for communicating result data from the mapping
module and/or the alignment module and/or variant
calling module.

2. The apparatus in accordance with claim 1, wherein the
index of the one or more genetic reference sequences further
comprises a hash table, and wherein the mapping module
applies a hash function to the at least Some of the sequence
of nucleotides to access the hash table of the index.

3. The apparatus in accordance with claim 2, wherein the
integrated circuit and the memory are housed on an expan
sion card.

4. The apparatus in accordance with claim 3, wherein the
expansion card is a peripheral component interconnect (PCI)
card.

5. The apparatus in accordance with claim 4, wherein the
system further comprises a sequencer, the sequencer having
the electronic data source that provides digital signals rep
resenting the plurality of reads of genomic data.

6. The apparatus in accordance with claim 5, wherein the
expansion card is physically integrated with the sequencer.

7. The apparatus in accordance with claim 1, further
comprising a cloud computing cluster having one or more
servers, wherein the integrated circuit is housed in at least
one of the one or more servers.

8. The apparatus in accordance with claim 7, wherein the
cloud computing cluster further comprises the electronic
data Source providing digital signals representing the plu
rality of reads of genomic data to the integrated circuit.

US 9,483,610 B2
81

9. An apparatus for executing a sequence analysis pipeline
on genetic sequence data, the genetic sequence data com
prising one or more genetic reference sequences having one
or more segments and one or more reads of genomic data,
each read of genomic data and each genetic reference
sequence comprising a sequence of nucleotides, the appa
ratus comprising:

a memory storing the one or more reads of genomic data,
the one or more genetic reference sequences, and an
index of the one or more genetic reference sequences;
and

an integrated circuit comprising a set of pre-configured
hardwired digital logic circuits that are interconnected
by a plurality of physical electrical interconnects, at
least one of the plurality of physical electrical inter
connects comprising an input for receiving the one or
more reads of genomic data, at least one of the plurality
of physical electrical interconnects comprising a
memory interface for the integrated circuit to access the
memory, and at least one of the plurality of physical
electrical interconnects comprising an output for pro
viding result data, the set of pre-configured hardwired
digital logic circuits of the integrated circuit to:
access, from the memory via the memory interface, by

a first hardwired digital logic circuit in a first hard
wired configuration and according to at least some of
the sequence of nucleotides in at least one read of the
one or more reads of genomic data and the index of
the one or more genetic reference sequences;

map, by the first hardwired digital logic circuit, the at
least some of the sequence of nucleotides in the at
least one read of the one or more reads of genomic
data to one or more segments of the one or more
genetic reference sequences based on the index to
produce at least one mapped read;

access, from the memory via the memory interface, by
a second hardwired digital logic circuit in a second
hardwired configuration the one or more genetic
reference sequences and the at least one mapped
read;

align, by the second hardwired digital logic circuit, the
at least one mapped read to one or more positions in
the one or more segments of the one or more genetic
reference sequences to produce at least one aligned
read;

access, from the memory via the memory interface, by
a third hardwired digital logic circuit in a third
hardwired configuration the one or more genetic
reference sequences and the at least one aligned read;
and

compare the nucleotides in the at least one aligned read
to the nucleotides of the genetic reference sequence
to determine one or more differences between the
sequences of nucleotides in the at least one aligned
read and the sequence of nucleotides in the genetic
reference sequence, and generate one or more variant
calls representing the one or more differences.

10. The apparatus in accordance with claim 9, wherein the
index of the one or more genetic reference sequences further
comprises a hash table, and wherein the first hardwired
digital logic circuit maps the at least Some of the sequence
of nucleotides in the at least one read of the one or more
reads of genomic data to the one or more segments of the one
or more genetic reference sequences by applying a hash
function to the at least some of the sequence of nucleotides
to access the hash table of the index.

10

15

25

30

35

40

45

50

55

60

65

82
11. The apparatus in accordance with claim 9, wherein the

integrated circuit comprises a field programmable gate array
(FPGA) of the hardwired digital logic circuits.

12. The apparatus in accordance with claim 9, wherein the
memory and the integrated circuit are integrated on a
common expansion card.

13. The apparatus in accordance with claim 12, wherein
the expansion card is a peripheral component interconnect
(PCI) card.

14. The apparatus in accordance with claim 13, wherein
the PCI card is associated with a sequencer, the sequencer
having an electronic data source that provides digital signals
representing the plurality of reads of genomic data.

15. The apparatus in accordance with claim 14, wherein
the PCI card is physically integrated with the sequencer.

16. The apparatus in accordance with claim 9, further
comprising a cloud computing cluster having one or more
servers, wherein the integrated circuit is housed in at least
one of the one or more servers.

17. The apparatus in accordance with claim 16, wherein
the cloud computing cluster further comprising an electronic
data Source providing digital signals representing the plu
rality of reads of genomic data to the integrated circuit.

18. A system for executing a sequence analysis pipeline
on a plurality of reads of genomic data using genetic
reference sequence data and an index of the genetic refer
ence sequence data, each read of genomic data and the
genetic reference sequence data representing a sequence of
nucleotides, the system comprising:

a memory storing the plurality of reads of genomic data,
the genetic reference sequence data, and the index of
the genetic reference sequence data; and

a field programmable gate array (FPGA) comprising a set
of pre-configured hardwired digital logic circuits
formed on the FPGA, the hardwired digital logic cir
cuits being interconnected by a plurality of physical
electrical interconnects, one or more of the plurality of
physical electrical interconnects comprising a memory
interface for the FPGA to access the memory to receive
the plurality of reads of genomic data, the hardwired
digital logic circuits being arranged as a set of process
ing engines, each processing engine being formed of a
subset of the hardwired digital logic circuits to perform
a step in the sequence analysis pipeline on the plurality
of reads of genomic data, the set of processing engines
comprising:
a mapping module in a first pre-configured hardwired

configuration to access, according to at least some of
the sequence of nucleotides in a selected read of the
plurality of reads of genomic data, the index of the
genetic reference sequence data, to map the selected
read to one or more segments of the genetic refer
ence sequence data based on the index; and

an alignment module in a second pre-configured hard
wired configuration to access the genetic reference
sequence data to align the selected read to one or
more positions in the one or more segments of the
genetic reference sequence data from the mapping
module to produce one or more aligned reads;

a variant calling module in a third pre-configured
hardwired configuration to access the aligned reads
and the genetic reference sequence data, compare the
nucleotides in the aligned reads to the nucleotides of
the reference sequence data to determine one or more
differences between the sequences of nucleotides in
the one or more aligned reads and the sequence of
nucleotides in the genetic reference sequence data,

US 9,483,610 B2
83

and generate one or more variant calls representing
the one or more differences;

one or more of the plurality of physical electrical inter
connects comprising an output from the integrated
circuit for communicating result data from the mapping
module and/or the alignment module and/or the variant
calling module.

19. The system in accordance with claim 18, wherein the
index of the one or more genetic reference sequences further
comprises a hash table, and wherein the mapping module
applies a hash function to the at least some of the sequence
of nucleotides to access the hash table of the index.

20. The system in accordance with claim 18, wherein the
FPGA and the memory are housed on an expansion card.

21. The system in accordance with claim 20, wherein the
expansion card is a peripheral component interconnect (PCI)
card.

22. The system in accordance with claim 18, wherein the
System further comprises a sequencer, the sequencer having
the electronic data source that provides digital signals rep
resenting the plurality of reads of genomic data.

23. The system in accordance with claim 22, wherein the
expansion card is physically integrated with the sequencer.

24. The system in accordance with claim 18, further
comprising a cloud computing cluster having one or more
servers, wherein the integrated circuit is housed in at least
one of the one or more servers.

25. The system in accordance with claim 24, wherein the
cloud computing cluster further comprises the electronic
data source providing digital signals representing the plu
rality of reads of genomic data to the integrated circuit.

26. A system for executing a portion of a sequence
analysis pipeline on a plurality of reads of genomic data
using genetic reference sequence data, where each read of
the plurality of reads of genomic data and the genetic
reference sequence data represent a sequence of nucleotides,
the integrated circuit comprising:

a memory storing the plurality of reads of genomic data
and the genetic reference sequence data;

a field programmable gate array (FPGA), the FPGA
comprising a set of pre-configured hardwired digital
logic circuits, the hardwired digital logic circuits being
interconnected by a plurality of physical electrical
interconnects, one or more of the plurality of physical
electrical interconnects comprising a memory interface
to access the memory, the hardwired digital logic
circuits being arranged as a set of processing engines,
each processing engine being formed of a subset of the
hardwired digital logic circuits to perform one or more
steps in the sequence analysis pipeline on the plurality
of reads of genomic data, the set of processing engines
comprising a variant calling module in a first hardwired
configuration to access one or more of the plurality of
reads of genomic data and the genetic reference

5

10

15

25

30

35

40

45

50

84
sequence data, compare the sequence of nucleotides in
at least one of the plurality of reads of genomic data to
the sequence of nucleotides of the genetic reference
sequence data to determine one or more differences
between the sequence of nucleotides in the at least one
of the plurality of reads of genomic data and the
sequence of nucleotides in the genetic reference
sequence data, and generate one or more variant calls
representing the one or more differences.

27. The system in accordance with claim 26, wherein the
set of processing engines further comprises a mapping
module in a second hardwired configuration to access,
according to at least some of the sequence of nucleotides in
a selected read of the plurality of reads of genomic data, the
index of genetic reference sequence data to map the selected
read to one or more segments of the genetic reference
sequence data based on the index to produce one or more
mapped reads that represent the one or more of the plurality
of reads of genomic data accessed by the variant calling
module.

28. The system in accordance with claim 27, wherein the
index of the genetic reference sequence data further com
prises a hash table, and wherein the mapping module applies
a hash function to the at least some of the sequence of
nucleotides in the selected read to access the hash table of
the index.

29. The system in accordance with claim 27, wherein the
set of processing engines further comprises an alignment
module in a third hardwired configuration to access the
genetic reference sequence data to align the mapped read to
one or more positions in one or more segments of the genetic
reference sequence data from the mapping module to pro
duce one or more aligned reads.

30. The system in accordance with claim 29, wherein the
FPGA and the memory are housed on an expansion card.

31. The system in accordance with claim 30, wherein the
expansion card is a peripheral component interconnect (PCI)
card.

32. The system in accordance with claim 31, wherein the
system further comprises a sequencer, the sequencer having
an electronic data source that provides digital signals rep
resenting the plurality of reads of genomic data.

33. The system in accordance with claim 32, wherein the
expansion card is physically integrated with the sequencer.

34. The system in accordance with claim 26, further
comprising a cloud computing cluster having one or more
servers, wherein the FPGA is housed in at least one of the
Ole Or Ore SerVerS.

35. The system in accordance with claim 34, wherein the
cloud computing cluster further comprises an electronic data
Source providing digital signals representing the plurality of
reads of genomic data to the integrated circuit.

:k k k k k

