a2 United States Patent

Olbrich et al.

US009483210B2

(10) Patent No.:
45) Date of Patent:

US 9,483,210 B2
*Nov. 1, 2016

(54)

(71)

(72)

(73)

@
(22)
(65)

(63)

(60)

(1)

(52)

(58)

FLASH STORAGE CONTROLLER EXECUTE

LOOP

Applicant: SanDisk Enterprise IP LL.C, Milpitas,
CA (US)

Inventors: Aaron K. Olbrich, Morgan Hill, CA
(US); Douglas A. Prins, Laguna Hills,
CA (US)

Assignee: SANDISK TECHNOLOGIES LLC,
Plano, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/877,812

Filed: Oct. 7, 2015

Prior Publication Data
US 2016/0034227 Al Feb. 4, 2016
Related U.S. Application Data

Continuation of application No. 13/887,018, filed on
May 3, 2013, now Pat. No. 9,158,677, which is a
continuation of application No. 12/082,223, filed on
Apr. 8, 2008, now Pat. No. 8,621,138.

Provisional application No. 61/017,123, filed on Dec.
27, 2007.

Int. CL.
GO6F 3/06 (2006.01)
GO6F 13/16 (2006.01)
(Continued)
U.S. CL
CPC ... GO6F 3/0659 (2013.01); GOGF 3/0604

(2013.01); GO6F 3/0679 (2013.01);
(Continued)
Field of Classification Search

CPC GOGF 12/0246; GOG6F 13/1657; G11C
7/1051; G11C 7/1063

USPC 711/103
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,173,737 A 11/1979 Skerlos et al.
4,888,750 A 12/1989 Kryder et al.
(Continued)
FOREIGN PATENT DOCUMENTS
EP 1 299 800 4/2003
EP 1465203 Al 10/2004
(Continued)

OTHER PUBLICATIONS

Chanik Park; Talawar, P.; Daesik Won; MyungJin Jung; JungBeen
Im; Suksan Kim; Youngjoon Choi, “A High Performance Controller
for NAND Flash-based Solid State Disk (NSSD),” Non-Volatile
Semiconductor Memory Workshop, 2006. IEEE NVSMW 2006.
21st , vol., No., pp. 17,20, Feb. 12-16, 2006.*

(Continued)

Primary Examiner — David X Yi

Assistant Examiner — Ramon A Mercado

(74) Attorney, Agent, or Firm — Morgan, Lewis &
Bockius LLP

(57) ABSTRACT

A storage controller is provided that contains multiple
processors. In some embodiments, the storage controller is
coupled to a flash memory module having multiple flash
memory groups, each flash memory group corresponding to
a distinct flash port in the storage controller, each flash port
comprising an associated processor. Each processor handles
a portion of one or more host commands, including reads
and writes, allowing multiple parallel pipelines to handle
one or more host commands simultaneously.

14 Claims, 70 Drawing Sheets

DATA PATH DRAM 107
BOARD_ |7 - :
103 T~ s b
| PORTO ™" | FLASH ALasHSTAGE| | | | rlask
I 304 | Hemi | L] BUFERO |.i || GROUP
I i 308 [0
‘ P so7 s
! RAM e TUTTR t
HoST : CONTROUER ! L
01 ’ 3 || RASH FLASHSTAGE[| | [FLASH
s 4w [L] sureRY | L] GRoUP
1| INTERFACE ™ A
! 310 i Ll 302
I
Host | L SHARED
102 | BLOCK
i 38
i
I
b :
1 } B
1| COMMAND | | COMMAND 3 | sy ALASHSTAGE| | 1 | FLASH
1| PARSER DISTRBUTION | ; i
: i B L] e BURERT |1 1] GROP
. A
"~ 53D CONTROLLER 106 PO] 38
I oLt pepeetipe

US 9,483,210 B2

Page 2

(51) Int.CL 7,043,505
GIIC 7710 (2006.01) 7,076,598
GIIC 16/10 (2006.01) T0000
GO6F 12/02 (2006.01) 7’111’293
GO6F 13/28 (2006.01) 7:126:873
(52) US.CL 7,133,282
CPC ... GO6F12/0246 (2013.01); GO6F 13/1657 7,155,579
(2013.01); GOGF 13/28 (2013.01); GIIC Toaene
7/1051 (2013.01); G1IC 7/1063 (2013.01); 77184.446
G1IC 16/10 (2013.01); GO6F 2212/7201 7,212,440
(2013.01) 7,275,170
7,295,479
. 7,328,377
(56) References Cited 7,516,292
7,523,157
U.S. PATENT DOCUMENTS 7,527,466
4,916,652 A 4/1990 Schwarz et al. ;’g%g’g?ﬁ
5,129,089 A 7/1992 Nielsen 7'546.478
5270979 A 12/1993 Harari et al. 7'566.987
5329491 A 7/1994 Brown et al. 7.571.277
5,381,528 A 1/1995 Brunelle 77574554
5,404,485 A 4/1995 Ban 7/596.643
5,488,702 A 1/1996 Byers et al. 7’669’003
5519847 A * 5/1996 Fandrich ...ooooovo..... G11C 16/10 7681106
365/185.33 7707481
5,530,705 A 6/1996 Malone 7761655
5,537,555 A * 7/1996 Landry ... GO6F 13/1615 7765.454

710/100 on
5,551,003 A 8/1996 Mattson et al. 3’213’522
5,636,342 A 6/1997 Jeffries 7'870.326
5,657,332 A 8/1997 Auclair et al. 7'890.818
5,666,114 A 9/1997 Brodie et al. 7’913’022

5,708,849 A 1/1998 Coke et al. o
5,765,185 A 6/1998 Lambrache et al. 7.925.960
5,890,193 A 3/1999 Chevallier 7'934.052
5,930,188 A 7/1999 Roohparvar 7945825
5936,884 A 81999 Hasbun et al. 7970112
5,943,692 A 8/1999 Marberg et al. 7’978’516
5,946,714 A 8/1999 Miyauchi 7’996’642
5,982,664 A 11/1999 Watanabe 8032724
6,000,006 A 12/1999 Bruce et al. 8.041.884
6,006,345 A 12/1999 Berry, Jr. 8042011
6,016,560 A 1/2000 Wada et al. $.250.380
6,044,472 A 3/2000 Crohas 8.254.181
6,104,304 A 8/2000 Clark et al. 8’259’506
6,119,250 A 9/2000 Nishimura et al. 8’261’020
6,260,120 Bl 7/2001 Blumenau et al. 8’312’349
6,295,592 Bl 9/2001 Jeddeloh et al 8’412,985
6,311,263 Bl 10/2001 Barlow et al. 8.420.436
6,408,394 Bl 6/2002 Vander Kamp et al. 8’438’459
6,412,042 Bl 6/2002 Paterson et al. 8’453’022
6,442,076 Bl 8/2002 Roohparvar 8.510.499
6,449,625 Bl 9/2002 Wang 8.554.984
6,484,224 Bl 11/2002 Robins et al. 8,627,117
6,564,285 BL* 5/2003 Mills coeerecrecr... GOGF 12/0607 8.634.248
711/101 8,694,854
6,647,387 Bl 11/2003 McKean et al. 8724789
6,678,788 Bl 1/2004 O’Connell 8’832’384
6,728,879 Bl 4/2004 Atkinson 8’885’434
6,757,768 Bl 6/2004 Potter et al. $.898 373
6,775,792 B2 82004 Ulrich et al. 8.009.894
6,810,440 B2 10/2004 Micalizzi, Jr. et al. 8’910’030
6,836,808 B2 12/2004 Bunce et al. 8,923 066
6,836,815 Bl 12/2004 Purcell et al. 0.043.517
6,842,436 B2 1/2005 Moeller 9.128.690
6,865,650 Bl 3/2005 Morley et al. 9’329’789
6,871,257 B2 3/2005 Conley et al. 2001/0026949
6,895,464 B2 5/2005 Chow et al. 2001/0050824
6,966,006 B2 11/2005 Pacheco et al. 2002/0024846

6,978,343 Bl 12/2005 Ichiriu

6,980,985 Bl 12/2005 Amer-Yahia et al. 2002/0032891
6,981,205 B2 12/2005 Fukushima et al. 2002/0036515
6.988.171 B2 1/2006 Beardsley et al. 2002/0083299
7,020,017 B2 3/2006 Chen et al. 2002/0099904
7,024,514 B2 4/2006 Mukaida et al. 2002/0116651
7,028,165 B2 4/2006 Roth et al. 2002/0122334
7,032,123 B2 4/2006 Kane et al. 2002/0152305

5/2006
7/2006
8/2006
9/2006
9/2006
10/2006
11/2006
12/2006
1/2007
2/2007
2/2007
5/2007
9/2007
11/2007
2/2008
4/2009
4/2009
5/2009
5/2009
5/2009
6/2009
7/2009
8/2009
8/2009
9/2009
2/2010
3/2010
4/2010
7/2010
7/2010
8/2010
11/2010
1/2011
2/2011
3/2011

4/2011
4/2011
5/2011
6/2011
7/2011
8/2011
10/2011
10/2011
10/2011
82012
82012
9/2012
9/2012
11/2012
4/2013
4/2013
5/2013
5/2013
82013
10/2013
1/2014
1/2014
4/2014
5/2014
9/2014
11/2014
11/2014
12/2014
12/2014
12/2014
5/2015
9/2015
5/2016
10/2001
12/2001
2/2002
3/2002
3/2002
6/2002
7/2002
8/2002
9/2002
10/2002

Teague et al.
Wang

Shrader et al.
Wenzel

Hersh et al.
See et al.
Sone

Neils et al.
Saliba
Gorobets et al.
Rashid et al.
Gorobets
Suzuki

Yoon et al.
Lewis et al.
Kimura et al.
Aguilar, Jr. et al.
Simmons
Takahashi
Aasheim et al.
Kubo et al.
Black et al.
Mizushima
Tanaka et al.
Merry et al.
Sinclair et al.
Jarrar et al.
Kirschner et al.
Mizushima et al.
Passint

Shin

Oh et al.

Shin et al.
Kong et al.
Baxter ..o
Ho et al.

Prins et al.

Cohen et al.
Murata

Olbrich

Smith

Smith

Chang

Nicolaidis et al.
Guyot

Hwang et al.
Sommer et al.
Krishnaprasad et al.
Reche et al.
Bowers et al.
Fillingim et al.
Cho et al.

Katz

Banerjee

Yano et al.
Johnston

Sprouse et al.
Dar et al.

Altberg et al.

de la Iglesia
Kumar

Kang et al.

Singh et al.

Goel
Subramanian et al.
Sprouse et al.
Lotzenburger et al.
Chu et al.

Ogawa et al.
Buch

Kawahara et al.
Yada et al.
Eldridge et al.
Van Huben et al.
Conley

Beckert et al.

Lee et al.

Jackson et al.

GO6F 13/14
326/38

US 9,483,210 B2

Page 3
(56) References Cited 2006/0244049 A1 11/2006 Yaoi et al.
2006/0259528 Al 11/2006 Dussud et al.
U.S. PATENT DOCUMENTS 2006/0291301 Al 12/2006 Ziegelmayer
2007/0011413 Al 1/2007 Nonaka et al.
2002/0162075 Al 10/2002 Talagala et al. 2007/0033376 Al 2/2007 Sinclair et al.
2002/0165896 Al 11/2002 Kim 2007/0058446 Al 3/2007 Hwang et al.
2003/0041299 Al 2/2003 Kanazawa et al. 2007/0061597 Al 3/2007 Holtzman et al.
2003/0043829 Al 3/2003 Rashid 2007/0076479 Al 4/2007 Kim et al.
2003/0079172 Al 4/2003 Yamagishi et al. 2007/0081408 Al 4/2007 Kwon et al.
2003/0088805 Al 5/2003 Majni et al. 2007/0083697 Al 4/2007 Birrell et al.
2003/0093628 Al 5/2003 Matter et al. 2007/0088716 Al 4/2007 Brumme et al.
2003/0163594 Al 8/2003 Aasheim et al. 2007/0091677 Al 4/2007 Lasser et al.
2003/0163629 AL* 8/2003 Conleyc.... G11C 16/10 2007/0101096 Al 5/2007 Gorobets
711103 2007/0106679 Al 5/2007 Perrin et al.
2003/0188045 AL* 10/2003 Jacobson GO6F 3/0601 2007/0113019 Al 5/2007 Beukema
7101 2007/0133312 Al 6/2007 Roohparvar
2003/0189856 Al 10/2003 Cho et al. 2007/0147113 Al 6/2007 Mokhlesi et al.
2003/0198100 Al 10/2003 Matsushita et al. 2007/0150790 Al 6/2007 Gross et al.
2003/0204341 Al 10/2003 Guliani et al. 2007/0156842 Al 7/2007 Vermeulen et al.
2003/0212719 Al 11/2003 Yasuda et al. 2007/0174579 Al 7/2007 Shin _
2003/0225961 Al 12/2003 Chow et al. 2007/0180188 Al 8/2007 Fujibayashi et al.
2004/0024957 AL* 2/2004 Linl coovvoveeeeee. GOGF 11/1068 2007/0180346 Al 82007 Murin
711/103 2007/0191993 Al 82007 Wyatt
2004/0024963 Al 2/2004 Talagala et al. 2007/0201274 Al 8/2007 Yu et al.
2004/0057575 Al 3/2004 Zhang et al. 2007/0204128 Al 8/2007 Lee et al.
2004/0062157 Al 4/2004 Kawabe 2007/0208901 Al 9/2007 Pl_lrcell et al.
2004/0073829 Al 4/2004 Olarig 2007/0234143 Al 10/2007 Kim
2004/0085849 Al 5/2004 Myoung et al. 2007/0245061 Al 10/2007 Harriman
2004/0114265 Al 6/2004 Talbert 2007/0245099 Al 10/2007 Gray et al.
2004/0143710 Al 7/2004 Walmsley 2007/0263442 Al 11/2007 Cornwall et al.
2004/0148561 Al 7/2004 Shen et al. 2007/0268754 Al 11/2007 Lee et al.
2004/0153902 Al 8/2004 Machado et al. 2007/0277036 Al 11/2007 Chamberlain et al.
2004/0158775 Al /2004 Shibuya et al. 2007/0279988 Al 12/2007 Nguyen
2004/0167898 Al 82004 Margolus et al. 2007/0291556 Al 12/2007 Kamei
2004/0181734 Al 9/2004 Saliba 2007/0294496 Al 12/2007 Goss et al.
2004/0199714 Al 10/2004 Estakhri et al. 2007/0300130 Al 12/2007 Gorobets
2004/0210706 Al 10/2004 In et al. 2008/0013390 Al 1/2008 Zipprich-Rasch
2004/0237018 Al 11/2004 Riley 2008/0019182 Al 1/2008 Yanagidaira et al.
2005/0060456 Al 3/2005 Shrader et al. 2008/0022163 Al 1/2008 Tanaka et al.
2005/0060501 Al 3/2005 Shrader 2008/0028275 Al 1/2008 Chen et al.
2005/0073884 Al 4/2005 Gonzalez et al. 2008/0043871 Al 2/2008 Latouche et al.
2005/0108588 Al 5/2005 Yuan 2008/0052446 Al 2/2008 Lasser et al.
2005/0114587 Al 5/2005 Chou et al. 2008/0052451 Al 2/2008 Pua et al.
2005/0138442 Al 6/2005 Keller, Jr. et al. 2008/0056005 Al 3/2008 Aritome
2005/0144358 Al 6/2005 Conley et al. 2008/0059602 Al 3/2008 Matsuda et al.
2005/0144361 Al 6/2005 Gonzalez et al. 2008/0071971 Al 3/2008 Kim et al.
2005/0144367 Al 6/2005 Sinclair 2008/0077841 Al 3/2008 Go_nzalez et al.
2005/0144516 Al 6/2005 Gonzalez et al. 2008/0077937 Al 3/2008 Shin et al.
2005/0154825 Al 7/2005 Fair 2008/0112226 Al 5/2008 Mokhlesi
2005/0172065 Al 8/2005 Keays 2008/0141043 Al 6/2008 Flynn ... GO6F 1/183
2005/0193161 A1 9/2005 Lee et al. 713/193
2005/0201148 Al 9/2005 Chen et al. 2008/0144371 Al 6/2008 Yeh et al.
2005/0210348 Al 9/2005 Totsuka 2008/0147714 Al 6/2008 Breternitz et al.
2005/0231765 Al 10/2005 So et al. 2008/0147964 Al 6/2008 Chow et al.
2005/0249013 Al 11/2005 Janzen et al. 2008/0147998 Al 6/2008 Jeong
2005/0251617 Al 11/2005 Sinclair et al. 2008/0148124 Al 6/2008 Zhang et al.
2005/0257120 Al* 11/2005 Gorobets G11C 7/1039 2008/0163030 Al 7/2008 Lee
714/763 2008/0168191 Al 7/2008 Biran et al.
2005/0273560 Al 12/2005 Hulbert et al. 2008/0168319 Al 7/2008 Lee et al.
2005/0281088 Al 12/2005 Ishidoshiro et al. 2008/0170460 Al 7/2008 Oh et al.
2005/0289314 Al 12/2005 Adusumilli et al. 2008/0180084 Al 7/2008 Dougherty et al.
2006/0010174 Al 1/2006 Nguyen et al. 2008/0209282 Al 82008 Lee et al.
2006/0039196 Al 2/2006 Gorobets et al. 2008/0229000 Al 9/2008 Kim
2006/0039227 Al 2/2006 Lai et al. 2008/0229003 Al 9/2008 Mizushima et al.
2006/0053246 Al 3/2006 Lee 2008/0229176 Al 9/2008 Arnez et al.
2006/0062054 Al 3/2006 Hamilton et al. 2008/0270680 Al 10/2008 Chang
2006/0069932 Al 3/2006 Oshikawa et al. 2008/0282128 Al 11/2008 Lee et al.
2006/0085671 Al 4/2006 Majni et al. 2008/0285351 Al 11/2008 Shlick et al.
2006/0087893 Al 4/2006 Nishihara et al. 2008/0313132 Al 12/2008 Hao et al.
2006/0103480 Al 5/2006 Moon et al. 2009/0003046 Al 1/2009 Nirschl et al.
2006/0107181 Al 5/2006 Dave et al. 2009/0003058 Al 1/2009 Kang
2006/0136570 Al* 6/2006 Pandya GO6F 17/30985 2009/0019216 Al 1/2009 Yamada et al.
709/217 2009/0031083 Al 1/2009 Willis et al.
2006/0136655 Al 6/2006 Gorobets et al. 2009/0037652 Al 2/2009 Yu et al.
2006/0136681 Al 6/2006 Jain et al. 2009/0070608 Al 3/2009 Kobayashi
2006/0156177 Al 7/2006 Kottapalli et al. 2009/0116283 Al 5/2009 Ha et al.
2006/0195650 Al 8/2006 Su et al. 2009/0125671 Al 5/2009 Flynn et al.
2006/0209592 Al 9/2006 Li et al. 2009/0158288 Al 6/2009 Fulton et al.
2006/0224841 Al 10/2006 Terai et al. 2009/0168525 Al 7/2009 Olbrich et al.

US 9,483,210 B2

Page 4
(56) References Cited 2011/0271040 Al 11/2011 Kamizono
2011/0283119 Al 11/2011 Szu et al.
U.S. PATENT DOCUMENTS 2011/0289125 Al 11/2011 Guthery
2011/0320733 Al 12/2011 Sanford et al.
2009/0172258 Al 7/2009 Olbrich et al. 2012/0011393 Al 1/2012 Roberts et al.
2009/0172259 A1 7/2009 Prins et al. 2012/0017053 Al 1/2012 Yang et al.
2009/0172260 Al 7/2009 Olbrich et al. 2012/0023144 Al 1/2012 Rub
2009/0172261 Al 7/2009 Prins et al. 2012/0026799 Al 2/2012 Lee
2009/0172262 Al 7/2009 Olbrich et al. 2012/0054414 Al 3/2012 Tsai et al.
2009/0172308 Al 7/2009 Prins et al. 2012/0063234 Al 3/2012 Shiga et al.
2009/0172335 Al 7/2009 Kulkarni et al. 2012/0072639 Al 3/2012 Goss et al.
2009/0172499 Al 7/2009 Olbrich et al. 2012/0096217 Al 4/2012 Son et al.
2009/0193058 Al 7/2009 Reid 2012/0110250 Al 5/2012 Sabbag et al.
2009/0204823 Al 82009 Giordano et al. 2012/0117317 Al 5/2012 Sheffler
2009/0207660 Al 8/2009 Hwang et al. 2012/0117397 Al 5/2012 Kolvick et al.
2009/0213649 Al 8/2009 Takahashi et al. 2012/0124273 Al 52012 Goss et al.
2009/0249160 Al 10/2009 Gao et al. 2012/0131286 Al 5/2012 Faith et al.
2009/0268521 Al 10/2009 Ueno et al. 2012/0151124 Al 6/2012 Back et al.
2009/0292972 Al 11/2009 Seol et al. 2012/0151253 Al 6/2012 Horn
2009/0296466 Al 12/2009 Kim et al. 2012/0151294 Al 6/2012 Yoo et al.
2009/0296486 Al 12/2009 Kim et al. 2012/0173797 Al 7/2012 Shen
2009/0310422 Al 12/2009 Edahiro et al. 2012/0173826 Al 7/2012 Takaku
2009/0319864 Al 12/2009 Shrader 2012/0185750 Al 7/2012 Hayami
2010/0002506 Al 1/2010 Cho et al. 2012/0195126 Al 82012 Roohparvar
2010/0008175 Al 1/2010 Sweere et al. 2012/0203804 Al 82012 Burka et al.
2010/0011261 Al 1/2010 Cagno et al. 2012/0203951 Al 8/2012 Wood et al.
2010/0020620 Al 1/2010 Kim et al. 2012/0210095 Al 8/2012 Nellans et al.
2010/0037012 Al 2/2010 Yano et al. 2012/0216079 Al 8/2012 Fai et al.
2010/0054034 Al 3/2010 Furuta et al. 2012/0233391 Al 9/2012 Frost et al.
2010/0061151 Al 3/2010 Miwa et al. 2012/0236658 Al 9/2012 Byom et al.
2010/0091535 Al 4/2010 Sommer et al. 2012/0239858 Al 9/2012 Melik-Martirosian
2010/0103737 Al 4/2010 Park 2012/0239868 Al 9/2012 Ryan et al.
2010/0110798 Al 5/2010 Hoei et al. 2012/0239976 Al 9/2012 Cometti et al.
2010/0115206 Al 5/2010 de la Iglesia et al. 2012/0246204 Al 9/2012 Nalla et al.
2010/0118608 Al 5/2010 Song et al. 2012/0259863 Al 10/2012 Bodwin et al.
2010/0138592 Al 6/2010 Cheon 2012/0275466 Al 11/2012 Bhadra et al.
2010/0153616 Al 6/2010 Garratt 2012/0278564 Al 11/2012 Goss et al.
2010/0161936 Al 6/2010 Royer et al. 2012/0284574 Al 112012 Avila et al.
2010/0174959 Al 7/2010 No et al. 2012/0284587 Al 11/2012 Yu et al.
2010/0185807 Al 7/2010 Meng et al. 2012/0297122 Al 11/2012 Gorobets et al.
2010/0199027 Al 82010 Pucheral et al. 2013/0007073 Al 1/2013 Varma
2010/0199125 Al 8/2010 Reche 2013/0007343 Al 1/2013 Rub et al.
2010/0199138 Al 8/2010 Rho 2013/0007543 Al 1/2013 Goss et al.
2010/0202196 Al 8/2010 Lee et al. 2013/0024735 Al 1/2013 Chung et al.
2010/0202239 Al 8/2010 Moshayedi et al. 2013/0031438 Al 1/2013 Hu et al.
2010/0208521 Al 8/2010 Kim et al. 2013/0036418 Al 2/2013 Yadappanavar et al.
2010/0257379 Al 10/2010 Wang et al. 2013/0038380 Al 2/2013 Cordero et al.
2010/0262889 Al 10/2010 Bains 2013/0047045 Al 2/2013 Hu et al.
2010/0281207 Al 11/2010 Miller et al. 2013/0058145 Al 3/2013 Yu et al.
2010/0281342 Al 11/2010 Chang et al. 2013/0070527 Al 3/2013 Sabbag et al.
2010/0306222 Al 12/2010 Freedman et al. 2013/0073798 Al 3/2013 Kang et al.
2010/0332858 Al 12/2010 Trantham et al. 2013/0073924 Al 3/2013 D’Abreu et al.
2010/0332863 Al 12/2010 Johnston 2013/0079942 Al 3/2013 Smola et al.
2011/0010514 Al 1/2011 Benhase et al. 2013/0086131 Al 4/2013 Hunt et al.
2011/0022779 A1 1/2011 Lund et al. 2013/0086132 Al 4/2013 Hunt et al.
2011/0022819 Al 1/2011 Post et al. 2013/0094288 Al 4/2013 Patapoutian et al.
2011/0051513 Al 3/2011 Shen et al. 2013/0111279 Al 5/2013 Jeon et al.
2011/0066597 Al 3/2011 Mashtizadeh et al. 2013/0111298 Al 5/2013 Seroff et al.
2011/0066806 Al 3/2011 Chhugani et al. 2013/0117606 Al 5/2013 Anholt et al.
2011/0072302 Al 3/2011 Sartore 2013/0121084 Al 5/2013 Jeon et al.
2011/0078407 Al 3/2011 Lewis 2013/0124792 Al 5/2013 Melik-Martirosian et al.
2011/0078496 Al 3/2011 Jeddeloh 2013/0124888 Al 5/2013 Tanaka et al.
2011/0083060 A1 4/2011 Sakurada et al. 2013/0128666 Al 5/2013 Avilaetal.
2011/0099460 Al 4/2011 Dusija et al. 2013/0132647 Al 5/2013 Melik-Martirosian
2011/0113281 Al 5/2011 Zhang et al. 2013/0132652 Al 5/2013 Wood et al.
2011/0122691 Al 5/2011 Sprouse 2013/0159609 Al 6/2013 Haas et al.
2011/0131444 Al 6/2011 Buch et al. 2013/0176784 Al 7/2013 Cometti et al.
2011/0138260 Al 6/2011 Savin 2013/0179646 Al 7/2013 Okubo et al.
2011/0173378 Al 7/2011 Filor et al. 2013/0191601 Al 7/2013 Peterson et al.
2011/0179249 Al 7/2011 Hsiao 2013/0194865 Al 8/2013 Bandic et al.
2011/0199825 Al 8/2011 Han et al. 2013/0194874 Al 8/2013 Mu et al.
2011/0205823 Al 8/2011 Hemink et al. 2013/0232289 Al 9/2013 Zhong et al.
2011/0213920 Al 9/2011 Frost et al. 2013/0238576 Al 9/2013 Binkert et al.
2011/0222342 Al 9/2011 Yoon et al. 2013/0254498 Al 9/2013 Adachi et al.
2011/0225346 Al 9/2011 Goss et al. 2013/0254507 Al 9/2013 Islam et al.
2011/0228601 Al 9/2011 Olbrich et al. 2013/0258738 Al 10/2013 Barkon et al.
2011/0231600 Al 9/2011 Tanaka et al. 2013/0265838 Al 10/2013 Li
2011/0239077 Al 9/2011 Bal et al. 2013/0282955 Al 10/2013 Parker et al.
2011/0264843 Al 10/2011 Haines et al. 2013/0290611 Al 10/2013 Biederman et al.

US 9,483,210 B2
Page 5

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0297613 Al
2013/0301373 Al
2013/0304980 Al
2013/0343131 Al
2013/0346672 Al
2014/0013027 Al
2014/0013188 Al
2014/0025864 Al
2014/0032890 Al
2014/0063905 Al
2014/0067761 Al
2014/0071761 Al
2014/0075133 Al
2014/0082261 Al
2014/0082310 Al
2014/0082456 Al
2014/0095775 Al
2014/0101389 Al
2014/0115238 Al
2014/0122818 Al
2014/0122907 Al
2014/0136762 Al
2014/0136883 Al
2014/0136927 Al
2014/0143505 Al
2014/0153333 Al
2014/0157065 Al
2014/0181458 Al
2014/0201596 Al
2014/0223084 Al
2014/0244578 Al
2014/0258755 Al
2014/0269090 Al
2014/0310494 Al
2014/0359381 Al
2015/0023097 Al
2015/0037624 Al
2015/0153799 Al
2015/0153802 Al
2015/0212943 Al
2015/0268879 Al

11/2013 Yu

11/2013 Tam

11/2013 Nachimuthu et al.

12/2013 Wu et al.

12/2013 Sengupta et al.
1/2014 Jannyavula Venkata et al.
1/2014 Wu et al.
1/2014 Zhang et al.
1/2014 Lee et al.
3/2014 Ahn et al.
3/2014 Chakrabarti et al.
3/2014 Sharon et al.
3/2014 Li et al.
3/2014 Cohen et al.
3/2014 Nakajima
3/2014 Liu

4/2014 Talagala et al.
4/2014 Nellans et al.
4/2014 Xi et al.
5/2014 Hayasaka et al.
5/2014 Johnston
5/2014 Li et al.
5/2014 Cohen
5/2014 Li et al.
5/2014 Sim et al.
6/2014 Avila et al.
6/2014 Ong
6/2014 Loh et al.
7/2014 Baum et al.
8/2014 Lee et al.
8/2014 Winkelstraeter
9/2014 Stenfort
9/2014 Flynn et al.

10/2014 Higgins et al.

12/2014 Takeuchi et al.
1/2015 Khoueir et al.
2/2015 Thompson et al.
6/2015 Lucas et al.
6/2015 Lucas et al.
7/2015 Yang et al.
9/2015 Chu

FOREIGN PATENT DOCUMENTS

EP 2386 958 Al 11/2011
EP 2 620 946 A2 7/2013
JP 2002-532806 10/2002
WO WO 2007/080586 7/2007
WO WO 2008/075292 6/2008
WO WO 2008/121553 10/2008
WO WO 2008/121577 10/2008
WO WO 2009/058140 5/2009
WO WO 2009/084724 7/2009
WO WO 2009/134576 11/2009
WO WO 2011/024015 3/2011

OTHER PUBLICATIONS

Ashkenazi et al., “Platform independent overall security architec-
ture in multi-processor system-on-chip integrated circuits for use in
mobile phones and handheld devices,” ScienceDirect, Computers
and Flectrical Engineering 33 (2007), 18 pages.

Barr, “Introduction to Watchdog Timers,” Oct. 2001, 3 pgs.
Bayer, “Prefix B-Trees”, IP.com Journal, IP.com Inc., West Henri-
etta, N'Y, Mar. 30, 2007, 29 pages.

Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”,
IBM Research Report, Jun. 23, 2009, http://domino.research.ibm.
comV/library/cyberdig.nsf/papers/
40B2C45876D0D747852575E100620CE7/$File/rc24815.pdf, 13
pages.

Canim, “Buffered Bloom Filters on Solid State Storage,”
ADMS*10, Singapore, Sep. 13-17, 2010, 8 pgs.

Kang, “A Multi-Channel Architecture for High-Performance
NAND Flash-Based Storage System,” J. Syst. Archit., vol. 53, Issue
9, Sep. 2007, 15 pgs.

Kim, “A Space-Efficient Flash Translation Layer for CompactFlash
Systems,” May 2002, IEEE vol. 48, No. 2, 10 pgs.

Lee et al., “A Semi-Preemptive Garbage Collector for Solid State
Drives,” Apr. 2011, IEEE, pp. 12-21.

Lu, “A Forest-structured Bloom Filter With Flash Memory,” MSST
2011, Denver, CO, May 23-27, 2011, article, 6 pgs.

Lu, “A Forest-structured Bloom Filter With Flash Memory,” MSST
2011, Denver, CO, May 23-27, 2011, presentation slides, 25 pgs.
McLean, “Information Technology—AT Attachment with Packet
Interface Extension,” Aug. 19, 1998, 339 pgs.

Microchip Technology, “Section 10. Watchdog Timer and Power-
Saving Modes,” 2005, 14 pages.

Oracle, “Oracle9i: Database Concepts”, Jul. 2001, http://docs.
oracle.com/cd/A91202_01/901__doc/server.901/a88856.pdf, 49
pages.

Park et al., “A High Performance Controller for NAND Flash-Based
Solid State Disk (NSSD),” Proceedings of Non-Volatile Semicon-
ductor Memory Workshop, Feb. 2006, 4 pgs.

Zeidman, 1999 Verilog Designer’s Library, 9 pgs.

International Search Report and Written Opinion dated Jun. 6, 2013,
received in International Patent Application No. PCT/US2012/
059447, which corresponds to U.S. Appl. No. 13/602,031, 12 pgs
(Tai).

International Search Report and Written Opinion, dated Mar. 19,
2009 received in International Patent Application No. PCT/US08/
88133, which corresponds to U.S. Appl. No. 12/082,202, 7 pgs
(Prins).

International Search Report and Written Opinion dated Feb. 19,
2009, received in International Patent Application No. PCT/US08/
88236, which corresponds to U.S. Appl. No. 12/082,203, 7 pgs
(Olbrich).

International Search Report and Written Opinion dated Feb. 19,
2009, received in International Patent Application No. PCT/US08/
88217, which corresponds to U.S. Appl. No. 12/082,204, 7 pgs
(Olbrich).

International Search Report and Written Opinion, dated Mar. 19,
2009, received in International Patent Application No. PCT/US08/
88136, which corresponds to U.S. Appl. No. 12/082,205, 7 pgs
(Olbrich).

International Search Report and Written Opinion dated Feb. 18,
2009, received in International Patent Application No. PCT/US08/
88206, which corresponds to U.S. Appl. No. 12/082,206, 7 pgs
(Prins).

International Search Report and Written Opinion dated Feb. 27,
2009, received in International Patent Application No. PCT/
US2008/088154, which corresponds to U.S. Appl. No. 12/082,207,
8 pgs (Prins).

European Search Report dated Feb. 23, 2012, received in European
Patent Application No. 088669973, which corresponds to U.S.
Appl. No. 12/082,207, 6 pgs (Prins).

Office Action dated Apr. 18, 2012, received in Chinese Patent
Application No. 200880127623.8, which corresponds to U.S. Appl.
No. 12/082,207,12 pgs (Prins).

Office Action dated Dec. 31, 2012, received in Chinese Patent
Application No. 200880127623.8, which corresponds to U.S. Appl.
No. 12/082,207, 9 pgs (Prins).

Notification of the Decision to Grant a Patent Right for Patent for
Invention dated Jul. 4, 2013, received in Chinese Patent Application
No. 200880127623.8, which corresponds to U.S. Appl. No.
12/082,207,1 pg (Prins).

Office Action dated Feb. 17, 2015, received in Chinese Patent
Application No. 201210334987.1, which corresponds to U.S. Appl.
No. 12/082,207, 9 pages (Prins).

Office Action dated Jul. 24, 2012, received in Japanese Patent
Application No. JP 2010-540863, 3 pgs (Prins).

International Search Report and Written Opinion dated Feb. 13,
2009, received in International Patent Application No. PCT/US08/
88164, which corresponds to U.S. Appl. No. 12/082,220, 6 pgs
(Olbrich).

US 9,483,210 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

International Search Report and Written Opinion dated Feb. 26,
2009, received in International Patent Application No. PCT/US08/
88146, which corresponds to U.S. Appl. No. 12/082,221, 10 pgs
(Prins).

International Search Report and Written Opinion dated Feb. 19,
2009, received in International Patent Application No. PCT/US08/
88232, which corresponds to U.S. Appl. No. 12/082,222, 8 pgs
(Olbrich).

International Search Report and Written Opinion dated Feb. 13,
2009, received in International Patent Application No. PCT/US08/
88229, which corresponds to U.S. Appl. No. 12/082,223, 7 pgs
(Olbrich).

International Search Report and Written Opinion dated Oct. 27,
2011, received in International Patent Application No. PCT/
US2011/028637, which corresponds to U.S. Appl. No.
12/726,200,13 pgs (Olbrich).

Office Action dated Dec. 8, 2014, received in Chinese Patent
Application No. 201180021660.2, which corresponds to U.S. Appl.
No. 12/726,200, 7 pages (Olbrich).

Office Action dated Jul. 31, 2015, received in Chinese Patent
Application No. 201180021660.2, which corresponds to U.S. Appl.
No. 12/726,200, 9 pages (Olbrich).

International Search Report and Written Opinion dated Aug. 31,
2012, received in International Patent Application PCT/US2012/
042764, which corresponds to U.S. Appl. No. 13/285,873,12 pgs
(Frayer).

International Search Report and Written Opinion dated Mar. 4,
2013, received in PCT/US2012/042771, which corresponds to U.S.
Appl. No. 13/286,012, 14 pgs (Stonelake).

International Search Report and Written Opinion dated Sep. 26,
2012, received in International Patent Application No. PCT/
US2012/042775, which corresponds to U.S. Appl. No. 13/285,892,
8 pgs (Weston-Lewis et al.).

International Search Report and Written Opinion dated Jun. 6, 2013,
received in International Patent Application No. PCT/US2012/
059453, which corresponds to U.S. Appl. No. 13/602,039,12 pgs
(Frayer).

International Search Report and Written Opinion dated Feb. 14,
2013, received in International Patent Application No. PCT/
US2012/059459, which corresponds to U.S. Appl. No. 13/602,047,
9 pgs (Tai).

International Search Report and Written Opinion dated Jul. 25,
2014, received in International Patent Application No. PCT/
US2014/029453, which corresponds to U.S. Appl. No. 13/963,444,
9 pages (Frayer).

International Search Report and Written Opinion dated Mar. 7,
2014, received in International Patent Application No. PCT/
US2013/074772, which corresponds to U.S. Appl. No. 13/831,218,
10 pages (George).

International Search Report and Written Opinion dated Mar. 24,
2014, received in International Patent Application No. PCT/
US2013/074777, which corresponds to U.S. Appl. No. 13/831,308,
10 pages (George).

International Search Report and Written Opinion dated Mar. 7,
2014, received in International Patent Application No. PCT/
US2013/074779, which corresponds to U.S. Appl. No. 13/831,374,
8 pages (George).

International Search Report and Written Opinion dated May 4,
2015, received in International Patent Application No. PCT/
US2014/065987, which corresponds to U.S. Appl. No. 14/135,400,
12 pages (George).

International Search Report and Written Opinion dated Mar. 17,
2015, received in International Patent Application No. PCT/
US2014/067467, which corresponds to U.S. Appl. No. 14/135,420,
13 pages. (Lucas).

Invitation to Pay Additional Fees dated Feb. 13, 2015, received in
International Patent Application No. PCT/US2014/063949, which
corresponds to U.S. Appl. No. 14/135,433, 6 pages (Delpapa).
International Search Report and Written Opinion dated Apr. 20,
2015, received in International Patent Application No. PCT/
US2014/063949, which corresponds to U.S. Appl. No. 14/135,433,
21 pages (Delpapa).

International Search Report and Written Opinion dated Mar. 9,
2015, received in International Patent Application No. PCT/
US2014/059747, which corresponds to U.S. Appl. No. 14/137,440,
9 pages (Fitzpatrick).

International Search Report and Written Opinion dated Jan. 21,
2015, received in International Application No. PCT/US2014/
059748, which corresponds to U.S. Appl. No. 14/137,511, 13 pages
(Dancho).

International Search Report and Written Opinion dated Feb. 18,
2015, received in International Application No. PCT/US2014/
066921, which corresponds to U.S. Appl. No. 14/135,260, 13 pages
(Fitzpatrick).

International Search Report and Written Opinion dated Jun. 8, 2015,
received in International Patent Application No. PCT/US2015/
018252, which corresponds to U.S. Appl. No. 14/339,072, 9 pages
(Busch).

International Search Report and Written Opinion dated Jun. 2, 2015,
received in International Patent Application No. PCT/US2015/
018255, which corresponds to U.S. Appl. No. 14/336,967, 14 pages
(Chander).

International Search Report and Written Opinion dated Jun. 30,
2015, received in International Patent Application No. PCT/
US2015/023927, which corresponds to U.S. Appl. No. 14/454,687,
11 pages (Kadayam).

International Search Report and Written Opinion dated Jul. 23,
2015, received in International Patent Application No. PCT/
US2015/030850, which corresponds to U.S. Appl. No. 14/298,843,
12 pages (Ellis).

International Search Report and Written Opinion dated Sep. 14,
2015, received in International Patent Application No. PCT/
US2015/036807, which corresponds to U.S. Appl. No. 14/311,152,
9 pages (Higgins).

IBM Research-Zurich, “The Fundamental Limit of Flash Random
Write Performance: Understanding, Analysis and Performance
Modeling,” Mar. 31, 2010, pp. 1-15.

Gasior, “Gigabyte’s i-Ram storage device, Ram disk without the
fuss,” The Tech Report, p. 1, Jan. 25, 2006, 5 pages.

Oestreicher et al., “Object Lifetimes in Java Card,” 1999, USENIX,
10 pages.

International Preliminary Report on Patentability dated May 24,
2016, received in International Patent Application No. PCT/
US2014/065987, which corresponds to U.S. Appl. No. 14/135,400,
9 pages (George).

Office Action dated Apr. 25, 2016, received in Chinese Patent
Application No. 201280066282.4, which corresponds to U.S. Appl.
No. 13/602,047, 8 pages (Tai).

* cited by examiner

U.S. Patent

HOST
101

HOST
102

Nov. 1, 2016

Sheet 1 of 70

104

SSD

CONTROLLER

106

105

¥

DATA PATH
DRAM
107

FLASH
MEMORY
MODULE

108

US 9,483,210 B2

US 9,483,210 B2

Sheet 2 of 70

Nov. 1, 2016

U.S. Patent

801 3INACW 60¢

153INO3d
AJOW3IW HSVTH J34SNVHL

3

¢ 9l

80¢
153N
JdIISNVAL

A

rAX/ L0
153NO3 1S3NDH
o IOVd JHINVYL

39Vd Jd3dNS
le 90¢

1z
P 1S3N03 153M03d

YA
39vd ¥3dnS 0Lz 502

15303 |« 1IN0 e |, 1oz
30Vd JFHSNVAL dOl OINIgdd

A

1

A

A
A
r 3

A

3
S

y07g
1S3IN0H
JASNVAL

r 3

£0¢
153N03d
d34SNvalL

A

US 9,483,210 B2

Sheet 3 of 70

Nov. 1, 2016

U.S. Patent

80l .
TINGOW ¢ OH
=W —-— T T DT I T IO T I I I I IT IO
——— [IIIIIIIIIIIIIIIIT]
c0e [ae | | 901 YIMOYINOD 4SS - ~ y _
ando [Lne [| i [ae e X
b . L e—{ NOILNGINISIA f—> 43SeVd i
HSYH | 1 0 |39VIS HSVH HovH | _
o m ANYWWOD ONVWWOD | 1|
| Do)] ~
_ ; oLg |
[90¢ - cOE ! " _
_ £140d L 130d 8le L
~ HSV HSY 079 b
_ _ o
! W 71 ISOH
DT " QFIVHS .
z0e [T 608 | 0lg v
[P vl o L | FOVIE3INI b
dnNO¥O [T 11 Ld3ENg]| WaH [150H L
HSVH | | ¢ |39V1S Hov HovH | /€ ! Lo
e | : ¥3TIOHLNOD 171 ISOH
! “ W]
g [T L8 | .
0 |l osoe 0t oo | n
dNO¥O [TT 11 oddng [T 1| waH [0¢ U
HOVH | | 1 [3OVISHSYH HSVH | --.. 0130d e
- . HSYH b~ g0l
T T o ___l____1'1 o9
1 /0l WVQ Hivd V1vQ (= W
|

U.S. Patent Nov. 1, 2016 Sheet 4 of 70 US 9,483,210 B2

HosT IssUEs Reap 49!
COMMAND WITH LBA

Y

SSD CONTROLLER LOCATES | ~ 402
DATA AND ISSUES ONE
OR MORE READS TO FLASH

P
o

Y

FLASH RETURNS DATA ~— 403
TO S5D CONTROLLER

¥

DATA 1S STORED IN | _~404
DATA PATH DRAM

ALL DATA
OBTAINED
?

NO

405
YES

DATA READ FROM 406
DATA PATH DRAM
TO SSD CONTROLLER

A4

DATA SENT FROM
SSD CONTROLLER ™\ 407
TO HOST

\ 4

(DONE)

FIG. 4

U.S. Patent

Nov. 1, 2016 Sheet 5 of 70

HOST ISSUES WRITE
COMMAND WITH LBA
AND DATA

/501

Y

DATA STORED IN
DATA PATH DRAM

|~ 502

!

SSD CONTROLLER
LOCATES LBA IN FLASH
MEMORY MODULE

/503

4

SSD ISSUES
FLASH READ

Y

DATA TRANSFERRED FROM
DRAM TO CONTROLLER
AND INTEGRATED WITH

DATA READ FROM FLASH

[~ 505

!

SSD CONTROLLER
ISSUES WRITE TO FLASH

/506

\ 4

FLASH WRITE

507

ALL DATA
WRITTEN
?

NO

YES

508

UPDATE LOCATION
INFORMATION FOR

WRITTEN LBAs

509

Y

(DONE

US 9,483,210 B2

FIG. 5

U.S. Patent Nov. 1, 2016 Sheet 6 of 70 US 9,483,210 B2

FLASH GROUP 0
/301
BANK BANK BANK BANK
611 612 613 614
— N — —
o] [eol| [0 [
601 605
FLASH Lei5] [e18] 1 [
PORTO |« > 602 606
304
[616] [619]]]
603 607
G @l [0
604 608

US 9,483,210 B2

Sheet 7 of 70

Nov. 1, 2016

U.S. Patent

vog
0 L¥0d -
HSV4

—— - A e gun w—

. VS M

L0€
0 'W3IH
HSVH

[Ol

0g

0 dNOYY HSV
A

S O W

80¢
0 d344N9
JOVIS HSVH

F 3

' s

Y

poe o — o -

[eo)
(=)
[

£0L

0L

6oL

90L

4%
ANVE

L9

ANVE

L9
ANVd

L9
INVE

LOL WVHQ HIVd Vivd

t0L

U.S. Patent

(’
708
TO FLASH
BUS
701
A/D
801
-

Nov. 1, 2016

ALE 802
CLE 803
WE 804

RE 805

Sheet 8 of 70

US 9,483,210 B2

» RB DIE]

[:]/806

CEDIEN

609

Y

RB DIE 2

. 807
D Semmmmem e
e -

CEDIEZ

- - 610
———— o}
B —
e
601

U.S. Patent Nov. 1, 2016 Sheet 9 of 70 US 9,483,210 B2

Ccs/RBj—103
J0d CS/RB[—L—
CS/RB |+—293
CS/RB j—106__,
\
ALE |— 802
803
Josd CLE .
WE 804
805
FLASH RE -
HEMi 10
307 . 701
7 O -
'| »-
7094 -
30 -
o 3] L
iy

FIG. 9

U.S. Patent Nov. 1, 2016 Sheet 10 of 70 US 9,483,210 B2

706 1001 706
- / WA \
Y
708 CS| . 509 R/B
> 6079
798 P
FLASH - ~—7 1
HEM 801
307
708 CS =:615 R/B
32—\311 N A
- 8-BIT A .| 402
709 \
BUS 1003
SWITCH
1002 708 CS [616 R/8
4_87..BL__, 603 s
FLASH
STAGE 432gB!T> 1004
BUFFER 708 |cS | =1 |R/B.
308 707 \ - 617 | g
. 8B 604
__ﬂ____.J
T 1005 BANK
611
STAGE
BUFFER
DMA
CONTROLLER
1006

FIG. 10

U.S. Patent Nov. 1, 2016 Sheet 11 of 70 US 9,483,210 B2

cs/ 7/06
Sﬁ {>c CE
101 INVERTER DIE
1102 609
CONTROLLER
106 VCC
1103
CE
DIE
615
R/B

FIG. 11

US 9,483,210 B2

ARSIk
(9 10ZL 6021 0€ 39vd
SNV 030019 ([¥ 901035 d
4 .
| £9 '
3079 JOVd ¥3dNS

Sheet 12 of 70

Nov. 1, 2016

U.S. Patent

0¢
J9Vd d3dNS

1041
0
20019

0
30Vd d3dNS

0301035 d

€021 0€ 39vd

0 moh.umm d 902l
0 401035
¥0ZL 0€ 30Vd JOVd S
: pLIOLDIS

v1 301035 d

0401235 d

¢07L 0€ 39Vd

71 401235 d

- 0301035 d

7

B

U.S. Patent Nov. 1, 2016 Sheet 13 of 70
SECTOR
DATA
1301
E2F REF TAG APP TAG CRC
1302 1304 1305 1306
ECC 1303
S PAGE SECTOR
1206
FIG. 13
P SECTOR 0
P SECTOR 1
P SECTOR 14
SUPER PAGE S PAGE INDEX 1402
ME{ﬁgﬁTA TIME STAMP 1403

FLASH PAGE O
1202

FIG. 14

US 9,483,210 B2

528
- BYTES

-

8BYTES | secToR

METADATA
20 BYTES

> 2085 BYTES

~

} 27 BYTES

U.S. Patent Nov. 1, 2016 Sheet 14 of 70 US 9,483,210 B2

e LBAA CONTENTS S PAGE SECTOR 0
LBAA+1 CONTENTS S PAGE SECTOR 1
LBAA+2 CONTENTS SPAGESECTOR?2 SPAGEO
LBAA+14 CONTENTS | S PAGE SECTOR 14
LBAg CONTENTS S PAGE SECTOR 0
LBAg+] CONTENTS S PAGE SECTOR 1
LBAR+2 CONTENTS SPAGESECTOR2 o paGE]

BLOCK : :
0 . .

LBAg.+14 CONTENTS | SPAGE SECTOR 14
LBAC CONTENTS S PAGE SECTOR 0
LBAC+1 CONTENTS S PAGE SECTOR 1
LBAC+2 CONTENTS SPAGESECTOR2 ¢ pAGE 63

L LBAC+14 CONTENTS | S PAGE SECTOR 14

(" LBAp CONTENTS S PAGE SECTOR 0
LBAD.+1 CONTENTS S PAGE SECTOR 1

co S PAGE SECTOR 2
LBAD.+2 CONTENTS ; S PAGE O
LBAD+14 CONTENTS | S PAGE SECTOR 14
BLO1CK 2 . :

LBAg CONTENTS S PAGE SECTOR 0
LBAg.1 CONTENTS S PAGE SECTOR 1
LBAE+2 CONTENTS SPAGESECTOR2 ¢ e o
[BAg4+14 CONTENTS | S PAGE SECTOR 14

-

US 9,483,210 B2

U.S. Patent Nov. 1, 2016 Sheet 15 of 70
160] FLASH gaoup FLASH ?ROUP FLASH ZGROUP
BANK I\ SPO SP) SPO SP SPO SP1
o | (SMT__ | 285-299)| SMT | 375-389 | SMT | 465-479
1 0-14 | 300-314 | 90-104 | 390-404 | 180-194 | 480-494
2 15-29 | 315-329 | 105-119 | 405-419 | 195-209 | 495-509
3 30-44 | 330-344 | 120-134 | 420-434 | 210-224 | 510-524
4 45-59 | 345-359 | 135-149 | 435-449 | 225-239 | 525-539
5 60-74 | 540-554 | 150-164 | 585-599 | 240-254 | 630-644
6 75-89 | 555-569 | 165-179 | 600-614 | 255-269 | 645-659
7 | 270-284 | 570-584 | 360-374 | 615-629 | 450-464 | 660-674
AN ~ A
1602

FIG. 16

US 9,483,210 B2

Sheet 16 of 70

Nov. 1, 2016

U.S. Patent

. S0l SOV
N—. o_n_ :.N_On_._.mOI WISAHd
\
SRS e \ .
o __ X 6011 . “
_ viva | 133408 IOVLS LIWSNVAL viva
WWIQHIvd{ | ' |
vivaoL | 1011) |
T VIv@ L¥344N9IOVISINDDTE [T vivd |
I }
_ - S0LL . ~
T J0dINOD | LIW3H LIWSNval T04INOD PR et
| “——1 1S0H
L 0Ll . :
“ TOJINOD {IW3IH AT 108INOD :
e kit dtbltt - - -
" . 0.1 . _
L0l i vIva | 03314N8 39VLS LIWSNWAL viva _
WYIQ Hivd ! !
wvaol | _ ! 90LL ‘ L]
! VIVa 0 ¥34NG IOVIS N [vIva ~—T 1SO0H
|
M N 70LL R !
. 10dINOD 0 IWIH LIWSNWL T08INOD :
[|
- ¢0L1 B [
” TOJINGD 0 IW3H AT ~ JOdINOD “
.................... 2
\\
%01
0 130d 1SOH

US 9,483,210 B2

Sheet 17 of 70

Nov. 1, 2016

U.S. Patent

8L 9l L0l
Wvad
20LL Hivd
0 tW3H 3AI3D3 vivad
A A)
POLL
0 W3IH 8081 7081 90/1
LIWSNVAL Odd Odid 0 d344nd
INLIWIRId avO1Avd JOVIS
ANNOINI VIVQ-NON A0
4 F \ 3
A v ﬁ L 1]
9081 80.LL §08l1 L08L c08l 208l
Sd344nd 0 d3d4ng 04l 901 |, YIINOY | 21901
JWVYd JOVIS JANLWIL HONOJHL e HOLYW
1IWSNVRL 1IWSNVaL ONNOQLNO 4ND FNLIWId
4 F \
4 Y 4 Y
108L 3ZV19 VOIO

3

r

{OL 1SOH

US 9,483,210 B2

Sheet 18 of 70

Nov. 1, 2016

U.S. Patent

SY3LSI9Y TOYLNCD

Gl

€D e— N MY =P U D M 0O D

£06!

HILVI JALLINR

61 Ol
2061
SISO
HOLYH LN
Gl
bl
0l
Il
: 20l
m_ 1907 HOLYA ALY
3
L
; 4061 061
5 90T LY HOLYT
v £ UM
¢
4
!
0

1081 37v18 YOI Wodd

U.S. Patent Nov. 1, 2016 Sheet 19 of 70 US 9,483,210 B2

LBA TRANSFER Rd Wr
LENGTH HEM
e]
TO TO
HOST COMMAND
INTERFACE DISTRIBUTION
310 COMMAND TABLE 2003 312
mRAM 2602

1 SCSI HEMi 2001
\

ARM
PROCESSOR
2002

FIG. 20

U.S. Patent Nov. 1, 2016 Sheet 20 of 70 US 9,483,210 B2

COMMAND
DISTRIBUTION
BLOCIK 312

Rd Wr
» HEMi O
2101

J

Rd Wr
HEMi 1
2102

Y

A
Y
4

Rd Wr
HEMi 2 |-
2103

Y

TO
COMMAND
PARSER AND

TRANSMIT
HEMi's

TO
FLASH
PORTS

Rd Wr
- HEMi3 |-
2104

1
|
|
|
|
|
|
{
1
}
!
|
i
|
!
|
i
|
!
]
|
|
|
]
}
|
|

Rd Wr
HEMi 4 |e—t——

2105

1

Rd Wr
~| HEMi5 |+
2106

Ll R R i et ddiad Badi B B T Bl o i i i et ol |

US 9,483,210 B2

Sheet 21 of 70

Nov. 1, 2016

U.S. Patent

BlE
0014
WVd
GIAVHS

e e e o e e T e e wme b e s er A W v mm S e G e e A e v e -

L ANVE
WV
J3dvHS

L JINvd
Wwd
Q3EvHS

[AA4
0 XNVd
Wvd
JIAVHS

Y

"

 §

WiH

[

WiH

1
oiwaa | [ozzod | e
Hivd ¥1¥Q 5N410 Shea
........... 1122 Y0018 ¥LSOR
; T SSI0V WYAA
vize 2022
7022 | u
<+ > Eldd I+ > 1H0d 130d
343404 Old ” ELee s 10
iy | |
~ 1077
— !, + | shigosy
[STANIONALS VIVA |+ - wa01D 1022
- L€ Ol f+— ~— H HOLIMS
nnnnnn 0¢ Odld f«t—> it YyassodAd
|||||| 50 Ol e — L{ | odww
82 O3 J«-L» -
. “ QIVHS
. { .
SRNDNAS VIva - N ﬁ
/ O34 ot — L
[IIII0M el modur
lllllllm,IOquLA.V B o J3IVHS)
b 0Jd et - H
ESRISTs -) 0
£ O — 1304
I 11 D ey DUNNUON o [WV L
I e F1 /A e B T
0 03 [+—+{ 5022 [+

Y

WaH

U.S. Patent

US 9,483,210 B2

Nov. 1, 2016 Sheet 22 of 70
SHARED RAM CROSSBAR
CONTROLLER SWITCH
2301 2201
DRAM DMA
ENGINE 2302 DRAM
SCHEDULER
E2E LOGIC 2304
2303
DRAM CONTROLLER
2305
RAM CONTROLLER 317

FIG. 23

U.S. Patent Nov. 1, 2016 Sheet 23 of 70 US 9,483,210 B2

SHARED RAM CONTROLLER 2301

CROSSBAR

ARB%HON DATA STRUCTURES
2409

BASE 2404
CEILING 2405
TOP 2406 FIFO 0
BOTTOM 2407 2403
COUNT 2408
FIFO O POINTER REGISTERS
2205

2906 . HFO 1

FIFO 1 POINTER REGISTERS

2401 FIFO 2

FIFO 2 POINTER REGISTERS

2402 - - FIFO 3
FIFO 3 POINTER REGISTERS

ADDRESS 2412 SHARED RAM BANK 0

DATA AUTOINC 2413 2202
DATA 2414

MAPNUM 2415
TOP 2416

APPEND 2417
PUSH 2418
POP 2419

SHARED RAM ACCESS
REGISTER BLOCK

LI FIG. 24

U.S. Patent Nov. 1, 2016 Sheet 24 of 70 US 9,483,210 B2

SWITCH
2;03
FSB O 308 - -
FSB1 314 N >
FSB 11 2501 “ -

PIO BUFFER 2204 -« -
DEBUG FIFO 2210 -
RECEIVE BUFFER 0 1706 -
TRANSMIT BUFFER 0 1708 | DRAM
RECEIVE BUFFER 1 1707 gggg
TRANSMIT BUFFER 1 1709

A

I Y

DRAM
SCHEDULER
2304

DRAM CHANNELS

FIG. 25

US 9,483,210 B2

Sheet 25 of 70

Nov. 1, 2016

U.S. Patent

0lgz 6097
B e
EIbe N
SIVIS YK
]
0
Ay
|
v
8092 1037 9097 0% W9 0097
Yovs v RN 300030 4308 | oL

U.S. Patent Nov. 1, 2016

TIGHTLY COUPLED LOGIC BLOCK
2701

ADDRESS 2709

DATA 2710

DATA AUTOINC 2711

FLASH TRANSFER COUNT 2712

FLASH ADDRESS 2713

FLASH DATA 2714

DMA ADDRESS 2715

DMA TRANSFER COUNT 2716

STAGE BUFFER ACCESS
REGISTER BLOCK
2708

DEBUG REGISTER BLOCK 2718

FIG. 27

Sheet 26 of 70 US 9,483,210 B2

FLASH HEMi 307

STACK

WINDOW REGISTERS
2107

REPEAT COUNT
REGISTER
2702

iRAM mRAM
2601 2602

\

- ADDRESS 2704
- DATA AUTOINC 2705

- DATA 2706

LOCAL REGISTER BLOCK
2703

MULTIPLY-DIVIDE ENGINE
2n7

MANUAL CRC ENGINE
2719

SWTCH ENDIAN ENGINE
2720

ARM
2002

U.S. Patent

Nov. 1, 2016

Sheet 27 of 70

RECEIVE HEMi UNIQUE REGISTERS

RECEIVE BUFFER
ACCESS REGISTER
BLOCK 2801

PRIMITIVE FIFO
ACCESS REGISTER
BLOCK 2805

NON-DATA
PAYLOAD FIFO
ACCESS REGISTER
BLOCK 2810

PRIMITIVE
MATCH REGISTER
BLOCK 2816

US 9,483,210 B2

DMA ADDRESS 2802

DMA TRANSFER COUNT 2803

RECEIVE BUFFER COUNT 2804

TOP 2806

POP 2807

COUNT 2808

APPEND 2809

TOP 2811

POP 2812

COUNT 2813

APPEND 2814

HEADER SIZE 2815

PRIMITIVE MATCH # 2817

PRIMITIVE MATCH LOAD 2813

PRIMITIVE MATCH CONTROL LOAD 2819

WWN HASH ENGINE 2830

— i — sy emn Rae s - e et R e e A AL s e e A Ak e e My e M e e e e

TRANSMIT HEMi UNIQUE REGISTERS

TRANSMIT BUFFER
ACCESS REGISTER
BLOCK 2820

TRANSMIT FRAME

BUFFER FIFO ACCESS

REGISTER BLOCK
2823

COMMAND FIFO
ACCESS REGISTER
BLOCK 2827

DMA ADDRESS 2821

DMA TRANSFER COUNT 2822

POP 2824

COUNT 2825

APPEND 2826

COUNT 2828

APPEND 2829

FIG. 28

US 9,483,210 B2

Sheet 28 of 70

Nov. 1, 2016

U.S. Patent

64 Ol
SVWLD IV Lee L
IWIH HSvl
; JOVdS YOVLS
3 OINvE momﬂ
SNVE Q3N 9167 15133
v | STIEVIIVA LL62 S3NIND ANV [SINOR
201 ' N SHINWAL
1 - V201
N . 5162 .o e
L3INVE meozm%w U | 0 5062
0 NOILIATIO SINVE SNV L 1 INYg 3N3iNo
ANVE 1 ovasyo 15303
6162 JHSNVAL
1511 33INIOd hl6Z 0L6Z 1S3 Vool
1OVd 43dNS 018 ¥3dNS 153N03d 39vd
U NYE N3dO 1067
- 9062 TNavL 719v1 1S3NO
. 6 153N034 30Vd SHSNVAL WO
: ¥3INNOD
L ANV 1513344
0 3NV Y2014 ¥3dNnS
8167 7067
gyl JIIEERE! 606¢ £062
ANYWWOD 2079 d3dNS 8067 | 1067 2062

U.S. Patent

Nov. 1, 2016 Sheet 29 of 70

SOURCE ADDRESS TO SHARED
RAM ADDRESS REGISTER

—~ 3001

DESTINATION ADDRESS TO
LOCAL ADDRESS REGISTER

~ 3002

NUMBER OF DOUBLE WORDS
TO REPEAT COUNT REGISTER

~3003

MOVE DATA FROM SHARED RAM
T0 mRAM (ADDRESS REGISTERS
INCREMENT, REPEAT COUNT
REGISTER DECREMENTS)

—~ 3004

3005

REPEAT
COUNT = 0
?

NO

FIG. 30

US 9,483,210 B2

U.S. Patent Nov. 1, 2016 Sheet 30 of 70 US 9,483,210 B2

ECC
| CORRECTION
"1 ENGINE
3101

FLASH
~PORTO

FLASH FLASH ECC GENERATION 3103
/7304

|
! |
|
I
! A | STAGE |, |
U HEME 1 BUrFER [T -
I
|
|
I |

307 308 ECC CHECK 3104
$ ECC LOGIC 3102

FIG. 31

US 9,483,210 B2

Sheet 31 of 70

Nov. 1, 2016

U.S. Patent

28 9Ol
rAYAS
¥3403 ONg3q L1Z€ 118VL OVL I15DS
L0l
WYd
HIVd Viva
£0Z¢
X019 STigvL
VIVavLIW
807¢ 079 ¥3dNS
T18VL AVISIA0
3002 WIH U 140d
. . 078
. . VIV Wi
([ZWWRIA0 L 140d
" 0 140d A
. 300D
012¢€ < . 9078 NOILND3X3
L AVI4IAO 30014 31gvL Wav
L[0AVREAO ISHIATY
(| LAVIIA0 U 130d 2028
" n 334404
. . VIVQ 4Ol
OONM .A L4 .
LAVI3IAO | 13Od 1026 Tl
[oo 01d0d |50 QMO

US 9,483,210 B2

Sheet 32 of 70

Nov. 1, 2016

U.S. Patent

¢t ol
L02€ 119VL QdYMAOA
plrU-tyay
P-08yg
62-Slygi
vL-Oygy
d3sn 3OVd A0014 JINVY 1d0d

US 9,483,210 B2

Sheet 33 of 70

Nov. 1, 2016

U.S. Patent

7€ Ol

u L 0
D01 ¥IdNS | « » » | MD078 ¥3dNS | D018 ¥3dNS 9078
INNOD 3573
dWVIS IWIL ~_ e
7Oue INNOD
€9 30Vd ¥3dNS
. U Nve
L 39Vd ¥3dNS
039vd ¥3dNS
€9 30Vd ¥3dNS
. [Nvg
| 39Vd ¥3dNS
039vd 33dNS
£9 39Vd ¥3dNS
. 0 NV
covs L IOVd ¥3dNS
Zove
039vd ¥3dns —
[—
L0ve

50¢¢
319vl
ISYIATY

U.S. Patent Nov. 1, 2016 Sheet 34 of 70

3505 3510

/

US 9,483,210 B2

351

3502 SUPER PAGE
] TIME STAMP | DEFECT

LBA

| YSUPER PAGE O
3503

SUPER PAGE 1
BANK 0

-

. SUPER PAGE 63

(— SUPER PAGE O

35041
04 SUPER PAGE 1

BANK 1 3 .

\ SUPER PAGE 63

SUPER PAGE O

SUPER PAGE 1

BANK n .

SUPER PAGE 63

3506~ SUPER BLOCK TIME STAMP
3507—~—— ERASE COUNT
3508 OPEN FLAG

3509 — CLOSED FLAG

SUPER BLOCK METADATA TABLE 3501

FIG. 35

US 9,483,210 B2

U.S. Patent Nov. 1, 2016 Sheet 35 of 70
ejm 3}02
IOPg X X
{OP;
IOPy
I0P,
|OP DATA BUFFER
3202

FIGC. 36

U.S. Patent Nov. 1, 2016 Sheet 36 of 70 US 9,483,210 B2

CDBINFO

201
\

SELF-POINTER 3701
CONL\Q/\AAND /3702
TRANSFER LENGTH
cDB
INITIATOR ~-3703
op | _-3704
SCSI TAG 3705
SCSI FLAGS ~—13706
BURST LENGTH CONTROL [~_3707
REF TAG _—3708
APP TAG 3709

FIG. 37

U.S. Patent

1OP

202
\

Nov. 1, 2016

Sheet 37 of 70

US 9,483,210 B2

|OP SELF-POINTER | —~380]1
CALLING HEM; |_—3802
8
HOST PORT 3803
INITIATOR 3804
CDBINFO ~~13805
COMMAND |_—3806
TRANSFER REQUESTS |.—3807
ALLOCATED
REMAINING TRANSFER
REQUESTS ™~~—3808
TRANSFER REQUEST
POINTER ARRAY [™~—3809
STATE VARIABLES 3810
ABORT FLAG L 381]
REF TAG |~ 3812
APP TAG
3813

FIG. 38

U.S. Patent Nov. 1, 2016 Sheet 38 of 70 US 9,483,210 B2

TRANSFER 390]
RE;)([)J?E‘:ST SELF-POINTER -
S CALLING 10P 3902
™, | 3903

TRANSFER LENGTH ~~3904

DATA PATH
DRAM POINTER [~~3905

ABORT FLAG 3906
COMMAND 3907

STATE VARIABLES ™~ 3908

REF TAG '_3909
APP TAG 3910
! PAGE REQUESTS !
L _ _ _ALOCATED _ __j 39
! REMAINING PAGE | _-3912
| REQUESTS_ T
I PAGE REQUEST :/ 3913
| POINTER ARRAY

U.S. Patent

Nov. 1, 2016

Sheet 39 of 70

US 9,483,210 B2

seepoteR 00
CALLUNG TRANSFER | ro0s
COMMAND 4003
o e
SPAGE INDEX 4005
FLASH READ
ADDRESS ~~—4006
AR | 007
HEAD LENGTH L4008
TAIL LENGTH ~ 4009
TRANSFER LENGTH [~~~ 4010
STATE VARIABLES ~ |—40M
REF TAG — 4012
APP TAG 4013

FIG. 40

U.S. Patent

Nov. 1, 2016

Sheet 40 of 70

4101

US 9,483,210 B2

INITIATOR
FREELIST 4112

CDBINFO
FREELIST 4102

IOP
FREELIST 4103

INITIATOR 1

INITIATOR 15

INITIATOR O /

INITIATOR TABLE
4108

CDBINFO O
CDBINFO 1

CDBINFO 143

CDBINFO TABLE
4109

I0P 0

IOP1

>
»

IOP 59

IOP TABLE
4N0

HEMI
0

WORKUST WORKLIST WORKLIST

4105

S 201

HEMI
1

4106

GLOBAL

VARIABLES

TRANSFER REQUEST 0

TRANSFER REQUEST 1

-
-
-

4113

HEMi
22

4107

TRANSFER REQUEST 119
TRANSFER REQUEST TRANSFER REQUEST
FREELIST 4104 TABLE 4111
SHARED RAM BLOCK 318

FIG. 41

U.S. Patent Nov. 1, 2016 Sheet 41 of 70 US 9,483,210 B2

INITIATOR
4101 \
INITIATOR 4201
SELF-POINTER
INITIATOR 4202
IDENTIFIER —
COUNT 4203
BURST LENGTH ~—1204

FIG. 42

U.S. Patent Nov. 1, 2016 Sheet 42 of 70 US 9,483,210 B2

[

(an)

0

et

wy

S =

5] z|=z

§ zlz|=
v
2 3 z|z|z|=z
8 (o
2 4 <
S o zlz|ziz= %)
= ~
= o (.
§§ MNMEIEIEIELE:

200
W
W
W
M

50
W
W
M

10
W
M

50
M

BANK
0
]
2
3
4
5
6
7

US 9,483,210 B2

Sheet 43 of 70

Nov. 1, 2016

U.S. Patent

Fy Ol
/
9
mimimm m]m]w S
mlmlimimim|m|w b
mlimmmim|m]w ¢
mlmmlmm]m]w z
mlmmmm]m|w _
mlmm|m|m|m|[w] o
009 | 0SS | 005 | 03v | 00% | 0S€ | 00€ | 052 | 00Z | OSL | OOL | 05 | SNva

{[SPUolasCIW] IWIL

U.S. Patent Nov. 1, 2016 Sheet 44 of 70 US 9,483,210 B2

4501
GIGA BLAZE RECEIVES 7
PRIMITIVE
Y
PRIMITIVE TO PRIMITIVE | _~4502
MATCH LOGIC
Y
SOF MATCH |~ 4503
)
CRACK FRAME ~— 4504
¥
4505
FRAME = COMMAND
Y
FRAME ROUTED TO
HEADER FIFO 4506
' 4507
RECEIVE HEMi POPS FRAME
Y
4508
FRAME CONTAINS CDB
!
RECEIVE HEMi 4509
GENERATES CDBINFO
Y
CDBINFO TO SCSI HEMi [~~~ 4510
' 4511
CDBINFO CONTAINS WRITE |~
Y
CDBINFO TO Rd Wr HEMi [~ 4512
!
4513
Rd Wr HEMi GENERATES 0P I~
Y
4514
IOP TO TRANSMIT HEMi |
Y
4515
TRANSMIT HEMi GENERATES |
TRANSFER READY FRAME

é) FIG 45A
TO FIG 458

U.S. Patent Nov. 1, 2016 Sheet 45 of 70 US 9,483,210 B2

FROM
FIG 45A

7

TRANSFER READY FRAME
TO GIGA BLAZE ~— 4516

TRANSFER READY FRAME TO HOST |_ 4517

GIGA BLAZE RECEIVES PRIMITVE | _ 4518

PRIMITIVE TO PRIMITIVE
MATCH LOGIC L 4519 HEADER ROUTED 70 NON-DATA

PAYLOAD FIFQ, DATA ROUTED
TO RECEIVE STAGE BUFFER ~—4523
SOF MATCH 4520
| RECEVE HEMi POPS HEADER | 4504
CRACK FRAME 51
HEADER = DATA TRANSFER | 4505
HEADER MATCHED TO 0P | 4596

SET UP DMA TRANSFER FROM
RECEIVE STAGE BUFFER TO DRAM 1—4527

(DONE)

FIG. 458

U.S. Patent Nov. 1, 2016 Sheet 46 of 70 US 9,483,210 B2

4601 =

CDB TO RECEIVE HEM

4602

CDBINFO BLOCKS (A)TO FIG 47

4605
4603
FREE
INITIATOR QUEUE
> INITIATOR ? FULL
SEm PRESENT ?
FIG 47
4606
POP INITIATOR -
Y
POPULATE INITIATOR ID [4607

4608 ~1" cOUNT + 1 - COUNT |=

4609 —| FROM FREELIST

4610—J] COPY CDBINFO TO
OPULAT BINF
26111 P ATE CD 0O

4612~ COPY CDBINFO

4613 " POINTER ON

A

v

POP CDBINFO

v

RECEIVE HEMi mRAM

Y

FIELDS

!

TO SHARED RAM

Y

PLACE CDBINFO

SCS! HEMi WORKLIST

TO FIG 468 FIG 46A

U.S. Patent Nov. 1, 2016 Sheet 47 of 70 US 9,483,210 B2

FRON\ FIG 46A
4614
™~ POP POINTER
FROM WORKLIST
!

4615~ COPY CDBINFO TO
SCSI HEMi mRAM

5617

CDBINFO TO
ARM PROCESSOR
Y
(C DpoNE)
4618
" 4619
COMMAND AT v

TABLE MATCH
?

NO

LBA AND TRANSFER [\
LENGTH ~ COMMAND | ™ 4620
TABLE

Y

FIND EMPTIEST | _— 4621
Rd Wr HEMi WORKLIST

!

CDBINFO TO |_— 4622
SELECTED WORKLIST

C DJNE)

FIG 46B

U.S. Patent Nov. 1, 2016 Sheet 48 of 70

(A) FROM FIG 46A

US 9,483,210 B2

4701
FREE
COBINFO BLOCKE SO
?
4704 4705
4703)
FREE SET
CDBINFO BLOCKS Y RESERVE
=17 ' FLAG
4707
INITIATOR
COUNT 312 C)TO FIG 46A
4706
AGGREGATE COUNT |— 4708
FIELDS > 0 -» Var 1
Y
16-Var)»>Var2 I~ 4709
\ 4 4
FREE NO 4702~
CDBINFO BLOCKS ¢ .| QUEUE
>(Var 2 + 1) N FULL
?
Y
4710 YES (poNE)

FIG 47

U.S. Patent Nov. 1, 2016 Sheet 49 of 70 US 9,483,210 B2
4801~_| Rd Wr HEMi POPS CDBINFO
FROM WORKLIST
Y
4802~ COPY CDBINFO INTO
Rd i
Wr HEMI mRAM 4804
4803 /
NO WAIT
FOR
IOP
YES
. 4506
FREE WAIT FOR
g?gﬁ%’;ﬁ% FREE TRANSFER
) REQUESTI(S)
4805 ' YES
Vﬁ
4807~ POP IOP FROM FREELIST
'
4808—"1 COPY IOP TO mRAM
Y
P CDBINFO TRANSFER
4809 LENGTH - TL Var
!
4810~ =DRINFO LBA > LBA Var
FROM FIG 48D ‘ 4811
POPULATE IOP FELDS |~
FROM FIG 48D
POP TRANSFER REQUEST |\
FROM FREELIST 4812
!
COPY TRANSFER |_~4813
REQUEST TO mRAM
éTo FIG 488 FIG 48A

U.S. Patent

Nov. 1, 2016 Sheet 50 of 70 US 9,483,210 B2

@P FROM FIG 48A

{IOP TRANSFER REQUESTS
ALLOCATED + 1) = |OP
TRANSFER REQUESTS
ALLOCATED

/4814

!

(IOP REMAINING TRANSFER
REQUESTS + 1) - IOP
REMAINING TRANSFER
REQUESTS

4815

!

TRANSFER REQUEST
POINTER - IOP TRANSFER
REQUEST PONTER ARRAY

/4816

!

LBA Var -» TRANSFER
REQUEST LBA

4817

v

(IOP DRAM POINTER +
(IOP TRANSFER LENGTH -
TL Var)) -» TRANSFER
REQUEST DRAM POINTER

™~ 4818

!

POPULATE TRANSFER
REQUEST FIELDS

Y

TRANSFER REQUEST
LBA +15 - INDEX

v

FORWARD TABLE INDEX
LOOKUP - PORT A

Y

TLVar = TL Temp

v

1 - PAGE

TO FIG 48C

FIG 48B

U.S. Patent Nov. 1, 2016 Sheet 51 of 70 US 9,483,210 B2

FROM FIG 48B
- 4824
15 - REMAINDER — OFFSET
:V
4825
OFFMYES
2 TL Temp
» 4826
v/
4828 TL Temp >
TRANSFER
REQUEST
TRANSFER
48<9 LENGTH
Y
T - OFFS
(Ti"}‘f Te%Fg ET) TRANSFER
REQUEST TO
! WO!éIéLéS_;T FOR
A
INDEX + 1 - INDEX o PORTA
FORWARD TABLE INDEX
LOOKUP — PORT B (_DoNE)
4836
¥ /
(TL Var -
TL Temp) =
TRANSFER
REQUEST
TRANSFER
LENGTH
PAGE + 1 = PAGE
Y
15 -> OFFSET 4835
A 4
(©TOFIG 48D

FIG 48C

U.S. Patent Nov. 1, 2016 Sheet 52 of 70 US 9,483,210 B2

FROM FIG 48C

TRANSFER REQUESTTO | — 4837
WORKLIST FOR PORT A
ELASH HEMi

!
4838
TL Temp = TL Var -

!

(LBA Var + TRANSFER
REQUEST TRANSFER [~—4839
LENGTH) - LBA Var

4841
4840 D /
TRANSFER WAIT FOR
REQUESTS ALLOCATED IOP TO
=7 COMPLETE
?

TO FIG 48A

FIG 48D

7O FIG 48A (D)

U.S. Patent

Nov. 1, 2016

Sheet 53 of 70

4901

FREE

LOCAL TRANSFER

REQUEST
?

TYES

US 9,483,210 B2

4902

WAIT

4903~

FLASH HEMi POPS
TRANSFER REQUEST
FROM WORKLIST

!

4904 —"

POP LOCAL
TRANSFER REQUEST

Y

4905-"

COPY TRANSFER
REQUEST FROM SHARED
RAM TO mRAM

!

4906~

TRANSFER REQUEST
LBA = |BA Var

Y

4907~

TRANSFER REQUEST
TRANSFER LENGTH
- TL Var

v

4908—"

TRANSFER REQUEST
DRAM POINTER
- DP Var

!

POP PAGE REQUEST

4909
L

FROM

v

FIG 498

LBA Var =15

™~—4910

Y

QUOTIENT USED
AS INDEX INTO
FORWARD TABLE

491
ve

é TO FIG 498

FIG 49A

U.S. Patent

Nov. 1, 2016

Sheet 54 of 70

Q;D FROM FIG 49A

US 9,483,210 B2

BANK, BLOCK, PAGE |— 4912
- PAGE REQUEST
¥
REMAINDER - _—4913
HEAD LENGTH
Y
DP var -
DRAM POINTER | 4914
!
POPULATE OTHER |_— 4915
PAGE REQUEST FIELDS
4917
4916 /
15 - (TL Var +
HEAD LENGTH)
. - TAIL LENGTH
9 & RO 4918 t
\ TL Var —»
0 - TAIL LENGTH TRANSFER LENGTH
4923 T 4919 T
N {15 - HEAD LENGTH)
- TRANSFER LENGTH \ P%G %&&#Eg
I REQUEST ARRAY
PAGE REQUEST = 492{ }
TRANSFER REQUEST ALL PAGE
4924~ ARRAY REQUESTS TO
. I BANK QUEUES
4925~ 1L var - 15) - TL Var ¥
I SET TRANSFER
LBA Var + TRANSFER RE%LAER?XQ_?NE
4926~ |__LENGTH - LBA Var
I 4991 C DgNE Y
DP Var + TRANSFER
LENGTH - DP Var

4

[

927

TO FIG 49A

FIG 49B

US 9,483,210 B2

Sheet 55 of 70

Nov. 1, 2016

U.S. Patent

905 914 WO @ 905 O WO @
V0S Ol | 005
— /
1SINOR
Y3SNVL
@wom W01dN 135
o SIA ! 006
: ; ———1 /
A 153N 153N03Y
QOI¥ad 43315 d34SNVdlL HISNVIL
IVINOIYD ONN_ V301 JIONVH
334
5006
SIA
. é
é 3ININO
1SIRIOM 11 W01
NO 1S3N03 N NO 1SN0

JIISNTL

7005

809 94 OL

AQV3d ANV
Q303N ANVE
1SIMOT =INv4

al N\

LL0s

¢
EN
N ANV G3033N
JNVY
ANY

0L0s

U.S. Patent Nov. 1, 2016

(APFRON\ F

NEED
RESOEPJRCES

NO

5013

RESOURCES
AVAi’lsABLE

YES

f

Sheet 56 of 70 US 9,483,210 B2

IG 50A

5012

EXECUTE PAGE
REQUEST HANDLER
FOR BANK, BASED

ON COMMAND

/50'\4

5015

READY
?

YES

RETURNN_ |
FLASH BORT &—~(®) TO FIG 50A
5016
BANK \NO X
NEEDED AND ~(C) TO FIG 50A

BANK =
HIGHER BANK

5017

FIG. 50B

I

U.S. Patent

Nov.

1, 2016

o101

Sheet 57 of 70

US 9,483,210 B2

COMMAND STATE? FLASH TRANSFER DONE

NEED STAGE BUFFER

SETCS

{
3102

CLE, 15T OPCODE
10 FLASH

RETURN

{
5103

ALE, ADDRESS TO FLASH

{
9104

CLE, 2ND OPCODE
10 FLASH

{
5105

UPDATE PAGE REQUEST
STATE VARIABLES
(NEED STAGE BUFFER)

{
5106

SET RETURN VALVE 10
FLASH PORT NQT BUSY

~ 5107

(REWRN)

GET STAGE BUFFER
5,109 ERROR N0
HANDLER 5115
SET UP FLASH : 3
STAGE BUFFER
5114 SET UP STAGE
DMA TRANSFER R o
51?10 DRAM DMA TRANGFER
UPDATE PAGE REQUEST
STATE VARIABLES 5116~ WAIT
(FLASH TRANSFER DONE)
? 5117
DA
o TRANSFER
SET RETURN VALVE T0 COUNT = 07
FLASH PORT BUSY
] Yes
5112
CREWDN 115 —| RELEASE STAGE BUFFER
POP PAGE REQUEST
5119~ FROM BANK-QUEVE

FIG. 51A

®

10 FIG 518

N |

U.S. Patent

Nov. 1, 2016

Sheet 58 of 70

%\) FROM FIG 51A

5120 "

DECREMENT
REMAINING
PAGE REQUESTS

512

NO

YES

APPEND TRANSFER
REQUEST TO
INTERNAL QUEUE

- 5122

g

\ 4

SET RETURN VALVE
TO FLASH PORT
NOT BUSY

™~~5123

y
(' RETURN)

FIG. 51B

US 9,483,210 B2

U.S. Patent

Nov. 1, 2016 Sheet 59 of 70
5201~ ASSERT CS
!
5202
™ ASSERT CLE
Y
5003 DRIVE FIRST COMMAND
PHASE ON A/D BUS
!
5204~ ASSERT ALE,
DEASSERT CLE
!
5205~ DRIVE ADDRESS
BYTE ON A/D BUS

ADDRESS BYTE
SENT ?

YES

ASSERT CLE,
DEASSERT ALE

v

DRIVE SECOND COMMAND
PHASE ON A/D BUS

!

R/B PINS BUSY

v

FLASH DATA READ FROM
MEMORY TO PAGE BUFFERS

aA)To FIG 528B

FIG. 52A

US 9,483,210 B2

U.S. Patent Nov. 1, 2016 Sheet 60 of 70 US 9,483,210 B2

QE)FROM FIG 52A

52~ R/B PINS READY

-

/

ASSERT RE, READ ONE
5912 "] DOUBLE WORD FROM PAGE
BUFFERS TO STAGE BUFFER

y

5213 ~ DECREMENT FLASH

TRANSFER COUNT
NO
5214 YES
(DONE)

FIG. 52B

US 9,483,210 B2

Sheet 61 of 70

Nov. 1, 2016

U.S. Patent

VES 'O QL NJNL3
788
95 94 0L sngliod Lo
465 M oL HSYH OL JAIVA 865 9HOL
NJNL3 135
I LLes
3NOa \ ‘
2665 (2 433409 10V1S HSY1 0L
ONINIYWR STIGVRIVA \
, 3VIS 1SINO3 aNz ‘I
INIWIOIA | LEE5 fa1vIS 1S3NOY < 104 3vadn
7 3074 3LvadN WAL | o : momm\ ﬁ
e€s] 43409 9VIS
HEAC 4 Simiaan s | vies \[aswaLvag SSRa00N 1Y
ol | oees | wmnagows| L / arnaiovs |/
‘ / VI e smanvh | | <HSTEdN 135 | v0€s ﬁ
\ ON
331ANVH A 97¢S A0 i B%MM %\W_m
HOVH OL ¥43N9 39VIS 139 e
300040 LM /LB
aNz I . £0€S 1
14
{ 3334 44404 S 135
135 9V1S b\
I 733449 ‘
805 FAURY
INOG P L4349
HHSNYL HSNVAL 19YIS
39vd HoVH ; 3N ANYWWOD

¢
3IviS
t0ES

US 9,483,210 B2

Sheet 62 of 70

Nov. 1, 2016

U.S. Patent

aes O
ASNG 1304
HSYH OL3IAWVA | _~¢z¢6
NYNL3Y 136
!
(ANOQ JFHSNVAL
NRIQIER HO 4] STIGVINVA [\
VIS 1SINOFY | 06Es
39Vd 3vadn
ANBION 130 | ccee T
HSY1d OL INWA
NYNLIY L35 J3ASNVEL VWA
. HSVU < 31NG | - 1785
~ 19VIS dN 135
ININD TYNYINI T
OL 1SN0 ool
AIASNVAL) 0
aNIddy sspaay 3y F 0
NINLFY 1
t HSY13 01300040 |- 6165
519 10N 04 JLRIM ISL'TD
HSY14 OL IATVA $
\ NINi3d 138 $ 13 3158
8089 @
V€S Ol WO VES Ol WO V€S Ol4 WO

L0€S

ASNd LON 130d
HSY4 OL 3AIVA
NdNL3d 135

4

3

90gS -

(L ¥344nQ

19VILS

CEENY)

STAVRIVA
VIS 1S3INOH
3OVd 31vadn

VES O WO

U.S. Patent Nov. 1, 2016 Sheet 63 of 70 US 9,483,210 B2

LOOK UP BANK IN |L—9401
FORWARD TABLE

fou Y
Lot Banad

5404 5402

SUPER
= YES ~FAGE AVAILABLE
alqp ON BANK
SUPER ?
PAGE <o 5405
I 5403
INCREMENT BANK
YES SUPER
PAGE DEFECTIVE 5406
? LAST
BANK CHECKED
ALLOCATE NEXT SUPER YES 5407
5412~ PAGE ON POINTER :
LIST TO PAGE REQUEST COPY SUPER BLOCK
METADATA TABLE
‘ TO FLASH
5413~ | UPDATE SUPER PAGE
POINTER LIST Y 5408
I POP SUPERBLOCK |~
FROM FREELIST
(DonNeE)

Y

- WRITE TIME STAMP
5409 TO REVERSE TABLE

Y

COPY SUPER BLOCK
5410~ | “METADATA TABLE
TO DRAM

Y

A INITIALIZE SUPER PAGE
5411 POINTER LIST

U.S. Patent Nov. 1, 2016 Sheet 64 of 70 US 9,483,210 B2

POP TRANSFER REQUEST
A

STATE = DONE 5500

Y

SEND PAGE REQUESTS N
TO FREELIST 5503

Y

SEND INTERNAL TRANSFER | _~ 5504
REGUEST TO FREELIST

A

DECREMENT IOP
REMAINING 5505
TRANSFER REQUESTS

5506

REMAINING

TRANSFER REQUESTS RETURN)
=07
IOP TO TRANSMIT |~ 3207
HEMi WORKLIST
5509
5508 /
READ YES I SET UP AND TRANSMIT
? DATA FRAMES
NO = |
Y
SEND STATUS = COMPLETE [~ 5510
\
CDBINFO, IOP, TRANSFER
REQUESTS TO FREELISTS | 5511
CLEANUP OTHER | 5512
DATA STRUCTURES FG. 55

Y

(" DONE_)

U.S. Patent

Nov. 1, 2016

Sheet 65 of 70

SELECT SUPER BLOCK
BASED ON REVERSE
TABLE COUNT VALVE

I

CREATE INTERNAL
TRANSFER REQUESTS TO
MOVE DATA FROM VALID
SUPER PAGES TO OPEN
SUPER BLOCK

_—5602

Y

EXECUTE PAGE REQUESTS
TO MOVE DATA INTO
OPEN SUPER BLOCK

[™~5603

Y

ERASE BLOCKS 1-7

5604

Y

COPY DEFECT DATA AND
ERASE COUNT FROM
SUPER BLOCK METADATA
TABLE TO FLASH
STAGE BUFFER

5605

!

INCREMENT ERASE COUNT

5606

!

UPDATE REVERSE TABLE

5607

!

ERASE BLOCK O

[~ 5608

!

COPY DEFECT DATA AND
ERASE COUNT TO
BANK 0, SUPER PAGE O

™~ 5609

\d

PLACE SUPER BLOCK
ON FREELIST

/56}0

(DONE)

US 9,483,210 B2

FIG. 56

U.S. Patent Nov. 1, 2016 Sheet 66 of 70 US 9,483,210 B2

FROM
FIG. 50,
STEP 5004

10 FIG. 50,
STEP 5007

s PAGE REQUEST READS 5707
POP LOCAL TRANSFER REQUEST | 5703 R
DETECTED? STEP 5001
POPULATE LOCAL TRANSFER
REQUEST WITH YFS]
LBA TO LBA + 44 L 5704
ECC CORRECTION | 5709
POP AND POPULATE THREE 5710
PAGE REQUESTS WITH LBA
T0 LBA + 14, LBA + 15 TO ERRSRS NO
LBA + 29 AND 0
LBA + 30 TOLBA + 44 | _5705 JHRESHOLDS
PAGE REQUESTS TO WRITE CORRECTED DATA
BANK QUEUES 5706 70 NEW SUPERPAGE 5711
’ L

FIG. 57

US 9,483,210 B2

Sheet 67 of 70

Nov. 1, 2016

U.S. Patent

V86 Ol

285 oM 9@

7285~"1

0 =>2INvd

4

ass 914 0L
796~

dWVIS JWIL IWS OL
JWIL INFHIND LM

19113344 O
23014 d3dNS

T

708§

A

285 OH 9@
£085~_

0 =2INVd
ass oi t

WO JWVLS WL TgVL
ISINTY LM

9085

N3dO 2018

d3dNsS

€085

@3sva3 20014

d3dns

d344N9 3OVIS
OL 18Vl vivaviaw
20019 d3dNS AOD

A

Nowm\

ags o1 wodd (7)

Py
>

0=21001d d3dNS

1085~

US 9,483,210 B2

Sheet 68 of 70

Nov. 1, 2016

U.S. Patent

485 Ol
SAWVIS JWIL
85914 0L 85914 0L ples—"1 30vd $3dNS TAVIWOD
3
F19VL 3S43A3d NI ANVANI F14VL 3S43ATS NI QINVAN HSY1d WOJd SdWVLS
3OVd d3dNS d10 VW 3OVd d3dNS LWS AV IWIL 3OV 33dNS AJOD
\ i N) N
118) ¢i8s €18

WS O dWVIS JWIL

vl ISAIATY
3dvdWO2

0189

J85 Ol WO

U.S. Patent Nov. 1, 2016

FROM
FIG 584 ROM

® FIG 58D

SUPER PAGE =

5808 ~

Sheet 69 of 70

10
FIG 58B

ALREADY IN
FORWARD

YES

FROM TABLE?
HGCDSBB NO

WRITE FORWARD TABLE | _sg15

MARK NEW SUPER PAGE

FROM
nogg | VAUD N REVERSE TABLE | _sgyg

INCREMENT SUPER PAGE 5817

SUPER PAGE
> 637

10
FIG 58D

FROM
FIG_5BA ROM
® FIG 580
- O
5825"‘ SUPER PAGE = O
COPY SUPER PAGE
METADATA FROM FLASH
TO STAGE BUFFER — 5826

SUPER PAGE
WRITTEN?

WRITE SUPER PAGE
METADATA INTO SUPER
BLOCK METADATA TABLE 15878

INCREMENT SUPER PAGE | _ cgng

5830

SUPER PAGE

10
FIG 58D

FIG. 58C

US 9,483,210 B2

US 9,483,210 B2

Sheet 70 of 70

Nov. 1, 2016

U.S. Patent

ass o

cd<
3OVd d3dNS

V85 94
o)1

L2865

-

1285~ 20019 ¥3dNS INIWIAONI

v8s Ol 4
Jenc woyq & SIA oz8s
Lu<
ON SIA ON ANVY
l£gs
N
SINVE INIWIEONI NV INIWIIONI
I 1) ,/%m
© ® O
85 Ol 285 9l V8S Ol D85 OH 85 Ol
oL WO ol oL WO

US 9,483,210 B2

1
FLASH STORAGE CONTROLLER EXECUTE
LOOP

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/887,018, filed May 3, 2013, which is a
continuation of U.S. patent application Ser. No. 12/082,223,
filed Apr. 8, 2008, now U.S. Pat. No. 8,621,138, issued Dec.
31, 2013, which claims priority to U.S. Provisional Patent
Application No. 61/017,123, filed Dec. 27, 2007, all of
which are incorporated herein by reference in their entire-
ties.

FIELD OF THE INVENTION

The invention described herein relates to the field of data
storage, and in particular to data storage applications using
solid state nonvolatile memory devices. This technology has
particular relevance to high performance enterprise systems
involving multi-user computing and storage platforms
deployed in large datacenters, but is also applicable to
smaller-scale enterprise applications and to end-user mass
storage.

BACKGROUND OF THE INVENTION

Current enterprise-level mass storage relies on hard drives
that are typically characterized by a 3.5" form factor, a
15,000 rpm spindle motor and a storage capacity between 73
GB and 450 GB. The mechanical design is identical to the
traditional hard drive with a single actuator and 8 read/write
heads moving across 8 surfaces. The constraints of the
head/media technology limit the read/write capabilities to
only one active head at a time. All data requests sent to the
drive are handled in a serial manner with long delays
between each operation as the actuator moves the read/write
head to the required position and the media rotates to place
the data under the read/write head.

As a result of the queue of requests waiting for the
actuator, the system sees response times increasing to the
point where it becomes intolerable to users. Mass storage
systems have adapted to this problem by limiting the number
of outstanding requests to each drive. This has had the effect
of reducing the effective and usable capacity of each drive
to as low as 12 GB per drive, even though these devices are
available at up to 450 GB capacities. The lower capacity, in
turn, has exacerbated floor space, cooling and power issues,
all of which have become extremely problematic for enter-
prise-level mass storage systems.

In an attempt to relieve these problems, the industry is
moving towards 2.5" drives. However, although the smaller
form factor allows for a larger number of drives in the same
space, the serial nature of hard drive operations means that
even smaller form factor drives present serious space, cool-
ing and power problems.

Flash memory is attractive in an enterprise mass-storage
environment, since flash memory systems do not have the
mechanical delays associated with hard drives, thereby
allowing higher performance and commensurately lower
cost, power, heating and space usage. Nevertheless, flash
memory has not traditionally been used in such environ-
ments due to certain technical constraints.

The first technical problem is write speed, which may be
as slow as one-tenth that of a mechanical hard drive. This
results from the fact that data cannot be overwritten on a

20

25

30

35

40

45

50

55

60

65

2

NAND flash device without a long erase cycle prior to the
write. Because the erase cycle directly affects the write
performance, most flash designs move the write data to a
new location and delay the erase until later. In a busy system,
delayed erase cycles may build up until the processor runs
out of free flash pages and has to stop to create new ones,
thereby significantly affecting system performance.

The second technical problem is the specified limit for
each flash memory page of 100,000 erase cycles for Single
Level Cell (“SLC”) devices and 10,000 cycles for Multi-
Level Cell (“MLC”) devices. These pose particular prob-
lems for datacenters that operate with unpredictable data
streams that may cause “hot spots,” resulting in certain
highly-used areas of memory being subject to a large num-
ber of erases.

The third issue is data loss, which can occur as the result
of various factors affecting flash memory, including read
disturbs or program disturbs, which lead to the loss of data
bits caused by the reading or writing of memory cells
adjacent to the disturbed cell. The state of a flash memory
cell may also change in an unpredictable manner as the
result of the passage of time.

These technical problems create serious issues for the use
of flash memory in high-capacity, high-performance storage
applications. In each case, technical solutions exist, but the
solutions place significant strain on the processing power
available in standard flash memory controllers, which gen-
erally include a single processor. That strain makes it
difficult to overcome these technical problems in these
environments.

SUMMARY OF THE INVENTION

In one embodiment, the described solution to the perfor-
mance limitations of flash memory involves the use of
multiple microprocessors in the controller design, thereby
creating multiple parallel independent pipelines, each of
which is capable of handling a portion of a single transac-
tion. This design maximizes use of the host and flash
interfaces, and allows individual transactions to be broken
up into many small portions, which can be reordered and
handled in parallel to increase performance. The architecture
is designed to allow multiple processors to perform their
functions without the use of costly and inefficient interrupts.

The use of parallel pipelines allows the controller to
effectively mask the write latencies inherent in the use of
flash memory. In addition, the use of multiple independent
processors provides sufficient processing power to handle
overhead imposed by solutions to the endurance and error
problems described above. By breaking host-initiated trans-
actions into a large number of independent flash reads and
writes, the controller architecture described herein allows
for a high level of performance that is impossible using
conventional controller designs.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system containing an SSD (“Solid
State Drive”) controller and flash memory.

FIG. 2 illustrates a hierarchy of data structures used to
translate host commands into flash reads and writes.

FIG. 3 illustrates the system of FIG. 1 in greater detail.

FIG. 4 illustrates a host read operation at a high level.

FIG. 5 illustrates a host write operation at a high level.

FIG. 6 illustrates an organization of flash memory.

FIG. 7 illustrates a relationship between a flash memory
group and a flash port.

US 9,483,210 B2

3

FIG. 8 illustrates input and output signals to a flash
memory device.

FIG. 9 illustrates input and output signals to a flash HEMi
block.

FIG. 10 illustrates connections between a flash port and a
flash memory bank.

FIG. 11 illustrates multiplexing of CS and RB signals onto
a single pin.

FIG. 12 illustrates a flash memory hierarchy.

FIG. 13 illustrates the organization of an SPage sector.

FIG. 14 illustrates the organization of a flash page.

FIG. 15 illustrates an organization of data within a Super-
Block.

FIG.

FIG.
ports.

FIG.

FIG.

16 illustrates a stripe organization of data.
17 illustrates data and control flow through host

18 illustrates a host port.
19 illustrates primitive match logic.
FIG. 20 illustrates a command parser block.
FIG. 21 illustrates a command distribution block.
FIG. 22 illustrates connections between HEMi’s and
shared RAM data structures through a crossbar switch.
FIG. 23 illustrates a RAM controller.
FIG. 24 illustrates the relationship between a shared RAM
controller and a shared RAM bank.
FIG. 25 illustrates DRAM channels.
FIG. 26 illustrates HEMi stages.
FIG. 27 illustrates a flash HEMi and its tightly coupled
logic block.
FIG. 28 illustrates receive HEMi and transmit HEMi
unique registers.
FIG. 29 illustrates the contents of a flash HEMi mRAM.
FIG. 30 illustrates the transfer of a data block from shared
RAM.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

31 illustrates ECC logic.
32 illustrates the contents of a data path DRAM.
33 illustrates a forward table.
34 illustrates a reverse table.
35 illustrates a SuperBlock metadata table.
36 illustrates an IOP data buffer.
37 illustrates a CDBinfo.
38 illustrates an IOP.
39 illustrates a transfer request.
40 illustrates a page request.
41 illustrates the contents of a shared RAM block.
42 illustrates initiator information.

FIG. 43 illustrates SLC flash write timing.

FIG. 44 illustrates MLC flash write timing.

FIGS. 45A and 45B illustrate steps followed by a host port
when a host command is received.

FIGS. 46A and 46B illustrate the initial phases of han-
dling of a CDB.

FIG. 47 illustrates special-case CDB handling.

FIGS. 48A-48D illustrate the manner in which IOPs and
transfer requests are set up based on a CDBinfo.

FIGS. 49A and 49B illustrates the manner in which a flash
HEMi sets up page requests.

FIGS. 50A and 50B illustrate the flash HEMi execute
loop.

FIGS. 51A and 51B illustrate the page request read
handler.

FIGS. 52A and 52B illustrate a flash read operation in
greater detail.

FIGS. 53A and 53B illustrate the execution of a page
request write handler.

FIG. 54 illustrates allocation of a SuperPage to a page
request.

20

25

30

35

40

45

50

55

60

65

4

FIG. 55 illustrates clean-up of a completed transaction.
FIG. 56 illustrates a garbage collection process.

FIG. 57 illustrates a patrol function process.

FIGS. 58A-58D illustrate a rebuilding process.

DETAILED DESCRIPTION OF CURRENTLY
PREFERRED EMBODIMENTS

1. Overview

A. System Overview.

In the currently preferred embodiment, the system
described herein is designed to operate with various enter-
prise-level mass storage protocols, including SAS (“Serial
Attached SCSI”), FC (“Fibre Channel”) and FC-AL (“Fibre
Channel Arbitrated Loop), all of which are based on the
Small Computer Systems Interface (“SCSI”), and Serial
ATA (“SATA”) protocols. These protocols are highly famil-
iar to those of ordinary skill in the art, and will not be further
described herein. Except where particular protocols are
called out, the systems and methods disclosed herein do not
depend on the particular protocol being used and are
designed to operate correctly with all of them. Moreover,
these systems and methods may be adapted for use with
other similar protocols, either currently in use or not yet
developed, including protocols designed for enterprise-level
applications as well as protocols designed for other appli-
cations, such as end-user.

As a matter of convenience, the protocols relevant herein
are oftentimes referred to collectively as the “SCSI Proto-
col,” though, as should be understood, this includes non-
SCSI protocols and does not include those SCSI protocols
that are not relevant.

The system described herein includes a novel architecture
for controlling a mass storage module consisting of flash
memory chips. The overall system is illustrated in a high
level overview in FIG. 1. As with other block diagram
drawings herein, the elements shown in FIG. 1 are concep-
tual in nature, showing the nature of interrelationships
among functional blocks, and are not intended to represent
actual, physical circuit-level implementations.

Hosts 101 and 102 are conventional host devices, e.g.,
two servers that use mass storage resources or two host bus
adapters serving one such server. In certain protocols, each
Host may support multiple initiators. In SCSI-based sys-
tems, initiators are host-side endpoints for data transfers, and
may constitute separate physical devices or processes.

Board 103 (represented by dashed lines) represents one or
more PCBs. It could, for example, consist of a single PCB
board, or of multiple boards connected together in a mother-
daughter configuration. In the currently preferred embodi-
ment, Board 103 is designed so that, from the perspective of
Hosts 101 and 102, Board 103 appears to constitute a
conventional, rotating disk mass storage device. This
requires that Host Ports 104 and 105 be designed so that they
are physically and logically indistinguishable from conven-
tional mass storage interfaces for which Hosts 101 and 102
have been designed. Thus, in the currently preferred
embodiment, use of Board 103 does not require any redesign
of Hosts 101 or 102.

In the currently preferred embodiment, SSD Controller
106 represents a single integrated circuit device that is
attached to Board 103 and runs at 200 MHz. In alternate
embodiments, SSD Controller 106 can consist of more than
one integrated circuit device, without departing from the
principles of the invention(s) described herein. Clock speed,

US 9,483,210 B2

5

of course, represents an implementation choice, and will
vary among implementations.

In the currently preferred embodiment, Data Path DRAM
107 is a 64-bit wide 256 Mbyte DDR SDRAM with a clock
speed of 200 MHz sold by Micron Technology, Inc. of
Boise, Id., under the product designation MT47H16M16BC-
SE. This provides an effective rate of 128 bits of data transfer
per cycle, consisting of two 64-bit transfers per cycle. For
purposes of simplicity, this will be described herein as a
128-bit interface. This device automatically checks ECC on
all transfers. In an alternate embodiment involving greater
overall storage capacity, the Micron MT47H32M16CC-5E,
a 512 Mbyte DDR SDRAM, can be substituted. As should
be understood, many different options are available for the
Data Path DRAM, including the use of types of memory
other than DRAM, and the specific products identified here
are not integral to the inventions disclosed herein. As is
shown in FIG. 1, Data Path DRAM 107 communicates with
SSD Controller 106, but does not have any direct connection
to any other element in the system.

Flash Memory Module 108 represents a number of flash
memory chips. In the currently preferred embodiment, Flash
Memory Module 108 consists of 192 2 gigabyte NAND
flash chips, each running at 40 MHz. As is explained below,
this configuration provides 300 gigabytes of user data capac-
ity. As should be understood, the described system can
operate with a larger or smaller overall capacity, with flash
memory chips that have more or less capacity than 2
gigabytes and with flash memory chips that operate faster or
slower than is currently preferred. In addition, Flash
Memory Module 108 may consist of multiple “daughter
boards” that are stacked together.

Flash Memory Module 108 communicates with SSD
Controller 106, but does not have any connection with any
other element in the system.

As is illustrated in FIG. 1, SSD Controller 106 occupies
a central location, since it communicates with all other
elements in the system, none of which communicate with
each other. The design and operation of each of the elements
shown as part of Board 103 will be described in detail below.
B. Data Structures Overview.

SSD Controller 106 operates by accepting commands
from a host and breaking those commands into smaller tasks
that eventually result in a sequence of reads and writes in
Flash Memory Module 108. FIG. 2 illustrates this process at
a high level.

When SSD Controller 106 receives a Host-initiated read
or write command, it creates a data structure known as a
“CDBinfo” (e.g., CDBinfo 201), which contains the Com-
mand Descriptor Block (“CDB”) or other corresponding
command-related information from the Host. Among other
information, the CDBinfo specifies the address range to be
read from or written to, in Logical Block Addresses
(“LBAs”).

Based on the CDBinfo, SSD Controller 106 creates a data
structure known as an “Input-Output Process” (“IOP”) (e.g.,
1OP 202). Under most circumstances, a single IOP controls
the entire transaction requested by the Host.

Each IOP can invoke up to seven data structures known
as “Transfer Requests™ (e.g., Transfer Requests 203-209).
Each Transfer Request is designed to handle a portion of the
LBA range specified by the IOP.

Each Transfer Request can invoke up to three data struc-
tures known as “Page Requests” (e.g., Page Requests 210,
211 and 212, invoked by Transfer Request 206; Page
Requests invoked by the other Transfer Requests are not
shown in FIG. 2). Each Page Request is designed to read

20

25

30

35

40

45

50

55

60

65

6

from or write to a segment of Flash Memory Module 108
corresponding to a portion of the LBA range specified by the
Transfer Request.

As FIG. 2 shows, the three illustrative Page Requests each
accesses a region of Flash Memory Module 108 known as a
“SuperPage” (e.g., SuperPages 213, 214 and 215). As is
further described below, each SuperPage consists of four
flash Pages, each of which is stored on a different Flash Die.

Each of these data structures is described in greater detail
below.

C. Detailed System Overview.

FIG. 3 provides additional detail to the overall system
design illustrated in FIG. 1, though, as before, numerous
elements and details are omitted for purposes of clarity. FIG.
3 shows Hosts 101 and 102 connected to Board 103, with
Board 103 including SSD Controller 106, Data Path DRAM
107 and Flash Memory Module 108.

Flash Memory Module 108 is divided into eight Flash
Groups, designated as Flash Groups 0-7. Of these, three are
shown in the Figure: Flash Groups 0, 1 and 7, designated as
301, 302 and 303. In the currently preferred embodiment,
Flash Memory Module 108 can hold between eight and
twelve Flash Groups.

SSD Controller 106 also contains a number of Flash Ports
equal to the number of Flash Groups contained in Memory
Module 108, e.g., Flash Ports 304, 305 and 306. Each Flash
Port communicates with one Flash Group (e.g., Flash Port 0
304 communicates with Flash Group 0 301). As with the
Flash Groups, in the currently preferred embodiment, SSD
Controller 106 can have a minimum of eight and a maximum
of twelve Flash Ports and the embodiment illustrated con-
tains eight, of which three are shown. As is described below,
each Flash Port operates independently, thereby supporting
parallel operations in the Flash Groups.

Each Flash Port includes a Flash HEMi and a Stage Buffer
(e.g., Flash Port 0 304 contains Flash HEMi 0 307 and Flash
Stage Buffer 0 308). “HEMi” stands for Hardware Execution
Machine. HEMi’s are logic blocks that operate as dedicated,
special-purpose microprocessors. The design and function
of HEMi’s is explained in greater detail below. Each Flash
HEMIi controls transfer operations for a single Flash Group
(e.g., Flash HEMi 0 307 controls Flash Group 0 301, Flash
HEMi 1 309 controls Flash Group 1 302, etc.)

Flash Stage Buffers (e.g., Flash Stage Buffer 0 308) are
used to buffer data transfers between Data Path DRAM 107
and the Flash Groups. In the currently preferred embodi-
ment, each Flash Stage Buffer is a dual port SRAM that can
handle one read and one write concurrently, and is capable
of holding 16 Kbytes of data, representing four flash pages.
As is explained below, this constitutes a “SuperPage” of
data.

As is described below, in the currently preferred embodi-
ment, the data interface from each Flash Group is capable of
transmitting 32 bits at a time (one doubleword), whereas
Data Path DRAM 107 is capable of sending or receiving
data 128 bits at a time (as is described above, in the current
embodiment, the Data Path DRAM transmits and receives
data in 64-bit chunks, but does so twice in each clock,
thereby providing an effective data rate of 128 bits).

The Flash Stage Buffers buffer communications between
the Flash Groups and the Data Path DRAM and therefore
allow transfers to occur without requiring wait states on the
part of the DRAM. In the currently preferred embodiment,
in the case of transmissions from the Flash Group to the
DRAM, the Flash Stage Buffers accept the data in double-
word chunks. Once a sufficient amount of data has been
received (preferably an entire SuperPage), the Flash Stage

US 9,483,210 B2

7
Buffer then burst transfers the data to the Data Path DRAM
in a DMA transfer that uses the entirety of the Data Path
DRAM data bus. The Flash Stage Buffers are controlled by
DMA logic that handles DMA transmissions to and from the
DRAM (see discussion of FIG. 10, below).

As FIG. 3 shows, Hosts 101 and 102 communicate with
Host Interface 310, which, as should be understood, includes
Host Ports 104 and 105 (not shown). In general Hosts issue
commands, provide data that is to be written into mass
storage and request data from mass storage. As is understood
by those of ordinary skill in the art, the details of the manner
in which Hosts communicate with mass storage is protocol-
dependent. Typically, however (and without limitation),
Hosts communicate with mass storage using “frames,”
which contain commands and/or data. Typically, commands
are contained in Command Descriptor Blocks (“CDBs”),
which are familiar to those of ordinary skill in the art.

Host Interface 310 is designed to respond to CDBs in a
manner transparent to the Host, meaning that from the
perspective of Host 101, Host Interface 310 appears to
constitute an interface to a conventional mass storage
device.

Control flow proceeds as follows (each of the logic blocks
and metadata structures mentioned is explained in greater
detail below): Upon receiving a CDB requesting a read or
write, Host Interface 310 generates a CDBinfo to handle the
operation (e.g., CDBinfo 201). That CDBinfo is then passed
to Command Parser Block 311.

Upon receiving a CDBinfo, Command Parser Block 311
performs coherency and other types of checks, which are
described below, and then passes the CDBinfo to Command
Distribution Block 312.

Command Distribution Block 312 evaluates the CDBinfo
and creates an IOP (e.g., IOP 202) to carry out the requested
transfer. Command Distribution Block 312 then generates
one or more Transfer Requests (e.g., Transfer Requests
203-209), each to carry out a portion of the transfer required
by the IOP. For each Transfer Request, Command Distribu-
tion Block 312 then determines which Flash Group contains
the data to be read, or the address location to be written.

Command Distribution Block 312 then passes the Trans-
fer Requests to the Flash Ports corresponding to the Flash
Group containing the relevant flash memory addresses, e.g.,
Flash Port 0 304, Flash Port 1 305 and Flash Port 7 306.

When a Flash Port receives a Transfer Request from
Command Distribution Block 312, the Flash HEMi for that
Flash Port breaks the Transfer Request into Page Requests
(e.g., Page Requests 210, 211 and 212) and uses the Page
Requests to control actual read and write operations in the
associated Flash Group, with each Page Request accessing
up to a SuperPage of data.

Control flow in FIG. 3 for a read or write operation in
Flash Group 0 thus proceeds as follows. Host 101—Host
Interface 310—Command Parser Block 311—Command
Distribution Block 312—Flash HEMi 0 307—Flash Group
0 301.

Data flow proceeds differently. In the case of a read, data
is returned by the Flash Group to the Flash Stage Buffer
contained in the connected Flash Port. For example, Flash
Stage Buffer 0 308 is connected to Flash Group 0 301, Flash
Stage Buffer 1 314 is connected to Flash Group 1 302 and
Flash Stage Buffer 7 315 is connected to Flash Group 7 303.

From the Flash Stage Buffer, the data obtained from the
Flash Group is written into Data Path DRAM 107 through
Bus 316. From Data Path DRAM 107 it passes through Host
Interface 310 to Host 101. Write operations proceed in the

20

25

30

40

45

50

55

60

8

opposite direction: Host 101—Host Interface 310—Data
Path DRAM 107—Flash Stage Buffer 0 308—Flash Group
0 301.

The fact that control flow and data flow follow different
paths is illustrated by the lines connecting the various
elements in FIG. 3. Thus, the arrows connecting the Flash
HEMi’s with the Flash Groups symbolize control flow
between these elements, whereas the arrows connecting the
Flash Groups with the Stage Buffers indicate data flow.

FIG. 3 also shows RAM Controller 317 and Shared RAM
Block 318, each of which is described in greater detail
below. In general, Shared RAM Block 318 contains memory
used by the HEMi’s, and RAM Controller 317 contains logic
that controls Data Path DRAM 107 and Shared RAM Block
318 and arbitrates access to both of those resources.

D. Read and Write Overview.

FIG. 4 illustrates the high-level data flow for a read
operation handled by SSD Controller 106.

In Step 401, the Host (e.g., Host 101) issues a read
command, including the LBA of the data.

In Step 402, SSD Controller 106 identifies the location of
the requested LBA(s) in Flash Memory Module 108 and
issues one or more read commands to the Flash Memory
Module.

In Step 403, Flash Memory Module 108 performs a read
operation and returns data to SSD Controller 106.

In Step 404, the returned data is passed through SSD
Controller 106 and stored in Data Path DRAM 107.

In Step 405, a check is made to determine if all of the data
requested by Host 101 has been obtained. If not, (“no”
outcome to Step 405), control returns to Step 403 so that the
additional data can be obtained from the Flash Memory
Module and stored in the Data Path DRAM.

Once all data requested by the Host has been obtained
from the Flash Memory Module and stored in the Data Path
DRAM (“yes” outcome from Step 405), in Step 406, the data
is read out of Data Path DRAM 107 and into SSD Controller
106.

In Step 407, the data is transmitted from SSD Controller
106 to Host 101, and the read operation requested by Host
101 is complete.

As should be understood, FIG. 4 describes the read
operation using high-level conceptual steps, the details of
which are explained below.

FIG. 5 uses similar high-level conceptual steps to illus-
trate a write operation, in which Host 101 is seeking to store
data in memory.

In Step 501, Host 101 issues a write command, with an
LBA, and provides the data to SSD Controller 106.

In Step 502, SSD Controller 106 stores the data to be
written in Data Path DRAM 107.

In Step 503, SSD Controller 106 identifies the location of
the LBA in Flash Memory Module 108.

In Step 504, SSD Controller 106 issues a read command
to Flash Memory Module 108 sufficient to read the Super-
Page containing the LBA. This read command does not store
data into the DRAM, and therefore proceeds from Step 403
of FIG. 4 to Step 405, skipping Step 404, and loops through
those two Steps until all of the data has been received.

In Step 505, the data from Data Path DRAM 107 is
transferred to the Controller and integrated with the data
read from the Flash Memory Module. As a result of this
integration, the Controller now holds a SuperPage in which
the new data has overwritten the old data stored at that LBA,
but all other LBAs in the SuperPage are unchanged.

In Step 506, SSD Controller 106 issues a write command
to Flash Memory Module 108.

US 9,483,210 B2

9

In Step 507, Flash Memory Module 108 performs a write
operation.

In Step 508, a check is done to determine if all informa-
tion has been written in Flash Memory Module 108.

If additional write operations are required (“no”
from Step 508), control returns to Step 507.

If all data has been written to Flash Memory Module 108
(“yes” result from Step 508), in Step 509, SSD Controller
106 updates location information for the LBAs that were
written. As is explained in detail below, because of the
nature of flash memory, a write operation does not physi-
cally overwrite the existing SuperPage, but instead writes
the updated SuperPage to a new location in Flash Memory
Module 108, thereby requiring an update to the address
translation information associated with the LBAs stored in
that SuperPage.

The write operation then completes.

result

II. Flash Memory Architecture

A. Physical Memory Architecture.

FIG. 6 illustrates the organization of one Flash Group
(e.g., Flash Group 0 301), and its relationship to its associ-
ated Flash Port (e.g., Flash Port 0 304). As should be
understood, the details of this organization may differ in
different embodiments.

Flash Group 301 consists of eight Flash Chips, designated
as 601-608. Each Flash Chip includes two Dies; e.g., Flash
Chip 601 contains Dies 609 and 610.

In one embodiment, each Die (e.g., Die 609) has a raw
capacity of approximately 1.11 gigabytes, consisting of
8224 blocks, each made up of 64 pages, with each page
consisting of 2212 bytes. When system and spare memory
space is subtracted, this leaves a user data capacity of
approximately 1 gigabyte per die, or 2 gigabytes per NAND
flash chip. In a system including twelve Flash Groups and
eight Banks per Flash Group, this provides a raw user
memory space of approximately 384 gigabytes, but the total
useable space for user data is approximately 300 gigabytes,
since some space is devoted to spare and system functions
that do not fall within the LBA address space made available
to users. System space stores various types of system
metadata, including SCSI mode pages, and also contains
free space.

The use of 2 gigabyte NAND flash chips, each containing
two 1 gigabyte Dies, is a reflection of the current state of the
art in available flash memory technology. The described
system can operate equally well with other flash memory
sizes and configurations, including four dies contained in
one flash memory chip, or one die per chip. Because the next
generation of NAND flash chips will incorporate four Dies
per chip, it is likely that Flash Group 301 will use such chips.
The principles described herein are easily applicable to
four-Die designs. For example, if each Die in a four-Die chip
has its own CE and RB Pin, but all four Dies share common
address/command/data pins, then each Die can be incorpo-
rated into a separate Bank. On the other hand, if each
four-Die chip has two CE and RB Pins, with two Dies
sharing each Pin, then from the perspective of SSD Con-
troller 106, the two Dies that share common CS and RB Pins
will appear indistinguishable from a single Die described
above (e.g., Die 609).

The currently preferred embodiment also operates equally
well with 1 Gigabyte NAND flash chips, each containing 2
half-gigabyte dies. In this configuration, only 4112 blocks

20

25

30

35

40

45

50

55

60

65

10

are included per die. Other than the capacity, this configu-
ration operates the same as the configuration described
above.

Note that the flash memory chips themselves are of
conventional design, and the illustration in FIG. 6 is not
intended to convey details of the internal design of these
chips, but instead to allow for an understanding of the
organization of the chips and the manner in which the Dies
interface with the rest of the system.

Flash Group 301 is divided into four Banks (611, 612, 613
and 614), each made up of four Dies. Thus, Bank 611
consists of Die 609 from Flash Memory 601, Die 615 from
Flash Memory 602, Die 616 from Flash Memory 603 and
Die 617 from Flash Memory 604. Bank 612 consists of Die
610 from Flash Memory 601, Die 618 from Flash Memory
602, Die 619 from Flash Memory 603 and Die 620 from
Flash Memory 604. Banks 613 and 614 are similarly orga-
nized among the other Flash Memories and Dies.

FIG. 6 shows four Banks. In the currently preferred
embodiment, each Flash Group contains between four and
eight Banks, depending on the amount of capacity desired by
the user.

FIG. 7 provides additional details regarding the intercon-
nections between Flash Memory Module 108, SSD Control-
ler 106 and Data Path DRAM 107. Although FIG. 7 shows
Flash Group 0 301 and Flash Port 0 304, the same inter-
connections exist between all Flash Groups and their accom-
panying Flash Ports and Data Path DRAM 107.

As is shown in FIG. 7, Flash Group 0 301 is connected to
Flash Port 0 304 by two buses, Flash Bus 701 and CS/RB
Bus 702.

CS/RB Bus 702 consists of a separate line connecting
Flash HEMi 307 to each of the Banks of Flash Group 301.
In the embodiment shown, which has four Banks, CS/RB
Bus 702 consists of four lines: Line 703, connecting Flash
HEMi 307 with Bank 614, Line 704, connecting Flash
HEMi 307 with Bank 613, Line 705, connecting Flash
HEMi 307 with Bank 612, and Line 706, connecting Flash
HEMi 307 with Bank 611. In an embodiment including a
larger number of Banks (e.g., eight), CS/RB Bus 702 would
consist of a correspondingly larger number of signals. As
should also be understood, the signals from Flash HEMi 307
travel through pins on SSD Controller 106. FIG. 7 is not
intended to show the physical details of the transmission
paths, but instead illustrates the flow of data and control
signals.

The lines of CS/RB Bus 702 carry Ready-Busy (“RB”)
signals from Flash Group 301 to Flash HEMi 307, and Chip
Select (“CS”) signals from Flash HEMi 307 to Flash Group
301.

Only one of the CS signals carried on CS/RB Bus 702 is
active at any given time. The Bank connected to the cur-
rently active CS signal is connected to Flash Bus 701, and
all other Banks are disconnected from that Bus (again, this
is a logical rather than a physical concept; depending on the
implementation, the “connected” Bank may communicate
with the Flash Bus whereas all other Banks ignore the Flash
Bus, even though a physical connection exists between the
Flash Bus and all of the Banks).

Address and control information from Flash HEMi 307 is
transmitted on Flash Bus 701 to each of the Banks. This
includes Control Signals 708 (described below in connection
with FIG. 8) and Address/Command Signals 709 (described
below in connection with FIG. 9). Similarly, Bus 707
connects Flash Stage Buffer 308 to Flash Bus 701. Data is
transmitted from Stage Buffer 308, on Bus 707, along Flash

US 9,483,210 B2

11
Bus 701 and to the Banks Data is transmitted from the Banks
to Stage Buffer 308 in the opposite direction.

As is further shown in FIG. 7, Data Path DRAM 107 is
connected to Stage Buffer 308. Thus, data passes from Data
Path DRAM 107 to Stage Buffer 308, and is then sent along
Bus 701 to the Bank that has the currently active CS signal.
Data from Flash Group 301 is transmitted to Data Path
DRAM 107 along the opposite path.

FIG. 8 shows portions of the pin-out of a single flash
memory chip, e.g., Flash Chip 601, which includes Dies 609
and 610. In the currently preferred embodiment, the Flash
Chips use a standard NAND flash interface, typically con-
sisting in relevant part of 8 bits of address/data (801), 4 bits
of control (Address Latch Enable (“ALE”) Signal 802,
Command Latch Enable (“CLE”) Signal 803, Write Enable
(“WE”) Signal 804 and Read Enable (“RE”) Signal 805,
which collectively are referred to as Control Signals 708),
one Chip Enable pin per Die (this is connected to the CS
signal from the Controller and the designations Chip Enable
and Chip Select will sometimes be used interchangeably),
and one Ready/Busy line per die. As is indicated, the A/D
signals 801 and the ALE, CLE, WE and RE signals are all
connected to Flash Bus 701, though these are not the only
signals connected to that Bus.

As is shown in FIG. 8, ALE, CLE, WE, RE and both Chip
Enable signals are inputs to Flash Memory 601. A/D Bus
801 is made up of eight bidirectional signals. Both RB
signals are outputs.

All signals shown in FIG. 8, except for the two CE and
two RB signals, are shared by both Dies. Thus, the same
eight A/D pins 801 are shared by Dies 609 and 610. As
should be understood from the discussion of FIG. 6, these
Dies are each in separate Banks. For this reason, the sharing
of pins does not create a conflict, since under no circum-
stances are these signals active for more than one Bank at a
time.

As is typical of flash memory, each Die has an associated
Flash Page Buffer that can hold one page of data that is being
written into or read out of the corresponding Die. FIG. 8
shows these as Page Buffers 806 and 807.

FIG. 9 illustrates the portion of the signal output of a Flash
HEMi (e.g., Flash HEMi 307) which is devoted to a Flash
Memory Port (e.g., Flash Memory Port 0 304). As should be
understood, Flash HEMi 307 also has additional inputs and
outputs devoted to other functions. As is explained above,
signals connecting Flash HEMi 307 with the Flash Group
are routed through pins of SSD Controller 106. Neither those
pins, nor the logic that handles the routing, are shown. As is
true in other Figures showing signal routing, FIG. 9 is
intended as a conceptual illustration, and is not intended to
illustrate the details of actual physical layout.

This portion of Flash HEMi 307’s interface is made up of
signals devoted to the following functions:

1. Control Signals 708, made up of four control lines:
ALE Signal 802, CLE Signal 803, WE Signal 804 and RE
Signal 805. These signals are outputs from Flash HEMi 307.

2. CS/RB Bus 702, which is made up of CS/RB Lines
703-706. As is explained above, each Flash HEMi can
control one Flash Memory Bank per connected CS/RB Line.
Thus, in the embodiment illustrated in FIG. 9, Flash HEMi
307 controls four Flash Memory Banks (e.g., Banks 611,
612, 613, 614 shown in FIG. 6). In a system including eight
Banks per Flash Group, each Flash HEMi would have eight
signals devoted to this purpose (note that the logic necessary
to support the extra four signals is present even if those
signals are not in fact used).

20

25

30

35

40

45

50

55

60

65

12

CS/RB Bus 702 transmits CS signals from HEMi 307 to
the Flash Banks, and transmits RB signals from the Flash
Blanks to HEMi 307. Since the signals are multiplexed in
this manner, each such Line may transmit only one type of
signal at a time. The CS/RB signals are “one hot” signals,
meaning that one and only one of these signals can be active
at any given time.

Using the same signals for both CS and RB purposes
saves pins on SSD Controller 106, and therefore reduces the
cost and complexity of the SSD Controller. However, this
limits the number of Banks that can be controlled by Flash
HEMi 307, since one RB signal, and therefore one pin, is
required for each bank. Because in the current embodiment
SSD Controller 106 includes eight CS/RB pins for each
Flash Port, in that embodiment a maximum of eight Banks
may be controlled by each Flash HEMi.

3. 31 signals making up Address/Command Signals 709.
This bus, which connects to Flash Bus 701, runs at the same
40 MHz speed as the flash memory chips and carries
addresses and commands from Flash HEMi 0 307 to Flash
Group 0 301. Address/Command Signals 709 can be thought
of as four separate eight-bit buses (consisting of lines 0-7,
8-15, 16-23 and 24-31), each of which routes an eight-bit
payload to a separate Die in a Flash Memory Bank. Thus,
eight lines from Address/Command Bus 709 connect to A/D
signals 801, shown in FIG. 8.

As should be clear from the foregoing, 44 pins of SSD
Controller 106 are devoted to each Flash Port (keeping in
mind that each Flash Port can support a maximum of eight
Banks and therefore requires eight CS/RB pins, though only
four such signals are shown in FIG. 9). Since SSD Controller
106 can support up to 12 Flash Ports, 528 pins of SSD
Controller 106 are devoted to the flash interface, though
some of these pins may be no-connects, if fewer than 12
Flash Ports are used. Note that, if separate CS and RB pins
were required, an additional 96 pins would be needed for the
flash interface (1 pin per Bankx8 Banksx12 Flash Ports).
Combining the CS and RB signals onto a single pin therefore
provides a very significant savings in terms of the number of
required pins.

The embodiment shown in FIG. 9 is currently preferred,
but various other embodiments are also possible. In a
different embodiment, the eight CS/RB pins currently
devoted to a particular Flash Group are connected to a mux
or other similar logic device located in the Flash Group. The
mux, in turn, has a set of output signals that connect to the
CE inputs of all Flash Dies in a Bank, with each signal
causing the CE inputs of a particular Bank to be selected.
Because the eight SSD Controller CS/RB pins are capable of
transmitting 256 separate states, in theory, it would be
possible to use those pins to select among 256 separate
Banks, by designing the mux or other logic so as to generate
a signal along a different output line for each of the 256
possible input states. However, since in the current embodi-
ment all of the Banks share the same A/D Bus, there would
be little or no benefit in adding such a large number of Banks
Instead, in a more desirable embodiment, such a mux or
other similar logic would be used to add a modest number
of Banks (e.g., eight), or to reduce the number of CS/RB
pins per Bank (e.g., from eight to four).

Note that in this alternate embodiment, because the num-
ber of CS/RB pins is less than the number of Banks, the
CS/RB pins can no longer handle the RB signals for each
Bank. In this embodiment, therefore, the SSD Controller
CS/RB pins no longer handle the RB input. However,
because standard flash chips support a software-only status

US 9,483,210 B2

13
check of the RB state, each Flash HEMi could check the RB
state of the Banks using the A/D Bus.

This alternate embodiment therefore allows SSD Control-
ler 106 to devote fewer pins to the flash memory interface or
to support a larger number of Banks with the same number
of pins, though at the cost of some additional logic com-
plexity.

FIG. 10 illustrates the manner in which the Dies in a
single Bank (e.g., Dies 609, 615, 616 and 617 in Bank 611)
are connected together and to the associated Flash Port (e.g.,
Flash Port 0 304, containing Flash HEMi 307 and Stage
Buffer 308).

As is shown in FIG. 6, Die 609 is one of two Dies in Flash
Chip 601, Die 615 is one of two Dies in Flash Chip 602, Die
616 is one of two Dies in Flash Chip 603 and Die 617 is one
of two Dies in Flash Chip 604. For ease of illustration, FIG.
10 only shows one of the two Dies in each Flash Chip. (As
is described above, Memory Module 108 may well incor-
porate Flash Chips that have four Dies each (or more),
though the principles of the design disclosed herein would
remain the same.)

As is shown, Line 706 constitutes the CS/RB signal
interface between Flash HEMi 307 and Bank 611. That Line
carries the CS signal from Flash HEMi 307 to Bank 611, and
the RB signal from Bank 611 to Flash HEMi 307. FIG. 10
illustrates this by showing arrows going in both directions
between Flash HEMi 307 to Point 1001 on Line 706. From
Point 1001, the signal path divides, and carries the CS signal
as an input to the Dies (shown by arrows pointing into each
Die with the label “CS”) and carries the RB signal as an
output from each of the Dies (shown by arrows pointing out
of each Die with the label “RB”). As should be understood,
Point 1001 is figurative in nature, and neither it nor the rest
of the Figure are intended as a literal illustration of physical
implementation.

As is shown, the RB output signals from each Die in the
Bank are logically ORed together (or otherwise similarly
combined), so that a Busy signal is sent from Bank 611 to
HEMi 307 along Line 706 if any one of the four Dies in the
Bank is outputting “Busy.”. Line 706 also carries the CS
signal from Flash HEMi 307 to each of the Dies in the Bank.
When the CS signal devoted to the Bank is set by Flash
HEMi 307, that signal is sent simultaneously to the CE pin
of each Die in the Bank, thereby selecting each such Die
simultaneously.

FIG. 10 also shows Address/Command Bus 709, which
represents the connections between the A/D pins of Flash
Chips 601-604 and the Address/Command signals of HEMi
307. As is shown, 32-bit Bus 709 carries signals from Flash
HEMi 307 to Bus Switch 1002. Bus Switch 1002 represents
logic that combines, divides and routes signals as described,
and does not necessarily constitute a single physical switch.

Bus Switch 1002 divides the signals from Bus 709 into
sub-buses. Signals 0-7 are transmitted to the A/D pins of
Flash Chip 601 using 8-bit Bus 801 (also shown in FIG. 8),
Signals 8-15 are transmitted to the A/D pins of Flash Chip
602 using 8-bit Bus 1003, Signals 16-23 are transmitted to
the A/D pins of Flash Chip 603 using 8-bit Bus 1004 and
Signals 24-31 are transmitted to the A/D pins of Flash Chip
604 using 8-bit Bus 1005. Note that the A/D pins are shared
by both Dies in a Flash Chip, so that the signals transmitted
to the Flash Chip pins would be received by the appropriate
Die in a manner specific to the internal design of the Flash
Chips.

FIG. 10 also shows the connections between Control
Signals 708 of Flash HEMi 307 and each of the Dies. As is
described above, these Control Signals consist of ALE,

20

25

30

35

40

45

50

55

60

65

14

CLE, RE and WE, and they are transmitted from Flash
HEMi 307 to the Flash Dies. Control Signals 708 are sent
from Flash HEMi 307 to Bus Switch 1002. From Bus Switch
1002, an identical set of Control Signals (designated in each
case as 708) is transmitted to each of the Flash Memory
Chips. As with the A/D pins, the ALE, CLE, RE and WE
pins are shared by both Dies in each Flash Memory Chip.

FIG. 10 also shows Flash Stage Buffer 308, which is
connected to Bus Switch 1002 by 32-bit Bus 707. Unlike
Bus 709, Bus 707 is bidirectional, and thus transmits data in
both directions.

Transfers between Stage Buffer 308 and the Dies occur
under the control of Stage Buffer DMA Controller 1006.

Note that Flash Stage Buffer 308 also connects to the RE
and WE inputs of Flash Chips. These connections, which for
clarity’s sake are not shown in the Figures, are used to
control DMA operations.

Bus Switch 1002 divides the signals from Bus 707 into
four sets of eight-bit signals, and transmits those signals to
Dies 609, 615, 616 and 617 using 8-bit Buses 801, 1003,
1004 and 1005. Similarly, Bus Switch 1002 receives data
from Dies 609, 615, 616 and 617 on 8-bit Buses 801, 1003,
1004 and 1005, then transmits the entire 32-bit value to
Stage Buffer 308 on Bus 707.

Switch 1002 thus multiplexes signals from Flash HEMi
307 and signals to and from Stage Buffer 308 on the same
8-bit Buses. Switch 1002 determines which set of signals to
pass through to the 8-bit Buses depending on the particular
stage of the read or write cycle, with address information
from Flash HEMi 307 being connected to the Dies during
one stage of the cycle, whereas data to or from Stage Buffer
308 is connected to the 8-bit Buses during a different stage
of the cycle. (Again, as is described above, Switch 1002 is
conceptual in nature and does not necessarily constitute a
single dedicated switch. In addition, aspects of the function-
ality described in connection with Switch 1002 may be
found in other logic blocks.)

FIG. 10 shows only a single Flash Memory Bank, 611. In
an actual embodiment, Bus Switch 1002 would interface to
each of the Flash Memory Banks in the Flash Group, and
each interface would duplicate all of the signals output from
Bus Switch 1002 to Bank 611 that are shown in FIG. 10,
with the exception of Signal 706, which, as is explained
above, is specific to Bank 611. As is also explained above,
Flash Memory Switch 1002 connects Buses 707, 708 and
709 to each of the Flash Banks, but the only Bank that is
responsive is the Bank associated with the currently active
CS signal from Flash HEMi 307.

Note that Flash Bus 701 includes Buses 708, 801, 1003,
1004 and 1005.

FIG. 11 shows the CS and RB logic related to Line 706
in greater detail. As is shown, SSD Controller CS/RB Pin
1101 connects to the RB and CE pins associated with Flash
Dies 609 and 615. As is described above in connection with
FIG. 6, Dies 609 and 615 are two of the four Dies in Bank
611. For purposes of illustration, the other two dies in the
Bank are not shown, but are connected in the same manner
as Dies 609 and 615.

SSD Controller 106 drives CS/RB Pin 1101 high to select
Bank 611. This signal is inverted by Inverter 1102 and
received low by the CE pins of the Dies in the Bank. These
pins are active low.

CS/RB Pin 1101 is driven low by SSD Controller 106
when the Controller is driving another one of the CS pins in
the same Flash Group high (thereby selecting another Bank
in the Flash Group).

US 9,483,210 B2

15

When Flash HEMi 307 wants to read the Ready-Busy
state of Bank 611, SSD Controller 106 floats CS/RB Pin
1101. When the CS/RB Pin is floated by the SSD Controller,
that Pin will receive a low input if any of the Flash Die RB
pins is driving a low signal, indicating that the Bank is busy,
since a low output on any of the Die RB pins will override
Pullup 1103. If, on the other hand, the Bank is in the Ready
state, the Flash Dies allow the RB pins to float. Because
Pullup 1103 is connected to the RB pins, when all of those
pins are floated, and when CS/RB Pin 1101 is floated, the Pin
receives a high input signal, which indicates that the Bank
is ready.

Thus, this circuit connects the R/B pins of the Banks
together in an OR configuration, since all of the pins must
be in the Ready state (floating) in order for a ready signal to
be received by CS/RB Pin 1101, so that the circuit effec-
tively ORs together the Busy state of the Pins. The use of
Inverter 1102 allows SSD Controller 106 to drive the CS
signal high to select a Bank, even though the Bank’s CE pins
are active low. This is necessary because the CS signal must
be driven high in order to override the incoming RB signal.
In this way, the RB input to SSD Controller 106 can be
active high, but can still be overridden by a high output on
CS/RB Pin 1101, since a high CS output will override a high
RB input created by Pullup 1103.

B. Logical Memory Architecture.

Hosts such as 101 and 102 typically organize memory in
terms of Logical Block Addresses, or “LLBAs.” When a Host
writes data to mass storage, the Host typically transmits a
CDB that contains a write command and an LBA, though the
details of Host communication vary depending on the spe-
cific protocol used by the Host. When the Host subsequently
wishes to read that data, it issues a read command using the
same LBA.

Typically, a Host’s memory architecture divides data into
millions of LBAs, with each LBA numbered sequentially,
beginning with LBA 0. As is familiar to those of ordinary
skill in the art, a Host will often communicate with a number
of mass storage controllers, and will assign a subset of the
Host’s overall LBA range to each controller. In the current
embodiment, SSD Controller 106 responds to an LBA range
that begins with LBA 0 and ends with the highest LBA
addressable by the Controller. Mapping that sequence of
LBAs onto a larger Host LBA address space is the respon-
sibility of the Host or a host bus adapter, and is transparent
to SSD Controller 106.

FIG. 12 illustrates the memory hierarchy used in Flash
Memory Module 108 in the currently preferred embodiment.

Each Flash Group is made up of a number of Banks (e.g.,
Bank 611). Each Bank consists of a number of Blocks,
designated as Block 0-Block n (e.g., Block 0 1201). As is
commonplace in flash memory systems, a Block represents
a segment of flash memory that is erasable in a single
operation.

The exact number of Blocks stored in a Bank is imple-
mentation-dependent. To take one example, in a system
providing 300 gigabytes of available user data, the number
of Blocks per Bank would ordinarily be in the range of
7,000-9,000, depending on various factors, including defect
management and the amount of memory set aside for free
space.

As is shown in FIG. 12, each Block consists of 64
SuperPages, designated as SuperPages 0-63. As is explained
above, each SuperPage consists of four flash Pages (e.g.,
SuperPage 30 consists of Page 30 1202, Page 30 1203, Page
30 1204 and Page 30 1205). Pages 1202, 1203, 1204 and
1205 are stored at the same address location on four different

20

25

30

35

40

45

50

55

60

65

16
Flash Memory Dies in the same Flash Bank. Thus, Super-
Page 30 is spread across four separate Dies. As is standard
in flash memory systems, each Page represents the smallest
increment of the flash memory that can be read from or
written to.

As is shown in FIG. 12, each Page stores fifteen memory
segments known as PSectors, designated as PSectors 0-14.

FIG. 12 also shows an additional memory structure:
SPage Sector 0 1206. As is shown, SPage Sector 0 consists
of four PSector 0s, one on each Page.

SPage Sector 0 corresponds generally to a classic mass
storage sector, but is physically spread across four PSectors,
each of which is stored at the same address of a different Die
on the same Bank.

The currently preferred embodiment also makes use of an
additional memory structure that is not shown in FIG. 12:
SuperBlocks, which are made up of the same Block on each
Bank in the Flash Group (e.g., Block 0 1201 is part of
SuperBlock 0 of the Flash Group).

In the described embodiment, the data and metadata
associated with a particular LBA is stored in a single SPage
Sector (e.g., SPage Sector 1206), and is referred to herein as
the Sector Contents, made up of the Sector Data and the
Sector Metadata.

FIG. 13 illustrates the organization of a SuperPage Sector,
e.g., SPage Sector 1206. The entire SPage Sector consists of
556 bytes in flash memory. Each SPage Sector is divided
into four PSectors, each consisting of 139 bytes, each on a
different Flash Die.

In the example, shown, 528 bytes of SPage Sector 1206
is allocated to data, shown as Sector Data Field 1301.
Different Host protocols associate differing amounts of data
with a single address, so that, depending on the protocol
used, Sector Data Field 1301 may be as small as 512 bytes.

As is shown in FIG. 13, in the currently preferred embodi-
ment, each SPage Sector also includes 8 bytes of End-to-End
(“E2E”) information (Field 1302) and 20 bytes of ECC
information (Field 1303). These Fields collectively consti-
tute the Sector Metadata.

E2E information is specified by newer versions of the
SCSI Protocol. This information can be used by Initiators to
track data and insure that the data returned by a mass storage
device matches the data requested. ECC information is used
for error correction purposes.

E2E Field 1302 is further divided into RefTag Field 1304,
AppTag Field 1305 and CRC Field 1306.

RefTag Field 1304 consists of four bytes and contains an
address that may be associated by the Initiator with the
Sector Data. RefTag support is not required by the SCSI
Protocol (and was not part of earlier versions of the Proto-
col), so an Initiator may or may not use RefTags. If an
Initiator does use RefTags, the value associated with RefTag
Field 1304 is taken from the CDB that triggered the original
write of the Sector Contents. Typically, this value is the same
as the LBA, though the Initiator may assign a different
RefTag. The Initiator may choose to have the RefTag value
for each subsequent sector in the same write incremented, or
to assign a single RefTag value for all sectors associated
with a single write. If the incrementing option is chosen,
SSD Controller 106 performs that operation, based on the
initial RefTag value and the number of sectors received.

If the Initiator does not support the use of RefTags, SSD
Controller 106 fills in RefTag Field 1304 with the LBA
address. This field is used by SSD Controller 106 for internal
error checking purposes whether or not the Initiator requests
the use of RefTags.

US 9,483,210 B2

17

The value stored in RefTag Field 1304 should match the
RefTag value of any CDB that causes a subsequent read or
write to any LBA assigned to this SPage Sector. (If no
RefTag is assigned by the Initiator, the RefTag value should
match the LBA based on the CDB.) If the two values do not
match, this indicates some type of error, which may result
from a mistake in the received RefTag, data corruption in
RefTag Field 1304, or a problem in the address translation
tables used by SSD Controller 106 to select SPage Sector
1206 as the appropriate target for the read or write. Such a
condition, if detected, results in the issuance of an appro-
priate SCSI sense code to the Host, indicating a transaction
failure (or other similar communication, depending on the
protocol being used).

AppTag Field 1305 consists of two bytes, and is used for
Initiator-specified information relating to the particular
application that created the associated Sector Data. AppTag
information is supported by the SCSI Protocol, but is not
required. If this information is not supplied by the Initiator,
AppTag Field 1305 is filled in with a default value chosen
so that it will not overlap any valid AppTag value assigned
by an Initiator that does support the use of AppTags.

As with the RefTag value, the AppTag information for
data received from the flash memory can be checked against
an AppTlag supplied by the Initiator as part of a read
command, with a mismatch indicating an error.

CRC Field 1306 consists of two bytes, and contains
Cyclic Redundancy Check (“CRC”) data that is used to
check the integrity of the data and metadata stored in SPage
Sector 1206. As with the RefTag and AppTag information,
the CRC tag can be checked against a value received from
the Initiator, to determine whether the data and metadata are
correct.

The SCSI Protocol allows an Initiator to request checking
of any or all of the three E2E values.

ECC Field 1303 contains Error Correcting Code (“ECC”)
information that can be used to correct errors in the LBA
Data and Sector Metadata. ECC checking used in the
preferred embodiment is described below in connection with
FIG. 31.

Returning to FIG. 12, in the currently preferred embodi-
ment, each Page (e.g., Page 1202) consists of 2212 bytes of
flash memory space, and includes 15 PSectors, designated in
each case as PSector 0-14, plus metadata (not shown).

In the currently preferred embodiment, each of the four
PSectors that make up an SPage Sector stores one-quarter of
the Sector Contents that are stored in that SPage Sector. That
data is allocated among the PSectors on a byte-interleaved
basis. Thus, the first byte of the first doubleword of the
Sector Contents is written into the first byte of PSector 0 of
Page 1202, the second byte of the first doubleword is written
into the first byte of PSector 0 of Page 1203, the third byte
of the first doubleword is written into the first byte of
PSector 0 of Page 1204, the fourth byte of the first double-
word is written into the first byte of PSector 0 of Page 1205,
the first byte of the second doubleword is written into the
second byte of PSector 0 of Page 1202, etc.

As should be understood from this explanation, the Sector
Contents stored in SPage Sector 0 are spread among the four
P Sectors 0. Thus, each of the four Pages stores one-quarter
of the Sector Contents, or 139 bytes (556/4).

FIG. 14 illustrates Flash Page 1202 in additional detail,
showing elements that are not shown in FIG. 12. In a typical
flash architecture, a flash page consists of 2048 bytes of data
and/or metadata plus an additional 64 “spare” bytes used for
other purposes, adding up to a total of 2212 bytes. In the
currently preferred embodiment, on the other hand, although

20

25

30

35

40

45

50

55

60

65

18

each Page consists of 2212 bytes, 2085 of those bytes are
used for Sector Contents (15x139), and the extra 27 bytes
store metadata associated with the SuperPage. FIG. 14
shows PSectors 0-14, consisting of 2085 bytes, and Super-
Page Metadata 1401, which consists of 27 bytes per flash
page. As with the PSectors, the SuperPage Metadata is
spread across all four Flash Pages that make up a SuperPage,
so that SuperPage Metadata Field 1401 stores one-quarter of
the metadata associated with the SuperPage.

SuperPage Metadata 1401 consists of SPage Index 1402
and Time Stamp 1403. SPage Index 1402 stores an index
into a table known as the “Forward Table,” which contains
physical location information for LBAs. The Forward Table
is described below, in connection with FIG. 33.

Time Stamp 1403 contains a time stamp representing the
time when the SuperPage was written.

The SPage Index and Time Stamp are written redundantly
into each of the four Flash Pages that make up a SuperPage.
The redundancy is necessary because this metadata is not
protected by the ECC mechanisms that protect other infor-
mation.

SuperPage Metadata 1401 is filled in by the Flash HEMi
when the SuperPage is written. The Flash HEMi derives the
SPage Index from the Page Request that initiates the write,
and derives the Time Stamp information from an internal
clock. The SuperPage Metadata is used for reconstructing
open SuperBlocks following an unanticipated power loss.
Power loss reconstruction is described below in connection
with FIG. 58.

FIG. 15 illustrates the manner in which Sector Contents
are organized among Blocks 0 and 1 of a Bank. As should
be understood, the same organization would be followed for
all remaining Blocks stored in the Bank.

Each SPage Sector stores the Sector Contents associated
with a single LBA, and the SPage Sectors of a SuperPage
store Sector Contents associated with fifteen contiguous
LBAs. As is explained below, however, the fifteen contigu-
ous LBAs associated with one SuperPage may have no
relationship with the fifteen contiguous LBAs associated
with the next SuperPage.

This organization is illustrated by identifying LBAs by
letter. Thus, LBA(A) indicates a particular address, and LBA
(A+14) indicates an .LBA address that is fourteen higher than
LBA (A) (e.g., if LBA(A) were LBA(0), then LBA (A+14)
would be LBA(14). However, there is no relationship
between LBA(A) and LBA(B), for example, other than that
each will be evenly divisible by fifteen. Thus, LBA(A) might
represent LBA(9,000), whereas LBA(B) might represent
LBA(60).

Note that the LBAs stored in each SuperPage will change
during operation. For example, at one point, SPage Sector 0
of SuperPage 1 of Block 0 might store the Sector Contents
associated with LBA(0) (B=0), whereas at another point it
might store the Sector Contents associated with LBA(900)
(B=900). The manner in which the association of LBAs and
SuperPages and Blocks changes in use is described below.

FIG. 16 illustrates the manner in which the Host address
space is mapped onto Flash Memory Module 108 during
initialization. As is described above, Hosts typically issue
reads and writes using LBAs, which isolate the Host from
the details of the physical memory organization.

In the currently preferred embodiment, each Flash Group
is the same size, and each stores data corresponding to the
same number of LBAs (or other Host addressing scheme). In
the current embodiment, LBAs are distributed among the
Flash Groups in sets that are multiples of 45, since, as is
described below, 45 LBAs is the maximum number that can

US 9,483,210 B2

19

be handled by a single Transfer Request. The currently
preferred embodiment uses a stripe size of 90 LBAs, so that
LBAs 0-89 are assigned to Flash Group 0, 90-179 to Flash
Group 1, 180-269 to Flash Group 2, etc., until the last Flash
Group has been reached, at which point the LBA assign-
ments loop back to Flash Group 0. A variety of other striping
algorithms is possible. In an alternate embodiment, the user
could be allowed to specify the stripe size, though it would
be preferable for this to be done in multiples of the number
of LBAs that can be handled by a Transfer Request.

FIG. 16 shows a simplified version of the flash memory
space. This simplified version is made up of three Flash
Groups, designated 0-2. In this simplified example, a Block
consists of two SuperPages, designated as SP0 and SP1.
Thus, Block 0, Bank 0 of Flash Group 0 consists of the data
written into the slots designated 1601. As can be seen, in this
simplified example, each Bank contains only a single Block.

As is described above, a SuperBlock consists of the same
Block on each Bank. In the simplified architecture shown in
FIG. 16, therefore, SuperBlock 0 of Flash Group 0 consists
of Block 0 from each Bank, designated in FIG. 16 as 1602
(i.e., the entire Flash Group, in the simplified example).

As is described below, SuperPage 0 of Block 0 of each
SuperBlock contains a data structure known as the Super-
Block Metadata Table. This is shown as “SMT” in SP0 of
Bank 0 of each Flash Group.

All of the other boxes in the table represent LBA ranges
stored in a particular SuperPage. Thus, Flash Group 0, Bank
1, SuperPage 0 contains LBAs 0-14, Flash Group 0, Bank 1,
SuperPage 1 contains LBAs 300-314, etc.

As can be seen, the LBAs are assigned in “stripes” of 90
LBAs each. The first such stripe (LBAs 0-89) is assigned to
Flash Group 0, SuperPage 0 on Banks 1-6. The next stripe
of 90 LBAs (90-179) is assigned to Flash Group 1, Super-
Page 0 on Banks 1-6. The next stripe (LBAs 180-269) is
assigned to Flash Group 2, SuperPage 0, on Banks 1-6.

At this point, since the last Flash Group has been reached
(in this simplified example), the next stripe is written to
Flash Group 0, picking up where the previous stripe left off.
Thus, LBAs 270-284 are written to Flash Group 0, Super-
Page 0 of Bank 7. Since there are no further SuperPage 0s
available in Flash Group 0, allocation of the stripe continues
with SuperPage 1 of Bank 0 and continues through Super-
Page 1 of Bank 4.

The allocation from this point is straightforward, except
for boundary cases when the end of a SuperBlock is reached.
For example, a new stripe begins with SuperPage 1 of Bank
5 of Flash Group 0. Since only three SuperPages are left in
the SuperBlock, the stripe continues on SuperPage 1 of Bank
5 of Flash Group 1. In this way, LBAs are allocated to every
SuperPage in each SuperBlock, despite the fact that the
SuperBlocks do not hold an even number of stripes.

This method of allocating L BAs tends to maximize flash
memory parallelism. Because each Flash Group operates
independently, it is advantageous to stripe LBAs across
Flash Groups, since this maximizes the likelihood that a
single transaction will address data held on more than one
Flash Group, thereby allowing multiple flash reads or writes
relevant to the transaction to occur simultaneously. Because
a Transfer Request can only address [.LBAs on a single Flash
Group, it is sensible to specify stripe sizes in increments of
45 (the maximum number of LBAs that can be addressed by
a Transfer Request), to minimize the number of Transfer
Requests required for a transaction. In the current embodi-
ment, a stripe is made up of two such 45-LBA increments,
since this represents six SuperPages. As is described below,
a Flash Group can handle five simultaneous write opera-

20

25

30

35

40

45

50

55

60

65

20

tions, on five separate Banks Using a stripe size of 90 LBAs
tends to maximize parallel usage of the flash interface, since
a large transfer can execute five simultaneous writes on each
Flash Port, and can execute on multiple Flash Ports in
parallel. This organization therefore contributes to the ability
of SSD Controller 106 to handle large Host-initiated reads or
writes quickly, using a high degree of parallelism.

Thus, a hypothetical transfer involving LBAs 0-190 as
shown in FIG. 16 could occur using one IOP and five
Transfer Requests. A first Transfer Request could handle
LBAs 0-44, a second Transfer Request could handle LBAs
45-89, a third Transfer Request could handle LBAs 90-134,
a fourth Transfer Request could handle LBAs 135-179 and
a fifth Transfer Request could handle LBAs 180-190. Note
that this transfer involves three different Flash Groups,
thereby allowing for a high degree of parallelism. In addi-
tion, since (as is explained below), Page Requests that target
different Banks can operate in parallel even on the same
Flash Group, the Page Requests issued by each Transfer
Request in this example could also operate in parallel, since
each Page Request targets a different Bank.

The allocation of LBAs to Flash Groups is permanent.
The allocation to Banks within a Flash Group, however, may
change over time. As is explained below, when a Host write
is received for an LBA, thus requiring that the SuperPage
containing that LBA be invalidated and the new data (and
any non-overwritten old data from the SuperPage) be written
to a new SuperPage, the Flash HEMi attempts to use a new
SuperPage from the same Bank as the old SuperPage.
Occasionally, however, this is not possible and the Flash
HEMi will move the LBAs to a SuperPage on another Bank.
This will tend to affect the performance of the flash memory
system, since, if enough such alterations occur, stripes of
data could be concentrated on a single or a relatively small
number of Banks, therefore reducing the opportunity for
parallel operations. However, in practice, the shifts from
Bank to Bank tend to occur in a patternless fashion, so that
even after significant operation the LBA groups in a given
stripe tend to be spread across the Banks, so that a high
degree of parallelism may be maintained.

III. Hardware Details

A. Host Interface.

FIG. 17 shows Host Interface 310 in greater detail than is
shown in FIG. 3. Host Interface 310 consists of Physical
Interface 1701 and two separate Host Ports, designated as
Host Port 0 104 and Host Port 1 105. Physical Interface 1701
is further described below, but for present purposes it is
sufficient to understand that it routes signals between Hosts
101 and 102 and Host Ports 104 and 105. Each Host Port is
capable of interfacing to a separate Host.

In general, Host Interface 310 performs the following
functions on the receive side:

Receive frames

Deconstruct frames into constituent features

Pass command information on to the next stage

Pass data on to the Data Path DRAM

In general, Host Interface 310 performs the following
functions on the Transmit side:

Receive data from Data Path DRAM 107 and organize the
data for transmission to the Host

Generate frames for transmission to the Host

Transmit frames, including data frames, to the Host

US 9,483,210 B2

21

Each Host Port includes a Receive HEMi (1702 and
1703), a Transmit HEMi (1704, 1705), a Receive Stage
Buffer (1706, 1707) and a Transmit Stage Buffer (1708,
1709).

As is shown, each Receive HEMi receives control infor-
mation from one of the Hosts through Physical Interface
1701, and communicates control information to other ele-
ments of SSD Controller 106. “Control” information, in this
context, means commands, control signals and addresses,
but does not include data. Note that the control information
received from the Host by each Receive HEMi may differ
from the control information communicated by the Receive
HEMi’s.

Each Transmit HEMi receives control information from
other SSD Controller elements and communicates control
information to one of the Hosts through Physical Interface
1701. Again, the control information transmitted to a Host
by a Transmit HEMi may differ from the control information
received by the Transmit HEMi.

Each Receive Stage Buffer receives data from one of the
Hosts through Physical Interface 1701 and transmits that
data on to Data Path DRAM 107. The Receive Stage Buffers
are 16 Kbytes, which allows them to accept up to 4 FC_AL
(“Fibre Channel Arbitrated Loop™) data frames.

Each Transmit Stage Buffer receives data from Data Path
DRAM 107 and transmits that data on to one of the Hosts
through Physical Interface 1701. The Transmit Buffers are 4
Kbytes, which allows them to store one outgoing frame and
one incoming frame from Data Path DRAM 107.

FIG. 18 shows certain additional details regarding Host
Port 0 104. As is understood by those of ordinary skill in the
art, communications between SSD Controller 106 and Host
101 are organized according to the dictates of the particular
protocol used by the Host. In general, the relevant protocols
(e.g., SAS, SATA, Fibre Channel) specify that communica-
tion to and from the Host take place using frames, which
consist of defined groups of commands and data.

Since the precise frame format used differs among the
various relevant protocols, SSD Controller 106 must be
modified for each protocol. SSD Controller 106 has been
designed, however, so that the modifications are minimal,
amounting to different firmware for the Receive and Trans-
mit HEMi’s, and a different physical connector. All other
aspects of SSD Controller 106 are unchanged for the various
protocols. This is a significant advantage of the pipelined
and modular design of SSD Controller 106, and also of the
design of Host Interface 310.

Though the specific details of the frame organization
differ from protocol to protocol, certain aspects of the SATA
protocol will be used to illustrate the design and operation of
Host Port 0 104. In this protocol, a frame consists of a Start
of Frame (“SOF”) primitive, a frame header (metadata
specified by the protocol, but generally including informa-
tion necessary to identify the payload and possibly the
Initiator), a payload (e.g., data, command, etc.), a CRC value
for validation of the entire frame, and an End of Frame
(“EOF”) primitive. The receive side of Host Port 0 104 is
responsible for receiving the frame, dividing it into its
constituent parts, and taking whatever action is needed to
either route data to its intended destination and/or set up the
transaction. The transmit side of the Host Port is responsible
for receiving relevant data and command information from
other elements of SSD Controller 106 and packaging that
information into a frame for transmission to Host 101.

Direct communication with the Host is handled by Giga-
Blaze 1801, which is a transceiver core available from LSI
Corporation, headquartered in Milpitas, Calif., under the

20

25

30

35

40

45

50

55

60

65

22

designation 0.11 micron GigaBlaze® Gflx™x1 Core. This
core contains an 8b/10b encoder, a serializer/deserializer and
a phy, which performs physical conversion between
received bits and voltage levels. GigaBlaze 1801 has two
serial ports capable of attaching to 3G SATA, 3G SAS, 4g
FC_AL and 4G FC buses. The details of the internal
operation of GigaBlaze 1801 are not relevant herein, except
that it handles the physical interface to the Host. In the
example shown, GigaBlaze 1801 is connected to Host 101.
Note that, although FIG. 18 only shows one of the two Host
Ports on SSD Controller 106, the other Host Port is identical,
and contains its own GigaBlaze.

As is shown in FIG. 18, GigaBlaze 1801 is connected to
Primitive Match Logic 1802. The Primitive Match Logic is
designed to allow the same physical level protocol to
interface with various different logical level protocols that
handle frames and primitives differently. When GigaBlaze
1801 receives a primitive from Host 101, GigaBlaze 1801
routes that primitive to the Primitive Match Logic, which is
described in detail below in connection with FIG. 19.

The Primitive Match Logic controls Frame Router 1803,
which receives frames from GigaBlaze 1801 and routes
portions of the frames under the control of the Primitive
Match Logic. Data is routed to Receive Stage Buffer 0 1706,
headers are routed to Non-Data Payload FIFO 1804 and
primitives are routed to Inbound Primitive FIFO 1808.

Receive HEMi 0 1702 uses information in the Header and
Primitive FIFO’s to identify actions to be taken. Data routed
to the Receive Stage Buffer is sent via DMA transfer to Data
Path DRAM 107.

Receive HEMi 1702 generates primitives and routes them
to Outbound Primitive FIFO 1805. These generated primi-
tives include ACK (acknowledging correct receipt of a
frame), NAK (indicating that a frame was not received
correctly) and RRDY (reporting frame credit to an Initiator).
Primitives on Outbound Primitive FIFO 1805 are inserted
into transmissions to Host 101 immediately, and may be
inserted in the middle of other transactions (e.g., an out-
bound data frame).

The transmit side of the Host Port shown in FIG. 18 is
made up of Transmit HEMi 1704, Transmit Stage Buffer 0
1708 and Transmit Frame Buffers 1806. Transmit Stage
Buffer 0 1708 contains data received from Data Path DRAM
107 that is to be transmitted to Host 101 as part of a frame
responsive to a read command. Transmit Frame Buffers
1806 consist of one or more buffers that hold metadata used
to construct frames. The Transmit Frame Buffers operate
similarly to the receive-side buffers, though, as should be
understood, they are used to construct frames, rather than to
deconstruct them.

Cut-Through Logic 1807 helps interface SSD Controller
106 to Fibre Channel networks. If SSD Controller 106 is
connected to a Fibre Channel network, Primitive Match
Logic 1802 evaluates received primitives to determine if the
primitives are intended for SSD Controller 106. Primitives
determined not to be intended for SSD Controller 106 are
sent to Cut-Through Logic 1807. The Cut-Through Logic
then passes the primitives to the GigaBlaze to be returned to
the Fibre Channel network, for transmission on to the next
node on the network.

The physical connectors required for the various different
protocols (SAS, SATA and Fibre Channel) are incompatible.
In the currently preferred embodiment, a different version of
SSD Controller 106 will exist for each protocol. However,
because the Primitive Match Logic operates correctly with
each of the protocols (see below), the only difference
required for each protocol is the use of a different physical

US 9,483,210 B2

23

connector, though different firmware may also be required
for the Receive and Transmit HEMi’s. In a different embodi-
ment, SSD Controller 106 could incorporate three different
physical connectors, one for each protocol, and thereby
allow the same physical controller to be used with any of the
protocols.

Primitive Match Logic 1802 is shown in greater detail in
FIG. 19. This logic includes a state machine that matches
received primitives and identifies actions to be taken based
on the matched primitive and on the current state.

Primitives received from a Host are transmitted from
Gigablaze 1801 to Primitive Latch 1901. The primitives are
then matched against the bit patterns contained in Primitive
Match Registers 1902, which consists of sixteen registers. If
no match is found, the value from Primitive Latch 1901 is
routed directly onto Inbound Primitive FIFO 1808.

Primitive Match Control Registers 1903 consists of six-
teen registers, one for each of the Primitive Match Registers.
The Primitive Match Control Registers contain bits that
indicate which bits in the associated Primitive Match Reg-
ister must match the value in Primitive Latch 1901 in order
for an overall match to be found. For example, these bits
may require that the first byte match, with no requirement
that any other bits match. These bits from the Primitive
Match Control Registers therefore act as a mask, allowing
multiple received primitives to match a single Primitive
Match Register. This is useful in cases where the same action
is to be taken for a class of received primitives, and is also
useful in screening out portions of primitives that represent
data rather than commands.

Other bits in Primitive Match Control Registers 1903
indicate actions to be taken if the value in the corresponding
register in Primitive Match Registers 1902 matches Primi-
tive Latch Register 1901. For example, these bits can control
Frame Router 1803 so that some of the data following the
primitive is moved into Non-Data Payload FIFO 1804 and
data following that is moved into Receive Stage Buffer
1706. This would generally occur in the case of an SOF
primitive received in connection with a data frame.

The Primitive Match Control Registers operate as a state
machine. For example, certain bits can set a counter (not
shown) that can cause a certain number of subsequent
primitives to be operated on by the current Control Register,
rather than a Control Register chosen through the Primitive
Match Registers. In addition, the Primitive Match Control
Registers can alter the values contained in various other
registers that are not shown.

As should be understood, Primitive Match Logic 1802
contains logic that performs comparisons between the value
in Primitive Latch 1901 and Primitive Match Registers
1902, and that implements the control functions required by
Primitive Match Control Registers 1903.

As is explained below in connection with FIG. 28, Primi-
tive Match Registers 1902 and Primitive Match Control
Registers 1903 are loaded by the associated Receive HEMi,
using data overlays. These overlays are used to customize
Primitive Match Logic 1802 for different protocols (e.g.,
SAS, SATA), since each protocol has its own set of primi-
tives. In addition, overlays can be used to handle different
sets of primitives, or different states, within a single proto-
col. The values used by the Receive HEMi to load the
Primitive Match and Primitive Match Control Registers are
taken from an initialization firmware code load. Thus, in
many cases it will be possible to update Primitive Match
Logic 1802 for new protocols or modifications to existing
protocols by a modification to the Receive HEMi firmware,
without any alteration to the hardware.

20

25

30

35

40

45

50

55

60

65

24

The use of different overlays in the primitive match logic
thus allows SSD Controller 106 to respond to different
protocols without requiring individualized logic for each
protocol.

Primitive Match Logic 1802 also contains Frame Crack-
ing Logic 1904. This logic block receives the initial dword
in a frame and evaluates that dword to determine the nature
of the frame (e.g., data, command). Based on the type of
frame, the Frame Cracking Logic routes the frame appro-
priately. For example, if the frame is a command frame, the
Frame Cracking Logic routes the entire frame to Non-Data
Payload FIFO 1804, whereas if the frame is a data frame, the
Frame Cracking Logic routes the header portion to the
Non-Data Payload FIFO, and routes the data portion to the
appropriate Receive Stage Buffer.

As is described above, the Primitive Match Logic is
advantageous in that it allows SSD Controller 106 to handle
different protocols, involving different frame encodings,
without the need for software or significant hardware
changes. In addition, by routing data to a specialized data
FIFO, contained in the Receive Stage Buffers, while meta-
data and command information are routed to different FIFOs
(e.g., Non-Data Payload FIFO 1804 and Inbound Primitive
FIFO 1808), the Receive Host Port design allows for more
efficient transfers of data, since the data FIFO contains only
data and does not contain commands or metadata, and
allows data to be transferred to the Data Path DRAM via
DMA transfers in parallel with Receive HEMi operations on
header and primitive metadata, thereby increasing overall
system performance.

As is described above, SSD Controller 106 can be used
for a variety of different protocols, requiring only a modi-
fication to HEMi firmware and a different physical connec-
tor. The protocols described above are all relatively similar.
SSD Controller 106 can also be adapted easily for protocols
with significant differences from those described above. In
one embodiment, for example, SSD Controller 106 can be
adapted for use with lane-oriented protocols such as PCI
Express. As is understood by those of skill in the art, in PCI
Express systems, external devices transmit and receive data
and metadata using “lanes,” each of which carries a portion
of the transmission, with doublewords of data striped across
the lanes. The number of lanes is implementation-depen-
dent, but SSD Controller could be adapted for use with a
4-lane PCI Express system by adding two additional Giga-
Blazes (as should be understood, each GigaBlaze would be
a version designed for the PCI Express interface), two
additional Receive HEMi’s and two additional Transmit
HEMi’s. One GigaBlaze, one Receive HEMi and one Trans-
mit HEMi would be devoted to each lane. In this embodi-
ment, SCST HEMi 2001 (see below) is not used. That HEMi
can instead be used as an additional RdWr HEMi.

In this embodiment, a device driver operating on the
external Host is responsible for formatting PCI Express
transmissions into IOPs. Most of the Host Port logic is
therefore unnecessary (e.g., Primitive Match, various
FIFQO’s, etc.). The Receive and Transmit HEMi’s are respon-
sible for destriping and restriping the data, respectively.
Once a received IOP has been destriped, it can then be
handed directly to a RAWr HEMi (see below). Processing
then proceeds as per the other protocols described above.

Although use of SSD Controller 106 with a lane-oriented
protocol such as PCI Express requires some additional
modifications, these modifications are relatively minor, and
easily accommodated as a result of the Controller’s modular
design. Addition and subtraction of HEMi’s is relatively
simple, and because different stages of the Controller pipe-

US 9,483,210 B2

25

line operate independently, changes at one stage (e.g., the
Host Port), do not require changes at other stages (e.g., the
Flash Ports).

SSD Controller 106 can similarly be designed for use with
the iSCSI protocol, though this requires addition of one or
more TCP/IP stacks to the Host Port, with the Receive
HEMi(s) responsible for extracting CDBs from that stack,
and Transmit HEMi(s) responsible for encoding frame infor-
mation as required by the TCP/IP protocol.

B. Command Parser.

FIG. 20 shows additional detail about Command Parser
Block 311 from FIG. 3. As is described in connection with
FIG. 3, Command Parser Block 311 communicates with
Host Interface 310 and with Command Distribution Block
312.

Command Parser Block 311 includes SCSI HEMi 2001.
SCSI HEMi 2001 receives Host commands from Receive
HEMi’s 1702 and 1703. SCSI HEMi 2001 determines if the
Host command is a read/write, or some other type of
command. If the command is other than a read/write com-
mand, SCSI HEMi 2001 hands the command off to ARM
Processor 2002, which handles non-read/write commands.
ARM Processor 2002 is further described below.

If SCSI HEMi 2001 determines that the command is a
read/write command, it validates the command to insure
coherency, meaning that, if the read or write command
relates to the same data as a read or write command that is
currently being processed by Command Distribution Block
312, the second command is deferred until certain process-
ing of the first command is completed.

Read/write coherency is not required by the SCSI proto-
col, which allows for reads and writes to be reordered.
However, as is described below, SSD Controller 106 breaks
Host-initiated commands into multiple suboperations, and
these suboperations may be handled out of order.

If SSD Controller 106 were to allow more than one
command to operate on the same data at the same time, it is
possible that portions of the second command would be
carried out before the first command had completed. For
example, if SSD Controller 106 were to receive a write
command for a particular block of LBAs and subsequently
were to receive a read command for an overlapping block of
LBAs, and if the read command were allowed to begin
operation before the write command had finished, it is
possible that the read command might result in the return of
some data that had already been updated by the write
command, and some data that had not been updated.

For this reason, SSD Controller 106 keeps track of
currently active commands in two locations: in SCSI HEMi
2001 and in the Flash HEMi’s (described below).

SCSI HEMi Command Table 2003, which is stored in an
internal memory of the HEMi known as its mRAM (see
below in connection with FIG. 26), contains the LBA and
transfer length of every Host read and write command that
has been sent by SCSI HEMi 2001 to Command Distribu-
tion Block 312 but has not yet been sent on to the Flash
HEMi’s.

As is described below, the Command Distribution Block
contains several HEMi’s known as RdWr HEMi’s. Com-
mand Table 2003 contains the identification of the RdWr
HEMi working on each command. SCSI HEMi 2001 uses
this information to balance out the workload among the
RdWr HEMi’s, sending new commands to RdWr HEMi’s
with relatively fewer currently active commands.

When a new command is received, SCSI HEMi 2001
checks Command Table 2003 to determine if any of the LBA
addresses affected by that command are already present. If

20

25

30

35

40

45

50

55

60

65

26
a match is found, SCSI HEMi 2001 stalls execution of the
new command until the previous command is removed from
the Table. Commands are removed from Command Table
2003 once the RdWr HEMi to which the command has been
dispatched reports that it has created and dispatched all
necessary Transfer Requests corresponding to the command
(the process by which RAWr HEMi’s dispatch such Transfer
Requests is described below). At that point, the new com-
mand is no longer stalled. As should be understood, at this
point the earlier command is still executing, but that com-
mand is now subject to coherency checking at the Flash
HEMi level (described below).

Thus, SSD Controller 106 enforces read/write coherency
at two points in the pipelined execution of a Host command:
SCSI HEMi 2001 stalls a new command that conflicts with
an existing command’s LBA range until the existing com-
mand has been sent to the Flash HEMi’s, and each Flash
HEMi enforces coherency on its own operations, so that it
stalls execution of a new command covering the same range
as an existing command until the existing command is
complete.

This two-stage system of coherency enforcement is
advantageous, since it allows processing of conflicting com-
mands to proceed as long as they are at different stages in the
pipeline. Thus, the RAWr HEMi’s can be setting up a second
conflicting command at the same time as the first conflicting
command is operating in the flash memories, thereby
improving overall system performance.

As is described above, Command Parser Block 311 also
contains ARM Processor 2002, which controls certain inter-
nal administrative operations and is responsible for handling
host-initiated commands other than reads or writes. In the
currently preferred embodiment, ARM Processor 2002 is an
ARM7TDMi-s available from ARM Holdings plc of Cam-
bridge, UK. As should be understood, however, the func-
tions of ARM Processor 2002 can be handled by a variety of
logic devices.

Although the exact nature of Host commands handled by
ARM Processor 2002 is protocol-dependent, in one embodi-
ment, these commands include the following:

Test Unit Ready

Read Capacity

Mode Select

Mode Sense

Log Select

Log Sense

Report Luns

Send Diagnostic

Request Sense

Write Buffer

Read Buffer
C. Command Distribution.

FIG. 21 illustrates Command Distribution Block 312 in
greater detail. As is shown, Command Distribution Block
312 constitutes a group of RdWr HEMi’s, designated as
2101-2106. In the currently preferred embodiment, Com-
mand Distribution Block 312 consists of six RAWr HEMi’s.
However, because of the modular design of SSD Controller
106, the number of RdWr HEMi’s can be increased or
decreased without requiring any significant redesign of the
rest of the Controller. A larger number of RdAWr HEMi’s
increases performance, but at the cost of greater expense and
complexity.

As FIG. 21 shows, SCSI HEMi 2001 passes information
to each of the RAWr HEMi’s. In general, this consists of
CDBinfos, which SCSI HEMi 2001 allocates to a particular

US 9,483,210 B2

27
RdWr HEMi based on the relative workload of that HEMi
compared to the other RAWr HEMi’s.

The RdWr HEMi’s generate IOPs based on the CDBinfos,
then generate Transfer Requests as required by the IOPs, and
transmit those Transfer Requests to a particular Flash Port
based on the flash address of the data to be transferred.
RdAWr HEM1’s also communicate with Transmit HEMi’s; in
the case of Host writes, the responsible RAWr HEMi sends
a communication to the Transmit HEMi indicating that the
Transmit HEMi should inform the Host that the Controller
is ready for the data associated with the write.

D. Crossbar; Shared RAM; DRAM.

Preceding Figures have illustrated the interconnections
between functional blocks in terms of data and control flow
and have not attempted to show physical connections. FIG.
22 illustrates the manner in which many of the functional
blocks of SSD Controller 106 are physically interconnected
in the current embodiment.

FIG. 22 shows Crossbar Switch 2201. As is commonly
understood by those of ordinary skill in the art, a crossbar
switch operates so as to connect any element on one side of
the switch with any element on the other side of the switch.
Crossbar Switch 2201 connects elements on its HEMi side
with elements on its Shared RAM side, in a manner that will
be explained below.

The HEMi side of Crossbar Switch 2201 has two-way
connections to each of the HEMi’s contained in SSD Con-
troller 106. (The HEMi’s shown in FIG. 22 are actually a
combination of the HEMi and tightly coupled logic that is
associated with each HEMi, logic that is further described
elsewhere herein).

As is described elsewhere herein, the number of HEMi’s
may differ depending on implementation decisions (e.g., the
Controller may include between eight and twelve Flash
HEMi’s).

In the current embodiment, the Shared RAM Side of
Crossbar Switch 2201 is connected to ten RAM banks,
designated as Shared RAM Bank 0 (2202) through Shared
RAM Bank 7, Global Registers 2203 and P1O Buffer 2204
and collectively designated as Shared RAM Block 318. In
the currently preferred embodiment, each Shared RAM
Bank consists of 4 Kbytes of RAM storage space. Crossbar
Switch 2201 is designed to connect to a larger number of
Shared RAM Banks, therefore supporting modular expand-
ability, as is explained below.

All ten of the Shared RAM Banks share an address space,
though, as is explained above, certain of these Banks have
a specialized function.

As is shown in FIG. 22, CrossBar Switch 2201 includes
a Port for each of the Shared RAM Banks Each Shared RAM
Bank includes four FIFO’s and a Data Structures section,
and each of the FIFO’s is controlled by an associated FIFO
Register Block (e.g., Register Block 2205 controls FIFO 0,
Block 2206 controls FIFO 1, etc.)

As is illustrated by the arrows connecting Shared RAM
Port 0 with Shared RAM Bank 0, Shared RAM Port 0 is the
only input or output path to FIFO’s 0-3 or the Data Struc-
tures section of Shared RAM Bank 0, with the path to and
from the FIFO’s proceeding through the associated Regis-
ters. As is explained below, reads or writes to the FIFO’s
take place through the associated Register Block, whereas
reads or writes to the Data Structures section access that
section without going through the associated Registers.

In the currently preferred embodiment, only 27 of the
FIFO’s are actually used (23 for HEMi Worklists, four for
freelists). The other five are available for expanding the
number of HEMi’s supported by the system.

—

0

20

25

30

35

40

45

50

55

60

65

28

Crossbar Switch 2201 Global Registers Port 2207 is
connected to Global Registers 2203, which consists of a
RAM bank made up of registers that perform a variety of
functions, including controlling GigaBlaze 1801 and setting
up DRAM Controller 2305 (described below in connection
with FIG. 23).

Crossbar Switch DRAM Port 2208 is connected to PIO
(“Programmed 10””) DRAM Buffer 2204, which in turn is
connected to Data Path DRAM 107. PIO DRAM Buffer
2204 is a 64-doubleword FIFO contained in a bank in Shared
RAM, which is used to buffer communications between the
HEMi’s and the Data Path DRAM. Such buffering is needed
because the Data Path DRAM runs at a higher clock speed
and is capable of reading and writing four doublewords at a
time, whereas the HEMi’s are only capable of reading and
writing a single doubleword at a time. In order to avoid
slowing Data Path DRAM operations, PIO DRAM Buffer
2204 buffers data transfers to and from the DRAM. When
the HEMi’s are writing data to the Data Path DRAM, PIO
DRAM Buffer 2204 stores the data, a doubleword at a time,
until the write is complete or the buffer is full, at which point
it bursts the data to the Data Path DRAM. When the HEMi’s
are reading data from the Data Path DRAM, PIO DRAM
Buffer 2204 stores four doublewords of data from the Data
Path DRAM at a time, and once all of the necessary data is
available (or the PIO Buffer is full) the HEMi’s read that
data in a burst a doubleword at a time. Again, as should be
understood, data is actually transferred between the DRAM
and one of a number of buffers.

Note that the connection from Crossbar Switch 2201 to
PIO Buffer 2204 is not used for data transfers between the
Data Path DRAM and the Flash Port Stage Buffers or the
Host Interface Transmit and Receive Stage Buffers, but is
instead used only for communication with the HEMi’s.
Transfers to and from the various Stage Buffers do not travel
through Crossbar Switch 2201.

Crossbar Switch Debug Port 2209 is connected to Debug
FIFO 2210. Debug FIFO 2210 is a large SRAM bank that
acts as a FIFO for debug information from the HEMi’s.
Debug FIFO 2210 accepts information from the HEMi’s a
doubleword at a time, and stores that information in a FIFO
structure that is 4 doublewords wide. Once Debug FIFO
2210 reaches a set capacity threshold, it arbitrates for access
to a DRAM port, and, once it has gained such access, it burst
writes the debug information into DRAM 107, 4 double-
words at a time.

As is customary with crossbar switches, Crossbar Switch
2201 can simultaneously connect multiple elements from the
HEMi side with multiple elements on the Shared RAM side,
limited only by the number of Ports on each side.

Crossbar Switch 2201 is capable of connecting each
HEMi to each Shared RAM Bank, as well as the other
resources on the Shared RAM side of the switch. As should
be understood, however, the switch does not connect
HEMi’s directly to each other, nor does it connect Shared
RAM Banks directly to each other. Communication between
HEMi’s is accomplished indirectly, by using Crossbar
Switch 2201 to leave information in the Shared RAM Banks.

Thus, when (as is described below), SCSI HEMi 2001
generates an IOP as a result of a received CDB, and passes
that IOP to a RdWr HEM,j, this is handled by SCSI HEMi
2001 storing a pointer to the IOP location in a worklist for
the RAWr HEM, the worklist also being stored in one of the
Shared RAM Bank FIFOs. The RdWr HEMi then receives
the IOP by checking the worklist, identifying the location
containing the IOP, and copying the IOP from that location
into its own internal memory. Communication among other

US 9,483,210 B2

29

HEMi’s proceeds in a similar fashion. The details of the data
structures contained in the Shared RAM Banks, and the
manner in which the HEMi’s use those data structures to
transfer information, are described below.

DRAM Access Register Block 2211 controls accesses to
Data Path DRAM 107. As is explained above, HEMi’s do
not directly access Data Path DRAM 107, but instead use
PIO Buffer 2204 for this purpose. These are DMA transfers,
which require the HEMi to supply only the starting address
and the size of the transfer.

Address Register 2212 stores the starting location in the
Data Path DRAM for the transfer. Transfer Count Register
2213 stores the number of transfers required. Data Register
2214 stores the data to be sent to PIO Buffer 2204, or
received from the PIO Buffer.

A read from Data Path DRAM 107 begins by the HEMi
placing the DRAM address in Register 2212 and placing the
size of the transfer (in quad-doublewords) into Transfer
Count Register 2213. Those actions cause DRAM DMA
Engine 2302 (see below) to transfer data, in four doubleword
chunks, into PIO Buffer 2204. As each transfer takes place,
the DRAM DMA Engine decrements Transfer Count Reg-
ister 2213, and the DMA transfer ends when Transfer Count
Register 2213 reaches zero.

After the DMA transfer completes, the data is automati-
cally read from the PIO Buffer to Data Register 2214, in
doubleword increments.

A write from the HEMi to Data Path DRAM 107 operates
similarly.

Note that Address Register 2212 increments each time
Transfer Count Register 2213 decrements. This is not nec-
essary for the transfer currently taking place, since the
DRAM DMA Engine only requires the initial address plus
the transfer count. However, incrementing Address Register
2212 results in the ending address for the transfer being held
in that Register once the transfer is complete, and this may
be useful in setting up future transfers.

RAM Controller 317 is illustrated in FIG. 23. In general,
the RAM Controller controls and arbitrates access to Shared
RAM Block 318 and Data Path DRAM 107.

RAM Controller 317 includes the following logic blocks
(as should be understood, and as is true of other hardware
diagrams herein, the illustration in FIG. 23 is conceptual in
nature and is not intended to convey details of the actual
physical layout):

Shared RAM Controller 2301.

Crossbar Switch 2201.

DRAM Controller 2305, consisting of logic purchased
from Denali Software, Inc. of Palo Alto, Calif., that manages
the physical interface into Data Path DRAM 107.

DRAM Controller 2305 includes DRAM DMA Engine
2302. DMA Engine 2302 handles DMA transfers between
Data Path DRAM 107 and the various Buffers that commu-
nicate with the DRAM (e.g., Receive Buffer 1706, Transmit
Buffer 1708, Flash Stage Buffer 308, PIO Buffer 2204,
Debug FIFO 2210). DMA Engine 2302 receives from a
HEMi the starting address and transfer count of a DMA
transfer and controls the transfer from there, with no require-
ment of additional information from the HEMi.

E2E Logic 2303 performs three types of tasks relating to
E2E tags, which are described above, in connection with
FIG. 13: (a) attaching E2E tags to each sector of data that is
being sent to the flash; (b) checking tag values against
expected values and generating an error condition if the
values don’t match, and (c) stripping E2E tags from data that
is being transmitted back to the Host, if the Initiator does not
use these values (and therefore does not expect them).

20

25

30

40

45

50

55

60

65

30

The E2E tags attached to each sector of data are RefTag
1304, AppTag 1305 and CRC 1306. As is explained above,
for data received from Initiators that support E2E, these
values are taken from, or calculated based on, information
received from the Initiator, and for data received from
Initiators that do not support E2E, these values are generated
internally.

E2E Logic 2303 is capable of checking RefTag, AppTag
or CRC values. These checks are described above in con-
nection with FIG. 13. E2E Logic 2303 performs these
checks whenever data is transferred between Data Path
DRAM 107 and a Flash Stage Buffer, or transferred between
Data Path DRAM 107 and a Receive Buffer or Transmit
Buffer. The Initiator specifies which of these fields are to be
checked, unless the Initiator does not support E2E. If the
Initiator does not support E2E, the checks performed are
based on parameters selected by the user at initialization.
Note that the RefTag value is always checked for internal
error-checking purposes, even if the Initiator does not sup-
port E2E and the user does not ask for this check to be done.

E2E Logic 2303 attaches E2E tags to each sector of data
that passes from Data Path DRAM 107 to the Flash Stage
Buffers. As is explained above, in connection with FIG. 13,
the RefTag information is taken from information supplied
by the Initiator, if the Initiator supports E2E. The Initiator
can require that the RefTag be incremented for each sector
of data, in which event E2E Logic 2303 performs the
increment operation prior to attaching the RefTag. If the
Initiator does not support E2E, E2E Logic 2303 inserts the
LBA into RefTag Field 1304. If the Initiator supports E2E,
the AppTag and CRC fields are filled in with information
supplied by the Initiator. If the Initiator does not support
E2E, the AppTag is filled in with a default value, and the
CRC field is either filled in with a default value or with an
internally calculated CRC value, depending on an option
chosen by the user at the time of initialization.

DRAM Scheduler 2304 consists of an ordered list of
every channel that can access Data Path DRAM 107. These
channels are described below in connection with FIG. 25.
Since the DRAM only has a single input/output port, only
one channel can access it at a time. DRAM Scheduler 2304
rotates through each channel, checking whether that channel
requires access to the DRAM, and, if so, allowing that
channel to connect to the DRAM port. Once that access has
completed, DRAM Scheduler 2304 moves to the next chan-
nel in the list. In this way, DRAM Scheduler 2304 arbitrates
accesses to the DRAM port in a round-robin fashion.

FIG. 24 shows certain aspects of Shared RAM Controller
2301 and the relationship between register blocks contained
in Shared RAM Controller 2301 and FIFO’s contained in the
Shared RAMs. In particular, FIG. 24 shows FIFO Pointer
Registers 2205, 2206, 2401 and 2402, which correlate to
FIFO’s 0-3, contained in Shared RAM Bank 0 2202. Shared
RAM Controller 2301 contains four Pointer Register blocks
per Shared RAM Bank, for a total of 32, though some of
these may be unused. Note that, for purposes of clarity, the
portions of Shared RAM Controller 2301 that control Shared
RAM Banks other than Bank 0 are not shown.

As is shown in FIG. 23, FIFO 0 Pointer Registers 2205 are
associated with FIFO 0 (2403), which is contained in Shared
RAM Bank 0 2202. Pointer Registers 2205 consist of the
following registers:

Base Register 2404 contains a pointer to the address
location within Shared RAM Bank 2202 that constitutes one
boundary of the portion of Shared RAM Bank 2202 that is
dedicated to FIFO 2403. Ceiling Register 2405 contains a
pointer to the address location within Shared RAM Bank 0

US 9,483,210 B2

31

that constitutes the other boundary of the portion of Shared
RAM Bank 0 that is dedicated to FIFO 2403. These registers
define the location and size of FIFO 0. In the currently
preferred embodiment, they are set at initialization, and not
changed during operation. In an alternative embodiment,
these values may be reset dynamically, thereby allowing
more efficient allocation of space within Shared RAM Bank
2202, but at the cost of adding complexity.

FIFO 2403 is a First-In, First-Out memory structure. As
such, it has a top, which represents the entry that was most
recently inserted, and a bottom, which represents the oldest
entry. FIFO 2403 wraps around, and the location of the
current top and the current bottom will change during use.

Top Register 2406 contains a pointer to the address
location within Shared RAM Bank 2202 that constitutes the
current top of FIFO 2403. Bottom Register 2407 contains a
pointer to the address location within Shared RAM Bank
2202 that constitutes the current bottom of FIFO 2403.

Count Register 2408 contains a value representing the
number of currently active elements in FIFO 2403. This
same information can be derived by comparing Top Register
2406 and Bottom Register 2407, but a performance advan-
tage is derived from having this information available with-
out the need for a calculation. Count Register 2408 is
automatically incremented whenever an item is added to
FIFO 2403, and automatically decremented whenever an
item is removed.

As is shown in FIG. 24, Shared RAM Controller 2301
also contains FIFO Pointer Registers 2206, 2401 and 2402,
corresponding to FIFO’s 1-3, though the individual registers
are not shown.

Shared RAM Bank 0 also contains Data Structures 2409.
As is explained in connection with FIG. 41, a variety of
non-FIFO data structures are stored in Shared RAM, includ-
ing the Initiator Table, CDBinfo Table, IOP Table, Transfer
Request Table and Global Variables.

Note that each Freelist and its associated Table must be
stored on the same Shared RAM Bank (see below in
connection with FIG. 41).

Shared RAM Controller 2301 also contains Crossbar
Arbitration Logic 2410. As is described above, Crossbar
Switch 2201 has one Port for each HEMi and connects those
Ports with eight Shared RAM Ports (one for each Shared
RAM Bank), Global Registers, the Debug FIFO r and the
Data Path DRAM. This requires some means of arbitrating
among the HEMi’s (23 in the current embodiment) for
access to the Shared RAM and DRAM ports.

This arbitration is handled by Crossbar Arbitration Logic
2410. This logic uses a fair arbitration algorithm to arbitrate
among HEMi’s if more than one HEMi requires access to
the same Port. In the currently preferred embodiment, this
arbitration proceeds in a round-robin fashion, starting with
the HEMi that most recently obtained access to the Port, and
counting upwards through the HEMi’s until reaching the
first HEMi that desires access, wrapping around from the
highest-numbered HEMi (HEMi 22 in the current embodi-
ment) to HEMi 0. Thus, if HEMi’s 5 and 10 require access
to a particular Shared RAM Port, and the most recent HEMi
having access to that Port was HEMi 15, HEMi 5 would be
awarded the access, since Crossbar Arbitration Logic 2410
would count upwards from 15, wrapping around after 22,
and HEMi 5 would be the first HEMi it would reach that
required access to the Port. As should be understood, a
variety of other arbitration algorithms could be used.

Crossbar Arbitration Logic 2410 also contains a mecha-
nism to place a hold on a Port at the request of a HEMi that

20

25

30

35

40

45

50

55

60

65

32
has obtained access to the Port. This allows a HEMi to
complete a transaction that should not be interrupted.

Note that the design illustrated in FIG. 24 allows for
modular expandability, in that the capacity of a system may
be increased by adding a single Flash Port at a time. Doing
so requires adding a Flash Port, flash memory, and a Flash
HEMi as well as adding one Shared RAM for each four
HEMi’s that are added (to hold the HEMi Worklists (see
below)), plus four sets of FIFO Pointer Registers for each
Shared RAM. Adding Shared RAM also adds space that can
be allocated to additional CDBinfos, IOPs and Transfer
Requests. In addition, it is relatively easy to add a new
Shared RAM Port to Crossbar Switch 2201.

This type of expansion requires a minor redesign of the
layout of the Shared RAM Banks, in order to spread the data
across the newly added Banks, but this can be handled by
modifying the data used to initialize the Shared RAM Banks
No changes are required to the HEMI’s or the HEMi
firmware.

This modular design allows for expansion from a simple
system containing two to three Flash Ports to a much larger
system containing up to 23 Flash Ports with no requirement
of any software or major hardware changes. Thus, the same
architecture can be used for an inexpensive workstation
design, involving only two to three HEMi’s, or a much
larger system.

Shared RAM Controller 2301 also includes Shared RAM
Access Register Block 2411, which is used by HEMi’s for
accesses to Shared RAM Block 318. Block 2411 includes
the following registers:

Shared RAM Address Register 2412 contains the address
in Shared RAM of the doubleword that is the subject of the
access. The high order bits of this address indicate the
particular Shared RAM Bank to be selected, and the low
order bits indicate the location in that Bank.

Shared RAM Data Autoinc Register 2413 holds a double-
word of data that is read from or to be written to the address
stored in the Address Register. Use of the Shared RAM Data
Autoinc Register causes the value in Address Register 2412
to automatically increment. On a read, Address Register
2412 increments once the data is copied into Register 2413.
On a write, Address Register 2412 increments once the data
is written out of Register 2413.

This Autoinc Register is used with Repeat Count Register
2702 (see below in connection with FIG. 27) for DMA-type
block transfers of data. The number of transfers required is
written into Repeat Count Register 2702 and the initial
address is written into Address Register 2412. Data Autoinc
Register 2413 will then repeat the read or write for the
number of iterations indicated in the Repeat Count Register,
with each repetition causing Address Register 2412 to
increment, so that the next access is to the next doubleword
in Shared RAM.

Shared RAM Data Register 2414 performs the same
function as the Data Autoinc Register, but does not cause
Address Register 2412 to increment. Register 2414 is used
for multiple accesses to the same memory location, e.g.,
reading a variable and then modifying it.

Mapnum Register 2415 is used to select one of the FIFO’s
in Shared RAM Block 318.

Top Register 2416, Append Register 2417, Push Register
2418 and Pop Register 2419 each hold a doubleword of data.
These registers are used for four different types of access to
the FIFO selected by Mapnum Register 2415. A HEMi can
read the value from the top of the FIFO without modifying
the location of the top value in the FIFO or it can “pop” the
top value from the FIFO, thereby causing the FIFO top to

US 9,483,210 B2

33

point to the next value in the FIFO. These operations result
in the returned value being written into Top Register 2416 or
Pop Register 2419, respectively.

A HEMIi can also “push” a value onto the top of the FIFO,
so that the new value becomes the new top of the FIFO, or
add a value onto the bottom of the FIFO. For these opera-
tions, the data to be written is placed by the HEMi into Push
Register 2418 or Append Register 2417, respectively.

The ability to place information at the top or the bottom
of FIFO’s provides additional flexibility. For example, this
allows more important tasks to be placed at the top of a
Worklist and less important tasks to be placed at the bottom.

FIG. 25 illustrates the input and output paths to and from
Data Path DRAM 107. In the current embodiment, SSD
Controller 106 may include 18 resources that require access
to the DRAM (depending on configuration): up to 12 Flash
Stage Buffers (shown as FSB 0 308, FSB 1 314 and FSB 11
2501, with the Flash Stage Buffers between 1 and 11 not
shown for purposes of clarity; as is explained above, par-
ticular implementations of SSD Controller 106 may have
fewer than 12 Flash Ports, and therefore fewer than 12 Flash
Stage Buffers), PIO Buffer 2204, Debug FIFO 2210,
Receive Stage Buffer 0 1706, Transmit Stage Buffer 0 1708,
Receive Stage Buffer 1 1707 and Transmit Stage Buffer 1
1709.

The paths between these resources and the Data Path
DRAM are referred to herein as “channels.” As should be
understood, although each of the resources is necessarily
connected to the DRAM by a physical transmission path,
channels are conceptual in nature and are do not necessarily
reflect actual bus structures.

In the current embodiment, Data Path DRAM 107 has a
single input/output port, designated as DRAM Port 2502,
though other memories that may be used for this purpose
may have a larger number of ports. As is explained above,
DRAM Scheduler 2304 arbitrates among the channels,
assigning access to channels that need access to DRAM Port
2502 in a round-robin fashion. In an alternate embodiment,
other arbitration schemes could be used. For example,
access could be prioritized according to the type of data
being transferred, or the resource seeking access to the
DRAM, e.g., Debug FIFO 2210 could be prioritized below
Flash Stage Buffer accesses.

FIG. 25 illustrates the connection between the channels
and DRAM Port 2502 as proceeding through Switch 2503.
Operating under the control of DRAM Scheduler 2304,
Switch 2503 connects one of the channels to DRAM Port
2502 at a time. The arrows shown in FIG. 25 illustrate the
directionality of the allowed connections, e.g., Flash Stage
Buffer 308 can read from or write to the DRAM, Debug
FIFO 2210 can write to but not read from the DRAM and
Transmit Buffer 1708 can read from but not write to the
DRAM.

Switch 2503 is conceptual in nature and does not neces-
sarily represent a single, large switch. Instead, this function-
ality may consist of a number of logic gates disposed at
different locations. The exact physical design of this func-
tionality is implementation-specific.

When a channel gains access to DRAM Port 2502, the
movement of data between that channel and the DRAM
occurs in a burst, made up of transfers each of which consists
of four doublewords. That burst continues until the read or
write is complete, or until the resource connected to the
channel is full (for a transfer from the DRAM) or empty (for
a transfer to the DRAM). Once the burst is terminated, that

20

25

30

35

40

45

50

55

60

65

34
channel loses its access through Switch 2503, and DRAM
Scheduler 2304 gives access to the next channel requiring
that access.
E. HEMi’s.

As is described above, SSD Controller 106 contains a
number of processors referred to herein as HEMi’s. As used
herein, the term “processor” or “microprocessor” refers to
any distinct logic block that includes an ALU capable of
performing at least basic arithmetic and/or logical opera-
tions, a memory specific to the processor that holds data, and
control logic that controls operations of the AL U, the control
logic consisting of hardware, software and/or firmware. As
used herein, “HEMi” refers to the particular processors used
in the currently preferred embodiment, though, as should be
understood, many details of the internal HEMi design are
irrelevant herein and are omitted for purposes of clarity. In
addition, although the HEMi design constitutes the currently
preferred processor embodiment, as those of ordinary skill
in the art understand, many other processor designs are
possible.

In the current embodiment, SSD Controller 106 may
contain up to 23 HEMi’s, designated as follows (note that in
this embodiment the numbering system includes gaps):

HEMi 0 Receive HEMi for Host Port 0 (1702).

HEMi 1: Transmit HEMi for Host Port 0 (1704)

HEMi 2: Receive HEMi for Host Port 1 (1703)

HEMi 3: Transmit HEMi for Host Port 1 (1705)

HEMi 8: SCSI HEMi (2001)

HEMi’s 9-14: RdWr HEMi’s (2101-2106)

HEMTI’s 15-26: Flash HEMi’s (e.g., 307, 309, 313)

Certain aspects of the internal functioning of the HEMi’s
are illustrated in FIG. 26. In the currently preferred embodi-
ment, all HEMi’s share the same hardware elements, but are
customized for different functions through the use of differ-
ent firmware overlays and through being connected to
different tightly-coupled elements, both of which are
described in greater detail below.

Each HEMi includes iRAM 2601, which is an instruction
RAM capable of holding firmware to implement 1,000 56 bit
VLIW instructions. These instructions are each able to read
1-2 Shared RAM or register locations, perform ALU opera-
tions, and write back or branch on the result.

As is described below, Data Path DRAM 107 stores up to
eight different firmware overlays for each type of HEMi, and
these overlays are copied into iRAM 2601 when needed
based on the function being performed. This allows each
HEMi to implement a much larger number of instructions
than would be possible if the firmware were limited to the
size of the iRAM.

HEM i instructions are fetched based on a 16-bit address.
3 bits of the address select the firmware overlay, and 13 bits
constitute the address of the instruction in iRAM 2601. A
firmware swap is triggered if the 3 firmware overlay bits of
the instruction being fetched do not match the overlay that
is currently stored in iRAM 2601.

In general, swapping firmware overlays is avoided by
aggregating together the firmware that supports instructions
needed to perform common tasks. For example, a single
firmware overlay can handle most common operations nec-
essary for reads and writes. Other firmware overlays handle,
for example, initialization and error correction handling.

Each HEMi also includes two KByte mRAM 2602, which
serves as a storage space for data being used by the HEMi.

As FIG. 26 shows, each HEMi includes a six-stage
pipeline made up of Fetch Stage 2603, [Buffer Stage 2604,
Decode Stage 2605, Read Stage 2606, ALU Stage 2607 and
Write Back Stage 2608. In the currently preferred embodi-

US 9,483,210 B2

35

ment, each of these Stages constitutes a logical block within
the HEMi, though in an alternate embodiment these could
represent HEMi states, independent of the underlying pro-
cessor hardware used to generate the state.

The Fetch Stage determines the iRAM address of the
firmware associated with the instruction to be executed. That
address is then passed to the iRAM, as is indicated by the
arrow between Fetch Stage 2603 and iRAM 2601.

The firmware at that address is then loaded into a buffer,
as is indicated by the arrow between iRAM 2601 and [Buffer
Stage 2604.

The firmware is then handed off to Decode Stage 2605 (as
shown by the arrow between [Buffer Stage 2604 and Decode
Stage 2605). The Decode Stage decodes the instruction and
performs jumps and calls. It transmits jumps and calls back
to Fetch Stage 2603 (indicated by the arrow from Decode
Stage 2605 to Fetch Stage 2603). In the case of straight-line
instruction execution, Decode Stage 2605 passes parameters
to Read Stage 2606. These parameters include the location
from which data is to be retrieved for the required operation.

Read Stage 2606 reads 1 or 2 memory or register locations
as required by the instruction. In the case of a read to two
locations, Read Stage 2606 repeats, as is indicated by the
arrow looping back from the output of Read Stage 2606 to
its input. As indicated by the arrow pointing to Read Stage
2606 from External Read 2609, sources for the information
include mRAM 2602 and external memory or registers
(indicated conceptually by External Read 2609). Informa-
tion may also come from internal registers that are not
shown in FIG. 26.

Read Stage 2606 passes the obtained information to ALU
Stage 2607, for operation by the HEMi’s ALU. Results from
the operation are passed to Fetch Stage 2603 (in the case of
a conditional branch) or to Write Back Stage 2608.

Write-Back Stage 2608 writes the results of the ALU
operation into a location specified by the instruction. As is
indicated by the arrow pointing out of Write Back Stage
2608, results may be written into mRAM 2602 or to an
external resource (indicated conceptually by External Write
2610).

FIG. 27 illustrates aspects of the HEMi design not shown
in FIG. 26, including registers used for access to various
memory ranges and logic that is tightly coupled to the HEMi
(Tightly Coupled Logic Block 2701). As should be under-
stood, both the HEMi and the tightly coupled logic may
include registers and other components that are not shown
herein. In addition, the register sets themselves have been
simplified for purposes of illustration.

FIG. 27 illustrates Flash HEMi 307 and its Tightly
Coupled Logic Block 2701. As is described above, the
internal design of all HEMi’s is the same. However, different
types of HEMi’s have different Tightly Coupled Logic
Blocks. Block 2701 is specific to Flash HEMi’s. Differences
in tightly coupled logic for other types of HEMi’s are
described below.

HEMi 307 includes Repeat Count Register 2702, which
holds a value used to calculate the number of times an
operation should be repeated. Loading a value into the
Repeat Count Register causes the next instruction executed
by the HEMi to be repeated the specified number of times,
with each repetition causing the value in the Repeat Count
Register to be decremented.

A value of “1” can be forced into Repeat Count Register
2702, thereby ending the loop, under various circumstances:

(a) If a conditional branch instruction is looping as a result
of the Repeat Count Register, and the condition occurs, so
that the branch is taken, the Repeat Count Register is

20

25

30

35

40

45

50

55

60

65

36

automatically forced to “1,” which has the effect of causing
the next instruction to occur once. As should be understood,
in the conditional branch case, this next instruction would be
the first instruction in the branch.

(b) When a flag associated with the Repeat Count Register
is set, any action that increments certain FIFO count regis-
ters from zero to one forces a value of one into the Repeat
Count Register. The FIFO count registers are those associ-
ated with the Worklist for the HEMi (e.g., Count Register
2408, described in connection with FIG. 24) and the Receive
Buffer Count Register (described below in connection with
FIG. 28).

This capability is used to force the HEMi’s out of sleep
mode when they have a task to perform. When a HEMi has
no work to perform, it enters a sleep mode, in which a nop
is repeated a set number of times, following which the HEMi
wakes up, checks its Worklist, and, if no tasks are present on
the Worklist, resumes executing nops. This is accomplished
by loading a set number into Repeat Count Register 2702
and then executing a nop.

When a HEMi is in sleep mode, writing a task into the
HEMi’s Worklist (see below) causes the HEMi to wake up.
This is accomplished by a signal from the relevant Count
Register, which forces a “1” into Repeat Count Register
2702, thereby causing the HEMi to wake up and take
appropriate action after the next nop is executed.

This use of the Repeat Count Register to force repeated
nops allows the HEMi to go into low-power sleep mode
without the need for any specialized sleep mode logic. In
addition, this allows for very fine granularity in terms of how
long the HEMi will remain in sleep mode. For example, if
the HEMi is going into sleep mode because it has no current
work to accomplish, a maximum value is written into the
Repeat Count Register. In the currently preferred embodi-
ment, this value is slightly over 1 million, and causes the
HEMIi to remain in sleep mode (unless earlier woken up) for
approximately 4 milliseconds.

In another example, when a HEMi begins a multiply or
divide operation, the Repeat Count Register can be used to
force 32 nops, since such an operation takes 32 HEMi
cycles. This allows the HEMi to go into low-power sleep
mode while waiting for the results of the multiply or divide,
which, as is described below, are handled by logic that can
operate independently of the operation of the rest of the
HEMi.

Note that the flag described above is used so that the
Repeat Count will be forced to one only if it is executing
nops, since otherwise a code loop might be interrupted. For
this reason, the flag is set when a nop follows the Repeat
Count, but is not set for other instructions.

HEMi 307 also includes Local Register Block 2703,
which controls access to the HEMi’s iRAM 2601 and
mRAM 2602.

Local Address Register 2704 holds an address in local
memory. This address may be in either iRAM or mRAM,
depending on the high-order bits of the address. Local Data
Autoinc Register 2705 holds a doubleword of data read from
or to be written to local memory. Writing from this register
causes Local Address Register 2704 to increment. By writ-
ing a value into Local Address Register 2704, loading a
value into Repeat Count Register 2702, and executing a
move from mRAM into Register 2705 and from Register
2705 into another location (these moves can be performed in
one instruction), the HEMi can perform a DMA-like move
of a sequence of doublewords from successive addresses in
the mRAM. Each loop causes Register 2704 to automati-
cally increment and Repeat Count Register 2702 to auto-

US 9,483,210 B2

37

matically decrement, and the moves continue until Repeat
Count Register 2702 reaches zero. Note that if the target is
similarly using a data-autoinc register, the move would be
stored in successive addresses in the target, again, without
the need for additional logic or instructions.

Local Data Register 2706 holds a doubleword of data read
from or to be written to local memory, but this register does
not cause an address increment.

ARM 2002 communicates with Local Register Block
2703 through a dedicated port. ARM 2002 is the only source
that is able to write addresses into Local Address Register
2704 corresponding to iRAM 2601. ARM 2002 uses this
capability to control the process of overlaying new firmware
into iRAM 2601.

HEMi 307 also includes Window Registers 2707, which
consist of five registers each of which holds an address in the
HEMi’s mRAM 2602. Four of these Registers are used to set
up windows in mRAM consisting of 128 doublewords each.
These windows are used for manipulation of data structures
such as Transfer Requests and Page Requests. For example,
if a Flash HEMi is required to operate on a Page Request, the
address of that Page Request in mRAM can be loaded into
one of the Window Registers. Accesses to particular areas of
the Page Request can then be handled as an offset from the
value in the Window Register, thereby simplifying the
process of address calculation when repeated operations are
required on a data structure.

The fifth Window Register is used for the mRAM stack,
which stores local variables and function arguments. The
stack window register operates similarly to the other four
Window Registers, except that the HEMi’s have special
stack-related instructions that automatically increment or
decrement the value in the stack Window Register and
provide an automated mechanism for adding an offset to the
stack window address, thereby allowing one clock stack
manipulation.

The HEMi’s internal registers, including Local Register
Block 2703 and Window Registers 2707 are ‘“hazard
checked.” Because the HEMi is a pipelined processor, if a
write operation immediately precedes a move operation
without such protection, the write may actually occur after
the move. Thus, if a write instruction writes a value into a
register, and the immediately subsequent instruction moves
the register’s contents to another location, the pipeline could
result in moving the register’s old contents, prior to the
write. Hazard checking avoids this possibility by checking
for such cases and delaying the subsequent instruction until
the proper data has been loaded.

Multiply/Divide Engine 2717 is used to perform multiply
and divide operations. Because the Multiply/Divide Engine
can operate independently from the rest of the HEMi, the
HEMIi can write the values to be operated on into registers
in Multiply/Divide Engine 2717 and then go into a sleep
mode while the operation takes place, thereby saving power.
This sleep mode is described above.

Manual CRC Engine 2719 generates a CRC value for
information written in by the associated HEMi.

Switch-Endian Engine 2720 is a 32-bit register that auto-
matically swaps the byte order of data written into the
register. This is used because different protocols have dif-
ferent byte orderings. Data is stored in flash in little-endian
format, but for certain protocols is received and must be
transmitted in big-endian format.

Each HEMi also has an associated block of tightly
coupled logic, e.g., Tightly Coupled Logic Block 2701.
Tightly Coupled Logic Block 2701 illustrates logic that is
tightly coupled to each Flash HEMi. As is described below,

20

25

30

35

40

45

50

55

60

65

38

the logic blocks tightly coupled to other types of HEMi’s
differ in some respects from Tightly Coupled Logic Block
2701. Thus, even though the internal design of all HEMi’s
is identical, the use of different tightly coupled logic, plus
the use of different firmware, allows each type of HEMi to
be customized for its particular tasks.

Tightly Coupled Logic Block 2701 consists of resources
that are “tightly coupled” to HEMi 307, meaning that HEMi
307 is the only HEMi that can access these resources, these
resources share an address space, and accesses to these
resources occur on a no-wait state basis.

Although in the currently preferred embodiment, the
Tightly Coupled Logic is external to the HEMi, in an
alternate embodiment some or all of this Logic could be
incorporated into the HEMi itself.

Tightly Coupled Logic Block 2701 includes Stage Buffer
Access Register Block 2708, which controls accesses to the
Flash Stage Buffer associated with the Flash HEMi (e.g.,
Flash Stage Buffer 308.

Address Register 2709, Data Register 2710 and Data
Autoinc Register 2711 operate similarly to the correspond-
ing registers in Shared RAM Access Register Block 2411.

The Flash HEMi’s use this access path to the Stage
Buffers to modity Time Stamp information stored in Super-
Block Metadata Tables passing through the Stage Buffer,
and during rebuilds required after an unexpected loss of
power (the rebuild process is described below, in connection
with FIG. 58).

Flash Transfer Count Register 2712, Flash Address Reg-
ister 2713 and Flash Data Register 2714 control DMA
operations between the Flash Group and the Flash Stage
Buffer. Register 2713 contains the flash address to be
accessed. Register 2712 contains the number of reads or
writes, in doublewords. Register 2714 contains data received
from, or to be sent to, the flash.

DMA Address Register 2715 and DMA Transfer Count
Register 2716 are used to control the Stage Buffer side of a
DMA transfer between Data Path DRAM 107 and the Stage
Buffer. Register 2715 holds the Stage Buffer address for the
transfer, and Register 2716 holds the number of double-
words to be transferred between the Stage Buffer and the
PIO Buffer. Writing a value into Register 2716 causes a
DMA transfer between the Stage Buffer and the PIO Buffer
to begin.

In general, a HEMi can use internal move commands to
move data between internal locations, Tightly Coupled
Logic and certain external locations. Thus, for example,
when it a new firmware overlay is needed, ARM Processor
2002 sets up the DRAM address for the overlay in DRAM
Address Register 2212 (as is described below, firmware
overlays are stored in the DRAM), sets up the iRAM address
for the overlay in Local Address Register 2704, places the
number of transfers from the DRAM in Transfer Count
Register 2213 and places the number of doublewords needed
for the transfer in Repeat Count Register 2702. The DMA
transfer from DRAM through the PIO Buffer and to Data
Register 2214 proceeds as is described above. Internal
HEMi logic causes the data from Register 2214 to be written
to Local Data Autoinc Register 2705, and from there to the
iRAM location pointed to by Local Address Register 2704.
Repeat Count Register 2702 is then decremented, the Local
Address Register increments, and the process repeats. ARM
2002 uses this capability at system boot time to load the
initial firmware overlay into each HEMi’s iRAM.

To take another example, copying an IOP from Shared
RAM (see below in connection with FIG. 41) into the
HEMi’s mRAM only requires four HEMi commands:

US 9,483,210 B2

39

Write Shared RAM Address Register, Shared RAM
Address; this writes the address of the IOP in Shared RAM
into Register 2412.

Write Local Address Register, mRAM Address; this
writes the address in mRAM where the IOP is to be stored
into Register 2704.

Write Repeat Count Register, # Dwords in IOP; this loads
Repeat Count Register 2702 with the number of double-
words contained in the IOP.

Move Local Data-Autoinc Register, Shared RAM Data-
Autoinc Register; this moves the value from Register 2413
to Register 2705. The value in Register 2413 is the double-
word in Shared RAM pointed to by Register 2412. Moving
that value to Register 2705 causes it to be transferred to the
mRAM location pointed to by Address Register 2704.
Specitying the two Data Autoinc registers automatically
causes the associated Address Registers to be incremented
once the move occurs. As is described above, this move
instruction repeats until the value in the Repeat Count
Register reaches zero.

In this way, the HEMi can accomplish DMA-like accesses
that occur automatically and with a minimum number of
commands.

Tightly Coupled Logic Block 2701 also includes Debug
Register Block 2718, which includes registers relevant to
transfers to and from Debug FIFO 2210.

As is noted above, Tightly Coupled Logic Block 2701 is
specific to Flash HEMi’s. Tightly Coupled Logic Blocks
associated with other HEMi’s do not include Stage Buffer
Access Register Block 2708.

The Tightly Coupled Logic Block for Receive and Trans-
mit HEMi’s (e.g., Receive HEMi 0 1702 and Transmit
HEMi 0 1704) include additional registers designed to
support Host Port operations. These registers are shown in
FIG. 28.

The Tightly Coupled Logic Blocks for Receive HEMi’s
contain registers that are used for communication with and
control of receive functions relating to the Host Port, includ-
ing the following:

Receive Buffer Access Register Block 2801: this is used
to set up DMA transfers from the Receive Stage Buffer to
Data Path DRAM 107. This block includes DMA Address
Register 2802, which holds the DRAM address for the
transfer and DMA Transfer Count Register 2803, which
holds the number of transfers to be made.

Receive Buffer Count Register 2804: this gives the num-
ber of entries in the Receive Stage Buffer data FIFO. Writing
a value to this Register causes the Receive HEMi to wake up
if it is in sleep mode.

Primitive FIFO Access Register Block 2805: this set of
registers communicates with Inbound Primitive FIFO 1808.
These registers include Top Register 2806 (reads from the
FIFO without changing the top of the FIFO), Pop Register
2807 (reads the top item from the FIFO and moves the FIFO
top to the next item), Count Register 2808 (contains the
number of items in the FIFO) and Append Register 2809
(adds items to the end of the FIFO).

Non-Data Payload Access Register Block 2810: this set of
registers communicates with Non-Data Payload FIFO 1804.
These registers include Top Register 2811, Pop Register
2812, Count Register 2813 and Append Register 2814,
which operate the same as the similarly named registers in
the Primitive FIFO Access Register Block.

Header Size Register 2815: this indicates how long the
current header is. This value allows the Receive HEMi to
differentiate between one header and the next on the Non-
Data Payload FIFO.

20

25

30

35

40

45

50

55

60

65

40

Primitive Match Register Block 2816: these registers are
used to load values into Primitive Match Logic 1802 to
customize the Primitive Match Logic for a particular pro-
tocol. Use and customization of Primitive Match Logic 1802
is explained above in connection with FIG. 19.

As is described above, Primitive Match Logic 1802
contains two sets of registers: Primitive Match Registers
1902 and Primitive Match Control Registers 1903. Primitive
Match # Register 2817 points to one of sixteen registers in
each set, resulting in the value stored in Primitive Match
Load Register 2818 being loaded into the corresponding
register in Primitive Match Registers 1902 and the value
stored in Primitive Match Control Load Register 2819 being
loaded into the corresponding register in Primitive Match
Control Registers 1903.

WWN Hash Engine 2830 is used to generate a 24-bit hash
of a received 64-bit Worldwide Name value. This hash is
used internally so that received frames (which may contain
the 24-bit hash value of the sender’s WWN) may be matched
with Initiator Table 4108 (see below), which contains the
64-bit value.

FIG. 28 also shows unique Transmit HEMi tightly
coupled registers:

Transmit Buffer Access Register Block 2820: this is used
to set up the Transmit Stage Buffer side of DMA transfers
from Data Path DRAM 107. This Register Block includes
DMA Address Register 2821 and DMA Transfer Count
Register 2822.

Transmit Frame Buffer FIFO Access Register Block
2823: this set of registers communicates with a FIFO which
is part of the Transmit Frame Buffers 1806. These registers
include Pop Register 2824, Count Register 2825 and
Append Register 2826.

Command FIFO Access Register Block 2827: this set of
registers communicates with a FIFO which is part of the
Transmit Frame Buffers 1806. These registers include Count
Register 2828 and Append Register 2829.

FIG. 29 illustrates the contents of the mRAM of a Flash
HEMi, e.g., HEMi 307:

1. Local Transfer Request Table 2901. This contains space
for holding up to six Transfer Requests. These can be a
combination of Transfer Requests that have been copied
from Shared RAM into this Flash HEMi’s mRAM and Local
Transfer Requests, issued in connection with internal opera-
tions such as garbage collection (see below). For example,
Slot 2902 can store one Transfer Request, and Slot 2903 can
store a second Transfer Request.

2. Local Transfer Request Queue 2904. This is a FIFO
queue of Transfer Requests that are stored in Table 2901 and
are queued up to be worked on by the Flash HEMi.

As is explained below, in general, Transfer Requests are
placed on this Queue when the Page Requests associated
with the Transfer Request have completed and the Transfer
Request itself is ready to enter into a done state.

3. Local Transfer Request Freelist 2905. This holds a list
of pointers to slots in Local Transfer Request Table 2901 that
are empty and are therefore capable of holding new Transfer
Requests.

4. Page Request Table 2906. This contains space for
holding up to eighteen Page Requests. Each Transfer
Request can invoke three Page Requests, so Page Request
Table 2906 contains space for the eighteen Page Requests
that can be invoked by the six Transfer Requests that can fit
into Flash HEMi Transfer Request Table 2901. In the
example shown, Page Request Table 2906 includes Page
Requests in Slots 2907 and 2908, which hold Page Requests
for the Transfer Request in Flash HEMi Transfer Request

US 9,483,210 B2

41

Table 2901 Slot 2902, and the Page Request in Slot 2909 is
for the Transfer Request in Slot 2903. In this example, the
other Page Request slots are empty, meaning that the space
has been allocated but is not currently filled by valid Page
Requests.

5. Page Request Freelist 2910. This is a list of all Page
Request slots in Page Request Table 2906 that are free,
meaning they do not currently hold valid Page Requests.
This list therefore represents new Page Requests that the
Flash HEMi can issue.

6. Bank Queues 2911. This is a set of FIFO queues of Page
Requests that are stored in Table 2906. There is a separate
Page Request Queue for every Bank in the Flash Group.
Once a Page Request is ready for execution, it is appended
to the end of the Bank Queue for the Bank holding the
address that the Page Request is required to read from or
write to. The Flash HEMi rotates among the Bank Queues in
order. When it rotates to a Bank Queue that contains a Page
Request, it evaluates the top Page Request on the Queue to
determine if the resources necessary for continued execution
of the Page Request are available. If the resources are
available, the Flash HEMi carries out those tasks required by
the Page Request that are possible given the available
resources and then rotates to the next Bank Queue. In this
way, the Flash HEMi handles the Page Requests in a
round-robin fashion, but without the need for any arbitration
logic. Page Requests that have completed processing are
removed from the Bank Queue. This process is explained in
greater detail in connection with FIG. 53.

In the current embodiment, the Bank Queues are FIFOs,
and Page Requests are handled in the order received. In an
alternate embodiment, high priority Page Requests are
added to the top of a Bank Queue, rather than being
appended to the bottom. In this embodiment, a priority bit
may be set in the Page Request, based on a priority bit in the
calling Transfer Request that identifies a particularly sig-
nificant transaction.

8. SuperBlock Freelist 2912. This contains identifiers for
the SuperBlocks contained in the Flash Group controlled by
this Flash HEMi that are free, and therefore available to be
written.

9. SuperBlock Freelist Counter 2913. This contains the
number of SuperBlocks on Freelist 2912. This number is
separately tracked as a performance optimization, so that it
does not have to be calculated as needed.

10. Open SuperBlock Pointer 2914. This holds the des-
ignation for the SuperBlock that is currently open for
writing.

11. Garbage Collection Thresholds 2915. In the current
embodiment, this holds two variables, both used for garbage
collection purposes: the Critical Threshold and the Non-
Critical Threshold. Use of these variables in garbage col-
lection is described below.

12. Local Variables 2916. In the current embodiment, this
holds various local variables used by the HEMi.

13. Stack Space 2917. This holds a stack used by the
HEMi for processing tasks.

14. Command Table 2918. This holds a list of commands
and LBA ranges affected by all Transfer Requests that are
currently being handled by the Flash HEMi.

As is described above, SSD Controller 106 enforces
read/write coherency to insure that operations do not com-
plete out of order. Command Table 2918 is used by the Flash
HEMi to enforce coherency at the Flash Port level. When a
Transfer Request is popped from the Flash HEMi’s Worklist,
and copied into Local Transfer Request Table 2901, the LBA
range affected by the Transfer Request is checked against

20

25

30

35

40

45

50

55

60

65

42

Command Table 2918. If an overlap exists, execution of the
Transfer Request is stalled until the earlier Transfer Request
has been completed, at which point its entry is removed from
Command Table 2918 and the hold placed on the later
Transfer Request is removed. Once a Transfer Request has
been cleared for execution in the Flash HEMi, the LBA
range affected by that Transfer Request is added to Com-
mand Table 2918.

15. SuperPage Pointer List 2919. This list contains one
entry for each Bank in the Flash Group associated with this
Flash HEMi. For each Bank, the associated entry points to
the next free SuperPage in the currently open SuperBlock.
When a SuperBlock is initially opened up, and contains no
data, Banks 1-7 point to SuperPage 0 and Bank 0 points to
SuperPage 1 (SuperPage 0 of Bank 0 of each SuperBlock
contains the SuperBlock Metadata Table, and is therefore
not available for normal writes).

The Flash HEMi uses these counters to allocate Super-
Pages to Page Requests that include a write command and
therefore require a free SuperPage. When a SuperPage has
been allocated to a Page Request (this occurs during Page
Request initialization), the entry in SuperPage Pointer List
2919 for the Bank containing that SuperPage is incremented.

Note that List 2919 may, in one embodiment, be con-
tained in the same data structure as the Open SuperBlock
2914 information.

16. Bank Bitmap 2920. This table holds two bits for each
Bank. One of the bits indicates whether or not the Page
Request at the top of the Bank Queue needs the Bank to
operate. The second bit indicates whether the R/B signal for
the Bank is in the Ready state. The Flash HEMi checks this
bitmap in determining whether to begin servicing a Page
Request.

Use of Shared RAM Access Register Block 2411 to
access Shared RAM is illustrated in FIG. 30, which shows
a sequence of steps used for transferring a data block (e.g.,
a Transfer Request) from Shared RAM.

In Step 3001, the address of the desired data in Shared
RAM is written into Shared RAM Address Register 2412. In
this example, this is the address of the Transfer Request in
Transfer Request Table 4111 (see below).

In Step 3002, the HEMi mRAM address to which the data
is to be transferred is written into Local Address Register
2704. In this case, the address points to an empty slot in
Local Transfer Request Table 2901.

In Step 3003, a value is written into Repeat Count
Register 2702 that corresponds to the number of double-
words that will be required to complete the transfer.

In Step 3004, the HEMi executes a command that causes
a read from Shared RAM to Shared RAM Data Autoinc
Register 2413 and from there to Local Data Autoinc Register
2705. The read from Shared RAM occurs at the address
specified in Shared RAM Address Register 2412. The read
to the Local Data Autoinc Register causes the data to be
written to the location in mRAM specified by Local Address
Register 2704. The use of the two Data Autoinc Registers
causes the respective Address Registers to automatically
increment. Execution of the command causes Repeat Count
Register 2702 to decrement. Note that the HEMi design
allows this step to be handled with a single instruction.

In Step 3005, Repeat Count Register 2702 is checked to
determine if it contains a value of zero.

If Repeat Count Register 2702 has a value of zero (“yes”
outcome to Step 3005), the transfer is complete, and the
process ends.

If Repeat Count Register 2702 has a value that exceeds
zero (“no” outcome to Step 3005), this indicates that addi-

US 9,483,210 B2

43

tional transfers are needed. Control returns to Step 3004 for
transfer of the next doubleword.

Note that the loop between Steps 3004 and 3005 contin-
ues without further intervention by the Flash HEMi. The
incrementing Address Registers, and the Repeat Count reg-
ister, which forces a repeat of the executing instruction,
allow the HEMi to transfer data quickly and efficiently in a
DMA-like burst.

F. ECC Handling.

SSD Controller 106 generates and checks Error Correc-
tion Code (“ECC”) information when data is written to and
read from Flash Memory Module 108. (As is described
above, Data Path DRAM 107 also has an internal ECC
capability, but SSD Controller 106 does not control this
capability, and interfaces with it only in the case of a
reported error, which causes SSD Controller 106 to issue an
error message.)

The ECC process is illustrated in FIG. 31, which shows
Flash Port 0 304. As is described above, Flash Port 0
includes Flash HEMi 0 307 and Flash Stage Buffer 0 308,
and is connected to Flash Group 0 301.

FIG. 31 also shows ECC Correction Engine 3101. As is
explained above, SSD Controller 106 includes a number of
Flash Ports, each with an associated Flash Group. However,
in the current embodiment, SSD Controller 106 only
includes a single ECC Correction Engine, which is shared
among the Flash Ports. Since only one ECC Correction
Engine exists, when a Flash HEMi requires the ECC Cor-
rection Engine, it must first check if the ECC Correction
Engine is busy. If the ECC Correction Engine is not busy, the
Flash HEMi may use it. If the ECC Correction Engine is
busy, the Flash HEMi must append its ID to an ECC
Correction FIFO contained in Global Registers 2203 (see
FIG. 22). That FIFO includes an ordered list of all Flash
HEMi’s that require access to the ECC Correction Engine.
A HEMi is awarded access to the ECC Correction Engine
when its ID comes to the top of the FIFO.

In a different embodiment, SSD Controller 106 may
include more than one ECC Correction Engine, up to a total
of one for each Flash Port. This embodiment increases cost
and complexity, but allows for faster performance if a large
volume of errors must be corrected. In this embodiment,
Flash HEMi’s are not required to wait for access to the ECC
Correction Engine. In other alternate embodiments, there
may be one ECC Correction Engine for a given number of
Flash Ports (e.g., two or four).

As is shown in FIG. 31, Flash Port 0 304 includes ECC
Logic 3102. ECC Logic 3102 further consists of ECC
Generation 3103 and ECC Check 3104.

ECC Generation 3103 generates ECC bits for a sector of
data at a time. It does so when data is being transferred
between Flash Stage Buffer 308 and Flash Group 301. On a
write from the Stage Buffer to the Flash Group, the ECC
information is stored along with the data, the ECC infor-
mation being stored in ECC Field 1303 of the SPage Sector
(see FIG. 13). On a read from the Flash Group to the Stage
Buffer, the ECC information is used by ECC Check 3104, as
is described below.

In the currently preferred embodiment, ECC Generation
3103 generates twelve ECC symbols per sector, thus using
12 ECC bytes per sector, using the Hamming algorithm.
This requires a little less than 20 bytes for storage, and it is
for this reason that SPage Sector ECC Field 1303 consists of
20 bytes. The amount of ECC generated per sector is
programmable, based on a register in ECC Logic 3102 that
is set at initialization. In an alternate embodiment, by setting
the ECC size to zero, and rearranging or eliminating the

20

25

30

35

40

45

50

55

60

65

44

space taken up by other fields, it would be possible to shrink
the size of an SPage Sector and therefore allow each
SuperPage to hold 16 sectors (and therefore handle 16
LBAs).

When data is read from Flash Group 301, ECC Genera-
tion 3103 generates a new set of ECC bits for each sector.
ECC Check 3104 then compares the newly-generated ECC
bits against the contents of ECC Field 1303. The results of
this comparison are conveyed using a flag, which indicates
either that the ECC bits matched, or that an error was
discovered. Methods for generating and checking ECC
information are well-known in the art and will not be further
described herein.

When ECC Check 3104 discovers an ECC error, Flash
HEMi 307 copies the Sector data and metadata (including
ECC Field 1303) from Stage Buffer 308 into ECC Correc-
tion Engine 3101. The ECC Correction Engine uses the
contents of ECC Field 1303 to attempt to correct errors
introduced into the data during the course of writing to or
reading from Flash Group 301. Again, the details of ECC
correction processes are well-understood in the art and are
not described herein. In the currently preferred embodiment
the ECC Correction Engine is capable of correcting twelve
errors per sector, based on the approximately 20 bytes of
ECC information.

If ECC Correction Engine 3101 is successful in correcting
the data, Flash HEMi 307 takes the output from ECC
Correction Engine 3101 and writes it back into Stage Buffer
308, with the corrected data then being used for the ultimate
transmission to the Host. (As should be understood from the
discussion in connection with FIG. 27 above, although two
transfers are involved, the HEMi design allows for each
doubleword of data to be transferred from ECC Correction
Engine 3101 to Stage Buffer 308 using a single HEMi
instruction). If the number of errors is too great for ECC
Correction Engine 3101 to correct, a second-level error
correction protocol is invoked. This protocol has two stages.
In the first stage, the read from the Flash Group to the Stage
Buffer is repeated one or more times, initiating the error
correction cycle again with the same sector. This is done
because errors sometimes result from cells that are at the
threshold between reporting one state and another, and a
reread may generate additional valid bits. If the ECC Cor-
rection Engine is able to correct the data the second (or
subsequent) time, the corrections are made, the physical
sector is marked as “bad,” and the data is rewritten into
another sector.

In a second stage of the second-level error correction
protocol, the data is read repeatedly and OR'd together with
the results of earlier reads. As a result of the OR operations,
if a “1” is encountered at a bit position during any of the
reads, that “1” will be maintained, even if the value at that
bit position is read as “0” during earlier or later reads. This
procedure is used because flash memory errors commonly
result from a leakage of charge from a flash cell, causing the
value in the cell to be read as a “0” rather than a “1” (e.g.,
read disturbs). Because the leakage may result in the cell
having an intermediate charge level, between 0 and 1,
different reads may result in different values being returned.
The OR process maximizes the number of 1s received from
the reads. Once the OR process has completed a set number
of times, the value is returned to ECC Correction Engine
3101 to determine if the data can now be corrected.

The OR process may actually increase data corruption, if
that corruption resulted from charge increasing on a cell,
such that a “0” value is intermittently read as a “1.” This case
is relatively rare, however, though it makes sense to use the

US 9,483,210 B2

45

OR process only after the first stage of the second-level error
correction (reading without OR'ing) has failed.

If ECC Correction Engine 3101 is ultimately unable to
correct the data, the Flash HEMi issues an error message that
is sent through the Host Port to the Initiator associated with
the data.

In the currently preferred embodiment, the corrected data
is not written back into the flash unless the number of errors
exceeds a threshold. The threshold is set based on the
number of correctable errors (12 per sector, in the current
embodiment), minus a guardband calculated based on the
likelihood of additional errors being introduced on a subse-
quent read. In the currently preferred embodiment, the
inventors have determined that the number of errors found
in a sector read is very unlikely to be greater than three more
(or three less) than the number of errors found in the
immediately preceding read of that sector. Thus, for
example, if on a read a sector has three correctable errors, on
the next read it is highly likely to have six or fewer
correctable errors.

As should be understood, this behavior means that, if a
sector has nine or fewer correctable errors on a read, it is
highly likely that on the next read the sector will have twelve
or fewer errors, meaning that the errors will be correctable
on the next read. This, in turn, means that it is unnecessary
to write the corrected data back to the flash. Avoiding such
writes is significant, since writing corrected data to the flash
requires that the entire SuperPage be rewritten.

In the current embodiment, the guardband is set at four,
rather than three, to further minimize the possibility that
uncorrectable errors will be found on a subsequent read.
Thus, the threshold of correctable errors discovered on a
read is set at eight. If more than eight errors are discovered,
the write handler is called and the SuperPage containing the
sector is rewritten to the flash, including the corrected data.
If fewer than eight errors are discovered, the SuperPage is
not rewritten, since it is anticipated that the number of errors
will still be correctable in the next read.

In an alternate embodiment, a SuperBlock containing
errors may be identified for preferential garbage collection,
since the presence of errors in certain sectors may mean that
adjoining sectors also contain errors. Preferential garbage
collection involves a certain amount of inefficiency, since
the selected SuperBlock will probably contain more valid
data than the SuperBlock that would have been selected
without the preference (see below for a discussion of gar-
bage collection), but this inefficiency is much less than the
inefficiency imposed by immediately rewriting any Super-
Page found to contain errors.

IV. Metadata Structures

A. DRAM Structures.

FIG. 32 illustrates data structures found Data Path DRAM
107, each of which is set up and initialized at system
initialization. These include the following structures:

Forward Table 3201, which is used to translate between
LBA addresses and flash memory addresses. This Table is
described in greater detail in connection with FIG. 33.

IOP Data Buffer 3202, which stores data being transferred
between Host Interface 310 and Flash Memory Module 108.

ARM Execution Code 3203, which stores software
executed by ARM Processor 2002. In the currently preferred
embodiment, this software is written in the C++ program-
ming language.

ARM Data 3204, which constitutes a memory space used
by ARM Processor 2002 during processing.

20

25

30

35

40

45

50

55

60

65

46

Reverse Table Block 3206, which is used for garbage
collection and for recovering from a power loss. Reverse
Table Block 3206 contains a separate table for each Flash
Port, e.g., Table 3205 contains the Reverse Table for Flash
Port 0. Reverse Table 3205 is described in greater detail in
connection with FIG. 34.

SuperBlock Metadata Tables Block 3207, which contains
metadata tables for the currently open SuperBlock for each
Flash Port. These tables are further described in connection
with FIG. 35.

HEMi Code Overlay Table 3208, which contains firm-
ware that is loaded into each HEMi at initialization. This
Table contains eight code overlays for each type of HEMi,
e.g., Entry 3209 contains eight firmware overlays for the two
Receive HEM1i’s, Entry 3210 contains eight firmware over-
lays for the two Transmit HEMi’s, etc. These overlays are
swapped into and out of the HEMi iRAMs as necessary, in
a manner explained in greater detail above.

SCSI Tag Table 3211, which contains one row for each
currently active Initiator, and one column for each of the
65,536 possible values allowed for a SCSI Tag according to
the SCSI Protocol. When a CDB is received containing a
particular SCSI Tag, the bit is set in the SCSI Tag Table
location corresponding to that Initiator and that SCSI Tag.
When execution of the CDB has completed, that bit is
cleared. This allows SSD Controller 106 to check to make
sure that all received SCSI Tags are unique, and that an
Initiator never has two active CDBs with the same SCSI Tag.

Debug Buffer 3212. This is a circular buffer that stores
debug data received from Debug FIFO 2210. This debug
data is collected during normal system operation, in
response to debug commands in HEMi firmware. Informa-
tion collected includes the basic command flow of CDBs
received and data structures generated as a result (CDBInfo,
IOP, Transfer Requests). In the case of a detected error,
additional debug information is collected in order to identify
the type of error and the nature of the response made to the
error, if any.

FIG. 33 shows Forward Table 3201. Forward Table 3201
is used to translate LBA addresses received from Hosts 101
and 102 into actual physical flash memory addresses in
Flash Memory Module 108.

Forward Table 3201 is indexed by LBA, and contains one
entry for each fifteen LBAs that the system can support. As
is shown in FIG. 33, the first entry in Forward Table 3201
relates to LBAs 0-14, the second entry to LBAs 15-29, the
third entry to LBAs 30-44, etc. Note that the number of
LBAs per entry is the same as the number of LBAs that can
be stored in a SuperPage. In a different embodiment, involv-
ing larger or smaller SuperPages, the number of LBAs per
Forward Table entry would likewise become larger or
smaller.

The size of Forward Table 3201 is dependent on the total
memory size of Flash Module 108. In the currently preferred
embodiment, a 300 Gigabyte Flash Module can store
approximately 600 million L[LBAs, thereby requiring
approximately 40 million possible entries in Forward Table
3201. The size of Forward Table 3201 would be correspond-
ingly larger or smaller for larger or smaller quantities of
memory.

For each LBA entry, Forward Table 3201 includes infor-
mation that can be used to identify the location of the
corresponding data on the physical flash memory chips:
Port, Bank, Block and Page.

In addition, Forward Table 3201 contains a field desig-
nated “User,” which can store information that a particular
customer may find useful. In one embodiment, the user field

US 9,483,210 B2

47

stores the number of times the associated LBAs have been
accessed (read or written) during a predefined maintenance
period (e.g., one month). Users may use this information to
determine whether a particular group of LBAs contains
information that is used more or less often. Information used
often may be moved into a faster, higher cost memory.
Information not used very often may be moved into slower,
archival memory.

In operation, Forward Table 3201 operates as follows: an
LBA is received from a Host, e.g., LBA23. The LBA is
divided by 15, with the whole-number quotient used to
obtain an index into Forward Table 3201. For example, for
LBA23, dividing by 15 gives a quotient of “1,” meaning that
the physical address information for that LBA is found by
indexing one row into the Forward Table. This is the row
labeled LBA15-29 in FIG. 33.

The selected row identifies the Port at which the LBA
information is stored, and therefore the Flash HEMi and
Flash Group used to access the information. The selected
row further identifies the particular Bank at which the
information is stored, and therefore the CS signal used by
the selected Flash HEMi to select the information.

The selected row also identifies the Block in which the
information is found. Note that this is the same block on
each chip of the Bank.

Finally, the selected row identifies the Page in which the
information is found. For example, the row may identify
Page 1 of Block 1. (As should be understood, in this
example, the LBA would actually be stored in SuperPage 1
of Block 1.)

As is described above, each SuperPage includes fifteen
SPage Sectors, each of which can store contents relating to
a single LBA. Once the SuperPage has been identified from
Forward Table 3201, the actual SPage Sector in the Super-
Page is obtained by taking the remainder from the division
described above. In the example given, the remainder is
eight (23/15=1, remainder 8). The requested LBA informa-
tion would thus be found in the ninth PSector slot in each
selected Page (ninth, rather than eighth because the Table
begins with LBA 0).

FIG. 34 shows Reverse Table 3205. As is described
above, Data Path DRAM 107 contains one Reverse Table for
every Flash Memory Group.

As is described above, each Block consists of 64 Super-
Pages, each of which is made up of memory space from four
Pages, one from each Die in the Bank. As is also described
above, a SuperBlock consists of the same Block from each
Bank in the Group. For example, SuperBlock 0 of a par-
ticular Flash Group consists of all Block 0s from all Banks
in that Group.

Column 3401 represents SuperBlock(0), with rows for
SuperPages 0-63 of Bank 0, SuperPages 0-63 of Bank 1,
etc., with each group of 64 SuperPages on one Bank
representing a Block.

Each of the SuperPage rows in Table 3205 (e.g., Row
3402) contains an entry for the same SuperPage in every
SuperBlock (e.g., SuperPage 0 of SuperBlocks 0-n).

Each SuperPage field in Reverse Table 3205 contains a
single Valid bit. When set to “1,” the Valid bit indicates that
the SuperPage either contains currently valid, programmed
data (i.e., the SuperPage has been written with data that
remains valid), or has been erased and is available to be
written (i.e., contains a value of Oxffffffff, which is the
default state after an erase). When set to “0,” the Valid bit
indicates that the SuperPage contains invalid data, meaning
that it cannot be read from and is not available to be written
to. A SuperPage is invalidated when the LBAs stored on that

20

25

30

35

40

45

50

55

60

65

48

SuperPage are subjected to a later write. Because flash
memory does not allow direct overwrites, when an LBA on
a SuperPage is overwritten, the new data, plus any old data
that remains valid on the SuperPage, are copied to a new
SuperPage, and the old SuperPage is marked invalid, mean-
ing that it is no longer to be used (pending garbage collec-
tion, which is described below).

Thus, for example, a “1” in Field 3403 would indicate that
SuperPage 1 of Block 0 of Bank 0 of the Flash Group either
contains valid data or has been erased and is available for
writing, whereas a “0” in that field would indicate that the
data in SuperPage 1 of Block 0 of Bank 0 of the Flash Group
is invalid.

Reverse Table 3205 also contains a Count row. Each entry
in this row contains a number representing the total number
of SuperPages in the SuperBlock that are currently invalid.
Thus, Field 3404 stores a number representing the number
of currently invalid SuperPages in SuperBlock 0.

The Count can be calculated by adding up the number of
“0” Valid bits in the column. The Count is separately
maintained, however, as a performance optimization, since
maintaining the total count in a separate field avoids the
necessity for calculating this number when it is needed. The
Count is used for garbage collection purposes, in a manner
described in greater detail below.

Reverse Table 3205 also contains a Time Stamp row,
shown as Row 3405. This contains a Time Stamp indicating
the time when each SuperBlock was originally closed for
writing. This field’s uses include the rebuilding process,
which is described below in connection with FIG. 58.

Reverse Table 3205 also contains an Erase Count row,
shown as Row 3406. This contains a count of the number of
times the SuperBlock has been erased, and can be used, for
example, to prioritize SuperBlocks with higher erase counts
for garbage collection.

FIG. 35 illustrates SuperBlock Metadata Table 3501,
which contains metadata information relating to one Super-
Block. A SuperBlock Metadata Table is stored in SuperPage
0 of Bank 0 of each SuperBlock (e.g., the SuperBlock
Metadata Table for SuperBlock 0 of Port 0 is stored in
SuperPage 0 of Block 0 of Port 0). In addition, the Super-
Block Metadata Table for the SuperBlock that is currently
open for writing for each Flash Group is stored in Super-
Block Metadata Tables Block 3207 of DRAM 107.

SuperBlock Metadata Table 3501 contains one row for
each SuperPage in the SuperBlock, organized by Bank.
Thus, Row 3502 contains information for SuperPage 0 of
Bank 0. This is followed by Row 3503, which contains
information for SuperPage 1 of Bank 0, and on through
SuperPage 63 of Bank 0, followed by Row 3504, which
contains information for SuperPage 0 of Bank 1, and so on
until the last Bank (designated as Bank n in FIG. 35) is
reached.

SuperBlock Metadata Table 3501 stores three types of
metadata for each SuperPage: a SuperPage Time Stamp,
Defect Flag, and LBA.

SuperPage Time Stamp Column 3505 contains the time
when the SuperPage was written. This information is also
appended to the end of the SuperPage, and is used for
rebuilding purposes in the event of a loss of data, in a
manner described below.

Defect Flag Column 3510 contains a single bit indicating
whether the SuperPage has been marked as “defective.” A
SuperPage is identified as defective if any page from the
SuperPage is indicated as being defective during a flash read
or a write. If this occurs during a read, in one embodiment,
the SuperBlock is forced into garbage collection. If this

US 9,483,210 B2

49

occurs during a write, in one embodiment a different Super-
Page is used for the write. Either way, the Defect Flag is set.

LBA Column 3511 contains the LBA address of data
written into the SuperPage. As is explained above, each
SuperPage contains data from a group of 15 consecutive
LBAs. LBA Column 3511 identifies the first LBA in this
group.

SuperPage 0 of Bank 0 is a special case, since it contains
the SuperBlock Metadata Table for the SuperBlock, and
therefore does not hold data corresponding to any L.BAs. For
this reason, the LBA field associated with this SuperPage
does not contain LBA information.

SuperBlock Metadata Table 3501 also contains four fields
that are not specific to particular SuperPages, but contain
metadata relevant to the entire SuperBlock: SuperBlock
Time Stamp 3506, Erase Count Field 3507, Open Flag 3508
and Closed Flag 3509.

SuperBlock Time Stamp 3506 contains a time stamp
reflecting the time when the SuperBlock was closed for
writing. As is described below, this field is used for power
loss recovery.

Erase Count Field 3507 contains the number of times the
SuperBlock has been erased. As is described below, this field
may be used for wear leveling purposes.

Open Flag 3508 is set when the SuperBlock is opened for
writing.

Closed Flag 3509 is set when the SuperBlock is closed. As
is described below, the Open and Closed Flags are used for
power loss recovery.

When a SuperBlock is open for writing, its Metadata
Table is copied from flash into DRAM 107. As each Super-
Page is written, the LBA field corresponding to that Super-
Page is written with the appropriate LBA, and the SuperPage
Time Stamp entry in Column 3505 is written with the time
the SuperPage was written. Similarly, if a SuperPage is
discovered to be defective, the Defect field corresponding to
that SuperPage is filled in.

When a SuperBlock is closed, the associated SuperBlock
Metadata Table is written from DRAM 107 into SuperPage
0 of Block 0 of Bank 0 of the Flash Group containing the
SuperBlock, and is then overwritten in SuperBlock Meta-
data Tables Block 3207 by the SuperBlock Metadata Table
for the next SuperBlock to be opened.

The SuperBlock Metadata Table is written into flash on
three separate occasions:

1. When the SuperBlock is erased and placed on the
Freelist. At this point, the Metadata Table is written into
flash, though only the defect and erase count data are valid.

2. When the SuperBlock is opened. At this point, the table
is copied into the Stage Buffer. The Flash HEMi sets the
Open Flag and writes the table back into flash (though, as
should be understood, a copy remains in the Stage Buffer,
and only a portion of the Table needs to be written in flash).
This allows the open SuperBlock to be identified in the event
of an unanticipated power loss.

3. When the SuperBlock is closed. At this point, the
filled-in table is copied back into flash. Prior to that occur-
ring, the Flash HEMi sets the Closed Flag. These two flags
therefore indicate all possible states of a SuperBlock: free
(both Flags unset), open (Open Flag set, Closed Flag unset)
and closed (both flags set).

FIG. 36 illustrates IOP Data Buffer 3202. As is shown in
FIG. 32, IOP Data Buffer 3202 is stored in Data Path DRAM
107. This buffer is used to buffer data received by Data Path
DRAM 107 from Host Interface 310 or from Flash Memory
Module 108.

5

20

25

30

35

40

45

50

55

60

50

IOP Data Buffer 3202 contains one row for each IOP that
can be supported by SSD Controller 106 (in the currently
preferred embodiment, this is 60). Each row is large enough
to hold 315 SPage Sectors, which is the maximum amount
of data that can be returned for an IOP (7 Transfer
Requestsx3 Page Requestsx15 LBAs).

On a write operation, IOP Data Buffer 3202 holds data
received from a Host. On a read operation, the Data Buffer
holds data received from the Flash Memory. In either case,
the data is stored in LBA order. This makes it easier to
calculate the exact location for data relating to a particular
Transfer Request and a particular Page Request. For
example, data relating to the first Page Request of the first
Transfer Request issued by the IOP will always be found at
the beginning of that IOP’s entry in Data Buffer 3202 (the
first location for IOP(0) is shown as Location 3601). Data
relating to the second Page Request of the first Transfer
Request will always be found at an offset from the beginning
of that entry (e.g., Location 3602), the offset calculated
based on the number of LBAs to be transferred by the first
Page Request (note that, if the initial LBA of the transfer
falls within a SuperPage, the first Page Request will transfer
less than a full SuperPage).

Thus, IOP Data Buffer 3202 operates to isolate the data
flow to and from Hosts 101 and 102 from the fact that
Host-initiated read and write operations are divided into
Transfer Requests and Page Requests which may complete
at different times, or out of order. Despite the out-of-order
nature of the data transfers, IOP Data Buffer 3202 stores the
data in the LBA order expected by the Host.

On a Host-initiated read, IOP Data Buffer 3202 holds the
data returned by Transfer Requests until all of the requested
data are present, at which point the data are read out to the
Host Interface, in LBA order. On a Host-initiated write, IOP
Data Buffer 3202 holds the data received from the Host
(again in LBA order) until all of that data has been received,
at which point the data are transferred to the Flash Stage
Buffers. This mechanism allows SSD Controller 106 to
accept and transmit data to and from Hosts in the order
expected by the Hosts, even though the Host-initiated data
transfer operations are internally divided into much smaller
flash reads and writes, and also allows the Data Path DRAM
to operate at maximum speed despite the fact that other
elements in the Controller transfer data at slower rates.

B. Transaction Structures.

As is described above, SSD Controller 106 uses four types
of data structures to control read and write operations in
Flash Memory Module 108: CDBinfos, 10OPs, Transfer
Requests and Page Requests.

As is commonplace in systems based on the SCSI Pro-
tocol, a read or write is initiated by the receipt of a
Command Descriptor Block (“CDB”) from a Host (other
protocols include similar mechanisms, but CDBs will be
used for illustrative purposes). SSD Controller 106 stores
the CDB in a structure known as a CDBinfo. The controller
can handle a maximum of 144 CDBinfos at one time,
though, as is explained in greater detail below, 16 of these
are reserved for special purposes, so that 128 standard
Host-initiated read/write commands can be handled at one
time, though some of these may be “on hold” pending
availability of necessary resources.

SSD Controller 106 handles Host-initiated read and write
commands by dividing those commands into a hierarchy of
moves. The system begins by generating an IOP to handle
the CDBinfo. A total of 60 IOP’s may be active at one time.
Each IOP can issue seven Transfer Requests (though a
maximum of only 120 Transfer Requests can be active at one

US 9,483,210 B2

51

time), each of which can issue three Page Requests. Each
Page Request causes movement of a maximum of one
SuperPage of data and metadata (e.g., SuperPage 213). As is
explained above, each SuperPage stores Sector Contents
associated with 15 LBAs.

This architecture is designed to allow a single IOP to
handle most Host-initiated transfers that include 256 con-
secutive LBAs. As is explained below, depending on where
the first and last LBAs to be transferred fall within a
SuperPage, and where they fall within a data stripe, it is
possible that the first and/or last Page Request will only
transfer one LBA, and also possible that the first and/or last
Transfer Request will only transfer one SuperPage. Thus, in
certain circumstances, the first and/or last Transfer Request
in the sequence might actually transfer the Sector Contents
associated with only a single LBA. Thus, a single IOP is
capable of handling a minimum of 225 LBAs, and a maxi-
mum of 315. In practice, however, situations in which an
IOP can handle fewer than 256 LBAs are relatively rare, so
that in the current architecture a single IOP will almost
always be able to handle a transaction involving 256 LBAs.

The system can handle transfers of larger numbers of
LBAs, as is required by the SCSI Protocol, by repeatedly
invoking the same IOP. However, based on experience, the
inventors believe that 256 LBAs will be the largest move
actually encountered under normal operating conditions.
Note that each LBA corresponds to a standard hard drive
sector, and IDE drives generally are only able to transfer 256
sectors at a time. Given that existing Hosts are designed to
comply with this 256 sector limit, it is likely that a single
IOP will be able to handle the vast majority of Host-initiated
transfers encountered.

FIG. 37 illustrates the structure of an exemplary CDBinfo,
e.g., CDBinfo 201.

Self Pointer 3701 identifies the location of this particular
CDBinfo in CDBinfo Table 4109, which is described below
in connection with FIG. 41. This value is passed to other
data structures that need to identify this CDBinfo.

Self Pointer 3701 is used to call CDBinfo 201, and is
copied for that purpose by operations that wish to use the
CDBinfo. In addition, Self Pointer 3701 is used for error
checking At all times, Self Pointer 3701 should point to
CDBinfo 201. If it does not point to itself, this indicates that
an operation has overwritten the CDBinfo with incorrect
data. Note that this description is also true of Self-Pointers
contained in other types of data structures.

CDB Field 3702 contains a copy of the CDB (or similar
data structure) obtained from the Host. The format of a CDB
is specified by the Host protocol, but CDBs always contain
at least the command, the LBA for the data transfer, and the
transfer length.

Initiator Field 3703 contains a pointer to the Initiator entry
in Shared RAM Initiator Table 4108 (see FIG. 41) corre-
sponding to the Initiator responsible for the CDB. This
information is derived from metadata supplied by the Host
with the CDB. That metadata is compared to Initiator Table
4108. If a match is found, a pointer to the matched location
in Initiator Table 4108 is placed in the Initiator Field. If no
match is found, a new Initiator is popped off of Initiator
Freelist 4112 (see FIG. 41), the new Initiator is entered in
Table 4108, and the pointer to the new Initiator is placed in
Initiator Field 3703.

IOP Field 3704 points to the IOP generated to carry out
the transaction required by the CDBinfo.

SCSI Tag 3705 contains the SCSI (or Queue) Tag received
from the Initiator. As is understood in the field, the SCSI Tag
is part of the information received from an Initiator when a

20

25

30

35

40

45

50

55

60

65

52

connection is initially formed. This information must be
returned to the Initiator in any response to the CDB.

SCSI Flags 3706 contain flags required by the SCSI
Protocol.

Burst Length Control Field 3707 contains burst length
control information copied from Initiator Info Burst Length
Field 4204, which is described below in connection with
FIG. 42.

RefTag Field 3708 contains the RefTag (if any) received
in connection with the CDB, the use of which is explained
above.

AppTag Field 3709 contains the AppTag and the AppTag
Mask (if any) received in connection with the CDB, the use
of which are explained above.

FIG. 38 illustrates the internal structure of IOPs such as
IOP 202. As is described below, IOPs are stored in IOP Table
4110 of Shared RAM Block 318 (see FIG. 41, below), and,
when an IOP is in use by a HEMi, the IOP is also copied into
that HEMi’s mRAM.

In the currently preferred embodiment, each IOP is a
32-dword data structure containing the following fields:

Self Pointer 3801. This contains the address within Shared
RAM IOP Table 4110 (see below) at which this IOP is
located. This field is set at initialization. This is the only field
in the JOP that contains valid data when the IOP is on IOP
Freelist 4103 (see below).

Calling HEMi Field 3802 contains an identifier for the
HEMi that is currently operating on this IOP. This is the only
HEMi authorized to modify any data in IOP 202 (with the
exception of Abort Flag 3811, which is further described
below).

Host Port Field 3803 identifies the Host Port (0 or 1) at
which the original Host command that caused invocation of
the IOP was received. As is explained below, this is the Port
to which the IOP must be sent when the command is
complete.

Initiator Field 3804 contains a pointer to the Initiator entry
in Shared RAM Initiator Table 4108 (see below) correspond-
ing to the Initiator originally responsible for the CDB that
led to the invocation of this IOP.

CDBinfo Field 3805 contains a pointer to the CDBinfo in
Shared RAM CDBinfo Table 4109 (see below) that caused
this IOP to be called.

Command Field 3806 identifies the type of command the
IOP is designated to carry out. In one embodiment, IOPs are
only generated for Host read or write commands. In a
different embodiment, IOPs may also be generated for other
types of commands. In this embodiment, the IOP is trans-
mitted to ARM Processor 2002 for handling of non-read/
write commands.

Transfer Requests Allocated Field 3807 contains the num-
ber of Transfer Requests the IOP has allocated for the
current read or write operation. When the IOP is initialized
by a RdWr HEMi, that HEMi calculates the number of
Transfer Requests necessary to perform the read or write
command designated by the CDBinfo, and enters that num-
ber into this field. In the currently preferred embodiment,
this number is set to a maximum of seven.

Remaining Transfer Requests Field 3808 contains the
number of Transfer Requests allocated by the IOP that have
not yet completed. When the IOP is initially set up, this field
contains the same value as Transfer Requests Allocated
Field 3807. As each Transfer Request completes, Remaining
Transfer Requests Field 3808 is decremented.

Transfer Request Pointer Array 3809 contains an entry for
each Transfer Request allocated by the IOP. For each such
Transfer Request, Transfer Request Pointer Array 3809

US 9,483,210 B2

53

contains a pointer to the Flash HEMi that is handling the
Transfer Request, and a pointer to the Transfer Request
itself, in Transfer Request Table 4111 (see below). The
pointer to the Transfer Request is copied from the Transfer
Request’s Self Pointer (see below) when the Transfer
Request is popped off the Transfer Request Freelist 4104
(see below).

Transfer Request Pointer Array Field 3809 is used to
identify the Transfer Requests that should be returned to
Transfer Request Freelist 4104 when execution of the IOP is
complete. This field is also used to identify Transfer
Requests that should be aborted if IOP Abort Flag 3811 is
set. Abort operations are further described below.

State Variables Field 3810 contains information used to
track the state of the IOP, including information about
whether the command is complete, whether an error has
occurred, etc. This field also indicates whether the IOP is
new or ‘“re-entrant.” As is described above, if a CDB
requires a transfer of more data than can be handled by a
single IOP, the transfer is broken up into segments, and the
same IOP is called repeatedly to handle each segment. State
Variables Field 3810 tracks where the IOP is in this process.

Abort Flag 3811. This flag indicates that operation of the
1OP should be aborted. It is the only portion of the IOP that
can be written to by any HEMi other than the HEMi
identified in Calling HEMi Field 3802.

RefTag Field 3812 contains the RefTag, the use of which
is described above.

AppTag Field 3813 contains the AppTag Mask and the
AppTag, the use of which are described above.

FIG. 39 illustrates the internal structure of Transfer
Requests such as Transfer Request 203. At initialization, a
space consisting of 16 32-bit Dwords is allocated in Transfer
Request Table 4111 (see below) for each Transfer Request.
In the currently preferred embodiment, only 14 of these
Dwords are used. The additional two Dwords are reserved
for future expansion.

Transfer Requests are data structures that are created by
RdWr HEM1i’s and used by Flash HEMi’s. They contain the
following fields:

Self Pointer 3901. This identifies the location of this
particular Transfer Request in Transfer Request Table 4111
(see below). It is passed to other data structures that need to
identify this Transfer Request, e.g., Page Requests that are
required to identify the calling Transfer Request.

Calling IOP Field 3902. This contains the identification of
the IOP that caused this Transfer Request to be created, and
is taken from IOP Self Pointer 3801.

LBA Field 3903. This contains the starting LBA for the
transfer. For example, if the calling IOP requires a read from
LBAs 0-100, LBA Field 3903 for a first Transfer Request
would read “0”, LBA Field 3903 for a second Transfer
Request would read “45” and LBA Field 3903 for a third
Transfer Request would read “90” (as is explained above,
each Transfer Request can handle a maximum of 45 LBAs).

Transfer Length Field 3904. This contains the number of
LBAs to be transferred.

Data Path DRAM Pointer 3905. This contains a pointer to
the address in IOP Data Buffer 3202 to which data is to be
written or from which data is to be read for this Transfer
Request. As is explained above, IOP Data Buffer 3202 is
organized by IOP, and contains space for data read from
Flash Memory Module 108 or to be written to the Flash
Memory Module.

Abort Flag 3906. This flag indicates that operation of the
Transfer Request should be aborted. The Abort Flag is
checked by Transfer Requests prior to transferring data to

20

25

30

35

40

45

50

55

60

65

54
insure that data is not transferred for a command that has
been aborted. Abort handling is further described below.

Command Field 3907. This identifies the nature of the
required command. Possible states include Read, Write,
Format, Move and Erase.

State Variables 3908. These contain variables used to
track the current state of the Transfer Request. When a Flash
HEMi begins operation on a Transfer Request, it checks
these variables to determine what type of execution is
required. For example, a “Done” state variable tells the
Flash HEMi that the Transfer Request is finished, and that a
clean-up routine (described below) should commence.

RefTag Field 3909. This stores the RefTag for the first
Sector that is subject to the Transfer Request. This infor-
mation is taken from RefTag Field 3812 of the calling IOP,
though adjusted as necessary for Transfer Requests other
than the first Transfer Request called by the IOP.

AppTag Field 3910. This stores the AppTag and AppTag
Mask. This information is taken from AppTag Field 3813 of
the calling IOP.

Page Requests Allocated Field 3911 contains the number
of Page Requests that the Transfer Request has allocated for
the current read or write operation. In the currently preferred
embodiment, this number is set to a maximum of three.

Remaining Page Requests Field 3912 contains the num-
ber of Page Requests allocated by the Transfer Request that
have not yet completed. This field initially contains the same
value as Page Requests Allocated Field 3911. As each Page
Request completes, the Flash HEMi decrements Remaining
Page Requests Field 3912.

Page Request Pointer Array 3913. This field contains a
pointer to each Page Request allocated to handle the transfer
required by the Transfer Request.

Page Requests Allocated Field 3911, Remaining Page
Requests Field 3912 and Page Request Pointer Array Field
3913 are not included in Transfer Requests stored in Trans-
fer Request Table 4111 in Shared RAM (see below). Instead,
these fields are added to a Transfer Request when the
Transfer Request is stored in the mRAM of a Flash HEMi,
in a process explained in greater detail below.

FIG. 40 illustrates the structure of Page Requests such as
Page Request 210. Page Requests are stored in the mRAM
of Flash HEMi’s. When a Flash HEMi receives a Transfer
Request from a RdWr HEMi, the Flash HEMi sets up the
Page Request(s) necessary to carry out the Transfer Request,
and populates Transfer Request Page Request Pointer Array
3913 with information identifying those Page Requests.
Each Page Request includes the following fields:

Page Request Self Pointer 4001. This points to the loca-
tion of the Page Request in Page Request Table 2906 in the
mRAM of the Flash HEMi that holds the Page Request.

Calling Transfer Request 4002. This contains an identifier
for the Transfer Request that called this Page Request,
copied from Transfer Request Self Pointer 3901.

Command Field 4003, which is derived from Command
Field 3907 of the calling Transfer Request. Possible values
in this field include the following:

Read

Write

Read/Modify/Write

Erase

Note that the Read/Modify/Write state is set if Command
Field 3907 in the Transfer Request is a “write,” and Transfer
Length Field 4010 (see below) of the Page Request indicates
that the write is for less than a full page. As is explained
below, in this case a Read/Modify/Write is needed, because
a flash write occurs a full page at a time, and if the Page

US 9,483,210 B2

55

Request is to write less than a full SuperPage, the remainder
of the old SuperPage must be copied and written into the
new SuperPage.

Data Path DRAM Pointer Field 4004. This is derived
from Transfer Request DRAM Pointer Field 3905, but is
modified to reflect where the data relating to this particular
Page Request should be placed in or found in the DRAM
space allocated to the Transfer Request (e.g., data relating to
the first Page Request would be found at the beginning of the
Transfer Request space, data relating to the second Page
Request would be offset into the Transfer Request space,
etc.)

SPage Index Field 4005 stores the index into Forward
Table 3201 representing the LBA range being handled by
this Page Request. This information is generated based on
Transfer Request LBA Field 3903, modified as necessary to
reflect other Page Requests initiated as a result of the same
Transfer Request.

Flash Read Address Field 4006. This contains the address
in the Flash Memory Group at which a read is to occur, and
identifies that location by Bank, Block and Page. This
information is derived from Forward Table 3201. When a
Flash HEMi receives a Transfer Request, the Flash HEMi
uses the information in LBA Field 3903 from the Transfer
Request to find flash address information corresponding to
the LBA in Forward Table 3201. As is explained above, an
LBA is converted into a physical flash address by dividing
the LBA by fifteen to find a row in the Forward Table, and
using the remainder from the division to identify the physi-
cal location of the sector.

Flash Write Address Field 4007. This contains the Flash
Group address to be used for a write by the Page Request,
and is calculated based on the SuperPage to be used for the
write. The manner in which that SuperPage is chosen is
described below. The Page Request includes both a read
address and a write address field because a read-modify-
write requires both.

Head Length Field 4008. In cases of partial transfers in
which the transfer begins in the middle of a SuperPage, this
field holds the offset in LBAs between the beginning of the
SuperPage and the location where the transfer is supposed to
begin. This field is calculated by taking the LBA used to
determine the Flash Read Address or Flash Write Address
(see above) and dividing that LBA by 15. The remainder
from that division is used for the Head Length Field.

Tail Length Field 4009. In cases of partial transfers in
which the transfer ends in the middle of a SuperPage, this
field holds the offset in LBAs between the end of the
SuperPage and the location where the transfer is supposed to
end. This field is calculated by adding the value in Head
Length Field 4008 to the value in Transfer Length Field
4010, and subtracting the resulting value from “15.”

Transfer Length Field 4010. This specifies the length of
the transfer required of this Page Request. This information
is generated by the Flash HEMi based on Transfer Length
Field 3904 of the Transfer Request, and on the portion of the
transfer that this particular Page Request will be required to
handle. Note that Head Length Field 4008, Tail Length Field
4009 and Transfer Length Field 4010 will always add up to
the number of LBAs in a single SuperPage (in the current
embodiment, this is 15).

State Variables Field 4011. This field is made up of a
series of flags used to keep track of the current state of Page
Request 210. Examples of the use of State Variables are
described in connection with FIGS. 51 and 53. Multiple
flags may be set at the same time, though certain combina-
tions are illegal. In the currently preferred embodiment, this

20

25

30

35

40

45

50

55

60

65

56

field includes the following flags, though, as should be
understood, the exact flags used are implementation-depen-
dent, and differing sets of state flags could be used to obtain
the same results:

Command: this indicates that the Page Request is pre-
pared to issue a command to the Flash Memories.

Ready/Wait: this indicates that the Page Request is ready
to proceed and is waiting for resources to be available.

Need stage buffer: this indicates that the Page Request
needs the Flash Stage Buffer to proceed.

Flash transfer done: this indicates that the flash read or
write required by the Page Request is complete.

1%, 2% this indicates the current phase of the transaction.
For example, in a read/modify/write, the Page Request is
required to issue different commands to the Flash Memories
during different phases of the transaction. This field allows
the Page Request to keep track of where it is in that process.

Page Request done: this indicates that the Page Request
has completed all necessary operations.

Data Transfer error: this indicates that a transfer handled
by the Page Request resulted in an error.

RefTag Field 4012 stores the RefTag of the first sector of
data addressed by the Page Request. This information is
derived from RefTag Field 3909 of the calling Transfer
Request, though offset as necessary for Page Requests other
than the first Page Request called by the Transfer Request.

AppTag Field 4013 stores AppTag and AppTag Mask
information taken from AppTag Field 3910 of the calling
Transfer Request.

C. Shared RAM Structures.

FIG. 41 illustrates the information stored in Shared RAM
Block 318.

Shared RAM Block 318 contains two data structures
relating to Initiators: Initiator Freelist 4112 and Initiator
Table 4108.

In the current embodiment, SSD Controller 106 is capable
of responding to commands from sixteen simultaneously
active Initiators. Thus, Initiator Table 4108 contains sixteen
slots, each of which contains space for information related
to a single Initiator, indicated as Initiators 0-15, e.g., Initiator
Info Block 4101, which is further described below in con-
nection with FIG. 42. Although the SCSI Protocol requires
that SSD Controller 106 respond to at least sixteen active
Initiators, in an alternate embodiment, SSD Controller 106
could be designed to respond to a larger number of Initiators
than is required by the protocol, by increasing the size of
Initiator Table 4108 and Initiator Freelist 4112.

Initiator Freelist 4112 is a 16-deep FIFO queue that
contains pointers to empty slots in Initiator Table 4108.
When a new Initiator initially seeks to communicate with
SSD Controller 106, the pointer from the top of Initiator
Freelist 4112 is popped off the queue, and the slot in Initiator
Table 4108 referenced by that pointer (e.g., Slot 4101) is
used for storage of information about the new Initiator. If
Initiator Freelist 4112 is empty, this indicates that SSD
Controller 106 cannot handle any additional Initiators. SSD
Controller 106 may respond to this condition by providing
status information through Host Interface 310.

As should be understood, the manner in which Initiator
information is communicated to SSD Controller 106 is
protocol-specific. In general, however, this information is
communicated in a data structure that is provided before the
Initiator first begins initiating commands directed at the SSD
Controller. The information in that data structure is used to
populate that Initiator’s entry in Initiator Table 4108.

US 9,483,210 B2

57

Shared RAM Block 318 contains two data structures
relating to CDBinfos: CDBinfo Table 4109 and CDBinfo
Freelist 4102.

CDBinfo Table 4109 contains slots for 144 CDBinfos,
designated as CDBinfos 0-143. Each of these slots can store
a single CDBinfo, e.g., CDBinfo 201. Information stored in
a CDBinfo is described in connection with FIG. 37.

Freelist 4102 is a 144-deep FIFO queue that contains
pointers to empty slots in CDBinfo Table 4109. When a new
CDBinfo is required, a pointer is popped from the top of
Freelist 4102. The information for the new CDBinfo is then
written into the empty slot in CDBinfo Table 4109 pointed
to by the popped pointer. When processing of a CDBinfo is
completed, that CDBinfo is erased, and a pointer to the slot
containing that CDBinfo in CDBinfo Table 4109 is added to
Freelist 4102, thereby freeing up the space so that it can be
used for a new CDB.

The SCSI protocol requires that SSD Controller 106
guarantee the ability to handle CDBs under special circum-
stances, even if resources would not otherwise be available.
These requirements, which affect the manner in which
Freelist 4102 is controlled, are discussed in detail below in
connection with FIGS. 46 and 47.

Shared RAM Block 318 contains two data structures
relating to IOPs: IOP Table 4110 and IOP Freelist 4103.
These operate similarly to the corresponding CDBinfo struc-
tures. IOP Table 4110 contains a slot for each of the 60 IOPs
that SSD Controller 106 can handle at one time. The format
of the IOP information contained in each slot of IOP Table
4110 is described in connection with FIG. 38. IOP Freelist
4103 is a 60-deep FIFO queue that contains pointers to slots
in IOP Table 4110 that are free (not filled in with a valid
10P).

Shared RAM Block 318 contains two data structures
relating to Transfer Requests: Transfer Request Table 4111
and Transfer Request Freelist 4104. These operate similarly
to the corresponding IOP structures. Transfer Request Table
4111 contains a slot for each of the 120 Transfer Requests
that SSD Controller 106 can handle at one time. The format
of this information is described in connection with FIG. 39.
Transfer Request Freelist 4104 is a 120-deep FIFO queue
that contains pointers to slots in Transfer Request Table 4111
that are free (not filled in with a valid Transfer Request).

Shared RAM Block 318 also contains one Worklist for
each HEMi contained in SSD Controller 106. Although the
described embodiment includes 23 HEMi’s, each of which
has an associated Worklist in Shared RAM Block 318, FIG.
41 only shows three of these: 4105, 4106 and 4107. As
should be understood, the number of HEMi’s varies among
implementations, and Shared RAM Block 318 will always
contain one Worklist for each HEMi.

Each HEMi Worklist is a queue of tasks to be operated on
by the associated HEMi. In general, the HEMi Worklists
contain pointers to CDBlInfos in CDBInfo Table 4109, IOPs
in IOP Table 4110 and Transfer Requests in Transfer Request
Table 4111, and the presence of such a pointer on a HEMi
Worklist indicates that the associated HEMi is required to
perform processing tasks relating to the identified CDBinfo,
IOP or Transfer Request. HEMi’s communicate with each
other by placing pointers on HEMi Worklists.

In the current embodiment, the Worklists are FIFO’s, and
are controlled by FIFO Pointer Registers, as described in
connection with FIG. 24 (e.g., Pointer Registers 2205).
Tasks are popped off the Worklists in the order received,
with no attempt to prioritize specific tasks. In an alternate
embodiment, tasks are prioritized by, for example, including
a priority bit in an IOP. Transfer Requests invoked by an IOP

20

25

30

35

40

45

50

55

60

65

58

with the priority bit set may also include a priority bit. Such
high-priority Transfer Requests can be added to the top of
HEMi Worklists, instead of appended to the bottom, so that
such Transfer Requests become the next Transfer Request to
be handled by the HEMi, even if other Transfer Requests are
already on the Worklist.

Once a CDBinfo, IOP or Transfer Request is moved to a
HEMi Worklist, no other HEMi is able to modify that
structure (with the exception of abort-related information).

Shared RAM Block 318 also contains Global Variables
4113. These store variables used by HEMi’s in processing.

FIG. 42 illustrates the structure of the entries in Initiator
Table 4108. Each such entry (e.g., Initiator 0 4101) contains
an Initiator Self-Pointer Field (4201), which points to the
location of the Initiator in Table 4108.

Initiator Identifier Field 4202 contains information iden-
tifying this particular Initiator. This information is received
from the Host, and is used in communications between the
Host and SSD Controller 106, so that the Host can route
communications from SSD Controller 106 to the proper
Initiator. Initiator Identifier field 4202 is populated by the
Receive HEMi that receives the first request from a Host
indicating that a new Initiator has requested access to SSD
Controller 106 (the format of such requests is specific to
particular protocols, e.g., SAS, FCAL, etc., and is under-
stood by those of ordinary skill in the art). Upon receiving
such an indication, the Receive HEMi pops an Initiator off
Initiator Freelist 4112 and populates the Initiator Identifier
field with the identification information received from the
Host. In the currently preferred embodiment, the Initiator
Identifier includes a Worldwide Name received as part of the
Initiator’s Open frame.

Count Field 4203 contains the number of CDBs received
from this Initiator that have not yet completed. When a CDB
is received, the Receive HEMi identifies the Initiator and
increments Count Field 4203 for that Initiator. Count Field
4203 is decremented as part of the clean-up process when an
IOP finishes executing.

When Count Field 4203 reaches 0, this indicates that this
Initiator has no remaining commands in the system. At that
point, in one embodiment, the Initiator information is
erased, and the data structure is returned to Initiator Freelist
4112. In an alternate embodiment, Initiators are only
returned to the Freelist when the Freelist is empty and a new
Initiator is required.

Burst Length Field 4204 contains burst length control
information received from the Host as part of the metadata
received when the Initiator is initially set up. Burst length
control information, which is specified by the SCSI Proto-
col, is used to set the maximum length of a burst data
transfer. If a transfer to or from an Initiator would exceed the
maximum length, SSD Controller 106 must interrupt the
transfer, allow transfers to or from other Initiators to take
place, and then resume the transfer. This is handled by the
Transmit HEMi that is handling the transfer. After the limit
is reached, the Transmit HEMi disconnects the transfer and
then immediately attempts to reconnect.

V. Operation

A. Write Performance.

The primary performance bottleneck for a high-capacity
solid state drive is the interface to the flash memory. SSD
Controller 106 is therefore designed to maximize use of this
interface. It does so by breaking transactions up into rela-
tively small chunks, and executing the chunks with a high
degree of parallelism, with the intent of keeping the flash

US 9,483,210 B2

59

interface busy as much as is possible. Thus, Flash Memory
Module 108 contains a number of Flash Groups, each of
which has an independent interface to the rest of the system,
plus an associated Flash Port allowing each Flash Group to
operate independently and in parallel. Within each Flash
Group, memory is broken into Banks, each of which can
operate in parallel. Although only one Bank per Flash Group
can communicate with SSD Controller 106 at a time, small
portions of transactions are fed to multiple Banks, allowing
Banks to carry out internal flash operations while the flash
interface is used for other purposes. This, plus the use of
multiple buffers, allows transactions to complete far faster
than would be possible if reads or writes had to occur in
sequence.

Typical contemporary single-level cell flash memory
chips that operate at 40 MHz take approximately 200
microseconds to perform a page write operation. (As is
understood by those of ordinary skill in the art, a flash
memory write operation often involves a read-modify-
write.) In addition, it takes approximately 50 microseconds
to move a SuperPage of data from the Stage Buffer into the
Flash Chip Buffers. This means that a Flash Group can
pipeline five consecutive write operations to different Banks,
and thereby keep the flash interface completely occupied:
each write operation requires the bus for 50 microseconds,
and then operates internally for 200 microseconds, during
which four other write operations can use the bus. Thus, data
can be written to a complete stripe of 90 LBAs in 500
microseconds.

This is illustrated in FIG. 43, which contains a table
cross-referencing Banks 0-7 of one Flash Group and Time,
in 50 microsecond increments. This table shows a six-
SuperPage write to SuperPages on Banks 0-5, consisting of
90 LBAs.

In the first 50 microsecond period, Bank 0 uses the bus to
move a SuperPage of data from the Stage Buffer to the Bank
0 Flash Page Buffers. This is illustrated as an “M” in FIG.
43. In the next four 50 microsecond periods, the Flash Dies
on Bank 0 perform an internal write operation from their
Page Buffers to the flash memory (illustrated as a “W” in
FIG. 43).

Because Bank 0 does not need the bus after the initial
period, Bank 1 is able to move data from the Stage Buffer
to the Bank 1 Page Buffers during the second 50 microsec-
ond period (designated as Time 100). Bank 1 can then begin
the internal flash write operation, turning the bus over to
Bank 2. Writes to Banks 3, 4 and 5 proceed similarly.

As can be seen, this six-SuperPage write takes 500
microseconds. The flash bus is in use during 300 microsec-
onds of that period. Because the flash write operations can
occur in parallel to bus operations, a write that would take
1,500 microseconds if it occurred serially (6x250) is accom-
plished in approximately one-third the time.

In addition, after 300 microseconds, the flash bus is free,
thereby allowing other transactions to gain access to the bus
and thereby allowing multiple transactions to overlap.

FIG. 43 shows write operations, since the latency
involved in such operations is considerably higher than for
read operations, which take approximately 100 microsec-
onds (50 microseconds to read the data to the Flash Page
Buffers and 50 microseconds to move the data to the Stage
Buffer). Thus, the described architecture is designed to
maximize performance for writes, although it also tends to
increase performance for reads, though to a lesser extent,
given that it is only possible to overlap two read operations
on the same Flash Group (one reading from the flash, one
moving the data to the Stage Buffer).

20

25

30

35

40

45

50

55

60

65

60

Because this same degree of performance occurs in par-
allel on each Flash Port, and because data is striped across
the Flash Groups, large transactions can occur much more
rapidly than would be possible without the use of this
parallel pipelined architecture. Thus, in theory, a system
containing 12 Flash Groups could write 1080 LBAs (12x90)
in a 500 microsecond period. This theoretical maximum is
unlikely to be achieved often in the real world, since it
requires each of the writes to line up perfectly in terms of
Banks and Flash Groups. Nevertheless, as should be appar-
ent, the parallelism and pipelining of the described archi-
tecture masks flash-induced latencies and allows sequences
of reads and writes to be handled with considerably higher
performance than conventional hard drives or flash memory
devices.

Because the described architecture includes considerable
performance headroom beyond that which is necessary for a
system incorporating standard SLC flash chips, it can be
adapted for slower-speed MLC flash without major modi-
fication. As is understood in the art, MLC (“multi-level
cell”) flash stores two (or more) bits per flash cell. MLLC
chips are therefore cheaper for a given amount of storage.
However, MLC chips are slower on reads and writes.

FIG. 44 shows a 90 LBA write on a single Flash Group
made up of MLC flash chips that require 350 microseconds
for a page write (typical performance for MLC chips cur-
rently in the market). As can be seen, the entire write is
accomplished in 600 microseconds. Although this exceeds
the 500 microseconds shown in FIG. 43 for SLC devices, the
difference is only 100 microseconds for six complete page
writes despite the fact that ML.C chips take an additional 100
microseconds for each write. As before, this write can be
accomplished in parallel across multiple Flash Groups. This
parallelism is sufficient to largely mask the additional
latency of the MLC chips, such that the responsiveness of
the system across the Host interface will be completely
acceptable to the Host whether SL.C or MLC chips are used.
B. Read and Write Handling.

FIGS. 45A and 45B contain a flowchart that illustrates the
steps followed by a Host Port (e.g., Host Port 0 104) when
a Host-initiated write command is received. This flowchart
assumes that the initial frame received is a write and
proceeds on that basis. For this reason, numerous steps
required in an actual implementation (e.g., to determine if a
received command is a read or a write and branch accord-
ingly) are not illustrated.

In Step 4501, GigaBlaze 1801 receives a primitive from
the Host.

In Step 4502, GigaBlaze 1801 sends the primitive to
Primitive Match Logic 1802.

In Step 4503, the Primitive Match Logic identifies the
primitive as a Start of Frame (“SOF”) primitive, indicating
that it is followed by a frame. (As should be understood, this
description is conceptual in nature, and will not attempt to
describe the specific nature of the primitives received. As
should also be understood, the nature of the communications
depends to some extent on the specific protocol, and details
of'this process differ depending on the protocol being used.)

In Step 4504, under control of the register from Primitive
Match Control Registers 1903 that corresponds to the reg-
ister from Primitive Match Registers 1902 that matched the
received primitive, Frame Cracking Logic 1904 evaluates
the first double-word of the frame.

In Step 4505, the Frame Cracking Logic determines that
the frame is a command frame.

In Step 4506, Frame Router 1803, operating under control
of Primitive Match Logic 1802, routes the frame to Non-

US 9,483,210 B2

61
Data Payload FIFO 1804. This is done under the control of
the Primitive Match Control Registers and the Frame Crack-
ing Logic.

In Step 4507, the Receive HEMi for the Host Port (e.g.,
Receive HEMi 1702) pops the command frame from the
Header FIFO.

In Step 4508, the Receive HEMi evaluates the frame and
determines that it contains a CDB.

In Step 4509, as a result of determining that the frame
contains a CDB, the Receive HEMi generates a CDBinfo.

In Step 4510, the Receive HEMi sends the CDBinfo to
SCSI HEMi 2001.

In Step 4511, SCSI HEMi 2001 determines that the CDB
contains a write command.

In Step 4512, based on the determination that the CDB
contains a write command, SCSI HEMi 2001 sends the
CDBinfo to a RdWr HEMi.

In Step 4513, the RdAWr HEMi generates an IOP based on
the CDBinfo.

In Step 4514, the RdWr HEM i sends the IOP to a Transmit
HEMi (e.g., 1704).

In Step 4515, the Transmit HEMi generates a transfer
ready frame, designed to indicate to the Host that SSD
Controller 106 is now ready to receive data frames contain-
ing the data to be written.

In Step 4516, the Transmit HEMi sends the transfer ready
frame to GigaBlaze 1801.

In Step 4517, the GigaBlaze sends the transfer ready
frame to the Host.

In Step 4518, the GigaBlaze receives a primitive sent by
the Host in response to the transfer ready frame, which
signals the beginning of the first data frame.

In Step 4519, GigaBlaze 1801 sends the primitive to
Primitive Match Logic 1802.

In Step 4520, the Primitive Match Registers match the
primitive as an SOF.

In Step 4521, under control of the Primitive Match
Control Registers 1903, Frame Cracking Logic 1904 evalu-
ates the first double-word of the frame.

In Step 4522, the Frame Cracking Logic determines that
the frame is a data frame.

In Step 4523, Frame Router 1803, operating under control
of Primitive Match Logic 1802, routes the header portion of
the frame to Non-Data Payload FIFO 1804, and routes the
data portion of the frame to Receive Stage Buffer 1706. This
is done as a result of the initial match of the primitive in the
Primitive Match Control Registers, plus the identification of
the frame as a data frame. In this case, the Primitive Match
Control Registers cause the Routing Logic to route a set
number of double-words to the Non-Data Payload FIFO,
and then to route subsequent double-words to the Stage
Buffer.

In Step 4524, the Receive HEMi pops the header from the
Non-Data Payload FIFO.

In Step 4525, the Receive HEMi evaluates the header and
determines that it represents a data frame.

In Step 4526, the Receive HEMi checks the Target Port
Transfer Tag (“TPTT”) portion of the header. This field,
which is received with all frames, contains data that ties
together frames that are associated with a single transaction,
e.g., a command frame containing a write command and data
frames containing the data to be written. The TPTT infor-
mation is copied into IOPs created as a result of incoming
commands. The Receive HEMi uses this information to
associate the received data frame with the IOP created in
Step 4513.

20

25

30

35

40

45

50

55

60

65

62

In Step 4527, the Receive HEMi sets up a DMA transfer
of the data contained in the Receive Stage Buffer to a
location in Data Path DRAM 107 specified by the IOP. The
manner in which the write operation proceeds subsequently
is described below.

FIGS. 46A and 46B (hereinafter collectively called FIG.
46) contains a flowchart that illustrates the initial phases of
handling of a CDB by SSD Controller 106. This flowchart
illustrates this process from receipt of the CDB from the
Host through passing of the CDBinfo to a RdAWr HEMi.

As should be understood, and as is true of all flowcharts
used herein, FIG. 46 illustrates this process from an algo-
rithmic perspective and is not intended to describe imple-
mentation details nor specific software steps. Moreover,
ordering of certain of the steps is arbitrary, in the sense that
a later step does not depend on the results of an earlier step.
The manner in which such steps are ordered in an actual
embodiment is implementation dependent.

In Step 4601, Host 101 transmits a CDB through Physical
Interface 1701 to Receive HEMi 1702. As is described
above, the CDB is accompanied by metadata, including an
identification of the Initiator. Receive HEMi 1702 tempo-
rarily stores the CDB and metadata in its mRAM.

In Step 4602, Receive HEMi 1702 accesses Shared RAM
Block 318 through Crossbar Switch 2201 and checks
CDBinfo Freelist 4102 to determine if more than 16 CDBin-
fos are available.

If 16 or fewer are available (“no” outcome to Step 4602),
then processing proceeds to the flowchart illustrated in FIG.
47, which relates to special case handling discussed in
greater detail in connection with that Figure.

If more than 16 CDBinfos are available (“yes” outcome to
Step 4602), in Step 4603, Receive HEMi 1702 accesses
Shared RAM Block 318 through Crossbar Switch 2201 and
checks Initiator Table 4108 to see if the Initiator identified
in the metadata is already present. Note that this step is also
reached as one of the outcomes to the flowchart shown in
FIG. 47.

If the Initiator is not in Initiator Table 4108 (“no” outcome
to Step 4603), in Step 4604, Receive HEMi 1702 checks
Initiator Freelist 4112 to determine if a free Initiator is
available.

If no free Initiator is available (“no” outcome to Step
4604), in Step 4605, Receive HEMi 1702 invokes a queue
full routine. In the currently preferred embodiment, the
manner in which SSD Controller 106 handles this situation
is dependent on parameters that are settable by the user at
initialization. The user may decide that a queue full report
should be made in this situation, which has the effect of
causing the Initiator to retry the command until resources are
available. Alternatively, the user may decide to require a
“scrub” of Initiator Table 4108 to determine if the table
contains any Initiators that have a Count Field 4203 of zero,
meaning that they have no active commands. Such Initiators
may be scrubbed from the Table, thereby freeing up room for
the new Initiator. If a scrub opens up an Initiator, processing
can continue. Otherwise, a queue full report is made.

If a free Initiator is available (“yes” outcome to Step
4604), in Step 4606, Receive HEMi 1702 pops an Initiator
from Initiator Freelist 4112.

In Step 4607, Receive HEMi 1702 populates Initiator
Identifier Field 4202, using identification information
received in the metadata that accompanied the CDB.

In Step 4608, Receive HEMi 1702 adds one to Count
Field 4203 for the Initiator. This step is performed whether
the Initiator was already present in Initiator Table 4108
(“yes” outcome to Step 4603) or not (from Step 4607).

US 9,483,210 B2

63

In Step 4609, Receive HEMi 1702 pops the top CDBinfo
(e.g., CDBinfo 201) from CDBinfo Freelist 4102.

In Step 4610, Receive HEMi 1702 copies the CDBinfo
from CDBInfo Table 4109 into its own mRAM. Note that at
this point the CDBinfo is empty, with the exception of
Self-Pointer Field 3701.

In Step 4611, Receive HEMi 1702 populates the fields of
the CDBinfo as follows:

In CDB Field 3702 it places a copy of the CDB received
from Host 101.

In Initiator Field 3703 it places a copy of Self-Pointer
4201 from the entry for this Initiator in Initiator Table 4108.

In SCSI Tag Field 3705, SCSI Flags Field 3706, RefTag
Field 3708 and AppTag Field 3709 it places metadata
received from Host 101 in the transmission that included the
CDB. The nature of this metadata is described in connection
with FIG. 37.

In Burst Length Control Field 3707 it places a copy of the
information contained in Burst Length Control Field 4204 of
the Initiator Info associated with the Initiator identified in
Initiator Field 3703.

In Step 4612, Receive HEMi 1702 accesses Crossbar
Switch 2201 and copies the populated CDBinfo 201 into the
slot in CDBinfo Table 4109 pointed to by Self-Pointer Field
3701.

In Step 4613, Receive HEMi 1702 places a copy of
Self-Pointer Field 3701 in the Worklist for SCSI HEMi
2001.

If the Worklist for SCSI HEMi 2001 was previously
empty, placing the pointer into that Worklist wakes up the
SCSI HEMi. If other tasks were already present on the
Worklist, the SCST HEMi completes those tasks. Either way,
at some point the pointer to CDBinfo 201 is at the top of the
Worklist and, in Step 4614, SCSI HEMi 2001 uses Crossbar
Switch 2201 to access its Worklist and pop the pointer.

In Step 4615, SCSI HEMi 2001 uses Crossbar Switch
2201 to access the location of CDBinfo 201 in CDBinfo
Table 4109, and copies that CDBinfo into its own mRAM.

In Step 4616, SCSI HEMi 2001 reads the Command
portion of the CDB from CDB Field 3702 of CDBinfo 201
to determine if it is a data transfer (read or write).

If the Command is other than a read or a write (“no”
outcome to Step 4616), in Step 4617, SCSI HEMi 2001
passes the CDBinfo to ARM Processor 2002, which is
responsible for handling commands other than reads or
writes. At that point, the process described in FIG. 46 ends.

If the Command is a read or a write (“yes” outcome to
Step 4616), in Step 4618, SCSI HEMi 2001 compares the
LBA and Transfer Length fields of the CDB stored in CDB
Field 3702 of CDBinfo 201 to Command Table 2003, which,
as is described above, is stored in the mRAM of SCSI HEMi
2001. By this comparison, SCSI HEMi 2001 determines
whether any of the LBAs required to be transferred by the
CDB are already identified in the Command Table. A match
indicates that some or all of the LBAs that are the subject of
the new CDB are already the subject of an existing transfer.
As is described above, SSD Controller 106 is required to
maintain coherency, so that LBAs are not subject to incon-
sistent commands.

It SCST HEMi 2001 finds a Command Table match (“yes”
outcome to Step 4618), in Step 4619 it stalls execution of the
CDBinfo and returns to Step 4618. This loop continues until
a match no longer exists.

It no match is found (“no” outcome to Step 4618), in Step
4620, SCSI HEMi 2001 places the LBA and Transfer Length
from CDB Field 3702 into Command Table 2003.

20

25

30

35

40

45

50

55

60

65

64

In Step 4621, SCSI HEMi 2001 accesses the Count
Register for each of the RdAWr HEMi Worklists (e.g., Count
Register 2408) in order to determine which of those
Worklists contains the fewest tasks.

In Step 4622, SCSI HEMi 2001 places a pointer to
CDBinfo 201 on the identified Worklist, e.g., the Worklist
for RdAWr HEMi 2101, and the process described in FIG. 46
completes.

Note that the Initiator-related steps that follow Step 4602
and precede Step 4609 are only necessary for protocols that
allow more than one Initiator (e.g., SAS and Fibre Channel).
For protocols that only allow a single Initiator (e.g., SATA),
these steps are unnecessary. Instead, for SATA-based sys-
tems, Controller 106 sets up an Initiator when the initial Set
Features command is received. As is understood in the art,
the Set Features command includes the burst length infor-
mation needed for Burst Length Field 4204. After the
Initiator is set up, processing of CDB’s proceeds as shown
in FIG. 46, though, as should be understood, the answer to
Step 4603 is always “yes,” and processing proceeds to Step
4608 (which is unnecessary but harmless) and then to Step
4609. This allows for the use of a common code base for
SATA, SAS and Fibre Channel.

In an alternate embodiment, a slightly different code base
is used for SATA systems, with no Initiator at all. In such an
embodiment, the FIG. 46 processing would skip from Step
4602 to Step 4609. In yet another embodiment, a variable is
set based on the protocol being used, and processing skips
from 4602 to 4609 if that variable identifies the SATA
protocol.

As is described above, if 16 or fewer CDBinfos are
available on CDBinfo Freelist 4102 when a CDB is
received, a special handling routine is invoked. Two special
cases must be checked for, and handled, if they exist.

First, SSD Controller 106 is required by the SCSI Proto-
col to guarantee that at least one CDB can be handled after
SSD Controller 106 has reported that it is out of resources.
This capability is generally intended to allow a Host to issue
a Request Sense CDB asking for information about an error
condition, though the Protocol requires that the Controller
respond correctly to any CDB issued under these circum-
stances.

A second special case exists if customer requirements
mandate that SSD Controller 106 be able to support sixteen
active Initiators at the same time, meaning that it must be
able to support at least one active CDB for each possible
Initiator up to sixteen.

This customer requirement means that, if there are fewer
than sixteen currently active Initiators, SSD Controller 106
must maintain enough CDBinfos in reserve to allocate one
CDBinfo to each additional Initiator that may become active
(up to sixteen). Note that this feature is implementation-
dependent, since certain customers may not require it. In one
embodiment, the feature is enabled by a variable set at
initialization. In another embodiment, slightly different code
bases are used for systems requiring this feature and those
that do not.

In one embodiment, both of these special cases may be
handled as is shown in FIG. 47. Note that these steps are
carried out by a Receive HEMi, following a “no” outcome
to Step 4602 in FIG. 46.

In Step 4701, CDBinfo Freelist 4102 is examined to
determine if there are any free CDBinfos.

If no free CDBinfos exist (“no” outcome to Step 4701),
processing proceeds to Step 4702, which invokes a queue

US 9,483,210 B2

65

full routine. Although the details depend on the protocol
being used, in general this involves returning a queue full
message to the Host.

If there are free CDBinfos (“yes” outcome to Step 4701),
in Step 4703, Freelist 4102 is examined to determine if there
is only a single free CDBinfo on the Freelist.

If there is only one CDBinfo on the Freelist (“yes”
outcome to Step 4703), in Step 4704 a Reserve Flag is
checked. This flag is set to “0” on initialization, and is also
set to “0” whenever a CDBinfo is added to Freelist 4102.
The Reserve Flag indicates whether the current CDB has the
right to use the last CDBinfo on the Freelist. As is described
above, the SCSI Protocol requires that one additional CDB
be accepted after a queue full is returned, meaning that if
only one CDBinfo remains on the Freelist, the first CDB
must trigger a queue full indication, and the second CDB is
allowed to use the CDBinfo.

If'the Reserve Flag is not set (“no” outcome to Step 4704),
in Step 4705, the Reserve Flag is set. Processing then
continues to Step 4702, which initiates a queue full routine.

If the Reserve Flag is set (“yes” outcome to Step 4704),
in Step 4706 processing returns to FIG. 46, Step 4603,
following which the reserve CDBinfo will be assigned to the
CDB.

If the number of free CDBinfos on Freelist 4102 is greater
than one (“no” outcome to Step 4703) processing proceeds
to Step 4707, in which Count Field 4203 of the Initiator
responsible for the CDB is evaluated to determine if this
Initiator already has at least one current CDB (Count
Field=1).

If the Initiator does not have any active CDBs (or if this
is a new Initiator) (“no” outcome to Step 4707), then
processing proceeds to Step 4706 and from there to FIG. 46,
Step 4603, following which a CDBinfo will be popped for
this Initiator, since the system guarantees that the Initiator
will be allowed at least one active CDB.

If the Initiator already has active CDBs (“yes” outcome to
Step 4707), then the system is not required to guarantee a
CDB to the Initiator, and processing proceeds to Step 4708,
in which the number of entries in Initiator Table 4108 that
have a Count Field 4203 with a value of at least one is placed
in a variable called “Varl.” This number represents the
number of currently active Initiators each of which has at
least one active command.

In Step 4709, Varl is subtracted from 16, and the result is
placed in a variable called “Var2.” This represents the
number of additional Initiators that must be guaranteed a
CDBinfo.

In Step 4710, the number of entries on Freelist 4102 is
compared to Var2. If the number of free CDBinfos is at least
two greater than Var2 (“yes” outcome from Step 4710), then
processing proceeds to Step 4706, and from there to FIG. 46,
Step 4603, following which a CDBinfo is popped, since
enough CDBinfos are available to meet the guarantee.

If the number of free CDBinfos is less than two greater
than Var2 (“no” outcome to Step 4710), then in Step 4702
the system reports queue full. This is necessary because
enough free CDBinfo’s must be maintained to allow future
servicing of the number of Initiators represented by Var2,
plus one additional CDBinfo that has to remain in reserve.

Thus, the flowchart shown in FIG. 47 checks for the two
special cases described above.

FIGS. 48A-48D (hereinafter collectively called FIG. 48)
contain a flowchart illustrating the manner in which 1OPs
and Transfer Requests are set up based on a CDBinfo.

20

25

30

35

40

45

50

55

60

65

66

In Step 4801, a RdWr HEMi (e.g., RdAWr HEMi 2101)
uses Crossbar Switch 2201 to access its Worklist and pops
the pointer to a CDBinfo (e.g., CDBinfo 201).

In Step 4802, RdWr HEMi 2101 uses Crossbar Switch
2201 to access the location in CDBinfo Table 4109 corre-
sponding to the pointer and finds CDBinfo 201 at that
location. RAWr HEMi 2101 copies CDBinfo 201 into its
mRAM.

In Step 4803, RAWr HEMi 2101 determines if any IOPs
are present on IOP Freelist 4103.

If no IOPs are present on the Freelist (“no” outcome to
Step 4803), in Step 4804 RdWr HEMi 2101 waits for an IOP
to finish executing, then restarts processing once a free IOP
is present on the Freelist.

If IOPs are present on the Freelist (“yes” outcome to Step
4803), in Step 4805, RdWr HEMi 2101 uses Crossbar
Switch 2201 to access Shared RAM, and determines if
enough Transfer Requests are present on Transfer Request
Freelist 4104 to handle the number of Transfer Requests
required by the IOP.

If insufficient Transfer Requests are present on the Freelist
(“no” outcome to Step 4805), in Step 4806 RdWr HEMi
2101 waits for Transfer Requests to free up, then proceeds
to Step 4807.

If Transfer Requests are present on the Freelist (“yes”
outcome to Step 4805), in Step 4807 RdWr HEMi 2101 pops
the top IOP pointer off the Freelist. This pointer is copied
into IOP Field 3704 of the CDBinfo.

In Step 4808, RdAWr HEMi 2101 copies the IOP pointed
to by the top pointer on the Freelist (e.g., IOP 202) from IOP
Table 4110 into its mRAM. At this point, the only informa-
tion contained in the IOP is Self-Pointer 3801.

In Step 4809, RdWr HEMi 2101 copies the Transfer
Length value from CDB Field 3702 from the CDBinfo into
a variable named “TLvar.” This variable stores the current
transfer length throughout the rest of the described algo-
rithm. (As should be understood, in this and other cases, this
description is conceptual in nature, and a real implementa-
tion may or may not include a variable with this name.)

In Step 4810, RAWr HEMi 2101 copies the LBA value
from CDB Field 3702 from the CDBinfo into a variable
named “LBAvar.” This variable stores the LBA at which the
current transfer is to begin throughout the rest of the
described algorithm.

In Step 4811, RdAWr HEMi 2101 populates IOP 202 as
follows:

In Calling HEMi Field 3802 it places its own identifier.

In CDBinfo Field 3805 it places the CDBinfo pointer it
earlier popped off of its Worklist.

In Initiator Field 3804 it places the Initiator pointer taken
from Initiator Field 3703 of CDBinfo 201.

It sets State Variables Field 3810 to indicate the current
status of the IOP.

It zeroes out Abort Flag 3811.

In RefTag Field 3812 and AppTag Field 3813 it copies the
contents of RefTag Field 3708 and AppTag Field 3709 of
CDBinfo 201.

In Step 4812, RdWr HEMi 2101 pops the top Transfer
Request pointer off the Freelist.

In Step 4813, RdWr HEMi 2101 copies the Transfer
Request pointed to by the top pointer on the Freelist from
Transfer Request Table 4111 into its mRAM. At this point,
the only information contained in the Transfer Request is
Self-Pointer 3901.

In Step 4814, RdWr HEMi 2101 increments IOP Transfer
Requests Allocated Field 3807 to reflect the new Transfer
Request.

US 9,483,210 B2

67

In Step 4815, RAWr HEMi 2101 increments IOP Remain-
ing Transfer Requests Field 3808 to reflect the new Transfer
Request.

In Step 4816, RdAWr HEMi 2101 copies Transfer Request
Self-Pointer 3901 into IOP Transfer Request Pointer Array
3809.

In Step 4817, RdWr HEMi 2101 copies the value from
LBAvar into Transfer Request LBA Field 3903. This is the
location that will be used by the Transfer Request for the
beginning of the transfer.

In Step 4818, RdWr HEMi 2101 populates Transfer
Request DRAM Pointer Field 3905 with a value calculated
by subtracting TLvar from IOP Transfer Length and adding
the result to a pointer to the space in IOP Data Buffer 3202
that is devoted to this IOP. This result indicates where in the
I0P’s DRAM space the data relating to this Transfer
Request will be stored. This value will increase for each
succeeding Transfer Request by an amount equal to the size
of the transfer handled by the immediately preceding Trans-
fer Request.

In Step 4819, RdWr HEMi 2101 populates certain Trans-
fer Request Fields as follows:

In Calling IOP Field 3902 it places the pointer to the IOP
that it popped off IOP Freelist 4103.

In LBA Field 3903 it places a copy of the value currently
in LBAvar, indicating the starting LBA for the transfer.

Abort Flag 3906 is cleared.

In Command Field 3907 it places the type of command
required. In this example, that command is a read.

RefTag Field 3909 and AppTag Field 3910 are populated
with information taken from Fields 3812 and 3813 of IOP
202.

In Step 4820, the RdWr HEMi divides the Transfer
Request LBA value by 15 and places the quotient into a
variable titled “Index.”

In Step 4821, the RdAWr HEMi uses Index to perform a
lookup in Forward Table 3201. This lookup yields the row
corresponding to the SuperPage containing the LBA iden-
tified in the Transfer Request LBA Field. The Port Field
from that row is placed into a variable titled “Port A.”

In Step 4822, the value in TLVar is copied into a variable
titled “TLTemp.”

In Step 4823, a variable titled “Page” is initialized to a
value of 1. As is described above, each Transfer Request can
handle a maximum of three SuperPages, each of which can
handle a block of 15 LBAs. This variable keeps track of the
number of such LBA blocks allocated to this Transfer
Request.

In Step 4824, the remainder from the division performed
in Step 4820 is subtracted from 15, and the result is placed
in a variable titled “Offset.” As is described above, each
SuperPage contains 15 LBAs, and the first LBA in a transfer
may be offset into the middle of the SuperPage. As is also
described above, each Transfer Request can initiate three
Page Requests, each of which can handle a single Super-
Page. As a result, if the first LBA is offset into a SuperPage,
one of the Page Requests issued by the Transfer Request will
handle fewer than fifteen LBAs. Step 4824 deals with this
case.

In Step 4825, the value in Offset is compared to the value
in T Temp.

If Offset is greater than or equal to TLTemp (“yes”
outcome to Step 4825), this means that the transfer will
complete in the LBA range that can be handled by the
Transfer Request.

In Step 4826, the value in TLTemp is written into the
Transfer Request Transfer Length Field 3904.

20

25

30

35

40

45

50

55

60

65

68

In Step 4827, the Transfer Request is placed on the
Worklist for the Flash HEMi responsible for the Port iden-
tified in the Port A variable. Processing then ends, since all
Transfer Requests necessary for the IOP have been allo-
cated.

If TLTemp is greater than Offset, (“no” outcome to Step
4825), in Step 4828, TLTemp is evaluated to determine if it
is less than or equal to 15.

If TL.Temp is less than or equal to 15 (“yes” outcome to
Step 4828), this means that the transfer will complete with
this Transfer Request, and processing continues to Step
4826, which proceeds as described above.

If TLTemp is greater than 15 (“no” outcome to Step 4828),
in Step 4829 Offset is subtracted from TLTemp, and the
result is stored back into TLTemp. This step repeatedly
decrements TLTemp to reflect the LBAs that are to be
assigned to the Transfer Request currently being set up. That
value is then used to calculate the Transfer Request Transfer
Length Field.

In Step 4830, the value in the variable Index is incre-
mented.

In Step 4831, a Forward Table lookup is performed based
on the new Index value. As should be understood, this yields
the row after the row provided by the previous lookup, and
therefore the next block of 15 LBAs. The Port value from
that row is written into a variable titled “Port B.” This
represents the SuperPage storing that next block of LBAs.

In Step 4832, Port A and Port B are compared. If they are
equal (“yes” outcome to Step 4832), this means that the
SuperPage containing the next block of 15 LBAs is stored in
the same Flash Group as the previous SuperPage. This
means that the current Transfer Request can, in theory,
handle the next block of LBAs.

In Step 4833, the Page variable is compared to 3. If the
Page variable is less than 3 (“no” outcome to Step 4833), this
means that the Transfer Request can handle an additional
block of 15 LBAs, so processing proceeds to set up the next
iteration through the Transfer Request loop.

In Step 4834, the Page variable is incremented to reflect
the fact that a new block of LBAs will be allocated to the
Transfer Request in the next loop.

In Step 4835, the value 15 is written into the Offset
variable. No offset is required for any SuperPage after the
first SuperPage, since LBA ranges for the next two Super-
Pages will begin at an even multiple of 15. This is handled
by setting Offset to 15, for purposes of the calculation in
Step 4825, and for purposes of decrementing TL.Temp in
Step 4829. Processing then loops to Step 4825, and proceeds
for the next block of LBAs.

If the value in Port B is different than the value in Port A
(“no” outcome to Step 4832), this means that the next block
of LBAs is on a different Port than the previous block
assigned to the Transfer Request. Since a Transfer Request
can only operate on LBAs in one Flash Group, the current
Transfer Request must end at this point. Similarly, the
Transfer Request must also end if the Page variable equals
three (“yes” outcome to Step 4833), since this means that the
Transfer Request has already been assigned three Super-
Pages worth of LBAs.

In either case, processing proceeds to Step 4836, in which
TLTemp is subtracted from TLVar, and the result, which
contains the number of LLBAs assigned to the Transfer
Request, is stored in Transfer Request Transfer Length Field
3904.

In Step 4837, the Transfer Request is appended to the
Worklist for the Flash HEMi assigned to the Flash Group
associated with the Port identified in the Port A variable.

US 9,483,210 B2

69

In Step 4838, the value of TL.Temp is stored in TL.Var. This
sets up TLVar for use in generating the next Transfer
Request.

In Step 4839, LBAVar is added to the value in the Transfer
Request Transfer Length Field, and the result is stored back
into LBAVar. This sets up LBAVar for use in generating the
next Transfer Request.

In Step 4840, the RAWr HEMIi analyzes the IOP Transfer
Requests Allocated Field 3807 to see if it equals “7.”

If seven Transfer Requests have been allocated (“yes”
outcome to Step 4840), the IOP cannot allocate any further
Transfer Requests. As is described above, this case is
handled by allowing the IOP to complete, and then reissuing
the IOP with LBA and Transfer Length values modified as
a result of the previous execution of the IOP. Thus, in Step
4841, the first iteration of the IOP completes, at which point
processing loops to Step 4811, at which the IOP Fields are
populated for the next execution of the IOP.

If fewer than seven Transfer Requests have been allocated
(“no” outcome to Step 4840), processing loops back to Step
4812 and begins the process of issuing the next Transfer
Request. Note that the new Transfer Request will obtain
LBA and Transfer Length values that have been adjusted
based on the immediately preceding Transfer Request.

FIGS. 49A and 49B (hereinafter collectively called FIG.
49) illustrate the manner in which a Flash HEMi (e.g., Flash
HEMi 307) sets up Page Requests for a read or write
operation, based on a Transfer Request that is present on the
Flash HEMi’s Worklist.

In Step 4901, Flash HEMi 307 checks its Local Transfer
Request Freelist 2905 to determine if Local Transfer
Request Table 2901 contains at least one free slot.

If not (“no” outcome from Step 4901), in Step 4902, Flash
HEMi 307 waits, and then returns to Step 4901. This wait
may be for a specified period, or may be until other tasks
have finished executing.

Once free local Transfer Requests are available, (“yes”
outcome from Step 4901), in Step 4903 Flash HEMi 307
uses Crossbar Switch 2201 to access its Worklist and pops
the Transfer Request from the Worklist.

In Step 4904, Flash HEMi 307 pops the pointer to the next
free local Transfer Request from Local Transfer Request
Freelist 2905.

In Step 4905, Flash HEMi 307 uses Crossbar Switch 2201
to access Transfer Request Table 4111 in Shared RAM Block
318 and copies the Transfer Request pointed to by the
Worklist from that Table into the Slot from Local Transfer
Request Table 2901 pointed to by the pointer popped off of
Local Transfer Request Freelist 2905.

In Step 4906, the value from Transfer Request LBA Field
3903 is copied into a variable known as LBAvar.

In Step 4907, the value from Transfer Request Transfer
Length Field 3904 is copied into a variable known as TLvar.

In Step 4908, the value from Transfer Request Data Path
DRAM Pointer Field 3905 is copied into a variable known
as DPvar.

In Step 4909, the Flash HEMi pops a Page Request from
its Page Request Freelist 2910. Note that no check is needed
to determine if a free Page Request exists, since the mRAM
of Flash HEMi 307 contains eighteen Page Requests, which
is the maximum that can be required by the six local Transfer
Requests that Flash HEMi 307 can handle at one time.

In Step 4910, the value in LBAvar is divided by 15.

In Step 4911, the result from Step 4910 is used as an offset
into Forward Table 3201.

This lookup results in Bank, Block and Page address
information for the location of the LBA in Flash Memory.

20

25

30

35

40

45

50

55

60

65

70

Note that the Port information from the Forward Table is
unnecessary, since that information was used in the FIG. 48
flowchart to send the Transfer Request to this Flash HEMi,
which only controls a single Port.

In Step 4912, the Bank, Block and Page address infor-
mation from the Forward Table lookup is stored in Page
Request Flash Read Address Field 4006. Note that the read
address is needed for write operations that write to less than
a full page, since such write operations require a read-
modify-write. In the case of a Page Request write with a
Transfer Length of 15, indicating that a full page is to be
written, Steps 4910-4913 are skipped.

In Step 4913, the remainder from Step 4910 is copied into
Head Length Field 4008. This represents the offset into the
SuperPage, if any, at which the transfer is to begin.

In Step 4914, the value from DPvar is copied into Data
Path DRAM Pointer Field 4004. This indicates the location
in Data Path DRAM 107 from which the Page Request is to
read data, or to which the Data Request is to write data.

In Step 4915, other Page Request fields are populated,
based on the Transfer Request. These fields are described
above, in connection with FIG. 40. Those fields are popu-
lated as follows:

Calling Transfer Request Field 4002 is filled in with the
pointer to the calling local Transfer Request (the value
popped off of Local Transfer Request Freelist 2905).

Command Field 4003 is filled in based on Command
Field 3907 of the Transfer Request. In the case of a Transfer
Request write, the Command Field is filled in with a plain
write if the write covers the entire 15 LBAs of a SuperPage
(Transfer Length=15), or with a read-modify-write if the
write covers less than a complete SuperPage.

If Command Field 4003 identifies the transaction as a
write or a read-modify-write, Flash Write Address Field
4007 is filled in with the physical address of the SuperPage
to be written. The manner in which that SuperPage is
identified is described in connection with FIG. 54.

State Variable Field 4011 is also initialized in Step 4915.

In Step 4916, TLvar is compared to the value “15.”

If TLvar is less than or equal to 15 (“yes” result from Step
4916), this means the current Page Request represents the
last Page Request required by the Transfer Request.

In Step 4917, Tail Length Field 4009 is set to 15—(TLvar+
Head Length). This represents a partial transfer that does not
include LBAs at the end of a SuperPage. Note that the Tail
Length Field is set to O for all Page Requests other than the
last Page Request for a Transfer Request.

In Step 4918, Transfer Length Field 4010 is set to TLvar.

In Step 4919, a pointer to the Page Request is placed onto
Page Request Pointer Array 3913 of the Transfer Request.

In Step 4920, each pointer from Page Request Pointer
Array 3913 is copied onto the Queue in Bank Queues 2911
corresponding to the Bank obtained in the lookup in Step
4911.

In Step 4921, the Transfer Request “Done” variable is set
in Transfer Request State Variables 3908 for the calling
Transfer Request. This variable will be checked the next
time the Transfer Request is popped off Local Transfer
Request Queue 2904, and will indicate the need for a
clean-up routine.

The process described in FIG. 49 then ends.

If TLvar is greater than 15 (“no result from Step 4916),
this means the current Page Request is not the last Page
Request for the Transfer Request. In Step 4922, Tail Length
Field 4009 is set to “0.”

In Step 4923, Page Request Transfer Length Field 4010 is
set to 15 minus the value placed in Head Length Field 4008.

US 9,483,210 B2

71

This represents the offset into the SuperPage for a transfer
that does not begin at the beginning of a SuperPage.

In Step 4924, a pointer to the Page Request is placed onto
Page Request Pointer Array 3913 of the Transfer Request.

In Step 4925, 15 is subtracted from TLvar.

In Step 4926, the value from Transfer Length Field 4010
is added to LBAvar.

In Step 4927, the value from Transfer Length Field 4010
is added to DPVar. Processing then loops back to Step 4909,
for a new Page Request.

This loop continues until the last Page Request required
by the Transfer Request has been transferred onto the Bank
Queues.

FIGS. 50A and 50B (hereinafter collectively called FIG.
50) illustrate the Flash HEMi execute loop. This loop
handles execution of Transfer Requests and Page Requests.

In Step 5001, the Flash HEMi checks the Flash Port to
determine if it’s free (i.e., not currently in use for a transfer
to or from the Flash Group).

If the Flash Port is not free (“no” outcome to Step 5001),
the Page Request handlers cannot operate. In Step 5002, the
Flash HEMi checks to determine if any Transfer Requests
are present on Local Transfer Request Queue 2904.

If the Queue contains Local Transfer Requests (“yes”
outcome to Step 5002), in Step 5003 the Flash HEMi
handles the Local Transfer Request on the top of the Queue.

Following Step 5003, or if the Queue contains no Local
Transfer Requests (“no” outcome to Step 5002), in Step
5004, the Flash HEMi checks to see if any Transfer Requests
are present on the Flash HEMi’s Worklist (e.g., Worklist
4107).

If the Worklist contains a pointer to a Transfer Request
(“yes” outcome to Step 5004), in Step 5005, the Flash HEMi
checks to see if Local Transfer Request Freelist 2905
contains any free Local Transfer Requests.

If Local Transfer Requests are available (“yes” outcome
to Step 5005), in Step 5006, the Flash HEMi handles the
Transfer Request on the top of the Worklist, which involves
copying the Transfer Request into the Flash HEMi’s mRAM
and generating Page Requests (see FIG. 49).

Following Step 5006, or if there are no Transfer Requests
on the Worklist (“no” outcome to Step 5004) or if there are
no free Local Transfer Requests (“no” outcome to Step
5005), in Step 5007 the Flash HEMi checks its current state
to determine whether it needs to go into sleep mode. For
example, if Step 5007 has been reached as a result of a “no”
outcome to Steps 5001, 5002 and 5004, then the Flash HEMi
cannot operate on any Page Requests or Transfer Requests
and therefore will go into sleep mode. As is explained above,
by going into sleep mode, the Flash HEMi saves power, and
allows itself to react quickly if a Transfer Request is added
to the Worklist.

In a different embodiment, the Flash HEMi does not go
into sleep mode when other tasks are not available, but
instead calls a patrol function handler. The patrol function,
which is described below, checks SuperPages for errors, and,
if necessary, corrects the errors.

In Step 5008, the Flash HEMi calculates the sleep period
needed. This is based on current state, and is designed to
wake the Flash HEMi up before any executing tasks com-
plete. Thus, for example, if the Flash Port is being used by
a Stage Buffer to Flash transfer, the Flash HEMi checks
Flash Transfer Count Register 2712 to determine how long
the remaining portion of the transfer will take, and then sets
the sleep mode period so that the sleep mode will end before
the transfer does. As is explained above, sleep mode is set by

20

25

30

35

40

45

50

55

60

65

72

repeating a series of nops, so the number of nops used is
determined based on the sleep period required.

In Step 5009, the Flash HEMi goes into sleep mode.
When it emerges from sleep mode, processing returns to
Step 5001.

If the Step 5001 check indicates that the Flash Port is free
(“yes” outcome to Step 5001), in Step 5010 the Flash HEMi
checks Bank Bitmap 2920 to determine if there are any
Banks that are (a) needed by a Page Request at the top of a
Bank Queue (Need Bank Flag set) and (b) Ready (Bank R
Flag set).

If not (“no” outcome to Step 5010), processing proceeds
to Step 5002 to determine if any Transfer Requests need to
be handled.

If there are Banks that are both needed and Ready (“yes”
outcome to Step 5010), in Step 5011 the current Bank is set
to the lowest Bank that meets both criteria. For example, if
Bank Bitmap 2920 indicated that Banks 0, 2 and 4 all had
both Flags set, Step 5011 would select Bank 0.

In Step 5012, the State Variables Field of the Page
Request at the top of the selected Bank Queue (Queue 0 in
the example given) is checked to determine if the Page
Request requires certain resources (e.g., a DMA channel)).
If the Page Request requires resources (“yes” outcome to
Step 5012), in Step 5013 the Flash HEMi determines
whether the resources are available. Note that no check is
needed for the Flash Port, since its availability was con-
firmed in Step 5001.

If the necessary resources are available (“yes” outcome to
Step 5013), or if no resources are required (“no” outcome to
Step 5012), processing proceeds to 5014, in which the
Command Field contained in the Page Request at the top of
the selected Bank Queue is checked to determine if the
command is a Read, a Read-Modify-Write or an Erase, and
the appropriate Page Request handler is called and executed.

Step 5015 is reached after the Page Request handler
returns. In this step, a return value from the handler is
checked to determine if the handler has used the Flash Port.

If the handler used the Flash Port (“yes” outcome to Step
5015), further Page Requests cannot be executed, since the
Flash Port is now busy, and processing proceeds to Step
5007, for a determination of whether the Flash HEMi can go
into sleep mode.

If the handler did not use the Flash Port (“no” outcome to
Step 5015), or if insufficient resources were available for a
Page Request (“no” outcome to Step 5013), in Step 5016, the
Flash HEMi checks Bank Bitmap 2920 to determine if a
higher-numbered Bank is both needed and Ready. In the
example given above, in which Banks 0, 2 and 4 were
needed and Ready and Bank 0 was handled, the outcome to
Step 5016 would be “yes,” since Bank 2 is higher than Bank
0 and is needed and Ready. If; on the other hand, Step 5014
had handled Bank 4, the outcome to Step 5015 in this
example would be “no,” since, even though Banks 0 and 2
remain needed and Ready, there are no Banks higher than 4
that are in that condition.

Ifthere is a higher-numbered Bank that is both needed and
Ready (“yes” outcome to Step 5016), in Step 5017, the
current Bank is set to that higher-numbered Bank. Process-
ing then returns to Step 5012, where the resource check is
invoked for the Bank selected in Step 5017.

If there is no higher-numbered Bank that is both needed
and Ready (“no” outcome to Step 5016), processing returns
to Step 5004, to handle any Transfer Requests on the
Worklist. Note that processing does not return to the top of
the loop (Step 5001), in order to insure that the Page Request
handler loop will periodically be interrupted so as to allow

US 9,483,210 B2

73

Transfer Requests to be handled on a regular basis even if
there are always Page Requests that are ready for handling.

This loop continues indefinitely, as long as the system is
powered up.

The Page Request read handler is illustrated in FIGS. 51A
and 51B (hereinafter collectively called FIG. 51). This
flowchart shows the steps that are taken in Step 5014 if the
Page Request contains a read command.

In Step 5101, Page Request State Variables Field 4011 is
checked to determine which state the Page Request is in. In
general, a Page Request read proceeds through three states:
Command, Need Stage Buffer and Flash Transfer Done.
Following each state, the handler returns to Step 5015 of the
execution loop illustrated in FIG. 50. Note that the Page
Request remains on the top of the Bank Queue after the
Command and Need Stage Buffer stages, so that following
such a return, the Flash HEMi execution loop will return
later to this same Page Request.

If the Command state is set (“command” outcome to Step
5101), in Step 5102 the Flash HEMi asserts the CS signal for
the Flash Bank associated with the Bank Queue that the Page
Request was popped from (e.g., asserting CS on Line 703).

In Step 5103, the Flash HEMi asserts CLE Signal 803 and
places the first opcode of the read command on Bus 709. The
Flash HEMi knows to use that opcode based on the presence
of'the read command in Page Request Command Field 4003.
Assertion of the CLE Signal requires the Flash Dies in the
Bank selected by the CS signal to enable their command
latches, so that the bits sent on Bus 709 will be latched in as
commands.

In Step 5104, the Flash HEMi asserts ALE Signal 802 and
places the physical address for the read on Bus 709. That
address for the flash pages is obtained from Flash Read
Address 4006. If the transfer begins at an offset into the
pages, rather than at the beginning, that offset is taken from
Head Length Field 4008 and is sent as part of the address.
The offset is used to set the location in the Page Buffers from
which the transfer to Bus 709 will begin. Note that there is
no reason to send an offset at the end of the page (tail length),
since Transfer Length Field 4010 is used to halt the transfer
once the proper number of bytes has been sent.

Because the CS Signal for the correct Bank remains
asserted, the Flash Dies on that Bank receive the ALE
Signal. That signal causes them to latch the bits on Bus 709
into their address latches. As is explained above, all four
Dies receive the same address, and this is the starting
address of a page of data in each of the Dies. As is also
explained above, the four pages at the same address in each
Die of a Bank constitute a SuperPage, and a SuperPage
represents 15 Sectors, constituting contents associated with
15 consecutive LBAs.

In Step 5105, the Flash HEMi asserts CLE Signal 803 and
places the second opcode of the read command on Bus 709.
Assertion of the CLE Signal requires the Flash Dies in the
Bank selected by the CS Signal to enable their command
latches, so that the bits sent on Bus 709 will be latched in as
commands. When the Flash Dies receive the second read
opcode, they automatically begin reading from flash
memory to the Page Buffers, from the address previously
specified.

In Step 5106, the Flash HEMi updates Page Request State
Variables Field 4011. Among other updates, the current State
is set to Need Stage Buffer.

In Step 5107, the return value is set to Flash Port not busy,
since the series of steps carried out for the Command state
used the Flash Port, but that use was very short and is
complete.

10

20

25

30

35

40

45

55

60

65

74

The Page Request read handler then returns to FIG. 50,
Step 5015.

The second time the handler is called for this Page
Request, as a result of Step 5014, the State as checked in
Step 5101 is Need Stage Buffer.

In Step 5108, the Stage Buffer is checked to determine if
it is free. If not (“no” outcome to Step 5108), the Page
Request read handler returns without taking any action. If
the Stage Buffer is free, (“yes”) outcome to Step 5108, in
Step 5109, the Stage Buffer is assigned to this process.

In Step 5110, the Flash HEMi sets up a DMA transfer
from the flash memory Page Buffers (which contain the
values read from the flash memory as a result of the flash
read) to the Stage Buffer.

In Step 5111, the Flash HEMi updates Page Request State
Variables Field 4011. Among other updates, the current State
is set to Flash Transfer Done. This reflects the fact that the
flash transfer will occur independently of the Flash HEMi,
since this is a DMA transfer. The next time the handler is
called, the flash transfer will be complete.

In Step 5112, the return value is set to Flash Port busy,
since the DMA transfer between the Flash Page Buffers and
the Stage Buffer will occupy the Flash Port for a period of
time after the Page Request read handler returns.

The Page Request read handler then returns to FIG. 50,
Step 5015.

The third time the handler is called for this Page Request,
as a result of Step 5014, the State as checked in Step 5101
is Flash Transfer Done.

In Step 5113, the Flash HEMi determines whether the
ECC check automatically performed as part of the transfer
to the Stage Buffer identified any errors in the read data.

If errors were detected (“yes” outcome to Step 5113), in
Step 5114 an error handler is called. The manner in which
the handler proceeds depends on the nature and number of
the detected errors. If the number of detected errors is too
large for correction, the error handler might cause the data
to be read a second time, in hopes that a second read would
yield better data (as is possible if the state of one or more
flash cells is close to the threshold between valid data and an
error). If the number of detected errors can be corrected, the
error handler can cause the data to be corrected by ECC
Correction Engine 3101 (see discussion in connection with
FIG. 31).

In Step 5115, the Flash HEMi sets up a DMA transfer
from the Stage Buffer (which contains the values read from
the Flash Page Buffers as a result of the Need Stage Buffer
State processing) to Data Path DRAM 107.

In Step 5116, the Page Request read handler waits.
Because a DMA transfer to DRAM is very fast, the read
handler does not return at this point, but stalls temporarily.

In Step 5117, the Flash HEMi checks to see if Transfer
Count Register 2716 has a value of zero, indicating that the
DMA transfer is complete. If not (“no” outcome to Step
5117), Wait Step 5116 is repeated. Once the DMA transfer
is finished (“yes” outcome to Step 5117), in Step 5118, the
Stage Buffer is released for use by other operations.

In Step 5119 the Page Request is popped off of the Bank
Queue. This is done because no further processing of this
Page Request is necessary, and the next Page Request on the
Bank Queue can now be handled.

In Step 5120, the Flash HEMi decrements Transfer
Request Remaining Page Requests Field 3912, reflecting the
fact that the Page Request has completed.

In Step 5121, the Flash HEMi checks to determine if the
Remaining Page Requests Field has reached zero.

US 9,483,210 B2

75

If the Field has reached zero (“yes” outcome to Step
5121), this means that all Page.

Requests for the Transfer Request have been completed.
In Step 5122, the Transfer Request is appended to Local
Transfer Request Queue 2904, so that it will be handled by
the Flash HEMi execution loop. Note that at this point the
Transfer Request has a State of Done (see FIG. 49, Step
4921), so that once it is popped off the Local Transfer
Request Queue, a clean-up process will be initiated (see
below).

Step 5123 is reached if additional Page Requests remain
for the Transfer Request (“no” outcome to Step 5121), or
when Step 5122 completes. In Step 5123, the return value is
set to Flash Port not busy.

The Page Request read handler then returns to FIG. 50,
Step 5015.

FIGS. 52A and 52B (hereinafter collectively called FIG.
52) illustrate certain aspects of a flash read operation in
greater detail.

In Step 5201 the Flash HEMi drives one of the lines in
CS/RB Bus 702 low.

This signal is subsequently inverted, causing the signal to
be received as high on the Chip Enable pins of the four Flash
Memory Chips of the selected Flash Memory Bank.

In Step 5202, the Flash HEMi drives CLE Signal 803
high. This informs the Dies on the selected Bank that the
next set of signals will consist of a command.

In Step 5203, the Flash HEMi drives the eight bits that
constitute the first phase of the Read command on Bus 709.
As is conventional in flash memory devices, the first phase
of a read command instructs the Flash Dies to prepare to
receive a read address. The first phase of the command
constitutes eight bits, and four copies are driven in parallel
on 32-bit Bus 709. For example, if the first Read command
were opcode 08, the information on Bus 709 would be
08080808, and one copy of the command would be deliv-
ered to each Die. Because CLE has previously been driven
high, and received on the CLE pins of each Die in the
selected Bank, each Die in the Bank latches the command
into its command latch.

In Step 5204, the Flash HEMi asserts CLE low and ALE
Signal 802 high. This prepares the Flash Dies to receive an
address.

In Step 5205, the Flash HEMi sends one byte of the
address to be read. This is done by sending four copies of the
address byte on Bus 709. This causes that byte to be latched
into the address latch of each Flash Die on the selected Bank.

In Step 5206, the Flash HEMi determines whether all
address bytes have been sent. If not (“no” outcome to Step
5206), processing returns to Step 5205 to send the next
address byte. In the currently preferred embodiment, each
address is made up of five bytes, so this loop would repeat
four times.

In the current embodiment, five address strobes are suf-
ficient to provide a complete address for the Flash Dies.
However, typical flash memory chips ignore address strobes
that exceed the address bits that the chip requires. For this
reason, the Flash Dies could be replaced by smaller and less
expensive flash memory chips without requiring any rede-
sign of the addressing mechanism, since, although smaller
flash memory chips would require fewer address bytes (e.g.,
four bytes rather than five), those chips would ignore any
unnecessary address bytes received, so that they could be
incorporated into the system without requiring that the
number of address cycles be reduced. Similarly, by increas-
ing the number of address cycles, and thus the number of
address bytes, the system can be designed to handle flash

20

25

30

35

40

45

50

55

60

65

76
memory chips of any arbitrary size, without requiring any
address-related redesign for smaller chips.

Once the entire address has been sent (“yes” outcome to
Step 5206), processing continues with Step 5207, in which
CLE is asserted and ALE is deasserted.

In Step 5208, the second phase of the read command is
sent on the A/D Bus. Conventionally, the second phase of a
read command causes the flash memory chips to begin a read
from the Flash Dies to the Page Buffers.

In Step 5209, the Flash Dies each set their Ready/Busy
pin to Busy. As is described above, these pins are each
connected to one CS/RB line that is further connected to a
pin of SSD Controller 106. This causes the Flash HEMi to
recognize that the Flash Memory Bank is busy and unable to
receive additional commands. The manner in which the
Busy signal is asserted is described in detail in connection
with FIG. 11.

In Step 5210, each Flash Die fetches data from the
requested flash memory address into the Die’s internal Page
Buffer.

In Step 5211, the R/B signal from the Flash Bank tran-
sitions to a “ready” state, which means that all four Ready/
Busy pins from the Dies have transitioned from the “busy”
state to the “ready” state, indicating that the requested data
is present in the Page Buffer of each chip and is available to
be read out onto Bus 709.

In Step 5212, the Flash HEMi asserts RE. As is conven-
tional, this causes the Page Buffers of the Dies on the
affected Bank to read a single byte each onto Bus 709. Those
four bytes constitute a doubleword. That doubleword is
transferred to the Stage Buffer.

In Step 5213, Flash Transfer Count Register 2712 is
decremented. This register holds the number of doublewords
that are to be transferred. If the read is to transfer only a
portion of a page, the Flash Transfer Count Register halts the
transfer at the appropriate point, even though additional data
may be present in the Page Buffers. That additional data is
overwritten the next time the Page Buffers are used.

In Step 5214, the Flash Transfer Count Register is
checked to determine if it has reached zero. If not (“no”
outcome to Step 5214), processing returns to Step 5212, to
clock out the next doubleword.

If the Flash Transfer Count is zero (“yes” outcome to Step
5214), the transfer from flash is done. At this point the data
is in the Stage Buffer. As is described above, it is then
transferred from the Stage Buffer to the Data Path DRAM,
and from there through the Host Port to the Host.

FIGS. 53A and 53B (hereinafter collectively called FIG.
53) illustrate the execution of a Page Request write handler
as part of Step 5014 of FIG. 50. As is understood by those
of ordinary skill in the art, a flash write does not overwrite
a flash page with new data, but instead replaces an old flash
page with a new flash page containing the new data and
invalidates the old page. Thus, if a write only alters part of
a page, the unaltered portion of the page must be copied into
the new page, in an operation known as a read-modify-write.

The Page Request write handler begins with Step 5301,
which checks Page Request State Variables 4011. In the case
of a read-modify-write operation, the State begins with the
State Variables set to Command.

Processing following identification of the Command State
(Steps 5302-5307) is similar to processing following iden-
tification of the Command State in the read handler (FIG. 51,
Steps 5102-5107) and will not be further described herein
(as should be understood, in an actual software embodiment
these two groups of steps could be combined into a single
software routine). This processing ends with the State Vari-

US 9,483,210 B2

77
ables set to Need Stage Buffer and Stage 1. At this point, the
Flash has been set up to read the SuperPage that contains the
LBAs that are subject to the write. The write handler exits,
and control returns to the Flash HEMi Execute Loop (FIG.
50, Step 5015).

Processing of the Need Stage Buffer 1 State (Steps
5308-5312) is similar to processing following identification
of the Need Stage Buffer State in the read handler (FIG. 51,
Steps 5108-5112). Note that although the entirety of the
affected Pages are present in the Flash Page Buffers, only the
Sectors containing L. BAs that are unchanged in the write are
copied into the Stage Buffer. This processing ends with the
State Variables set to Need Stage Buffer 2. The write handler
exits, and control returns to the Flash HEMi Execute Loop
(FIG. 50, Step 5015).

Processing following identification of the Need Stage
Buffer 2 State in Step 5301 begins with Step 5313, in which
a determination is made regarding whether ECC Logic 3102
detected any ECC errors in the data read from flash.

If an error was detected, (“yes” outcome to Step 5313), in
Step 5314 an error handler is called. The manner in which
the handler proceeds depends on the nature and number of
the detected errors. If the number of detected errors is too
large for correction, the error handler might cause the data
to be read a second time, in hopes that a second read would
yield better data (as is possible if the state of one or more
flash cells is close to the threshold between valid data and an
error). If the number of detected errors can be corrected, the
error handler can cause the data to be corrected by ECC
Correction Engine 3101 (see discussion in connection with
FIG. 31).

If no errors were detected (“no” outcome to Step 5313),
in Step 5315, the DRAM to Stage Buffer DMA transfer is set
up. Once the DMA transfer is set up by the Flash HEMi, it
proceeds automatically without any further intervention by
the HEMi. Note that this transfer only includes data corre-
sponding to LBAs that are changed in the write, and this data
is merged with the data received from the flash, so that
following this Step the Stage Buffer holds an entire Super-
Page (four Pages) of data, including the newly written LBAs
and the old data for LBAs from the SuperPage that were not
overwritten.

Steps 5316 and 5317 are identical to Steps 5116 and 5117
in FIG. 51 and will not be further described.

In Step 5318, the CS signal is set. This Step is identical
to Step 5102 in FIG. 51.

In Step 5319, CLE is set and the first write opcode is sent
to the flash. This Step operates similarly to Step 5103 in FIG.
51.

In Step 5320, ALE is set and the address for the write is
sent to the flash. This Step is identical to Step 5104 in FIG.
51.

In Step 5321, the Flash HEMi sets up a DMA transfer
from the Stage Buffer to the flash. This transfer then takes
place automatically, with no further involvement by the
Flash HEMi.

In Step 5322, the Flash HEMi updates the Page Request
State Variables to indicate that the next State is Flash
Transfer Done.

In Step 5323, the return value is set to Flash Port busy,
following which the write handler exits, and control returns
to the Flash HEMi Execute Loop (FIG. 50, Step 5015). At
this point, the SuperPage of data is being transferred from
the Stage Buffer to the Flash Page Buffers, and the flash has
been set up for the write from the Flash Page Buffers to the
flash cells.

20

25

30

35

40

45

50

55

60

65

78

The next time the write handler is called, the Flash
Transfer Done State is identified in Step 5301. In Step 5324,
CS is set. This is identical to FIG. 51, Step 5102.

In Step 5325, CLE is set, and the second write opcode is
sent to the flash. This causes the flash to write the values
from the Flash Page Buffers to the flash memory.

In Step 5326, the Stage Buffer is released for use by other
operations.

In Step 5327, the Flash HEMi updates the Page Request
State Variables to indicate that the next State is Page Request
Done.

In Step 5328, the return value is set to Flash Port not busy,
and the write handler exits and returns control to the Flash
HEMi Execute Loop (FIG. 50, Step 5015). At this point, the
data is being written from the Flash Page Buffers to the flash
cells.

Processing following identification of the Page Request
Done State in Step 5301 begins with Step 5329, in which a
check is done to determine if any errors were detected on the
write.

If errors were detected (“yes” outcome to Step 5329), in
Step 5330 an error handler is called. This Step operates
similarly to Step 5314.

If no errors were detected (“no” outcome to Step 5329),
processing continues with Steps 5331 through 5335, which
are identical to Steps 5119-5123 of FIG. 51. Following this,
the write handler is finished and exits, and control returns to
the Flash HEMi Execute Loop (FIG. 50, Step 5015).

The process shown in FIG. 53 illustrates a read-modify-
write operation. If the Transfer Length of the Page Request
is 15, indicating that the write will replace the entire
SuperPage, the read-modify portion of the operation is
unnecessary, and the Command and Need Stage Buffer 1
paths are not used. Instead, the Page Request State Variables
start out in the Need Stage Buffer 2 State.

As is described above, in the case of a write operation, the
Flash HEMi is required to allocate a SuperPage to the Page
Request. The flowchart in FIG. 54 illustrates this process.

In Step 5401, the Flash HEMi uses the first LBA assigned
to the Page Request by the Transfer Request as an index for
a lookup into Forward Table 3201, and identifies the Bank
currently holding the data associated with the LBA.

In Step 5402, the Flash HEMi checks SuperPage Pointer
List 2919 to determine if there are any available SuperPages
on the Bank. The Bank selection for a read-modify-write
attempts to use a SuperPage on the same Bank as the
SuperPage that holds the original data. This significantly
enhances performance, because the read side of the trans-
action can be handled by a read of the data from the flash
memory to the flash Page Buffers, without any requirement
of a read to the Stage Buffer. The new and old data is then
merged in the Page Buffers. By avoiding a read to the Stage
Buffer, this method increases the performance of write
operations and avoids tying up the flash interface, thereby
freeing it for other transactions.

If a SuperPage is available on the Bank (“yes” outcome to
Step 5402), processing proceeds to Step 5403, in which the
entry corresponding to the SuperPage is checked in Super-
Block Metadata Table 3501 to determine if the SuperPage
has been identified as defective.

If the SuperPage is defective (“yes” outcome to Step
5403), processing proceeds to Step 5404, in which the
defective SuperPage is skipped. Processing then returns to
Step 5402.

If the SuperPage is not defective, (“no” outcome to Step
5403), processing proceeds to Step 5412, which is described
below.

US 9,483,210 B2

79

If there are no available SuperPages on the Bank (“no”
outcome to Step 5402), in Step 5405 the Flash HEMi
increments the Bank, thereby moving to the next Bank and
rolling over to Bank 0 if necessary.

In Step 5406 the Flash HEMi determines whether it has
checked all Banks in the Flash Group (i.e., whether the
current Bank is the same as the first Bank that was checked).
If not (“no” outcome to Step 5406), the Flash HEMi returns
to Step 5402 to determine whether a SuperPage is available
on the next Bank. Note that each time through a new Bank
is checked, as a result of the increment in Step 5405.

If all Banks are checked and no SuperPages are available
(“yes” outcome to Step 5406), then the currently open
SuperBlock is full and must be closed, and a new Super-
Block must be opened. In Step 5407, the Flash HEMi copies
SuperBlock Metadata Table 3501 for the currently open
SuperBlock from Data Path DRAM 107 to SuperPage 0 of
Block 0 of the open SuperBlock. This is accomplished by
issuing an internal Transfer Request to move the data. Prior
to the copying operation, Closed Flag 3509 of the Table is
set.

In Step 5408, the Flash HEMi pops the next SuperBlock
from SuperBlock Freelist 2912, and copies the identifier of
that SuperBlock into Open SuperBlock Pointer 2914.

In Step 5409, the Flash HEMi writes the current time into
the Time Stamp field in the Reverse Table corresponding to
the newly opened SuperBlock (e.g., Reverse Table 3205).

In Step 5410, the Flash HEMi copies the SuperBlock
Metadata Table from SuperPage 0 of Block 0 of the newly
opened SuperBlock into SuperBlock Metadata Table 3501
of Data Path DRAM 107. At this point the Table is blank
with the exception of defect and erase count information,
and Open Flag 3508, which is set.

In Step 5411, the Flash HEMi initializes SuperPage
Pointer List 2919. The pointer for Bank 0 is set to SuperPage
1, since the SuperBlock Metadata Table occupies SuperPage
0. All other pointers are set to SuperPage 0. Processing then
returns to Step 5402 for allocation of a SuperPage to the
Page Request.

Step 5412 is reached if there is a non-defective SuperPage
available on the Bank (“no” outcome to Step 5403). In Step
5412, the Flash HEMi allocates the next SuperPage on the
Pointer List to the Page Request, choosing the entry from the
current Bank. The Flash HEMi writes the address of the
SuperPage into Flash Write Address Field 4007 of the Page
Request. Note that the entire address is available, since a
flash address is characterized by Port, Bank, Block and Page.
The Port information is not needed, since the Flash HEMi
only operates on a single Port, and the Bank, Block and Page
information are available based on a combination of the
SuperBlock identifier, the SuperPage number and the Bank
used to identify which of the SuperPage lists was used.

In Step 5413, the Flash HEMi updates the SuperPage
Pointer List to reflect the SuperPage allocated in Step 5412,
by incrementing the Pointer for the relevant Bank.

Processing of this operation then ends.

Clean up of a completed transaction is described in FIG.
55. The process described in this flowchart is carried out as
part of Step 5003 of FIG. 50. At this point, a Transfer
Request invoked as part of a Host-initiated read or write
command is on the Local Transfer Request Queue as a result
of the Page Request handler having determined that the last
Page Request for the Transfer Request has been completed
(e.g., FIG. 51, Step 5122).

20

25

30

35

40

45

50

55

60

65

80

In Step 5501, the Transfer Request is popped off the Local
Transfer Request Queue. Steps 5501 through 5504 are
executed by a Transfer Request handler running on the Flash
HEMi.

In Step 5502, Transfer Request State Variables Field 3908
is checked. In general, Transfer Requests that are on the
Queue will have a State of Done (see, e.g., FIG. 49, Step
4921), the major exception being a Transfer Request
invoked as part of a garbage collection routine. In this case,
since the Transfer Request results from a completed read or
write command, it has a State of Done.

In Step 5503, the Page Requests identified in Page
Request Pointer Array 3913 are placed on Page Request
Freelist 2910. These Page Requests are now available for
use by other Transfer Requests.

In Step 5504, the Internal Transfer Request is placed on
Local Transfer Request Freelist 2905. This Internal Transfer
Request is now free to be allocated to a Transfer Request on
the Flash HEMi’s external Worklist. The Transfer Request
handler calls an IOP handler running on the Flash HEMi and
terminates.

In Step 5505, the IOP handler running on the Flash HEMi
decrements the Remaining Transfer Requests Field 3808 of
the 1OP identified in the Transfer Request’s Calling IOP
Field 3902. Note that at this point the IOP is not on any
HEMi’s Worklist, so that the Flash HEMi is allowed to
access it, even though it is not on the Flash HEMi’s Worklist.

In Step 5506, the Flash HEMi determines whether the
Remaining Transfer Requests Field has reached zero, indi-
cating that the IOP has no active Transfer Requests.

If the value is above zero (“no” outcome to Step 5506),
the Transfer Request handler ends. No clean-up is required
because the IOP is not yet finished.

If the value is zero (“yes” outcome to Step 5506), in Step
5507, the IOP is placed on the Worklist for the Transmit
HEMi associated with the Port identified in Host Port Field
3803 of the IOP. The IOP handler running on the Flash
HEMi then terminates.

In Step 5508, IOP Command Field 3806 is evaluated to
determine whether the IOP relates to a read or a write
command. This and all subsequent steps are carried out by
an IOP handler running on the Transmit HEMi.

If the command is a read command (“yes” outcome to
Step 5508), in Step 5509 the Transmit HEMi sets up data and
other frames necessary to convey the data to the Host, and
transmits those frames to the Host.

Following Step 5509, or if the command is a write rather
than a read (“no” outcome to Step 5508), in Step 5510 the
Transmit HEMi transmits a status frame to the Host indi-
cating that the command has been completed.

In Step 5511, the Transmit HEMi (a) places the CDBinfo
identified in IOP CDBinfo Field 3805 on CDBinfo Freelist
4102, (b) places the IOP on IOP Freelist 4103, and (c) places
the Transfer Requests identified in IOP Transfer Request
Pointer Array 3809 on Transfer Request Freelist 4104.

In Step 5512, the Transmit HEMi cleans up various other
data structures to reflect the closing of the CDBinfo and the
IOP. For example, the Transmit HEMi decrements Count
Field 4203 in the Initiator Info entry for the Initiator iden-
tified in IOP Initiator Field 3804.

The clean-up process then ends.

C. Garbage Collection

Garbage collection is the process of freeing up flash
memory space for new writes. This is performed on a Flash
Port by Flash Port basis, as the Flash HEMi associated with
each Port determines whether garbage collection is required

US 9,483,210 B2

81

for the Flash Group associated with the Port, and then carries
out garbage collection operations if necessary.

Each Flash Group includes a number of SuperBlocks,
which are in one of three states: (1) open (a single Super-
Block that is currently open for writing; (2) closed (Super-
Blocks into which data has been written, but which are no
longer open for writing) and (3) free (SuperBlocks on
SuperBlock Freelist 2912, which have been erased and are
available for future writes). Closed SuperBlocks normally
include a combination of valid SuperPages (containing
Sectors with data that is currently valid) and invalid Super-
Pages (containing Sectors with data corresponding to LBAs
that have subsequently been written elsewhere and are
therefore no longer valid). As is explained in connection
with FIG. 34, invalid SuperPages are so designated in the
Reverse Table for the Flash Group.

In order to operate, each Flash Group needs free Super-
Blocks, since, if the open SuperBlock contains insufficient
room for a write (i.e., no free SuperPages shown on Super-
Page Pointer List 2919), that SuperBlock must be closed, a
SuperBlock from the SuperBlock Freelist must be opened,
and the new data must be written into the newly opened
SuperBlock. Garbage collection is the process of consoli-
dating data to free up SuperBlocks for future writes.

Returning to FIG. 29, in the currently preferred embodi-
ment, each time a SuperBlock is allocated from SuperBlock
Freelist 2912, SuperBlock Freelist Counter 2913 in the
mRAM of the relevant Flash HEMi is decremented. This
Counter contains the number of SuperBlocks currently on
SuperBlock Free List 2912.

Following the decrementing of Counter 2913, the value
currently held in the Counter is compared to two values
maintained in Garbage Collection Thresholds Section 2915
of the Flash HEMi’s mRAM: the Critical Threshold and the
Non-Critical Threshold. In the currently preferred embodi-
ment, these values are set at initialization to default values
of “2” and “6,” respectively, but, as is discussed below, other
values could be used. Moreover, these values are program-
mable, and therefore can be altered by the user.

If the Counter value (and thus the number of SuperBlocks
on the SuperBlock Freelist) is at or below the Critical
Threshold, a Critical Flag is set and the Flash HEMi shifts
into critical garbage collection mode, with garbage collec-
tion operations taking precedence over all other operations,
including Host reads and writes. This continues until the
Counter value (and therefore the number of SuperBlocks on
the SuperBlock Freelist) exceeds the Critical Threshold,
causing the Critical Flag to be reset.

If the Counter value is above the Critical Threshold, but
at or below the Non-Critical Threshold, the Flash HEMi
shifts into non-critical garbage collection mode, and garbage
collection operations are initiated, but only after all Host-
initiated reads and writes have been handled. If the amount
of available free space is above the Non-Critical Threshold,
garbage collection does not occur.

In the currently preferred embodiment, the Critical
Threshold is set to 2 because at least one free SuperBlock is
needed at all times, in order to insure that an incoming write
can be accommodated, and an additional SuperBlock is
required to provide protection against the possibility that
Transfer Requests that were on Local Transfer Request
Queue 2904 prior to the Critical Flag being set might use up
an additional SuperBlock. Note that even in Critical Mode,
Transfer Requests already on the Local Transfer Request
Queue will be handled by the Flash HEMi before garbage
collection Transfer Requests, which, as with all other new

20

25

30

35

40

45

50

55

60

65

82

Transfer Requests, are appended to the bottom of Local
Transfer Request Queue 2904.

In the currently preferred embodiment, the Non-Critical
Threshold is set at “6,” which represents a compromise
between reducing the frequency of garbage collection
(which requires a lower number) and minimizing the pos-
sibility that a sequence of Host-initiated writes could be
interrupted by the need for critical mode garbage collection
(which requires a higher number). In alternate embodiments,
this number could be set either somewhat higher or some-
what lower. Note that a lower number will tend to reduce the
frequency of garbage collection, and will therefore increase
the amount of time a SuperBlock remains closed before it is
subject to garbage collection. Since the amount of valid data
a SuperBlock contains will tend to decrease as time goes on
(as valid SuperPages in the SuperBlock are the subject of
new writes and are therefore invalidated), garbage collection
is more efficient on older, staler SuperBlocks, because such
SuperBlocks contain less valid information that must be
copied into the open SuperBlock. Thus, setting the Non-
Critical Threshold to a lower value tends to increase the
efficiency of garbage collection operations by increasing the
amount of time a given SuperBlock is closed prior to being
subjected to garbage collection. Again, however, this is a
compromise, since the lower the number, the more likely
that the Critical Threshold will be reached, at which point
system performance will degrade, since critical mode gar-
bage collection takes precedence over normal reads and
writes.

The process of garbage collection is illustrated in the
flowchart shown in FIG. 56.

Garbage collection requires the selection of a SuperBlock
for erasure. This is represented in Step 5601. Since this
requires that data from the valid SuperPages in the selected
SuperBlock be written to the currently open SuperBlock, it
makes sense to choose SuperBlocks that have the least
amount of valid data. Thus, when garbage collection is
initiated, the relevant Flash HEMi checks the Count Field
for each SuperBlock in the Reverse Table for the Flash
Group, beginning with the SuperBlock after the SuperBlock
that was most recently added to the SuperBlock Freelist
(e.g., if the last SuperBlock that was added to the Freelist as
a result of garbage collection is 17, the first SuperBlock
Count Field checked in the next garbage collection operation
would be SuperBlock 18) and proceeding through each
SuperBlock in numerical order, wrapping around through
SuperBlock 0.

The Flash HEMi selects the SuperBlock with the highest
Count Field value, indicating the largest number of invalid
SuperPages. If more than one SuperBlock is tied for the
highest Count Field, in the currently preferred embodiment,
the first such SuperBlock encountered is chosen for garbage
collection. In an alternative embodiment, ties could be
broken by checking the Erase Count field in the SuperBlock
Metadata Table (or the Reverse Table) for each of the tied
SuperBlocks, with the SuperBlock having the lowest Erase
Count being selected. This alternative has the advantage of
imposing a certain degree of wear leveling. As those of
ordinary skill in the art will appreciate, erase operations tend
to create wear in flash memories, so that those blocks having
a higher number of erases will tend to have a higher number
of defects. This type of wear leveling tends to even out the
number of defects across blocks, though at a cost of impos-
ing an additional operation prior to each garbage collection.

Once a SuperBlock is chosen for garbage collection, in
Step 5602 the associated Flash HEMi creates a series of

US 9,483,210 B2

83

internal Transfer Requests sufficient to move the data from
each valid SuperPage in that SuperBlock into the currently
open SuperBlock.

Internal Transfer Requests are issued by and specific to
particular Flash HEMi’s. They differ from normal Transfer
Requests in that internal Transfer Requests are only held in
the mRAM of the issuing Flash HEMi and are never stored
in Shared RAM or operated on by any other HEMi. Since an
internal Transfer Request is not invoked as a result of an IOP,
Calling IOP Field 3902 of each internal Transfer Request is
left blank.

As is described above, each Transfer Request can issue
three Page Requests, and each Page Request can cause the
transfer of one SuperPage of data. Thus, the number of
internal Transfer Requests that the Flash HEMi is required
to issue to move data will equal the number of valid
SuperPages in the SuperBlock divided by three, rounded up.

In the currently preferred embodiment, assuming eight
Blocks per Flash Group, each SuperBlock contains 512
SuperPages (64 SuperPages per Blockx8), so in theory
garbage collection could require the issuance of 171 Trans-
fer Requests (though, as should be understood, no point
would be served in performing garbage collection on a
SuperBlock if every SuperPage in the SuperBlock were
valid). In practice, however, as SuperBlocks chosen for
garbage collection tend to have relatively few valid Super-
Pages, far fewer than 171 Transfer Requests are required.

In Step 5603, the Page Requests issued as a result of the
Transfer Requests set up in Step 5602 are executed. As
should be understood, Steps 5602 and 5603 will probably
overlap, since it is likely that the number of Transfer
Requests required for moving valid SuperPages from the old
SuperBlock to the open SuperBlock will exceed six, which
is the number of Transfer Requests that can be handled
simultaneously by the Flash HEMi. Thus, some number of
Transfer Requests will be allocated, Page Requests will then
be executed for those Transfer Requests, and, as each
Transfer Request is completed, its slot in Local Transfer
Request Table 2901 will open up, thereby allowing the Flash
HEMi to issue a new Transfer Request.

The operation of copying data from valid SuperPages into
the currently open SuperBlock is similar to a normal write
operation, except without external data. As is described
above in connection with the description of SuperPage
Pointer List 2919, writes preferentially take place to Super-
Pages on the same Bank as the SuperPage that is to be
invalidated by the write. This minimizes the number of
transfers required, since a write from one location in a Flash
Bank to another location in the same Bank does not require
moving the data to the Flash Stage Buffer, but can be
accomplished by writing the data from the flash memory to
the Flash Page Buffers and then back from the Flash Page
Buffers into the flash memory. This is significantly faster
than moves that require transferring data to the Stage Buffer,
and does not tie up the bus that connects the Stage Buffer and
the Flash Group.

Garbage collection writes are preferentially to the same
Bank, using SuperPage Pointer List 2919. One Page Request
can handle both the read from flash memory and the write to
flash memory, so a single Transfer Request can handle three
valid SuperPages. As with normal writes, each time the data
from a valid SuperPage is copied into a new location, the
entry in Forward Table 3201 corresponding to those LBAs
is updated.

Following the Transfer Requests that move data from the
old SuperBlock into the open SuperBlock, in Step 5604,
three Transfer Requests are issued, containing a total of

20

25

30

35

40

45

50

55

60

65

84

seven Page Requests (three Page Requests in the first two
Transfer Requests and one Page Request in the third Trans-
fer Request). Each of these Page Requests executes a flash
erase command to a single block. As is described above,
each SuperBlock consists of the same block in each of the
eight banks of the port. Thus, each Page Request erases the
same block at a different chip select. As one of ordinary skill
in the art will understand, a flash erase command causes a
series of “1s” to be written into the erased Block. These
seven Page Requests erase Blocks 1-7 of the SuperBlock.

The last Transfer Request required for the garbage col-
lection operation contains three Page Requests. In Step
5605, the first of these Page Requests copies the defect
column and erase count from the SuperBlock Metadata
Table stored in Bank 0, SuperPage 0 of the SuperBlock (see
FIG. 35) into the Flash Stage Buffer. Note that this resides
in Block 0 of the SuperBlock, which was not erased in Step
5604.

In Step 5606, the Flash HEMi increments Erase Count
Field 3507 in the SuperBlock Metadata Table, reflecting the
fact that the SuperBlock has now been erased an additional
time.

In Step 5607, the Flash HEMi accesses the Reverse Table
for the Flash Group in Data Path DRAM 107, marks all
SuperPages from the SuperBlock as valid and sets the Count
Field for the SuperBlock to 0.

In Step 5608, the second Page Request from the last
Transfer Request erases Block 0. Note that this and Steps
5609-5610 can occur in parallel with Step 5607.

In Step 5609, the last Page Request copies the erase count
and defect data from the Stage Buffer back into SuperPage
0 of Bank 0 of the SuperBlock, therefore setting up a new
SuperBlock Metadata Table in flash that is blank except for
those entries.

In Step 5610, the SuperBlock is placed back onto Super-
Block Free List 2912 and SuperBlock Freelist Counter 2913
is incremented. The garbage collection operation for that
SuperBlock then completes.

Although the currently preferred embodiment copies the
valid data from the old SuperBlock into the currently open
SuperBlock, just as occurs in the case of a Host-initiated
write, in an alternative embodiment there are two “open”
SuperBlocks at the same time, one used for normal reads,
and a second used to collect data from SuperBlocks being
recycled through the garbage collection process. In this
embodiment, garbage collection-initiated Transfer Requests
are identified (e.g., by a garbage collection flag in the
Transfer Request), and cause data to be written to the open
garbage collection SuperBlock, rather than the open Super-
Block used for Host-initiated writes.

Valid data resulting from garbage collection is relatively
“stale” in comparison with valid data in the SuperBlock
currently open for writing. For this reason, copying valid
data resulting from garbage collection into a garbage col-
lection SuperBlock will tend to concentrate data that is
relatively stale, and therefore less likely to be used with
great frequency. As will be understood by those of ordinary
skill in the art, data that has not been recently written is
significantly less likely to be read or written in the near
future than is more recent data.

The use of “garbage collection” SuperBlocks has the
advantage of concentrating relatively stale data in one or
more SuperBlocks. Because such data is relatively less
likely to be overwritten, such SuperBlocks will tend to fill up
with valid data. If, as is described above, garbage collection
is preferentially applied to SuperBlocks with a relatively
high proportion of invalid data, SuperBlocks used as the

US 9,483,210 B2

85

repository for garbage collection will probably not them-
selves be subject to garbage collection. This has the advan-
tage that data that is expected to be relatively static will
concentrate in a relatively small number of SuperBlocks,
and this data will not be subject to garbage collection, and
therefore it will be unnecessary to regularly copy this data to
new SuperBlocks as part of the garbage collection process.
Conversely, the SuperBlocks used for normal writes will
tend to include a concentration of data that is used and
rewritten frequently. Such SuperBlocks will therefore have
a tendency to include a relatively high proportion of invalid
SuperPages. When such SuperBlocks are themselves sub-
jected to garbage collection, the amount of valid data that
will have to be copied out of the SuperBlock will be
relatively low, thereby decreasing the time required for
garbage collection.

Garbage collection SuperBlocks can therefore improve
performance, by minimizing the amount of time necessary
for garbage collection operations, though at the cost of some
additional complexity.

In an extension of this alternate embodiment, a hierarchi-
cal memory system is used, involving relatively expensive
fast memory and relatively cheaper slower memory. Super-
Blocks used for storing data collected during garbage col-
lection are stored in slower memory, since such SuperBlocks
are expected to include data not required on as frequent a
basis as data that has been more recently updated and is
therefore stored in SuperBlocks kept in faster memory.

D. Patrol Function.

As is understood in the field, data integrity in flash
memories may deteriorate for various reasons. During each
read, the charge within the cells of a page may dissipate
slightly, causing the voltages in the cells to deteriorate until
that voltage can no longer be read correctly. Neighboring
pages may also be affected by a read operation, thereby
causing the voltages in the cells of such pages to deteriorate
even though the actual cell was not read. This is referred to
as a “read disturb.” Over time, this dissipation may cause
cell voltages to drop below a threshold and cause a “1” to
register as a “0”. If these errors are not dealt with, over time
there may be more errors than are recoverable through ECC
and data corruption may occur.

Additionally, programming (writing) or erasing a memory
cell may also degrade performance and lead to increased
data errors. For example, when a cell is programmed or
erased, increased voltages may be required to cause charge
to flow onto or off of a floating gate. However, the increased
voltages may stress the semiconductor materials used to
form the cells. Over many program or erase cycles, the cells’
ability to effectively store charge may degrade, leading to
increased errors in the data.

The amount of time since a flash memory cell was written
can also contribute to data unreliability.

Note that these problems may or may not result from
physical defects in the flash memory that may cause a
SuperPage to be identified as defective. A physical defect is
permanent, and the affected SuperPage is permanently
mapped out and no longer used. Instead, these types of errors
are transient, resulting from degradation of the charge held
by one or more flash cells on the SuperPage. Detection of
such transient errors does not require that the SuperPage be
identified as defective, and the errors themselves are cor-
rectable through use of ECC.

However, ECC can only correct a given number of errors
per page. Moreover, once the integrity of a page begins to be
affected by factors such as those listed above (e.g., read
disturbs, write disturbs, etc.), it is likely that the number of

20

25

30

35

40

45

50

55

60

65

86

errors on the page will increase over time, so that at some
point the information on the page will not be recoverable.

Error-handling remains one of the most significant chal-
lenges facing enterprise-level flash storage. As is well-
known in the art, flash storage has a relatively high rate of
errors, and this is compounded by the fact that error cor-
rection in a flash memory system requires writing an entire
page using a read-modify-write operation that consumes
significant system resources.

SSD Controller 106 is uniquely suited to deal with flash
memory errors, since the large number of processors, and the
multiple independent pipelines, allow Controller 106 to
detect and correct errors more or less continuously without
degrading host-perspective system performance.

The design of SSD Controller 106 allows significant
choice in terms of error correction algorithms, several of
which are described herein.

In one embodiment, SSD Controller 106 uses independent
patrol functions consisting of firmware running on each flash
HEMi that “patrols” each flash group independently, reading
every SuperPage that contains valid information and cor-
recting errors that exceed a threshold. This embodiment is
illustrated in FIG. 57.

The FIG. 57 flowchart begins with a “no” outcome from
FIG. 50, Step 5004. As is described above in connection
with FIG. 50, Steps 5007-5009 may in some circumstances
be replaced by the patrol function.

Step 5701 represents a check to determine if the patrol
function is operating. In one embodiment, the patrol func-
tion operates periodically. In this embodiment, the function
checks every valid SuperPage in the Flash Group, and then
shuts down for a period of time. For example, the patrol
function may run to completion once every 24 hours. In this
embodiment, once the patrol function completes, it will not
restart until the designated period is complete, e.g., it may
start every midnight, run to completion (as is explained
below, the function is periodically interrupted to allow other
operations to take place), and then shut down until the
following midnight.

In embodiments in which the patrol function runs peri-
odically, a “no” outcome to Step 5701 leads to FIG. 50, Step
5007, in which the Flash HEMi may go into sleep mode.

In embodiments in which the patrol function is continu-
ously operative (again, the function is interrupted for other
tasks), Step 5701 is skipped. In those embodiments, or if the
patrol function is operative (“yes” outcome to Step 5701), in
Step 5702 a check is done to determine if any Local Transfer
Requests are available. Note that in the preferred embodi-
ment, this and certain following steps do not represent
independent patrol function programming, but instead calls
to firmware routines normally used for host-initiated reads
and writes (e.g., FIG. 49).

Ifno Local Transfer Requests are available (“no” outcome
to Step 5702), processing returns to FIG. 50, Step 5007.

If Local Transfer Requests are available (“yes” outcome
to Step 5702), in Step 5703 a Local Transfer Request is
popped.

In Step 5704, the Local Transfer Request is populated. In
general, this mirrors the process used for Host-initiated
transactions (see, e.g., FIG. 49), with a Read command used
for Command Field 3907. However, the LBA range for the
Transfer Request is based on the LBA range used for the
immediately preceding iteration of the patrol function on
this Flash Group, taking into account the LBA striping used
among the Flash Groups, the goal being to cover all LBAs
assigned to the Flash Group.

US 9,483,210 B2

87

The first time the patrol function runs following initial-
ization (or the first time it restarts after a periodic shut-
down), the Transfer Request will be assigned the first 90
LBAs stored in the Flash Group. The next time, the Transfer
Request will be assigned the next 90 LBAs stored in the
Flash Group, and so on, until the last LBA stored in the Flash
Group is reached, at which point the patrol function will
restart at the beginning (if it runs continuously), or shut
down pending the next triggering event (e.g., the next
midnight).

The patrol function keeps track of the LBAs most recently
assigned using a data structure in the Flash HEMi mRAM
(e.g., a variable in Local Variables 2916).

As is described above (see, e.g., FIG. 16 and accompa-
nying discussion), LBAs are striped among the Flash
Groups. Thus, the patrol function cannot simply assign the
next 90 LBAs to a Transfer Request, but must instead
identify the next group of 90 LBAs that has been assigned
to the Flash Group. This can be accomplished by reading
through Forward Table 3201 to find the next row with a Port
value that equals the Flash Group that the patrol function is
running on. Alternatively, the patrol function can use the
same algorithm used to assign LBAs to Flash Groups in the
first place (e.g., LBAs assigned in stripes of 90, with gaps
equal to 90 multiplied by the number of Flash Groups).

Following population of the Local Transfer Request in
Step 5704, in Step 5705, three Page Requests are popped and
populated, each receiving fifteen of the forty-five LBAs
assigned to the Transfer Request. The manner in which Page
Requests are populated is described above in connection
with FIG. 49.

In Step 5706, the Page Requests are sent to Bank Queues.
This is the same process used for Page Requests generated
to handle Host-initiated transactions. See, e.g., FIG. 49.

In Step 5707, the Page Request reads are carried out. Note
that the data is read to the Flash Stage Buffers, but is not
transmitted to Data Path DRAM 107. Instead, the sole
purpose of the read is to trigger an ECC check. As is
described above in connection with FIG. 31, ECC Check
3104 operates every time data is read into a Flash Stage
Buffer, and, if errors are discovered, the data is transmitted
to ECC Correction Engine 3101.

In Step 5708, an indicator set by ECC Check 3104 is
checked to determine if any read errors were detected. If not
(“no” outcome to Step 5708), processing proceeds back to
the beginning of the FIG. 50 loop. This allows the Flash
HEMi to handle other, non-patrol function tasks, even while
the patrol function is running, and ensures that the patrol
function will not noticeably decrease performance for Host-
initiated reads and writes. If no other operations are
required, when the FIG. 50 loop returns to Step 5004, a “no”
outcome from that Step will trigger the patrol function again,
this time with a new set of 45 LBAs.

If read errors were detected (“yes” outcome to FIG. 5708,
in Step 5709, the sector containing the errors is sent to ECC
Correction Engine 3101. ECC correction is described above
in connection with FIG. 31.

In Step 5710, the number of errors corrected by ECC
Correction Engine 3101 is checked to determine if it exceeds
the threshold of allowable errors, which is set at eight in the
current embodiment (see above in connection with FIG. 31).

If the number of errors is at or below the threshold (“no”
outcome to Step 5710, the patrol function returns control to
FIG. 50, Step 5001. As is described above in connection
with FIG. 31, if the number of detected errors does not
exceed the threshold, corrected data is not written into the
flash.

20

25

30

35

40

45

50

55

60

65

88

If the number of errors exceeds the threshold (“yes”
outcome to Step 5710), in Step 5711, the corrected data is
written into a new SuperPage, using a read-modify-write
operation. See FIG. 53, and accompanying description,
above.

Following Step 5711, the patrol function returns control to
FIG. 50, Step 5001.

FIG. 57 describes one embodiment of the patrol function,
in which the function runs independently on each Flash
Group. This is made possible by the fact that each Flash
Group is served by an independent Flash HEMi. The pro-
cessing power inherent in SSD Controller 106 allows flash
errors to be detected and corrected on a continuous or
periodic basis, without any effect on overall system perfor-
mance, and without requiring attempts to predict which
areas of the flash are particularly susceptible to errors.

In a different embodiment, SSD Controller 106 issues
IOPs for the patrol function. Each IOP specifies an LBA
range, and the IOPs are issued periodically until the entire
LBA range governed by SSD Controller 106 is covered. In
this embodiment, it is not necessary to separately calculate
which LBAs are assigned to which Flash Groups, since this
is automatically handled as SSD Controller 106 deals with
the IOP (see above).

In this embodiment, no check is done to determine if other
tasks are waiting to be handled. For this reason, IOP
issuances should be spaced out (e.g., one per minute). In
addition, in one alternative, Transfer Requests and Page
Requests invoked as a result of a patrol function IOP could
be identified as of lower priority, and handled after other
Transfer Requests and Page Requests (see above).

E. Abort Handling

SSD Controller 106 is required to respond correctly to
SCSI abort commands, and to similar commands in other
relevant protocols. Abort commands may require aborting a
particular read or write command, or all commands from a
particular Initiator. SSD Controller 106 must also respond
correctly to hard resets, in which all current commands are
aborted and the system is returned to its default power-on
state.

Following an abort command or a hard reset, the data
stored in LBAs that were subject to aborted write commands
begun but not ended prior to the abort is in an undefined
state, and the Initiator is required to rewrite such data to
return it to a known state.

In the case of a request that a particular command be
aborted, the SSD Controller responds by identifying the
SCSI Tag received with the abort command, and matching
that information to SCSI Tag Field 3705 in the CDBinfos
present in CDBinfo Table 4109, thereby identifying the
CDBinfo that was created in response to the command now
being aborted. IOP Field 3704 of that CDBinfo is then used
to identify the IOP invoked to handle the transaction. That
IOP’s Transfer Request Pointer Array 3809 is then checked
to identify each Transfer Request issued as a result of the
IOP. Each of those Transfer Requests is then aborted,
meaning that its Abort Flag 3906 is set, and the Flash HEMi
execute loop initiates an abort handler for each Transfer
Request. The abort handler puts the Transfer Request into a
done state, and removes all Page Requests identified in Page
Request Pointer Array 3913 from the Bank Queues. Clean-
up of the Page Requests, Transfer Requests and the IOP
proceeds as described in connection with FIG. 55.

An abort queue command requires aborting all commands
issued by the Initiator responsible for the abort queue
command. That Initiator is identified from metadata accom-
panying the abort queue command. All CDBinfo’s and IOPs

US 9,483,210 B2

89

identifying that Initiator are retired by being removed from
all worklists and returned to their Freelists, and all Transfer
Requests issued by such IOPs are also retired.

A hard reset requires that all active commands be termi-
nated. In one embodiment, this is handled by setting Abort
Flag 3811 in all active IOPs, but taking no other action.
When an IOP is sent to a Transmit HEMi for purposes of
sending data (on a write) or status information (on a read) to
the Host (see FIG. 55, Step 5507), the Transmit HEMi reads
the Abort Flag and terminates processing of the IOP without
sending any communication to the Host. The transaction
otherwise completes normally. In this embodiment, there-
fore, no special handling is required, since all transactions
complete normally, except that no communications are sent
to the Host.

In an alternate embodiment, a hard reset causes the Abort
Flag to be set on all active IOPs and Transfer Requests. Once
this is done, IOPs and Transfer Requests that are popped off
of'a HEMi Worklist are not handled, but are instead ignored,
and all Page Requests are removed from the Bank Queues.
Once all HEMi’s have run out of work (as a result of the
retirement of all Page Requests, IOPs and Transfer
Requests), control is turned over to ARM 2002, which is
responsible for cleaning up, including returning all Page
Requests, IOPs and Transfer Requests to the Freelists, and
setting all state parameters to a default value. This alternate
embodiment is faster than allowing all transactions to com-
plete, but the requirement of using special handling intro-
duces some risk of a software error.

F. Power Loss Recovery.

As is described above, Data Path DRAM 107 is used for
storing the Forward and Reverse Tables. Since reads from
and writes to the DRAM are much faster than reads or writes
to flash, storing this information in the DRAM provides a
significant performance advantage, particularly given the
large number of writes required to these tables.

However, because DRAM 107 is a volatile memory, if
power is lost unexpectedly, these tables must be rebuilt, as
must the SuperBlock Metadata Table for the currently open
SuperBlock for each Flash Port, which, as is described
above, is also stored in DRAM 107.

In general, the open SuperBlock Metadata Tables are
rebuilt using information stored in the flash SuperPage
metadata fields, and the Forward and Reverse Tables are
rebuilt using information stored in the SuperBlock Metadata
Tables in flash and the rebuilt open SuperBlock Metadata
Tables. This is illustrated in FIGS. 58A-58D (hereinafter
collectively called FIG. 58), which show the rebuild process
for a single Flash Group.

In Step 5801, the current SuperBlock is set to 0. This sets
up a loop through all of the SuperBlocks in the Flash Group.

In Step 5802, SuperBlock Metadata Table 3501 for the
current SuperBlock is copied from flash to the Stage Buffer.
It is easier to read from and write to the Table in the Stage
Buffer than in the flash memories.

In Step 5803, SuperBlock Metadata Table Open Flag
3508 and Closed Flag 3509 are checked to determine if the
SuperBlock was in an erased condition at the time of the
power loss.

If both Flags are cleared (“yes” outcome to Step 5803),
this means the SuperBlock was erased. In Step 5804, the
SuperBlock is placed on SuperBlock Freelist 2912, follow-
ing which processing continues with Step 5821, which as is
described below, triggers analysis of the next SuperBlock.

If the SuperBlock was not erased (“no” outcome to Step
5803), in Step 5805, the Open and Closed Flags are checked
to determine if the SuperBlock was open at the time of

20

25

30

35

40

45

50

55

60

65

90

power loss. This is indicated by the Open Flag being set and
the Closed Flag not being set. Note that this step can be
combined with Step 5803.

If the SuperBlock was closed at the time of the power loss
(“no” outcome to Step 5805), in Step 5806 SuperBlock Time
Stamp 3506 from the SuperBlock Metadata Table is copied
into Reverse Table Time Stamp Field 3405 for the Super-
Block. This Step updates the Reverse Table with the correct
Time Stamp information for the SuperBlock.

In Step 5807, the Bank is set to zero. This sets up a loop
through all of the Blocks, keeping in mind that each Super-
Block consists of a single Block on each Bank.

In Step 5808, the SuperPage is set to zero. This sets up a
loop through the 64 SuperPages in a Block.

In Step 5809, the SuperBlock Metadata Table LBA Field
for the current SuperPage and Bank is used as an index for
a lookup into Forward Table 3201. Note that Bank 0,
SuperPage 0 is a special case, since this SuperPage contains
the SuperBlock Metadata Table, so that this SuperPage is
skipped in the analysis.

If the Forward Table row for the LBA is already filled in
(“yes outcome to Step 5809), this means that the LBA has
already been encountered during the rebuilding process,
meaning that the LBA was written at least twice into open
SuperBlocks. This requires that the latest such write be
identified as valid, and any earlier writes be invalidated. In
Step 5810, the data from the Forward Table row correspond-
ing to the LBA is used to identify the SuperBlock into which
the LBA was written. Reverse Table Time Stamp Field 3405
for that earlier SuperBlock is compared to Time Stamp Field
3506 from the SuperBlock Metadata Table for the Super-
Block currently being evaluated.

If the Reverse Table Time Stamp is lower (earlier) than
the SuperBlock Metadata Table Time Stamp (“<” outcome
to Step 5810), this means that the entry already in the
Forward Table was subsequently replaced by a newer entry
reflected in the SuperBlock Metadata Table currently being
evaluated. In this case, in Step 5811, the existing Reverse
Table SuperPage entry corresponding to the existing For-
ward Table entry for the LBA is marked invalid in the
Reverse Table. Processing then proceeds to Step 5815,
which is described below.

If the Reverse Table Time Stamp corresponding to the
existing Forward Table entry is higher (later) than the
SuperBlock Metadata Table Time Stamp (“>" outcome to
Step 5810), this means that the LBA entry currently in the
Forward Table replaced the LBA entry in the SuperBlock
Metadata Table (e.g., the LBA was written again after being
written into the SuperBlock currently being evaluated). In
this case, in Step 5812, the Reverse Table entry for the
SuperPage containing that LBA in the current SuperBlock
Metadata Table is marked invalid. Processing then proceeds
to Step 5817, which is described below.

If the Reverse Table Time Stamp is equal to the Super-
Block Metadata Table Time Stamp (“=" outcome to Step
5810), this means that the same LBA was written twice in
the same SuperBlock. To determine which was written later,
it is necessary to read the Time Stamp from the SuperPage
Metadata. In Step 5813, the contents of Time Stamp Field
1403 from the two SuperPages are copied from flash into the
Stage Buffer.

In Step 5814, the SuperPage Time Stamps are compared.

In Step 5811, the older of the two SuperPages is marked
invalid in the Reverse Table.

Step 5815 is reached if the LBA is not already in the
Forward Table (“no” outcome to Step 5809), or following
Step 5811, in which an old SuperPage has been marked

US 9,483,210 B2

91
invalid in the Reverse Table. In Step 5815, the Forward
Table fields corresponding to the L.BA are written with flash
address information for the new SuperPage. The Forward
Table entry for the LBA now points to this SuperPage as
storing the current, valid version of the LBA data.

In Step 5816, the SuperPage is marked valid in the
Reverse Table.

Step 5817 is reached after Step 5816 or after Step 5812.
In Step 5817, the SuperPage is incremented.

In Step 5818, the incremented SuperPage value is com-
pared to 63.

If the newly incremented SuperPage is less than or equal
to 63 (“no” outcome to Step 5818), this means that addi-
tional SuperPages remain to be evaluated in the current
Bank, and processing returns to Step 5809, at which evalu-
ation of the next SuperPage begins. Note that the Super-
Pages listed in the SuperBlock Metadata Table are evaluated
in order, from 0 to 63.

If the newly incremented SuperPage is greater than 63,
(“yes” outcome to Step 5818), this means that the last
SuperPage in the Bank has been reached. In Step 5819, the
Bank is incremented.

In Step 5820, the newly incremented Bank value is
compared to the number of Banks, designated as “n.” (As is
noted above, the number of Banks is implementation-spe-
cific.)

If the newly incremented Bank is less than or equal to n
(“no” outcome to Step 5820), this means that additional
Blocks remain to be checked in the SuperBlock. (As is
described above, a SuperBlock consists of the same Block
on each Bank). In this case, processing returns to Step 5808,
at which evaluation of SuperPage 0 of the next Bank begins.
As should be understood, the Banks are evaluated in order
from 0 to n.

If the newly incremented Bank is greater than n (“yes”
outcome to Step 5820), this means that the last Block in the
SuperBlock has been reached.

In Step 5821, the SuperBlock is incremented. Note that
this Step is reached either from Step 5820, or from Step
5804, in which the current SuperBlock is placed on the
SuperBlock Freelist.

In Step 5822, the newly incremented SuperBlock value is
compared to the total number of SuperBlocks per Flash
Group, designated as “p.” (As is noted above, the number of
SuperBlocks per Flash Group is implementation-specific).

If the newly incremented SuperBlock is less than or equal
to p (“no” outcome to Step 5822), this means that additional
SuperBlocks remain to be evaluated in this Flash Group. In
this case, processing returns to Step 5802, at which the
SuperBlock Metadata Table for the next SuperBlock is
copied into the Stage Buffer, overwriting the Table for the
previous SuperBlock, and the process begins again for the
new SuperBlock.

If the newly incremented SuperBlock is greater than p
(“yes” outcome to Step 5822), the last SuperBlock has been
evaluated, and the recovery of the SuperBlock Metadata
Tables, Forward Table and Reverse Table for this Flash
Group is complete.

Returning to Step 5805, if the analysis of the Open and
Closed Flags indicate that the SuperBlock was open at the
time of power loss (Open Flag set, Closed Flag not set), the
SuperBlock Metadata Table stored in flash for this Super-
Block will not be useful in determining which LBAs have
been assigned to the SuperPages of the SuperBlock, since
this information is only stored into flash when the Super-
Block is closed. For this reason, the SuperBlock Metadata
Table must be rebuilt using the SuperPage Metadata stored

20

25

30

35

40

45

50

55

60

65

92
in flash. Once the Table is rebuilt, the SuperBlock can then
be analyzed using the same methodology as is used for all
other SuperBlocks.

In Step 5823, the current time is written into SuperBlock
Metadata Table Time Stamp Field 3506. Although this Time
Stamp does not reflect the time when the SuperBlock was
closed (since the SuperBlock was not closed at the time of
power loss), the current time is guaranteed to be later than
the Reverse Table Time Stamp value for any other Super-
Block. Thus, if the same LBA is written in the open
SuperBlock and in a closed SuperBlock, the time stamp
value for the open SuperBlock will be later than that for the
closed SuperBlock, thus causing the SuperPage for the open
SuperBlock to be accepted as storing the valid contents for
the LBA. This is the correct result, since information in the
open SuperBlock is by definition later than information in
previously closed SuperBlocks. Note that, after the rebuild
procedure is complete, the open SuperBlock will remain
open. When the SuperBlock is closed, the SuperBlock
Metadata Table Time Stamp value will be overwritten with
the time of closing prior to the Table being stored back into
flash and therefore will be correct.

In Step 5824, the Bank is set to 0, thus setting up a loop
through all of the Blocks (one per Bank) of the SuperBlock.

In Step 5825, the SuperPage is set to 0, thus setting up a
loop through all of the SuperPages in the Block.

In Step 5826, SuperPage Metadata 1401 for the current
SuperPage is copied from flash to the Stage Buffer.

In Step 5827, a check is made to determine if the
SuperPage was written prior to the power loss. A SuperPage
that has been written will include valid Metadata.

If the SuperPage was written (“yes” outcome to Step
5827), in Step 5828 the SuperPage Metadata is used to
populate the entry for that SuperPage in the SuperBlock
Metadata Table. SPage Index Field 1402 is used for the
SuperBlock Metadata Table LBA Field. Time Stamp Field
1403 is used for the SuperBlock Metadata Table SuperPage
Time Stamp Field. Note that the SuperBlock Metadata
Defect Field for the SuperPage already contains valid infor-
mation, since defect information is maintained in the flash
version of the Metadata Table for erased SuperBlocks, and
is therefore valid when the Metadata Table for the open
SuperBlock is copied from Flash to the Stage Buffer.

Steps 5829-5832 operate identically to Steps 5817-5820.
As is explained above, these steps control the looping
process, and insure that each SuperPage of each Block is
evaluated.

Note that if the current SuperPage was not written (“no”
outcome to Step 5827), processing skips to Step 5831, at
which the Bank is incremented. Because SuperPages of a
SuperBlock are allocated in order on each Bank, if a
SuperPage on a Bank is unwritten, this means that subse-
quent SuperPages on that Bank will also be unwritten.

Once the last Block in the SuperBlock Metadata Table has
been evaluated (“yes” outcome to Step 5832), the rebuild
process for the Table is complete, and processing returns to
Step 5806, at which the Time Stamp information for the
Metadata Table is copied into the Reverse Table, thereby
insuring that SuperPages in this SuperBlock will always be
treated as valid if a conflict is found with any other Super-
Block. Processing then continues from Step 5806 for this
SuperBlock.

VI. MLC Flash

Although most of the embodiments described herein use
SLC flash memory, SSD Controller 106 is well-adapted to

US 9,483,210 B2

93

the use of MLC flash. ML.C flash stores multiple bits per
flash cell, and is therefore able to store a larger volume of
data. MLC is also lower cost per unit of storage volume.

MLC suffers, however, from several problems that render
it difficult to use in high-performance, high-reliability appli-
cations such as datacenters. First, MLC is slower than SLC.
As is described above, an ML.C write may take 100 micro-
seconds longer than an SLC write, and some MLC is even
lower performance.

Second, MLC flash tends to have less endurance than
SLC. In general, SLC flash is specified to handle 100,000
erase cycles without failure, whereas current MLC flash
technology is only specified to handle 10,000 erase cycles.

Third, MLC flash is subject to a higher rate of data errors
than SLC.

SSD Controller 106 is designed to operate with MLC
flash at a very high performance level, and with minimal or
no changes to the Controller software or hardware.

First, as is explained above in connection with FIG. 44,
the parallel pipelining used in SSD Controller 106 masks
write latency, so that, although an MLC write takes longer
than an SLC write, over a series of writes most of this
difference is masked, since SSD Controller 106 can break a
write down into page-sized chunks and handle those chunks
in a parallel and overlapping fashion.

Second, the flash memory architecture of SSD Controller
106 tends to move newly written data around in a relatively
large memory space, thereby minimizing the effect of erase
cycle limitations, even without the use of special wear
leveling techniques. As is described above, a new write is
made to a different SuperPage than the SuperPage that holds
the existing data, and the new SuperPage may be on a
different block than the original SuperPage. This tends to
move data around within a Flash Group, so that, if particular
elements of data are erased relatively frequently, these erases
will be spread out across a large number of physical flash
pages.

In a different embodiment, SSD Controller 106 could use
explicit wear leveling techniques. For example, in identify-
ing SuperBlocks to be subjected to garbage collection, SSD
Controller 106 could preferentially choose SuperBlocks
with a relatively low erase count identified in Erase Count
Field 3507 (see FIG. 35). The Erase Count information for
each SuperBlock could be stored in a row in the Reverse
Table, in a manner similar to Time Stamp Field 3405. SSD
Controller 106 could use Erase Count information to break
garbage collection ties between SuperBlocks with the same
number of valid SuperPages (see discussion in connection
with FIG. 56), or could use the Erase Count information to
divide SuperBlocks into categories, with SuperBlocks hav-
ing an Erase Count that approaches a danger zone (e.g.,
5,000 erases) being preferentially chosen as “garbage col-
lection” SuperBlocks (as is described above in connection
with FIG. 56, in one embodiment valid data from Super-
Blocks that are being erased in connection with a garbage
collection operation are stored in a garbage collection Super-
Block, resulting in relatively fewer data invalidations on the
garbage collection SuperBlock, such that erasures of that
SuperBlock will tend to occur relatively less frequently).
Similarly, as is described above, SuperBlocks with an FErase
Count value that exceeds a threshold could be identified so
that they are preferentially not chosen for normal garbage
collection, thereby reducing additional wear on such Super-
Blocks.

While the embodiments of the various aspects of the
present invention that have been described are the preferred
implementation, those skilled in the art will understand that

5

20

25

30

35

40

45

50

55

60

65

94

variations thereof may also be possible. Therefore, the
invention is entitled to protection within the full scope of the
appended claims.
What is claimed is:
1. A method comprising:
receiving one or more host commands over a host inter-
face circuit in a storage controller from one or more
hosts configured to communicate with the storage con-
troller, the storage controller configured to include one
or more storage processors and further configured to be
coupled to a flash memory module having multiple
flash memory groups, each flash memory group corre-
sponding to a distinct flash memory port in the storage
controller, each flash memory port having a flash
interface processor;
creating with the one or more storage processors a plu-
rality of transfer requests from a host command of the
one or more host commands, each respective transfer
request to perform a portion of the host command and
being associated with a respective data structure,
wherein a state variable in the respective data structure
indicates a status of the respective transfer request;

for each transfer request of the plurality of transfer
requests, assigning the transfer request to a respective
worklist associated with a respective flash interface
processor of a respective flash memory port, including
assigning the plurality of transfer requests to two or
more respective worklists associated with two or more
flash interface processors of two or more flash memory
ports; and

for each flash interface processor that was assigned a

respective transfer request in its respective worklist,
performing a task associated with the respective trans-
fer request in the respective worklist.

2. The method of claim 1, wherein the host interface
circuit is configured to receive a plurality of host commands
from a plurality of hosts coupled to the storage controller,
the respective worklists including transfer requests corre-
sponding to host commands from at least two of the plurality
of hosts.

3. The method of claim 2, further comprising performing
coherency checks on the plurality of host commands
received from the plurality of hosts.

4. The method of claim 1, wherein performing a task
associated with the respective transfer request in the respec-
tive worklist comprises:

checking the state variable in the respective data structure

associated with the respective transfer request;

when the state variable is set to command, initiating a task

associated with the respective transfer request, and
updating the state variable in the data structure to
indicate a resource is required;

when the state variable indicates the resource is required,

checking if the resource is available; and

when the resource is available, setting or returning a value

to indicate that the flash memory port is busy, and
completing the task associated with the respective
transfer request.

5. The method of claim 4, wherein initiating a task
associated with the respective transfer request comprises
initiating a DMA transfer.

6. The method of claim 1, wherein performing a task
associated with the respective transfer request in the respec-
tive worklist comprises:

creating with the flash interface processor a plurality of

page requests from the transfer request, each page
request to perform a portion of the transfer request; and

US 9,483,210 B2

95

for each page request of the plurality of page requests,
reading from or writing to a segment of the flash
memory group indicated by the respective page
request, the flash memory group corresponding to the
flash memory port having the flash interface processor.

7. A storage controller circuit comprising:

a host interface circuit configured to receive one or more
host commands from one or more hosts configured to
communicate with the storage controller;

one or more storage processors to process the one or more
host commands; and

a plurality of flash memory ports corresponding to a
plurality of flash memory groups in a flash memory
module, each flash memory port having a flash inter-
face processor;

the one or more storage processors configured to create a
plurality of transfer requests from a host command of
the one or more host commands, each respective trans-
fer request to perform a portion of the host command
and being associated with a respective data structure,
wherein a state variable in the respective data structure
indicates a status of the respective transfer request;

the one or more storage processors further configured to
assign each one of the plurality of transfer requests to
a respective worklist associated with a respective flash
interface processor of a respective flash memory port,
wherein the one or more storage processors are con-
figured to assign the plurality of transfer requests to two
or more respective worklists associated with two or
more flash interface processors of two or more flash
memory ports; and

each of the flash interface processors configured for
performing a task associated with the respective trans-
fer request in the respective worklist.

8. The storage controller circuit of claim 7, wherein the
host interface circuit is configured to receive a plurality of
host commands from a plurality of hosts coupled to the
storage controller, the respective worklists including transfer
requests corresponding to host commands from at least two
of the plurality of hosts.

9. The storage controller circuit of claim 8, further com-
prising a command parser to perform coherency checks on

20

25

30

35

40

96

the plurality of host commands received from the plurality
of hosts, wherein the command parser is coupled to the one
or more storage processors.

10. The storage controller circuit of claim 7, wherein
performing a task associated with the respective transfer
request in the respective worklist comprises:

checking the state variable in the respective data structure

associated with the respective transfer request;

when the state variable is set to command, initiating a task

associated with the respective transfer request, and
updating the state variable in the data structure to
indicate a resource is required;

when the state variable indicates the resource is required,

checking if the resource is available; and

when the resource is available, setting or returning a value

to indicate that the flash memory port is busy, and
completing the task associated with the respective
transfer request.

11. The storage controller circuit of claim 10, wherein
initiating a task associated with the respective transfer
request comprises initiating a DMA transfer.

12. The storage controller circuit of claim 7, wherein
performing a task associated with the respective transfer
request in the respective worklist comprises:

creating with the flash interface processor a plurality of

page requests from the transfer request, each page
request to perform a portion of the transfer request; and
for each page request of the plurality of page requests,
reading from or writing to a segment of the flash
memory group indicated by the respective page
request, the flash memory group corresponding to the
flash memory port having the flash interface processor.

13. The storage controller circuit of claim 7, wherein the
one or more storage processors further include command
distribution logic comprising a plurality of processors con-
figured to create the plurality of transfer requests and to
assign the plurality of transfer requests to the respective
worklists.

14. The storage controller circuit of claim 7, further
comprising a command parser to perform coherency checks
on the one or more host commands received from the one or
more hosts, wherein the command parser is coupled to the
one or more storage processors.

#* #* #* #* #*

