
(12) United States Patent
Shen et al.

US009483389 B2

US 9.483,389 B2
*Nov. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PROCESSING AUTOMATION SCRIPTS OF
SOFTWARE

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Xue Shen, Shanghai (CN); Qi Wei
Zhang, Shanghai (CN)

(73) INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21)

(22)

Appl. No.: 14/674,822

Filed: Mar. 31, 2015

(65) Prior Publication Data

US 2015/0278O8O A1 Oct. 1, 2015

Related U.S. Application Data
Continuation of application No. 13/621,876, filed on
Sep. 18, 2012, now Pat. No. 9,064,057.

(63)

(30) Foreign Application Priority Data

Sep. 30, 2011 (CN) 2011 1 O30548O

(51) Int. Cl.
G06F 9/44
G06F 9/45
G06F II/36
U.S. C.
CPC G06F II/3688 (2013.01); G06F II/3664

(2013.01); G06F 1 1/362 (2013.01); G06F
II/3684 (2013.01)

(2006.01)
(2006.01)
(2006.01)

(52)

(58) Field of Classification Search
CPC G06F 11/3664: G06F 11/3668; G06F

11F362
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,191,048 B2 5/2012 Parthasarathy et al.
2006/0224921 A1 10, 2006 Marimuthu

(Continued)

FOREIGN PATENT DOCUMENTS

CN
CN

101526919. A
103034583. A

9, 2009
4/2013

OTHER PUBLICATIONS

Suresh Thummalapenta et al., Automating Test Automation, IBM,
Sep. 2009, retrieved online on Jun. 27, 2016, pp. 1-16. Retrieved
from the Internet: <URL: http://researcher.watson.ibm.com/re
searcher/files/in-saurabhsinhalata-techrep-RI11014.pdf>.*

(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Hanh T Bui
(74) Attorney, Agent, or Firm — Cuenot, Forsythe &
Kim, LLC

(57) ABSTRACT

Processing automation scripts used for testing pages
includes running the automation scripts using a processor,
searching for an element on the page according to locating
information in an instruction of the automation scripts,
collecting element-related information of the element in
response to finding of the element on the page according to
the locating information, and associating the collected ele
ment-related information of the element with the instruction
of the automation scripts. The element-related information
associated with the instruction is saved.

6 Claims, 6 Drawing Sheets

Rutheat nation scripts

in the autom

Search for a specified elementon the tested page
according to locating information in an instruction

ation scripts

--

SA30
Search for element-related information associated with the

instruction irresponse to a failure to find the specified element

Search for an element on the page according to the
; found element-related information associated with the

S440

instruction

. sis .

Detect locating information of the element in
the element according

to the element-reated informatic
response to finding of

Update the automation scripts according to
the locating

SA60

the element

US 9.483,389 B2
Page 2

(56)

2007/0234127
2008/0244325
2008/0244524
2008/0276260
2009/0217303
2010, 0131928
2010/0235807
2010.0318969
2011 OO16453
2011/0202901
2011/0208469
2011/021.4107
2012/0167054
2013, OO14085
2013,0086,560
2013/0232474
2013/0311827
2014.?004.7278
2014/O109055
2014/O136148
2014/0173569
2014/0282412

2014/0282433
2014/0351.795
2014/0366005

2015.0020054

2015, 0026664

2015,010O832

2015. O154097

References Cited

U.S. PATENT DOCUMENTS

A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1*

10, 2007
10, 2008
10, 2008
11/2008
8, 2009
5, 2010
9, 2010

12, 2010
1, 2011
8, 2011
8, 2011
9, 2011
6, 2012
1, 2013
4, 2013
9, 2013

11, 2013
2, 2014
4, 2014
5, 2014
6, 2014
9, 2014

9, 2014
11/2014
12, 2014

1/2015

1/2015

4, 2015

6, 2015

Nguyen
Tyulenev
Kelso
Garlick et al.
Grechanik et al.
Parthasarathy et al.
Doddappa et al.
Petrovicky et al.
Grechanik et al.
Givoni et al.
Sheye
Barmeir et al.
Liu
Brennan et al.
Shen et al.
Leclair et al.
Drory et al.
Sheye
Gibbens et al.
Pai et al.
Krauss et al.
Howard G06F 8:30

717/124
Eilam et al.
Alfieri
Kozhuharov G06F 11.3696

717/125
Boden G06F 11.3692

717/124
Bartley GO6F 11.3676

717/124
Nanjundappa G06F 11,3688

714,38.14
Duda G06F 11,3688

714,38.1

2015,0324275 A1* 11/2015 Luan G06F 11.3692
717/124

2015,03392 13 A1* 11/2015 Lee G06F 11.3664
717/125

2016/0077956 A1* 3/2016 Bhattacharya . G06F 11,3688
717/124

OTHER PUBLICATIONS

Tom Yeh et al., Sikuli: Using GUI Screenshots for Search and
Automation, ACM, 2009, retrieved online on Jun. 27, 2016, pp.
1-10. Retrieved from the Internet: <URL: http://delivery.acm.org/
10.1145/1630000/16222 13?p183-yeh.pdf?id.*
Grechanik, M. et al., Maintaining and Evolving GUI-Directed Test
Scripts, online IEEE Computer Society, ICS3 09 Proc. of 31st
Intl. Conf. on Software Engineering, pp. 408-418, May 16-24,
2009, retrieved from the Internet: <www.cs.uic.edu/-drmark?in
dex htm files/Rest.pdf>.
Daniel, B. et al., “Automated GUI Refactoring and Test Script
Repair,” online ETSE 11, Proc. of 1st Intl. Workshop on End
to-End Test Script Engineering, pp. 38-41, Jul. 17, 2011, retrieved
from the Internet: <http://mir.cs.illinois.edu/~marinov/publications/
DanielETAL 11GUIRefactoring.pdf>.
Yandrapally, R. et al., “Robust Test Automation Using Contextual
Clues.” In Proc. of 2014 Intl. Sym. on Software Testing and
Analysis, (ISSTA 14), Jul. 21-25, 2014, pp. 304-314, ACM.
Bolin, M. et al., “Automation and Customization of Rendered Web
Pages.” In Proc. of 18th Annual ACM Sum. on User Iinterface
Software and Technology, (UIST 05), Oct. 23-27, 2005, pp. 163
172.
Wiklund, K. et al., “Impediments for Automated Testing—An
Empirical Analysis of a User Support Discussion Board.” In IEEE
7th Intl. Conf. on Software Testing, Verification and Validation
(ICST), Mar. 31-Apr. 4, 2014, pp. 113-122.
U.S. Appl. No. 13/621,876, Non-Final Office Action, Aug. 27, 2014,
16 pg.
U.S. Appl. No. 13/621,876, Notice of Allowance, Feb. 2, 2015, 10

* cited by examiner

U.S. Patent Nov. 1, 2016 Sheet 1 of 6 US 9.483,389 B2

Computer
System 100

U1
HardDrive HardDrive
Controller 110

105 O

CPU Keyboard

106 O

Bus Serial
System Serial interface Peripheral

Controller 107 Device 112 104

Parallel Parallel
Interface Peripheral

Controller 108 Device 113

Display
Controller Dipy

109

Fig. 1

U.S. Patent Nov. 1, 2016 Sheet 3 of 6 US 9.483,389 B2

S30
Run the automation scripts

S320
Search for a specified element on the tested page

according to locating information in an
instruction in the automation scripts

S330
Collect element-related information of the specified

element in response to finding of the specified element
on the page according to the locating information

S340
Associate the Collected information of the element with
the instruction in the automation scripts and save the

element-related information associated with the
instruction

Fig. 3

U.S. Patent Nov. 1, 2016 Sheet 4 of 6 US 9.483,389 B2

S410
Run the automation scripts

S420
Search for a specified element on the tested page
according to locating information in an instruction

in the automation Scripts

S430
Search for element-related information associated with the

instruction in response to a failure to find the specified element

S440
Search for an element on the page according to the

found element-related information associated with the
instruction

S450
Detect locating information of the element in
response to finding of the element according

to the element-related information

S460
Update the automation scripts according to

the locating information of the element

U.S. Patent Nov. 1, 2016 Sheet S of 6 US 9.483,389 B2

S510
Run the automation scripts

S520
Search for a specified element on the page according to locating

information in an instruction in the automation scripts

S530
Collect element-related information of the specified element in response to

finding of the specified element according to the locating information

S540
Determine whether a better instruction for searching for the element
exists according to the collected element-related information and the

optimal rules for searching for the page elements

S550
Update the automation scripts with the better instruction for

searching for the element in response to determination that the
better instruction for searching for the element exists

Fig. 5

U.S. Patent Nov. 1, 2016 Sheet 6 of 6 US 9.483,389 B2

Automatic Test Automation Scripts
Engine

Automation Scripts
Runnino Module

Page Element information
Collectino Module

Test Scripts Optimizing
|Revising Module

Application Program

Page Element
Information Library

Fig. 6

US 9,483,389 B2
1.

PROCESSING AUTOMATION SCRIPTS OF
SOFTWARE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation of U.S. application Ser.
No. 13/621,876, filed on Sep. 18, 2012, which claims the
benefit of China Application Number 201110305480.9 filed
on 30 Sep. 2011, which is fully incorporated herein by
reference.

BACKGROUND

Software automatic testing has become one of the impor
tant parts in the software development chain. After software
developers have finished program codes, testers perform
Some basic functional testing. Meanwhile, testers develop
Some automation Scripts to replace manual testing and save
later testing cost.
The automation scripts define a serial of operations auto

matically performed on the application interface to verify
results of these operations with a group of rules. In order to
ensure a successful automatic test, maintenance to the auto
mation scripts is very important. The automation Scripts
should be updated correspondingly once the application
interface has been changed, so as to reflect the changes.
Accordingly, testers must maintain the automation Scripts
frequently to ensure its usability and guarantee that it is the
latest version.

Sometimes the maintenance to the automation scripts is
very complex. Once there is a small change on the interface
(for example, changes in texts), it is possible to cause
abnormal operations in certain automation scripts. For
example, an element (such as a button, a link, etc.) is usually
determined by its texts in automation Scripts for a network
application. Under Such a situation, if texts of the element
are changed, then normal tests cannot be implemented
because the automation scripts are unable to find the original
texts in run time. During software development, it is nec
essary for developers to improve their products continu
ously, and it is necessary for testers to update their automa
tion scripts accordingly, which brings serious burden to the
testing work.

BRIEF SUMMARY

A method of processing automation Scripts, which auto
mation scripts are used for testing a page includes running
the automation scripts using a processor, searching for an
element on the page according to locating information in an
instruction of the automation scripts, collecting element
related information of the element in response to finding of
the element on the page according to the locating informa
tion, and associating the collected element-related informa
tion of the element with the instruction of the automation
scripts. The element-related information associated with the
instruction is saved.
A system for processing automation scripts, which auto

mation Scripts are used for testing a page includes a pro
cessor. The processor is configured to initiate executable
operations. The executable operations include running the
automation Scripts using a processor, searching for an ele
ment on the page according to locating information in an
instruction of the automation scripts, collecting element
related information of the element in response to finding of
the element on the page according to the locating informa

10

15

25

30

35

40

45

50

55

60

65

2
tion, and associating the collected element-related informa
tion of the element with the instruction of the automation
scripts. The element-related information associated with the
instruction is saved.
A computer program product for processing automation

Scripts, which automation scripts are used for testing a page,
includes a computer-readable storage medium having stored
thereon program code that, when executed, configures a
processor to perform executable operations. The executable
operations include running the automation scripts using a
processor, searching for an element on the page according to
locating information in an instruction of the automation
Scripts, collecting element-related information of the ele
ment in response to finding of the element on the page
according to the locating information, and associating the
collected element-related information of the element with
the instruction of the automation scripts. The element
related information associated with the instruction is saved.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Features, advantages, and other aspects of various
embodiments of the present invention will become more
apparent through the following detailed description with
reference to the following drawings, wherein:

FIG. 1 illustrates a block diagram of an exemplary com
puting system suitable for implementing embodiments of
the present invention;

FIGS. 2a-2c illustrate examples of a to-be-tested web
page.

FIG. 3 illustrates a flowchart of a method of processing
automation scripts according to one embodiment of the
present invention;

FIG. 4 illustrates a flowchart of a method of processing
automation Scripts according to another embodiment of the
present invention;

FIG. 5 illustrates a flowchart of a method of processing
automation Scripts according to another embodiment of the
present invention; and

FIG. 6 illustrates a block diagram of a system for pro
cessing automation scripts according to one embodiment of
the present invention.

DETAILED DESCRIPTION

The embodiments of the present invention relate to soft
ware testing, and more specifically, to a method and system
for automation Scripts of Software.
The embodiments of the present invention provide a

method of processing automation scripts, which automation
Scripts are used for testing a page, the method includes
running the automation scripts; searching for an element on
the page according to locating information in an instruction
of the automation scripts; collecting element-related infor
mation of the element in response to finding of the element
on the page according to the locating information; associ
ating the collected element-related information of the ele
ment with the instruction of the automation scripts; and
saving the element-related information associated with the
instruction.

According to another embodiment of the present inven
tion, the method further includes: searching for element
related information associated with the instruction in
response to a failure to find the element on the page
according to the locating information; wherein the element
related information associated with the instruction was col

US 9,483,389 B2
3

lected and saved when the automation scripts were run
previously; and searching for the element on the page
according to the element-related information associated with
the instruction.

According to another embodiment of the present inven
tion, the method further includes: detecting locating infor
mation of the element in response to finding of the element
on the page according to the element-related information
associated with the instruction and updating the automation
Scripts according to the locating information of the element.
The embodiments of the present invention further provide

a system for processing automation scripts, which automa
tion Scripts are used for testing a page, the system includes:
an automation Scripts running module configured to run the
automation scripts and search for an element on the page
according to locating information in an instruction of the
automation scripts; a page element information collecting
module configured to collect element-related information of
the element in response to finding of the element on the page
according to the locating information, and associating the
collected element-related information of the element with
the instruction of the automation scripts; a page element
information library configured to save the element-related
information associated with the instruction; and an automa
tion Scripts running module, a page element information
collecting module and a test Scripts optimizing/revising
module.

According to another embodiment of the present inven
tion, the automation Scripts running module is configured to,
in response to a failure to find the element on the page
according to the locating information, search for element
related information that is saved in the page element infor
mation library and associated with the instruction; wherein
the element-related information associated with the instruc
tion was collected and saved when the automation Scripts
were run previously; and search for the element on the page
according to the element-related information associated with
the instruction.

Wherein the automation scripts running module is con
figured to detect locating information of the element in
response to the finding of the element on the page according
to the element-related information associated with the
instruction. The system further includes: a test Scripts opti
mizing/revising module configured to update the automation
Scripts according to the locating information of the element.
By using the above method and system, workloads of

maintenance during automatic testing may be reduced. Such
that the automation scripts have abilities of “self-repair and
self-maintenance.” Accordingly, regarding most of 'Small
changes on application program interface, automation
Scripts may make self-adjustment. Automation Scripts do not
need any adjustment in a manual area unless significant
changes occur in design; accordingly, enormous works of a
testing team are saved.

Aspects of the present invention are described below with
reference to the methods and systems of the present inven
tion. In the Figures, each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, Such that the instructions, which are executed via
the computer or other programmable data processing appa

10

15

25

30

35

40

45

50

55

60

65

4
ratus, create means configured to implement the functions/
acts specified in the flowcharts and/or block diagram block
or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, Such that the
instructions stored in the computer readable medium pro
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus to cause a series of operational steps to be performed
on the computer, other programmable apparatus to produce
a computer implemented process Such that the instructions
that are executed on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowcharts and/or block diagram block
or blocks.

FIG. 1 illustrates a block diagram of an exemplary com
puter system 100 that is applicable to implement the
embodiments of the present invention. As illustrated in FIG.
1, the computer system 100 may comprise: CPU (Central
Process Unit) 101, RAM (Random Access Memory) 102,
ROM (Read Only Memory) 103, Bus System 104, Hard
Drive Controller 105, Keyboard Controller 106, Serial Inter
face Controller 107, Parallel Interface Controller 108, Dis
play Controller 109, Hard Drive 110, Keyboard 111, Serial
Peripheral Equipment 112, Parallel Peripheral Equipment
113 and Display 114. Among above devices, CPU 101,
RAM 102, ROM 103, Hard Drive Controller 105, Keyboard
Controller 106, Serial Interface Controller 107, Parallel
Interface Controller 108 and Display Controller 109 are
coupled to the System Bus 104. Hard Drive 110 is coupled
to Hard Drive Controller 105. Keyboard 111 is coupled to
Keyboard Controller 106. Serial Peripheral Device 112 is
coupled to Serial Interface Controller 107. Parallel Periph
eral Device 113 is coupled to Parallel Interface Controller
108. Display 114 is coupled to Display Controller 109. It
should be understood that the structure as illustrated in FIG.
1 is only for the exemplary purposes and is not intended as
a limitation of the embodiments of the present invention. In
Some cases, some devices may be added to or removed from
the computer system 100 based on specific situations.

Embodiments of the present invention reduce workloads
of maintenance during the automatic testing procedure and
provide the automation scripts with abilities of “self-repair
and self-maintenance.” Accordingly, regarding most “Small
changes on application program interface, automation
Scripts may make self-adjustment. Automation scripts do not
need any adjustment in a manual area unless significant
changes occur in design. Thus it helps to save enormous
work for a testing team.

It should be pointed out that, although the embodiments
of the present invention take automatic tests of network
application program as examples for describing embodi
ments of the present invention, the embodiments of the
present invention may be applied to other types of automatic
testing.

During software testing, various manners may be adopted
to determine elements on a webpage. For example, the
elements may be determined by text, attribute (ID and title
and the like) or their position (XPath). When writing auto
mation scripts, testers usually select the simplest way to
determine elements on an interface.

US 9,483,389 B2
5

One of the principles of the embodiments of the present
invention is that, the element is found out on a page
according to the testers instructions when the automation
Scripts are running Meanwhile, an information collector is
run at the backend. This information collector collects
information of each element, which information may com
prise full attributes, texts, positions (XPath) and so on. The
collected information is saved and associated with specific
automation scripts and specific "element-discovery instruc
tions. Then, when the automation Scripts are run again, if
there have been some Small changes on the interface, as an
alternative solution for determining the element, an auto
mation engine may try to access the saved information when
the same element cannot be found according to instructions
of the testers. For most of small changes on the interface, the
correct elements may be found after trying the alternative
Solution. Then the automation engine may repair the auto
mation scripts by itself and continue testing automatically.
Thus, although the testers only specify one solution for
determining an element on the interface in the automation
Scripts, when running the automation scripts, the automatic
engine may try its best to find all possible solutions for
determining the element during the running of the automatic
testing.
By this method, the automation scripts may be provided

with the ability of “self-repair.” For most of “small changes
on the application program interface, the automation Scripts
may adjust by itself. It can save enormous time for the testers
in maintaining the automation scripts.

Various embodiments may be described with reference to
the drawings.

Elements of the page refer to various components on the
webpage, for example, webpage links, images, text blocks,
embedded frames, table buttons, table input boxes, i.e.,
element components that may compose the webpage display
or operation information.

Wherein, different webpage elements have different attri
bute sets. For example, with respect to a webpage link, its
element attributes may include an object page URL, a link
title and the like; with respect to a webpage input box, its
element attributes may include a text value, a maximum
input length and the like. A webpage element may further
include some user-defined attributes. HTML does not define
the attribute set of the element strictly and the user may add
any number of self-defined attributes as required.
An example is illustrated as below:

<A href="http://www.google.com" title="Google homepage" dojoType=
"dijit.link"> Google < A

A standard webpage link element is illustrated here,
which has three attributes:

“href: URL of a target webpage:
“title: title of the link; and
"dojoType’: a user-defined attribute.
Content of the page element means texts or other page

elements comprised therein. In the above example, content
of the page element is “Google,” which is an element text
comprised therein.
XPath of the page element describes a position of the page

element relative to other element(s) in the page document.
An HTML page is illustrated as below:

10

15

25

30

35

40

45

50

55

60

65

<HTML
<BODY>
<DIV role="navigation" >
<A href="http://www.google.com" title="Google homepage"

dojoType="dijit.link">Google-A-

In the HTML page illustrated above, XPath of the link
element “-A . . . >google-/A>'' is “/HTML/BODY/DIV
(arole-navigation/A. In other words, the link element is
located under HTML root, within element BODY and in a
DIV node with an attribute of “role-navigation/.”
XPath indicates a relative position of the element in the

HTML page document, and the syntax of XPath is flexible.
In the above example, the referred to element node DIV
(arole="navigation may be defined by descriptions of
attribute values.

During the running of the automation scripts, according to
instructions provided by the testers, the automation scripts
search for the element on the page, execute specific opera
tions, or check content of the element, verify correctness of
the running of the program. For example, the operations
implemented by the automation Scripts according to instruc
tions provided by the testers may include: simulating mouse
clicks and keyboard inputs and the like, i.e., all possible
operations and inputs by the user on the webpage. Or the
automation scripts may verify content of the element, which
includes the following of the element: text content, attri
butes, XPath and display position on the webpage and so on.
One example of the running procedure of the automation

scripts is illustrated with reference to FIG. 2a-2c.
FIG. 2a illustrates a network interface on which the

automatic testing will be run. FIG. 2C illustrates the HTML
markup language of the interface. The testers expect to test
the link “My Recommendation' in FIG. 2a to ensure that
this link can direct to a correct webpage and the webpage
may be displayed correctly.
One example of the automation scripts (written in Pseudo

Code) is illustrated as below:

Link link = AFTHelper.findLinkByText("My Recommendations")
fi finding the link “My Recommendations' by text:
link.click(); if clicking the link:

... verifing the resulted page. . .

In the automation scripts, the link “My recommendations”
is found through its text, a "click' operation is triggered and
then the resulted page is verified.

FIG. 2b illustrates an updated webpage. As illustrated in
FIG. 2b, the text of the link is changed from “My recom
mendations' to “My recommendations/Votes.” In FIG. 2b,
as the text of the link has been changed, the automation
Scripts cannot work normally. In other words, the link cannot
be found by the codes as illustrated below:

Link link = AFTHelper.findLinkByText("My Recommendations")
fi finding the link “My Recommendations' by text:

Although it is only a small change on the interface, the
testers still have to update their automation scripts manually.
If such codes exist in a plurality of scripts, the testers have
to update those Scripts one by one. Accordingly, it is desired
to provide a method of processing automation scripts and

US 9,483,389 B2
7

ensure the method is capable of maintaining the automation
Scripts automatically after the interface has been changed.

FIG. 3 illustrates a flowchart of a method of processing
the automation scripts according to one embodiment of the
present invention, wherein the automation scripts are used
for testing the webpage.

At step S310, the automation scripts are run.
At step S320, a specified element on the tested page is

searched according to locating information in an instruction
in the automation Scripts.

At step S330, element-related information of the specified
element is collected in response to the finding of the speci
fied element on the page according to the locating informa
tion.

At step S340, the collected information of the element is
associated with the instruction in the automation scripts and
the element-related information associated with the instruc
tion is saved.

The element link “My Recommendations' previously
illustrated in FIG. 2a is taken as an example, when the
automation scripts is run, the link “My Recommendations'
is found out by texts according to the instruction coded by
the testers in the automation Scripts.

After the link is found, a backend information collector
may collect all possible information related to the link and
identify certain alternative solutions for determining the
link. For example:

Attribute: href=?blogs/roller-ui favorites?lang=XXX

5

10

15

25

8
With automation scripts in the above example as an

example, the automatic test engine collects element-related
information, wherein the information comprises all possible
information for describing how to locate the element. The
information may comprise:

Attributes of the element;
Content of the element; and
XPath of the element.
However, the element-related information may not be

limited to the above information. A specific list of to-be
collected element information may be specified in the auto
matic test engine, and this list may be customized by the
USC.

An example of HTML of a page is illustrated below:

<!-- colLeft -->
V <div id="lotusColLeft' class="lotusCoLeft">

 < a.
V <div class="lotusMenu">
V <div class="lotusBottomCorner">
V <div class="lotusInner">
V <div role="navigation" aria-label="Public Blogs" aria-labelled

by="blogsNavigationSelectedTab">
V <ul class="aria toolbar" role="toolbar" aria-label="Public

Blogs" aria-controls="lotusContent">
b <i>...<i>

<li class="lotus.Selected">...</i>

XPath://DIVIG id="lotusColLeft/DIVIG)class="lotusMenu"/DIVIGirole='navigation"
fULIGDrole="toolbar/LI2/A

These additional information and alternative solutions for
identifying the link are saved and associated with the
instructions corresponding to the automation scripts for
future use.

FIG. 4 illustrates a flowchart of a method of processing
automation Scripts according to another embodiment of the
present invention.

At step S410, the automation scripts are run.
At step S420, a specified element on the tested page is

searched according to locating information in an instruction
in the automation Scripts.

At step S430, element-related information associated with
the instruction is searched in response to a failure to find the
specified element; wherein the element-related information
associated with the instruction was collected and saved
when the automation Scripts were run previously.

At Step S440, an element on the page is searched accord
ing to the element-related information that has been found.

Further, according to another embodiment of the present
invention, after the page element is found, the element
related information associated with the specified element
may be collected, and after the collected element-related
information is associated with the instruction in the auto
mation scripts, the element-related information associated
with the instruction may be saved for future use.

Further, according to another embodiment of the present
invention, at step S450, locating information of the element
is detected after the element on the page has been found
according to the element-related information associated with
the instruction; and at step S460, the automation scripts are
updated according to the locating information of the ele
ment.

35

40

45

50

55

60

65

-continued

V <i>
<a role="button" aria-pressed="false"
href="blogs/roller-ui favorites?lang
en us" tablindex="-1">My Recommendations</a-

With respect to the example of HTML of the page, the
following test Scripts may be run:

Link link = AFTHelper.findLinkByText("My Recommendations")
fi find the "My Recommendations" link by its text
link.click(); if click the link

The automatic test engine runs a segment of the Scripts
and finds the link “My Recommendation of corresponding
element on the webpage according to the instructions pro
vided by the tester. The test engine collects all the informa
tion related to the link, and the information may include:

attributes:

Name Value

role Button
hiref fblogs/roller-ui favorites?lang=en us

US 9,483,389 B2

content: My recommendations
XPath:

.../DIVIG)id="lotusColLeft/DIVIG)class="lotusMenu"/DIVIGirole= 5
"navigation'? ULCDrole="toolbar/LI3/A

Wherein, the XPath indicates that, the link is located in
10

- (DIVIG id="lotusColLeft") under the DIV with an attribute of
“id=lotusColLeft:

- (DIVIG2class="lotusMenu") under the DIV with an attribute of
“class=lotus Menu:

- (DIVIGirole='navigation") under the DIV with an attribute of 15
“role=navigation:

- (ULCDrole="toolbar) under the UL with an attribute of
“role=toolbar."

- an element (LIL3) under the third LI sub node.

After the link “My Recommendations” on the interface is 20
changed to “My Recommendations/Votes,” when the auto
mation scripts are run, first, the automation scripts try to find
the link by using the text “My Recommendations' according
to an instruction coded by the testers in the automation
scripts. The link cannot be found, because the interface has 25
been updated and texts of the link have been changed to “My
recommendations/Votes.”
At this time, the automatic test engine searches for the

saved element-related information associated with the
instruction and tries to find the link by other alternative so
Solutions as collected during the previous automatic running
procedures.

Attribute: href=?blogs/roller-ui favorites?lang=XXX
XPath://DIVIG id="lotusColLeft/DIVI(a class="lotusMenu"/DIVIG) 35

role='navigation' (ULCDrole="toolbar/LI2/A

The link is found by those alternative solutions. Mean
while, the automatic test engine may check the current texts 40
of the link and updates the automatic Scripts correspondingly
in an automatic manner. The automatic test is continued. The
updated automation Scripts are illustrated as below:

45
Link link = AFTHelper.findLinkByText("My Recommendations/Votes")
link.click(); if clicking the link

... verifying the resulted page. . .

In this way, the automation scripts are given the ability of so
“self-repair.” For most of “small changes on the interface
of the application program, the automation Scripts may make
self-adjustment and do not require a tester's manual repair
any more; accordingly, enormous works of a testing team are
saved.

According to another embodiment of the present inven
tion, if the developers improve their codes such that better
Solutions exist for determining the elements, then the auto
matic test engine may improve its automation Scripts auto
matically. Reference is made to FIG. 5 for describing a
flowchart of a method of processing automation scripts 60
according to another embodiment of the present invention.

At step S510, automation scripts are run, wherein the
automation scripts include optimal rules for searching for
page elements, which rules are predefined by the users.

At step S520, a specified element on the page is searched 65
according to locating information in an instruction in the
automation Scripts.

55

10
At step S530, element-related information of the specified

element is collected in response to finding of the specified
element.
At step S540, it is determined whether a better instruction

for searching for the element exists according to the col
lected element-related information and the optimal rules for
searching for the page elements.
At step S550, the automation scripts are updated with the

better instruction for searching for the element in response
to having determined that the better instruction for searching
for the element exists.

Still in the above example of automation scripts, for
example, the automation Scripts search for and find the
to-be-tested link element by using content of the link texts,
which is illustrated as below:

Link link = AFTHelper.findLinkByText("My Recommendations")
fi finding the link "My Recommendations" in terms of texts.

In order to implement automatic optimization of the
automation scripts, a set of Solutions for searching for page
elements may be predefined by the user, then these solutions
may be sorted according to the priorities, such that the
optimal rules for searching for elements may be formed. For
example:

the best: search for the element by using the id attribute
of the element;

if the id attribute does not exist, then search for the
element by using content texts of the element;

if the content texts of the element do not exist, then . . .
Then, the optimal rules for searching for elements are

inputted into the automatic test engine. And the developer
adds an attribute of “ID' to the link “My Recommendations/
Votes as below:

<!-- colLeft -->
V <div id="lotusColLeft' class="lotusCoLeft">

 < a.
V <div class="lotusMenu">
V <div class="lotusBottomCorner">
V <div class="lotusInner">
V <div role="navigation" aria-label="Public Blogs" aria-labelled

by="blogsNavigationSelectedTab">
V <ul class="aria toolbar" role="toolbar" aria-label="Public

Blogs" aria-controls="lotusContent">
b <i></i>

<li class="lotus.Selected">...</i>
V <i>
<a id="My Recommendations Menu" role="button" aria
pressed="false" href="blogs/roller-ui favorites?lang
en us" tablindex="-1">
My Recommendations</a-

<Alic
<full

<div>
<div>

<div>

The automatic test engine runs a segment of Scripts and
finds the target element link “My Recommendations.” Sup
pose the HTML of the current link is illustrated as below:

<a id="my recommendation menu" role="button" href="blogs/roller
ui? favorites?lang=en us">
My Recommendations

<facs

US 9,483,389 B2
11

The automatic test engine collects the information related
to the page elements, which information may be used for
describing and defining content of the information of the
element:

attribute:

Name of the attribute Value of the attribute

Id my recommendation menu
Role button
Href fblogs/roller-ui favorites?lang=en us

COntent: . . .
XPath: . . .
The automatic test engine finds that the element has an id

attribute of “id my recommendation menu.” According to
the predefined optimal rules for searching for elements, if
the element has an id attribute, then it is preferred that the
id attribute of the element, instead of the content of texts,
should be used for locating the page element. And the
implementation of the current Scripts locates the element by
using the text content, thus the scripts are optimized.

The automatic test engine updates and optimizes the
automation scripts and changes the solution for searching for
the link element into using the id attribute.

Link link=AFTHelper.findLinkByID(“my recom
mendation menu)

Next, when the text of the link is changed again, the
changes may not affect the automatic test and the automation
scripts. Usually, the automation scripts are in texts, thus the
automatic test engine may change the automation Scripts
conveniently.
By the above solution, when the developers update their

codes to make the test more friendly, the old automation
Scripts may be updated simultaneously. This may help to
improve the quantity of the test and save the tester's time in
maintaining the automation scripts.

FIG. 6 illustrates a block diagram of a system for pro
cessing automation scripts according to one embodiment.
According to one embodiment of the present invention, the
above method of processing the automation scripts in the
present invention may be implemented by an automatic test
engine. Wherein the automatic test engine includes an
automation scripts running module, a page element collect
ing module, a test Script optimizing/revising module.

According to one embodiment of the present invention,
the automation Scripts running module is configured to run
the automation scripts and search for an element on the page
according to locating information in an instruction of the
automation scripts; the page element information collecting
module is configured to collect element-related information
of the element in response to finding of the element on the
page according to the locating information, and associating
the collected element-related information of the element
with the instruction of the automation scripts. And the
system further comprises a page element information library
configured to save the element-related information associ
ated with the instruction.

According to one embodiment of the present invention,
the automation scripts running module is configured to
search for element-related information that is saved in the
page element information library and associated with the
instruction, in response to a failure to find the element on the
page according to the locating information, wherein the
element-related information associated with the instruction

10

15

25

30

35

40

45

50

55

60

65

12
was collected and saved when the automation scripts were
run previously, and searching for the element on the page
according to the element-related information associated with
the instruction.

According to one embodiment of the present invention,
the automation scripts running module is configured to
detect locating information of the element in response to
finding of the element on the page according to the element
related information associated with the instruction. The test
Scripts optimizing/revising module configured to update the
automation scripts according to the locating information of
the element.

According to one embodiment of the present invention,
wherein the test Scripts optimizing/revising module is con
figured to determine whether a better instruction for search
ing for the element exists according to the collected element
related information of the element, and updating the
automation Scripts with the better instruction for searching
for the element in response to having determined a better
instruction for searching for the element exists.
The embodiments of the present invention further pro

vides a storage medium or signal carrier comprising instruc
tions for implementing the method of the present invention.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in Succession may, in fact, be executed Substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
computer program products in any tangible medium of
expression having computer-available program code
embodied thereon.
Any combination of one or more computer readable

medium(s) may be utilized. A computer-available or com
puter readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor System, apparatus, or device, or
propagating medium. More specific examples (a non-ex
haustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory

US 9,483,389 B2
13

(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable
compact disc read-only memory (CD-ROM), an optical
Storage device, such as transmission medium supporting
Internet or Intranet, or a magnetic storage device. It should
be noted that the computer-available or computer readable
medium may even be a paper or other suitable medium
printed with a program thereon, because the program may be
obtained electronically by electrically scanning such paper
or other medium, and then compiled, interpreted or pro
cessed in a suitable manner, and if necessary, stored in a
computer memory. In the context of the present document,
a computer-available or computer-readable medium may be
any medium containing, storing, communicating, propagat
ing, or transmitting a program available for instructions
execution system, apparatus or device, or associated with the
instruction execution system, apparatus, or device. A com
puter-available medium may comprise a data signal con
tained in a base band or propagated as a part of carrier and
embodying a computer-available program code. A com
puter-available program code may be transmitted by any
suitable medium, including, but not limited to, radio, wire,
fiber cable, or RF, etc.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user's computer, partly on
the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Although the present invention is described in details in
combination with the above preferred solution, it is appre
ciated that, the above embodiments are only intended to be
illustrative and not limiting. Those skilled in the art may
modify the solutions as illustrated in the present invention
without departing from the scope and spirit of the present
invention.
What is claimed is:
1. A method of processing an automation script used for

testing a page, the method comprising:
executing the automation script;
searching for an element on the page according to locating

information contained within an instruction of the
automation script;

collecting, responsive to finding the element on the page
according to the locating information, element-related
information;

associating the collected element-related information of
the element with the instruction of the automation
script;

saving the collected element-related information:

5

10

15

25

30

35

40

45

50

55

60

14
determining whether a better instruction for searching for

the element exists according to the collected element
related information; and

updating, responsive to the determining that the better
instruction exists, the automation script with the better
instruction.

2. The method of claim 1, wherein the element-related
information includes at least one of full attribute, text, and
location.

3. A system configured to process an automation script
used for testing a page, comprising:

at least one hardware processor configured to initiate the
following executable operations:
executing the automation script;
searching for an element on the page according to

locating information contained within an instruction
of the automation script;

collecting, responsive to finding the element on the
page according to the locating information, element
related information;

associating the collected element-related information
of the element with the instruction of the automation
script;

saving the collected element-related information;
determining whether a better instruction for searching

for the element exists according to the collected
element-related information; and

updating, responsive to the determining that the better
instruction exists, the automation script with the
better instruction.

4. The system of claim 3, wherein the element-related
information includes at least one of full attribute, text, and
location.

5. A computer program product for processing automation
Scripts used for testing a page, comprising:

a computer-readable storage memory having stored
thereon program code that, when executed, configures
a processor to perform executable operations compris
ing:
executing the automation script;
searching for an element on the page according to

locating information contained within an instruction
of the automation script;

collecting, responsive to finding the element on the
page according to the locating information, element
related information;

associating the collected element-related information
of the element with the instruction of the automation
script;

saving the collected element-related information:
determining whether a better instruction for searching

for the element exists according to the collected
element-related information; and

updating, responsive to the determining that the better
instruction exists, the automation script with the
better instruction.

6. The computer program product of claim 5, wherein the
element-related information includes at least one of full
attribute, text, and location.

