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BIOINFORMATICS SYSTEMS, 
APPARATUSES, AND METHODS EXECUTED 

ON AN INTEGRATED CIRCUIT 
PROCESSING PLATFORM 

CROSS REFERENCE TO RELATED 
APPLICATION 

This application is related to and claims the benefit of 
priority under 35 U.S.C. 119(e) of U.S. Provisional Appli 
cation Ser. No. 61/753,775, titled, “System and Method for 
Bioinformatics Processor, filed Jan. 17, 2013: U.S. Provi 
sional Application Ser. No. 61/822,101, titled, “Bioinfor 
matics Processor Pipeline Based on Population Inference.” 
filed May 10, 2013: U.S. Provisional Application Ser. No. 
61/823,824, titled, “Bioinformatics Processing System.” 
filed May 15, 2013: U.S. Provisional Application Ser. No. 
61/826.381 titled, “System and Method for Computation 
Genomics Pipeline.” filed May 22, 2013; and U.S. Provi 
sional Application Ser. No. 61/910,868, titled, “BioInfor 
matics Systems and Methods Executed On a Hardware 
Processing Platform.” filed Dec. 2, 2013. The disclosures of 
the above-identified patent applications are hereby incorpo 
rated by reference in their entirety. 

TECHNICAL FIELD 

The subject matter described herein relates to bioinfomat 
ics, and more particularly to systems, apparatuses, and 
methods for implementing bioinformatic protocols, such as 
performing one or more functions for analyzing genomic 
data on an integrated circuit, such as on a hardware pro 
cessing platform. 

BACKGROUND 

A goal for health care researchers and practitioners is to 
improve the safety, quality, and effectiveness of health care 
for every patient. Personalized health care is directed to 
achieving these goals on an individual level. For instance, 
“genomics' and/or “bioinformatics’ are fields of study that 
aim to facilitate the safety, the quality, and the effectiveness 
of prophylactic and therapeutic treatments on a personal 
ized, individual level. Accordingly, by employing genomics 
and/or bioinformatics techniques, the identity of an indi 
vidual’s genetic makeup, e.g., his or hers genes, may be 
determined and that knowledge may be used in the devel 
opment of therapeutic and/or prophylactic regimens, includ 
ing drug treatments, that are personalized to the individual, 
thus, enabling medicine to be tailored to meet each person’s 
individual needs. 
The desire to provide personalized care to individuals is 

transforming the health care system. This transformation of 
the health care system is likely to be powered by break 
through innovations at the intersection of medical Science 
and information technology Such as is represented by the 
fields of genomics and bioinformatics. Accordingly, genom 
ics and bioinformatics are key foundations upon which this 
future will be built. Science has evolved dramatically since 
the first human genome was fully sequenced in 2000 at a 
total cost of over $1 Billion. Today, we are on the verge of 
high resolution sequencing at a cost of less than S1K per 
genome, making it economically feasible for the first time to 
move out of the research lab and into widespread adoption 
for medical care. Genomic data, therefore, may become a 
Vital input to diagnostic screening, therapeutic and/or pro 
phylactic drug discovery, and/or disease treatment. 
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2 
More particularly, genomics and bioinformatics are fields 

concerned with the application of information technology 
and computer Science to the field of molecular biology. In 
particular, bioinformatics techniques can be applied to pro 
cess and analyze various genomic data, Such as from an 
individual so as to determine qualitative and quantitative 
information about that data that can then be used by various 
practitioners in the development of prophylactic and thera 
peutic methods for preventing or at least ameliorating dis 
eased States, and thus, improving the safety, quality, and 
effectiveness of health care on an individualized level. 

Because of its focus on advancing personalized health 
care, bioinformatics, therefore, promotes individualized 
healthcare that is proactive, instead of reactive, and this 
gives the patient the opportunity to become more involved 
in their own wellness. Typically, this can be achieved 
through two guiding principles. First, federal leadership can 
be provided to support research that addresses these indi 
vidual aspects of disease and disease prevention, Such as 
with the ultimate goal of shaping diagnostic and preventa 
tive care to match each person's unique genetic character 
istics. Additionally, a “network of networks’ may be created 
to aggregate health care data to help researchers establish 
patterns and identify genetic "definitions to existing dis 
CaSCS. 

An advantage of employing bioinformatics technologies 
in Such instances is that the qualitative and/or quantitative 
analyses of molecular biological data can be performed on 
a broader range of sample sets at a much higher rate of speed 
and often times more accurately, thus expediting the emer 
gence of a personalized healthcare system. 

Accordingly, in various instances, the molecular data to 
be processed in a bioinformatics based platform typically 
concerns genomic data, Such as Deoxyribonucleic acid 
(DNA) data. For example, a well-known method for gener 
ating DNA data involves DNA sequencing. DNA sequenc 
ing can be performed manually, such as in a lab, or may be 
performed by an automated sequencer, such as at a core 
sequencing facility, for the purpose of determining the 
genetic makeup of a sample of an individual's DNA. The 
person’s genetic information may then be used in compari 
son to a referent so as to determine its variance therefrom. 
Such variant information may then be subjected to further 
processing and used to determine or predict the occurrence 
of a diseased state in the individual. 

For instance, manual or automated DNA sequencing may 
be employed to determine the sequence of nucleotide bases 
in a sample of DNA, such as a sample obtained from a 
Subject. Using various different bioinformatics techniques 
these sequences may then be strung together to generate the 
genomic sequence of the Subject. This sequence may then be 
compared to a reference genomic sequence to determine 
how the genomic sequence of the Subject varies from that of 
the reference. Such a process involves determining the 
variants in the sampled sequence and presents a central 
challenge to bioinformatics methodologies. 

For example, a central challenge in DNA sequencing is 
building full-length genomic sequences, e.g., chromosomal 
sequences, from a sample of genetic material that can be 
compared to a reference genomic sequence Such as to 
determine the variants in the sampled full-length genomic 
sequences. In particular, the methods employed in sequenc 
ing protocols do not produce full-length chromosomal 
sequences of the sample DNA. 

Rather, sequence fragments, typically from 100-1,000 
nucleotides in length, are produced without any indication as 
to where in the genome they align. Therefore, in order to 
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generate full length chromosomal genomic constructs, these 
fragments of DNA sequences need to be mapped, aligned, 
merged, and/or compared to a reference genomic sequence. 
Through Such processes the variants of the sample genomic 
sequences from the reference genomic sequences may be 
determined. 

However, as the human genome is comprised of approxi 
mately 3.1 billion base pairs, and as each sequence fragment 
is typically only from 100 to 500 nucleotides in length, the 
time and effort that goes into building such full length 
genomic sequences and determining the variants therein is 
quite extensive often requiring the use of several different 
computer resources applying several different algorithms 
over prolonged periods of time. 

In a particular instance, thousands to millions of frag 
ments of DNA sequences are generated, aligned, and merged 
in order to construct a genomic sequence that approximates 
a chromosome in length. A step in this process may include 
comparing the DNA fragments to a reference sequence to 
determine where in the genome the fragments align. 
A number of Such steps are involved in building chromo 

Some length sequences and in determining the variants of the 
sampled sequence. Accordingly, a wide variety of methods 
have been developed for performing these steps. For 
instance, there exist commonly used software implementa 
tions for performing one or a series of Such steps in a 
bioinformatics system. However, a common characteristic 
of such software based bioinformatics methods and systems 
is that they are labor intensive, take a long time to execute 
on general purpose processors, and are prone to errors. 

Abioinformatics system, therefore, that could perform the 
algorithms implemented by such software in a less labor 
and/or processing intensive manner with a greater percent 
age accuracy would be useful. However, even as we 
approach the “S1000 Genome', the cost of analyzing, stor 
ing and sharing this raw digital data has far outpaced the cost 
of producing it. This data analysis bottleneck is a key 
obstacle standing between these ever-growing raw data and 
the real medical insight we seek from it. 

Accordingly, presented herein are systems, apparatuses, 
and methods for implementing a genomics and/or bioinfor 
matic protocols, such as for performing one or more func 
tions for analyzing genomic data, for instance, on an inte 
grated circuit. Such as on a hardware processing platform. 
For example, as set forth herein below, in various imple 
mentations, a hardware accelerator, Such as an integrated 
circuit, may be employed in performing Such bioinformatics 
related tasks where the integrated circuit may be formed of 
one or more hardwired digital logic circuits, which may be 
interconnected by a plurality of physical electrical intercon 
nects, that can be arranged as a set of processing engines, 
wherein each processing engine is capable of being config 
ured to perform one or more steps in a bioinformatics 
genetic analysis protocol. An advantage of this arrangement 
is that the bioinformatics related tasks may be performed in 
a manner that is faster than the Software typically engaged 
for performing Such tasks. Such hardware accelerator tech 
nology, however, is currently not typically employed in the 
genomics and/or bioinformatics space. 

SUMMARY 

This present disclosure is related to performing a task 
Such as in a bioinformatics protocol. In various instances, a 
plurality of tasks are performed, and in Some instances these 
tasks are performed in a manner So as to form a pipeline, 
wherein each task and/or its Substantial completion acts as a 
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4 
building block for each Subsequent task until a desired end 
result is achieved. Accordingly, in various embodiments, the 
present disclosure is directed to performing one or more 
methods on one or more apparatuses wherein the apparatus 
has been optimized for performing those methods. In certain 
embodiments, the one or more methods and/or one or more 
apparatuses are formulated into one or more systems. 

For instance, in certain aspects, the present disclosure is 
directed to systems, apparatuses, and methods for imple 
menting genomics and/or bioinformatic protocols such as, in 
various instances, for performing one or more functions for 
analyzing genetic data on an integrated circuit, such as 
implemented in a hardware processing platform. For 
example, in one aspect, a bioinformatics system is provided. 
The system may involve the performance of various bio 
analytical functions that have been optimized so as to be 
performed faster and/or with increased accuracy. The meth 
ods for performing these functions may be implemented in 
Software or hardware solutions. Accordingly, in certain 
instances, methods are presented where the method involves 
the performance of an algorithm where the algorithm has 
been optimized in accordance with the manner in which it is 
to be implemented. In particular, where the algorithm is to 
be implemented in a software solution, the algorithm and/or 
its attendant processes, has been optimized so as to be 
performed faster and/or with better accuracy for execution 
by that media. Likewise, where the functions of algorithm 
are to be implemented in a hardware solution, the hardware 
has been designed to perform these functions and/or their 
attendant processes in an optimized manner so as to be 
performed faster and/or with better accuracy for execution 
by that media. 

Accordingly, in one aspect, presented herein are systems, 
apparatuses, and methods for implementing bioinformatic 
protocols, such as for performing one or more functions for 
analyzing genetic data, for instance, via one or more opti 
mized algorithms and/or on one or more optimized inte 
grated circuits, such as on one or more hardware processing 
platforms. Hence, in one instance, methods are provided for 
implementing one or more algorithms for the performance 
of one or more steps for analyzing genomic data in a 
bioinformatics protocol. In another instance, methods are 
provided for implementing the functions of one or more 
algorithms for the performance of one or more steps for 
analyzing genomic data in a bioinformatics protocol, 
wherein the functions are implemented on an integrated 
circuit formed of one or more hardwired digital logic 
circuits. In Such an instance, the hardwired digital logic 
circuits may be interconnected. Such as by one or a plurality 
of physical electrical interconnects, and may be arranged to 
function as one or more processing engines. In various 
instances, a plurality of hardwired digital logic circuits are 
provided, which hardwired digital logic circuits are config 
ured as a set of processing engines, wherein each processing 
engine is capable of performing one or more steps in a 
bioinformatics genetic analysis protocol. 
More particularly, in one instance, a system for executing 

a sequence analysis pipeline such as on genetic sequence 
data is provided. The system may include one or more of an 
electronic data source, a memory, and an integrated circuit. 
For instance, in one embodiment, an electronic data source 
is included, where in the electronic data source may be 
configured for providing one or more digital signals. Such as 
a digital signal representing one or more reads of genetic 
data, for example, where each read of genomic data includes 
a sequence of nucleotides. Further, the memory may be 
configured for storing one or more genetic reference 
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sequences, and may further be configured for storing an 
index, Such as an index of the one or more genetic reference 
Sequences. 

Further still, the integrated circuit may be formed of a set 
of hardwired digital logic circuits such as where the hard 
wired digital logic circuits are interconnected, e.g., by a 
plurality of physical electrical interconnects. In various 
instances, one or more of the plurality of physical electrical 
interconnects may include an input, such as to the integrated 
circuit, and may further be connected with the electronic 
data source, so as to be able to receive the one or more reads 
of genomic data. In various embodiments, the hardwired 
digital logic circuits may be arranged as a set of processing 
engines, such as where each processing engine is formed of 
a Subset of the hardwired digital logic circuits, and is 
configured so as to perform one or more steps in the 
sequence analysis pipeline, such as on the plurality of reads 
of genomic data. In Such instances, each Subset of the 
hardwired digital logic circuits may be in a wired configu 
ration so as to perform the one or more steps in the sequence 
analysis pipeline. 

Accordingly, in various instances, a plurality of hardwired 
digital logic circuits are provided wherein the hardwired 
digital logic circuits are arranged as a set of processing 
engines, wherein one or more of the processing engines may 
include one or more of a mapping module and/or an align 
ment module and/or a sorting module. For instance, in 
various embodiments, the one or more of the processing 
engines may include a mapping module, which mapping 
module may be in a wired configuration and further be 
configured for accessing the index of the one or more genetic 
reference sequences from the memory, such as by one or 
more of the plurality of physical electronic interconnects, for 
example, so as to map the plurality of reads to one or more 
segments of the one or more genetic reference sequences. 

Additionally, in various embodiments, the one or more of 
the processing engines may include an alignment module, 
which alignment module may be in the wired configuration 
and may be configured for accessing the one or more genetic 
reference sequences from the memory, such as by one or 
more of the plurality of physical electronic interconnects, for 
example, so as to align the plurality of reads to the one or 
more segments of the one or more genetic reference 
sequences. Further, in various embodiments, the one or more 
of the processing engines may include a sorting module, 
which sorting module may be in the wired configuration and 
may be configured for accessing the one or more aligned 
reads from the memory, such as by one or more of the 
plurality of physical electronic interconnects, for example, 
So as to sort each aligned read, such as according to its one 
or more positions in the one or more genetic reference 
sequences. In Such instances, the one or more of the plurality 
of physical electrical interconnects may include an output 
from the integrated circuit, such as for communicating result 
data from the mapping module and/or the alignment module 
and/or the sorting module. 

In various instances, the integrated circuit may include a 
master controller so as to establish the wired configuration 
for each subset of the hardwired digital logic circuits, for 
instance, for performing the one or more of mapping, 
aligning, and/or sorting, which functions may be configured 
as one or steps in a sequence analysis pipeline. Further, in 
various embodiments, the integrated circuit may be config 
ured as a field programmable gate array (FPGA) having 
hardwired digital logic circuits, such as where the wired 
configuration may be established upon manufacture of the 
integrated circuit, and thus may be non-volatile. In other 
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6 
various embodiments, the integrated circuit may be config 
ured as an application specific integrated circuit (ASIC) 
having hardwired digital logic circuits. 

In certain instances, the integrated circuit and/or the 
memory may be housed on an expansion card, such as a 
peripheral component interconnect (PCI) card, for instance, 
in various embodiments, the integrated circuit may be a chip 
having a PCIe card. In various instances, the integrated 
circuit and/or chip may be a component within a sequencer, 
Such as an automated sequencer, and/or in other embodi 
ments, the integrated circuit and/or expansion card may be 
accessible via the internet, e.g., cloud. Further, in some 
instances, the memory may be a volatile random access 
memory (RAM). 

Accordingly, in one aspect, an apparatus for executing 
one or more steps of a sequence analysis pipeline. Such as on 
genetic data, is provided wherein the genetic data includes 
one or more of a genetic reference sequence(s), an index of 
the one or more genetic reference sequence(s), and/or a 
plurality of reads, such as of genetic data. In various 
instances, the apparatus may include an integrated circuit, 
which integrated circuit may include one or more, e.g., a set, 
of hardwired digital logic circuits, wherein the set of hard 
wired digital logic circuits may be interconnected, Such as 
by one or a plurality of physical electrical interconnects. In 
certain instances, the one or more of the plurality of physical 
electrical interconnects may include an input, such as for 
receiving the plurality of reads of genomic data. Addition 
ally, the set of hardwired digital logic circuits may further be 
in a wired configuration, so as to access the index of the one 
or more genetic reference sequences, via one of the plurality 
of physical electrical interconnects, and to map the plurality 
of reads to one or more segments of the one or more genetic 
reference sequences, such as according to the index. 

In various embodiments, the index may include one or 
more hash tables, such as a primary and/or secondary hash 
table. For instance, a primary hash table may be included, 
wherein in Such an instance, the set of hardwired digital 
logic circuits may be configured to do one or more of 
extracting one or more seeds of genetic data from the 
plurality of reads of genetic data; executing a primary hash 
function, such as on the one or more seeds of genetic data 
So as to generate a lookup address for each of the one or 
more seeds; and accessing the primary hash table using the 
lookup address So as to provide a location in the one or more 
genetic reference sequences for each of the one or more 
seeds of genetic data. In various instances, the one or more 
seeds of genetic data may have a fixed number of nucleo 
tides. 

Further, in various embodiments, the index may include a 
secondary hash table, such as where the set of hardwired 
digital logic circuits is configured for at least one of extend 
ing at least one of the one or more seeds with additional 
neighboring nucleotides, so as to produce at least one 
extended seed of genetic data; executing a hash function, 
e.g., a secondary hash function, on the at least one extended 
seed of genetic data, so as to generate a second lookup 
address for the at least one extended seed; and accessing the 
secondary hash table, e.g., using the second lookup address, 
So as to provide a location in the one or more genetic 
reference sequences for each of the at least one extended 
seed of genetic data. In various instances, the secondary 
hash function may be executed by the set of hardwired 
digital logic circuits, such as when the primary hash table 
returns an extend record instructing the set of hardwired 
digital logic circuits to extend the at least one of the one or 
more seeds with the additional neighboring nucleotides. In 
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certain instances, the extend record may specify the number 
of additional neighboring nucleotides by which the at least 
one or more seeds is extended, and/or the manner in which 
the seed is to be extended, e.g., equally by an even number 
of 'x' nucleotides to each end of the seed. 

Additionally, in one aspect, an apparatus for executing 
one or more steps of a sequence analysis pipeline on genetic 
sequence data is provided, wherein the genetic sequence 
data includes one or more of one or a plurality of genetic 
reference sequences, an index of the one or more genetic 
reference sequences, and a plurality of reads of genomic 
data. In various instances, the apparatus may include an 
integrated circuit, which integrated circuit may include one 
or more, e.g., a set, of hardwired digital logic circuits, 
wherein the set of hardwired digital logic circuits may be 
interconnected, such as by one or a plurality of physical 
electrical interconnects. In certain instances, the one or more 
of the plurality of physical electrical interconnects may 
include an input, such as for receiving the plurality of reads 
of genomic data. Additionally, the set of hardwired digital 
logic circuits may further be in a wired configuration, so as 
to access the one or more genetic reference sequences, via 
one of the plurality of physical electrical interconnects, to 
receive location information specifying one or more seg 
ments of the one or more reference sequences, and to align 
the plurality of reads to the one or more segments of the one 
or more genetic reference sequences. 

In various instances, the wired configuration of the set of 
hardwired digital logic circuits, are configured to align the 
plurality of reads to the one or more segments of the one or 
more genetic reference sequences, and further include a 
wave front processor that me be formed of the wired 
configuration of the set of hardwired digital logic circuits. In 
certain embodiments, the wave front processor may be 
configured to process an array of cells of an alignment 
matrix, such as a matrix defined by a subset of the set of 
hardwired digital logic circuits. For instance, in certain 
instances, the alignment matrix may define a first axis, e.g., 
representing one of the plurality of reads, and a second axis, 
e.g., representing one of the segments of the one or more 
genetic reference sequences. In Such an instance, the wave 
front processor may be configured to generate a wave front 
pattern of cells that extend across the array of cells from the 
first axis to the second axis; and may further be configured 
to generate a score, such as for each cell in the wave front 
pattern of cells, which score may represent the degree of 
matching of the one of the plurality of reads and the one of 
the segments of the one or more genetic reference 
Sequences. 

In Such an instance, the wave front processor may further 
be configured so as to steer the wave front pattern of cells 
over the alignment matrix Such that the highest score may be 
centered on the wave front pattern of cells. Additionally, in 
various embodiments, the wave front processor may further 
be configured to backtrace one or more, e.g., all, the posi 
tions in the scored wave front pattern of cells through 
previous positions in the alignment matrix; track one or 
more, e.g., all, of the backtraced paths until a convergence 
is generated; and generate a CIGAR string based on the 
backtrace from the convergence. 

In certain embodiments, the wired configuration of the set 
of hardwired digital logic circuits to align the plurality of 
reads to the one or more segments of the one or more genetic 
reference sequences may include a wired configuration to 
implement a Smith-Waterman and/or Burrows-Wheeler 
scoring algorithm. In such an instance, the Smith-Waterman 
and/or Burrows-Wheeler scoring algorithm may be config 
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8 
ured to implement a scoring parameter that is sensitive to 
base quality scores. Further, in certain embodiments, the 
Smith-Waterman scoring algorithm may be an affine Smith 
Waterman scoring algorithm. 

Accordingly, in one aspect, a method for executing a 
sequence analysis pipeline Such as on genetic sequence data 
is provided. The genetic data may include one or more 
genetic reference sequences, one or more indexes of the one 
or more genetic reference sequences, and/or a plurality of 
reads of genomic data. The method may include one or more 
of receiving, accessing, mapping, aligning, and/or sorting 
various iterations of the genetic sequence data. For instance, 
in certain embodiments, the method may include receiving, 
on an input to an integrated circuit from an electronic data 
Source, one or more of a plurality of reads of genomic data, 
wherein each read of genomic data may include a sequence 
of nucleotides. In Such an instance, the integrated circuit 
may be formed of a set of hardwired digital logic circuits 
Such as are interconnected by a plurality of physical elec 
trical interconnects, which physical electrical interconnects 
may include one or more of the plurality of physical elec 
trical interconnects comprising the input. 
The method may further include accessing, by the inte 

grated circuit on one or more of the plurality of physical 
electrical interconnects from a memory, the index of the one 
or more genetic reference sequences. In Such an instance the 
method may include mapping, by a first Subset of the 
hardwired digital logic circuits of the integrated circuit, the 
plurality of reads to one or more segments of the one or more 
genetic reference sequences. Additionally, the method may 
include accessing, by the integrated circuit on one or more 
of the plurality of physical electrical interconnects from the 
memory, the one or more genetic reference sequences; and 
aligning, by a second Subset of the hardwired digital logic 
circuits of the integrated circuit, the plurality of reads to the 
one or more segments of the one or more genetic reference 
Sequences. 

In various embodiments, the method may additionally 
include accessing, by the integrated circuit on one or more 
of the plurality of physical electrical interconnects from a 
memory, the aligned plurality of reads. In Such an instance 
the method may include sorting, by a third subset of the 
hardwired digital logic circuits of the integrated circuit, the 
aligned plurality of reads according to their positions in the 
one or more genetic reference sequences. In certain 
instances, the method may further include outputting, Such 
as on one or more of the plurality of physical electrical 
interconnects of the integrated circuit, result data from the 
mapping and/or the aligning and/or the Sorting, Such as 
where the result data includes positions of the mapped 
and/or aligned and/or sorted plurality of reads. 

Hence, in various instances, implementations of various 
aspects of the disclosure may include, but are not limited to: 
apparatuses, systems, and methods including one or more 
features as described in detail herein, as well as articles that 
comprise a tangibly embodied machine-readable medium 
operable to cause one or more machines (e.g., computers, 
etc.) to result in operations described herein. Similarly, 
computer systems are also described that may include one or 
more processors and one or more memories coupled to the 
one or more processors. Accordingly, computer imple 
mented methods consistent with one or more implementa 
tions of the current subject matter can be implemented by 
one or more data processors residing in a single computing 
system or multiple computing systems. Such multiple com 
puting systems can be connected and can exchange data 
and/or commands or other instructions or the like via one or 
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more connections, including but not limited to a connection 
over a network (e.g. the Internet, a wireless wide area 
network, a local area network, a wide area network, a wired 
network, or the like), via a direct connection between one or 
more of the multiple computing systems, etc. A memory, 
which can include a computer-readable storage medium, 
may include, encode, store, or the like one or more programs 
that cause one or more processors to perform one or more of 
the operations described herein. 

The details of one or more variations of the subject matter 
described herein are set forth in the accompanying drawings 
and the description below. Other features and advantages of 
the subject matter described herein will be apparent from the 
description and drawings, and from the claims. While cer 
tain features of the currently disclosed subject matter are 
described for illustrative purposes in relation to an enterprise 
resource Software system or other business Software solution 
or architecture, it should be readily understood that such 
features are not intended to be limiting. The claims that 
follow this disclosure are intended to define the scope of the 
protected Subject matter. 

DESCRIPTION OF DRAWINGS 

The accompanying drawings, which are incorporated in 
and constitute a part of this specification, show certain 
aspects of the Subject matter disclosed herein and, together 
with the description, help explain some of the principles 
associated with the disclosed implementations. In the draw 
ings, 

FIG. 1 is a block diagram of a hardware processor 
architecture in accordance with an implementation. 

FIG. 2 is a block diagram of a hardware processor 
architecture in accordance with another implementation. 

FIG. 3 is a block diagram of a hardware processor 
architecture in accordance with yet another implementation 

FIG. 4 shows a genetic sequence analysis pipeline. 
FIG. 5 illustrates processing steps using a genetic 

sequence analysis hardware platform. 
FIG. 6 illustrates an apparatus in accordance with an 

implementation. 
FIG. 7 illustrates an apparatus in accordance with an 

alternative implementation. 
FIG. 8 illustrates a genomics processing system in accor 

dance with an implementation. 
When practical, similar reference numbers denote similar 

structures, features, or elements. 

DETAILED DESCRIPTION 

To address these and potentially other issues with cur 
rently available solutions, methods, systems, articles of 
manufacture, and the like consistent with one or more 
implementations of the current Subject matter can, among 
other possible advantages, provide a sequence analysis 
apparatus for executing a sequence analysis pipeline on 
genetic sequence data. 
The following provides details of various implementa 

tions of a sequence analysis pipeline and platform. 
In its most basic form, the body is comprised of cells, the 

cells form tissues, tissues form organs, organs form systems, 
and these systems function together to ensure the body 
operates to sustain the life of the individual. The cells of the 
body, therefore, are the building blocks of life. More par 
ticularly, each cell has a nucleus, and within the nucleus of 
every cell reside chromosomes. Chromosomes are formed 
from Deoxyribonucleic Acid, which has an organized but 
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10 
winding double helix structure. The DNA itself is comprised 
of two opposed, but complementary strands of nucleotides, 
which nucleotides comprise the genes that code for the 
proteins that give the cells their structures and mediate the 
functions and regulations of the body's tissues and organs. 
Basically, proteins do most of the work of cells in main 
taining the body's normal processes and functions. 

Given the multiplicity of components of the body and the 
complexity involved in how they interact with one another 
to maintain the body's various processes and functions, 
there are a multiplicity of ways that the body may malfunc 
tion on any one of these different levels. For instance, in one 
Such instance, there may be a malfunction in the way a 
particular gene codes for a given protein, which dependent 
on the protein and the nature of its malfunctioning can result 
in the onset of a diseased State. 

Accordingly, in diagnosing, preventing, and/or curing 
Such diseased States, determining the genetic makeup of a 
Subject may be extremely useful. For instance, once known, 
a person's genetic makeup, e.g., his or her genomic com 
position, can be used for purposes of diagnostics and/or for 
determining whether a person has or has the potential for a 
diseased State. Likewise, the knowledge of a person’s 
genome may be useful in determining various potential 
therapeutic modalities, such as drugs, that can or cannot be 
used in a prophylactic or therapeutic regimen without caus 
ing harm to the user. In various instances, knowledge of a 
person’s genome may also be employed to determine drug 
efficacy and/or problematic side effects of such drug use may 
be predicted and/or identified. Potentially, the knowledge of 
a person’s genome can be used to produce designer drugs, 
such as drugs tailor made and optimized in accordance with 
a person’s specific genetic makeup. In particular, in one 
instance, an engineered protein or nucleotide sequence can 
be fabricated to an individuals unique genetic characteris 
tics So as to turn off or turn on the transcription of genes that 
either over or under produce proteins and thereby ameliorate 
diseased States. 

Hence, in some instances, it is a goal of bioinformatics 
processing to determine individual genomes of people, 
which determinations may be used in gene discovery pro 
tocols as well as for prophylaxis and/or therapeutic regimes 
to better enhance the livelihood of each particular person 
and human kind as a whole. Further, knowledge of an 
individual’s genome may be used such as in drug discovery 
and/or FDA trials to better predict with particularity which, 
if any, drugs will be likely to work on an individual and/or 
which would be likely to have deleterious side effects, such 
as by analyzing the individual’s genome and/or a protein 
profile derived therefrom and comparing the same with 
predicted biological response from Such drug administra 
tion. 

Such bioinformatics processing usually involves three 
well defined, but typically separate phases of information 
processing. The first phase involves DNA sequencing, where 
a subject’s DNA is obtained and subjected to various pro 
cesses whereby the Subject's genetic code is converted to a 
machine-readable digital code, e.g., a FASTQ file. The 
second phase involves using the Subject’s generated digital 
genetic code for the determination of the individuals 
genetic makeup, e.g., determining the individual’s genomic 
nucleotide sequence. And the third phase involves perform 
ing one or more analyses on the Subject's genetic makeup so 
as to determine therapeutically useful information there 
from. 

Preliminarily to Phase I, or primary processing, the 
genetic material must be preprocessed, so as to derive usable 
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genetic sequence data. This preprocessing may be done 
manually or via an automated sequencer. Typically, prepro 
cessing involves obtaining a biological sample from a Sub 
ject, such as through Venipuncture, hair, etc. and treating the 
sample to isolate the DNA therefrom. Once isolated the 
DNA may be denatured, strand separated, and/or portions of 
the DNA may then be multiplied, e.g., via polymerase chain 
reaction (PCR), so as to build a library of replicated strands 
that are now ready to be read, Such as by an automated 
sequencer, which sequencer is configured to read the repli 
cate Strands, e.g., by Synthesis, and thereby determine the 
nucleotide sequences that makes up the DNA. Further, in 
various instances, such as in building the library of repli 
cated Strands, it may be useful to provide for over-coverage 
when preprocessing a given portion of the DNA. To perform 
this over-coverage, e.g., using PCR, may require increased 
sample preparation resources and time, and therefore be 
more expensive, but it often gives an enhanced probability 
of the end result being more accurate. 
Once the library of replicated strands has been generated 

they may be injected into an automated sequencer that may 
then read the strands, Such as by Synthesis, so as to deter 
mine the nucleotide sequences thereof. For instance, the 
replicated single stranded DNA may be attached to a glass 
bead and inserted into a test vessel, e.g., an array. All the 
necessary components for replicating its complementary 
Strand, including labeled nucleotides, are also added to the 
vessel but in a sequential fashion. For example, all labeled 
“A”, “C”, “G”, and “T's are added, either one at a time or 
all together to see which of the nucleotides is going to bind 
at position one. After each addition a light, e.g., a laser, is 
shone on the array. If the composition fluoresces then an 
image is produced indicating which nucleotide bound to the 
subject location. More particularly, where the nucleotides 
are added one at a time, if a binding event occurs, then its 
indicative fluorescence will be observed. If a binding event 
does not occur, the test vessel may be washed and the 
procedure repeated until the appropriate one of the four 
nucleotides binds to its complement at the Subject location, 
and its indicative fluorescence is observed. Where all four 
nucleotides are added at the same time, each may be labeled 
with a different fluorescent indicator, and the nucleotide that 
binds to its complement at the Subject position may be 
determined, such as by the color of its fluorescence. This 
greatly accelerates the synthesis process. 
Once a binding event has occurred, the complex is then 

washed and the synthesis steps are repeated for position two. 
For example, a marked nucleotide “A” may be added to the 
mix to determine if the complement at position one is an 
'A', and if so, all the sequences having that complement 
will bind to the labeled “A” and will therefore fluoresce, and 
the samples will all be washed. Where the binding happened 
the bound nucleotide is not washed away, and then this will 
be repeated for all nucleotides for all positions until all the 
over-sampled nucleic acid segments, e.g., reads, have been 
sequenced and the data collected. Alternatively, where all 
four nucleotides are added at the same time, each labeled 
with a different fluorescent indicator, only one nucleotide 
will bind to its complement at the subject position, and the 
others will be washed away, such that after the vessel has 
been washed, a laser may be shone on the vessel and which 
nucleotide bound to its complement may be determined, 
such as by the color of its fluorescence. 

This continues until the entire strand has been replicated 
in the vessel. Usually a typical length of a sequence repli 
cated in this manner is from about 100 to about 500 base 
pairs, such as between 150 to about 400 base pairs, including 
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12 
from about 200 to about 350 base pairs, such as about 250 
base pairs to about 300 base pairs dependent on the sequenc 
ing protocol being employed. Further, the length of these 
segments may be predetermined, e.g., engineered, to accord 
with any particular sequencing machinery and/or protocol 
by which it is run. The end result is a readout, or read, that 
is comprised of a replicated DNA segment, e.g., from about 
100 to about 1,000 nucleotides in length, that has been 
labeled in such a manner that every nucleotide in the 
sequence, e.g., read, is known because of its label. Hence, 
since the human genome is comprised of about 3.2 billion 
base pairs, and various known sequencing protocols usually 
result in labeled replicated sequences, e.g., reads, from about 
100 or 101 bases to about 250 or about 300 or about 400 
bases, the total amount of segments that need to be 
sequenced, and consequently the total number of reads 
generated, can be anywhere from about 10,000,000 to about 
40,000,000, such as about 15,000,000 to about 30,000,000, 
dependent on how long the label replicated sequences are. 
Therefore, the sequencer may typically generate about 
30,000,000 reads, such as where the read length is 100 
nucleotides in length, so as to cover the genome once. 

However, as indicated above, in Such procedures, it may 
be useful to oversample the DNA such by about 5x, or about 
10x, or about 20x, or about 25x, or about 30x, or about 40x, 
or about 50x, or about 100x, or about 200x, or about 250x, 
or about 500x, or about 1,000x, or about 5,000x, or even 
about 10,000x or more, and as such the amount of primary 
processing needed to be done and the time taken to do this 
can be quite extensive. For instance, with 40x oversampling, 
wherein the various synthesized reads are designed to over 
lap to some extent, up to about 1.2 billion reads may need 
to be synthesized. Typically, a large majority if not all of 
these labeled sequences can be generated in parallel. The 
end result is that the initial biological genetic material is 
processed, e.g., by sequencing protocols such as those 
Summarized herein, and a digital representation of that data 
is generated, which digital representation of data may be 
Subjected to a primary processing protocol. Particularly, the 
genetic material of a Subject may be replicated and 
sequenced in Such a manner that a measurable electrical, 
radioactive and/or optical signal is generated, which signal 
is then converted, e.g., by the sequencer, into a digital 
representation of the Subject's genetic code. More particu 
larly, primary processing may include the conversion of 
images, such as recorded flashes of light or other electrical 
signal data, into FASTQ file data. Accordingly, this infor 
mation is stored as a FASTQ file, which may then be sent for 
further, e.g., secondary processing. A typical FASTQ file 
includes a large collection of reads representing digitally 
encoded nucleotide sequences wherein each predicted base 
in the sequence has been called and given a probability score 
that the called base at the indicated position is incorrect. 

In many instances, it may be useful to further process the 
digitally encoded sequence data obtained from the sequencer 
and/or sequencing protocol, Such as by Subjecting the digi 
tally represented data to secondary processing. This second 
ary processing, for instance, can be used to assemble an 
entire genomic profile of an individual. Such as where the 
individual’s entire genetic makeup is determined, for 
instance, where each and every nucleotide of each and every 
chromosome is determined in sequential order Such that the 
composition of the individual’s entire genome has been 
identified. In such processing, the genome of the individual 
may be assembled such as by comparison to a reference 
genome, such as a standard, e.g., one or more genomes 
obtained from the human genome project, so as to determine 
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how the individuals genetic makeup differs from that of the 
referent(s). This process is commonly known as variant 
calling. As the difference between the DNA of any one 
person to another is 1 in 1,000 base pairs, such a variant 
calling process can be very labor and time intensive. 

Accordingly, in a typical secondary processing protocol, 
a subject's genetic makeup is assembled by comparison to a 
reference genome. This comparison involves the reconstruc 
tion of the individuals genome from millions upon millions 
of short read sequences and/or the comparison of the whole 
of the individual's DNA to an exemplary DNA sequence 
model. In a typical secondary processing protocola FASTQ 
file is received from the sequencer containing the raw 
sequenced read data. For instance, in certain instances, there 
can be up to 30,000,000 reads or more covering the subjects 
genome, assuming no oversampling, Such as where each 
read is about 100 nucleotides in length. Hence, in such an 
instance, in order to compare the Subject's genome to that of 
the standard reference genome, it needs to be determined 
where each of these reads map to the reference genome. Such 
as how each is aligned with respect to one another, and/or 
how each read can also be sorted by chromosome order So 
as to determine at what position and in which chromosome 
each read belongs. One or more of these functions may take 
place prior to performing a variant call function on the entire 
full-length sequence. Once it is determined where in the 
genome each read belongs, the full length genetic sequence 
may be determined, and then the differences between the 
subjects genetic code and that of the referent can be 
assessed. 
As the human genome is over 3 billion base pairs in 

length, efficient automated sequencing protocols and 
machinery have been developed so as to effectuate the 
sequencing of Such a genome within a time period that could 
be clinically useful. Such innovations in automated sequenc 
ing have resulted in the capabilities of sequencing an entire 
genome in a matter of hours to days dependent on the 
number of genomes being sequenced, the amount of over 
sampling involved, and the number of processing resources 
being dedicated to the job. Hence, given these advancements 
in sequencing, a large amount of sequencing data is capable 
of being generated in a relatively short period of time. A 
result of these advancements, however, is the development 
of a bottleneck at the secondary processing stage. In efforts 
to help overcome this bottleneck various software based 
algorithms have been developed to help expedite the process 
of assembling a Subject's sequenced DNA such as by a 
reference based assembly process. 

For instance, reference based assembly is a typical sec 
ondary processing assembly protocol involving the compari 
Son of sequenced genomic DNA of a Subject to that of one 
or more standards, e.g., known reference sequences. Various 
algorithms have been developed to help expedite this pro 
cess. These algorithms typically include Some variation of 
one or more of mapping, aligning, and/or sorting the 
millions of reads received from the FASTQ file communi 
cated by the sequencer, to determine where on each chro 
mosome each particular read is located. Often a common 
feature behind the functioning of these various algorithms is 
their use of an index and/or an array to expedite their 
processing function. 

For instance, with respect to mapping, a large quantity, 
e.g., all, of the sequenced reads may be processed to 
determine the possible locations in the reference genome to 
which those reads could possibly align. One methodology 
that can be used for this purpose is to do a direct comparison 
of the read to the reference genome so as to find all the 
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positions of matching. Another methodology is to employ a 
prefix or suffix array, or to build out a prefix or suffix tree, 
for the purpose of mapping the reads to various positions in 
the reference genome. A typical algorithm useful in per 
forming such a function is a Burrows-Wheeler transform, 
which is used to map a selection of reads to a reference using 
a compression formula that compresses repeating sequences 
of data. A further methodology is to employ a hash table, 
Such as where a selected Subset of the reads, a k-mer of a 
selected length 'k', e.g., a seed, are placed in a hash table 
as keys and the reference sequence is broken into equivalent 
k-mer portions and those portions and their location are 
inserted by an algorithm into the hash table at those locations 
in the table to which they map according to a hashing 
function. A typical algorithm for performing this function is 
“BLAST, a Basic Local Alignment Search Tool. Such hash 
table based programs compare query nucleotide or protein 
sequences to one or more standard reference sequence 
databases and calculates the statistical significance of 
matches. In Such manners as these, it may be determined 
where any given read is possibly located with respect to a 
reference genome. These algorithms are useful because they 
require less memory, fewer look ups, and therefore require 
fewer processing resources and time in the performance of 
their functions, than would otherwise be the case, such as if 
the Subject's genome were being assembled by direct com 
parison, Such as without the use of these algorithms. 

Additionally, an aligning function may be performed to 
determine out of all the possible locations a given read may 
map to on a genome, such as in those instances where a read 
may map to multiple positions in the genome, which is in 
fact the location to which it actually was derived, such as by 
being sequenced therefrom by the original sequencing pro 
tocol. This function may be performed on a number of the 
reads of the genome and a string of ordered nucleotide bases 
representing a portion or the entire genetic sequence of the 
subject’s DNA may be obtained. Along with the ordered 
genetic sequence a score may be given for each nucleotide 
position, representing the likelihood that for any given 
nucleotide position, the nucleotide, e.g., “A”, “C”, “G”, “T” 
(or “U”), predicted to be in that position is in fact the 
nucleotide that belongs in that assigned position. Typical 
algorithms for performing alignment functions are Needle 
man-Wunsch and Smith-Waterman. In either case, these 
algorithms perform sequence alignments between a string of 
the Subject’s query genomic sequence and a string of the 
reference genomic sequence whereby instead of comparing 
the entire genomic sequences, one with the other, segments 
of a selection of possible lengths are compared. 
Once the reads have been assigned a position, Such as 

relative to the reference genome, which may include iden 
tifying to which chromosome the read belongs and/or its 
offset from the beginning of that chromosome, the reads may 
be sorted by position. This may enable downstream analyses 
to take advantage of the oversampling described above. All 
of the reads that overlap a given position in the genome will 
be adjacent to each other after sorting and they can be 
organized into a pileup and readily examined to determine if 
the majority of them agree with the reference value or not. 
If they do not, a variant can be flagged. 

Although these algorithms and the others like them go a 
ways to resolving the bottlenecks inherent in secondary 
processing, faster performance time and better accuracy are 
still desirable. More particularly, although there has been 
advancement in the generation of raw data, such as sequence 
data, the advancements in information technologies have not 
kept up pace, leading to a data analysis bottleneck. This 
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bottleneck is somewhat lessened by the development of 
various algorithms, such as those described above, which 
help accelerate these analyses, but there still exists a need for 
new technologies to handle the computation, storage, and/or 
analysis of Such data, especially as it relates to genomic 
sequence analysis, such as in a secondary processing stage. 

For instance, employing standard protocols for perform 
ing secondary processing on obtained genomic sequencing 
data, can take up to three (3) days or even up to a week or 
more to process the sequenced data so as to generate 
clinically relevant genomic sequence information of an 
individual. Employing various different optimized algo 
rithms, such as those described above, the time expended for 
secondary processing can be brought down to a mere 27 to 
48 hours. However, in order to achieve such rapid results 
typically requires virtually all the generated reads, e.g., 30 
million reads of 100 nucleotides each, to be processed in 
parallel and at the same time. Such parallel processing 
requires extensive processing power involving massive CPU 
resources and still takes a relatively long time. 

Further, in various instances, enhanced accuracy of results 
is desired. Such enhanced accuracy can be achieved through 
providing some amount of oversampling of the sequenced 
genome. For example, as described above, it may be desir 
able to process the subject’s DNA in such a manner that at 
any given location of a sequence of nucleotides, there is an 
oversampling of that region. As indicated above, it may be 
desired to oversample any given region of the genome up to 
10x, or 15x, or 20x, or 25x, or 30x, or 40x, 50x, 100x, 250x 
or even 500x or 1,000 times or more. However, where the 
genome is oversampled. Such as by 40x, the amount of reads 
to be processed is roughly 30 Millionx40 (dependent on the 
length of the reads), which amounts to about 1.2 billion 
reads that need to be processed, when the entire genome is 
oversampled by 40x. Hence, although Such oversampling 
typically results in greater accuracy, it is at a cost of taking 
more time and requiring more extensive processing 
resources as each section of the genome is covered by 
anywhere from 1 to 40 times. Moreover, for certain oncol 
ogy applications in which a clinician is trying to distinguish 
between the mutated genome of cancer cells in the blood 
stream as distinct from the genome of healthy cells, over 
sampling of as much as 500x, or 1,000x, or 5,000x, or even 
10,000x may be employed. 
The present disclosure, therefore, is directed to such new 

technologies that may be implemented in one or a series of 
genomics and/or bioinformatics protocols for performing 
genetic analysis, such as secondary processing, on obtained 
genomic sequencing data or a portion thereof. The sequenc 
ing data may be obtained directly from an automated high 
throughput sequencer system, such as by a 'Sequencing by 
Synthesis' 454 automated sequencer from ROCHE, a 
HiSeqxTen or a Solexia automated sequencer from ILLU 
MINA, a “Sequencing by Oligonucleotide Ligation and 
Detection” (SOLiD) or Ion Torrent sequencer by LIFE 
TECHNOLOGIES, and/or a “Single Molecule Fluorescent 
Sequencing sequencer by HELICOS GENETIC ANALY 
SIS SYSTEMS, or the like, such as by a direct linkage with 
the sequencing processing unit, or the sequencing data may 
be obtained remotely, Such as from a database, for instance, 
accessible via the internet or other remote location acces 
sible through a wireless communications protocol. Such as 
Wi-Fi, Bluetooth, or the like. 

In certain aspects, these genetic analysis technologies 
may employ improved algorithms that may be implemented 
by Software that is run in a less processing intensive and/or 
less time consuming manner and/or with greater percentage 
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accuracy. For instance, in certain embodiments, improved 
algorithms for performing Such secondary processing, as 
disclosed herein, is provided. In various particular embodi 
ments, the improved algorithms are directed to more effi 
ciently and/or more accurately performing one or more of 
mapping, aligning, and/or sorting functions. Such as on a 
digital representation of DNA sequence data obtained from 
a sequencing platform, Such as in a FASTQ file format 
obtained from an automated sequencer Such as one of those 
set forth above. 

In certain embodiments, improved algorithms directed to 
more efficiently and/or more accurately performing one or 
more of local realignment, duplicate marking, base quality 
score recalibration, variant calling, compression, and/or 
decompression functions are provided. Further, as described 
in greater detail herein below, in certain aspects, these 
genetic analysis technologies may employ on or more algo 
rithms. Such as improved algorithms, that may be imple 
mented by hardware that is run in a less processing intensive 
and/or less time consuming manner and/or with greater 
percentage accuracy than various Software implementations 
for doing the same. 

In particular embodiments, a platform of technologies for 
performing genetic analyses are provided where the plat 
form may include the performance of one or more of 
mapping, aligning, sorting, local realignment, duplicate 
marking, base quality score recalibration, variant calling, 
compression, and/or decompression functions. In certain 
instances, the implementation of one or more of these 
platform functions is for the purpose of performing one or 
more of determining and/or reconstructing a Subjects con 
sensus genomic sequence, comparing a subject's genomic 
sequence to a referent sequence, e.g., a reference or model 
genetic sequence, determining the manner in which the 
subject’s genomic DNA differs from a referent, e.g., variant 
calling, and/or for performing a tertiary analysis on the 
Subject's genomic sequence, such as for genome-wide varia 
tion analysis, gene function analysis, protein function analy 
sis, e.g., protein binding analysis, quantitative and/or assem 
bly analysis of genomes and/or transcriptomes, as well as for 
various diagnostic, and/or a prophylactic and/or therapeutic 
evaluation analyses. 

Further, in various embodiments, a bioinformatics pro 
cessing regime, as disclosed herein, may be employed for 
the purpose of creating one or more masks. Such as a genome 
reference mask, a default mask, a disease mask, and/or an 
iterative feedback mask, which may be added to the mapper 
and/or aligner, e.g., along with a reference, wherein the mask 
set is configured so as to identify a particular area or object 
of interest. For instance, in one embodiment, the methods 
and apparatuses described herein may be employed so as to 
create genome reference mask, such as by creating a mask 
set that can be loaded into the mapper and/or aligner along 
with a reference, wherein the mask set is configured so as to 
identify areas of high importance and/or relevance, e.g., to 
the practitioner or Subject, and/or so as to identify areas 
having increased Susceptibility to errors. In various embodi 
ments, the mask-set may provide intelligent guidance to the 
mapper and/or aligner Such as on which areas of the genome 
to focus on to improve quality. Masks, therefore, can be 
created in a layered manner to provide varying levels or 
iterations of guidance based on various specific applications. 
Each mask accordingly could identify the areas of interest 
and provide a minimum quality target for the area. Addi 
tionally, a default mask may be employed to provide guid 
ance. Such as on an identified, e.g., typical, "high value' 
areas of the genome. Such areas could include known coding 
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areas, control areas, etc. as well as areas that are well known 
to produce errors. Further, a disease mask, or application 
specific mask, may be employed to the mask-set that iden 
tifies areas of high importance, Such as areas that require 
very high levels of accuracy based on known markers, e.g., 
Cancer. Further still, iterative feedback masking may be 
employed. Such as by adding a new, ad-hoc mask, that may 
be specifically designed by using feedback from a tertiary 
analysis system (like Cypher Genomics) that has identified 
areas of concern based on observed errors or inconsistencies. 
As indicated above, in one aspect one or more of these 

platform functions, e.g., mapping, aligning, Sorting, realign 
ment, duplicate marking, base quality score recalibration, 
variant calling, compression, and/or decompression func 
tions is configured for implementation in Software. In 
another embodiment, one or more of these platform func 
tions, e.g., mapping, aligning, Sorting, local realignment, 
duplicate marking, base quality score recalibration, decom 
pression, variant calling, compression, and/or decompresion 
functions is configured for implementation in hardware. 

Accordingly, in certain instances, methods are presented 
herein where the method involves the performance of an 
algorithm, Such as an algorithm for performing one or more 
genetic analysis functions such as mapping, aligning, Sort 
ing, realignment, duplicate marking, base quality score 
recalibration, variant calling, compression, and/or decom 
pression where the algorithm has been optimized in accor 
dance with the manner in which it is to be implemented. In 
particular, where the algorithm is to be implemented in a 
Software solution, the algorithm and/or its attendant pro 
cesses, has been optimized so as to be performed faster 
and/or with better accuracy for execution by that media. 
Likewise, where the functions of the algorithm are to be 
implemented in a hardware solution, the hardware has been 
designed to perform these functions and/or their attendant 
processes in an optimized manner So as to be performed 
faster and/or with better accuracy for execution by that 
media. These methods, for instance, can be employed Such 
as in an iterative variant calling procedure. 

Hence, in one aspect, presented herein are systems, appa 
ratuses, and methods for implementing bioinformatic pro 
tocols, such as for performing one or more functions for 
analyzing genetic data, Such as genomic data, for instance, 
via one or more optimized algorithms and/or on one or more 
optimized integrated circuits. Such as on one or more hard 
ware processing platforms. Hence, in one instance, systems 
and methods are provided for implementing one or more 
algorithms for the performance of one or more steps for 
analyzing genomic data in a bioinformatics protocol. Such as 
where the steps may include the performance of one or more 
of mapping, aligning, Sorting, local realignment, duplicate 
marking, base quality score recalibration, variant calling, 
compression, and/or decompression. In another instance, 
systems and methods are provided for implementing the 
functions of one or more algorithms for the performance of 
one or more steps for analyzing genomic data in a bioin 
formatics protocol, as set forth herein, wherein the functions 
are implemented on a hardware accelerator, which may or 
may not be coupled with one or more general purpose 
processors and/or Super computers. 
More specifically, in Some instances, methods for per 

forming secondary analytics on data pertaining to the 
genetic composition of a subject are provided. In one 
instance, the analytics to be performed may involve refer 
ence based reconstruction of the Subject genome. For 
instance, referenced based mapping involves the use of a 
reference genome, which may be generated from sequencing 
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the genome of a single or multiple individuals, or it may be 
an amalgamation of various people's DNA that have been 
combined in Such a manner so as to produce a prototypical, 
standard reference genome to which any individual’s DNA 
may be compared, for example, so as to determine and 
reconstruct the individual’s genetic sequence and/or for 
determining the difference between their genetic makeup 
and that of the standard reference, e.g., variant calling. 
More particularly, a reason for performing a secondary 

analysis on a Subject's sequenced DNA is to determine how 
the subject’s DNA varies from that of the reference. More 
specifically, to determine one, a multiplicity, or all the 
differences in the nucleotide sequence of the subject from 
that of the reference. For instance, the differences between 
the genetic sequences of any two random persons is 1 in 
1,000 base pairs, which when taken in view of the entire 
genome of over 3 billion base pairs amounts to a variation 
of up to 3,000,000 divergent base pairs per person. Deter 
mining these differences may be useful Such as in a tertiary 
analysis protocol, for instance, so as to predict the potential 
for the occurrence of a diseased state. Such as because of a 
genetic abnormality, and/or the likelihood of Success of a 
prophylactic or therapeutic modality, Such as based on how 
a prophylactic or therapeutic is expected to interact with the 
subject’s DNA or the proteins generated therefrom. In 
various instances, it may be useful to perform both a de novo 
and a reference based reconstruction of the Subjects genome 
So as to confirm the results of one against the other, and to, 
where desirable, enhance the accuracy of a variant calling 
protocol. 

In various instances, as set forth above, it may be useful 
in performing a primary sequencing protocol to produce 
oversampling for one or more regions of the Subjects 
genome. These regions may be selected based on known 
areas of increased variability, Suspected regions of variabil 
ity, Such as based on the condition of the Subject, and/or on 
the entire genome generally. In its basic form, as indicated 
above, based on the type of sequencing protocols performed, 
sequencing produces readouts, e.g., reads, that are digital 
representations of the Subject's genetic sequence code. 
These read lengths are typically designed based on the type 
of sequencing machinery being employed. For instance, the 
454 automated sequencer from ROCHE, typically produces 
read lengths from 100 or 150 base pairs in length to about 
1,000 base pairs; for ILLUMINA the read lengths are 
typically engineered to be from about 100 or 101 to about 
150 base pairs in length for some of their technology, and 
250 base pairs in length for other of their technology; for 
LIFETECHNOLOGIES the read lengths are typically engi 
neered to be from about 50 to about 60 base pairs in length 
for their SOLiD technology and from 35 to 450 base pairs 
in length for their Ion Torrent technology; and for the 
HELICOS GENETIC ANALYSIS SYSTEMS the read 
lengths may vary but may typically be less than 1,000 
nucleotides in length. 

However, because the processing of the DNA sample 
required to produce engineered read lengths of a specific 
size is both labor and chemistry intensive, and because the 
sequencing itself often depends on the functioning of the 
sequencing machinery, there is some possibility that errors 
may be made throughout the sequencing process thereby 
introducing an abnormality into that portion of the 
sequenced genome where the error occurred. Such errors can 
be problematic especially where a purpose for reconstruct 
ing the Subject's genome is to determine how it or at least a 
portion of the genome varies from a standard or model 
reference. For instance, a machine or chemistry error result 
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ing in the change of one nucleotide, e.g., in a read, for 
another will give a false indication of a variation that is not 
really there. This can result in an incorrect variant call and 
may further result in the false indication of a diseased state 
and the like. Accordingly, because of the possibility of 
machine, chemistry, and/or even human error in the execu 
tion of a sequencing protocol, in many instances, it is 
desirable to build redundancy into an analysis system, Such 
as by oversampling portions of or the entire genome. More 
particularly, as an automated sequencer produces a FASTQ 
file calling out a sequence of reads having nucleotides at a 
given position along with the probability that the call for a 
given nucleotide being at the called position is actually 
incorrect, e.g., a base call, it is often desirable to employ 
methods, such as oversampling, for ensuring that base calls 
made by the sequencing processes can be detected and 
corrected. 

Hence, in performing the methods herein described, in 
certain instances, a primary sequencing protocol is per 
formed in Such a manner so as to produce a sequenced 
genome where a portion or the entire genome is over 
sampled by about 10x, about 15x, about 20x, about 25x, 
about 30x about 40x, such as about 50x or more. Accord 
ingly, where the read lengths are engineered to be about 
50-60 base pairs in length, this oversampling can result in 
about 2 to about 2.5 billion reads, or where the read lengths 
are about 100 or 101 base pairs in length, oversampling may 
result in about 1 to about 1.2 billion reads, and where the 
read lengths are about 1,000 base pairs in length, about 50 
to about 100 million reads may be generated by the 
sequencer, such as where the oversampling is about 40x. 
More particularly, in such an instance, because of the 40x 
oversampling, at any given point in the genome it is 
expected that there will be 40 reads to cover any one position 
albeit, the given position might be at the beginning of one 
read, the middle of another, and the end of another, but it is 
expected to be covered about 40 times. 

Therefore, Such oversampling produces regions of the 
sequenced genome that are covered by a multiplicity of 
reads, e.g., duplications, such as up to about 40 reads, for 
instance, where the oversampling is about 40x. These at 
least partial duplications are useful in determining whether 
any given variation in any particular read is in fact an actual 
genomic variation or rather a machine or chemistry artifact. 
Hence, oversampling can be employed to improve the 
accuracy in reconstructing the Subject’s genome, especially 
in instances where the Subject's genome is to be compared 
against a reference genome so as to determine those 
instances where the Subject's genetic sequence differs from 
that of the reference genetic sequence. In a manner Such as 
this, as described in greater detail herein below, it can be 
confirmed that any given variation between the recon 
structed sequence and the model is in fact due to the 
presence of an actual variant and not an error in the initial 
processing of Sample DNA, or read alignment Software, etc. 

For instance, in building the genetic sequence of the 
individual’s sequenced DNA, it must be determined what 
nucleotide goes where in the growing string of nucleotides. 
In order to determine what nucleotide goes where, the 
various reads can be organized and a pile up of reads 
covering duplicate locations can be built up. This allows for 
a comparison to be made of all the reads covering the same 
locations so as to more accurately determine if there is an 
actual variation at any given position or if there may be an 
error in any one read at the position in question in the pileup. 
For example, if there is only one or two of the reads out of 
the 40 that has a particular nucleotide at position X, and all 
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38 or 39 other reads agree on a different nucleotide being at 
that position, then the two outlying reads may be excluded 
as being in error, at least at this specific location. 
More particularly, where there are a multiplicity of reads 

generated for any one location of the Subjects genome, there 
are likely to be multiple overlaps or pile-ups for any given 
nucleotide position. These pile-ups represent the coverage 
for any particular location and may be useful for determin 
ing with better accuracy the correct sequence of the Subjects 
genome. For instance, as indicated, sequencing results in the 
production of reads, and in various instances, the reads 
produced are over sampled, and so at various positions 
various particular reads will overlap. This overlapping is 
useful for determining the actual sample genome such as 
with a high probability of correctness. 
The purpose, therefore, may be to scan over the reference 

genome incrementally multiple times, as described in 
greater detail herein below, so as to more accurately recon 
struct the Subject's genome, and where it is desirable to 
determine how the subjects genome differs from a different 
genome, e.g., a model genome, the use of pile-ups can more 
accurately identify errors, such as chemical, machine, or 
read errors, and distinguish them from actual variants. More 
specifically, where the Subject has an actual variation at 
position X, the majority of reads in the pile up should verify, 
e.g., include, that variation. Statistical analysis procedures, 
Such as those described herein, may then performed to 
determine the actual genetic sequence of the Subject with all 
its variants from a reference genome. 

For instance, where the Subject's genetic sequence is to be 
rebuilt with respect to the use of a reference genome, once 
the reads, e.g., a pile-up of reads, have been generated, the 
next steps may be to map and/or align and/or sort the reads 
to one or more reference genomes (e.g., the more exemplary 
reference genomes available as models the better the analy 
sis is likely to be) and thereby rebuild the genome of the 
subject, this results in a series of reads that have been 
mapped and/or aligned with the reference genome(s) at all 
possible positions along the chain where there is a match, 
and at each Such position they are given a probability score 
as to the probability that they actually belong in that posi 
tion. 

Accordingly, in various instances, once the reads have 
been generated, their positions mapped, e.g., the potential 
locations in the reference genome to which the reads may 
map have been determined, and their sequential order 
aligned, the actual genetic sequence of the Subject's genome 
may be determined. Such as by performing a sorting function 
on the aligned data. Further, once the actual sample genome 
is known and compared to the reference genome, the varia 
tions between the two can be determined, a list of all the 
variations/deviations between the reference genome and the 
sample genome are determined and called out. Such varia 
tions between the two genetic sequences may be due to a 
number of reasons. 

For instance, there may be a single nucleotide polymor 
phism (SNP), such as wherein one base in the subjects 
genetic sequence has been Substituted for another, there may 
be more extensive substitutions of a plurality of nucleotides: 
there may be an insertion or a deletion, such as where one 
or a multiplicity of bases have been added to or deleted from 
the Subject's genetic sequence, and/or there may be a 
structural variant, e.g., Such as caused by the crossing of legs 
of two chromosomes, and/or there may simply be an offset 
causing a shift in the sequence. In various instances, a 
variant call file containing all the variations of the subjects 
genetic sequence to the reference sequence is generated. 
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More particularly, in various embodiments, the methods of 
the disclosure include generating a variant call file (VCF) 
identifying one or more, e.g., all of the genetic variants in the 
individual whose DNA was sequenced, e.g., relevant to one 
or more reference genomes. The VCF in its basic form is a 
list of locations of variants and their type: e.g., chromosome 
3, at position X, an 'A' is substituted for a “T”, etc. 

However, as indicated above, in order to generate such a 
file, the genome of the Subject must be sequenced and rebuilt 
prior to determining its variants. There are, however, several 
problems that may occur when attempting to generate Such 
an assembly. As noted above, there may be problems with 
the chemistry, the sequencing machine, and/or human error 
that occurs in the sequencing process. Additionally, there 
may be genetic artifacts that make Such reconstructions 
problematic. For instance, a problem with performing Such 
assemblies is that there are sometimes huge portions of the 
genome that repeat themselves, such as long sections of the 
genome that include the same strings of nucleotides. Hence, 
because any genetic sequence is not unique everywhere, it 
may be difficult to determine where in the genome an 
identified read actually maps and aligns. 

For instance, dependent on the sequencing protocol 
employed shorter or longer reads may be produced. Longer 
reads are useful in that the longer the read the less likely it 
is to show up in multiple locations in the genome. Having 
fewer possible locations to evaluate can also speed up the 
system. However, the longer the reads the more problematic 
they may be because the more likely they are to include a 
real or false variation, e.g., caused by an SNP. In Del 
(insertion or deletion), or a machine error, or the like, 
resulting in a no match between the read and the reference 
genome. On the other hand, shorter reads are useful because 
the shorter the read the less likely it is to cover a position that 
codes for a variant. A problem with shorter reads however is 
that the shorter the read the more likely it is to show up at 
multiple positions in the genome, thus requiring additional 
processing time and resources so as to determine which out 
of all possible positions is the most likely actual position to 
where it aligns. Ideally what may be achieved. Such as by 
practicing the methods herein disclosed, is that a variant call 
file may be produced wherein a list of the sequenced genome 
(the query sequence) is generated that shows where all the 
variant base pairs are, making Sure each variant called is an 
actual variant and not simply a chemistry or machine read or 
other human based error. 

There are, therefore, two main possibilities for variation. 
For one, there is an actual variation at the particular location 
in question, for instance, where the person’s genome is in 
fact different at a particular location than that of the refer 
ence, e.g., there is a natural variation due to an SNP (one 
base substitution), an Insertion or Deletion (of one or more 
nucleotides in length), and/or there is a structural variant, 
such as where the DNA material from one chromosome gets 
crossed onto a different chromosome or leg, or where a 
certain region gets copied twice in the DNA. Alternatively, 
a variation may be caused by there being a problem in the 
read data, either through chemistry or the machine, 
sequencer or aligner, or other human error. Accordingly, the 
methods disclosed herein may be employed in a manner So 
as to compensate for these types of errors, and more par 
ticularly so as to distinguish errors in variation due to 
chemistry, machine or human, and real variations in the 
sequenced genome. More specifically, the methods, appara 
tuses, and systems for employing the same, as here in 
described, have been developed so as to clearly distinguish 
between these two different types of variations and therefore 
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to better ensure the accuracy of any call files generated so as 
to correctly identify true variants. 

Further, in various embodiments, once the subjects 
genome has been reconstructed and/or a VCF has been 
generated, such data may then be subjected to tertiary 
processing so as to interpret it, Such as for determining what 
the data means with respect to identifying what diseases this 
person may or may have the potential for suffer from and/or 
for determining what treatments or lifestyle changes this 
Subject may want to employ so as to ameliorate and/or 
prevent a diseased State. For example, the Subject's genetic 
sequence and/or their variant call file may be analyzed to 
determine clinically relevant genetic markers that indicate 
the existence or potential for a diseased state and/or the 
efficacy of a proposed therapeutic or prophylactic regimen 
may have on the Subject. This data may then be used to 
provide the subject with one or more therapeutic or prophy 
lactic regimens So as to better the Subject’s quality of life, 
Such as treating and/or preventing a diseased state. 
More particularly, medical science technologies have 

advanced in conjunction with the advancement of informa 
tion technologies, which advancement has enhanced our 
ability to store and analyze medical data. Hence, once one or 
more of an individual’s genetic variations are determined, 
such variant call file information can be used to develop 
medically useful information, which in turn can be used to 
determine, e.g., using various known statistical analysis 
models, health related data and/or medical useful informa 
tion, e.g., for diagnostic purposes, e.g., diagnosing a disease 
or potential therefore, clinical interpretation (e.g., looking 
for markers that represent a disease variant), whether the 
subject should be included or excluded in various clinical 
trials, and other such purposes. As there are a finite number 
of diseased States that are caused by genetic malformations, 
in tertiary processing variants of a certain type, e.g., those 
known to be related to the onset of diseased states, can be 
queried for, such as by determining if one or more genetic 
based diseased markers are included in the variant call file 
of the subject. 

Consequently, in various instances, the methods herein 
disclosed may involve analyzing, e.g., Scanning, the VCF 
and/or the generated sequence, against a known disease 
sequence variant, Such as in a database of genomic markers 
therefore, so as to identify the presence of the genetic marker 
in the VCF and/or the generated sequence, and if present to 
make a call as to the presence or potential for a genetically 
induced diseased state. As there are a large number of known 
genetic variations and a large number of individual’s Suf 
fering from diseases caused by Such variations, in some 
embodiments, the methods disclosed herein may entail the 
generation of one or more databases linking sequenced data 
for an entire genome and/or a variant call file pertaining 
thereto, e.g., Such as from an individual or a plurality of 
individuals, and a diseased State and/or searching the gen 
erated databases to determine if a particular subject has a 
genetic composition that would predispose them to having 
Such diseased state. Such searching may involve a compari 
Son of one entire genome with one or more others, or a 
fragment of a genome, such as a fragment containing only 
the variations, to one or more fragments of one or more other 
genomes such as in a database of reference genomes or 
fragments thereof. 

Further, it is understood that the genetic sequences to be 
employed in these manners may be DNA, ssDNA, RNA, 
mRNA, rRNA, tRNA, or the like. Hence, although through 
out the present disclosure various mention is made to 
various methods and apparatuses for analyzing genomic 
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DNA, in various instances, the systems, apparatuses and 
methods disclosed herein are equally suitable for performing 
their respective functions, e.g., analysis, on all types of 
genetic material including DNA, ssDNA, RNA, mRNA, 
rRNA, tRNA, and the like. Additionally, in various 
instances, the methods of the disclosure may include ana 
lyzing the generated genetic sequence, e.g., DNA, ssDNA, 
RNA, mRNA, rRNA, tRNA, and the like, from the subject 
and determining therefrom the protein variations which are 
likely to be caused by the genetic sequence and/or deter 
mining and/or predicting the potential for a diseased State 
therefrom, such as due to an error in protein expression. It 
is to be noted that the genetic sequence obtained can 
represent an intron or an exon, for instance, the genetic 
sequence can be for a coding portion of the DNA only. Such 
as where an exome is obtained and using known processing 
techniques only the coding regions, or non-coding regions, 
may be sequenced, which can lead to faster sequencing 
and/or faster processing times, albeit involving a more 
difficult sample preparation procedure. 

Currently, Such steps and analyses herein described are 
typically performed in various distinct and unrelated steps 
often employing different analytic machines at different 
locations. Accordingly, in various aspects the methods and 
systems of the disclosure are performed by a single appa 
ratus and/or at one location, such as in conjunction with an 
automated sequencer or other apparatus configured to gen 
erate genetic sequence data. In various instances, a plurality 
of apparatuses may be employed at the same location, or a 
multiplicity of remote locations, and in Some instances, the 
methods may involve two or more processing units being 
deployed at two or more locations. 

For instance, in various aspects a pipeline may be pro 
vided wherein the pipeline includes performing one or more 
analytic functions, as described herein, on a genomic genetic 
sequence of one or more individuals, such as data obtained 
in a digital, e.g., FASTQ, file format from an automated 
sequencer. A typical pipeline to be executed may include one 
or more of sequencing genetic material. Such as a portion or 
an entire genome, of one or more Subjects, which genetic 
material may include DNA, ssDNA, RNA, rRNA, tRNA, 
and the the like, and/or in some instances the genetic 
material may represent coding or non-coding regions. Such 
as exomes, episomes of the DNA. The pipeline may include 
one or more of performing a base calling and/or error 
correction operation, such as on the digitized genetic data, 
and/or may include one or more of performing a mapping, 
an alignment, and/or a sorting function on the genetic data. 
In certain instances, the pipeline may include performing 
one or more of a realignment, a deduplication, a base quality 
or score recalibration, a reduction and/or compression, and/ 
or a decompression on the digitized genetic data. In certain 
instances the pipeline may include performing a variant 
calling operation on the genetic data. 

Therefore, in various instances, a pipeline of the disclo 
Sure may include one or more modules, wherein the modules 
are configured for performing one or more functions, such as 
a base calling and/or error correction operation and/or a 
mapping and/or an alignment and/or a sorting function on 
genetic data, e.g., sequenced genetic data. And in various 
instances, the pipeline may include one or more modules, 
wherein the modules are configured for performing one 
more of a local realignment, a deduplication, a base quality 
score recalibration, a variant calling, a reduction and/or 
compression, and/or a decompression on the genetic data. 
Many of these modules may either be performed by software 
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or on hardware or remotely, e.g., via Software or hardware, 
Such as on the cloud or a remote server and/or server bank. 

Additionally, many of these steps and/or modules of the 
pipeline are optional and/or can be arranged in any logical 
order and/or omitted entirely. For instance, the software 
and/or hardware disclosed herein may or may not include a 
base calling or sequence correction algorithm, such as where 
there may be concern that such functions may result in a 
statistical bias. Consequently the system will either include 
or will not include the base calling and/or sequence correc 
tion function, respectively, dependent on the level of accu 
racy and/or efficiency desired. And as indicated above, one 
or more of the pipeline functions may be employed in the 
generation of a genomic sequence of a subject such as 
through a reference based genomic reconstruction. Also as 
indicated above, in certain instances, the output from the 
pipeline is a variant call file indicating a portion or all the 
variants in a genome or a portion thereof. 

Accordingly, as indicated above, the output of performing 
a sequencing protocol. Such as one or more of those set forth 
above, is typically a digital representation of the Subjects 
genetic material, such as in a FASTQ file format. However, 
an autorad that has been digitally transcribed may also be 
employed. More particularly, the output from a sequencing 
protocol may include a plurality of reads, where each read 
includes a sequence, e.g., a string, of nucleotides where the 
position of every nucleotide has been called, and a quality 
score representing the probability that the called nucleotide 
is wrong. However, the quality of these outputs may be 
improved by various pre-processing protocols So as to 
achieve higher quality of Scores, which one or more of Such 
protocols may be employed in the methods disclosed herein. 

For instance, in certain instances, the raw FASTQ file data 
may be processed to clean up the initial base calls obtained 
from the sequencer/reader, such as in a primary processing 
stage, e.g., prior to the secondary processing described 
herein above. Specifically, the sequencer/reader typically 
analyzes the sequencing data, Such as the fluorescent data 
indicating which nucleotide is at what position, and converts 
the image data into a base call with a quality Score. Such as 
where the quality Score is based on the comparative bright 
ness of the fluorescence at each position. A specialized 
algorithm may be employed, such as in a primary processing 
stage, to correctly analyze these distinctions in fluorescence 
So as to more accurately make the appropriate base call. As 
indicated above, this step may be included in a pipeline of 
steps and may be implemented via Software or hardware or 
both, however, in this instance would be part of a primary 
processing platform. 
An additional preprocessing step may include an error 

correction function, which may include an attempt to take 
the millions to billions of reads in the FASTQ file and 
correct some proportion of any mechanical sequencing error 
with the information pertaining to the base call and quality 
score available prior to any further processing Such as 
mapping, alignment, and/or sorting functions, etc. For 
instance, the reads within the FASTQ file may be analyzed 
to determine if there are any Sub-sequences in any of the 
reads that appear in other reads, which because of the 
duplicate coverage can increase confidence that the Subse 
quences in the reads may be correct. This may be imple 
mented by building a hash table containing all possible 
k-mers of a selected length, k, from every read, and storing 
with each one its frequency and also which bases immedi 
ately follow it and with what probability. Then, using the 
hash table each read can be rescanned. As each k-mer in a 
particular read is looked up in the hash table, and evaluation 
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can be made as to whether the base immediately following 
that k-mer is likely to be correct or not. If it is unlikely, then 
it can be replaced with the most likely one to follow from the 
table. Subsequent k-mers for that read will then include the 
corrected base as the value at that position and the process 
is repeated. This can be highly effective in correcting errors 
because oversampling enables gathering accurate statistics 
for predicting what comes next after each k-mer. However, 
as indicated above, Such corrections could add statistical 
biasing to the system, such as due to false corrections, to the 
data, and so these procedures can be skipped if desired. 

Accordingly, in accordance with the aspects of the dis 
closure, in various instances, the methods, apparatuses, 
and/or systems of the disclosure, may include obtaining read 
data, that either have or have not been preprocessed. Such as 
by being obtained directly from a FASTQ file of an auto 
mated sequencer, and Subjecting the obtained data to one or 
more of a mapping, aligning, and/or sorting function. The 
performance of Such functions may be useful, for instance, 
because, as set forth above, in various instances, the 
sequencing data typically generated by various automated 
sequencers, e.g., reads, have lengths that are substantially 
shorter than the entire genomic sequence being analyzed, 
and since the human genome typically has a multiplicity of 
repetitive sections, and is known to have various repeating 
patterns in it, there may be therefore a multiplicity of 
locations that any given read sequence may correspond to a 
segment in the human genome. Consequently, given all the 
possibilities a given read may match to the sequence of the 
genome, such as because of various repeating sequences in 
the genome, etc. the raw read data may not clearly indicate 
which one of the possibilities is in fact the correct location 
from which it was derived. Hence, for each read it will need 
to be determined to where in the genome the reads actually 
map. Additionally, it may also be useful to determine the 
sequential alignment of the reads, so as to determine the 
actual sequence identity of the Subject, and/or it may also be 
useful to determine the chromosomal location for each 
portion of the sequence. 

Accordingly, in various instances, the methods of the 
disclosure may be directed to mapping, aligning, and/or 
sorting the raw read data of the FASTQ files so as to find all 
the likely places that a given read may be aligned, and/or to 
determine the actual sequence identify of a Subject, and/or to 
determine the chromosome location for each portion of the 
sequence. For example, mapping may be employed so as to 
map the generated reads to the reference genome and 
thereby find the location where each read appears to match 
well to the genome, e.g., finding all the places where there 
might be a good score for aligning any given read to the 
reference genome. Mapping therefore may involve taking 
one or more, e.g., all, of the raw or preprocessed reads 
received from the FASTQ file and comparing the reads with 
one or more reference genomes and determining where the 
read may match with the reference genome(s). In its basic 
from, mapping involves finding the location(s) in the refer 
ence genome where one or more of the FASTQ reads 
obtained from the sequencer appears to match. 

Likewise, alignment may be employed so as to evaluate 
all the candidate locations of the individual reads against a 
window of the reference genome to determine where and 
how the read sequences best align to the genome. However, 
performing an alignment may be difficult due to Substitu 
tions, insertions, deletions, structural variations, and the like 
which may prevent the read from aligning exactly. There are, 
therefore, several different ways to get an alignment, but to 
do so may require making changes in the read, where each 
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change that needs to be made to get the appropriate align 
ment results in a lower confidence score. For instance, any 
given read may have substitutions, insertions, and/or dele 
tions as compared to the reference genome, and these 
variations need to be accounted for in performing an align 
ment. 

Accordingly, along with the predicted alignment a prob 
ability score that the predicted alignment is correct may also 
be given. This score indicates the best alignment for any 
given read amongst multiple locations where that read may 
align. For example, the alignment score is predicated upon 
how well a given read matches a potential map location and 
may include stretching, condensing, and changing bits and 
pieces of the read so as to get the best alignment. 
The score will reflect all the ways the read was changed 

So as to accommodate the reference. For instance, in order 
to generate an alignment between the read and the reference 
one or more gaps in the read may need to be inserted, 
wherein the insertion of each gap represents a deletion in the 
read over the reference. Likewise, deletions may need to be 
made in the read, wherein each deletion represents an 
insertion in the read over the reference. Additionally, various 
bases may need to be changed such as due to one or more 
Substitutions. Each of these changes are made to make the 
read(s) more exactly align to the reference, but each change 
comes with a cost to the quality score, which score is a 
measure as to how well the entire read matches to some 
region of the reference. The confidence in Such quality 
scores is then determined by looking at all the locations the 
read can be made to map to the genome and comparing the 
scores at each location, and choosing the one with the 
highest score. More particularly, where there are multiple 
positions with high quality scores, then confidence is low, 
but where the difference between the first and second best 
scores is large, then confidence is high. At the end, all the 
proposed reads and confidence scores are evaluated and the 
best fit is selected. 
Once the reads are assigned a position relative to the 

reference genome, which consists of identifying to which 
chromosome the read belongs and its offset from the begin 
ning of that chromosome, they may be sorted, such as by 
position. This enables downstream analyses to take advan 
tage of the various oversampling protocols described herein. 
All of the reads that overlap a given position in the genome 
maybe be adjacent to each other after sorting and they can 
be piled up and readily examined to determine if the 
majority of them agree with the reference value or not. If 
they do not, as indicated above, a variant can be flagged. 
As indicated above, the FASTQ file obtained from the 

sequencer is comprised of a plurality, e.g., millions to a 
billion or more, of reads consisting of short strings of 
nucleotide sequence data representing a portion or the entire 
genome of an individual. Mapping, in general, involves 
plotting the reads to all the locations in the reference genome 
to where there is a match. For example, dependent on the 
size of the read there may be one or a plurality of locations 
where the read Substantially matches a corresponding 
sequence on the reference genome. Accordingly, the map 
ping and/or other functions disclosed herein may be config 
ured for determining where out of all the possible locations 
one or more reads may match to in the reference genome is 
actually the true location to where they map. 

It is possible to compare every read with every position in 
the 3.2 billion reference genome to determine where, if any, 
the reads match to the reference genome. This may be done, 
for instance, where the read lengths approach about 100,000 
nucleotides, about 200,000 nucleotides, about 400,000 
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nucleotides, about 500,000 nucleotides, even about 1,000, 
000 or more nucleotides in length. However, where the reads 
are substantially shorter in length, such as where there are 50 
million reads or more, e.g., 1 billion reads, this process could 
take a very long time and require a large amount of com 
puting resources. Accordingly, there are several methods, 
such as described herein, that have been developed for 
aligning the FASTQ reads to the reference genome in a 
much quicker manner. For instance, as disclosed above, one 
or more algorithms may be employed so as to map one or 
more of the reads generated by the sequencer, e.g., in a 
FASTQ file, and match them to the reference genome, so as 
to determine where in the reference genome the subject 
reads potentially map. 

For instance, in various methods, an index of the refer 
ence is generated, so that the reads or portions of the reads 
may be looked up in the index, retrieving indications of 
locations in the reference, so as to map the reads to the 
reference. Such an index of the reference can be constructed 
in various forms and queried in various manners. In some 
methods, the index may include a prefix and/or a Suffix tree. 
In other various methods, the index may include a Burrows/ 
Wheeler transform of the reference. In further methods, the 
index may include one or more hash tables, and a hash 
function may be performed on one or more portions of the 
reads in an effort to map the reads to the reference. In various 
instances, one or more of these algorithms may be per 
formed sequentially or at the same time so as to accurately 
determine where one or more, e.g., a Substantial portion or 
every, read correctly matches with the reference genome. 

Each of these algorithms may have advantages and/or 
disadvantages. For example, a prefix and/or suffix Tree 
and/or a Burrows/Wheeler transformation may be per 
formed on the sequence data in Such a manner that the index 
of the reference genome is constructed and/or queried as a 
tree-like data structure, where starting from a single-base or 
short Subsequence of a read, the Subsequence is incremen 
tally extended within the read, each incremental extension 
stimulating accesses to the index, tracing a path through the 
tree-like data structure, until the Subsequence becomes 
unique enough, e.g., an optimal length has been attained, 
and/or a leaf node is reached in the tree-like data structure, 
the leaf or last-accessed tree node indicating one or more 
positions in the reference genome from which the read may 
have originated. These algorithms, therefore, typically do 
not have a fixed length for the read Subsequences that may 
be mapped by querying the index. A hash function, however, 
often employs a fixed length comparison unit that may be the 
entire length of the read, but is often times a length that is 
some sub-portion thereof, which sub-portion is termed a 
seed. Such seeds can be shorter or longer, but unlike with the 
prefix and/or suffix trees and/or the Burrows/Wheeler trans 
formations, the seeds of the reads employed in a hash 
function are typically of a preselected, fixed length. 
A prefix and/or suffix tree is a data structure that is built 

up from the reference genome, such that each link from a 
parent node to a child node is labeled or associated with a 
nucleotide or sequence of nucleotides, and each path from a 
root node through various links and nodes traces a path 
whose associated aggregate nucleotide sequence matches 
Some continuous Subsequence of the reference genome. The 
node reached by Such a path is implicitly associated with the 
reference subsequence traced by its path from the root. 
Proceeding from the root node, Subsequences in a prefix tree 
grow forward in the reference genome, whereas Subse 
quences in a Suffix tree grow backward in the reference 
genome. Both a prefix tree and a Suffix tree may be used in 
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a hybrid prefix/suffix algorithm, so that Subsequences may 
grow in either direction. Prefix and suffix trees may also 
contain additional links, such as jumping from a node 
associated with one reference Subsequence to another node 
associated with a shorter reference Subsequence. 

For instance, a tree-like data structure serving as an index 
of the reference genome may be queried by tracing a path 
through the tree, corresponding to a Subsequence of a read 
being mapped, that is built up by adding nucleotides to the 
Subsequence, using the added nucleotides to select next links 
to traverse in the tree, and going as deep as necessary until 
a unique sequence has been generated. This unique sequence 
may also be termed a seed, and may represent a branch 
and/or root of the sequence tree data structure. Alternatively, 
the tree descent may be terminated before the accumulated 
Subsequence is fully unique, so that a seed may map to 
multiple locations in the reference genome. Particularly, the 
tree may be built out for every starting position for the 
reference genome, then the generated reads may be com 
pared against the branches and/or roots of the tree and these 
sequences may be walked through the tree to find where in 
the reference genome the read fits. More particularly, the 
reads of the FASTQ file may be compared to the branches 
and roots of the reference tree and once matched therewith 
the location of the reads in the reference genome may be 
determined. For example, a sample read may be walked 
along the tree until a position is reached whereby it is 
determined that the accumulated Subsequence is unique 
enough so as to identify that the read really does align to a 
particular position in the reference. Such as walking through 
the tree until a leaf node is reached. 
A disadvantage, however, of such a prefix and/or suffix 

tree is that it is a huge data structure that must be accessed 
a multiplicity of times as the tree is walked so as to map the 
reads to the reference genome. An advantage of a hash table 
function, on the other hand, as described in greater detail 
herein below, is that once built, it typically only takes one 
look up to determine where, if anywhere, there may be a 
match between a seed and the reference. A prefix and/or 
Suffix tree will typically take a plurality of lookups, e.g., 5. 
10, 15, 20, 25, 50, 100, 1,000, or more, etc., in determining 
if and where there is a match. Further, due to the double 
helix structure of DNA, a reverse complement tree may also 
need to be built and searched, as the reverse complement to 
the reference genome may also need to be found. With 
respect to the above, the data tree is described as being built 
from the reference genome which is then compared with the 
reads from the subject’s sequenced DNA, however, it is to 
be understood that the data tree may initially be built from 
either the reference sequence or the sample reads, or both, 
and compared one to the other as described above. 

Alternatively, or in addition to employing a prefix or a 
suffix tree, a Burrows/Wheeler transform can be performed 
on the data. For instance, a Burrows/Wheeler transform may 
be used to store a tree-like data structure abstractly equiva 
lent to a prefix and/or suffix tree, in a compact format. Such 
as in the space allocated for storing the reference genome. In 
various instances, the data stored is not in a tree-like 
structure, but rather the reference sequence data is in a linear 
list that may have been scrambled into a different order so 
as to transform it in a very particular way Such that the 
accompanying algorithm allows the reference to be searched 
with reference to the sample reads so as to effectively walk 
the “tree'. An advantage of the Burrows/Wheeler transform, 
such as over a prefix and/or suffix tree, is that it typically 
requires less memory to store, and an advantage over a hash 
function is that it supports a variable seed length, and hence 
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it can be searched until a unique sequence is determined and 
a match found. For instance, as with the prefix/suffix tree, 
however many nucleotides it takes for a given sequence to 
be unique, or to map to a sufficiently Small number of 
reference positions, determines the length of the seed. 
Whereas for a hash table, the seeds are all of the same 
predetermined length. A disadvantage, however, for the 
Burrows/Wheeler transform is that it typically requires a 
multiplicity of lookups, such as two or more look ups. Such 
as for every step down the tree. 

Alternatively, or in addition to utilizing one or both a 
prefix/suffix tree and/or a Burrows/Wheeler transform on the 
reference genome and Subject sequence data, so as to find 
where the one maps against the other, another Such method 
involves the production of a hash table index and/or the 
performance of a hash function. The hash table index may be 
a large reference structure that is built up from sequences of 
the reference genome that may then be compared to one or 
more portions of the read to determine where the one may 
match to the other. Likewise, the hash table index may be 
built up from portions of the read that may then be compared 
to one or more sequences of the reference genome and 
thereby used to determine where the one may match to the 
other. 
More particularly, in any of the mapping algorithms 

described herein, Such as for implementation in any of the 
method steps herein disclosed, one or all three mapping 
algorithms, or others known in the art, may be employed, in 
Software or hardware, so as to map one or more sequences 
of a sample of sequenced DNA with one or more sequences 
of one or more reference genomes. As described herein in 
greater detail below, all of these operations may be per 
formed via software or by being hardwired, such as into an 
integrated circuit, such as on a chip, for instance as part of 
a circuit board. For instance, the functioning of one or more 
of these algorithms may be embedded onto a chip. Such as 
into a FPGA (field programmable gate array) or ASIC 
(application specific integrated circuit) chip, and may be 
optimized so as to perform more efficiently because of their 
implementation in Such hardware. 

Additionally, one or more, e.g., two or all three, of these 
mapping functions may form a module. Such as a mapping 
module, that may form part of a system, e.g., a pipeline, that 
is used in a process for determining an actual entire genomic 
sequence, or a portion thereof, of an individual. The output 
returned from the performance of a mapping function may 
be a list of possibilities as to where one or more, e.g., each, 
read maps to one or more reference genomes. For instance, 
the output for each mapped read may be a list of possible 
locations the read may be mapped to a matching sequence in 
the reference genome. In various embodiments, an exact 
match to the reference for at least a piece, e.g., a seed of the 
read, if not all of the read may be sought. Accordingly, in 
various instances, it is not necessary for all portions of all the 
reads to match exactly to all the portions of the reference 
genome. 

Further, one or all of these functions may be programmed 
in Such a manner that exact or approximate matching and/or 
editing, such as editing of the results, may be performed. 
Hence, all of these processes can be configured to do inexact 
matching as well, where desired, such as in accordance with 
a preselected variance, such as 80% matching, 85% match 
ing, 90% matching, 95% matching, 99% matching, or more. 
However, as described in greater detail herein below, inexact 
matching may be a lot more expensive Such as in time and 
processing power requirements, because it may require any 
number of edits, e.g., where the edit may be a SNP or 
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insertion or deletion of one or more bases, e.g., 1 or 2 or 3 
or 5 or more edits, to be performed so as to achieve an 
acceptable match. Such editing is likely to be used more 
extensively in implementing hashing protocols or when 
implementing prefix and/or suffix trees and/or performing a 
Burrows/Wheeler transform. 
With respect to hash tables, a hash table may be produced 

in many different ways. In one instance, a hash table may be 
built by breaking the reference genome into segments of 
standard length, e.g., seeds of about 16 to about 30 nucleo 
tides or more in length, such as about 18 to about 28 
nucleotides, formatting them into a searchable table, and 
making an index of all the reference segments from which 
sequenced DNA, e.g., one or more reads, or a portion 
thereof, may be compared to determine matching. More 
particularly, a hash table index may be generated by break 
ing down the reference genome into segments of nucleotide 
sequences of known, uniform length, e.g., seeds, and storing 
them in random order into individual cubicles in the refer 
ence table. This may be done for a portion or the entire 
reference genome so as to build an actual reference index 
table that may be used to compare portions of the reference 
genome with portions of one or more reads, such as from a 
FASTQ file, for the purpose of determining matching. 

This method may then be repeated in approximately the 
same manner for a portion, e.g., a majority or all, of the reads 
in the FASTQ file, so as to generate seeds of the appropriate, 
e.g., selected, length. For instance, the reads of the FASTQ 
file may be used to produce seeds of a predetermined length, 
which seeds may be converted into binary form and fed 
through a hash function and fit into a hash table index where 
the binary form of the seeds may match up with the binary 
segments of the reference genome, so as to give the location 
as to where in the genome the sample seeds match with the 
position in the reference genome. 

For example, where the read is approximately 100 bases 
long, a typical seed may be about half or a about a third, e.g., 
about 27 to about 30 bases, as long. Hence, in such an 
instance, for each read a multiplicity of seeds, e.g., approxi 
mately 3 or 4 seeds dependent on the length of the read 
and/or the length of the seeds, may be generated to cover the 
read. Each seed may then be converted into a binary form 
and/or then be fed into the hash table and a possible result 
as to its position with respect to the reference genome may 
be obtained. In such instances, the entire read need not be 
compared to every possible position in the entire reference 
genome, rather only a portion of the reads, e.g., one or more 
of the generated sample seeds per read, need only be 
compared Such as to an index containing equivalent seed 
portions of the reference genome. Hence, in various 
instances, a hash table may be configured Such that by only 
one memory look up it can typically be determined where 
the sample seed and therefore read is positioned relative to 
the reference genome. However, in certain instances, it may 
be desirable to perform a hash function and look up on one 
or more overlapping sections of seeds from one read. In Such 
instances, the seeds to be generated may be formed in Such 
a manner that at least a portion of their sequence overlaps 
one another. This may be useful for instance in getting 
around machine and/or human errors or differences between 
the Subject and the reference genome and may promote 
exact matching. 

In certain instances, the building of the hash table as well 
as the performance of one or more of the various compari 
sons is executed by the hash function. The hash function is 
in part a scrambler. It takes an input and gives what appears 
to be a random order to it. In this instance, the hash function 
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scrambler breaks down the reference genome into segments 
of a preselected length and places them randomly in the hash 
table. The data may then be stored evenly across the whole 
storage space. Alternatively, the storage space may be seg 
mented and/or storage therein may be weighted differently. 
More particularly, the hash function is a function that takes 
any input and gives a number, Such as a binary pattern out, 
which number may typically random except that for any one 
given input the same output is always returned. Hence, even 
if two inputs that are fed into the hash table are almost the 
same, because they are not an exact match, two completely, 
randomly different outputs will be returned. 

Further, since genetic material may be composed of four 
basic nucleotides, e.g., “A”, “C”, “G”, and “T” (or “U” in the 
case of RNA), the individual nucleotides of the sequences, 
e.g., the reference segments and or reads, or portions thereof, 
to be fed into the hash table may be digitized and represented 
in binary format, such as where each of the four bases 
represents a two bit digital code, e.g., “A”-00, “C”-01, 
“G'=11, and “T/“U”=10. In certain instances, it is this 
binary “seed' value that is then randomly placed in the hash 
table at a known location having a value equal to its binary 
representation. The hash function, therefore, works to break 
down the reference genome into binary representations of 
reference seeds and inserts each binary seed data into a 
random space, e.g., cubicle, in the hash table based on its 
numeric value. Along with this digital binary code, e.g., 
access key, each cubicle may also include the actual entry 
points to where the segment originated from in the actual 
reference genome, e.g., the reference position. The reference 
position therefore may be a number indicating the position 
of the original reference seed in the genome. This may also 
be done for overlapping positions, which are put into the 
table in random order but at known location, such as by the 
hash function. In a manner Such as this, a hash table index 
may be generated, wherein the index includes the digital 
binary code for a portion or all of a plurality of segments of 
one or more reference genomes, which may then be refer 
enced by one or more sequences of genetic material, e.g., 
one or more reads, or portions thereof, from one or more 
individuals. 
When implementing the hash table and/or function as a 

module, such as a module in a pipeline of modules, on 
software (such as where the bit width is 2x the number of 
bases in the seed described above) and/or hardware, as 
referenced above, the hash table can be built so that the 
binary representation of the reference seeds can be any bit 
width desired. As the seeds can be long or short, the binary 
representations can be greater or lesser, but typically the 
seed length should be chosen so as to be long enough to be 
unique, but not too long that it is too hard to find matches 
between the seeds of the genome reference and the seeds of 
the sample reads, such as because of errors or variants. For 
instance, as indicated above, the human genome is made up 
of about 3.1 billion base pairs, and a typical read may be 
about 100 nucleotides in length. Hence, a useful seed length 
may be between about 16 or about 18 nucleotides or less in 
length to about 28 or about 30 nucleotides or more in length. 
For example, in certain instances, the seed length may be a 
segment of 20 nucleotides in length. In other instances, the 
seed length may be a segment of 28 nucleotides in length. 

Consequently, where the seed length is a segment of 20 
nucleotides, each segment may be represented digitally by a 
40 bit output, e.g., a 40 bit binary representation of the seed. 
For example, where 2 bits are selected to represent each 
nucleotide, e.g., such as where A-00, C-01, G=10, and 
T=11, a seed of 20 nucleotidesx2 bits per nucleotide-a 40 bit 
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(5 byte) vector, e.g., number. Where the seed length may be 
28 nucleotides in length, the digital, e.g., binary, represen 
tation of the seed may be a 56 bit vector. Hence, where the 
seed length is approximately 28 nucleotides in length, 56 
bits can be employed to handle a 28 nucleotide seed length. 
More particularly, where the 56 bits represents the binary 
form of the seeds of the reference genome that have been 
randomly positioned in the hash table, a further 56 bits can 
be used to digitally represent the seeds of the read that are 
to be matched against the seeds of the reference. These 56 
bits may be run through a polynomial that converts the 56 
bits in to 56 bits out in a 1:1 correspondence. Without 
increasing or decreasing the number of bits of output, 
performing this operation randomizes the storage location of 
adjacent input values so that the various seed values will be 
uniformly distributed among all possible storage locations. 
This also serves to minimize collisions among values that 
hash to the same location. In particular, in a typical hash 
table implementation described herein, only a portion of the 
56 bits is used as a lookup address to select a storage location 
and the remaining bits are stored in that location for con 
firmation of a match. If a hashing function were not used, a 
great many patterns having the same address bits, but 
different stored bits would have to share the same hash 
location. 
More specifically, there is similarity between the way the 

hash table is constructed, e.g., by Software and/or hardware 
placing the reference genome seeds randomly in the hash 
table, and the way the hash table is accessed by the seeds of 
the reads being hashed such that they both access the table 
in the same way. Hence, seeds of the reference and seeds of 
the sample read that are the same, e.g., have the same binary 
code, will end up in the same location, e.g., address, in the 
table because they access the hash table in the same manner, 
e.g., for the same input pattern. This is the fastest known 
method for performing a pattern match. Each lookup takes 
a nearly constant amount of time to perform. This may be 
contrasted with a Burrows-Wheeler method which may 
require many probes (the number may vary depending on 
how many bits are required to find a unique pattern) per 
query to find a match, or a binary search method that takes 
log(N) probes where N is the number of seed patterns in the 
table. 

Further, even though the hash function can break the 
reference genome down into segments of seeds of any given 
length, e.g., 28 base pairs, and can then convert the seeds 
into a digital, e.g., binary, representation of 56 bits, not all 
56 bits need be accessed entirely at the same time or in the 
same way. For instance, the hash function can be imple 
mented in Such a manner that the address for each seed is 
designated by a number less than 56 bits, such as about 20 
to about 45 bits, such as about 25 to about 40 bits, such as 
about 28 to about 35 bits, including about 28 to about 30 bits 
may be used as an initial key or address so as to access the 
hash table. 

For example, in certain instances, about 26 to about 29 
bits may be used as a primary access key for the hash table, 
leaving about 27 to about 30 bits left over, which may be 
employed as a means for double checking the first key, e.g., 
if both the first and second keys arrive at the same cell in the 
hash table, then it is relatively clear that said location is 
where they belong. Specifically, in order to save space and 
reduce the memory requirements and/or processing time of 
the hash module, such as when the hash table and/or hash 
function are implemented in hardware, the about 26 to about 
29 bits representing the primary access key derived from the 
original 56 bits representing the digitized seed of a particular 
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sequenced read may be employed by the hashing function to 
comprise the primary address, leaving about 27 to about 30 
bits that can be used in a double checking method. 
More particularly, in various instances, about 26 to about 

29 bits from the 56 bits representing the binary form of a 
reference seed may be employed to comprise a primary 
address, which designated 26 to 29 bits may then be given 
a randomized location in the hash table, which in turn may 
then be populated with the location of where the reference 
seed originally came from along with the remaining 27 to 30 
bits of the seed so that an exact match may be ascertained. 
The query seeds representing the reads of the Subject 
genome converted into binary form may also be hashed by 
the same function in Such a manner that they as well are 
represented by 29 bits comprising a primary access key. If 
the 29 bits representing the reference seed are an exact 
match to the 29 bits representing the query seeds, they both 
will be directed to the same position in the hash table. If 
there was an exact match to the reference seed, then we 
expect to find an entry at that location containing the same 
remaining 27 to 30 bits. In such an instance, the 29 desig 
nated address bits of the reference sequence may then be 
looked up to identify the position in the reference to where 
the query read from which the query seed was derived, 
aligns. 

However, with respect to the left over 27 to 30 bits, these 
bits may represent a secondary access key that may also be 
imported into the hash table as well, such as for the purpose 
of ensuring the results of the first 26 to 29 bits of the primary 
access key. Because the hash table represents a perfect 1:1 
scrambling of the 28 nucleotide/56 bit sequence, and only 
about 26 to about 29 of the bits are used to determine the 
address, these 26 to 29 bits of the primary access key have 
basically been checked, thereby determining the correct 
address in a first go around. This data, therefore, does not 
need to be confirmed. However, the remaining about 27 to 
about 30 bits of the secondary access key must be checked. 
Accordingly, the remaining about 27 to 30 bits of the query 
seeds are inserted into the hash table as a means for 
completing the match. Such an implementation may be 
shorter than storing the 56 bit whole key, and thus, saves 
space and reduces over all memory requirements and pro 
cessing time of the module. 
The hash table, therefore, can be configured as an index 

where known sequences of one or more reference genomes 
that have been broken down into sequences of predeter 
mined lengths, e.g., seeds, such as of 28 nucleotides in 
length, are organized into a table randomly, and one or more 
sequenced reads, or “seed’ portions thereof, derived from 
the sequencing of a Subject's genomic DNA or RNA, may 
be passed through the hash table index. Such as in accor 
dance with a hash function, so as to look up the seed in the 
index, and one or more positions, e.g., locations in the 
reference genome, may be obtained from the table where the 
sample seed matches positions in the reference genome. 
Using a brute force linear search to Scan the reference 
genome for locations where a seed matches, over 3 billion 
locations would have to be checked. However, by using a 
hashing approach, each seed lookup can occur in approxi 
mately a constant amount of time. Often, the location can be 
ascertained in a single access. In cases where multiple seeds 
map to the same location in the table, a few additional 
accesses may be made to find the seed being currently 
looked up. Hence, even though there can be 30M or more 
possible locations for a given 100 nucleotide length read to 
match up to, with respect to a reference genome, the hash 
table and hash function can quickly determine where that 
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read is going to show up in the reference genome. By using 
a hash table index, therefore, it is not necessary to search the 
whole reference genome to determine where the read aligns. 
As indicted above, chromosomes have a double helix 

structure that is comprised of two opposed, complementary 
Strands of nucleic acid sequences that are bound together so 
as to form the double helix. For instance, when the double 
helix structure is formed these complementary base pairs 
bind one with the other in accordance with the following 
formula: “A binds to “T”, and “G” binds to “C”. Accord 
ingly, this results in two equal and opposite strands of 
nucleic acid sequences that are the complement of each 
other. More particularly, the bases of a nucleotide sequence 
of one strand will be mirrored by their complementary bases 
on the opposed strand resulting in two complementary 
strands. However, transcription of DNA takes place in one 
direction only, starting from one end of the DNA and 
moving towards the other. Hence, as it turns out, for one 
strand of the DNA, transcription takes place in one direction, 
and for its complement Strand, transcription takes place in 
the opposite direction. Consequently, the two strands of 
DNA sequences turn out to be reverse complemented, that is 
if the sequence order of one strand of the DNA is compared 
to the other what can be seen is two strands where the 
nucleotide letters of one strand are switched for their 
complement in the other strand, e.g., “As for “Ts’ and “Gs” 
for “Cs' and vice versa, and their order is reversed. 

Because of the double helix structure of the DNA, during 
the sample prep step prior to sequencing the DNA, the 
chromosomes are pulled apart, e.g., de natured, separated 
into separate Strands, and then lysed into Smaller segments 
of a predetermined length, e.g., of 100-300 bases long, 
which are then sequenced. It is possible to separate the 
Strands prior to sequencing so that only one strand is 
sequenced, but typically the Strands of DNA are not sepa 
rated and so both strands of DNA are sequenced. Accord 
ingly, in Such an instance, about half of the reads in the 
FASTQ file may be reverse complemented. 
Of course, both strands of the reference genome, e.g., the 

complement and the reverse complement, may be processed 
and hashed as described above, however this would make 
the hash table twice as big, and make the performance of the 
hash function take twice as long, e.g., it could require about 
twice the amount of processing to compare both comple 
ment and reverse complemented sequences of the two 
genomic sequences. Accordingly, to save memory space, 
reduce processing power, and/or decrease the time of pro 
cessing, in various instances, only one strand of the model 
genomic DNA need be stored in the hash table as a refer 
CCC. 

However, because in accordance with typical sequencing 
protocols, such as where the two strands of the subject DNA 
have not been isolated from one another, any read generated 
from the sequenced DNA can be from either strand, the 
complement or its reverse complement, it may be difficult to 
determine which Strand is being processed, the complement 
of the reverse complement. More specifically, in various 
instances, since only one strand of the reference genome 
need be used to generate the hash table, half of the reads 
generated by the sequencing protocol may not match the 
particular Strand, e.g., either the complement or its reverse 
complement, of the model genome reference, e.g., because 
half the time the read being processed is a reverse comple 
ment with respect to the hashed segments of the reference 
genome. Hence, only the reads generated from one strand of 
the DNA will match the indexed sequences of the reference 
genome, while the reads generated from the other strand will 
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theoretically be their reverse complements and will not 
match anywhere in the reference genome. Further, an addi 
tional complication can be that for any given read that is 
reverse complemented to the stored reference genome 
Strand, the read may still, erroneously, match to a portion of 
the reference genome, such as by mere chance. In view of 
the above, in order for mapping to proceed efficiently, in 
various instances, it not only must be determined where the 
read matches in the reference genome it must also be 
determined if the read is reverse complemented. Therefore, 
the hash table and/or function module should be constructed 
So as to be able to minimize these complications and/or the 
types of errors that may result therefrom. 

For instance, as indicated above, in one instance, the hash 
table could be populated with both the complement and the 
reverse complement for the reference genome so that every 
read or its reverse complement of the Subject's sequenced 
DNA can be matched to its respective strand in the genomic 
reference DNA. In Such an instance, for any given seed in a 
read, the seed should theoretically match with one strand or 
the other, the complement or the reverse complement of the 
reference, assuming no errors or variations. However, Stor 
ing both Strands of the reference genome in the hash index 
can require about twice as much storage space (e.g., instead 
of 32 gigabytes 64 gigabytes may be necessary), and may 
require twice the amount of processing resources and/or 
twice as much time for processing. Further, such a solution 
doesn’t solve the problem of palindromes that can match in 
both directions, e.g., the complement and reverse comple 
ment Strands. 

Accordingly, although the hash table index may be con 
structed to include both strands of the genomic reference 
sequence. In various instances, the hash table may be 
constructed so as to only include one strand of the model 
genome as a reference. This may be useful because storing 
the hash table in memory will require half of the storage 
and/or processing resources than would be required if both 
Strands were to be stored and processed, and thus, the time 
required for a look up should also require less time. How 
ever, storing only one strand of the genome as a reference 
could cause complications because, as indicated above, 
where the sequenced subject DNA is double stranded, it is 
not typically known from which strand any given read was 
generated. In Such an instance, therefore, the hash table 
should be constructed to account for the fact the read being 
mapped may be from either strand and thus can be the 
complement or reverse complement of the stored segments 
of the reference genome. 

Accordingly, in various instances. Such as where only one 
orientation of seeds from the reference are populated into the 
hash table, when performing the hash function on the seeds 
generated from the reads of the FASTQ file, the seed may 
first be looked up in its present orientation, and/or may then 
be reverse complemented and the reverse complement may 
be looked up. This may require two looks up in the hash 
index, e.g., twice as many, but one of the seed or its reverse 
complement should match its complementary segment in the 
reference genome, assuming no errors or variations, and it 
should reduce the overall processing resources, e.g., less 
memory is used, as well as reducing time, e.g., not as many 
sequences need to be compared. 
More particularly, such as where a seed in one particular 

orientation is comprised of 28 nucleotides, e.g., digitally 
represented in a 56 bit binary format, as described above, the 
seed can be reverse complemented and the reverse comple 
ment can also be represented digitally in a 56 bit binary 
format. The binary format for each representation of the seed 
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sequence and its complement results in a number, e.g., an 
integer, having a value represented by that number. These 
two values, e.g., the two integers, may be compared and the 
number with the higher or lower value, e.g., higher or lower 
absolute value, may be selected as the canonical choice of 
orientation and that is the one that can be stored in the hash 
table and/or subjected to the hash function. For instance, in 
certain instances, the number with the higher value may be 
selected for being processed by the hash function. 

Another method that may be employed is to construct 
seeds wherein each seed is comprised of an odd number of 
bases. The canonical orientation to be selected then may be 
those strands having a middle base being an “A” or a “G”. 
but not a “T” or a “C”, or vice versa. The hash function then 
will be performed on the seeds meeting the requirements of 
the canonical orientation. In Such a manner, it is only the two 
bits representing the middle base that needs to be compared 
to see which has the higher value and it is only the 2 bits of 
that sequence that are looked up. Hence, you only have to 
look at the bits representing the middle two bases. Typically, 
this can work well because if the seed is an odd length, then 
it always reverse complements the center base. However, 
although this may work for odd seed lengths, hashing those 
seeds having a higher, or lower, value, as described above, 
should work for all seed lengths, albeit such a method may 
require having to process, e.g., look up, more bits of data. 

These methods may be performed for any number of 
seeds, e.g., all seeds of the reference and/or any number of 
seeds, e.g., all, derived from all or a portion of the reads of 
the FASTQ file. Approximately half of the time the binary 
representation of the seeds of a given orientation, e.g., the 
complement, will have a higher value, and approximately 
half the time the binary representation of the seeds of the 
opposite orientation, e.g., the reverse complement, will have 
the higher value. But, when looking at the binary numbers, 
whichever one has the higher value, that is the one that gets 
fed into the hash table. For instance, the binary integers for 
each read and its complement may be compared, and the 
sequence having the first 1 encountered is the one of the two 
strands selected to be stored as the strand in the hash table 
and/or be subjected to the hash function. If both strands have 
a first 1 in the same position, then the Strand having the 
second 1 that comes first is selected, and so on. Of course, 
the read with the lower value may also be selected, in which 
case the strand having the first and/or larger number of initial 
0's will be selected. An indication, e.g., a flag, may also be 
inserted into the hash table where the flag indicates which 
orientation, complement or reverse complement, the stored 
and/or hashed Strand represents, e.g., a 1 RC flag, if reverse 
complemented. 
More particularly, when performing the hash function and 

accessing the hash table, seeds from the genomic reference 
DNA and seeds derived from the reads of the sequence data 
are subjected to these same operations, such as converted 
into binary form and compared with its reverse complement 
where the integers having the higher, or lower, values are 
selected as the canonical orientations and Subjected to the 
hash function and fed into the hash table to be looked up and 
matched against each other. However, because it is the same 
operation being performed in Substantially the same manner 
on the reference sequences and the read sequences, the same 
record will be derived, if the two sequences, the reference 
and the Subject seeds, have the same sequence to begin with, 
even if one was reverse complemented, they will all be 
directed to the same cell in the hash table. 

Consequently, if a certain seed in the reference having a 
given sequence in a particular orientation is converted to 
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binary form and hashed, and then a seed derived from a 
sample read having the same sequence, but in its reverse 
orientation, e.g., reverse complemented, and it is subjected 
to the above protocols, because of the above disclosed 
methods, when the binary value is determined and the hash 
function performed, the look up will be directed to the very 
same address in the hash table as if the hash function were 
performed on the complimentary seed to begin with. Hence, 
in this manner it doesn't matter which orientation the seed 
being processed is in because it will always be directed to 
the same address. 

Therefore, in a manner Such as this, the methods herein 
disclosed are able to hash and thereby determine the location 
of the seed within the table despite its orientation, and 
because of the flag in the record it will also be known if any 
given seeds is reverse complemented. For instance, it will be 
known if the seed was flipped from the reference and it will 
also be known if the seed derived from the subject read had 
to be flipped as well. Consequently, if the decision was the 
same on both sides then the orientation is the same between 
the read and the reference. However, if one side is flipped 
and the other is not, then it can be concluded that the read 
maps reverse complemented to the reference. Hence, by 
using a hash table it may be determined where in the genome 
a given read, or portion thereof, e.g., a seed, matches and/or 
if it is reverse complimented. Further, it is to be understood 
that although the above is described with respect to gener 
ating the hash table from the reference genome and per 
forming various ancillary hash function processes on the 
seeds generated from the reads, e.g., from a FASTQ file, the 
system can also be structured such that the hash table index 
is generated from seeds derived from the reads of the 
subjects sequenced DNA, and the various ancillary hash 
function processes, as herein described, are performed on 
seeds generated from the reference genome. 
As set forth above, an advantage of employing a hash 

table and/or a hash function is that by employing the use of 
seeds, a majority of the reads of the sequenced DNA can be 
matched to the reference genome often by employing single 
hash lookups, and in various instances, not all seeds derived 
from a read need be hashed and/or looked up. Seeds may be 
of any Suitable length, such as relatively short, e.g., 16 
nucleotides or less, Such as about 20 nucleotides. Such as 
about 24 nucleotides, such as about 28 nucleotides, such as 
about 30 or about 40 or about 50, or 75 or about 100 
nucleotides, or even up to 250 or 500, or 750, or even 999 
or even about 1,000 nucleotides in length; or relatively long 
such as over about 1,000 nucleotides or over about 10,000, 
or over about 100,000 or over 1,000,000 or more nucleotides 
in length. However, as described above, there are some 
disadvantages to using seeds. Such as in a hash table, in 
particular with respect to selecting seeds of the appropriate 
length. 

For instance, any Suitable seed length may be employed 
in a mapping function, however there are advantages and 
disadvantages of using relatively short or relatively long 
seed lengths. For example, the shorter the seed length the 
less likely it is to incorporate an error or a variation that can 
prevent finding a match within the hash table. However, the 
shorter the seed length, the less unique it is, and the more 
matching is to be expected between the seeds of the refer 
ence genome and the seeds derived from the reads of the 
subjects sequenced DNA. Further, the shorter the seed 
length the more lookups will have to be performed by the 
hash function, taking more time and increased processing 
power. 
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On the other hand, the longer the seed length the more 

unique it is and the less likely there is to be multiple 
matching positions between the seeds between the seeds of 
the reference and the query. Also, with a longer seed, there 
need be fewer seeds within the read, so fewer look ups, 
thereby taking less time and requiring less processing power. 
The longer the seed, however, the more likely it is that the 
seeds derived from the sequenced DNA may include an 
error, such as a sequencing error and/or may incorporate a 
variation as compared to the reference thus preventing a 
match from being made. Longer seeds further have the 
disadvantage of being more likely to hit the end of the read 
and/or the end of the chromosome. Hence, where a seed is 
only 20-100 nucleotides in length, there may be several 
matches within the hash table, however, where the seed is 
1,000 or more nucleotides in length there may be much 
fewer matches, but there may be no matches at all. 

There are some methods for helping to minimize these 
issues. One method is to ensure there is appropriate over 
sampling generated in the DNA processing steps prior to 
sequencing. For instance, as it is known that there is typi 
cally at least one variation within every 1,000 base pairs, the 
seed length may be chosen to maximize matches, while at 
the same time minimizing non-matches due to the incorpo 
ration of errors and/or variants. Additionally, the use of 
oversampling, Such as in the pre-sequencing and/or sequenc 
ing steps, can be employed as a further method for mini 
mizing various problems that are inherent to using seeds, 
Such as within a hash function. 
As indicated above, oversampling produces pileups. Pile 

ups are those collections of reads that map in an overlapping 
fashion generally to the same place in the genome. For the 
majority of sample reads, such pileups may not be necessary, 
Such as where the reads, and/or seeds generated therefrom, 
do not include a variant and/or do not map to multiple 
positions in the hash table (e.g., are not exactly duplicated in 
the genome). However, for those reads and/or seeds that may 
include a variant and/or an error and/or other mismatch 
between the seed and/or read and the reference genome, the 
production of pileups for any given region of the genome 
may be useful. For instance, even though only one exact hit 
between a seed generated from a read of the sample genome 
is necessary So as to be able to map the sample read to the 
reference genome, however, the fact that there may be a 
machine error or a true variant in the sample DNA sequence 
that could prevent Such an exact match between the read and 
the reference from occurring, often times makes the pro 
duction of overlapping pileups in the pre-sequencing and 
sequencing steps useful. 

For example, for those instances where a sample seed 
does in fact contain a variant or an error, the production of 
read pileups may be useful in distinguishing between actual 
variance and machine and/or chemistry errors. In Such an 
instance, a pileup can be employed to determine whether an 
apparent variation is in fact a real variation. For instance, if 
95% of the reads in the pileup indicate that there is a “C” in 
a certain position, then odds are that is the correct call, even 
if the reference genome has a “T” at that location. In such 
an instance, the mismatch may be due to a SNP, e.g., a 
substitution of a “C” for a “T” in that position in the genome, 
where the genetic code for the individual actually varies 
from that of the reference. In such an instance, the depth of 
the pileup may be employed so as to compare the overlap 
ping portions of the reads of the pileup at a position where 
there is variance, and based on the percentage of reads in the 
pileup having the variance, it can be determined whether the 
variance is in fact due to an actual variation in the sample 
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sequence. Accordingly, the actual sequence of the reads that 
best fits the genomic sequence, may in part be determined 
based on what is reflected in the pileup depths. The disad 
vantage of using pileups, however, is that it requires more 
processing time to process all the excess reads and/or seeds 
generated thereby. 

Another method for minimizing the issues inherent in 
short or long reads is to employ a secondary hash table along 
with or in conjunction with the first, e.g., primary hash table. 
For instance, a second hash table and/or hash function may 
be employed for those seeds that do not have any hits in the 
primary hash table, or for those seeds that have multiple hits 
in the primary hash table. For example, when comparing one 
seed with another there are several outcomes that may result. 
In one instance, a no hit, e.g., a no match anywhere between 
the two sequences, may result, in which case this suggests a 
possible error or variation such as in the seed of a read of the 
Subject as compared against a seed derived from the refer 
ence genome. Or there may be one or a plurality of matches 
found. If a large number of matches are found, however, this 
could be problematic. 

For instance, with respect to the primary hash table, if 
each seed in the reference being hashed appears only a few 
times, e.g., once, twice, or three times, etc. then there may 
not be a need for a secondary hash table and/or hash 
function. However, if one or more of the seeds occurs a 
greater number of times, e.g., 5, 10, 15, 20, 25, 50, 100, 
1,000, or more times, this could be problematic. For 
example, there are known regions in the sequence of the 
human genome that have been determined to be mathemati 
cally significant in that they are repeated a multiplicity of 
times. Consequently, any seed mapping to one of these 
positions, may in fact inadvertently map to a multiplicity of 
these positions, such as where the seed comprises the 
nucleotides of the overlapping sequences. In such an 
instance, determining which out of all the possibilities the 
seed actually aligns to may be difficult. However, as these 
repeating regions are known, and/or become known, any 
seed that would typically map to one or more of these 
regions may be demarcated to be allocated to a secondary 
hash table for processing by the first or a secondary hash 
function, so as to not waste time and processing power 
trying to use a primary hashing function to determine 
something that is likely to be indeterminable. 
More particularly, when comparing the seeds of the 

genomic reference to the seeds generated from the Subjects 
genomic reads, anywhere from 1 to hundreds or even 
thousands of match positions may result. The present sys 
tem, however, may be configured to handle a certain number 
of duplicative matches, such as without the need for further 
processing steps, such as where the number of matches is 
below about 50, or below about 40, or below about 30, such 
as below about 25 or about 20, such as below about 16 
matches or below about 10 or about 5 matches. However, if 
there are more matches of viable hits than this that are 
returned, then the system can be configured to implement a 
secondary hash function, e.g., using a secondary hash table. 

Accordingly, rather than placing such seeds known to 
have an increased likelihood of redundancy in the primary 
hash table, such seeds can be placed in a secondary hash 
table, or a secondary region in the first hash table. Addi 
tionally, in some instances, a record that doesn’t communi 
cate anything about the multiplicity of potential map posi 
tions for that seed, but rather communicates a command to 
access a secondary hash table, e.g., an extend record, can be 
placed in the primary hash table. For example, the extend 
record can be an instruction, such as an instruction to extend 
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the primary, e.g. non unique or duplicative, seed length to a 
longer, more unique seed length, Such as by adding on one 
or more additional bases next to it, e.g., on the end(s) of the 
seed, to make it a longer seed sequence that can then get 
hashed and looked up. Such as in the secondary table. 
The record can be configured such that it informs or 

otherwise instructs how much to extend the known redun 
dant seed by a given amount, and may also instruct as to 
where and/or how to extend the seed. For instance, because 
the hash table is usually precomputed, e.g., originally con 
structed from the seeds generated from the reference 
genome(s), it may be known prior to constructing the table, 
which, if any, of the seeds generated from the reference 
genome are going to occur a multiplicity of times. Hence, in 
various instances, it may be predetermined which seeds are 
going to need to be shifted over to the secondary hash table. 
For example, when constructing the hash table index, the 
characteristics of the reference seed sequences being input 
into the hash table as an index are known, so for every 
potential seed it may be determined whether its a case that 
is going to give a multiplicity of hits, e.g., from 10-10,000 
hits. 
More particularly, in various instances, an algorithm can 

be performed to determine all the predicted matches a given 
seed derived from the reference and/or the subject's reads 
may have. If it is determined that for any particular seed that 
it is likely to return a multiplicity of matches, a flag, e.g., a 
record, may be generated. Such as within a cell of the hash 
table, indicating that this particular seed is a high frequency 
hit. In Such an instance, the record can further instruct that 
the primary hashing of this seed, and Such seeds like it, 
should be skipped over because it is not practical to perform 
the number, e.g., 20-10,000 or more evaluations on such a 
seed needed to accurately determine where the seed actually 
maps. In such an instance, the primary hash function may 
not be able to accurately determine which position out of all 
the possible positions to where the seed may match, is the 
one to where the read actually aligns, and thus for practical 
purposes, because the seed cannot accurately be mapped at 
this stage, the primary hash function may not be likely to 
return a useable result, such as a result indicating accurately 
where the seed actually matches in the genome. 

In Such an instance, the hash function algorithm may be 
configured to calculate what would need to be done to make 
the redundant seed more unique. For example, the secondary 
hash function may determine by how many bases the seed 
needs to be extended, and in what order, and in what 
location, so as to ensure that the seed is no longer redundant, 
but rather Suitably unique so as to be hashed. Accordingly, 
the record may also include an instruction to extend the 
redundant seed, e.g., extend by two, by four, by six, etc., on 
one or both ends of the seed so as to achieve a predetermined 
level of uniqueness. In Such a manner as this, seeds that at 
first appear to be identical can be determined to be non 
identical. 

For example, in Some instances, a typical record can 
instruct that the duplicative seed be extended by up to X 
number of odd or even bases, but in some instances, 
extended by an even number of bases, such as from about 2 
to 4 to about 8 to 16 to about 32 or about 64 or more bases, 
Such as equally on each side. For instance, where the 
extension is to be by 64 bases, the record could instruct that 
32 bases be added on each side of the seed. The number of 
bases by which the seed is to be extended is configurable and 
may be any Suitable number dependent on how the system 
is constructed. In certain instances, the secondary hash 
function may be employed to determine by how many bases 
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the seed should be extended so as to get a more reasonable 
number of match results back. Therefore, the extension may 
be to the point of relative uniqueness, such as to where there 
is only 1, 2, 3, or even up to 16 or 25 or 50 match positions 
where the pattern shows up. In various instances, extending 
the seed equally from both ends may be useful such as to 
avoid problems with reverse reads, but in various instances 
the seed may be extended by the addition of one or more 
bases unequally to both sides. 
More particularly, such as in one example, if the seed 

includes 28 bases, and an extend record, Such as an extend 
record positioned within a cell in the primary hash table, 
instructs the hash function to extend the seed, such as by 64 
bases, then the record may further direct the hash function 
as to how to extend the seed, such as by adding 32 bases on 
each side of the seed. However, the extension can take place 
at any Suitable position on the read and may be done in a 
symmetrical or asymmetrical fashion. In certain instances, 
the record may instruct the hash function to extend the seed 
symmetrically because in certain instances Such a symmetri 
cal extension may work better. Such as with reverse comple 
ments, discussed herein. In such an instance, the same 
number of bases will be added such as to the opposite sides 
of the seed when extending. Although in other instances 
extension may be performed by adding an even or an odd 
number of bases in a non-symmetrical format, and hence, it 
is not necessary to extend the seed by same number of bases 
on each side. Typically, the primary hash table is configured 
such that it is not completely full. For example it is desirable 
to configure it not to exceed 80% or 90% of its capacity. This 
is to maintain high performance of the lookup rate. When 
there are a high number of collisions in hashing seeds to the 
same location when constructing the table, the storing 
mechanism will create a chain of references to other loca 
tions so that the lookup mechanism will be able to find the 
one assigned to the overflowed seed. The denser the table, 
the higher the number of collisions and the longer the chains 
to be followed to find the actual match. 

In various instances, such as where the initial, redundant 
seed is 28 bases long, and the record instructs for it to be 
extended, such as from 18 to 32 to 64 bases, such as on each 
opposed side of the seed, the digital representation of the 
seed may be about 64 basesx2 bits per base=128 bits. 
Accordingly, dependent on how the mapping module is set 
up, this may be too big for the primary hash table to process. 
Hence, in certain instances, to deal with the need for Such 
extensive processing, in certain embodiments, the secondary 
hashing module can be configured to store the information 
associated with larger seeds. Since the number of seeds 
requiring extension is a fraction of the total number of seeds, 
the secondary hash table may be smaller than the primary 
hash table. However, in other instances, such as to reduce the 
processing requirements of the module, e.g., to save bits, the 
known redundant portion of the sequence, e.g., the primary 
sequence, may be replaced by a preselected variable Such as 
of a predetermined sequence length. In Such an instance, 
since the redundant sequence is already known and identi 
fied, it does not need to be digitally represented in its 
entirety. Rather, in various instances, all that is really needed 
to be done is to Substitute the known, redundant sequence 
with a known variable sequence, and all that really needs to 
be looked up are the extension portions, e.g., wings, that 
have been added to either side of the variable sequence, 
since those are the only portions of the initial sequence that 
are non-redundant and new. Hence, in certain instances, the 
primary sequence may be replaced by a shorter unique 
identifier code (such as a 24 bit proxy instead of 56 bit 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

42 
representation) and then the extension bases can be added to 
the proxy, Such as a 36 bit extension (e.g., totaling 60 bits) 
that can then be put into the extend record in the primary 
table. In a manner Such as this, the disadvantages of having 
too short and/or too long of reads can be minimized and the 
benefit of having only one or a few lookups in the hash table 
can be maintained. 
As indicated above, the implementation of the above 

described hash function may be executed in software of 
hardware. An advantage of implementing the hash module 
in hardware is that the processes may be accelerated and 
therefore performed in a much faster manner. For instance, 
where software may include various instructions for per 
forming one or more of these various functions, the imple 
mentation of Such instructions often requires data and 
instructions to be stored and/or fetched and/or read and/or 
interpreted. Such as prior to execution. As indicated above, 
however, and described in greater detail herein below, a chip 
can be hardwired to perform these functions without having 
to fetch, interpret, and/or perform one or more of a sequence 
of instructions. Rather, the chip may be wired to perform 
Such functions directly. Accordingly, in various aspects, the 
disclosure is directed to a custom hardwired machine that 
may be configured such that portions or all of the above 
described hashing module may be implemented by one or 
more network circuits, such as integrated circuits hardwired 
on a chip, such as an FPGA or ASIC. 

For instance, in various instances, the hash table index 
may be constructed and the hash function may be performed 
on a chip, and in other instances, the hash table index may 
be generated off of the chip, such as via software run by a 
host CPU, but once generated it is loaded onto and employed 
by the chip. Such as in running the hash module. In certain 
instances, the chip may include any suitable number of 
gigabytes, such as 8 gigabytes, such as 16 gigabytes. Such as 
32 gigabytes, such as 64 gigabytes, such as about 128 
gigabytes. In various instances, the chip may be configurable 
Such that the various processes of the hash module are 
performed employing only a portion or all the memory 
resources. For example, where a custom reference genome 
may be built, a large portion of the memory may be 
dedicated to storing the hash reference index and/or for 
storing reads and/or for reserving space for other functional 
modules to use, such as where 16 gigabytes are dedicated to 
storing the reads, 8 gigabytes may be dedicated to storing the 
hash index and another 8 gigabytes may be dedicated to 
other processing functions. In another example, where 32 
gigabytes are dedicated to storing reads, 26 gigabytes may 
be dedicated for storing the primary hash table, 2.5 giga 
bytes may be dedicated for storing the secondary table, and 
1.5 gigabytes may be dedicated for the reference genome. 

In certain embodiments, the secondary hash table may be 
constructed so as to have a digital presence that is larger than 
the primary hash table. For instance, in various instances, the 
primary hash table can be configured to store hash records 
of 8 bytes each with 8 records per hash bucket totaling 64 
bytes per bucket, and the secondary hash table can be 
configured to store 16 hash records totaling 128 bytes per 
bucket. For each hash record containing overflow hash bits 
matching the same bits of the hash key a possible matching 
position in the reference genome is reported. For the primary 
hash table therefore, up to 8 positions may be reported. For 
the secondary hash table up to 16 positions may be reported. 

Regardless of being implemented in hardware or soft 
ware, in many instances, it may be useful to structure the 
hash table to avoid collisions. For instance, there may be 
multiple seeds that, because of various system artifacts will 
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want to be inserted into the hash table at the same place 
regardless of whether there is a match there or not. Such 
instances are termed collisions. Often times, collisions can 
be avoided, in part, by the way the hash table is structured. 
Accordingly, in various instances the hash table may be 
structured so as to avoid collisions, and therefore may be 
configured to include one or more virtual hash buckets. 

In various instances, the hash table can be structured Such 
that it is represented in an 8 byte, 16 byte, 32 byte, 64 byte, 
128 byte format, or the like. But in various exemplary 
embodiments it may be useful to represent the hash table in 
a 64 byte format. This may be useful, for instance, where the 
hash function is to make use of accessing a memory. Such as 
a DRAM, e.g., in a standard DIMM or SODIMM form 
factor, Such as where the minimum burst size is typically 64 
bytes. In Such an instance, the design of the processor for 
accessing a given memory will be such that the number of 
bytes needed to form a bucket in the hash table is also 64, 
and therefore a maximized efficiency may be realized. 
However, if the table were to be structured in a 32 byte 
format, this would be inefficient because about half the bytes 
delivered in a burst would contain information not needed 
by the processor. That would cut the effective byte delivery 
rate in half. Conversely, if the number of bytes used to form 
a bucket in the hash table is a multiple of the minimum burst 
size, e.g., 128, there is no performance penalty as long as the 
processor actually needs all of the information returned in a 
single access. Therefore, in instances where the optimal 
burst size of the memory access is at a given size, e.g., 64 
bytes, the hash table can be structured so burst size of the 
memory is optimally exploited, such as where the bytes 
allocated for representing bins in the hash table and pro 
cessed by the mapping function, e.g., 64 bytes, are coinci 
dent with the burst size of the memory. Consequently, where 
the memory bandwidth is a constraint, the hash table can be 
structured so as to optimally exploit Such constraints. 

Further, it is to be noted, that although a record may be 
crammed into 8 bytes, the hash function can be constructed 
such that it is not the case that 8 bytes from the table are read 
So as to process one record, as this could be inefficient. 
Rather, all 8 records in a bucket can be read at once, or some 
sub-portion thereof. This may be useful in optimizing the 
processing speed of the system as, given the architecture 
described above, it would cost the same time at the same 
speed to process all 8 records as it would for simply 
processing 1 record. Accordingly, in certain instances, the 
mapping module may include a hash table that itself may 
include one or more Subsections, e.g., virtual sections or 
buckets, wherein each bucket may have 1 or more slots. Such 
as 8 slots, such that one or more different records can be 
inserted therein such as to manage collisions. However, in 
certain circumstances, one or more of Such buckets may fill 
up with records, so a means may be provided for storing 
additional records in other buckets and recording informa 
tion in the original bucket indicating that the hash table 
lookup mechanism needs to look further to find a match. 

Hence, in certain instances it may also be useful to 
employ one or more additional methods such as for man 
aging collisions, one such method may include one or more 
of linear probing and/or hash chaining. For instance, if it is 
not known what exactly is being searched in the hash table 
or a portion thereof, such as in one bucket of the hash table, 
and the particular bucket is full, then the hash lookup 
function can be configured such that if one bucket is full and 
is searched and the desired record not found, then the 
function can be directed to step to the next bucket, e.g., the 
+1 bucket, and that bucket can then be checked. In such a 
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manner, all buckets can be searched when looking for a 
particular record. Such searching, therefore, can be per 
formed sequentially looking through one bucket to another 
until what is being looked for is found or it becomes clear 
that it is not going to be found. Such as where an empty slot 
in at least one of the buckets is found. Particularly, where 
each bucket is filled sequentially, and each bucket is 
searched according to the sequence of filling, if an empty 
slot is found. Such as when searching sequentially through 
buckets looking for a particular record, then the empty slot 
could be indicative of the record not existing, because if it 
did exist, it would at least have been positioned in the empty 
slot, if not in the preceding buckets. 
More particularly, where 64 bytes are designated for 

storing the information in a hash bucket wherein 8 records 
are contained, upon receiving a fetched bucket, the mapping 
processor can operate on all 8 records simultaneously to 
determine which are matches and which are not. For 
instance, when performing a look up Such as of a seed from 
a read obtained from the sequenced sample DNA against a 
seed generated from the reference genome, the digital rep 
resentation of the sample seed can be compared against the 
reference seeds in all, e.g., 8, records so as to find a match. 
In Such an instance, several outcomes may result. A direct 
match may be found. A sample seed may go into the hash 
table and, in Some instances, no match is found, e.g., because 
it is just not exactly the same as any corresponding seed in 
the reference. Such as because there was a machine or 
sequencing error with respect to that seed or the read from 
which it is generated, or because the person has a genetic 
sequence that is different from the reference genome. Or a 
the seed may go into the hash table and a plurality of 
matches may be returned, such where the sample seed 
matches to 2, 3, 5, 10, 15, 20, or more places in the table. In 
Such an instance, multiple records may be returned all 
pointing to various different locations in the reference 
genome where that particular seed matches, the records for 
these matches may either be in the same bucket, or a 
multiplicity of buckets may have to be probed to return all 
of the significant, e.g., match, results. 

In certain instances, such as where space may become a 
limiting factor in the hash table, e.g., in the hash table 
buckets, an additional mechanism for resolving collisions 
and/or for saving space may implemented. For instance, 
when space becomes limited. Such as when more than 8 
records need to be stored in a bucket, or when for other 
instances it is desirable, a hash chaining function may be 
performed. Hash chaining can involve, for example, replac 
ing a record containing a specific position location in the 
genomic sequence with a record containing a chain pointer 
that instead of pointing to a location in the genome points to 
Some other address, e.g., a second bucket in the current hash 
table e.g. a primary or a secondary hash table. This has the 
advantage over the linear probing method of enabling the 
hash lookup mechanism to directly access the bucket con 
taining the desired record rather than checking buckets 
sequentially in order. 

Such a process may be useful given the system architec 
ture. For instance, the primary seeds being hashed. Such as 
in a primary lookup, are positioned at a given location in the 
table, e.g., their original position, whereas the seeds being 
chained are being put in a position that may be different from 
their original bucket. Hence, as indicated above, a first 
portion of the digitally represented seed, e.g., about 26 to 
about 29 bits, can be hashed and may be looked up in a first 
step. And, in a second step, the remaining about 27 to about 
30 bits can be inserted into the hash table, such as in a hash 
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chain, as a means for confirming the first pass. Accordingly, 
for any seed, its original address bits may be hashed in a first 
step, and the secondary address bits may be used in a second, 
confirmation step. Hence, the first portion of the seeds can 
be inserted into primary record location, and the second 
portion may be fit into the table in secondary record chain 
location. And, as indicated above, in various instances, these 
two different record locations may be positionally separated, 
Such as by a chain format record. Therefore, in any desti 
nation bucket of chaining a chain format record may posi 
tionally separate the entries/records that are for local pri 
mary first bucket accesses and probing and those records 
that are for the chain. 

Such hash chains can be continued for a multiplicity of 
lengths. An advantage of Such chaining is that where one or 
more of the buckets include one or more, e.g., 2, 3, 4, 5, 6, 
or more empty record slots, these empty slots can be used to 
store the hash chain data. Accordingly, in certain instances, 
hash chaining may involve starting with an empty slot in one 
bucket and chaining that slot to another slot in another 
bucket, where the two buckets may be at remote locations in 
the hash table. Additional care may be taken to avoid 
confusion between records placed in a remote bucket as part 
of a hash chain, and “native' records that hash directly into 
the same bucket. As usual, the remaining about 27 to about 
30 bits of the secondary access key are checked against 
corresponding about 27 to 30 bits stored in the records 
placed remotely in the chained bucket, but due to the distant 
placement of the chained bucket from the original hash 
bucket, confirming these about 27 to 30 bits would not be 
enough to guarantee that a matching hash record corre 
sponds to the original seed reaching this bucket by chaining, 
as opposed to Some other seed reaching the same bucket by 
direct access. (e.g., confirming the about 27 to 30 bits may 
be a full verification when the about 26 to 29 bits used for 
hash table addressing are implicitly checked by proximity to 
the initial hash bucket accessed.) 

To prevent retrieving a wrong hash record without need 
ing to store entire hash keys in the records, a positional 
system may be used in a chained bucket. Accordingly, a 
chained bucket must contain a chain continuation format 
record, which contains a further chain pointer to continue the 
bucket chain if required; this chain continuation record must 
appear in a slot of the bucket after all “native' records 
corresponding to direct hash access, and before all remote 
records belonging to the chain. During queries, before 
following any chain pointer, any records appearing after a 
chain continuation record should be ignored, and after 
following any chain pointer, any records appearing before a 
chain continuation record should be ignored. 

For example, where the buckets are about 75%-85% full, 
8 buckets may be scanned and only 15-25 slots may be 
found that can be used, whereas with hash chaining these 
slots may be found over 2 or 3 or 4 buckets. In such an 
instance, the number of probe or chain steps required to store 
a hash record matters because it influences the speed of the 
system. At run time, if probing is necessary to find the 
record, a multiplicity of hash look up accesses, e.g., a 64 
byte bucket read, may need to be performed which slows the 
system down. Hash chaining helps to minimize the average 
number of accesses that have to be performed, because more 
excess hash records can generally be populated per chained 
bucket, which can be selected from a wide region, than per 
probing bucket, which must be sequentially next. Therefore, 
a given number of excess hash records can typically be 
populated into a shorter sequence of chained buckets than 
the necessary sequence of probing buckets, which likewise 
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limits the number of accesses required to locate those excess 
records in a query. Nevertheless, probing remains valuable 
for Smaller quantities of excess hash records, because prob 
ing does not require a bucket slot to be sacrificed for a chain 
pointer. 

For example, after it has been determined where all the 
possible matches are for the seeds against the reference 
genome, it must be determined which out of all the possible 
locations a given read may match to is in fact the correct 
position to which it aligns. Hence, after mapping there may 
be a multiplicity of positions that one or more reads appear 
to match in the reference genome. Consequently, there may 
be a plurality of seeds that appear to be indicating the exact 
same thing, e.g., they may match to the exact same position 
on the reference, if you take into account the position of the 
seed in the read. 
The actual alignment, therefore, must be determined for 

each given read. This determination may be made in several 
different ways. In one instance, all the reads may be evalu 
ated so as to determine their correct alignment with respect 
to the reference genome based on the positions indicated by 
every seed from the read that returned position information 
during the hash lookup process. However, in various 
instances, prior to performing an alignment, a seed chain 
filtering function may be performed on one or more of the 
seeds. For instance, in certain instances, the seeds associated 
with a given read that appear to map to the same general 
place as against the reference genome may be aggregated 
into a single chain that references the same region. All of the 
seeds associated with one read may be grouped into one or 
more seed chains such that each seed is a member of only 
one chain. It is such chain(s) that then cause the read to be 
aligned to each indicated position in the reference genome. 
Specifically, in various instances, all the seeds that have the 
same Supporting evidence indicating that they all belong to 
the same general location(s) in the reference may be gath 
ered together to form one or more chains. The seeds that 
group together, therefore, or at least appear as they are going 
to be near one another in the reference genome, e.g., within 
a certain band, will be grouped into a chain of seeds, and 
those that are outside of this band will be made into a 
different chain of seeds. 
Once these various seeds have been aggregated into one 

or more various seed chains, it may be determined which of 
the chains actually represents the correct chain to be aligned. 
This may be done, at least in part, by use of a filtering 
algorithm that is a heuristic designed to eliminate weak seed 
chains which are highly unlikely to be the correct one. 
Generally, longer seed chains, in terms of length spanned 
within the read, are more likely to be correct, and further 
more, seed chains with more contributing seeds are more 
likely to be correct. In one example, a heuristic may be 
applied wherein a relatively strong "Superior seed chain, 
e.g. long or having many seeds, filters out a relatively weak 
“inferior seed chain, e.g. short or having few seeds. In one 
variation, the length of an inferior chain determines a 
threshold length, e.g. twice as long, such that a Superior 
chain of at least the threshold length can filter it out. In 
another variation, the seed count of an inferior chain deter 
mines a threshold seed count, e.g. five times as many seeds, 
such that a superior chain of at least the threshold seed count 
can filter it out. In another variation, the length of an inferior 
chain determines a threshold seed count, e.g. two times the 
seed count minus the seed length, such that a Superior chain 
of at least the threshold seed count can filter it out. In some 
variations, such as when chimeric alignments of reads are 
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desired, only Superior seed chains Substantially overlapping 
inferior seed chains within the read may filter them out. 

This process weeds out those seeds that have a low 
probability of having identified a region of the reference 
genome where a high quality alignment of the read can be 
found. It, therefore, may be useful because it reduces the 
number of alignments that need to be performed for each 
read thereby accelerating the processing speed and saving 
time. Accordingly, this process may be employed, in part, as 
a tuning feature, whereby when greater speed is desired, e.g., 
high speed mode, more detailed seed chain filtering is 
performed, and where greater overall accuracy is desired, 
e.g., enhanced accuracy mode, less seed chain filtering is 
performed, e.g., all the seed chains are evaluated. 

In various embodiments, seed editing may be performed, 
Such as prior to a seed chain filtering step. For instance, for 
each read, if all of the seeds of that read are subjected to a 
mapping function and none of them returned a hit, then there 
may be a high probability that there was one or more errors 
in the read, for instance, an error that the sequencer made. 
In Such an instance, an editing function, Such as a one 
change editing process, e.g., an SNP editing process, can be 
performed on each seed, such as where a no match outcome 
was returned. For example, at position X, a one change edit 
function may instruct that the designated nucleotide be 
substituted for one of the other 3 nucleotides and it is 
determined whether a hit, e.g., a match, is obtained by 
making that change, e.g., a SNP Substitution. This one 
change editing may be performed in the same manner on 
every position in the seed and/or on every seed of the read, 
e.g., Substituting each alternative base for each position in 
the seed. Additionally, where one change is made in one 
seed, the effects that change would have on every other 
overlapping seed may be determined in view of that one 
change. 

Such editing may also be performed for inserts, such as 
where one of the four nucleotides is added at a given insert 
position, X, and it is determined if a hit was obtained by 
making the substitution. This may be done for all four 
nucleotides and/or for all positions (X, X-1, X-2, X-3, etc.) 
in the seed and/or all the seeds in the reads. Such editing may 
also be performed for deletions, such as where one of the 
four nucleotides is deleted at a given position, X, in the seed, 
and it is determined if a hit was obtained by making the 
deletion. This may then be repeated for all positions X-1, 
X+2, X-3, etc. Such editing, however, can result in a lot of 
extra processing work and time, Such as by requiring a 
multiplicity of additional lookups. Such as 2, or 3, or 4, or 5. 
or 10, or 50, or 100, or 200, etc. Nevertheless, such extra 
processing and time may be useful if by Such editing an 
actual hit can be determined, e.g., a match made, where 
before there was no match. In such an instance, it can then 
typically be determined that an error was made and further 
that it was corrected, thereby salvaging the read. 

Additionally, a further heuristic may be employed so as to 
determine whether an editing function should be performed 
or not, whereby the algorithm performs a calculation to 
determine the probability that a hit will be obtained if such 
editing were to be performed. If a certain threshold prob 
ability is met, such as 85% likelihood, then such seed chain 
editing may be performed. For instance, the system can 
generate various statistics on the seed chains, such as 
calculating how many high frequency hits are present and/or 
how many seed chains contain high frequency hits, and 
thereby determine if seed chain editing is likely to make a 
difference in determining matches. For example, if it is 
determined that there are a large proportion of high fre 
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quency hits, then, in Such an instance, seed chain editing 
may be skipped because it is unlikely to make various of the 
sequences unique enough to give a hit within a reasonable 
number of hash table look ups, such as 100 or fewer, 50 or 
fewer, 40 or fewer, 30 or fewer, 20 or fewer, or 10 or fewer. 
Such statistics can be reviewed and it may then be deter 
mined whether to do seed editing or not. For instance, if the 
statistics show that for any one read, if half the positions 
show no match, and the others show high frequency 
matches, then it is probably worth doing seed editing, 
because where no matches are returned, there is probably an 
error, but if a lot of high frequency matches are returned it 
may simply not be worth performing seed editing. 
The outcome from performing one or more of these 

mapping, filtering, and/or editing functions is a list of reads 
which includes for each read a list of all the possible 
locations to where the read may matchup with the reference 
genome. Hence, a mapping function may be performed so as 
to quickly determine where the reads of the FASTQ file 
obtained from the sequencer map to the reference genome, 
e.g., to where in the whole genome the various reads map. 
However, if there is an error in any of the reads or a genetic 
variation, you may not get an exact match to the reference 
and/or there may be several places one or more reads appear 
to match. It, therefore, must be determined where the various 
reads actually align with respect to the genome as a whole. 

Accordingly, after mapping and/or filtering and/or edit 
ing, the location positions for a large number of reads have 
been determined, where for some of the individual reads a 
multiplicity of location positions have been determined, and 
it now needs to be determined which out of all the possible 
locations is in fact the true or most likely location to which 
the various reads align. Such aligning may be performed by 
one or more algorithms, such as a dynamic programming 
algorithm that matches the mapped reads to the reference 
genome and runs an alignment function thereon. 
An exemplary aligning function compares one or more, 

e.g., all of the reads, to the reference. Such as by placing 
them in a graphical relation to one another, e.g., Such as in 
a table, e.g., a virtual array or matrix, where the sequence of 
one of the reference genome or the mapped reads is placed 
on one dimension or axis, e.g., the horizontal axis, and the 
other is placed on the opposed dimensions or axis, such as 
the vertical axis. A conceptual scoring wave front is then 
passed over the array So as to determine the alignment of the 
reads with the reference genome, such as by computing 
alignment scores for each cell in the matrix. 
The scoring wave front represents one or more, e.g., all, 

the cells of the matrix, or a portion of those cells, which may 
be scored independently and/or simultaneously according to 
the rules of dynamic programming applicable in the align 
ment algorithm, such as Smith-Waterman, and/or Needle 
man-Wunsch, and/or related algorithms. For example, tak 
ing the origin of the matrix (corresponding to the beginning 
of the read and/or the beginning of a reference window of 
the conceptual scoring wave front) to be at the top-left 
corner, first only the top-left cell at coordinates (0,0) of the 
matrix may be scored, e.g., a 1-cell wavefront; next, the two 
cells to the right and below at coordinates (0,1) and (1,0) 
may be scored, e.g., a 2-cell wave front; next the three cells 
at (0.2). (1,1), and (2,0) may be scored, e.g., a 3-cell wave 
front. These exemplary wave fronts may then extend diago 
nally in Straight lines from bottom-left to top-right, and the 
motion of the wavefront from step to step is diagonally from 
top-left to bottom-right through the matrix. Alignment 
scores may be computed sequentially or in other orders. Such 
as by computing all the scores in the top row from left to 
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right, followed by all the scores in the next row from left to 
right, etc. In this manner the diagonally Sweeping diagonal 
wave front represents an optimal sequence of batches of 
scores computed simultaneously or in parallel in a series of 
wave front steps. 

For instance, in one embodiment, a window of the refer 
ence genome containing the segment to which a read was 
mapped is placed on the horizontal axis, and the read is 
positioned on the vertical axis. In a manner Such as this an 
array or matrix is generated, e.g., a virtual matrix, whereby 
the nucleotide at each position in the read may be compared 
with the nucleotide at each position in the reference window. 
As the wave front passes over the array, all potential ways 
of aligning the read to the reference window are considered, 
including if changes to one sequence would be required to 
make the read match the reference sequence, such as by 
changing one or more nucleotides of the read to other 
nucleotides, or inserting one or more new nucleotides into 
one sequence, or deleting one or more nucleotides from one 
Sequence. 
An alignment score, representing the extent of the 

changes that would be required to be made to achieve an 
exact alignment, is generated, wherein this score and/or 
other associated data may be stored in the given cells of the 
array. Each cell of the array corresponds to the possibility 
that the nucleotide at its position on the read axis aligns to 
the nucleotide at its position on the reference axis, and the 
score generated for each cell represents the partial alignment 
terminating with the cell's positions in the read and the 
reference window. The highest score generated in any cell 
represents the best overall alignment of the read to the 
reference window. In various instances, the alignment may 
be global, where the entire read must be aligned to some 
portion of the reference window, such as using a Needle 
man-Wunsch or similar algorithm; or in other instances, the 
alignment may be local, where only a portion of the read 
may be aligned to a portion of the reference window, Such 
as by using a Smith-Waterman or similar algorithm. 
The size of the reference window may be any suitable 

size. For instance, since a typical read may be from about 
100 to about 1,000 nucleotides long, the length of the 
reference window accordingly, in some instances, may be 
from about 100 to 1,000 nucleotides long or longer. How 
ever, in Some instances, the length of the reads may be 
greater, and/or the length of the reference window can be 
greater such as about 10,000, 25,000, 50,000, 75,000, 100, 
000, 200,000 nucleotides long or more. It may be advanta 
geous for the reference window to be padded somewhat 
longer than the read, such as including 32 or 64 or 128 or 
200 or even 500 extra nucleotides in the reference window 
beyond the extremes of the reference genome segment to 
which the read was mapped. Such as to permit insertions 
and/or deletions near the ends of the read to be fully 
evaluated. For instance, if only a portion of the read was 
mapped to a segment of the reference, extra padding may be 
applied to the reference window corresponding to the 
unmapped portions of the read, or longer by Some factor, 
such as 10% or 15% or 20% or 25% or even 50% or more, 
So as to allow the unmapped portions of the read space to 
fully align to the reference window. In some instances, 
however, the length of the reference window may be 
selected to be shorter than the length of the reads, such as 
where a long portion of the read is not mapped to the 
reference, such as more or less than 1000 nucleotides at one 
end of the read, such as in order to focus the alignment on 
the mapped portion. 
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The alignment wave front may be of unlimited length, or 

limited to any suitable fixed length, or of variable length. For 
instance, all cells along the entire diagonal line of each wave 
front step extending fully from one axis to the other axis may 
be scored. Alternatively, a limited length, such as 64 cells 
wide, may be scored on each wave front step. Such as by 
tracing a diagonally 64-cell wide band of scored cells 
through the matrix, and leaving cells outside of this band 
unscored. In some instances, it may be unnecessary to 
calculate scores far from a band around the true alignment 
path, and Substantial work may be saved by computing 
scores only in a limited bandwidth, using a fixed length 
scoring wave front, as herein described. 

Accordingly, in various instances, an alignment function 
may be performed, such as on the data obtained from the 
mapping module. Hence, in various instances, an alignment 
function may form a module. Such as an alignment module, 
that may form part of a system, e.g., a pipeline, that is used, 
Such as in addition with a mapping module, in a process for 
determining the actual entire genomic sequence, or a portion 
thereof, of an individual. For instance, the output returned 
from the performance of the mapping function, Such as from 
a mapping module, e.g., the list of possibilities as to where 
one or more or all of the reads maps to one or more positions 
in one or more reference genomes, may be employed by the 
alignment function so as to determine the actual sequence 
alignment of the subject’s sequenced DNA. 

Such an alignment function may at times be useful 
because, as described above, often times, for a variety of 
different reasons, the sequenced reads do not always match 
exactly to the reference genome. For instance, there may be 
an SNP (single nucleotide polymorphism) in one or more of 
the reads, e.g., a Substitution of one nucleotide for another at 
a single position; there may be an “indel.” insertion or 
deletion of one or more bases along one or more of the read 
sequences, which insertion or deletion is not present in the 
reference genome; and/or there may be a sequencing error 
(e.g., errors in sample prep and/or sequencer read and/or 
sequencer output, etc.) causing one or more of these appar 
ent variations. Accordingly, when a read varies from the 
reference, such as by an SNP or indel, this may be because 
the reference differs from the true DNA sequence sampled, 
or because the read differs from the true DNA sequence 
sampled. The problem is to figure out how to correctly align 
the reads to the reference genome given the fact that in all 
likelihood the two sequences are going to vary from one 
another in a multiplicity of different ways. 

Accordingly, in various instances, the input into an align 
ment function, Such as from a mapping function, such as a 
prefix/suffix tree, or a Burrows/Wheeler transform, or a hash 
table and/or hash function, may be a list of possibilities as 
to where one or more reads may match to one or more 
positions of one or more reference sequences. For instance, 
for any given read, it may match any number of positions in 
the reference genome. Such as at 1 location or 16, or 32, or 
64, or 100, or 500, or 1,000 or more locations where a given 
read maps to in the genome. However, any individual read 
was derived, e.g., sequenced, from only one specific portion 
of the genome. Hence, in order to find the true location from 
where a given particular read was derived, an alignment 
function may be performed, e.g., a Smith-Waterman gapped 
alignment, a Needleman-Wunsch alignment, etc., so as to 
determine where in the genome one or more of the reads was 
actually derived. Such as by comparing all of the possible 
locations where a match occurs and determining which of all 
the possibilities is the most likely location in the genome 
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from which the read was sequenced, on the basis of which 
locations alignment score is greatest. 
As indicated, typically, an algorithm is used to perform 

Such an alignment function. For example, a Smith-Water 
man and/or a Needleman-Wunsch alignment algorithm may 
be employed to align two or more sequences against one 
another. In this instance, they may be employed in a manner 
so as to determine the probabilities that for any given 
position where the read maps to the reference genome that 
the mapping is in fact the position from where the read 
originated. Typically these algorithms are configured so as to 
be performed by Software, however, in various instances, 
Such as herein presented, one or more of these algorithms 
can be configured so as to be executed in hardware, as 
described in greater detail herein below. 

In particular, the alignment function operates, at least in 
part, to align one or more, e.g., all, of the reads to the 
reference genome despite the presence of one or more 
portions of mismatches, e.g., SNPs, insertions, deletions, 
structural artifacts, etc. So as to determine where the reads 
are likely to fit in the genome correctly. For instance, the one 
or more reads are compared against the reference genome, 
and the best possible fit for the read against the genome is 
determined, while accounting for Substitutions and/or indels 
and/or structural variants. However, to better determine 
which of the modified versions of the read best fits against 
the reference genome, the proposed changes must be 
accounted for, and as such a scoring function may also be 
performed. 

For instance, a scoring function may be performed, e.g., 
as part of an overall alignment function, whereby as the 
alignment module performs its function and introduces one 
or more changes into a sequence being compared to another, 
e.g., so as to achieve a better or best fit between the two, for 
each change that is made so as to achieve the better 
alignment, a number is detracted from a starting score, e.g., 
either a perfect score, or a Zero starting score, in a manner 
Such that as the alignment is performed the score for the 
alignment is also determined. Such as where matches are 
detected the score is increased, and for each change intro 
duced a penalty is incurred, and thus, the best fit for the 
possible alignments can be determined, for example, by 
figuring out which of all the possible modified reads fits to 
the genome with the highest score. Accordingly, in various 
instances, the alignment function may be configured to 
determine the best combination of changes that need to be 
made to the read(s) to achieve the highest scoring alignment, 
which alignment may then be determined to be the correct 
or most likely alignment. 

In view of the above, there are, therefore, at least two 
goals that may be achieved from performing an alignment 
function. One is a report of the best alignment, including 
position in the reference genome and a description of what 
changes are necessary to make the read match the reference 
segment at that position, and the other is the alignment 
quality score. For instance, in various instances, the output 
from a the alignment module may be a Compact Idiosyn 
cratic Gapped Alignment Report, e.g., a CIGAR String, 
wherein the CIGAR string output is a report detailing all the 
changes that were made to the reads so as to achieve their 
best fit alignment, e.g., detailed alignment instructions indi 
cating how the query actually aligns with the reference. Such 
a CIGAR string readout may be useful in further stages of 
processing so as to better determine that for the given 
Subject’s genomic nucleotide sequence, the predicted varia 
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tions as compared against a reference genome are in fact true 
variations, and not just due to machine, Software, or human 
eO. 

As set forth above, in various embodiments, alignment is 
typically performed in a sequential manner, wherein the 
algorithm receives read sequence data, Such as from a 
mapping module, pertaining to a read and one or more 
possible locations where the read may potentially map to the 
one or more reference genomes, and further receives 
genomic sequence data, Such as from one or more memories, 
pertaining to the one or more positions in the one or more 
reference genomes to which the read may map. In particular, 
in various embodiments, the mapping module processes the 
reads, such as from a FASTQ file, and maps each of them to 
one or more positions in the reference genome to where they 
may possibly align. The aligner then takes these predicted 
positions and uses them to align the reads to the reference 
genome. Such as by building a virtual array by which the 
reads can be compared with the reference genome. 

In performing this function the aligner evaluates each 
mapped position for each individual read and particularly 
evaluates those reads that map to multiple possible locations 
in the reference genome and scores the possibility that each 
position is the correct position. It then compares the best 
scores, e.g., the two best scores, and makes a decision as to 
where the particular read actually aligns. For instance, in 
comparing the first and second best alignment scores, the 
aligner looks at the difference between the scores, and if the 
difference between them is great, then the confidence score 
that the one with the bigger score is correct will be high. 
However, where the difference between them is small, e.g., 
Zero, then the confidence score in being able to tell from 
which of the two positions the read actually is derived is low, 
and more processing may be useful in being able to clearly 
determine the true location in the reference genome from 
where the read is derived. Hence, the aligner in part is 
looking for the biggest difference between the first and 
second best confidence scores in making its call that a given 
read maps to a given location in the reference genome. 
Ideally, the score of the best possible choice of alignment is 
significantly greater than the score for the second best 
alignment for that sequence. 

There are many different ways an alignment scoring 
methodology may be implemented, for instance, each cell of 
the array may be scored or a Sub-portion of cells may be 
scored, such as in accordance with the methods disclosed 
herein. Typically, each alignment match, corresponding to a 
diagonal step in the alignment matrix, contributes a positive 
score, Such as +1, if the corresponding read and reference 
nucleotides match; and a negative score, Such as -4, if the 
two nucleotides mismatch. Further, each deletion from the 
reference, corresponding to a horizontal step in the align 
ment matrix, contributes a negative score, such as -7. and 
each insertion into the reference, corresponding to a vertical 
step in the alignment matrix, contributes a negative score, 
Such as -7. 

In various instances, scoring parameters for nucleotide 
matches, nucleotide mismatches, insertions, and deletions 
may have any various positive or negative or Zero values. In 
various instances, these scoring parameters may be modified 
based on available information. For instance, in certain 
instances, alignment gaps (insertions or deletions) are penal 
ized by an affine function of the gap length, for example -7 
for the first deleted (resp. inserted) nucleotide, but only -1 
for each additional deleted (resp. inserted) nucleotide in 
continuous sequence. In various implementations, afline gap 
penalties may be achieved by splitting gap (insertion or 
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deletion) penalties into two components, such as a gap open 
penalty, e.g. -6, applied to the first step in a gap; and a gap 
extend penalty, e.g. -1, applied to every or further steps in 
the gap. Afline gap penalties may yield more accurate 
alignments, such as by letting alignments containing long 
insertions or deletions achieve appropriately high scores. 
Further, each lateral move may have the same or different 
costs, such as the same cost per step, and/or where gaps 
occur, Such gaps can come at a higher or lower costs. Such 
that the cost for lateral movements of the aligner may be less 
expensive than the costs for gaps. Accordingly, in various 
embodiments, affine gap scoring may be implemented, how 
ever, this can be expensive in Software and/or hardware, 
because it typically requires a plurality, e.g., 3 scores, for 
each cell to be scored, and hence, in various embodiments 
afline gap scoring is not implemented. 

In various instances, scoring parameters may also be 
sensitive to “base quality scores' corresponding to nucleo 
tides in the read. Some sequenced DNA read data, in formats 
Such as FASTQ, may include a base quality score associated 
with each nucleotide, indicating an estimated probability 
that the nucleotide is incorrect, e.g. due to a sequencing 
error. In some read data, base quality scores may indicate the 
likelihood that an insertion and/or deletion sequencing error 
is present in or adjacent to each position, or additional 
quality scores may provide this information separately. 
More accurate alignments, therefore, may be achieved by 
making scoring parameters, including any or all of nucleo 
tide match scores, nucleotide mismatch scores, gap (inser 
tion and/or deletion) penalties, gap open penalties, and/or 
gap extend penalties, vary according to a base quality score 
associated with the current read nucleotide or position. For 
example, score bonuses and/or penalties could be made 
Smaller when a base quality score indicates a high probabil 
ity a sequencing or other error being present. Base quality 
sensitive scoring may be implemented, for example, using a 
fixed or configurable lookup-table, accessed using a base 
quality score, which returns corresponding scoring param 
eters. 

In a hardware implementation in an integrated circuit, 
such as an FPGA or ASIC, a scoring wave front may be 
implemented as a linear array of scoring cells, such as 16 
cells, or 32 cells, or 64 cells, or 128 cells or the like. Each 
of the scoring cells may be built of digital logic elements in 
a wired configuration to compute alignment scores. Hence, 
for each step of the wave front, for instance, each clock 
cycle, or some other fixed or variable unit of time, each of 
the scoring cells, or a portion of the cells, computes the score 
or scores required for a new cell in the virtual alignment 
matrix. Notionally, the various scoring cells are considered 
to be in various positions in the alignment matrix, corre 
sponding to a scoring wave front as discussed herein, e.g., 
along a straight line extending from bottom-left to top-right 
in the matrix. As is well understood in the field of digital 
logic design, the physical scoring cells and their comprised 
digital logic need not be physically arranged in like manner 
on the integrated circuit. 

Accordingly, as the wave front takes steps to Sweep 
through the virtual alignment matrix, the notional positions 
of the scoring cells correspondingly update each cell, for 
example, notionally “moving a step to the right, or for 
example, a step downward in the alignment matrix. All 
scoring cells make the same relative notional movement, 
keeping the diagonal wave front arrangement intact. Each 
time the wave front moves to a new position, e.g., with a 
vertical downward step, or a horizontal rightward step in the 
matrix, the scoring cells arrive in new notional positions, 
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and compute alignment scores for the virtual alignment 
matrix cells they have entered. 

In Such an implementation, neighboring scoring cells in 
the linear array are coupled to communicate query (read) 
nucleotides, reference nucleotides, and previously calcu 
lated alignment scores. The nucleotides of the reference 
window may be fed sequentially into one end of the wave 
front, e.g., the top-right scoring cell in the linear array, and 
may shift from there sequentially down the length of the 
wave front, so that at any given time, a segment of reference 
nucleotides equal in length to the number of scoring cells is 
present within the cells, one successive nucleotide in each 
Successive scoring cell. 

Accordingly, each time the wave front steps horizontally, 
another reference nucleotide is fed into the top-right cell, 
and other reference nucleotides shift down-left through the 
wave front. This shifting of reference nucleotides may be the 
underlying reality of the notional movement of the wave 
front of scoring cells rightward through the alignment 
matrix. Hence, the nucleotides of the read may be fed 
sequentially into the opposite end of the wave front, e.g. the 
bottom-left scoring cell in the linear array, and shift from 
there sequentially up the length of the wave front, so that at 
any given time, a segment of query nucleotides equal in 
length to the number of scoring cells is present within the 
cells, one Successive nucleotide in each Successive scoring 
cell. 

Likewise, each time the wave front steps vertically, 
another query nucleotide is fed into the bottom-left cell, and 
other query nucleotides shift up-right through the wave 
front. This shifting of query nucleotides is the underlying 
reality of the notional movement of the wavefront of scoring 
cells downward through the alignment matrix. Accordingly, 
by commanding a shift of reference nucleotides, the wave 
front may be moved a step horizontally, and by commanding 
a shift of query nucleotides, the wave front may be moved 
a step vertically. Accordingly, to produce generally diagonal 
wave front movement, such as to follow a typical alignment 
of query and reference sequences without insertions or 
deletions, wave front steps may be commanded in alternat 
ing vertical and horizontal directions. 

Accordingly, neighboring scoring cells in the linear array 
may be coupled to communicate previously calculated align 
ment scores. In various alignment scoring algorithms. Such 
as a Smith-Waterman or Needleman-Wunsch, or such vari 
ant, the alignment score(s) in each cell of the virtual align 
ment matrix may be calculated using previously calculated 
scores in other cells of the matrix, such as the three cells 
positioned immediately to the left of the current cell, above 
the current cell, and diagonally up-left of the current cell. 
When a scoring cell calculates new score(s) for another 
matrix position it has entered, it must retrieve Such previ 
ously calculated scores corresponding to Such other matrix 
positions. These previously calculated scores may be 
obtained from storage of previously calculated scores within 
the same cell, and/or from storage of previously calculated 
scores in the one or two neighboring scoring cells in the 
linear array. This is because the three contributing score 
positions in the virtual alignment matrix (immediately left, 
above, and diagonally up-left) would have been scored 
either by the current scoring cell, or by one of its neighbor 
ing scoring cells in the linear array. 

For instance, the cell immediately to the left in the matrix 
would have been scored by the current scoring cell, if the 
most recent wave front step was horizontal (rightward), or 
would have been scored by the neighboring cell down-left in 
the linear array, if the most recent wave front step was 
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vertical (downward). Similarly, the cell immediately above 
in the matrix would have been scored by the current scoring 
cell, if the most recent wave front step was vertical (down 
ward), or would have been scored by the neighboring cell 
up-right in the linear array, if the most recent wavefront step 
was horizontal (rightward). Similarly, the cell diagonally 
up-left in the matrix would have been scored by the current 
scoring cell, if the most recent two wave front steps were in 
different directions, e.g., down then right, or right then 
down, or would have been scored by the neighboring cell 
up-right in the linear array, if the most recent two wave front 
steps were both horizontal (rightward), or would have been 
scored by the neighboring cell down-left in the linear array, 
if the most recent two wave front steps were both vertical 
(downward). 

Accordingly, by considering information on the last one 
or two wave front step directions, a scoring cell may select 
the appropriate previously calculated scores, accessing them 
within itself, and/or within neighboring scoring cells, ulti 
lizing the coupling between neighboring cells. In a variation, 
scoring cells at the two ends of the wavefront may have their 
outward score inputs hard-wired to invalid, or Zero, or 
minimum-value scores, so that they will not affect new score 
calculations in these extreme cells. 
A wave front being thus implemented in a linear array of 

scoring cells, with Such coupling for shifting reference and 
query nucleotides through the array in opposing directions, 
in order to notionally move the wave front in vertical and 
horizontal steps, and coupling for accessing scores previ 
ously computed by neighboring cells in order to compute 
alignment score(s) in new virtual matrix cell positions 
entered by the wave front, it is accordingly possible to score 
a band of cells in the virtual matrix, the width of the wave 
front, such as by commanding Successive steps of the wave 
front to sweep it through the matrix. For a new read and 
reference window to be aligned, therefore, the wave front 
may begin positioned inside the scoring matrix, or, advan 
tageously, may gradually enter the scoring matrix from 
outside, beginning e.g., to the left, or above, or diagonally 
left and above the top-left corner of the matrix. 

For instance, the wave front may begin with its top-left 
scoring cell positioned just left of the top-left cell of the 
virtual matrix, and the wave front may then Sweep rightward 
into the matrix by a series of horizontal steps, scoring a 
horizontal band of cells in the top-left region of the matrix. 
When the wave front reaches a predicted alignment rela 
tionship between the reference and query, or when matching 
is detected from increasing alignment scores, the wave front 
may begin to Sweep diagonally down-right, by alternating 
vertical and horizontal steps, scoring a diagonal band of cells 
through the middle of the matrix. When the bottom-left 
wave front scoring cell reaches the bottom of the alignment 
matrix, the wave front may begin Sweeping rightward again 
by Successive horizontal steps, until some or all wave front 
cells Sweep out of the boundaries of the alignment matrix, 
scoring a horizontal band of cells in the bottom-right region 
of the matrix. 

In a variation, increased efficiency may be obtained from 
the alignment wave front by sharing its scoring cells 
between two Successive alignment operations. A next align 
ment matrix having been established in advance, as the 
top-right portion of the wave front exits the bottom-right 
region of the current alignment matrix, it may enter, imme 
diately, or after crossing a minimum gap Such as one cell or 
three cells, the top-right region of the next alignment matrix. 
In this manner, the horizontal wave front sweep out of one 
alignment matrix can be the same motion as the horizontal 
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wave front Sweep into the next alignment matrix. Doing this 
may include the reference and query bases of the next 
alignment to be fed into those scoring cells crossing into the 
next alignment matrix, and can reduce the average time 
consumed per alignment by the time to execute a number of 
wave front steps almost equal to the number of alignment 
cells in the wave front, e.g., Such as 64 or 63 or 61 steps, 
which may take e.g. 64 or 63 or 61 clock cycles. 
The number of Scoring cells in an implementation of an 

alignment wave front may be selected to balance various 
factors, including alignment accuracy, maximum insertion 
and deletion length, area, cost, and power consumption of 
the digital logic, clock frequency of the aligner logic, and 
performance of the overall integrated circuit. A long wave 
front is desirable for good alignment accuracy, especially 
because a wave front of N cells can align across indels 
approximately N nucleotides long, or slightly shorter. But a 
longer wave front costs more logic, which consumes more 
power. Further, a longer wave front can increase wire 
routing complexity and delays on the integrated circuit, 
leading to lower maximum clock frequencies, reducing net 
aligner performance. Further still, if an integrated circuit has 
a limited size or power consumption, using a longer wave 
front may require less logic to be implemented on the IC 
elsewhere. Such as replicating fewer entire wave fronts, or 
other aligner or mapper logic components, this decreasing 
net performance of the IC. In one particular embodiment, 64 
scoring cells in the wave front may give an acceptable 
balance of these factors. 

Accordingly, where the wave front is X, e.g., 64 scoring 
cells wide, the scored band in the alignment matrix will 
likewise be 64 cells wide (measured diagonally). The matrix 
cells outside of this band do not necessarily need to be 
processed nor their scores calculated, provided that the 
optimal (best-scoring) alignment path through the matrix 
stays within the scored band. In a relatively small matrix, 
therefore, used to align relatively short reads, e.g., 100 
nucleotide or 250 nucleotide reads, this may be a safe 
assumption, Such as if the wave front Sweeps a perfect 
diagonal along the predicted aligned position of the read. 

However, in Some instances, such as in a large alignment 
matrix used to align long reads, e.g., 1000 or 10,000 or 
100,000 nucleotides, there may be a substantial risk of 
accumulated indels causing the true alignment to deviate 
from a perfect diagonal, Sufficiently far in aggregate that it 
may escape the scored band. In Such instances, it may be 
useful to steer the wave front so that the highest set of scores 
will be near the center of the wave front. Consequently, as 
the wave front performs its sweep, if the highest scores start 
to move one way or the other, e.g., left to right, the wave 
front is shifted over to track this move. For instance, if the 
highest scores are observed in scoring cells Substantially 
up-right from the center of the wave front, the wave front 
may be steered some distance straight rightward by Succes 
sive horizontal steps, until the highest scores return near the 
center of the wave front. 

Accordingly, an automatic steering mechanism may be 
implemented in the wave front control logic, to determine a 
steering target position within the length of the wave front, 
based on current and past scores observed in the wave front 
scoring cells, and to steer the wave front toward this target 
if it is off-center. More particularly, the position of the 
maximum score in the most recently scored wave front 
position may be used as a steering target. This is an effective 
method in some instances. In some instances, however, the 
maximum score position may be a poor steering target. For 
instance, with some combinations of alignment scoring 
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parameters, when a long indel commences, and scores 
accordingly begin to decline, a pattern of two higher-score 
peaks with a lower-score valley between them can form 
along the wavefront, the two peaks drifting apart as the indel 
continues. 

Because it cannot be easily determined whether the event 
in progress is an insertion or a deletion, it is important for the 
wave front to track diagonally until Successful matching 
commences again, either some distance to the right for a 
deletion, or some distance downward for an insertion. But if 10 
two spreading score peaks form, one of them is likely to be 
slightly higher than the other, and could pull the automatic 
steering in that direction, causing the wave front to lose the 
alignment if the actual indel was in the other direction. A 
more robust method, therefore, may be to subtract a delta 
value from the maximum observed wave front score to 
determine a threshold score, identify the two extreme scor 
ing cells at least equal to this threshold score, and use the 
midpoint between these extreme cells as the steering target. 
This will tend to guide diagonally between a two-peak score 
pattern. Other steering criteria can readily be applied, how 
ever, which serve to keep higher scores near the center of the 
wave front. If there is a delayed reaction between obtaining 
scores from wave front scoring cells and making a corre 
sponding steering decision, hysteresis can advantageously 
be applied to compensate for steering decisions made in the 
intervening time, to avoid oscillating patterns of automatic 
wave front steering. 
One or more of Such alignment procedures may be 

performed by any suitable alignment algorithm, Such as a 
Needleman-Wunsch alignment algorithm and/or a Smith 
Waterman alignment algorithm that may have been modified 
to accommodate the functionality herein described. In gen 
eral both of these algorithms and those like them basically 
perform, in some instances, in a similar manner. For 
instance, as set forth above, these alignment algorithms 
typically build the virtual array in a similar manner Such 
that, in various instances, the horizontal top boundary may 
be configured to represent the genomic reference sequence, 
which may be laid out across the top row of the array 
according to its base pair composition. Likewise, the vertical 
boundary may be configured to represent the sequenced and 
mapped query sequences that have been positioned in order, 
downwards along the first column, Such that their nucleotide 
sequence order is generally matched to the nucleotide 
sequence of the reference to which they mapped. The 
intervening cells may then be populated with scores as to the 
probability that the relevant base of the query at a given 
position, is positioned at that location relative to the refer 
ence. In performing this function, a Swath may be moved 
diagonally across the matrix populating scores within the 
intervening cells and the probability for each base of the 
query being in the indicated position may be determined. 

With respect to a Needleman-Wunsch alignment function, 
which generates optimal global (or semi-global) alignments, 
aligning the entire read sequence to some segment of the 
reference genome, the wave front Steering may be config 
ured such that it typically sweeps all the way from the top 
edge of the alignment matrix to the bottom edge. When the 
wave front Sweep is complete, the maximum score on the 
bottom edge of the alignment matrix (corresponding to the 
end of the read) is selected, and the alignment is back-traced 
to a cell on the top edge of the matrix (corresponding to the 
beginning of the read). In various of the instances disclosed 
herein, the reads can be any length long, can be any size, and 
there need not be extensive read parameters as to how the 
alignment is performed, e.g., in various instances, the read 
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can be as long as a chromosome. In Such an instance, 
however, the memory size and chromosome length may be 
limiting factor. 

With respect to a Smith-Waterman algorithm, which gen 
erates optimal local alignments, aligning the entire read 
sequence or part of the read sequence to Some segment of the 
reference genome, this algorithm may be configured for 
finding the best scoring possible based on a full or partial 
alignment of the read. Hence, in various instances, the wave 
front-scored band may not extend to the top and/or bottom 
edges of the alignment matrix, Such as if a very long read 
had only seeds in its middle mapping to the reference 
genome, but commonly the wave front may still score from 
top to bottom of the matrix. Local alignment is typically 
achieved by two adjustments. First, alignment scores are 
never allowed to fall below zero (or some other floor), and 
if a cell score otherwise calculated would be negative, a zero 
score is Substituted, representing the start of a new align 
ment. Second, the maximum alignment score produced in 
any cell in the matrix, not necessarily along the bottom edge, 
is used as the terminus of the alignment. The alignment is 
backtraced from this maximum score up and left through the 
matrix to a Zero score, which is used as the start position of 
the local alignment, even if it is not on the top row of the 
matrix. 

In view of the above, there are several different possible 
pathways through the virtual array. In various embodiments, 
the wave front starts from the upper left corner of the virtual 
array, and moves downwards towards identifiers of the 
maximum score. For instance, the results of all possible 
aligns can be gathered, processed, correlated, and scored to 
determine the maximum score. When the end of a boundary 
or the end of the array has been reached and/or a compu 
tation leading to the highest score for all of the processed 
cells is determined (e.g., the overall highest score identified) 
then a backtrace may be performed so as to find the pathway 
that was taken to achieve that highest score. 

For example, a pathway that leads to a predicted maxi 
mum score may be identified, and once identified an audit 
may be performed so as to determine how that maximum 
score was derived, for instance, by moving backwards 
following the best score alignment arrows retracing the 
pathway that led to achieving the identified maximum score, 
Such as calculated by the wave front scoring cells. This 
backwards reconstruction or backtrace involves starting 
from a determined maximum score, and working backward 
through the previous cells navigating the path of cells having 
the scores that led to achieving the maximum score all the 
way up the table and back to an initial boundary, such as the 
beginning of the array, or a Zero score in the case of local 
alignment. 

During a backtrace, having reached a particular cell in the 
alignment matrix, the next backtrace step is to the neigh 
boring cell, immediately leftward, or above, or diagonally 
up-left, which contributed the best score that was selected to 
construct the score in the current cell. In this manner, the 
evolution of the maximum score may be determined, 
thereby figuring out how the maximum score was achieved. 
The backtrace may end at a corner, or an edge, or a 
boundary, or may end at a Zero score. Such as in the upper 
left hand corner of the array. Accordingly, it is such a back 
trace that identifies the proper alignment and thereby pro 
duces the CIGAR strand readout, e.g., 3M, 2D, 8M. 4I, 16M, 
etc., that represents how the sample genomic sequence 
derived from the individual, or a portion thereof, matches to, 
or otherwise aligns with, the genomic sequence of the 
reference DNA. 
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Accordingly, once it has been determined where each read 
is mapped, and further determined where each read is 
aligned, e.g., each relevant read has been given a position 
and a quality score reflecting the probability that the position 
is the correct alignment, such that the nucleotide sequence 
for the subject’s DNA is known, then the order of the various 
reads and/or genomic nucleic acid sequence of the Subject 
may be verified. Such as by performing a back trace function 
moving backwards up through the array so as to determine 
the identity of every nucleic acid in its proper order in the 
sample genomic sequence. Consequently, in Some aspects, 
the present disclosure is directed to a back trace function, 
Such as is part of an alignment module that performs both an 
alignment and a back trace function, such as a module that 
may be part of a pipeline of modules, such as a pipeline that 
is directed at taking raw sequence read data, Such as form a 
genomic sample form an individual, and mapping and/or 
aligning that data, which data may then be sorted. 

To facilitate the backtrace operation, it is useful to store a 
scoring vector for each scored cell in the alignment matrix, 
encoding the score-selection decision. For classical Smith 
Waterman and/or Needleman-Wunsch scoring with linear 
gap penalties, the scoring vector can encode four possibili 
ties, which may optionally be stored as a 2-bit integer from 
0 to 3, for example: 0 new alignment (null score selected): 
1=vertical alignment (score from the cell above selected, 
modified by gap penalty); 2 horizontal alignment (score 
from the cell to the left selected, modified by gap penalty): 
3-diagonal alignment (score from the cell up and left 
selected, modified by nucleotide match or mismatch score). 
Optionally, the computed score(s) for each scored matrix 
cell may also be stored (in addition to the maximum 
achieved alignment score which is standardly stored), but 
this is not generally necessary for backtrace, and can con 
Sume large amounts of memory. Performing backtrace then 
becomes a matter of following the scoring vectors; when the 
backtrace has reached a given cell in the matrix, the next 
backtrace step is determined by the stored scoring vector for 
that cell, e.g.: 0-terminate backtrace; 1 =backtrace upward; 
2=backtrace leftward; 3=backtrace diagonally up-left. 

Such scoring vectors may be stored in a two-dimensional 
table arranged according to the dimensions of the alignment 
matrix, wherein only entries corresponding to cells scored 
by the wave front are populated. Alternatively, to conserve 
memory, more easily record scoring vectors as they are 
generated, and more easily accommodate alignment matri 
ces of various sizes, scoring vectors may be stored in a table 
with each row sized to store scoring vectors from a single 
wave front of scoring cells, e.g. 128 bits to store 64 2-bit 
scoring vectors from a 64-cell wave front, and a number of 
rows equal to the maximum number of wave front steps in 
an alignment operation. 

Additionally, for this option, a record may be kept of the 
directions of the various wavefront steps, e.g., storing an 
extra, e.g., 129", bit in each table row, encoding e.g. 0 for 
vertical wavefront step preceding this wavefront position, 
and 1 for horizontal wavefront step preceding this wavefront 
position. This extra bit can be used during backtrace to keep 
track of which virtual scoring matrix positions the scoring 
vectors in each table row correspond to, so that the proper 
scoring vector can be retrieved after each Successive back 
trace step. When a backtrace step is vertical or horizontal, 
the next scoring vector should be retrieved from the previous 
table row, but when a backtrace step is diagonal, the next 
scoring vector should be retrieved from two rows previous, 
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because the wavefront had to take two steps to move from 
scoring any one cell to scoring the cell diagonally right 
down from it. 

In the case of afline gap scoring, scoring vector informa 
tion may be extended, e.g. to 4 bits per scored cell. In 
addition to the e.g. 2-bit score-choice direction indicator, 
two 1-bit flags may be added, a vertical extend flag, and a 
horizontal extend flag. According to the methods of afline 
gap scoring extensions to Smith-Waterman or Needleman 
Wunsch or similar alignment algorithms, for each cell, in 
addition to the primary alignment score representing the 
best-scoring alignment terminating in that cell, a vertical 
score should be generated, corresponding to the maximum 
alignment score reaching that cell with a final vertical step, 
and a horizontal score should be generated, corresponding 
to the maximum alignment score reaching that cell with a 
final horizontal step; and when computing any of the three 
scores, a vertical step into the cell may be computed either 
using the primary score from the cell above minus a gap 
open penalty, or using the vertical score from the cell above 
minus a gap-extend penalty, whichever is greater, and a 
horizontal step into the cell may be computed either using 
the primary score from the cell to the left minus a gap-open 
penalty, or using the horizontal score from the cell to the left 
minus a gap-extend penalty, whichever is greater. In cases 
where the vertical score minus a gap extend penalty is 
selected, the vertical extend flag in the scoring vector should 
be set, e.g. 1, and otherwise it should be unset, e.g. 0. In 
cases when the horizontal score minus a gap extend penalty 
is selected, the horizontal extend flag in the scoring vector 
should be set, e.g. 1, and otherwise it should be unset, e.g. 
'0'. During backtrace for affine gap scoring, any time 
backtrace takes a vertical step upward from a given cell, if 
that cell's scoring vector's vertical extend flag is set, the 
following backtrace step must also be vertical, regardless of 
the scoring vector for the cell above. Likewise, any time 
backtrace takes a horizontal step leftward from a given cell, 
if that cells scoring vector's horizontal extend flag is set, the 
following backtrace step must also be horizontal, regardless 
of the scoring vector for the cell to the left. 

Accordingly, Such a table of scoring vectors, e.g. 129 bits 
per row for 64 cells using linear gap scoring, or 257 bits per 
row for 64 cells using afline gap scoring, with some number 
NR of rows, is adequate to Support backtrace after conclud 
ing alignment scoring where the scoring wavefront took NR 
steps or fewer. For example, when aligning 300-nucleotide 
reads, the number of wavefront steps required may always 
be less than 1024, so the table may be 257x1024 bits, or 
approximately 32 kilobytes, which in many cases may be a 
reasonable local memory inside the IC. But if very long 
reads are to be aligned, e.g. 100,000 nucleotides, the 
memory requirements for scoring vectors may be quite 
large, e.g. 8 megabytes, which may be very costly to include 
as local memory inside the IC. For Such support, scoring 
vector information may be recorded to bulk memory outside 
the IC, e.g. DRAM, but then the bandwidth requirements, 
e.g. 257 bits per clock cycle per aligner module, may be 
excessive, which may bottleneck and dramatically reduce 
aligner performance. 

Accordingly, it is desirable to have a method for disposing 
of Scoring vectors before completing alignment, so their 
storage requirements can be kept bounded, e.g. to perform 
incremental backtraces, generating incremental partial 
CIGAR strings for example, from early portions of an 
alignment's scoring vector history, so that such early por 
tions of the scoring vectors may then be discarded. The 
challenge is that the backtrace is Supposed to begin in the 
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alignment's terminal, maximum scoring cell, which 
unknown until the alignment scoring completes, so any 
backtrace begun before alignment completes may begin 
from the wrong cell, not along the eventual final optimal 
alignment path. 

Accordingly, a method is given for performing incremen 
tal backtrace from partial alignment information, e.g. com 
prising partial scoring vector information for alignment 
matrix cells scored so far. From a currently completed 
alignment boundary, e.g., a particular scored wave front 
position, backtrace is initiated from all cell positions on the 
boundary. Such backtrace from all boundary cells may be 
performed sequentially, or advantageously, especially in a 
hardware implementation, all the backtraces may be per 
formed together. It is not necessary to extract alignment 
notations, e.g., CIGAR Strings, from these multiple back 
traces; only to determine what alignment matrix positions 
they pass through during the backtrace. In an implementa 
tion of simultaneous backtrace from a scoring boundary, a 
number of 1-bit registers may be utilized, corresponding to 
the number of alignment cells, initialized e.g., all to 1's, 
representing whether any of the backtraces pass through a 
corresponding position. For each step of simultaneous back 
trace, scoring vectors corresponding to all the current 1's in 
these registers, e.g. from one row of the scoring vector table, 
can be examined, to determine a next backtrace step corre 
sponding to each 1 in the registers, leading to a following 
position for each 1 in the registers, for the next simulta 
neous backtrace step. 

Importantly, it is easily possible for multiple '1's in the 
registers to merge into common positions, corresponding to 
multiple of the simultaneous backtraces merging together 
onto common backtrace paths. Once two or more of the 
simultaneous backtraces merge together, they remain 
merged indefinitely, because henceforth they will utilize 
scoring vector information from the same cell. It has been 
observed, empirically and for theoretical reasons, that with 
high probability, all of the simultaneous backtraces merge 
into a singular backtrace path, in a relatively small number 
of backtrace steps, which e.g. may be a small multiple, e.g. 
8, times the number of scoring cells in the wavefront. For 
example, with a 64-cell wavefront, with high probability, all 
backtraces from a given wavefront boundary merge into a 
single backtrace path within 512 backtrace steps. Alterna 
tively, it is also possible, and not uncommon, for all back 
traces to terminate within the number, e.g. 512, of backtrace 
steps. 

Accordingly, the multiple simultaneous backtraces may 
be performed from a scoring boundary, e.g. a scored wave 
front position, far enough back that they all either terminate 
or merge into a single backtrace path, e.g. in 512 backtrace 
steps or fewer. If they all merge together into a singular 
backtrace path, then from the location in the scoring matrix 
where they merge, or any distance further back along the 
singular backtrace path, an incremental backtrace from 
partial alignment information is possible. Further backtrace 
from the merge point, or any distance further back, is 
commenced, by normal singular backtrace methods, includ 
ing recording the corresponding alignment notation, e.g., a 
partial CIGAR String. This incremental backtrace, and e.g. 
partial CIGAR string, must be part of any possible final 
backtrace, and e.g. full CIGAR string, that would result after 
alignment completes, unless such final backtrace would 
terminate before reaching the scoring boundary where 
simultaneous backtrace began, because if it reaches the 
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scoring boundary, it must follow one of the simultaneous 
backtrace paths, and merge into the singular backtrace path, 
now incrementally extracted. 

Therefore, all scoring vectors for the matrix regions 
corresponding to the incrementally extracted backtrace, e.g., 
in all table rows for wave front positions preceding the start 
of the extracted singular backtrace, may be safely discarded. 
When the final backtrace is performed from a maximum 
scoring cell, if it terminates before reaching the scoring 
boundary (or alternatively, if it terminates before reaching 
the start of the extracted singular backtrace), the incremental 
alignment notation, e.g. partial CIGAR String, may be 
discarded. If the final backtrace continues to the start of the 
extracted singular backtrace, its alignment notation, e.g., 
CIGAR string, may then be grafted onto the incremental 
alignment notation, e.g., partial CIGAR String. 

Furthermore, in a very long alignment, the process of 
performing a simultaneous backtrace from a scoring bound 
ary, e.g., scored wave front position, until all backtraces 
terminate or merge, followed by a singular backtrace with 
alignment notation extraction, may be repeated multiple 
times, from various successive scoring boundaries. The 
incremental alignment notation, e.g. partial CIGAR String, 
from each Successive incremental backtrace may then be 
grafted onto the accumulated previous alignment notations, 
unless the new simultaneous backtrace or singular backtrace 
terminates early, in which case accumulated previous align 
ment notations may be discarded. The eventual final back 
trace likewise grafts its alignment notation onto the most 
recent accumulated alignment notations, for a complete 
backtrace description, e.g. CIGAR string. 

Accordingly, in this manner, the memory to store scoring 
vectors may be kept bounded, assuming simultaneous back 
traces always merge together in a bounded number of steps, 
e.g. 512 steps. In rare cases where simultaneous backtraces 
fail to merge or terminate in the bounded number of steps, 
various exceptional actions may be taken, including failing 
the current alignment, or repeating it with a higher bound or 
with no bound, perhaps by a different or traditional method, 
Such as storing all scoring vectors for the complete align 
ment, such as in external DRAM. In a variation, it may be 
reasonable to fail such an alignment, because it is extremely 
rare, and even rarer that such a failed alignment would have 
been a best-scoring alignment to be used in alignment 
reporting. 

In an optional variation, scoring vector storage may be 
divided, physically or logically, into a number of distinct 
blocks, e.g. 512 rows each, and the final row in each block 
may be used as a scoring boundary to commence a simul 
taneous backtrace. Optionally, a simultaneous backtrace 
may be required to terminate or merge within the single 
block, e.g. 512 steps. Optionally, if simultaneous backtraces 
merge in fewer steps, the merged backtrace may neverthe 
less be continued through the whole block, before com 
mencing an extraction of a singular backtrace in the previous 
block. Accordingly, after scoring vectors are fully written to 
block N, and begin writing to block N+1, a simultaneous 
backtrace may commence in block N, followed by a singular 
backtrace and alignment notation extraction in block N-1. If 
the speed of the simultaneous backtrace, the singular back 
trace, and alignment scoring are all similar or identical, and 
can be performed simultaneously, e.g., in parallel hardware 
in an IC, then the singular backtrace in block N-1 may be 
simultaneous with scoring vectors filling block N+2, and 
when block N+3 is to be filled, block N-1 may be released 
and recycled. 
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Thus, in Such an implementation, a minimum of 4 scoring 
vector blocks may be employed, and may be utilized cycli 
cally. Hence, the total scoring vector storage for an aligner 
module may be 4 blocks of 257x512 bits each, for example, 
or approximately 64 kilobytes. In a variation, if the current 
maximum alignment score corresponds to an earlier block 
than the current wavefront position, this block and the 
previous block may be preserved rather than recycled, so 
that a final backtrace may commence from this position if it 
remains the maximum score; having an extra 2 blocks to 
keep preserved in this manner brings the minimum, e.g., to 
6 blocks. In another variation, to Support overlapped align 
ments, the scoring wave front crossing gradually from one 
alignment matrix to the next as described above, additional 
blocks, e.g. 1 or 2 additional blocks, may be utilized, e.g., 8 
blocks total, e.g., approximately 128 kilobytes. Accordingly, 
if such a limited number of blocks, e.g., 4 blocks or 8 blocks, 
is used cyclically, alignment and backtrace of arbitrarily 
long reads is possible, e.g., 100,000 nucleotides, or an entire 
chromosome, without the use of external memory for scor 
ing vectors. 

It is to be understood, such as with reference to the above, 
that although a mapping function may in some instances 
have been described, such as with reference to a mapper, 
and/or an alignment function may have in some instances 
been described, such as with reference to an aligner, these 
different functions may be performed sequentially by the 
same architecture, which has commonly been referenced in 
the art as an aligner. Accordingly, in various instances, both 
the mapping function and the aligning function, as herein 
described may be performed by a common architecture that 
may be understood to be an aligner, especially in those 
instances wherein to perform an alignment function, a 
mapping function need first be performed. 
The output from the alignment module is a SAM (Text) or 

BAM (e.g., binary version of a SAM) file along with a 
mapping quality score (MAPQ), which quality Score reflects 
the confidence that the predicted and aligned location of the 
read to the reference is actually where the read is derived. 
Accordingly, once it has been determined where each read is 
mapped, and further determined where each read is aligned, 
e.g., each relevant read has been given a position and a 
quality score reflecting the probability that the position is the 
correct alignment, Such that the nucleotide sequence for the 
subjects DNA is known as well as how the subject’s DNA 
differs from that of the reference (e.g., the CIGAR string has 
been determined), then the various reads representing the 
genomic nucleic acid sequence of the Subject may be sorted 
by chromosome location, so that the exact location of the 
read on the chromosomes may be determined. Consequently, 
in Some aspects, the present disclosure is directed to a 
sorting function, Such as may be performed by a sorting 
module, which sorting module may be part of a pipeline of 
modules, such as a pipeline that is directed at taking raw 
sequence read data, Such as form a genomic sample form an 
individual, and mapping and/or aligning that data, which 
data may then be sorted. 
More particularly, once the reads have been assigned a 

position, such as relative to the reference genome, which 
may include identifying to which chromosome the read 
belongs and/or its offset from the beginning of that chro 
mosome, the reads may be sorted by position. Sorting may 
be useful, Such as in downstream analyses, whereby all of 
the reads that overlap a given position in the genome may be 
formed into a pile up so as to be adjacent to one another, 
Such as after being processed through the Sorting module, 
whereby it can be readily determined if the majority of the 
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reads agree with the reference value or not. Hence, where the 
majority of reads do not agree with the reference value a 
variant call can be flagged. Sorting, therefore, may involve 
one or more of sorting the reads that align to the relatively 
same position, Such as the same chromosome position, so as 
to produce a pileup, Such that all the reads that cover the 
same location are physically grouped together, and may 
further involve analyzing the reads of the pileup to deter 
mine where the reads may indicate an actual variant in the 
genome, as compared to the reference genome, which vari 
ant may be distinguishable, such as by the consensus of the 
pileup, from an error, such as a machine read error or error 
an error in the sequencing methods which may be exhibited 
by a small minority of the reads. 
Once the data has been obtained there are one or more 

other modules that may be run so as to clean up the data. For 
instance, one module that may be included, for example, in 
a sequence analysis pipeline, such as for determining the 
genomic sequence of an individual, may be a local realign 
ment module. For example, it is often difficult to determine 
insertions and deletions that occur at the end of the read. 
This is because the Smith-Waterman or equivalent align 
ment process lacks enough context beyond the indel to allow 
the scoring to detect its presence. Consequently, the actual 
indel may be reported as one or more SNPs. In such an 
instance, the accuracy of the predicted location for any given 
read may be enhanced by performing a local realignment on 
the mapped and/or aligned and/or sorted read data. 

In Such instances, pileups may be used to help clarify the 
proper alignment. Such as where a position in question is at 
the end of any given read, that same position is likely to be 
at the middle of some other read in the pileup. Accordingly, 
in performing a local realignment the various reads in a 
pileup may be analyzed so as to determine if some of the 
reads in the pile up indicate that there was an insertion or a 
deletion at a given position where an other read does not 
include the indel, or rather includes a substitution, at that 
position, then the indel may be inserted. Such as into the 
reference, where it is not present, and the reads in the local 
pileup that overlap that region may be realigned to see if 
collectively a better score is achieved then when the inser 
tion and/or deletion was not there. Accordingly, if there is an 
improvement, the whole set of reads in the pileup may be 
reviewed and if the score of the overall set has improved 
then it is clear to make the call that there really was an indel 
at that position. In a manner Such as this, the fact that there 
is not enough context to more accurately align a read at the 
end of a chromosome, for any individual read, may be 
compensated for. Hence, when performing a local realign 
ment, one or more pileups where one or more indels may be 
positioned are examined, and it is determined if by adding 
an indel at any given position the overall alignment score 
may be enhanced. 

Another module that may be included, for example, in a 
sequence analysis pipeline. Such as for determining the 
genomic sequence of an individual, may be a duplicate 
marking module. For instance, a duplicate marking function 
may be performed so as to compensate for chemistry errors 
that may occur during the sequencing phase. For example, as 
described above, during some sequencing procedures 
nucleic acid sequences are attached to beads and built up 
from there using labeled nucleotide bases. Ideally there will 
be only one read per bead. However, sometimes multiple 
reads become attached to a single bead and this results in an 
excessive number of copies of the attached read. This 
phenomenon is known as read duplication. 
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Such read duplication may throw off the statistics and 
create a statistical bias because instead of having an equal 
representation of all reads, various reads have been dupli 
cated. Such as because of the duplicate template sequences 
attached to more than one bead are over represented. 5 
Accordingly, these may be determined because any read that 
aligns to the exact same position, and has the exact same 
length, is likely a duplicate. Once this is identified by the 
system, only one read need be subjected to further process 
ing and the others may be marked as duplicates and, 10 
therefore, can be discarded or ignored. A typical situation 
where this occurs is where there is not enough genetic 
material to process from the very beginning and the system 
attempts to overcompensate for that. 

Another module that may be included, for example, in a 15 
sequence analysis pipeline. Such as for determining the 
genomic sequence of an individual, may be a base quality 
score recalibrater. For instance, every base of every read has 
a Phred score that indicates the probability that the called 
base at that position is incorrect. For example, the Phred 20 
score for any base is due in part to the nature of the base that 
precedes it and the error profile will be different depending 
on which base precedes the base in question. Further, there 
is a greater likelihood of an error occurring at the ends of a 
read, e.g., such as where at the ends of the reads the 25 
chemistry is starting to lose its performance. A base quality 
score recalibration is a covariant analysis that may go back 
and measures the empirical quality of the base quality score 
as a function of all those things by which it varies. 

In various instances, it involves two passes, the first 30 
gathers all the actual, empirical measured data and statistics 
on the error rate observed as a function of all the variables, 
and the second pass involves the actual recalibration of the 
scores by flowing all the reads through a filter modifying the 
quality scores for every single base as a function of the 35 
variables based on what was actually empirically measured 
in the data set. This compensates for all the differences in the 
data due to the various variables and cleans up that data and 
score. The purpose of all this cleanup is to ensure the best 
possible variant calling is achieved. Many variant callers 40 
base their decisions in part on the reported quality of each of 
the nucleotides that pile up at each position in the genome. 
If the quality scores are not accurate, there could easily 
result a wrong call. 

Another module that may be included, for example, in a 45 
sequence analysis pipeline. Such as for determining the 
genomic sequence of an individual, may be a compression 
module, that executes a compression function. As indicated 
above, it may be useful at Some point to take the generated 
and processed data and transmit it to a remote location, Such 50 
as the cloud, and hence, the data may need to be compressed 
at a particular stage of processing, whereby once com 
pressed it may be transmitted and/or otherwise uploaded, 
Such as on to the cloud or to a server farm, etc., for instance, 
for the performance of the variant calling module. The 55 
results once obtained may then be decompressed and/or 
stored in the memory, on a database on the cloud, Such as 
an electronic health and/or research database, and the like, 
which in turn, can be made available for tertiary processing, 
etc. 60 

Accordingly, as set forth herein above, in various aspects, 
this present disclosure is directed to systems, apparatuses, 
and methods for implementing genomics and/or bioinfor 
matic protocols such as, in various instances, for performing 
one or more functions for analyzing genetic data on an 65 
integrated circuit, such as implemented in a hardware pro 
cessing platform. For example, in one aspect, a bioinfor 

66 
matics system is provided, wherein the system may involve 
the performance of various bioanalytical functions that have 
been optimized so as to be performed faster and/or with 
increased accuracy in a hardware implementation. Accord 
ingly, in various instances, the methods and systems herein 
described may include the performance of one or more 
algorithms for executing these functions, wherein the algo 
rithms may be implemented in a hardware solution, such as 
where the algorithm has been optimized so as to be imple 
mented by an integrated circuit formed of one or more 
hardwired digital logic circuits. In Such an instance, the 
hardwired digital logic circuits may be interconnected. Such 
as by one or a plurality of physical electrical interconnects, 
and may be arranged to function as one or more processing 
engines. In various instances, a plurality of hardwired digital 
logic circuits are provided, which hardwired digital logic 
circuits are configured as a set of processing engines, 
wherein each processing engine is capable of performing 
one or more steps in the bioinformatics genetic analysis 
protocol. 
More particularly, in one instance, a system for executing 

a sequence analysis pipeline such as on genetic sequence 
data is provided. The system may include one or more of an 
electronic data source, a memory, and an integrated circuit. 
For instance, in one embodiment, an electronic data source 
is included, where in the electronic data source may be 
configured for providing one or more digital signals. Such as 
a digital signal representing one or more reads of genetic 
data, for example, where each read of genomic data includes 
a sequence of nucleotides. Further, the memory may be 
configured for storing one or more genetic reference 
sequences, and may further be configured for storing an 
index. Such as an index of the one or more genetic reference 
Sequences. 

Further still, in various instances, one or more of the 
plurality of physical electrical interconnects may include an 
input, such as to the integrated circuit, and may further be 
connected with the electronic data source, so as to be able to 
receive the one or more reads of genomic data. In various 
embodiments, the hardwired digital logic circuits may be 
arranged as a set of processing engines, such as where each 
processing engine is formed of a Subset of the hardwired 
digital logic circuits, and is configured so as to perform one 
or more steps in the sequence analysis pipeline. Such as on 
digitized genetic data, e.g., on the plurality of reads of 
genomic data. In Such instances, each Subset of the hard 
wired digital logic circuits may be in a wired configuration 
So as to perform the one or more steps in the sequence 
analysis pipeline, such as where the one or more steps may 
include performing one or more of a base calling and/or 
error correction operation, such as on the digitized genetic 
data, and/or may include one or more of performing a 
mapping, an alignment, and/or a sorting function on the 
genetic data. In certain instances, the pipeline may include 
performing one or more of a realignment, a deduplication, a 
base quality Score recalibration, a reduction and/or compres 
Sion, and/or a decompression on the digitized genetic data. 
In certain instances the pipeline may include performing a 
variant calling operation on the genetic data. 

Accordingly, in various embodiments, the systems, appa 
ratuses, and methods for implementing genomics and/or 
bioinformatic protocols, as herein described, may involve 
taking processes that may have typically been performed on 
Software, and embedding those functions into an integrated 
circuit. Such as on a chip, for instance as part of a circuit 
board, such as where the functions have been optimized to 
enhance its performance on the chip. Hence, in one embodi 
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ment, as can be seen with respect to FIG. 1 a chip is provided 
wherein the chip has been designed so as to efficiently 
perform the functions of the pipeline. In various particular 
embodiments the chip may be a field programmable gate 
array (FPGA), or an application specific integrated circuit 
(ASIC), or the like. 

For instance, the functioning of one or more of these 
algorithms may be embedded onto a chip. Such as into an 
FPGA or ASIC chip, and may be optimized so as to perform 
more efficiently because of their implementation in such 
hardware. Accordingly, in one embodiment a FPGA chip is 
provided wherein the chip is capable of being configurable, 
e.g., its programming may be changed, so as to be more 
adaptable in meeting a given user's needs with respect to 
performing the various genomic functions detailed herein. In 
Such an instance, the user can change and/or modify the 
algorithms employed dependent on the key parameters 
desired to be emphasized in the overall system, Such as to 
give additional functionality or change out what was first 
presented on the chip, e.g., Such as re-configuring the chip 
to employ a different algorithm. In accordance with another 
embodiment an ASIC is provided, such as where the FPGA 
is converted to an ASIC chip where its functionality is 
locked down into the chip. In Such an instance, various 
parameters, such as various parameters regarding the func 
tion of one or more of the algorithms set forth herein, may 
be user selected, for instance, governing how the various 
modules are Supposed to function, but the way those mod 
ules actually function is locked in. 

In various embodiments, as seen with respect to FIG. 1, 
the chip may be part of a circuit board, Such as part of an 
expansion card, for instance, a peripheral component inter 
connect (PCI) card, including a PCIe card, which in various 
embodiments may be associated, Such as, communicably 
coupled, e.g., electrically connected, with an automated 
sequencer device so as to function part and parcel with the 
sequencer, Such as where the data files, e.g., FASTQ files, 
generated by the sequencer is transferred directly over to the 
chip, such as for secondary genomic processing, such as 
immediately subsequent to the FASTQ file generation and/or 
primary processing, e.g., immediately after the sequencing 
function has been performed. 

Accordingly, in certain instances, a PCI card is provided 
wherein the PCI card may include a chip with a PCIe bus, 
where the chip may include one or more of a configuration 
manager, Such as a configuration control (Cent-Com); a 
direct memory access engine (e.g., a driver); an API; a client 
level interface (CLI), a library; a memory, such as a random 
access memory (RAM) or a dynamic random access 
memory (DRAM); and/or a chip level interconnect, such as 
a DDR3. For instance, in various instances a configuration 
manager may be included wherein the configuration man 
ager is driven, such as by a parameter file. In Such an 
instance the configuration manager may be adapted so as to 
configure the various modules of the pipeline. In various 
instances, it may be user editable, and thereby allow a user 
to determine which modules of the pipeline are going to be 
used, e.g., from all of them to a Subset of less than all of 
them, such as for a particular dataset, such as a particular set 
of FASTQ files. 

For example, in various embodiments, the functioning of 
the pipeline is very configurable such that one or more of the 
modules, such as structured into the chip, may be run or not 
run, as desired. Further, each module in use can also be 
configured so as to run in accordance with one or more 
preselected parameters, which the user may have control 
over, Such as regarding how the module is going to perform 
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and behave. Hence, there may be two different sets of 
configuration files. Such as one that controls the basic 
operations of the system as a whole, and may be hidden from 
the user, and another that is capable of being manipulated by 
the user, thereby allowing the user to select various of the 
parameters by which one or more of the Subsystems, e.g., 
modules, of the chip will be run. 

Further still, various of the above described modules may 
be hardwired into the chip, or may be external to the chip, 
but positioned in a coupling relationship therewith, such as 
on a PCI board, or they may be located remotely from the 
chip, such as on a different PCI board, or even on a different 
server, such as on a server that may be accessed via the 
cloud. For instance, in certain implementations, one or more 
of the above described modules may be hardwired onto a 
chip and the chip installed onto the circuit board of a 
stand-alone device, or coupled to a sequencer, whereby the 
user configures and runs the system directly by themselves 
according to their own preselected parameters. Alterna 
tively, as indicated herein, one or more of the above 
described modules may be present on a system that is 
accessible via the cloud, wherein the directing of the func 
tioning of the pipeline, and/or the modules thereof, may 
include the user logging on to a server, e.g., a remote server, 
and transmitting data to and therefrom, and thereby selects 
which modules to be run on the data set. In certain instances, 
one or more of the modules may be performed remotely, 
Such as via the cloud accessed server. 

In various instances, in configuring the system, the chip, 
e.g., the chip on an expansion card, such as a PCI card, may 
be included in a server, whereby the server runs the various 
applications of the system. In certain instances, the server 
may have a terminal connectable there with, whereby a 
windows interface may be presentable to the user such that 
the user may select the modules to be run and the parameters 
by which they are to be run, such as by selecting a box from 
a menu of boxes. In other instances, however, the parameter 
file may be a text file detailing categories by module under 
file names that the user can then edit, so as to select which 
modules will be run in accordance with which parameters. 
For instance, in various embodiments, each chip may 
include all or a selection of the modules, such as one or more 
of a base calling, error correcting, a mapping, an alignment, 
a sorting, a local realignment, a duplicate marking, a reca 
libration, a variant calling, a compression, and/or a decom 
pression module, from which the user may select which 
modules will run, when, and to various extents how it will 
run, without changing the functioning of the underlying 
algorithms by which the individual modules are operated. 

Additionally, in various instances, a direct memory access 
(DMA) engine in the chip, and a DMA driver, may be 
included wherein the DMA driver includes code that runs in 
the kernel. Accordingly, the DMA driver may be the foun 
dation of the overall operating system. For instance, where 
the kernel runs in a literal addressing space, layered above 
that may be a virtual user space. This operating system 
software, therefore operates in between these layers man 
aging the mapping from the virtual to the physical space. 
More particularly, the kernel represents the lowest level of 
code that gives the platform access to the PCI, e.g., PCIe, 
bus, to which the chip is coupled. Accordingly, since, in 
various embodiments, the chip may be configured as an 
expansion card with a PCIe expansion bus, which expansion 
card may be coupled with various hardware of a device, such 
as a sequencer, the DMA driver may function so as to 
communicate with the hardware of the sequencer, and may 
further be configured for running at the kernel level on the 
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CPU, so as to also communicate with the DMA engine in the 
chip, and/or be configured for operating in the virtual user 
space so as to receive instructions from the user. 
To facilitate this communication within the chip and/or 

between the chip and one or more cards, every single 
configurable parameter of a module may be assigned to a 
register address. In such an instance, the card may have its 
own address space, which address space may be different 
from the address space for one or more memories, such as 
64 gigabytes of memory, and/or additionally every module 
may have registers and local memory associated with it, 
each with its own address space. Accordingly, the driver 
knows where everything is, all the addresses, and knows 
how to communicate between the chip, the PCI card, and/or 
the hardware of the server. Further, knowing where all the 
addresses are and communicating with an API the driver can 
read the parameter file that a user generates, and can look up 
for that parameter where the file is actually located in the 
host computer system and will read and interpret the value 
in the file and will deliver that value in the right register in 
the right place in the chip. Hence, the driver may handle 
delivering the selected parameter instructions, such as with 
respect to various user selected configurations, and ships 
that data to the chip via the DMA engine to configure any of 
its processing functions. 

Further, in various instances, an API may be included 
wherein the API is configured so as to include a list of 
function calls that the user can make, so as to configure and 
operate the system. For instance, an API may be defined in 
a header file that describes the functionality and determines 
how to call a function, Such as the parameters that are 
passed, the inputs and outputs, what comes in, what goes 
out, and what gets returned. For example, in various embodi 
ments, one or more of the elements of the pipeline may be 
configurable Such as by instructions entered by a user and/or 
one or more third party applications. These instructions may 
be communicated to the chip via the API which communi 
cates with the driver, instructing the driver as to which parts 
of the chip, e.g., which modules are to be activated, when, 
and in what order, given a preselected parameter configu 
ration. 
As indicated above, the DMA driver runs at the kernel 

level, and has its own very low level, basic API that provides 
access to the hardware and functions so as to access appli 
cable registers and modules. On top of this layer is built a 
virtual layer of service functions, that form the building 
blocks that are used for a multiplicity of functions that send 
files down to the kernel and gets results back, and further 
performs more higher level functions. On top of that layer is 
an additional layer that uses those service functions, which 
is the API level that a user will interface with and it functions 
primarily for configuration, downloading files, and upload 
ing results. Such configuration may include communicating 
with registers and also performing function calls. 

For example, as described herein above, one function call 
may be to generate the hash table via the hashing algorithm. 
Specifically, because in certain embodiments this function 
may be based on a reference genome, once for every 
reference genome, the hash tables that are used in the 
mapper may need to be constructed, based on the reference, 
there is therefore a function call that performs this function, 
which function call will accept a file name of where the 
reference file is stored and it will then generate one or more 
data files that contain the hash table and the reference. 
Another function call may be to load the hash table that was 
generated via the hashing algorithm and transfer that down 
to the memory on the chip, and/or put it at the right spot 
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where the hardware is expecting them to be. Of course, the 
reference itself will need to be downloaded onto the chip, as 
well for the performance of the alignment function, and the 
configuration manager can perform that function Such as by 
loading everything that needs to be there in order for the 
modules of the chip to perform their functions into a 
memory on to the chip or attached to the chip. 

Additionally, the API may be configured to allow the chip 
to interface with the circuit board of the sequencer, when 
included therewith, so as to receive the FASTQ sequencing 
files directly from the sequencer Such as immediately once 
they have been generated and then transfers that information 
to the configuration manager which then directs that infor 
mation to the appropriate memory banks in the hardware 
that makes that information available to the pertinent mod 
ules of the hardware so that they can perform their desig 
nated functions on that information so as to call bases, map. 
align, sort, etc. the sample DNA with respect to the reference 
genome. 

Further still, a client level interface (CLI) may be included 
wherein the CLI may allow the user to call one or more of 
these functions directly. In various embodiments, the CLI 
may be a software application that is adapted to configure 
the use of the hardware. The CLI, therefore, may be a 
program that accepts instructions, e.g., arguments, and 
makes functionality available simply by calling an applica 
tion program. As indicated above, the CLI can be command 
line based or GUI (graphical user interface) based. The line 
based commands happen at a level below the GUI, where the 
GUI includes a windows based file manager with click on 
function boxes that delineate which modules will be used 
and the parameters of their use. For example, in operation, 
if instructed, the CLI will locate the reference, will deter 
mine if a hash table and/or index needs to be generated, or 
if already generated locate where it is stored, and direct the 
uploading of the generated hash table and/or index, etc. 
These type of instructions may appear as user options at the 
GUI that the user can select the chip to perform. 

Furthermore, a library may be included wherein the 
library may include pre-existing, editable, configuration 
files, such as files orientated to the typical user selected 
functioning of the hardware, Such as with respect to a 
portion or whole genome analysis, for instance, for ancestry 
analysis, or disease diagnostics, or drug discovery, or protein 
profiling, etc. These types of preset parameters, such as for 
performing Such analyses, may be stored in the library. For 
example, if the platform herein described is employed such 
as for oncology research, the preset parameters may be 
configured differently than if the platform were directed 
simply to researching a genealogy. 
More particularly, for oncology, accuracy may be an 

important factor, therefore, the parameters of the system 
may be set to ensure increased accuracy albeit in exchange 
for possibly a decrease in speed. However, for other genom 
ics applications, speed may be the key determinant and 
therefore the parameters of the system may be set to maxi 
mize speed, which however may sacrifice Some accuracy. 
Accordingly, in various embodiments, often used parameter 
settings for performing different tasks can be preset into the 
library to facilitate ease of use. Such parameter settings may 
also include the necessary Software applications employed 
in running the system. For instance, the library may contain 
the code that executes the API, and may further include 
sample files, Scripts, and any other ancillary information 
necessary for running the system. Hence, the library may be 
configured for compiling Software for running the API as 
well as various executables. 
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In various instances, the chip may also include a memory, 
such as a Random Access Memory (RAM) or a Dynamic 
Rapid Access Memory with e.g. a DDR3 interface, such as 
a memory that may be used for facilitating the performance 
of the various modules described herein, for instance, the 
mapper, aligner, and/or sorter. For example, the DRAM may 
be where the reference, the hash table, and/or the hash table 
index, and/or reads may be stored. Further, the memory may 
be used for facilitating the performance of various other 
modules described herein, for instance, the deduper, local 
realigner, base quality score recalibrator, variant caller, 
compressor, and/or decompresor. For example, the DRAM 
may be where sorted reads, annotated reads, compressed 
reads, and/or variant calls may be stored. Further, the 
memory may be configured so as to include a separate 
interface for each of the various memory modules employed 
by the aligner and/or any other module. Such as where each 
memory may include a file layer and logical layer. As 
indicated above, because there may be multiple memories 
and/or multiple modules, a chip level interconnect may be 
included so as to facilitate communication through the chip. 

Accordingly, in various instances, an apparatus of the 
disclosure may include a chip, wherein the chip includes an 
integrated circuit that is formed of a set of hardwired digital 
logic circuits that may be interconnected by one or more 
physical electrical interconnects. In various embodiments, 
the one or more physical electrical interconnects include an 
input to the integrated circuit that may be connected with an 
electronic data source for receiving data. Further, in certain 
embodiments, the hardwired digital logic circuits may be 
arranged as a set of processing engines, such as wherein 
each processing engine may be formed of a subset of the 
hardwired digital logic circuits, which are configured to 
perform one or more of the steps in the sequence analysis 
pipeline. More particularly, each subset of the hardwired 
digital logic circuits may be in a wired configuration so as 
to perform the one or more steps in the sequence analysis 
pipeline. 

In various instances, the set of processing engines may 
include one or more of a mapping module, an alignment 
module, and/or a sorting module. Such as where the one or 
more of these modules are in the wired configuration. For 
instance, a mapping module may be included, where in the 
wired configuration, the mapping module may access an 
index, such as of one or more genetic reference sequences, 
e.g., from a memory. Such as via one or more of the plurality 
of physical electronic interconnects, so as to map the plu 
rality of reads to one or more segments of the one or more 
genetic reference sequences. Further, in various instances, 
an alignment module may be included, wherein the wired 
configuration, the alignment module may access the one or 
more genetic reference sequences, e.g., from the memory, 
Such as via one or more of the plurality of physical electronic 
interconnects, so to align the plurality of reads to the one or 
more segments of the one or more genetic reference 
sequences. Further still, in various instances, a sorting 
module may be included, wherein the wired configuration, 
the sorting module may access the one or more aligned 
sequences, e.g., from the memory, Such as via one or more 
of the plurality of physical electronic interconnects, so to 
sort the plurality of reads to a chromosome. Such as from the 
one or more genetic reference sequences. In like manner, in 
various instances, one or more of local realignment, dupli 
cate marking, base quality score recalibration, and/or variant 
calling modules may be included in the chip. Such as in the 
wired configuration consistent as with the modules 
described above, so as to perform their respective functions. 
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Further, as indicated above, in various instances a chip of 

the disclosure may be configured as an expansion card, Such 
as where the chip includes a PCIe bus and is positioned so 
as to be in communication with one or more memories. Such 
as being Surrounding by memories, such as being Substan 
tially Surrounded by memories, such as being entirely Sur 
rounded by memories. In various embodiments, the chip 
may be a dense and/or fast FPGA chip, that in various 
instances, may be convertible to an ASIC. As indicated 
above, the modules herein disclosed may be implemented in 
the hardware of the chip, such as by being hardwired therein, 
and in Such instances their implementation may be such that 
their functioning may take place at a faster speed as com 
pared to when implemented in software, such as where there 
are minimal instructions to be fetched, read, and/or 
executed. Hence, given the unique hardware implementa 
tion, the modules of the disclosure may function directly in 
accordance with their operations parameters, such as with 
out needing to fetch, read, and/or execute instructions. 
Additionally, memory requirements and processing times 
may be reduced. Such as where the communications within 
chip is via files rather than through accessing a memory. Of 
course, in some instances, the chip and/or card may be sized 
So as to include more memory, such as more on board 
memory, so as to enhance parallel processing capabilities, 
thereby resulting in even faster processing speeds. For 
instance, in certain embodiments, a chip of the disclosure 
may include an embedded DRAM, so that the chip does not 
have to rely on external memory, which would therefore 
result in a further increase in processing speed, such as 
where a Burrows-Wheeler algorithm may be employed, 
instead of a hash table and hash function, which may in 
various instances, rely on external, e.g., host memory. In 
Such instances, the running of the entire pipeline can be 
accomplished in 6 minutes or less, such as from start to 
finish. 
As indicated above, there are various different points 

where any given module can be positioned on the hardware, 
or be positioned remotely therefrom, such as on a server 
accessible on the cloud. Where a given module is positioned 
on the chip, e.g., hardwired into the chip, its function may 
be performed by the hardware, however, where desired, the 
module may be positioned remotely from the chip, at which 
point the platform may include the necessary instrumentality 
for sending the relevant data to a remote location, such as a 
server accessible via the cloud, so that the particular mod 
ule’s functionality may be engaged for further processing of 
the data, in accordance with the user selected desired pro 
tocols. Accordingly, part of the platform may include a 
web-based interface for the performance of one or more 
tasks pursuant to the functioning of one or more of the 
modules disclosed herein. For instance, where mapping, 
alignment, and/or sorting are all modules that may occur on 
the chip, in various instances, one or more of local realign 
ment, duplicate marking, base quality core recalibration, 
and/or variant calling may take place on the cloud. 

Additionally, in various embodiments, all of mapping, 
aligning, and Sorting, may take place on the chip, and local 
realignment, duplicate marking, and/or base quality score 
recalibration may, in various embodiments, also take place 
on the chip, and in various instances, various compression 
protocols, such as BAM and CRAM, may also take place on 
the chip. However, once the data is compressed it may be 
sent up to the cloud, Such as for the performance of the 
variant calling module. This might be useful especially 
given the fact that variant calling can be a moving target, 
e.g., there is not one standardized agreed upon algorithm that 



US 9,483,610 B2 
73 

the industry uses. Hence, different algorithms can be 
employed to achieve a different type of result, and as Such 
having a cloud based module for the performance of this 
function may be useful for allowing the flexibility to select 
which algorithm is useful at any particular given moment, 
and also as for serial and/or parallel processing. Accord 
ingly, any one of the modules disclosed herein can be 
implemented as either hardware, e.g., on the chip, or soft 
ware, e.g., on the cloud, but in certain embodiments, all of 
the modules may be configured so that their function may be 
performed on the chip, or all of the modules may be 
configured so that their function may be performed remotely, 
such as on the cloud, or there will be a mixture of modules 
wherein some are positioned on the chip and some are 
positioned on the cloud. Further, as indicated, in various 
embodiments, the chip itself may be configured so as to 
function in conjunction with, and in Some embodiments, in 
immediate operation with a genetic sequencer. 
More specifically, in various embodiments, an apparatus 

of the disclosure may be a chip. Such as a chip that is 
configured for processing genomics data, Such as by 
employing a pipeline of data analysis modules. According, 
as can be seen with respect to FIG. 1, a genomics pipeline 
processor chip 100 is provided along with associated hard 
ware of a genomics pipeline processor system 10. The chip 
100 has one or more connections to external memory 102 (at 
“DDR3 Mem Controller), and a connection 104 (e.g., 
“PCIe Interface') to the outside world, such as a host 
computer 106, for example. A crossbar 108 (e.g., switch) 
provides access to the memory interfaces to various request 
ors. DMA engines 110 transfer data at high speeds between 
the host and the processor chip's 100 external memories 102 
(via the crossbar 108), and/or between the host and a central 
controller 112. The central controller 112 controls chip 
operations, especially coordinating the efforts of multiple 
processing engines. The processing engines are formed of a 
set of hardwired digital logic circuits that are interconnected 
by physical electrical interconnects, and are organized into 
engine clusters 114. In some implementations, the engines in 
one cluster share one crossbar port, via an arbiter. The 
central controller 112 has connections to each of the engine 
clusters. Each engine cluster 114 has a number of processing 
engines for processing genomic data, including a mapper 
120 (or mapping module), an aligner 122 (or aligning 
module), and a sorter 124 (or sorting module). An engine 
cluster 114 can include other engines or modules, as well. 

In accordance with one data flow model consistent with 
implementations described herein, the host sends commands 
and data via the DMA engines 110 to the central controller 
112, which load-balances the data to the processing engines. 
The processing engines return processed data to the central 
controller 112, which streams it back to the host via the 
DMA engines 110. This data flow model is suited for 
mapping and alignment. 

In accordance with an alternative data flow model con 
sistent with implementations described herein, the host 
streams data into the external memory, either directly via 
DMA engines 110 and the crossbar 108, or via the central 
controller 112. The host sends commands to the central 
controller 112, which sends commands to the processing 
engines, which instruct the processing engines as to what 
data to process. The processing engines access input data 
from the external memory, process it, and write results back 
to the external memory, reporting status to the central 
controller 112. The central controller 112 either streams the 
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result data back to the host from the external memory, or 
notifies the host to fetch the result data itself via the DMA 
engines 110. 

FIG. 2 illustrates a genomics pipeline processor system 
20, showing a full complement of processing engines inside 
an engine cluster 214. The pipeline processor System 20 may 
include one or more engine clusters 214. In some imple 
mentations, the pipeline processor System 20 includes four 
our more engine clusters 214. The processing engines or 
processing engine types can include, without limitation, a 
mapper, an aligner, a sorter, a local realigner, a base quality 
recalibrater, a duplicate marker, a variant caller, a compres 
sor and/or a decompressor. In some implementations, each 
engine cluster 214 has one of each processing engine type. 
Accordingly, all processing engines of the same type can 
access the crossbar 208 simultaneously, through different 
crossbar ports, because they are each in a different engine 
cluster 214. Not every processing engine type needs to be 
formed in every engine cluster 214. Processing engine types 
that require massive parallel processing or memory band 
width, Such as the mapper (and attached aligner(s)) and 
Sorter, may appear in every engine cluster of the pipeline 
processor system 20. Other engine types may appear in only 
one or Some of the engine clusters 214, as needed to satisfy 
their performance requirements or the performance require 
ments of the pipeline processor System 20. 

FIG. 3 illustrates a genomics pipeline processor system 
30, showing, in addition to the engine clusters described 
above, one or more embedded central processing units 
(CPUs) 302. Examples of such embedded CPUs include 
Snapdragons(R or standard ARMR) cores. These CPUs 
execute fully programmable bio-IT algorithms, such as 
advanced variant calling. Such processing is accelerated by 
computing functions in the engine clusters, which can be 
called by the CPU cores 302 as needed. Furthermore, even 
engine-centric processing. Such as mapping and alignment, 
can be managed by the CPU cores 302, giving them height 
ened programmability. 

FIG. 4 illustrates a processing flow for a genomics pipe 
line processor System and method. In some preferred imple 
mentations, there are three passes over the data. The first 
pass includes mapping 402 and alignment 404, with the full 
set of reads streamed through the engines. The second pass 
includes sorting 406, where one large block to be sorted 
(e.g., a Substantial portion or all reads previously mapped to 
a single chromosome) is loaded into memory, Sorted by the 
processing engines, and returned to the host. The third pass 
includes downstream stages (local realignment 408, dupli 
cate marking 410, base quality score recalibration (BQSR) 
412, BAM output 414, reduced BAM output 416, and/or 
CRAM compression 418). The steps and functions of the 
third pass may be done in any combination or Subcombina 
tion, and in any order, in a single pass. A virtual pipeline 
architecture. Such as described above, is used to stream reads 
from the host into circular buffers in memory, through one 
processing engine after another in sequence, and back out to 
the host. In some implementations, CRAM decompression 
can be a separate streaming function. In some implementa 
tions, the BAM output 414, reduced BAM output 416, 
and/or CRAM compression 418 can be replaced with variant 
calling, compression and decompression. 

FIG. 5 shows a general block diagram of the current 
invention. In Block 1 a hardware implementation of a 
sequence analysis pipeline is described. This can be done in 
a number of different ways such as an FPGA or ASIC 
implementation. The functional blocks that are implemented 
by the FPGA or ASIC are shown in FIG. 5. FIG. 5 includes 
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a number of blocks or modules to do sequence analysis. The 
input to the hardware realization can be a FASTQ file, but is 
not limited to this format. In addition to the FASTQ file, the 
input to the FPGA or ASIC consists of side information, 
Such as Flow Space Information from technology Such as the 
Ion Torrent. The blocks or modules in FIG. 5 illustrate the 
following blocks: Error Control, Mapping, Alignment, Sort 
ing, Local Realignment, Duplicate Marking, Base Quality 
Recalibration, BAM and Side Information reduction and 
variant calling. 

These blocks or modules can be present inside, or imple 
mented by, the hardware, but some of these blocks may be 
omitted or other blocks added to achieve the purpose of 
realizing a sequence analysis pipeline. Blocks 2 and 3 
describe two alternatives of a The sequence analysis pipeline 
platform. The sequence analysis pipeline platform compris 
ing an FPGA or ASIC and software assisted by a host (i.e., 
PC, server, cluster or cloud computing) with cloud and/or 
cluster storage. Blocks 4-7 describe different interfaces that 
the sequence analysis pipeline can have. In Blocks 4 and 6 
the interface can be a PCIe interface, but is not limited to a 
PCIe interface. In Blocks 5 and 7 the hardware (FPGA or 
ASIC) can be directly integrated into a sequencing machine. 
Blocks 8 and 9 describe the integration of the hardware 
sequence analysis pipeline integrated into a host system Such 
as a PC, server cluster or sequencer. Surrounding the hard 
ware FPGA or ASIC are lots of DDR3 memory elements and 
a PCIe interface. The board with the FPGA/ASIC connects 
to a host computer, consisting of a host CPU, that could be 
either a low power CPU such as an ARMR, Snapdragon(R), 
or any other processor. Block 10 illustrates a hardware 
sequence analysis pipeline API that can be accessed by third 
party applications to perform tertiary analysis. 

Accordingly, in various embodiments, an apparatus of the 
disclosure may include a computing architecture. Such as 
embedded in a silicon application specific integrated circuit 
(ASIC) 100 as seen in FIGS. 6 and 7. The ASIC 100 can be 
integrated into a printed circuit board (PCB) 104, such as a 
Peripheral Component Interface Express (PCIe) card, that 
can be plugged into a computing platform. In various 
instances, as shown in FIG. 6, the PCIe card 104 may 
include a single ASIC 100, which ASIC may be surrounded 
by local memories 105, however, in various embodiments, 
the PCIe card 104 may include a plurality of ASICs 100A, 
100B and 100C. In various instances, the PCI card may also 
include a PCIe bus. This PCIe card 104 can be added to a 
computing platform to execute algorithms on extremely 
large data sets. Accordingly, in various instances, the overall 
work flow of genomic sequencing involving the ASIC may 
include the following: Sample preparation, Alignment (in 
cluding mapping and alignment), Variant analysis, Biologi 
cal Interpretation, and/or Specific Applications. 

Hence, in various embodiments, an apparatus of the 
disclosure may include a computing architecture that 
achieves the high performance execution of algorithms. Such 
as mapping and alignment algorithms, that operate on 
extremely large data sets, such as where the data sets exhibit 
poor locality of reference (LOR). These algorithms are 
designed to reconstruct a whole genome from millions of 
short read sequences, from modern so-called next generation 
sequencers, require multi-gigabyte data structures that are 
randomly accessed. Once reconstruction is achieved, as 
described herein above, further algorithms with similar 
characteristics are used to compare one genome to libraries 
of others, do gene function analysis, etc. 

Currently, there are two major approaches in use, general 
purpose multicore CPUs and general purpose Graphic Pro 
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cessing Units (GPGPUs). In such an instance ach CPU in a 
multicore system may have a classical cache based archi 
tecture, wherein instructions and data are fetched from a 
level 1 cache (L1 cache) that is small but has extremely fast 
access. Multiple L1 caches may be connected to a larger but 
slower shared L2 cache. The L2 cache may be connected to 
a large but slower DRAM (Dynamic Random Access 
Memory) system memory, or may be connected to an even 
larger but slower L3 cache which may then connected to 
DRAM. An advantage of this arrangement may be that 
applications in which programs and data exhibit locality of 
reference behave nearly as if they are executing on a 
computer with a single memory as large as the DRAM but 
as fast as the L1 cache. Because full custom, highly opti 
mized CPUs operate at very high clock rates, e.g., 2 to 4 
GHZ, this architecture may be essential to achieving good 
performance. 

Further, GPGPUs may be employed to extend this archi 
tecture, Such as by implementing very large numbers of 
small CPUs, each with their own small L1 cache, wherein 
each CPU executes the same instructions on different sub 
sets of the data. This is a so called SIMD (Single Instruction 
stream, Multiple Data stream) architecture. Economy is 
gained by sharing the instruction fetch and decode logic 
across a large number of CPUs. Each cache has access to 
multiple large external DRAMs via an interconnection net 
work. Assuming the computation to be performed is highly 
parallelizable, GPGPUs have a significant advantage over 
general purpose CPUs due to having large numbers of 
computing resources. Nevertheless, they still have a caching 
architecture and their performance is hurt by applications 
that do not have a high enough degree of locality of 
reference. That leads to a high cache miss rate and proces 
sors that are idle while waiting for data to arrive from the 
external DRAM. 

For instance, in various instances, Dynamic RAMs may 
be used for system memory because they are more economi 
cal than Static RAMs (SRAM). The rule of thumb used to be 
that DRAMs had 4x the capacity for the same cost as 
SRAMs. However, due to declining demand for SRAMs in 
favor of DRAMs, that difference has increased considerably 
due to the economies of scale that favor DRAMs which are 
in high demand. Independent of cost, DRAMs are 4x as 
dense as SRAMs laid out in the same silicon area because 
they only require one transistor and capacitor per bit com 
pared to 4 transistors per bit to implement the SRAM's 
flip-flop. The DRAM represents a single bit of information 
as the presence or absence of charge on a capacitor. A 
problem with this arrangement is that the charge decays over 
time, so it has to be refreshed periodically. The need to do 
this has led to architectures that organize the memory into 
independent blocks and access mechanisms that deliver 
multiple words of memory per request. This compensates for 
times when a given block is unavailable while being 
refreshed. The idea is to move a lot of data while a given 
block is available. This is in contrast to SRAMs in which any 
location in memory is available in a single access in a 
constant amount of time. This characteristic allows memory 
accesses to be single word oriented rather than block ori 
ented. DRAMs work well in a caching architecture because 
each cache miss leads to a block of memory being read in 
from the DRAM. The theory of locality of reference is that 
if just accessed word N, then probably going to access words 
N+1, N+2, N-3 and so on, soon. 

FIG. 8 illustrates a system 500 for executing a sequence 
analysis pipeline on genetic sequence data. The system 500 
includes a configuration manager 502 that includes a com 
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puting system. The computing system of the configuration 
manager 502 can include a personal computer or other 
computer workstation, or can be implemented by a Suite of 
networked computers. The configuration manager 502 can 
further include one or more third party applications con 
nected with the computing system by one or more APIs, 
which, with one or more proprietary applications, generate 
a configuration for processing genomics data from a 
sequencer or other genomics data source. The configuration 
manager 502 further includes drivers that load the configu 
ration to the genomics pipeline processor system 10. The 
genomics pipeline processor system 10 can output result 
data to, or be accessed via, the Web 504 or other network, 
for storage of the result data in an electronic health record 
506 or other knowledge database 508. 

In some implementations, the chip implementing the 
genomics pipeline processor can be connected or integrated 
in a sequencer. The chip can also be connected or integrated 
on an expansion card, e.g. PCIe, and the expansion card can 
by connected or integrated in a sequencer. In other imple 
mentations, the chip can be connected or integrated in a 
server computer that is connected to a sequencer, to transfer 
genomic reads from the sequencer to the server. In yet other 
implementations, the chip can be connected or integrated in 
a server in a cloud computing cluster of computers and 
servers. A system can include one or more sequencers 
connected (e.g. via Ethernet) to a server containing the chip, 
where genomic reads are generated by the multiple sequenc 
ers, transmitted to the server, and then mapped and aligned 
in the chip. 
The memory architecture can consist of M memory 

modules that interface with an ASIC. The ASIC may be 
implemented using many different technologies, including 
FPGAs (Field Programmable Gate Arrays), standard cells, 
or full custom logic. Within the ASIC are a Memory 
Subsystem (MSS) and Functional Processing Units (FPUs). 
The MSS contains M memory controllers (MCs) for the 
memory modules, N system memory interfaces (SMIs) for 
the FPUs, and an NXM crossbar that allows any SMI to 
access any MC. Arbitration is provided in the case of 
contention. 

Each memory module is constructed from DRAM chips 
that are addressed by an A bit word and Support data 
transfers D. bits wide. The memory has 2'" address 
locations. A key characteristic of DRAM is that it performs 
reads/writes in W word bursts using the supplied address as 
the base address, B, and fetching or storing locations B+1, 
B+2. . . . B+W-1 as well. A typical value for W is 8. 

In the MSS of the ASIC, each memory controller supplies 
the required control signals and performs any necessary 
multiplexing/demultiplexing between the system word 
width, Dss, and the memory word width, D as well as 
handling the requirements for read/write bursts. It can con 
tain extra buffering so that multiple memory requests can be 
queued up and processed in a pipelined fashion to maximize 
throughput. This compensates for multiple clock cycles of 
latency between presentation of an address and completion 
of a memory operation (read or write). 
The MC necessarily operates at the speed of the attached 

DRAM in a memory module. Assume its clock rate is C. 
This is often several times faster than the core speed at 
which the majority of the logic in the ASIC operates which 
is Css. Hence the multiplexing/demultiplexing logic is 
placed close to its associated interface pins to minimize 
signal distances. Demultiplexing is the first operation per 
formed on incoming data and multiplexing is the last opera 
tion performed on outgoing data. The remainder of the MSS 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

78 
operates on Dss width data which is wider than D, 
enabling use of the slower Css clock speed. 

Each system memory interface in the MSS presents an 
Ass bit address bus and a Dss bit data bus to any attached 
FPU. The SMI is designed to make it appear to an attached 
FPU that it has random access to a single large fast memory. 
The FPU has no awareness of the existence of separate 
memory modules. Ass is large enough to allow access to 
any memory location in any attached memory module. The 
mapping from system address space to memory module 
address space is explained below. 
The N system memory interfaces are cross connected to 

the M memory modules via an NxM crossbar. The crossbar 
provides min(MN) simultaneous connections among the 
SMIs and MCs, provides arbitration for conflicts, and facili 
tates translation of system address space into memory mod 
ule address space. 
The organization of FPUs is highly flexible. One or more 

FPUs can share the same system memory interface. To 
maximize performance, FPUs that do not operate at the same 
time should share an SMI. Those that operate concurrently, 
should be attached to different SMIs. An FPU that operates 
on a data structure larger than Dss can use multiple SMIs 
to access the whole data structure in a single memory 
operation. Hence this memory architecture Supports a wide 
range of computation architectures. Each FPU may be 
identical and thus an array of them may be implemented in 
a two dimensional structure. This is illustrated in Error 
Reference source not found. where FPU(i,j) is the j' unit 
attached to SMI i, 0<i-N, 0sj<k. In this case, all the k, are 
the same size and k, may be as Small as 1. This Supports 
SIMD (single instruction stream, multiple data stream) and 
MIMD architectures (multiple instruction stream, multiple 
data stream) depending on whether the FPUs fetch instruc 
tions from the same or individual instruction memories. 
One or more aspects or features of the subject matter 

described herein can be realized in digital electronic cir 
cuitry, integrated circuitry, specially designed application 
specific integrated circuits (ASICs), field programmable 
gate arrays (FPGAs) computer hardware, firmware, soft 
ware, and/or combinations thereof. 

These various aspects or features can include implemen 
tation in one or more computer programs that are executable 
and/or interpretable on a programmable system including at 
least one programmable processor, which can be special or 
general purpose, coupled to receive data and instructions 
from, and to transmit data and instructions to, a storage 
system, at least one input device, and at least one output 
device. The programmable system or computing system 
may include clients and servers. A client and server are 
generally remote from each other and typically interact 
through a communication network. The relationship of cli 
ent and server arises by virtue of computer programs run 
ning on the respective computers and having a client-server 
relationship to each other. 

These computer programs, which can also be referred to 
as programs, software, Software applications, applications, 
components, or code, include machine instructions for a 
programmable processor, and can be implemented in a 
high-level procedural and/or object-oriented programming 
language, and/or in assembly/machine language. As used 
herein, the term “machine-readable medium” refers to any 
computer program product, apparatus and/or device. Such as 
for example magnetic discs, optical disks, memory, and 
Programmable Logic Devices (PLDs), used to provide 
machine instructions and/or data to a programmable proces 
Sor, including a machine-readable medium that receives 
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machine instructions as a machine-readable signal. The term 
“machine-readable signal” refers to any signal used to 
provide machine instructions and/or data to a programmable 
processor. The machine-readable medium can store Such 
machine instructions non-transitorily, such as for example as 
would a non-transient Solid-state memory or a magnetic hard 
drive or any equivalent storage medium. The machine 
readable medium can alternatively or additionally store such 
machine instructions in a transient manner, such as for 
example as would a processor cache or other random access 
memory associated with one or more physical processor 
COCS. 

To provide for interaction with a user, one or more aspects 
or features of the subject matter described herein can be 
implemented on a computer having a display device. Such as 
for example a cathode ray tube (CRT), a liquid crystal 
display (LCD) or a light emitting diode (LED) monitor for 
displaying information to the user and a keyboard and a 
pointing device. Such as for example a mouse or a trackball, 
by which the user may provide input to the computer. Other 
kinds of devices can be used to provide for interaction with 
a user as well. For example, feedback provided to the user 
can be any form of sensory feedback, Such as for example 
visual feedback, auditory feedback, or tactile feedback; and 
input from the user may be received in any form, including, 
but not limited to, acoustic, speech, or tactile input. Other 
possible input devices include, but are not limited to, touch 
screens or other touch-sensitive devices such as single or 
multi-point resistive or capacitive trackpads, voice recogni 
tion hardware and Software, optical scanners, optical point 
ers, digital image capture devices and associated interpre 
tation software, and the like. 

The subject matter described herein can be embodied in 
systems, apparatus, methods, and/or articles depending on 
the desired configuration. The implementations set forth in 
the foregoing description do not represent all implementa 
tions consistent with the subject matter described herein. 
Instead, they are merely some examples consistent with 
aspects related to the described subject matter. Although a 
few variations have been described in detail above, other 
modifications or additions are possible. In particular, further 
features and/or variations can be provided in addition to 
those set forth herein. For example, the implementations 
described above can be directed to various combinations and 
subcombinations of the disclosed features and/or combina 
tions and subcombinations of several further features dis 
closed above. In addition, the logic flows depicted in the 
accompanying figures and/or described herein do not nec 
essarily require the particular order shown, or sequential 
order, to achieve desirable results. Other implementations 
may be within the scope of the following claims. 
What is claimed is: 
1. An apparatus for executing a sequence analysis pipeline 

on a plurality of reads of genomic data, one or more genetic 
reference sequences, and an index of the one or more genetic 
reference sequences, each read of genomic data and each 
genetic reference sequence comprising a sequence of 
nucleotides, the system comprising: 

an integrated circuit formed of a set of pre-configured 
hardwired digital logic circuits that are interconnected 
by a plurality of physical electrical interconnects, one 
or more of the plurality of physical electrical intercon 
nects comprising an input to the integrated circuit 
connected with an electronic data source for receiving 
the plurality of reads of genomic data, one or more of 
the plurality of physical electrical interconnects further 
comprising a memory interface for the integrated cir 
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cuit to access a memory storing the plurality of reads of 
genomic data, the one or more genetic reference 
sequences, and the index of the one or more genetic 
reference sequences, the hardwired digital logic circuits 
being arranged as a set of processing engines, each 
processing engine being formed of a Subset of the 
hardwired digital logic circuits to perform at least one 
step in the sequence analysis pipeline on the plurality of 
reads of genomic data, the set of processing engines 
comprising: 
a mapping module in a first pre-configured hardwired 

configuration to access from the memory, according 
to at least some of the sequence of nucleotides in a 
selected read of the plurality of reads, the index of 
the one or more genetic reference sequences to map 
the selected read to one or more segments of the one 
or more genetic reference sequences based on the 
index; 

an alignment module in a second pre-configured hard 
wired configuration to access from the memory the 
one or more genetic reference sequences to align the 
selected read to one or more positions in the one or 
more segments of the one or more genetic reference 
sequences from the mapping module to produce one 
or more aligned reads; and 

a variant calling module in a third pre-configured 
hardwired configuration to access from the memory 
the one or more aligned reads and the one or more 
genetic reference sequences, compare the nucleo 
tides in the aligned reads to the nucleotides of the one 
or more genetic reference sequences to determine 
one or more differences between the sequences of 
nucleotides in the one or more aligned reads and the 
sequence of nucleotides in the one or more genetic 
reference sequences, and generate one or more vari 
ant calls representing the one or more differences; 
and 

one or more of the plurality of physical electrical inter 
connects comprising an output from the integrated 
circuit for communicating result data from the mapping 
module and/or the alignment module and/or variant 
calling module. 

2. The apparatus in accordance with claim 1, wherein the 
index of the one or more genetic reference sequences further 
comprises a hash table, and wherein the mapping module 
applies a hash function to the at least Some of the sequence 
of nucleotides to access the hash table of the index. 

3. The apparatus in accordance with claim 2, wherein the 
integrated circuit and the memory are housed on an expan 
sion card. 

4. The apparatus in accordance with claim 3, wherein the 
expansion card is a peripheral component interconnect (PCI) 
card. 

5. The apparatus in accordance with claim 4, wherein the 
system further comprises a sequencer, the sequencer having 
the electronic data source that provides digital signals rep 
resenting the plurality of reads of genomic data. 

6. The apparatus in accordance with claim 5, wherein the 
expansion card is physically integrated with the sequencer. 

7. The apparatus in accordance with claim 1, further 
comprising a cloud computing cluster having one or more 
servers, wherein the integrated circuit is housed in at least 
one of the one or more servers. 

8. The apparatus in accordance with claim 7, wherein the 
cloud computing cluster further comprises the electronic 
data Source providing digital signals representing the plu 
rality of reads of genomic data to the integrated circuit. 
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9. An apparatus for executing a sequence analysis pipeline 
on genetic sequence data, the genetic sequence data com 
prising one or more genetic reference sequences having one 
or more segments and one or more reads of genomic data, 
each read of genomic data and each genetic reference 
sequence comprising a sequence of nucleotides, the appa 
ratus comprising: 

a memory storing the one or more reads of genomic data, 
the one or more genetic reference sequences, and an 
index of the one or more genetic reference sequences; 
and 

an integrated circuit comprising a set of pre-configured 
hardwired digital logic circuits that are interconnected 
by a plurality of physical electrical interconnects, at 
least one of the plurality of physical electrical inter 
connects comprising an input for receiving the one or 
more reads of genomic data, at least one of the plurality 
of physical electrical interconnects comprising a 
memory interface for the integrated circuit to access the 
memory, and at least one of the plurality of physical 
electrical interconnects comprising an output for pro 
viding result data, the set of pre-configured hardwired 
digital logic circuits of the integrated circuit to: 
access, from the memory via the memory interface, by 

a first hardwired digital logic circuit in a first hard 
wired configuration and according to at least some of 
the sequence of nucleotides in at least one read of the 
one or more reads of genomic data and the index of 
the one or more genetic reference sequences; 

map, by the first hardwired digital logic circuit, the at 
least some of the sequence of nucleotides in the at 
least one read of the one or more reads of genomic 
data to one or more segments of the one or more 
genetic reference sequences based on the index to 
produce at least one mapped read; 

access, from the memory via the memory interface, by 
a second hardwired digital logic circuit in a second 
hardwired configuration the one or more genetic 
reference sequences and the at least one mapped 
read; 

align, by the second hardwired digital logic circuit, the 
at least one mapped read to one or more positions in 
the one or more segments of the one or more genetic 
reference sequences to produce at least one aligned 
read; 

access, from the memory via the memory interface, by 
a third hardwired digital logic circuit in a third 
hardwired configuration the one or more genetic 
reference sequences and the at least one aligned read; 
and 

compare the nucleotides in the at least one aligned read 
to the nucleotides of the genetic reference sequence 
to determine one or more differences between the 
sequences of nucleotides in the at least one aligned 
read and the sequence of nucleotides in the genetic 
reference sequence, and generate one or more variant 
calls representing the one or more differences. 

10. The apparatus in accordance with claim 9, wherein the 
index of the one or more genetic reference sequences further 
comprises a hash table, and wherein the first hardwired 
digital logic circuit maps the at least Some of the sequence 
of nucleotides in the at least one read of the one or more 
reads of genomic data to the one or more segments of the one 
or more genetic reference sequences by applying a hash 
function to the at least some of the sequence of nucleotides 
to access the hash table of the index. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

82 
11. The apparatus in accordance with claim 9, wherein the 

integrated circuit comprises a field programmable gate array 
(FPGA) of the hardwired digital logic circuits. 

12. The apparatus in accordance with claim 9, wherein the 
memory and the integrated circuit are integrated on a 
common expansion card. 

13. The apparatus in accordance with claim 12, wherein 
the expansion card is a peripheral component interconnect 
(PCI) card. 

14. The apparatus in accordance with claim 13, wherein 
the PCI card is associated with a sequencer, the sequencer 
having an electronic data source that provides digital signals 
representing the plurality of reads of genomic data. 

15. The apparatus in accordance with claim 14, wherein 
the PCI card is physically integrated with the sequencer. 

16. The apparatus in accordance with claim 9, further 
comprising a cloud computing cluster having one or more 
servers, wherein the integrated circuit is housed in at least 
one of the one or more servers. 

17. The apparatus in accordance with claim 16, wherein 
the cloud computing cluster further comprising an electronic 
data Source providing digital signals representing the plu 
rality of reads of genomic data to the integrated circuit. 

18. A system for executing a sequence analysis pipeline 
on a plurality of reads of genomic data using genetic 
reference sequence data and an index of the genetic refer 
ence sequence data, each read of genomic data and the 
genetic reference sequence data representing a sequence of 
nucleotides, the system comprising: 

a memory storing the plurality of reads of genomic data, 
the genetic reference sequence data, and the index of 
the genetic reference sequence data; and 

a field programmable gate array (FPGA) comprising a set 
of pre-configured hardwired digital logic circuits 
formed on the FPGA, the hardwired digital logic cir 
cuits being interconnected by a plurality of physical 
electrical interconnects, one or more of the plurality of 
physical electrical interconnects comprising a memory 
interface for the FPGA to access the memory to receive 
the plurality of reads of genomic data, the hardwired 
digital logic circuits being arranged as a set of process 
ing engines, each processing engine being formed of a 
subset of the hardwired digital logic circuits to perform 
a step in the sequence analysis pipeline on the plurality 
of reads of genomic data, the set of processing engines 
comprising: 
a mapping module in a first pre-configured hardwired 

configuration to access, according to at least some of 
the sequence of nucleotides in a selected read of the 
plurality of reads of genomic data, the index of the 
genetic reference sequence data, to map the selected 
read to one or more segments of the genetic refer 
ence sequence data based on the index; and 

an alignment module in a second pre-configured hard 
wired configuration to access the genetic reference 
sequence data to align the selected read to one or 
more positions in the one or more segments of the 
genetic reference sequence data from the mapping 
module to produce one or more aligned reads; 

a variant calling module in a third pre-configured 
hardwired configuration to access the aligned reads 
and the genetic reference sequence data, compare the 
nucleotides in the aligned reads to the nucleotides of 
the reference sequence data to determine one or more 
differences between the sequences of nucleotides in 
the one or more aligned reads and the sequence of 
nucleotides in the genetic reference sequence data, 
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and generate one or more variant calls representing 
the one or more differences; 

one or more of the plurality of physical electrical inter 
connects comprising an output from the integrated 
circuit for communicating result data from the mapping 
module and/or the alignment module and/or the variant 
calling module. 

19. The system in accordance with claim 18, wherein the 
index of the one or more genetic reference sequences further 
comprises a hash table, and wherein the mapping module 
applies a hash function to the at least some of the sequence 
of nucleotides to access the hash table of the index. 

20. The system in accordance with claim 18, wherein the 
FPGA and the memory are housed on an expansion card. 

21. The system in accordance with claim 20, wherein the 
expansion card is a peripheral component interconnect (PCI) 
card. 

22. The system in accordance with claim 18, wherein the 
System further comprises a sequencer, the sequencer having 
the electronic data source that provides digital signals rep 
resenting the plurality of reads of genomic data. 

23. The system in accordance with claim 22, wherein the 
expansion card is physically integrated with the sequencer. 

24. The system in accordance with claim 18, further 
comprising a cloud computing cluster having one or more 
servers, wherein the integrated circuit is housed in at least 
one of the one or more servers. 

25. The system in accordance with claim 24, wherein the 
cloud computing cluster further comprises the electronic 
data source providing digital signals representing the plu 
rality of reads of genomic data to the integrated circuit. 

26. A system for executing a portion of a sequence 
analysis pipeline on a plurality of reads of genomic data 
using genetic reference sequence data, where each read of 
the plurality of reads of genomic data and the genetic 
reference sequence data represent a sequence of nucleotides, 
the integrated circuit comprising: 

a memory storing the plurality of reads of genomic data 
and the genetic reference sequence data; 

a field programmable gate array (FPGA), the FPGA 
comprising a set of pre-configured hardwired digital 
logic circuits, the hardwired digital logic circuits being 
interconnected by a plurality of physical electrical 
interconnects, one or more of the plurality of physical 
electrical interconnects comprising a memory interface 
to access the memory, the hardwired digital logic 
circuits being arranged as a set of processing engines, 
each processing engine being formed of a subset of the 
hardwired digital logic circuits to perform one or more 
steps in the sequence analysis pipeline on the plurality 
of reads of genomic data, the set of processing engines 
comprising a variant calling module in a first hardwired 
configuration to access one or more of the plurality of 
reads of genomic data and the genetic reference 
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sequence data, compare the sequence of nucleotides in 
at least one of the plurality of reads of genomic data to 
the sequence of nucleotides of the genetic reference 
sequence data to determine one or more differences 
between the sequence of nucleotides in the at least one 
of the plurality of reads of genomic data and the 
sequence of nucleotides in the genetic reference 
sequence data, and generate one or more variant calls 
representing the one or more differences. 

27. The system in accordance with claim 26, wherein the 
set of processing engines further comprises a mapping 
module in a second hardwired configuration to access, 
according to at least some of the sequence of nucleotides in 
a selected read of the plurality of reads of genomic data, the 
index of genetic reference sequence data to map the selected 
read to one or more segments of the genetic reference 
sequence data based on the index to produce one or more 
mapped reads that represent the one or more of the plurality 
of reads of genomic data accessed by the variant calling 
module. 

28. The system in accordance with claim 27, wherein the 
index of the genetic reference sequence data further com 
prises a hash table, and wherein the mapping module applies 
a hash function to the at least some of the sequence of 
nucleotides in the selected read to access the hash table of 
the index. 

29. The system in accordance with claim 27, wherein the 
set of processing engines further comprises an alignment 
module in a third hardwired configuration to access the 
genetic reference sequence data to align the mapped read to 
one or more positions in one or more segments of the genetic 
reference sequence data from the mapping module to pro 
duce one or more aligned reads. 

30. The system in accordance with claim 29, wherein the 
FPGA and the memory are housed on an expansion card. 

31. The system in accordance with claim 30, wherein the 
expansion card is a peripheral component interconnect (PCI) 
card. 

32. The system in accordance with claim 31, wherein the 
system further comprises a sequencer, the sequencer having 
an electronic data source that provides digital signals rep 
resenting the plurality of reads of genomic data. 

33. The system in accordance with claim 32, wherein the 
expansion card is physically integrated with the sequencer. 

34. The system in accordance with claim 26, further 
comprising a cloud computing cluster having one or more 
servers, wherein the FPGA is housed in at least one of the 
Ole Or Ore SerVerS. 

35. The system in accordance with claim 34, wherein the 
cloud computing cluster further comprises an electronic data 
Source providing digital signals representing the plurality of 
reads of genomic data to the integrated circuit. 

:k k k k k 


