
(12) United States Patent
Olbrich et al.

US00948321 OB2

US 9.483.210 B2
*Nov. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54) FLASH STORAGE CONTROLLER EXECUTE USPC .. 711/103
LOOP See application file for complete search historv. pp p ry

(71) Applicant: split Enterprise IP LLC, Milpitas, (56) References Cited

(72) Inventors: Aaron K. Olbrich, Morgan Hill, CA U.S. PATENT DOCUMENTS
S; puglas A. Prins, Laguna Hills, 4,173,737 A 1 1/1979 Skerlos et al.

(US) 4,888,750 A 12/1989 Kryder et al.
(73) Assignee: SANDISK TECHNOLOGIES LLC, (Continued)

Plano, TX (US)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS

past isis, adjusted under 35 EP 1 299 800 4/2003
.S.C. 154(b) by 0 days. EP 1 465. 203 A1 10, 2004

This patent is Subject to a terminal dis- (Continued)
claimer.

(21) Appl. No.: 14/877,812 OTHER PUBLICATIONS

(22) Filed: Oct. 7, 2015 Chanik Park; Talawar, P.; Daesik Won; MyungJin Jung; JungBeen
(65) Prior Publication Data Im; Suksan Kim; Youngjoon Choi, "A High Performance Controller

for NAND Flash-based Solid State Disk (NSSD). Non-Volatil
US 2016/0034227 A1 Feb. 4, 2016 SmiloNN, WNo. NS NSW s

Related U.S. Application Data 21st, vol., No., pp. 17.20, Feb. 12-16, 2006.*

(63) Continuation of application No. 13/887,018, filed on (Continued)
May 3, 2013, now Pat. No. 9,158,677, which is a
continuation of application No. 12/082,223, filed on Primary Examiner — David X Yi
Apr. 8, 2008, now Pat. No. 8,621,138. Assistant Examiner — Ramon A Mercado

(60) Provisional application No. 61/017,123, filed on Dec. (74) Attorney, Agent, or Firm — Morgan, Lewis &
27, 2007. Bockius LLP

(51) Int. Cl. (57) ABSTRACT
G06F 3/06 (2006.01) A storage controller is provided that contains multiple
G06F 3/16 (2006.01) processors. In some embodiments, the storage controller is

(Continued) coupled to a flash memory module having multiple flash
(52) U.S. Cl. memory groups, each flash memory group corresponding to

CPC G06F 3/0659 (2013.01); G06F 3/0604 a distinct flash port in the storage controller, each flash port
(2013.01); G06F 3/0679 (2013.01); comprising an associated processor. Each processor handles
(Continued) a portion of one or more host commands, including reads

and writes, allowing multiple parallel pipelines to handle
(58) Field of Classification Search one or more host commands simultaneously.

CPC G06F 12/0246; G06F 13/1657; G11C
7/1051; G11C 7/1063 14 Claims, 70 Drawing Sheets

DATA PARAMO7

FLASH :
PORTO --
304

FASHSAGE:
BUFFERO

RAN
CONTROLER

37

a a a - was w - - - - -

FLASHSIAGE:
BFFER HOST

NTERFACE

SHARED

CONMAN
DISTR8UON FASHSAGE:

BUFFER7

US 9.483.210 B2
Page 2

(51) Int. Cl. 7,043,505 B1 5/2006 Teague et al.
GITC 7/10 (2006.01) TGB 38: Shire a a

3A 3%. 888 7,102,860 B2 9/2006 Wenzel
7,111,293 B1 9/2006 Hersh et al.

G06F 3/28 (2006.01) 7,126,873 B2 10/2006 See et al.
(52) U.S. Cl. 7,133,282 B2 11/2006 Sone

CPC G06F12/0246 (2013.01); G06F 13/1657 7:337 R 1399; S. et al.
(2013.01); G06F 13/28 (2013.01); GIIC 75853.5 567 Stetset al.

7/1051 (2013.01); GIIC 7/1063 (2013.01); 7,184.446 B2 2/2007 Rashid et al.
GIIC 16/10 (2013.01); G06F 2212/720.1 7.212,440 B2 5/2007 Gorobets

2013.O1 7,275,170 B2 9/2007 Suzuki ()
7,295,479 B2 11/2007 Yoon et al.
7,328,377 B1 2/2008 Lewis et al.

(56) References Cited 7,516,292 B2 4/2009 Kimura et al.
7,523,157 B2 4/2009 Aguilar, Jr. et al.

U.S. PATENT DOCUMENTS 7,527,466 B2 5/2009 Simmons
7,529,466 B2 5, 2009 Takahashi

4,916,652. A 4, 1990 Schwarz et al. - 4-1 asni 7,533,214 B2 5/2009 Aasheim et al.
5,129,089 A 7/1992 Nielsen 7,546,478 B2 6/2009 Kubo et al.
5,270,979 A 12/1993 Harari et al. 7,566,987 B2 7/2009 Black et al.
5,329,491. A 7/1994 Brown et al. 7,571,277 B2 8/2009 Mizushima
38. A E. Belle 7,574,554 B2 8/2009 Tanaka et al.
5.488.702 A 1/1996 Byers et al 738 R: 2. SE et Fa sys- WW-1 Cai (a.

5,519,847 A 5/1996 Fandrich G11C 16.10 7,681, 106 B2 3/2010 Jarrar et al.

5.530,705. A 6, 1996 Malone 365,185.33 7,707,481 B2 4/2010 Kirschner et al.
- - W 7,761,655 B2 7/2010 Mizushima et al.

5,537,555 A * 7/1996 Landry G06F 1886 7,765.454 B2 7/2010 Passint

5,551,003 A 8, 1996 Mattson et al. 7.3 R: 388 S", al
5,636,342 A 6/1997 Jeffries sy w v .

5,657,332 A 8/1997 Auclair et al. SE: 58: S.A.
SIA 2 Stal 7.913,022 B1* 3/2011 Baxter G06F 13/14

w sy 326/38
5.765,185. A 6, 1998 Lambrache et al. - 7.925.960 B2 4, 2011 Ho et al.
5,890,193 A 3/1999 Chevallier - 4 - o et a f h 7,934,052 B2 4/2011 Prins et al.
S.A. E. E.", 7.945,825 B2 5/2011 Cohen et al.

- - w 7.971,112 B2 6, 2011 Murat
5,943,692 A 8/1999 Marberg et al. - J. urata
5,946,714. A 8/1999 Miyauchi 7.978,516 B2 7/2011 Olbrich

- Iw 7.996,642 B1 8, 2011 Smith

6,006,345 A 12/1999 Berry, Jr. W . . .
6.016.560 A 1/2000 Wada et all 8,042,011 B2 10/2011 Nicolaidis et al.
E. A 568 ER." 8,250,380 B2 8/2012 Guyot
6.104.304 A 8/2000 Clarket al 5. E 658. SME,
6,119,250 A 9/2000 Nishimura et al. 4- - - ommer et al.
6.260,120 B1 7/2001 Blumenau et all 8,261,020 B2 9/2012 Krishnaprasad et al.

4. WW 8.312,349 B2 11/2012 Reche et al.
6,295,592 B1 9/2001 Jeddeloh et al S. 55; 45.5 S".
6,311,263 B1 10/2001 Barlow et al. 8.429.436 B2 4/2013 Fillinoimetal 6,408,394 B1 6/2002 Vander Kamp et al. ; : 3 Agret al.
6,412,042 B1 6, 2002 Paterson et al. 8.453,022 B2 5, 2013 Katz

... R. 39: sparvar 8,510,499 Bi 8.2013 Banerjee
I I- ang 8.554.984 B2 10, 2013 Yano et al.

6,484.224 B1 11/2002 Robins et al. 835 36 E."
6,564,285 B1* 5/2003 Mills G06F '98 8,634.248 B1 1/2014 Sprouse et al.

8,694.854 B1 4/2014 Dar et al.
6,647.387 B1 1 1/2003 McKean et al. 8734,789 B2 5/2014 Kite al.
g R 3. Stil 8,832,384 B1 9/2014 de la Iglesia
aw 8,885.434 B2 11/2014 K

6,810,440 B2 10/2004 Micalizzi, Jr. et al. 8,910.030 B3 2/2014 Goel
6,836,808 B2 12/2004 Bunce et al. 8,923,066 B1 12/2014 Subramanian et al.
6,836,815 B1 12/2004 Purcell et al. 9,043,517 B1 5/2015 Sprouse et al.

3. R $38 NEe al 9,128,690 B2 9/2015 Lotzenburger et al.
ww- 9,329,789 B1 5/2016 Chu et al.
862, R: 398 tly al. 2001/0026949 A1 10/2001 Ogawa et al.
6966,006 B2 11/2005 Pacheco et al. 2001/0050824 A1 12/2001 Buch
6.978.343 B1 12/2005 Ichiriu 2002/0024846 A1 2/2002 Kawahara et al.
6.980985 B1 12/2005 Amer Yahia et al. 2002/0032891 A1 3, 2002 Yada et al.
6,981,205 B2 12/2005 Fukushima et al. 2002fOO36515 A1 3, 2002 Eldridge et al.
6.988,171 B2 1/2006 Beardsley et al. 2002/0083299 A1 6/2002 Van Huben et al.
7,020,017 B2 3, 2006 Chen et al. 2002.0099904 A1 7/2002 Conley
7,024,514 B2 4/2006 Mukaida et al. 2002/0116651 A1 8, 2002 Beckert et al.
7,028, 165 B2 4/2006 Roth et al. 2002/O122334 A1 9, 2002 Lee et al.
7,032,123 B2 4/2006 Kane et al. 2002/0152305 A1 10, 2002 Jackson et al.

US 9.483.210 B2
Page 3

(56) References Cited 2006/0244049 A1 11/2006 Yaoi et al.
2006/0259528 A1 11/2006 DuSSudet al.

U.S. PATENT DOCUMENTS 2006/0291301 Al 12/2006 Ziegelmayer
2007/0011413 A1 1/2007 Nonaka et al.

2002/0162075 A1 10/2002 Talagala et al. 2007/0O33376 A1 2/2007 Sinclair et al.
2002fO165896 A1 11, 2002 Kim 2007/005844.6 A1 3/2007 Hwang et al.
2003/0041299 A1 2/2003 Kanazawa et al. 2007, OO61597 A1 3/2007 Holtzman et al.
2003.0043829 A1 3/2003 Rashid 2007/0076479 A1 4/2007 Kim et al.
2003/0079172 A1 4/2003 Yamagishi et al. 2007/0081408 Al 42007 Kwon et al.
2003, OO88805 A1 5/2003 Majni et al. 2007/0O83697 A1 4/2007 Birrell et al.
2003/0093.628 A1 5, 2003 Matter et al. 2007/008871.6 A1 4/2007 Brumme et al.
2003/0163594 A1 8/2003 Aasheim et al. 2007/0091677 A1 4, 2007 Lasser et al.
2003/0163629 A1* 8/2003 Conley G11C 16.10 2007/0101096 Al 5/2007 Gorobets

T11 103 2007/0106679 A1 5, 2007 Perrin et al.
2003/0188045 A1 * 10, 2003 Jacobson G06F 3.0601 2007/0113019 A1 5, 2007 Beukema

T10/1 2007/01333 12 A1 6/2007 Roohparvar
2003. O189856 A1 10, 2003 Cho et al. 2007/O147113 A1 6/2007 Mokhlesi et al.
2003/0.198100 A1 10, 2003 Matsushita et al. 2007. O150790 A1 6, 2007 Gross et al.
2003/0204341 A1 10, 2003 Guliani et al. 2007. O156842 A1 7/2007 Vermeulen et al.
2003/0212719 A1 11/2003 Yasuda et al. 2007/0174579 A1 7/2007 Shin
2003,0225961 A1 12, 2003 Chow et al. 2007,0180188 A1 8/2007 Fujibayashi et al.
2004.0024957 A1* 2, 2004 Lin G06F11? 1068 2007,0180346 A1 8, 2007 Murin

T11 103 2007/019 1993 A1 8/2007 Wyatt
2004/0024963 A1 2/2004 Talagala et al. 2007/02O1274 A1 8, 2007 Yu et al.
2004/0057575 A1 3/2004 Zhang et al. 2007/0204128 A1 8, 2007 Lee et al.
2004.0062157 A1 4/2004 Kawabe 2007/02O8901 A1 9, 2007 Purcell et al.
2004/0073829 A1 4/2004 Olarig 2007/0234143 Al 10/2007 Kim.
2004/0085849 A1 5/2004 Myoung et al. 2007.0245061 A1 10, 2007 Harriman
2004/O114265 A1 6, 2004 Talbert 2007/0245099 A1 10/2007 Gray et al.
2004.014371.0 A1 7/2004 Walmsley 2007/0263.442 A1 11/2007 Cornwall et al.
2004/O148561 A1 7/2004 Shen et al. 2007,0268754 A1 11/2007 Lee et al.
2004/O153902 A1 8, 2004 Machado et al. 2007/0277036 A1 11/2007 Chamberlain et al.
2004/0158775 A1 8/2004 Shibuya et al. 2007/0279988 Al 12/2007 Nguyen
2004/0167898 A1 8/2004 Margolus et al. 2007,0291556 A1 12/2007 Kamei
2004/O181734 A1 9, 2004 Saliba 2007,0294496 A1 12/2007 GOSS et al.
2004/01997 14 A1 10, 2004 Estakhri et al. 2007/0300130 Al 12/2007 Gorobets
2004/0210706 A1 10, 2004. In et al. 2008 OO13390 A1 1/2008 Zipprich-Rasch
2004/0237018 A1 1 1/2004 Riley 2008, OO19182 A1 1/2008 Yanagidaira et al.
2005, OO6045.6 A1 3, 2005 Shrader et al. 2008/0022163 A1 1/2008 Tanaka et al.
2005, OO605O1 A1 3/2005 Shrader 2008/0028275 A1 1/2008 Chen et al.
2005, OO73884 A1 4/2005 Gonzalez et al. 2008.0043871 A1 2/2008 Latouche et al.
2005, 0108588 A1 5, 2005 Yuan 2008/0052446 A1 2/2008 Lasser et al.
2005/0114587 A1 5, 2005 Chou et al. 2008/005.2451 A1 2/2008 Pua et al.
2005/0138442 Al 6/2005 Keller, Jr. et al. 2008.0056005 A1 3, 2008 Aritome
2005. O144358 A1 6/2005 Conley et al. 2008/005.9602 A1 3, 2008 Matsuda et al.
2005/0144361 A1 6/2005 Gonzalez et al. 2008, 0071971 A1 3, 2008 Kim et al.
2005. O144367 A1 6, 2005 Sinclair 2008.OO77841 A1 3, 2008 Gonzalez et al.
2005/01445 16 A1 6/2005 Gonzalez et al. 2008/0077937 Al 3, 2008 Shin et al.
2005/O154825 A1 7, 2005 Fair 2008/O112226 A1 5/2008 Mokhlesi
2005/0172O65 A1 8/2005 Keays 2008. O141043 A1 6/2008 Flynn G06F 1 183
2005, 01931 61 A1 9, 2005 Lee et al. T13, 193
2005/0201148 A1 9, 2005 Chen et al. 2008/0144371 A1 6/2008 Yeh et al.
2005/0210348 A1 9, 2005 Totsuka 2008. O147714 A1 6/2008 Breternitz et al.
2005/0231765 A1 10, 2005 So et al. 2008. O147964 A1 6/2008 Chow et al.
2005/0249013 A1 11/2005 Janzen et al. 2008/0147998 A1 6/2008 Jeong
2005/025 1617 A1 11, 2005 Sinclair et al. 2008/0148124 A1 6/2008 Zhang et al.
2005/0257120 A1* 11, 2005 Gorobets G11C 7/1039 2008/0163030 Al 7/2008 Lee

T14f763 2008/O168191 A1 7/2008 Biran et al.
2005/0273560 A1 12, 2005 Hulbert et al. 2008. O168319 A1 7, 2008 Lee et al.
2005/0281088 A1 12/2005 Ishidoshiro et al. 2008. O170460 A1 7, 2008 Oh et al.
2005/02893 14 A1 12/2005 AduSumilli et al. 2008/0180084 A1 7/2008 Dougherty et al.
2006/0010174 A1 1/2006 Nguyen et al. 2008/0209282 A1 8/2008 Lee et al.
2006/0039.196 A1 2/2006 Gorobets et al. 2008/0229000 Al 9, 2008 Kim
2006, OO39227 A1 2/2006 Lai et al. 2008/0229.003 A1 9, 2008 Mizushima et al.
2006.0053246 A1 3, 2006 Lee 2008/02291.76 A1 9, 2008 Arnez et al.
2006/0062054 A1 3f2006 Hamilton et al. 2008/0270680 A1 10/2008 Chang
2006/0069932 A1 3f2006 Oshikawa et al. 2008/0282128 Al 11/2008 Lee et al.
2006, OO85671 A1 4/2006 Majni et al. 2008/0285351 A1 11/2008 Shick et al.
2006/0087893 A1 4/2006 Nishihara et al. 2008/0313132 Al 12/2008 Hao et al.
2006/0103480 A1 5, 2006 Moon et al. 2009,0003046 A1 1/2009 Nirschl et al.
2006, O107181 A1 5, 2006 Dave et al. 2009/0003058 A1 1/2009 Kang
2006/0136570 A1* 6/2006 Pandya GO6F 17,30985 2009/00 1921.6 A1 1/2009 Yamada et al.

709/217 2009/0031083 A1 1/2009 Willis et al.
2006/0136655 A1 6/2006 Gorobets et al. 2009 OO37652 A1 2/2009 Yu et al.
2006/013.6681 A1 6/2006 Jain et al. 2009/0070608 A1 3/2009 Kobayashi
2006/0156177 A1 7/2006 Kottapalli et al. 2009/O116283 A1 5.2009 Ha et al.
2006, O195650 A1 8, 2006 Su et al. 2009/0125671 A1 5/2009 Flynn et al.
2006/0209592 A1 9, 2006 Li et al. 2009, O158288 A1 6, 2009 Fulton et al.
2006/0224841 A1 10, 2006 Terai et al. 2009, O168525 A1 7, 2009 Olbrich et al.

US 9.483.210 B2
Page 4

(56) References Cited 2011/0271040 A1 11/2011 Kamizono
2011 (0283119 A1 11/2011 SZu et al.

U.S. PATENT DOCUMENTS 2011 (0289 125 A1 11/2011 Guthery
2011/0320733 A1 12/2011 Sanford et al.

2009,0172258 A1 7, 2009 Olbrich et al. 2012/0011393 A1 1/2012 Roberts et al.
2009,0172259 A1 7, 2009 Prins et al. 2012/0017053 A1 1/2012 Yang et al.
2009,0172260 A1 7, 2009 Olbrich et al. 2012/0023144 A1 1/2012 Rub
2009,0172261 A1 7, 2009 Prins et al. 2012/0026799 A1 2/2012 Lee
2009,0172262 A1 7, 2009 Olbrich et al. 2012/0054414 A1 3/2012 Tsai et al.
2009/01723O8 A1 7/2009 Prins et al. 2012fOO63234 A1 3/2012 Shiga et al.
2009,0172335 A1 7, 2009 Kulkarni et al. 2012/0072639 A1 3/2012 Goss et al.
2009,0172499 A1 7, 2009 Olbrich et al. 2012, 0096,217 A1 4, 2012 Son et al.
2009/O193058 A1 7, 2009 Reid 2012/0110250 A1 5/2012 Sabbag et al.
2009/0204823 A1 8/2009 Giordano et al. 2012/01 17317 AI 52012 Sheffler
2009, 0207660 A1 8/2009 Hwang et al. 2012/O117397 A1 5, 2012 Kolvick et al.
2009/0213649 A1 8/2009 Takahashi et al. 2012/0124273 Al 52012 Goss et al.
2009,02491.60 A1 10, 2009 Gao et al. 2012/0131286 A1 5, 2012 Faith et al.
2009,0268521 A1 10, 2009 Ueno et al. 2012/O151124 A1 6, 2012 Baek et al.
2009,0292972 A1 11, 2009 Seol et al. 2012. O151253 A1 6, 2012 Horn
2009,0296466 A1 12, 2009 Kim et al. 2012. O151294 A1 6, 2012 Yoo et al.
2009,0296486 A1 12, 2009 Kim et al. 2012/0173797 A1 7, 2012 Shen
2009/0310422 A1 12/2009 Edahiro et al. 2012/0173826 Al 7/2012 Takaku
2009.03.19864 A1 12, 2009 Shrader 2012/0185750 A1 7/2012 Hayami
2010.0002506 A1 1/2010 Cho et al. 2012/0195126 A1 8/2012 Roohparvar
2010, 0008175 A1 1/2010 Sweere et al. 2012/02038.04 A1 8/2012 Burka et al.
2010/OO11261 A1 1/2010 Cagno et al. 2012/0203951 A1 8, 2012 Wood et al.
2010.0020620 A1 1/2010 Kim et al. 2012/0210.095 A1 8, 2012 Nellans et al.
2010, 0037012 A1 2/2010 Yano et al. 2012/0216079 A1 8, 2012 Fai et al.
2010.0054034 A1 3/2010 Furuta et al. 2012fO233391 A1 9/2012 Frost et al.
2010.006 1151 A1 3f2010 Miwa et al. 2012/0236658 A1 9/2012 Byom et al.
2010/009 1535 A1 4/2010 Sommer et al. 2012fO239858 A1 9/2012 Melik-Martirosian
2010, 0103737 A1 4, 2010 Park 2012fO239868 A1 9/2012 Ryan et al.
2010/0110798 A1 5, 2010 Hoei et al. 2012,0239976 A1 9/2012 Cometti et al.
2010/01 15206 A1 5/2010 de la Iglesia et al. 2012,0246204 Al 9, 2012 Nalla et al.
2010/011.8608 A1 5/2010 Song et al. 2012fO2598.63 A1 10, 2012 Bodwin et al.
2010, 0138592 A1 6, 2010 Cheon 2012/0275466 A1 11/2012 Bhadra et al.
2010.01536.16 A1 6/2010 Garratt 2012,0278564 A1 11/2012 GOSS et al.
2010, 0161936 A1 6/2010 Royer et al. 2012/0284.574 A1 11/2012 Avila et al.
2010/0174959 A1 7, 2010 No et al. 2012fO284587 A1 11, 2012 Yu et al.
2010.0185807 A1 7/2010 Meng et al. 2012fO297 122 A1 11/2012 Gorobets et al.
2010, 0199027 A1 8, 2010 Pucheral et al. 2013,0007073 A1 1/2013 Varma
2010, 0199.125 A1 8, 2010 Reche 2013,0007343 A1 1/2013 Rub et al.
2010, 0199138 A1 8, 2010 Rho 2013,0007543 A1 1/2013 Goss et al.
2010/02021.96 A1 8, 2010 Lee et al. 2013, OO24735 A1 1/2013 Chung et al.
2010/0202239 A1 8/2010 Moshayedi et al. 2013,0031438 A1 1/2013 Hu et al.
2010/0208521 A1 8, 2010 Kim et al. 2013,0036418 A1 2/2013 Yadappanavar et al.
2010/0257379 A1 10/2010 Wang et al. 2013,0038380 A1 2/2013 Cordero et al.
2010, O262889 A1 10, 2010 Bains 2013,0047045 A1 2/2013 Hu et al.
2010/0281207 A1 11, 2010 Miller et al. 2013,0058145 A1 3, 2013 Yu et al.
2010/0281342 A1 11/2010 Chang et al. 2013,0070527 A1 3/2013 Sabbag et al.
2010/0306222 A1 12/2010 Freedman et al. 2013/0073798 A1 3/2013 Kang et al.
2010/0332858 A1 12/2010 Trantham et al. 2013,0073924 A1 3/2013 D'Abreu et al.
2010/0332863 A1 12/2010 Johnston 2013,0079942 A1 3/2013 Smola et al.
2011/0010514 A1 1/2011 Benhase et al. 2013/00861.31 A1 4/2013 Hunt et al.
2011/0022779 A1 1/2011 Lund et al. 2013/0086132 Al 4, 2013 Hunt et al.
2011/0022819 A1 1/2011 Post et al. 2013,0094288 A1 4/2013 Patapoutian et al.
2011/0051513 A1 3/2011 Shen et al. 2013/0111279 A1 5, 2013 Jeon et al.
2011/0066597 A1 3f2011 Mashtizadeh et al. 2013/0111298 A1 5, 2013 Seroff et al.
2011/0066806 A1 3/2011 Chhugani et al. 2013/0117606 A1 5, 2013 Anholt et al.
2011 OO723O2 A1 3/2011 Sartore 2013/O121084 A1 5, 2013 Jeon et al.
2011 0078407 A1 3/2011 Lewis 2013/O124792 A1 5/2013 Melik-Martirosian et al.
2011 0078496 A1 3f2011 Jeddelloh 2013/0124888 Al 52013 Tanaka et al.
2011 0083.060 A1 4, 2011 Sakurada et al. 2013/0128666 Al 52013 Avila et al.
2011/0099.460 A1 4/2011 Dusija et al. 2013, O132647 A1 5, 2013 Melik-Martirosian
2011/0113281 A1 5/2011 Zhang et al. 2013, O132652 A1 5, 2013 Wood et al.
2011 0122691 A1 5/2011 Sprouse 2013, O159609 A1 6, 2013 Haas et al.
2011 0131444 A1 6, 2011 Buch et al. 2013,0176784 A1 7/2013 Cometti et al.
2011 0138260 A1 6, 2011 Savin 2013,0179646 A1 7/2013 Okubo et al.
2011/0173378 A1 7, 2011 Filor et al. 2013,019 1601 A1 7/2013 Peterson et al.
2011/01792.49 A1 7, 2011 Hsiao 2013,0194865 A1 8, 2013 Bandic et al.
2011 01998.25 A1 8, 2011 Han et al. 2013,0194874 A1 8, 2013 Mu et al.
2011/0205823 A1 8, 2011 Hemink et al. 2013,0232289 A1 9/2013 Zhong et al.
2011 O213920 A1 9/2011 Frost et al. 2013/0238576 A1 9/2013 Binkert et al.
2011/0222342 A1 9/2011 Yoon et al. 2013,0254498 A1 9/2013 Adachi et al.
2011/0225.346 A1 9/2011 GOSS et al. 2013/0254507 A1 9/2013 Islam et al.
2011/0228601 A1 9/2011 Olbrich et al. 2013/0258738 A1 10/2013 Barkon et al.
2011 O231600 A1 9/2011 Tanaka et al. 2013,0265838 A1 10, 2013 Li
2011/0239.077 A1 9/2011 Bal et al. 2013/0282955 A1 10/2013 Parker et al.
2011/0264.843 A1 10/2011 Haines et al. 2013/0290611 A1 10/2013 Biederman et al.

US 9.483.210 B2
Page 5

(56) References Cited

U.S. PATENT DOCUMENTS

2013,0297613 A1
2013/030.1373 A1
2013/0304980 A1
2013,0343131 A1
2013,0346672 A1
2014/OO 13027 A1
2014/0013188 A1
2014/OO25864 A1
2014/0032890 A1
2014, OO63905 A1
2014, OO67761 A1
2014f0071761 A1
2014f0075133 A1
2014/OO82261 A1
2014f0082310 A1
2014f0082456 A1
2014/OO95775 A1
2014/0101389 A1
2014/O115238 A1
2014/O122818 A1
2014/O122907 A1
2014/O136762 A1
2014/O136883 A1
2014/0136927 A1
2014.0143505 A1
2014/O153333 A1
2014/O157065 A1
2014/O181458 A1
2014/02O1596 A1
2014/0223084 A1
2014/0244578 A1
2014/0258755 A1
2014/0269090 A1
2014/0310494 A1
2014/0359381 A1
2015.OO23097 A1
2015, 0037624 A1
2015. O153799 A1
2015. O1538O2 A1
2015,0212943 A1
2015,0268879 A1

11, 2013 Yu
11/2013 Tam
1 1/2013 Nachimuthu et al.
12/2013 Wu et al.
12/2013 Sengupta et al.
1/2014 Jannyavula Venkata et al.
1/2014 Wu et al.
1/2014 Zhang et al.
1/2014 Lee et al.
3/2014 Ahn et al.
3/2014 Chakrabarti et al.
3/2014 Sharon et al.
3/2014 Li et al.
3/2014 Cohen et al.
3/2014 Nakajima
3/2014 Liu
4/2014 Talagala et al.
4/2014 Nellans et al.
4/2014 Xi et al.
5/2014 Hayasaka et al.
5, 2014 Johnston
5, 2014 Li et al.
5, 2014 Cohen
5, 2014 Li et al.
5, 2014 Sim et al.
6, 2014 Avila et al.
6/2014 Ong
6, 2014 Loh et al.
7, 2014 Baum et al.
8, 2014 Lee et al.
8, 2014 Winkelstraeter
9, 2014 Stenfort
9/2014 Flynn et al.
10/2014 Higgins et al.
12/2014 Takeuchi et al.
1/2015 Khoueir et al.
2/2015 Thompson et al.
6/2015 Lucas et al.
6/2015 Lucas et al.
7/2015 Yang et al.
9, 2015 Chu

FOREIGN PATENT DOCUMENTS

EP 2 386 958 A1 11, 2011
EP 2 620 946 A2 T 2013
JP 2002-532806 10, 2002
WO WO 2007/080586 7/2007
WO WO 2008/O75292 6, 2008
WO WO 2008.121553 10, 2008
WO WO 2008.121577 10, 2008
WO WO 2009/058140 5, 2009
WO WO 2009/084724 T 2009
WO WO 2009/134576 11/2009
WO WO 2011/O24O15 3, 2011

OTHER PUBLICATIONS

Ashkenazi et al., “Platform independent overall security architec
ture in multi-processor system-on-chip integrated circuits for use in
mobile phones and handheld devices,” ScienceDirect, Computers
and Electrical Engineering 33 (2007), 18 pages.
Barr, “Introduction to Watchdog Timers.” Oct. 2001, 3 pgs.
Bayer, “Prefix B-Trees”, IP.com Journal, IP.com Inc., West Henri
etta, NY, Mar. 30, 2007, 29 pages.
Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”.
IBM Research Report, Jun. 23, 2009. http://domino research.ibm.
com/library/cyberdig.nsf/papers/
40B2C45876DOD747852575E100620CE7/SFile/rc24815.pdf, 13
pageS.
Canim, "Buffered Bloom Filters on Solid State Storage.”
ADMS*10, Singapore, Sep. 13-17, 2010, 8 pgs.

Kang, "A Multi-Channel Architecture for High-Performance
NAND Flash-Based Storage System.” J. Syst. Archit., vol. 53, Issue
9, Sep. 2007, 15 pgs.
Kim, “A Space-Efficient Flash Translation Layer for CompactFlash
Systems.” May 2002, IEEE vol. 48, No. 2, 10 pgs.
Lee et al., “A Semi-Preemptive Garbage Collector for Solid State
Drives.” Apr. 2011, IEEE, pp. 12-21.
Lu, “A Forest-structured Bloom Filter With Flash Memory,” MSST
2011, Denver, CO, May 23-27, 2011, article, 6 pgs.
Lu, “A Forest-structured Bloom Filter With Flash Memory,” MSST
2011, Denver, CO, May 23-27, 2011, presentation slides, 25 pgs.
McLean, “Information Technology—AT Attachment with Packet
Interface Extension.” Aug. 19, 1998, 339 pgs.
Microchip Technology, "Section 10. Watchdog Timer and Power
Saving Modes,” 2005, 14 pages.
Oracle, “Oracle9i: Database Concepts”. Jul. 2001, http://docs.
oracle.com/cd/A9 1202 01/901 doc/server,901/a88856.pdf. 49
pageS.
Parket al., “A High Performance Controller for NAND Flash-Based
Solid State Disk (NSSD).” Proceedings of Non-Volatile Semicon
ductor Memory Workshop, Feb. 2006, 4pgs.
Zeidman, 1999 Verilog Designer's Library, 9 pgs.
International Search Report and Written Opinion dated Jun. 6, 2013,
received in International Patent Application No. PCT/US2012/
059447, which corresponds to U.S. Appl. No. 13/602,031, 12 pgs
(Tai).
International Search Report and Written Opinion, dated Mar. 19.
2009 received in International Patent Application No. PCT/US08/
88133, which corresponds to U.S. Appl. No. 12/082,202, 7 pgs
(Prins).
International Search Report and Written Opinion dated Feb. 19.
2009, received in International Patent Application No. PCT/US08/
88236, which corresponds to U.S. Appl. No. 12/082,203, 7 pgs
(Olbrich).
International Search Report and Written Opinion dated Feb. 19.
2009, received in International Patent Application No. PCT/US08/
88217, which corresponds to U.S. Appl. No. 12/082,204, 7 pgs
(Olbrich).
International Search Report and Written Opinion, dated Mar. 19.
2009, received in International Patent Application No. PCT/US08/
88136, which corresponds to U.S. Appl. No. 12/082,205, 7 pgs
(Olbrich).
International Search Report and Written Opinion dated Feb. 18.
2009, received in International Patent Application No. PCT/US08/
88206, which corresponds to U.S. Appl. No. 12/082,206, 7 pgs
(Prins).
International Search Report and Written Opinion dated Feb. 27.
2009, received in International Patent Application No. PCT/
US2008/088154, which corresponds to U.S. Appl. No. 12/082,207,
8 pgs (Prins).
European Search Report dated Feb. 23, 2012, received in European
Patent Application No. 08866997.3, which corresponds to U.S.
Appl. No. 12/082,207, 6 pgs (Prins).
Office Action dated Apr. 18, 2012, received in Chinese Patent
Application No. 200880127623.8, which corresponds to U.S. Appl.
No. 12/082,207, 12 pgs (Prins).
Office Action dated Dec. 31, 2012, received in Chinese Patent
Application No. 200880127623.8, which corresponds to U.S. Appl.
No. 12/082,207, 9 pgs (Prins).
Notification of the Decision to Grant a Patent Right for Patent for
Invention dated Jul. 4, 2013, received in Chinese Patent Application
No. 200880127623.8, which corresponds to U.S. Appl. No.
12/082,207.1 pg (Prins).
Office Action dated Feb. 17, 2015, received in Chinese Patent
Application No. 2012 10334987.1, which corresponds to U.S. Appl.
No. 12/082,207, 9 pages (Prins).
Office Action dated Jul. 24, 2012, received in Japanese Patent
Application No. JP 2010-540863, 3 pgs (Prins).
International Search Report and Written Opinion dated Feb. 13,
2009, received in International Patent Application No. PCT/US08/
88.164, which corresponds to U.S. Appl. No. 12/082,220, 6 pgs
(Olbrich).

US 9.483.210 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

International Search Report and Written Opinion dated Feb. 26.
2009, received in International Patent Application No. PCT/US08/
88146, which corresponds to U.S. Appl. No. 12/082,221, 10 pgs
(Prins).
International Search Report and Written Opinion dated Feb. 19.
2009, received in International Patent Application No. PCT/US08/
88232, which corresponds to U.S. Appl. No. 12/082,222, 8 pgs
(Olbrich).
International Search Report and Written Opinion dated Feb. 13,
2009, received in International Patent Application No. PCT/US08/
88229, which corresponds to U.S. Appl. No. 12/082,223, 7 pgs
(Olbrich).
International Search Report and Written Opinion dated Oct. 27.
2011, received in International Patent Application No. PCT/
US2011/028637, which corresponds to U.S. Appl. No.
12/726.200.13 pgs (Olbrich).
Office Action dated Dec. 8, 2014, received in Chinese Patent
Application No. 201180021660.2, which corresponds to U.S. Appl.
No. 12/726.200, 7 pages (Olbrich).
Office Action dated Jul. 31, 2015, received in Chinese Patent
Application No. 201180021660.2, which corresponds to U.S. Appl.
No. 12/726.200, 9 pages (Olbrich).
International Search Report and Written Opinion dated Aug. 31.
2012, received in International Patent Application PCT/US2012/
042764, which corresponds to U.S. Appl. No. 13/285,873, 12 pgs
(Frayer).
International Search Report and Written Opinion dated Mar, 4.
2013, received in PCT/US2012/042771, which corresponds to U.S.
Appl. No. 13/286,012, 14 pgs (Stonelake).
International Search Report and Written Opinion dated Sep. 26.
2012, received in International Patent Application No. PCT/
US2012/042775, which corresponds to U.S. Appl. No. 13/285,892,
8 pgs (Weston-Lewis et al.).
International Search Report and Written Opinion dated Jun. 6, 2013,
received in International Patent Application No. PCT/US2012/
059453, which corresponds to U.S. Appl. No. 13/602,039, 12 pgs
(Frayer).
International Search Report and Written Opinion dated Feb. 14.
2013, received in International Patent Application No. PCT/
US2012/059459, which corresponds to U.S. Appl. No. 13/602,047,
9 pgs (Tai).
International Search Report and Written Opinion dated Jul. 25.
2014, received in International Patent Application No. PCT/
US2014/029453, which corresponds to U.S. Appl. No. 13/963,444,
9 pages (Frayer).
International Search Report and Written Opinion dated Mar. 7,
2014, received in International Patent Application No. PCT/
US2013/074772, which corresponds to U.S. Appl. No. 13/831,218,
10 pages (George).
International Search Report and Written Opinion dated Mar. 24.
2014, received in International Patent Application No. PCT/
US2013/074777, which corresponds to U.S. Appl. No. 13/831,308,
10 pages (George).
International Search Report and Written Opinion dated Mar. 7,
2014, received in International Patent Application No. PCT/
US2013/074779, which corresponds to U.S. Appl. No. 13/831,374,
8 pages (George).

International Search Report and Written Opinion dated May 4,
2015, received in International Patent Application No. PCT/
US2014/065987, which corresponds to U.S. Appl. No. 14/135,400,
12 pages (George).
International Search Report and Written Opinion dated Mar. 17.
2015, received in International Patent Application No. PCT/
US2014/067467, which corresponds to U.S. Appl. No. 14/135.420,
13 pages. (Lucas).
Invitation to Pay Additional Fees dated Feb. 13, 2015, received in
International Patent Application No. PCT/US2014/063949, which
corresponds to U.S. Appl. No. 14/135,433, 6 pages (Delpapa).
International Search Report and Written Opinion dated Apr. 20.
2015, received in International Patent Application No. PCT/
US2014/063949, which corresponds to U.S. Appl. No. 14/135,433,
21 pages (Delpapa).
International Search Report and Written Opinion dated Mar, 9.
2015, received in International Patent Application No. PCT/
US2014/05.9747, which corresponds to U.S. Appl. No. 14/137.440,
9 pages (Fitzpatrick).
International Search Report and Written Opinion dated Jan. 21.
2015, received in International Application No. PCT/US2014/
059748, which corresponds to U.S. Appl. No. 14/137,511, 13 pages
(Dancho).
International Search Report and Written Opinion dated Feb. 18.
2015, received in International Application No. PCT/US2014/
066921, which corresponds to U.S. Appl. No. 14/135,260, 13 pages
(Fitzpatrick).
International Search Report and Written Opinion dated Jun. 8, 2015,
received in International Patent Application No. PCT/US2015/
018252, which corresponds to U.S. Appl. No. 14/339,072, 9 pages
(Busch).
International Search Report and Written Opinion dated Jun. 2, 2015,
received in International Patent Application No. PCT/US2015/
018255, which corresponds to U.S. Appl. No. 147336,967, 14 pages
(Chander).
International Search Report and Written Opinion dated Jun. 30.
2015, received in International Patent Application No. PCT/
US2015/023927, which corresponds to U.S. Appl. No. 14/454,687,
11 pages (Kadayam).
International Search Report and Written Opinion dated Jul. 23.
2015, received in International Patent Application No. PCT/
US2015/030850, which corresponds to U.S. Appl. No. 14/298.843,
12 pages (Ellis).
International Search Report and Written Opinion dated Sep. 14.
2015, received in International Patent Application No. PCT/
US2015/036807, which corresponds to U.S. Appl. No. 14/311,152,
9 pages (Higgins).
IBM Research-Zurich, “The Fundamental Limit of Flash Random
Write Performance: Understanding, Analysis and Performance
Modeling,” Mar. 31, 2010, pp. 1-15.
Gasior, “Gigabyte's i-Ram storage device, Ram disk without the
fuss.” The Tech Report, p. 1, Jan. 25, 2006, 5 pages.
Oestreicher et al., “Object Lifetimes in Java Card.” 1999, USENIX,
10 pages.
International Preliminary Report on Patentability dated May 24,
2016, received in International Patent Application No. PCT/
US2014/065987, which corresponds to U.S. Appl. No. 14/135,400,
9 pages (George).
Office Action dated Apr. 25, 2016, received in Chinese Patent
Application No. 201280.066282.4, which corresponds to U.S. Appl.
No. 13/602,047, 8 pages (Tai).

* cited by examiner

U.S. Patent Nov. 1, 2016 Sheet 1 of 70 US 9.483.210 B2

DATA PATH
DRAM
O7

SSD
CONTROLLER

O6
FLASH
MEMORY
MODULE

O8

US 9.483,210 B2 U.S. Patent

GOZ

US 9.483.210 B2 Sheet 3 of 70 Nov. 1, 2016 U.S. Patent

f--HSyl3 --
80|| B?IOJOW ,—^???????????,| ------------------ 808|

Z|§ 18
dûOÀ9 || I | Î | / }}}+{?^8

HSV H | | | |39\?|SHSWH | ;

A a As a A w w a

/18 èHTIOÈH NOO

| | |

U.S. Patent Nov. 1, 2016 Sheet 4 of 70

HOST ISSUES READ 4O1
COMMAND WITH BA

SSD CONTROLLERLOCATES 402
DATA AND ISSUES ONE

OR MORE READS TO FLASH

FLASH RETURNS DATA 403
TOSSD CONTROLLER

DAAS STORED IN 4O4.
DATA PATH DRAM

ALL, DATA
OBANED

P 405

YES

DAA READ FROM 406
DAA PATH DRAM

TO SSD CONTROLLER

DATA SENT FROM
SSD CONTROLLER 407

TO HOST

DONE

FIG. 4

US 9.483,210 B2

U.S. Patent Nov. 1, 2016 Sheet 5 of 70 US 9.483.210 B2

HOST ISSUES WRITE 5 Ol
COMMAND WITH LBA

AND DATA

DATA STORED IN 502
DATA PATH DRAM

SSD CONTROLLER 503
LOCATES LBA IN FLASH
MEMORY MODULE

SSD ISSUES 504
FASH READ

DATA TRANSFERRED FROM
DRAM O CONTROLLER 505
AND INTEGRATED WITH
DATA READ FROM FLASH

SSD CONTROLLER 506
ISSUES WRITE TO FLASH

507
FLASH WRITE

ALDAA
WRITTEN

p 508

YES

UPDATE LOCATION
INFORMATION FOR 509
WRITTEN BAS

FIG. 5

U.S. Patent Nov. 1, 2016 Sheet 6 of 70 US 9.483.210 B2

FLASH GROUP O
3O

BANK BANK BANK BANK
6 62 613 64
-- -N- -- --

61O
60 605

F.G. 6

US 9.483.210 B2

10/

U.S. Patent

U.S. Patent Nov. 1, 2016 Sheet 8 of 70 US 9.483.210 B2

ALE 802
CE 803 RB DE

708, WE 804
sear-lannels

RE 805 CE DE

TO FLASH
BUS
7Ol

RB DE 2

A/D CE DE 2

FIG. 8

U.S. Patent Nov. 1, 2016 Sheet 9 Of 70 US 9.483.210 B2

TO
7O

FIG. 9

U.S. Patent Nov. 1, 2016 Sheet 10 of 70 US 9.483.210 B2

7O6 OO 7O6

708

FLASH 60
HEM
3O7 A

65

709 BUS

SYSH A OO

at .
FLASH
STAGE 32-BIT
BUFFER
308 7O7 67

SAGE
BUFFER
DMA

CONTROLLER
O06

FIG. O

U.S. Patent Nov. 1, 2016 Sheet 11 of 70 US 9.483,210 B2

SSD
CONTROLLER

O6

FIG.

US 9.483.210 B2 U.S. Patent

U.S. Patent Nov. 1, 2016 Sheet 13 of 70 US 9.483.210 B2

SECTOR
DATA
3O

528
BYTES

8 BYTES SECTOR
METADATA

2O BYES

E2E REFTAG APPTAG CRC
3O2 3O4. 1305 3O6

ECC 3O3

S PAGESECTOR
2O6

FIG 3

PSECTORO
PSECTOR

PSECTOR 4
S PAGE INDEX 402
TIME SAMP 403

FLASH PAGE O
l2O2

FIG. 4

2085 BYTES

27 BYTES METADATA
SUPER PAGE {

l4O

U.S. Patent

BLOCK

BLOCK

Nov. 1, 2016

LBAA CONTENTS
LBAA CONTENTS
LBAA-2 CONTENTS

LBAA 4 CONTENTS

LBAB CONTENTS
LBAB CONTENTS
LBAB-2 CONTENTS

LBAB-14 CONTENTS

0.

LBAC CONTENTS
LBAC CONTENTS
LBAC-2 CONTENTS

LBAC-4 CONTENTS

LBAD CONTENTS
LBAD CONTENTS
LBAD2 CONTENTS

LBAD. 4 CONTENTS
d

LBAE CONTENTS
LBAE CONTENTS
LBAE2 CONTENTS

LBAE-14 CONTENTS

FG.

Sheet 14 of 70

S PAGESECTOR O
S PAGESECTOR
S PAGE SECOR 2

S PAGESECTOR 14

S PAGESECTOR O
S PAGESECTOR
S PAGESECTOR 2

S PAGESECTOR 14

S PAGESECTORO
S PAGESECTOR
SPAGESECTOR 2

S PAGESECTOR 14

S PAGESECTOR O
S PAGESECTOR
S PAGESECTOR 2

S PAGESECTOR 4

S PAGESECTOR O
S PAGESECTOR
S PAGESECTOR 2

S PAGESECTOR 4

5

US 9.483,210 B2

S PAGEO

S PAGE

S PAGE 63

S PAGEO

S PAGE 63

U.S. Patent Nov. 1, 2016 Sheet 15 Of 70 US 9.483.210 B2

FLASH ROUP FASH (ROUP FLASH ROUP
SP SP SPO

50-64

SMT 285 299)
SP

50-64 585-599

570-584 65-629

N SPO SP O
T

F.G. 6

US 9.483.210 B2 Sheet 18 of 70

as lo
a v

- N TY)
r-m wro-rr m

6
wans

A crag rad r- d.
wrim qr, was e r

0||

Nov. 1, 2016 U.S. Patent

Co - can no shr u?ed Ed N. cxd of

ce or nad west cos r cod co o

U.S. Patent Nov. 1, 2016 Sheet 19 of 70 US 9.483.210 B2

LBA TRANSFER RC Wr
LENGTH HEM

TO TO
HOST COMNAND

INTERFACE DISTRIBUTION
30 COWMAND ABLE 2003 32

mRAM 26O2

SCS HEMi2OO

ARM
PROCESSOR

2002

FIG. 20

U.S. Patent Nov. 1, 2016 Sheet 20 of 70 US 9.483,210 B2

COMMAND
DISTRIBUTION
BLOCK 32

TO
COMMAND TO
PARSER AND FLASH
TRANSMT PORTS
HEMi's

US 9.483.210 B2

r -

01:37, OHH 90830

U.S. Patent Nov. 1, 2016 Sheet 22 of 70

SHARED RAM CROSSBAR
CONTROLLER SWITCH

23Ol 22O1

E2E LOGIC
2303 23O4

DRAM CONTROLER
2305

DRAM DMA
ENGINE 2302 SCHEDUER

RAM CONTROLLER 37

FIG. 23

US 9.483,210 B2

U.S. Patent Nov. 1, 2016 Sheet 23 Of 70 US 9.483.210 B2

SHARED RAM CONTROLLER 2301

CROSSBAR
ARBTRATION

2410

FIFO O POINTER REGISTERS
2205

DATA STRUCTURES
2409

FIFO POINTERREGISTERs

FIFO 2 POINTERREGISTERS

FIFO 3 POINTER REGISTERS

SHARED RAM ACCESS
REGISTER BLOCK

24.11

SHARED RAM BANK O
22O2

FG, 24

U.S. Patent Nov. 1, 2016 Sheet 24 of 70 US 9.483.210 B2

SWITCH
2503

FSB O 3O8
FSB 314

isen so Ef 220
E.

TRANSMT BUFFER 709

DRAM
SCHEDULER

23O4

DRAM CHANNELS

FIG. 25

US 9.483.210 B2 Sheet 25 of 70 Nov. 1, 2016 U.S. Patent

U.S. Patent Nov. 1, 2016

CHTLY COUPLED LOGIC BLOCK
270

STAGE BUFFER ACCESS
REGISTER BLOCK

2708

DEBUG REGISTER BLOCK 2718

FIG.27

Sheet 26 of 70

FLASH HEM 307

SACK
WINDOW REGISTERS

2707

REPEAT COUNT
REGISTER
2702

RAM mRAM
260 2602

DATA AUTOINC 2705

DATA 2706

LOCAL REGISTER BOCK
2703

DDRESS 2704 E.

MULTIPLY-DIVIDE ENGINE
2717

MANUAL CRC ENGINE
2719

SWITCH ENDIAN ENGINE
2720

US 9.483.210 B2

U.S. Patent Nov. 1, 2016 Sheet 27 of 70 US 9.483.210 B2

RECEIVE HEMi UNCRUE REGISTERS

SESEYEEEEE, DMA ADDRESS 2802 AESESFE DMA ADDRESS 2802
BOCK28OT DMA TRANSFER COUNT 2803

RECEIVE BUFFER COUNT 28O4

TOP 28ll
POP 282
COUNT 283
APPEND 284

HEADER size 285

PRIMITIVE MATCH if 287
PRIMTVE MATCH LOAD 288
PRIMTVE MATCH CONTROL LOAD 289

WWN HASH ENGINE 283O

TRANSMT HEMi UNCRUE REGISTERS

TRANSMBER DMAADDRESS 282 SEESSES DMA ADDRESS 282
BLOCK 2820 DMA TRANSFER COUNT 2822

POP 2824
COUNT 2825
APPEND 2826

COMMANPE, COUNT 2828 AS35, COUNT 2828
BLOCK 2827 APPEND 2829

FIG. 28

PRIMITIVE FIFO
ACCESS REGISTER
BLOCK 2805

NON-DATA
PAYLOAD FIFO

ACCESS REGISTER
BLOCK 28O

PRMITIVE
MATCH REGISTER
BLOCK 286

REGISTER BLOCK
2823

U.S. Patent Nov. 1, 2016 Sheet 29 of 70

SOURCE ADDRESS TO SHARED
RAM ADDRESS REGISTER 300

DESTINATON ADDRESS TO
LOCAL ADDRESS REGISTER 3002

NUMBER OF DOUBLE WORDS
TO REPEAT COUNT REGISTER 3005

MOVE DATA FROM SHARED RAM
TO mRAM (ADDRESS REGISTERS
INCREMENT, REPEAT COUNT
REGISTER DECREMENTS) 3004

REPEAT
COUNT = 0

FIG. 30

US 9.483.210 B2

U.S. Patent Nov. 1, 2016 Sheet 30 Of 70 US 9.483.210 B2

ECC
CORRECTION

ENGINE

ECCLOGIC 302

FLASH
: FLASH ECC GENERATION 303 - PORTO

STAGE | 7 3O4.
BUFFER 1 : 3O8 ECC CHECK 3O4 !

FIG. 3

US 9.483.210 B2 Sheet 31 of 70 Nov. 1, 2016 U.S. Patent

L]
||Z$ 3.18\/1971 ISOS

US 9.483.210 B2 U.S. Patent

US 9.483.210 B2

1078

U.S. Patent

U.S. Patent Nov. 1, 2016 Sheet 34 of 70 US 9.483.210 B2

3505 35O 351

SUPER PAGE
TIME STANAP DEFECT BA

BANK

SUPER PAGE 63

3506 N-SUPER BLOCKTIMESTAMP
3507- ERASE COUNT

3508-OPEN FLAG
3500- CLOSED FLAG

SUPER BLOCK METADAA TABLE 35O

FIG. 35

U.S. Patent Nov. 1, 2016 Sheet 35 of 70 US 9.483.210 B2

(OPDATA BUFFER
32O2

FIG. 36

U.S. Patent Nov. 1, 2016 Sheet 36 of 70 US 9.483.210 B2

CDBINFO 37Ol
2Ol N

SELF-POINTER

COMMAND
LBA

TRANSFERENGTH

3702

3703

3704

CDB

NITIATOR

SCSI TAG

SCS FLAGS

BURST LENGTH CONTROL

3705

3707

REFTAG 3708

APPTAG 3709

FIG. 37

U.S. Patent Nov. 1, 2016 Sheet 37 of 70 US 9.483.210 B2

38O OP
2O2 N.

OPSELF-POINTER

CALLING HEM

HOST PORT

INTIATOR

CDBINFO

COMMAND

TRANSFER REGUESTS
ALOCATED

REMAINING TRANSFER
REGUESTS

TRANSFER RECUEST
POINTERARRAY

STATE WARIABLES

ABORT FLAG

REFTAG

APP TAG

FIG 38

38O2

3803

3804

3805

3806

U.S. Patent Nov. 1, 2016 Sheet 38 of 70 US 9.483.210 B2

TRANSFER
REGUEST
2O3 N

390

DRAM POINTER

3902

3903

3904

3905

3906

3909

APPTAG 390

PAGE REGUESTS
ALOCATED - 39

REMAINING PAGE -3912
--REQUESS
FARESSE - 3913 POINTERARRAY

U.S. Patent Nov. 1, 2016

PAGE
RECUEST

2O N.

Sheet 39 of 70

SELF-POINTER

CALLING TRANSFER
REGUEST

COMMAND

DATA PATH
DRAM POINTER

SPAGE INDEX

FLASH READ
ADDRESS

FLASH WRITE
ADDRESS

HEAD LENGTH

TAL LENGTH

TRANSFER LENGTH

STATE VARIABLES

REFTAG

APPTAG

FG. 40

US 9.483.210 B2

40O.

4002

4003

4004

4005

4006

4007

AO09

4OO

4O

4O2

U.S. Patent Nov. 1, 2016 Sheet 40 of 70 US 9.483.210 B2

INITIATOR 5
NITIATOR INITIATOR TABLE HEM HEM HEM

FREELIST A2 408 O 22
WORKLIST WORKLIST WORKLIST
405 406 AlO7

COBINFO O
CDBINFO 2O

NITIATOR O
NITAOR

CDBINFO 43
COBINFO CDBNFO TABLE

FREELIST 402

GLOBAL.
VARIABLES
43

OP OP TABLE
FREELIST 4.03 4O

RANSFER RECRUEST

TRANSFER RECRUEST 9
TRANSFER REGUES TRANSFER REGUEST

FREELS AlO4. TABLE All

TRANSFER REQUESTO

SHARED RAM BLOCK 38

FG. 4

U.S. Patent Nov. 1, 2016 Sheet 41 of 70 US 9.483.210 B2

NITIATOR
AO

\
NATOR

SELF-POINTER
NITIATOR 42O2
IDENTIFIER

42O3
COUNT

BURST LENGTH

FIG 42

4204

US 9.483.210 B2 Sheet 42 of 70 Nov. 1, 2016 U.S. Patent

U.S. Patent Nov. 1, 2016 Sheet 44 of 70 US 9.483.210 B2

GIGABLAZE RECEIVES 450
PRIMTIVE

PRIMITIVE TO PRIMTIVE 4502
MATCH LOGIC

SOF MATCH 4503

CRACKFRAME 4504

4505
FRAME = COMMAND

FRAME ROUTED TO
HEADER FIFO 4506

Receive HEM pops FRAME 14507

FRAME CONTAINS CDB 4508

RECEIVE HEMi 4509
GENERATES COBINFO

CDBINFO TO SCS HEMi 450

CDBINFO CONTAINS WRITE 45

CDBINFO TO RO Wr HEMi 452

Rd Wr HEMiGENERATES OP 453

454
OP TO TRANSMT HEM

TRANSMT HEMi GENERATES 45.5
TRANSFER READY FRAME

FIG 45A
(A) TO FIG 45B

U.S. Patent Nov. 1, 2016 Sheet 45 of 70 US 9.483.210 B2

FROM
FIG 45A

TRANSFER READY FRAME
TO GIGA BLAZE 456

TRANSFER READY FRAME TO HOST -457

GIGA BLAZE RECEIVES PRIMITVE 4518

PRIMITIVE TO PRIMITIVE
MATCH LOGIC 4519 HEADER ROUTED TO NON-DATA

PAYLOAD FIFO, DATA ROUTED
TO RECEIVE STAGE BUFFER 4523

SOF MACH 4520

RECEIVE HEM POPS HEADER 4524

CRACK FRAME 452

HEADER = DATA TRANSFER -4525
FRAME = DATA 4522

HEADER MATCHED TO OP 4526

SET UP DMA TRANSFER FROM
RECEIVE STAGE BUFFER TO DRAM - 4527

DONE

FG, 45B

U.S. Patent Nov. 1, 2016 Sheet 46 of 70 US 9.483.210 B2

460 CDB TO RECEIVE HEMi
46O2

CDBINFO BLOCKS (A) TO FIG 47
4604 4605

4603 YES

FREE NO NITIATOR GUEUE
C p INITIATOR 2 FULL
FROM PRESENT
FIG 47

4606
POPINITIATOR

POPULATE INITIATORD 46O7

4608 COUNT -- -> COUNT

POP CDBINFO
4609 FROM FREELST

461 O COPY COBINFO TO
RECEIVE HEMimRAM

POPULATE COBINFO
46 FIELDS

462 COPY COBINFO
TO SHARED RAM

PLACE CDBINFO
POINTER ON

463 SCS HEMi WORKLIST

CB) TO FIG 46B FIG 46A

U.S. Patent Nov. 1, 2016 Sheet 47 of 70 US 9.483.210 B2

(B) FROM FIG 46A
A64

POP POINTER
FROM WORKLIST

465 COPY COBINFO TO
SCS HEMimRAM

467

READ/ NO CDBINFO TO
WRITE 2 ARM PROCESSOR

466 YES DONE

468

COMMAND
TABLE MATCH

p

469
WAIT

NO

LBA AND TRANSFER
LENGTH -> COMMAND 462O

TABLE

FIND EMPTIEST 462
Rd Wr HEMI WORKLIST

COBINFO TO 4622
SELECTED WORKLIST

DONE

FIG 46B

U.S. Patent Nov. 1, 2016 Sheet 48 of 70 US 9.483,210 B2

CA) FROM FIG 46A
47Ol

FREE
CDBINFO BLOCKS

p

4703

FREE
CDBINFO BLOCKS

= 1 ?

SET
RESERVE
FLAG

RESERVE
FLAGSE 2

4707

INITIATOR
COUNT 2

YES

AGGREGATE COUNT
FIELDS > 0 -> Vor

(16 - Vor) -> Vor 2

FREE
CDBINFO BLOCKS
> (Vor 2 + 1)

p

CTO FIG 46A

470

FIG 47

U.S. Patent Nov. 1, 2016 Sheet 49 of 70 US 9.483.210 B2

48Ol Rod Wr HEMiPOPS COBINFO
FROM WORKLIST

4802 COPY CDBINFO INTO
Rd Wr HEMimRAM 4804

4803
NO WAT

FOR
P

4806

FREE NO WAIT FOR
TRANSFER FREE TRANSFER
REQYESS REGUESTS)

A805

A807 POPOP FROM FREEIST

48O8 COPY OPTO mRAM

CDBINFO TRANSFER
4.809 LENGTH --> TL. Wor

48O CDBNFO LBA -> LBA Wor

FROM FIG 48D 48
POPULATE OP FIELDS

FROM FIG 48D POP TRANSFER RECQUEST
FROM FREELIST 482

COPY TRANSFER 483
RECQUEST TO mRAM

(A) TO FIG 48B FIG 48A

U.S. Patent Nov. 1, 2016 Sheet 50 of 70 US 9.483.210 B2

(A) FROM FIG 48A

(IOPTRANSFER RECRUESTS 484
ALLOCATED + 1) - OP
TRANSFER RECRUESTS

ALLOCATED

(IOP REMAINING TRANSFER
REGUESTS + 1) -> IOP 485
REMAINING TRANSFER

REGUESS

TRANSFER REGUEST 486
POINTER -> OPTRANSFER
RECQUEST PONTERARRAY

LBAWOr -> TRANSFER 487
RECQUEST LBA

(IOP DRAM POINTER +
(IOP TRANSFER LENGTH - 4818

TLVor) -> TRANSFER
REGUEST DRAM POINTER

POPULATE TRANSFER 489
RECRUEST FIELDS

TRANSFER RECQUEST 482O
LBA - 15 - INDEX

FORWARD TABLE INDEX
LOOKUP -> PORTA 482

4822
TLVar -> TL Temp

4823
-> PAGE

CB) TO FIG 48C FIG 48B

U.S. Patent Nov. 1, 2016 Sheet 51 of 70 US 9.483.210 B2

(B) FROM FIG 48B
4824

5 - REMANDER -> OFFSET

OFFSET
>TL Temp

p

TL Temp->
TRANSFER
REGUEST
TRANSFER

4829 NO 4827 LENGTH

T (Ti Tep SEED TRANSFER
REQUEST TO

YES

4826

WORKLIST FOR
PORTA INDEX + 1 -> INDEX FLASH HEM

FORWARD TABLE INDEX
LOOKUP -> POR B DONE

4,830
A83 PORTA NO

as PORT B 4836
p

4833 (TLVoir -
TL Temp) ->
SNEER O O REGUES

4834 TRANSFER
LENGTH NO

PAGE -- -> PAGE

5 -> OFFSET 4.835

C) TO FIG 48D

FIG 48C

U.S. Patent Nov. 1, 2016 Sheet 52 of 70 US 9.483.210 B2

C)FROM FIG 48C

4837 TRANSFER REGUEST TO
WORKLIST FOR PORTA

FLASH HEM

TL Temp -> TL Var

(LBA Vor + TRANSFER
REGUEST TRANSFER
LENGTH) -> LBA Wor

4838

4839

4840 OP
TRANSFER WAT FOR

REGUESTS ALLOCATED IOP TO
s: 7 COMPLETE
p

TO FIG 48ACE)

FIG 48D

TO FIG 48ACD

U.S. Patent Nov. 1, 2016 Sheet 53 of 70 US 9.483,210 B2

490 4902

FREE
LOCAL TRANSFER WAT

REGUEST
p
YES

4903 FASH HEM POPS
TRANSFER RECQUEST
FROM WORKLIST

POP LOCAL
4904 TRANSFER REGUEST

COPY TRANSFER
4.905 REGUEST FROM SHARED

RAW TO mRAM

4906 TRANSFER RECRUEST
BA-> BA Wor

4907 TRANSFER REGUEST
TRANSFERLFNGTH

-> TL Vor

TRANSFERREGUEST
DRAM POINTER

4908 -> DP Wor

4909
CB) POPPAGE REGUEST
FROM

B FIG 49 LBA Wor -- 15 490

CRUOTENT USED 49
AS INDEX INTO
FORWARD TABLE

(A) TO FIG 49B FIG 49A

U.S. Patent Nov. 1, 2016 Sheet 54 Of 70 US 9.483.210 B2

(A) FROM FIG 49A

BANK, BLOCK, PAGE 492
- PAGE REGUEST

REMANDER --> 493
HEAD LENGTH

DP VOr -->
DRAM POINTER 4.94

POPULATE OTHER 495
PAGE REGUEST FELDS

A97

496
YE 15 - TL Vdr +
S HEAD LENGTH)

-> TAL LENGTH
4922 NO 498

TLVOr -->
O -> TAL LENGTH TRANSFER LENGTH

4923 (15 - HEAD LENGTH) 499
As PAGE RECQUEST

-> TRANSFER LENGTH TO TRANSFER
RECQUESTARRAY

PAGE RECQUEST -> 4920
TRANSFER RECRUEST ALLPAGE

4924 ARRAY REGUESS TO
BANK CRUEUES

4925 TVor - 5) -> TVor
SET TRANSFER

LBAWOr -- TRANSFER REQE2NE
4926 LENGTH -> LBA Wor

DPVOr -- TRANSFER
ENGTH - DP Wor

4927 GB) TO FIG 49A FIG 49B

U.S. Patent Nov. 1, 2016 Sheet 56 of 70 US 9.483.210 B2

CA) FROM FIG 5OA

NEED

RESOURCES

RESOURCES

AVAILABLE

EXECUTE PAGE
REGUEST HANDLER
FOR BANK, BASED
ON COMMAND

RETURN
WAVE e.

FLASH PORT
N yS5

CB) TO FIG50A

HIGHER
BANK

NEEDED AND C) TO FIG50A

YES

BANK sc
HIGHER BANK

507

FIG. 5OB

U.S. Patent Nov. 1, 2016 Sheet 57 of 70 US 9.483.210 B2

5101

COMMAND FLASHTRANSFER DONE

NEED STACE BUFFER

NO-G RERN D
5108

STAGE
BUFFER FREE?

513

YES ERROR DETECTED?
YES

SET CS CET STAGE BUFFER

502 5109 R NO
CLE, 1ST OPCODE SET UP FLASH- 515

TO FLASH STAGE BUFFER 514 SET UP STAGE
DMA TRANSFER BUFFER --

5103
5110 DRAM DMA TRANSFER

ALE, ADDRESS TO FLASH
UPDATE PAGE REQUEST

504 STATE WARIABLES 5116 WAT

CLE, 2ND OPCODE
TO FLASH

(FLASHTRANSFER DONE)
517

DMA
TRANSFER

COUNT = O?

51
505

SET RETURN WALVE TO
UPDATE PAGE REQUEST FLASH PORT BUSY

STATE WARIABLES YES
512

58 - RELEASE STAGE BUFFER 506 RETURN

SET RETURN WALWE TO POPPAGE REQUEST
FLASHPORT NOT BUSY-507 519 - FROM BANK-QUEUE

(NEED STAGE BUFFER)

FIG.51A GA)
TO FIG 51B

U.S. Patent Nov. 1, 2016 Sheet 58 of 70

(A) FROM FIG 51A

DECREMENT
REMAINING

PAGE RECRUESTS
512O

APPEND TRANSFER
REGUEST TO

INTERNAL CRUEUE

522

SET RETURN WALVE
TO FLASHPORT
NOT BUSY

RETURN

523

FIG. 5B

US 9.483.210 B2

U.S. Patent Nov. 1, 2016 Sheet 59 of 70 US 9.483.210 B2

52O ASSERT CS

52O2
ASSERT CLE

52O3 DRIVE FIRST COMMAND
PHASE ON A/D BUS

5204 ASSERTALE,
DEASSERT CLE

5205 DRIVE ADDRESS
BYTE ON A/D BUS

52O6
LAST

ADDRESS BYTE
SENT p

YES

52O7 ASSERT CLE,
DEASSERTALE

52O8 DRIVE SECOND COMMAND
PHASE ON A/D BUS

5209 R/B PNSBUSY

FLASH DATA READ FROM
520 MEMORY TO PAGE BUFFERS

GA) TO FIG 52B

FIG. 52A

U.S. Patent Nov. 1, 2016 Sheet 60 of 70 US 9.483.210 B2

(A) FROM FIG 52A

R/B PINS READY

ASSERT RE, READ ONE
DOUBLE WORD FROM PAGE
BUFFERS TO STAGE BUFFER

DECREMENT FLASH
TRANSFER COUNT

52

522

523

524.

FIG. 52B

U.S. Patent Nov. 1, 2016 Sheet 63 of 70 US 9.483.210 B2

LOOK UP BANKIN 54Ol
FORWARD TABLE

SUPER 54O2
PAGE AVAILABLE

sE ON BANK
PER

NO 5405 PAGE

SUPER
PAGE DEFECTIVE

p

ALLOCATE NEXT SUPER
PAGE ON POINTER

LIST TO PAGE REGUEST
542

543 UPDATE SUPER PAGE
POINTER LIST

DONE

5409

540

INTIALIZE SUPER PAGE
54 PONTER LIST

NCREMENT BANK

54.06

LAS
BANK CHECKED

p

NO

COPY SUPER BLOCK
MEADATA TABLE

TO FLASH

POPSUPER BLOCK
FROM FREELIST

WRITE TIMESTAMP
TO REVERSE TABLE

COPY SUPER BLOCK
MEADATA TABLE

TO DRAM

FIG 54

U.S. Patent Nov. 1, 2016 Sheet 64 of 70 US 9.483.210 B2

POP TRANSFER RECRUEST 55O

SATE = DONE 55O2

SEND PAGE REGUESS
TO FREELIST 55O3

SEND INTERNAL TRANSFER 5504
REGUEST TO FREELIST

DECREMENT OP
REMAINING 5505

TRANSFER REGUESS

5506
REMAINING

TRANSFER RECQUESTS
= 0 a

NO RETURN

YES

OP TO TRANSMIT 55O7
HEMiWORKLIST

5509

YES SETUP ANDTRANSMIT
- DATA FRAMES

NO

SEND STATUS = COMPLETEN-5so

5508

3D
CDBINFO, OP, TRANSFER
REQUESTS TO FREELISIS 55

CLEAN UP OTHER 5512
DATASTRUCTURES FIG. 55

DONE

U.S. Patent Nov. 1, 2016 Sheet 65 Of 70 US 9.483.210 B2

SELECTSUPER BLOCK 56O
BASED ON REVERSE
TABLE COUNT WAVE

CREATE INTERNAL
TRANSFER REGUESS TO
MOVE DATA FROM VALD
SUPER PAGES TO OPEN

SUPER BLOCK

56O2

EXECUTE PAGE RECRUESTS
TO MOVE DATA INTO 5603
OPEN SUPER BLOCK

ERASE BLOCKS -7 5604

COPY DEFECT DAIA AND 5605
ERASE COUNT FRONA

SUPER BLOCK MEADATA
TABLE TO FLASH
STAGE BUFFER

INCREMENTERASE COUNT15606

UPDATE REVERSE TABLE 56O7

ERASE BLOCKO 56O8

COPY DEFECT DATA AND
ERASE COUNT TO 5609

BANK O, SUPER PAGEO

PLACE SUPER BLOCK 56O
ON FREEIST

FG. 56
DONE

U.S. Patent Nov. 1, 2016 Sheet 66 of 70 US 9.483.210 B2

FROM
FIG. 50,

STEP 5004

TO FIG.50,
STEP 5007

FUNCTION
ON?

OCAL
TRANSFER REQUESTS

AVAILABLE

POP LOCAL TRANSFER REQUEST -5703 5708

POPULATE LOCAL TRANSFER
REQUEST WITH
BA TO BA + 44 5704

READ
ERRORS

DETECTED?
TO FIG. 50,
STEP 500

NO

ECC CORRECTION

POP AND POPULATE THREE
PAGE REQUESTS WITH LBA
TO LBA + 14, LBA + 15 TO

BA + 29 AND
LBA + 30 TO LBA + 44 - 5705

PAGE REQUESTS TO WRITE CORRECTED DATA
BANK QUEUES 5706 TO NEW SUPERPAGE

F.G. 57

US 9.483.210 B2

0189

U.S. Patent

SdWWIS HW||

U.S. Patent Nov. 1, 2016

FROM
FIG 58A FROM

FIG 58D

SUPER PAGE = O 5808

TO
BA

YES A READY EN
FORWARD

FROM TABLER
FC 58B

WRITE FORWARD TABLE

FROM MARK NEW SUPER PAGE
FIG 58B VALID IN REVERSE TABLE

INCREMENT SUPER PACE

SUPER PACE
X 632

TO
FIG 58D

Sheet 69 of 70

FROM
FIG 58A FROM

SUPER PAGE = 0 5825

COPY SUPER PAGE
METADATA FROM FLASH

TO STAGE BUFFER 5826

SUPER PAGE
WRITTEN

WRITE SUPER PACE
MEADATA INTO SUPER
BLOCK METADATA TABLE

INCREMENT SUPER PACE

SUPER PAGE
> 63?

TO
FIG 58D

FIG,580

US 9.483.210 B2

US 9.483.210 B2

6189

U.S. Patent

US 9,483,210 B2
1.

FLASH STORAGE CONTROLLER EXECUTE
LOOP

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 13/887,018, filed May 3, 2013, which is a
continuation of U.S. patent application Ser. No. 12/082,223,
filed Apr. 8, 2008, now U.S. Pat. No. 8,621,138, issued Dec.
31, 2013, which claims priority to U.S. Provisional Patent
Application No. 61/017,123, filed Dec. 27, 2007, all of
which are incorporated herein by reference in their entire
ties.

FIELD OF THE INVENTION

The invention described herein relates to the field of data
storage, and in particular to data storage applications using
Solid state nonvolatile memory devices. This technology has
particular relevance to high performance enterprise systems
involving multi-user computing and storage platforms
deployed in large datacenters, but is also applicable to
Smaller-scale enterprise applications and to end-user mass
Storage.

BACKGROUND OF THE INVENTION

Current enterprise-level mass storage relies on hard drives
that are typically characterized by a 3.5" form factor, a
15,000 rpm spindle motor and a storage capacity between 73
GB and 450 GB. The mechanical design is identical to the
traditional hard drive with a single actuator and 8 read/write
heads moving across 8 surfaces. The constraints of the
head/media technology limit the read/write capabilities to
only one active head at a time. All data requests sent to the
drive are handled in a serial manner with long delays
between each operation as the actuator moves the read/write
head to the required position and the media rotates to place
the data under the read/write head.
As a result of the queue of requests waiting for the

actuator, the system sees response times increasing to the
point where it becomes intolerable to users. Mass storage
systems have adapted to this problem by limiting the number
of outstanding requests to each drive. This has had the effect
of reducing the effective and usable capacity of each drive
to as low as 12 GB per drive, even though these devices are
available at up to 450 GB capacities. The lower capacity, in
turn, has exacerbated floor space, cooling and power issues,
all of which have become extremely problematic for enter
prise-level mass storage systems.

In an attempt to relieve these problems, the industry is
moving towards 2.5" drives. However, although the smaller
form factor allows for a larger number of drives in the same
space, the serial nature of hard drive operations means that
even Smaller form factor drives present serious space, cool
ing and power problems.

Flash memory is attractive in an enterprise mass-storage
environment, since flash memory systems do not have the
mechanical delays associated with hard drives, thereby
allowing higher performance and commensurately lower
cost, power, heating and space usage. Nevertheless, flash
memory has not traditionally been used in Such environ
ments due to certain technical constraints.
The first technical problem is write speed, which may be

as slow as one-tenth that of a mechanical hard drive. This
results from the fact that data cannot be overwritten on a

10

15

25

30

35

40

45

50

55

60

65

2
NAND flash device without a long erase cycle prior to the
write. Because the erase cycle directly affects the write
performance, most flash designs move the write data to a
new location and delay the erase until later. In a busy system,
delayed erase cycles may build up until the processor runs
out of free flash pages and has to stop to create new ones,
thereby significantly affecting system performance.
The second technical problem is the specified limit for

each flash memory page of 100,000 erase cycles for Single
Level Cell (“SLC) devices and 10,000 cycles for Multi
Level Cell (“MLC) devices. These pose particular prob
lems for datacenters that operate with unpredictable data
streams that may cause "hot spots.” resulting in certain
highly-used areas of memory being Subject to a large num
ber of erases.
The third issue is data loss, which can occur as the result

of various factors affecting flash memory, including read
disturbs or program disturbs, which lead to the loss of data
bits caused by the reading or writing of memory cells
adjacent to the disturbed cell. The state of a flash memory
cell may also change in an unpredictable manner as the
result of the passage of time.

These technical problems create serious issues for the use
of flash memory in high-capacity, high-performance storage
applications. In each case, technical Solutions exist, but the
Solutions place significant strain on the processing power
available in standard flash memory controllers, which gen
erally include a single processor. That Strain makes it
difficult to overcome these technical problems in these
environments.

SUMMARY OF THE INVENTION

In one embodiment, the described solution to the perfor
mance limitations of flash memory involves the use of
multiple microprocessors in the controller design, thereby
creating multiple parallel independent pipelines, each of
which is capable of handling a portion of a single transac
tion. This design maximizes use of the host and flash
interfaces, and allows individual transactions to be broken
up into many Small portions, which can be reordered and
handled in parallel to increase performance. The architecture
is designed to allow multiple processors to perform their
functions without the use of costly and inefficient interrupts.
The use of parallel pipelines allows the controller to

effectively mask the write latencies inherent in the use of
flash memory. In addition, the use of multiple independent
processors provides Sufficient processing power to handle
overhead imposed by solutions to the endurance and error
problems described above. By breaking host-initiated trans
actions into a large number of independent flash reads and
writes, the controller architecture described herein allows
for a high level of performance that is impossible using
conventional controller designs.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system containing an SSD (“Solid
State Drive') controller and flash memory.

FIG. 2 illustrates a hierarchy of data structures used to
translate host commands into flash reads and writes.

FIG. 3 illustrates the system of FIG. 1 in greater detail.
FIG. 4 illustrates a host read operation at a high level.
FIG. 5 illustrates a host write operation at a high level.
FIG. 6 illustrates an organization of flash memory.
FIG. 7 illustrates a relationship between a flash memory

group and a flash port.

US 9,483,210 B2
3

FIG. 8 illustrates input and output signals to a flash
memory device.

FIG. 9 illustrates input and output signals to a flash HEMi
block.

FIG. 10 illustrates connections between a flash port and a
flash memory bank.

FIG. 11 illustrates multiplexing of CS and RB signals onto
a single pin.

FIG. 12 illustrates a flash memory hierarchy.
FIG. 13 illustrates the organization of an SPage sector.
FIG. 14 illustrates the organization of a flash page.
FIG. 15 illustrates an organization of data within a Super

Block.
FIG. 16 illustrates a stripe organization of data.
FIG. 17 illustrates data and control flow through host

ports.
FIG. 18 illustrates a host port.
FIG. 19 illustrates primitive match logic.
FIG. 20 illustrates a command parser block.
FIG. 21 illustrates a command distribution block.
FIG. 22 illustrates connections between HEMi’s and

shared RAM data structures through a crossbar switch.
FIG. 23 illustrates a RAM controller.
FIG. 24 illustrates the relationship between a shared RAM

controller and a shared RAM bank.
FIG. 25 illustrates DRAM channels.
FIG. 26 illustrates HEMi stages.
FIG. 27 illustrates a flash HEMi and its tightly coupled

logic block.
FIG. 28 illustrates receive HEMi and transmit HEMi

unique registers.
FIG. 29 illustrates the contents of a flash HEMi mRAM.
FIG. 30 illustrates the transfer of a data block from shared

RAM.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

31 illustrates ECC logic.
32 illustrates the contents of a data path DRAM.
33 illustrates a forward table.
34 illustrates a reverse table.
35 illustrates a SuperBlock metadata table.
36 illustrates an IOP data buffer.
37 illustrates a CDBinfo.
38 illustrates an IOP
39 illustrates a transfer request.
40 illustrates a page request.
41 illustrates the contents of a shared RAM block.
42 illustrates initiator information.

FIG. 43 illustrates SLC flash write timing.
FIG. 44 illustrates MLC flash write timing.
FIGS. 45A and 45B illustrate steps followed by a host port

when a host command is received.
FIGS. 46A and 46B illustrate the initial phases of han

dling of a CDB.
FIG. 47 illustrates special-case CDB handling.
FIGS. 48A-48D illustrate the manner in which IOPS and

transfer requests are set up based on a CDBinfo.
FIGS. 49A and 49B illustrates the manner in which a flash

HEMi sets up page requests.
FIGS. 50A and 50B illustrate the flash HEMi execute

loop.
FIGS. 51A and 51B illustrate the page request read

handler.
FIGS. 52A and 52B illustrate a flash read operation in

greater detail.
FIGS. 53A and 53B illustrate the execution of a page

request write handler.
FIG. 54 illustrates allocation of a SuperPage to a page

request.

10

15

25

30

35

40

45

50

55

60

65

4
FIG.55 illustrates clean-up of a completed transaction.
FIG. 56 illustrates a garbage collection process.
FIG. 57 illustrates a patrol function process.
FIGS. 58A-58D illustrate a rebuilding process.

DETAILED DESCRIPTION OF CURRENTLY
PREFERRED EMBODIMENTS

I. Overview

A. System Overview.
In the currently preferred embodiment, the system

described herein is designed to operate with various enter
prise-level mass storage protocols, including SAS ("Serial
Attached SCSI), FC (“Fibre Channel') and FC-AL (“Fibre
Channel Arbitrated Loop), all of which are based on the
Small Computer Systems Interface (“SCSI), and Serial
ATA ("SATA) protocols. These protocols are highly famil
iar to those of ordinary skill in the art, and will not be further
described herein. Except where particular protocols are
called out, the systems and methods disclosed herein do not
depend on the particular protocol being used and are
designed to operate correctly with all of them. Moreover,
these systems and methods may be adapted for use with
other similar protocols, either currently in use or not yet
developed, including protocols designed for enterprise-level
applications as well as protocols designed for other appli
cations. Such as end-user.
As a matter of convenience, the protocols relevant herein

are oftentimes referred to collectively as the “SCSI Proto
col.” though, as should be understood, this includes non
SCSI protocols and does not include those SCSI protocols
that are not relevant.
The system described herein includes a novel architecture

for controlling a mass storage module consisting of flash
memory chips. The overall system is illustrated in a high
level overview in FIG. 1. As with other block diagram
drawings herein, the elements shown in FIG. 1 are concep
tual in nature, showing the nature of interrelationships
among functional blocks, and are not intended to represent
actual, physical circuit-level implementations.

Hosts 101 and 102 are conventional host devices, e.g.,
two servers that use mass storage resources or two hostbus
adapters serving one such server. In certain protocols, each
Host may support multiple initiators. In SCSI-based sys
tems, initiators are host-side endpoints for data transfers, and
may constitute separate physical devices or processes.

Board 103 (represented by dashed lines) represents one or
more PCBs. It could, for example, consist of a single PCB
board, or of multiple boards connected together in a mother
daughter configuration. In the currently preferred embodi
ment, Board 103 is designed so that, from the perspective of
Hosts 101 and 102, Board 103 appears to constitute a
conventional, rotating disk mass storage device. This
requires that Host Ports 104 and 105 be designed so that they
are physically and logically indistinguishable from conven
tional mass storage interfaces for which Hosts 101 and 102
have been designed. Thus, in the currently preferred
embodiment, use of Board 103 does not require any redesign
of Hosts 101 or 102.

In the currently preferred embodiment, SSD Controller
106 represents a single integrated circuit device that is
attached to Board 103 and runs at 200 MHz. In alternate
embodiments, SSD Controller 106 can consist of more than
one integrated circuit device, without departing from the
principles of the invention(s) described herein. Clock speed,

US 9,483,210 B2
5

of course, represents an implementation choice, and will
vary among implementations.

In the currently preferred embodiment, Data Path DRAM
107 is a 64-bit wide 256 Mbyte DDR SDRAM with a clock
speed of 200 MHz sold by Micron Technology, Inc. of 5
Boise, Id., under the product designation MT47H16M16BC
5E. This provides an effective rate of 128 bits of data transfer
per cycle, consisting of two 64-bit transfers per cycle. For
purposes of simplicity, this will be described herein as a
128-bit interface. This device automatically checks ECC on
all transfers. In an alternate embodiment involving greater
overall storage capacity, the Micron MT47H32M16CC-5E,
a 512 Mbyte DDR SDRAM, can be substituted. As should
be understood, many different options are available for the
Data Path DRAM, including the use of types of memory
other than DRAM, and the specific products identified here
are not integral to the inventions disclosed herein. As is
shown in FIG. 1, Data Path DRAM 107 communicates with
SSD Controller 106, but does not have any direct connection
to any other element in the system.

Flash Memory Module 108 represents a number of flash
memory chips. In the currently preferred embodiment, Flash
Memory Module 108 consists of 1922 gigabyte NAND
flash chips, each running at 40 MHz. As is explained below,
this configuration provides 300 gigabytes of user data capac
ity. As should be understood, the described system can
operate with a larger or Smaller overall capacity, with flash
memory chips that have more or less capacity than 2
gigabytes and with flash memory chips that operate faster or
slower than is currently preferred. In addition, Flash
Memory Module 108 may consist of multiple “daughter
boards” that are stacked together.

Flash Memory Module 108 communicates with SSD
Controller 106, but does not have any connection with any
other element in the system.
As is illustrated in FIG. 1, SSD Controller 106 occupies

a central location, since it communicates with all other
elements in the system, none of which communicate with
each other. The design and operation of each of the elements
shown as part of Board 103 will be described in detail below.
B. Data Structures Overview.
SSD Controller 106 operates by accepting commands

from a host and breaking those commands into Smaller tasks
that eventually result in a sequence of reads and writes in
Flash Memory Module 108. FIG. 2 illustrates this process at
a high level.
When SSD Controller 106 receives a Host-initiated read

or write command, it creates a data structure known as a
“CDBinfo' (e.g., CDBinfo 201), which contains the Com
mand Descriptor Block (“CDB) or other corresponding
command-related information from the Host. Among other
information, the CDBinfo specifies the address range to be
read from or written to, in Logical Block Addresses
(“LBAs").

Based on the CDBinfo, SSD Controller 106 creates a data
structure known as an “Input-Output Process” (“IOP) (e.g.,
IOP 202). Under most circumstances, a single IOP controls
the entire transaction requested by the Host.

Each IOP can invoke up to seven data structures known
as “Transfer Requests” (e.g., Transfer Requests 203-209).
Each Transfer Request is designed to handle a portion of the
LBA range specified by the IOP.

Each Transfer Request can invoke up to three data struc
tures known as "Page Requests (e.g., Page Requests 210,
211 and 212, invoked by Transfer Request 206; Page
Requests invoked by the other Transfer Requests are not
shown in FIG. 2). Each Page Request is designed to read

10

15

25

30

35

40

45

50

55

60

65

6
from or write to a segment of Flash Memory Module 108
corresponding to a portion of the LBA range specified by the
Transfer Request.
As FIG. 2 shows, the three illustrative Page Requests each

accesses a region of Flash Memory Module 108 known as a
“SuperPage' (e.g., SuperPages 213, 214 and 215). As is
further described below, each SuperPage consists of four
flash Pages, each of which is stored on a different Flash Die.

Each of these data structures is described in greater detail
below.
C. Detailed System Overview.

FIG. 3 provides additional detail to the overall system
design illustrated in FIG. 1, though, as before, numerous
elements and details are omitted for purposes of clarity. FIG.
3 shows Hosts 101 and 102 connected to Board 103, with
Board 103 including SSD Controller 106, Data Path DRAM
107 and Flash Memory Module 108.

Flash Memory Module 108 is divided into eight Flash
Groups, designated as Flash Groups 0-7. Of these, three are
shown in the Figure: Flash Groups 0, 1 and 7, designated as
301, 302 and 303. In the currently preferred embodiment,
Flash Memory Module 108 can hold between eight and
twelve Flash Groups.
SSD Controller 106 also contains a number of Flash Ports

equal to the number of Flash Groups contained in Memory
Module 108, e.g., Flash Ports 304,305 and 306. Each Flash
Port communicates with one Flash Group (e.g., Flash Port 0
304 communicates with Flash Group 0.301). As with the
Flash Groups, in the currently preferred embodiment, SSD
Controller 106 can have a minimum of eight and a maximum
of twelve Flash Ports and the embodiment illustrated con
tains eight, of which three are shown. As is described below,
each Flash Port operates independently, thereby supporting
parallel operations in the Flash Groups.

Each Flash Port includes a Flash HEMianda Stage Buffer
(e.g., Flash Port 0304 contains Flash HEMi 0307 and Flash
Stage Buffer 0308). “HEMi” stands for Hardware Execution
Machine. HEMi’s are logic blocks that operate as dedicated,
special-purpose microprocessors. The design and function
of HEMi’s is explained in greater detail below. Each Flash
HEMi controls transfer operations for a single Flash Group
(e.g., Flash HEMi 0307 controls Flash Group 0301, Flash
HEMi 1309 controls Flash Group 1302, etc.)

Flash Stage Buffers (e.g., Flash Stage Buffer 0308) are
used to buffer data transfers between Data Path DRAM 107
and the Flash Groups. In the currently preferred embodi
ment, each Flash Stage Buffer is a dual port SRAM that can
handle one read and one write concurrently, and is capable
of holding 16 Kbytes of data, representing four flash pages.
As is explained below, this constitutes a “SuperPage' of
data.
As is described below, in the currently preferred embodi

ment, the data interface from each Flash Group is capable of
transmitting 32 bits at a time (one doubleword), whereas
Data Path DRAM 107 is capable of sending or receiving
data 128 bits at a time (as is described above, in the current
embodiment, the Data Path DRAM transmits and receives
data in 64-bit chunks, but does so twice in each clock,
thereby providing an effective data rate of 128 bits).
The Flash Stage Buffers buffer communications between

the Flash Groups and the Data Path DRAM and therefore
allow transfers to occur without requiring wait states on the
part of the DRAM. In the currently preferred embodiment,
in the case of transmissions from the Flash Group to the
DRAM, the Flash Stage Buffers accept the data in double
word chunks. Once a sufficient amount of data has been
received (preferably an entire SuperPage), the Flash Stage

US 9,483,210 B2
7

Buffer then burst transfers the data to the Data Path DRAM
in a DMA transfer that uses the entirety of the Data Path
DRAM data bus. The Flash Stage Buffers are controlled by
DMA logic that handles DMA transmissions to and from the
DRAM (see discussion of FIG. 10, below).
As FIG. 3 shows, Hosts 101 and 102 communicate with

Host Interface 310, which, as should be understood, includes
Host Ports 104 and 105 (not shown). In general Hosts issue
commands, provide data that is to be written into mass
storage and request data from mass storage. As is understood
by those of ordinary skill in the art, the details of the manner
in which Hosts communicate with mass storage is protocol
dependent. Typically, however (and without limitation),
Hosts communicate with mass storage using “frames.”
which contain commands and/or data. Typically, commands
are contained in Command Descriptor Blocks (“CDBs),
which are familiar to those of ordinary skill in the art.

Host Interface 310 is designed to respond to CDBs in a
manner transparent to the Host, meaning that from the
perspective of Host 101, Host Interface 310 appears to
constitute an interface to a conventional mass storage
device.

Control flow proceeds as follows (each of the logic blocks
and metadata structures mentioned is explained in greater
detail below): Upon receiving a CDB requesting a read or
write, Host Interface 310 generates a CDBinfo to handle the
operation (e.g., CDBinfo 201). That CDBinfo is then passed
to Command Parser Block 311.
Upon receiving a CDBinfo, Command Parser Block 311

performs coherency and other types of checks, which are
described below, and then passes the CDBinfo to Command
Distribution Block 312.
Command Distribution Block 312 evaluates the CDBinfo

and creates an IOP (e.g., IOP 202) to carry out the requested
transfer. Command Distribution Block 312 then generates
one or more Transfer Requests (e.g., Transfer Requests
203-209), each to carry out a portion of the transfer required
by the IOP. For each Transfer Request, Command Distribu
tion Block 312 then determines which Flash Group contains
the data to be read, or the address location to be written.
Command Distribution Block 312 then passes the Trans

fer Requests to the Flash Ports corresponding to the Flash
Group containing the relevant flash memory addresses, e.g.,
Flash Port 0304, Flash Port 1305 and Flash Port 7 306.
When a Flash Port receives a Transfer Request from

Command Distribution Block 312, the Flash HEMi for that
Flash Port breaks the Transfer Request into Page Requests
(e.g., Page Requests 210, 211 and 212) and uses the Page
Requests to control actual read and write operations in the
associated Flash Group, with each Page Request accessing
up to a SuperPage of data.

Control flow in FIG. 3 for a read or write operation in
Flash Group 0 thus proceeds as follows. Host 101->Host
Interface 310->Command Parser Block 311->Command
Distribution Block 312->Flash HEMi 0 307->Flash Group
O3O1.

Data flow proceeds differently. In the case of a read, data
is returned by the Flash Group to the Flash Stage Buffer
contained in the connected Flash Port. For example, Flash
Stage Buffer 0308 is connected to Flash Group 0301, Flash
Stage Buffer 1314 is connected to Flash Group 1302 and
Flash Stage Buffer 7315 is connected to Flash Group 7303.
From the Flash Stage Buffer, the data obtained from the

Flash Group is written into Data Path DRAM 107 through
Bus 316. From Data Path DRAM 107 it passes through Host
Interface 310 to Host 101. Write operations proceed in the

10

15

25

30

35

40

45

50

55

60

65

8
opposite direction: Host 101->Host Interface 310->Data
Path DRAM 107->Flash Stage Buffer 0308->Flash Group
O3O1.
The fact that control flow and data flow follow different

paths is illustrated by the lines connecting the various
elements in FIG. 3. Thus, the arrows connecting the Flash
HEMi’s with the Flash Groups symbolize control flow
between these elements, whereas the arrows connecting the
Flash Groups with the Stage Buffers indicate data flow.
FIG.3 also shows RAM Controller 317 and Shared RAM

Block 318, each of which is described in greater detail
below. In general, Shared RAM Block 318 contains memory
used by the HEMi’s, and RAM Controller 317 contains logic
that controls Data Path DRAM 107 and Shared RAM Block
318 and arbitrates access to both of those resources.
D. Read and Write Overview.

FIG. 4 illustrates the high-level data flow for a read
operation handled by SSD Controller 106.

In Step 401, the Host (e.g., Host 101) issues a read
command, including the LBA of the data.

In Step 402, SSD Controller 106 identifies the location of
the requested LBA(s) in Flash Memory Module 108 and
issues one or more read commands to the Flash Memory
Module.

In Step 403, Flash Memory Module 108 performs a read
operation and returns data to SSD Controller 106.

In Step 404, the returned data is passed through SSD
Controller 106 and Stored in Data Path DRAM 107.

In Step 405, a check is made to determine if all of the data
requested by Host 101 has been obtained. If not, (“no'
outcome to Step 405), control returns to Step 403 so that the
additional data can be obtained from the Flash Memory
Module and Stored in the Data Path DRAM.
Once all data requested by the Host has been obtained

from the Flash Memory Module and stored in the Data Path
DRAM (“yes” outcome from Step 405), in Step 406, the data
is read out of Data Path DRAM 107 and into SSD Controller
106.

In Step 407, the data is transmitted from SSD Controller
106 to Host 101, and the read operation requested by Host
101 is complete.
As should be understood, FIG. 4 describes the read

operation using high-level conceptual steps, the details of
which are explained below.

FIG. 5 uses similar high-level conceptual steps to illus
trate a write operation, in which Host 101 is seeking to store
data in memory.

In Step 501, Host 101 issues a write command, with an
LBA, and provides the data to SSD Controller 106.

In Step 502, SSD Controller 106 stores the data to be
written in Data Path DRAM 107.

In Step 503, SSD Controller 106 identifies the location of
the LBA in Flash Memory Module 108.

In Step 504, SSD Controller 106 issues a read command
to Flash Memory Module 108 sufficient to read the Super
Page containing the LBA. This read command does not store
data into the DRAM, and therefore proceeds from Step 403
of FIG. 4 to Step 405, skipping Step 404, and loops through
those two Steps until all of the data has been received.

In Step 505, the data from Data Path DRAM 107 is
transferred to the Controller and integrated with the data
read from the Flash Memory Module. As a result of this
integration, the Controller now holds a SuperPage in which
the new data has overwritten the old data stored at that LBA,
but all other LBAs in the SuperPage are unchanged.

In Step 506, SSD Controller 106 issues a write command
to Flash Memory Module 108.

US 9,483,210 B2
9

In Step 507, Flash Memory Module 108 performs a write
operation.

In Step 508, a check is done to determine if all informa
tion has been written in Flash Memory Module 108.

If additional write operations are required (“no'
from Step 508), control returns to Step 507.

If all data has been written to Flash Memory Module 108
(“yes” result from Step 508), in Step 509, SSD Controller
106 updates location information for the LBAs that were
written. As is explained in detail below, because of the
nature of flash memory, a write operation does not physi
cally overwrite the existing SuperPage, but instead writes
the updated SuperPage to a new location in Flash Memory
Module 108, thereby requiring an update to the address
translation information associated with the LBAs stored in
that SuperPage.

The write operation then completes.

result

II. Flash Memory Architecture

A. Physical Memory Architecture.
FIG. 6 illustrates the organization of one Flash Group

(e.g., Flash Group 0.301), and its relationship to its associ
ated Flash Port (e.g., Flash Port 0304). As should be
understood, the details of this organization may differ in
different embodiments.

Flash Group 301 consists of eight Flash Chips, designated
as 601-608. Each Flash Chip includes two Dies; e.g., Flash
Chip 601 contains Dies 609 and 610.

In one embodiment, each Die (e.g., Die 609) has a raw
capacity of approximately 1.11 gigabytes, consisting of
8224 blocks, each made up of 64 pages, with each page
consisting of 2212 bytes. When system and spare memory
space is Subtracted, this leaves a user data capacity of
approximately 1 gigabyte per die, or 2 gigabytes per NAND
flash chip. In a system including twelve Flash Groups and
eight Banks per Flash Group, this provides a raw user
memory space of approximately 384 gigabytes, but the total
useable space for user data is approximately 300 gigabytes,
since some space is devoted to spare and system functions
that do not fall within the LBA address space made available
to users. System space Stores various types of system
metadata, including SCSI mode pages, and also contains
free space.
The use of 2 gigabyte NAND flash chips, each containing

two 1 gigabyte Dies, is a reflection of the current state of the
art in available flash memory technology. The described
system can operate equally well with other flash memory
sizes and configurations, including four dies contained in
one flash memory chip, or one die per chip. Because the next
generation of NAND flash chips will incorporate four Dies
per chip, it is likely that Flash Group 301 will use such chips.
The principles described herein are easily applicable to
four-Die designs. For example, if each Die in a four-Die chip
has its own CE and RB Pin, but all four Dies share common
address/command/data pins, then each Die can be incorpo
rated into a separate Bank. On the other hand, if each
four-Die chip has two CE and RB Pins, with two Dies
sharing each Pin, then from the perspective of SSD Con
troller 106, the two Dies that share common CS and RB Pins
will appear indistinguishable from a single Die described
above (e.g., Die 609).
The currently preferred embodiment also operates equally

well with 1 Gigabyte NAND flash chips, each containing 2
half-gigabyte dies. In this configuration, only 4112 blocks

5

10

15

25

30

40

45

50

55

60

65

10
are included per die. Other than the capacity, this configu
ration operates the same as the configuration described
above.

Note that the flash memory chips themselves are of
conventional design, and the illustration in FIG. 6 is not
intended to convey details of the internal design of these
chips, but instead to allow for an understanding of the
organization of the chips and the manner in which the Dies
interface with the rest of the system.

Flash Group 301 is divided into four Banks (611, 612, 613
and 614), each made up of four Dies. Thus, Bank 611
consists of Die 609 from Flash Memory 601, Die 615 from
Flash Memory 602, Die 616 from Flash Memory 603 and
Die 617 from Flash Memory 604. Bank 612 consists of Die
610 from Flash Memory 601, Die 618 from Flash Memory
602, Die 619 from Flash Memory 603 and Die 620 from
Flash Memory 604. Banks 613 and 614 are similarly orga
nized among the other Flash Memories and Dies.

FIG. 6 shows four Banks. In the currently preferred
embodiment, each Flash Group contains between four and
eight Banks, depending on the amount of capacity desired by
the user.

FIG. 7 provides additional details regarding the intercon
nections between Flash Memory Module 108, SSD Control
ler 106 and Data Path DRAM 107. Although FIG. 7 shows
Flash Group 0.301 and Flash Port 0304, the same inter
connections exist between all Flash Groups and their accom
panying Flash Ports and Data Path DRAM 107.
As is shown in FIG. 7, Flash Group 0301 is connected to

Flash Port 0304 by two buses, Flash Bus 701 and CS/RB
BLS 702.
CS/RB Bus 702 consists of a separate line connecting

Flash HEMi307 to each of the Banks of Flash Group 301.
In the embodiment shown, which has four Banks, CSIRB
Bus 702 consists of four lines: Line 703, connecting Flash
HEMi 307 with Bank 614, Line 704, connecting Flash
HEMi 307 with Bank 613, Line 705, connecting Flash
HEMi 307 with Bank 612, and Line 706, connecting Flash
HEMi 307 with Bank 611. In an embodiment including a
larger number of Banks (e.g., eight), CS/RB Bus 702 would
consist of a correspondingly larger number of signals. As
should also be understood, the signals from Flash HEMi307
travel through pins on SSD Controller 106. FIG. 7 is not
intended to show the physical details of the transmission
paths, but instead illustrates the flow of data and control
signals.
The lines of CS/RB Bus 702 carry Ready-Busy (“RB)

signals from Flash Group 301 to Flash HEMi307, and Chip
Select (“CS”) signals from Flash HEMi307 to Flash Group
301.

Only one of the CS signals carried on CS/RB Bus 702 is
active at any given time. The Bank connected to the cur
rently active CS signal is connected to Flash Bus 701, and
all other Banks are disconnected from that Bus (again, this
is a logical rather than a physical concept, depending on the
implementation, the “connected Bank may communicate
with the Flash Bus whereas all other Banks ignore the Flash
Bus, even though a physical connection exists between the
Flash Bus and all of the Banks).

Address and control information from Flash HEMi 307 is
transmitted on Flash Bus 701 to each of the Banks. This
includes Control Signals 708 (described below in connection
with FIG. 8) and Address/Command Signals 709 (described
below in connection with FIG. 9). Similarly, Bus 707
connects Flash Stage Buffer 308 to Flash Bus 701. Data is
transmitted from Stage Buffer 308, on Bus 707, along Flash

US 9,483,210 B2
11

Bus 701 and to the Banks Data is transmitted from the Banks
to Stage Buffer 308 in the opposite direction.
As is further shown in FIG. 7, Data Path DRAM 107 is

connected to Stage Buffer 308. Thus, data passes from Data
Path DRAM 107 to Stage Buffer 308, and is then sent along
Bus 701 to the Bank that has the currently active CS signal.
Data from Flash Group 301 is transmitted to Data Path
DRAM 107 along the opposite path.

FIG. 8 shows portions of the pin-out of a single flash
memory chip, e.g., Flash Chip 601, which includes Dies 609
and 610. In the currently preferred embodiment, the Flash
Chips use a standard NAND flash interface, typically con
sisting in relevant part of 8 bits of address/data (801), 4 bits
of control (Address Latch Enable (“ALE) Signal 802.
Command Latch Enable (“CLE”) Signal 803, Write Enable
(“WE’) Signal 804 and Read Enable (“RE) Signal 805,
which collectively are referred to as Control Signals 708),
one Chip Enable pin per Die (this is connected to the CS
signal from the Controller and the designations Chip Enable
and Chip Select will sometimes be used interchangeably),
and one Ready/Busy line per die. As is indicated, the A/D
signals 801 and the ALE, CLE, WE and RE signals are all
connected to Flash Bus 701, though these are not the only
signals connected to that Bus.
As is shown in FIG. 8, ALE, CLE, WE, RE and both Chip

Enable signals are inputs to Flash Memory 601. A/D Bus
801 is made up of eight bidirectional signals. Both RB
signals are outputs.

All signals shown in FIG. 8, except for the two CE and
two RB signals, are shared by both Dies. Thus, the same
eight A/D pins 801 are shared by Dies 609 and 610. As
should be understood from the discussion of FIG. 6, these
Dies are each in separate Banks. For this reason, the sharing
of pins does not create a conflict, since under no circum
stances are these signals active for more than one Bank at a
time.
As is typical of flash memory, each Die has an associated

Flash Page Buffer that can hold one page of data that is being
written into or read out of the corresponding Die. FIG. 8
shows these as Page Buffers 806 and 807.

FIG. 9 illustrates the portion of the signal output of a Flash
HEMi (e.g., Flash HEMi307) which is devoted to a Flash
Memory Port (e.g., Flash Memory Port 0304). As should be
understood, Flash HEMi 307 also has additional inputs and
outputs devoted to other functions. AS is explained above,
signals connecting Flash HEMi 307 with the Flash Group
are routed through pins of SSD Controller 106. Neither those
pins, nor the logic that handles the routing, are shown. As is
true in other Figures showing signal routing, FIG. 9 is
intended as a conceptual illustration, and is not intended to
illustrate the details of actual physical layout.

This portion of Flash HEMi307's interface is made up of
signals devoted to the following functions:

1. Control Signals 708, made up of four control lines:
ALE Signal 802, CLE Signal 803, WE Signal 804 and RE
Signal 805. These signals are outputs from Flash HEMi307.

2. CS/RB Bus 702, which is made up of CS/RB Lines
703-706. As is explained above, each Flash HEMi can
control one Flash Memory Bank per connected CS/RB Line.
Thus, in the embodiment illustrated in FIG. 9, Flash HEMi
307 controls four Flash Memory Banks (e.g., Banks 611,
612. 613. 614 shown in FIG. 6). In a system including eight
Banks per Flash Group, each Flash HEMi would have eight
signals devoted to this purpose (note that the logic necessary
to Support the extra four signals is present even if those
signals are not in fact used).

10

15

25

30

35

40

45

50

55

60

65

12
CS/RB Bus 702 transmits CS signals from HEMi 307 to

the Flash Banks, and transmits RB signals from the Flash
Blanks to HEMi 307. Since the signals are multiplexed in
this manner, each Such Line may transmit only one type of
signal at a time. The CS/RB signals are “one hot signals,
meaning that one and only one of these signals can be active
at any given time.

Using the same signals for both CS and RB purposes
saves pins on SSD Controller 106, and therefore reduces the
cost and complexity of the SSD Controller. However, this
limits the number of Banks that can be controlled by Flash
HEMi 307, since one RB signal, and therefore one pin, is
required for each bank. Because in the current embodiment
SSD Controller 106 includes eight CS/RB pins for each
Flash Port, in that embodiment a maximum of eight Banks
may be controlled by each Flash HEMi.

3.31 signals making up Address/Command Signals 709.
This bus, which connects to Flash Bus 701, runs at the same
40 MHz speed as the flash memory chips and carries
addresses and commands from Flash HEMi 0 307 to Flash
Group 0301. Address/Command Signals 709 can be thought
of as four separate eight-bit buses (consisting of lines 0-7,
8-15, 16-23 and 24-31), each of which routes an eight-bit
payload to a separate Die in a Flash Memory Bank. Thus,
eight lines from Address/Command Bus 709 connect to A/D
signals 801, shown in FIG. 8.
As should be clear from the foregoing, 44 pins of SSD

Controller 106 are devoted to each Flash Port (keeping in
mind that each Flash Port can Support a maximum of eight
Banks and therefore requires eight CS/RB pins, though only
four such signals are shown in FIG.9). Since SSD Controller
106 can support up to 12 Flash Ports, 528 pins of SSD
Controller 106 are devoted to the flash interface, though
Some of these pins may be no-connects, if fewer than 12
Flash Ports are used. Note that, if separate CS and RB pins
were required, an additional 96 pins would be needed for the
flash interface (1 pin per Bankx8 Banksx 12 Flash Ports).
Combining the CS and RB signals onto a single pin therefore
provides a very significant savings in terms of the number of
required pins.
The embodiment shown in FIG. 9 is currently preferred,

but various other embodiments are also possible. In a
different embodiment, the eight CS/RB pins currently
devoted to a particular Flash Group are connected to a muX
or other similar logic device located in the Flash Group. The
muX, in turn, has a set of output signals that connect to the
CE inputs of all Flash Dies in a Bank, with each signal
causing the CE inputs of a particular Bank to be selected.
Because the eight SSD Controller CS/RB pins are capable of
transmitting 256 separate states, in theory, it would be
possible to use those pins to select among 256 separate
Banks, by designing the muX or other logic So as to generate
a signal along a different output line for each of the 256
possible input states. However, since in the current embodi
ment all of the Banks share the same A/D Bus, there would
be little or no benefit in adding such a large number of Banks
Instead, in a more desirable embodiment, such a muX or
other similar logic would be used to add a modest number
of Banks (e.g., eight), or to reduce the number of CS/RB
pins per Bank (e.g., from eight to four).

Note that in this alternate embodiment, because the num
ber of CS/RB pins is less than the number of Banks, the
CS/RB pins can no longer handle the RB signals for each
Bank. In this embodiment, therefore, the SSD Controller
CS/RB pins no longer handle the RB input. However,
because standard flash chips Support a software-only status

US 9,483,210 B2
13

check of the RB state, each Flash HEMi could check the RB
state of the Banks using the A/D Bus.

This alternate embodiment therefore allows SSD Control
ler 106 to devote fewer pins to the flash memory interface or
to support a larger number of Banks with the same number
of pins, though at the cost of Some additional logic com
plexity.

FIG. 10 illustrates the manner in which the Dies in a
single Bank (e.g., Dies 609, 615, 616 and 617 in Bank 611)
are connected together and to the associated Flash Port (e.g.,
Flash Port 0304, containing Flash HEMi 307 and Stage
Buffer 308).
As is shown in FIG. 6, Die 609 is one of two Dies in Flash

Chip 601, Die 615 is one of two Dies in Flash Chip 602, Die
616 is one of two Dies in Flash Chip 603 and Die 617 is one
of two Dies in Flash Chip 604. For ease of illustration, FIG.
10 only shows one of the two Dies in each Flash Chip. (As
is described above, Memory Module 108 may well incor
porate Flash Chips that have four Dies each (or more),
though the principles of the design disclosed herein would
remain the same.)
As is shown, Line 706 constitutes the CS/RB signal

interface between Flash HEMi 307 and Bank 611. That Line
carries the CS signal from Flash HEMi307 to Bank 611, and
the RB signal from Bank 611 to Flash HEMi 307. FIG. 10
illustrates this by showing arrows going in both directions
between Flash HEMi 307 to Point 1001 on Line 706. From
Point 1001, the signal path divides, and carries the CS signal
as an input to the Dies (shown by arrows pointing into each
Die with the label “CS) and carries the RB signal as an
output from each of the Dies (shown by arrows pointing out
of each Die with the label “RB). As should be understood,
Point 1001 is figurative in nature, and neither it nor the rest
of the Figure are intended as a literal illustration of physical
implementation.
As is shown, the RB output signals from each Die in the

Bank are logically ORed together (or otherwise similarly
combined), so that a Busy signal is sent from Bank 611 to
HEMi307 along Line 706 if any one of the four Dies in the
Bank is outputting "Busy.'. Line 706 also carries the CS
signal from Flash HEMi307 to each of the Dies in the Bank.
When the CS signal devoted to the Bank is set by Flash
HEMi 307, that signal is sent simultaneously to the CE pin
of each Die in the Bank, thereby selecting each such Die
simultaneously.

FIG. 10 also shows Address/Command Bus 709, which
represents the connections between the A/D pins of Flash
Chips 601-604 and the Address/Command signals of HEMi
307. As is shown, 32-bit Bus 709 carries signals from Flash
HEMi307 to Bus Switch 1002. Bus Switch 1002 represents
logic that combines, divides and routes signals as described,
and does not necessarily constitute a single physical Switch.

Bus Switch 1002 divides the signals from Bus 709 into
sub-buses. Signals 0-7 are transmitted to the A/D pins of
Flash Chip 601 using 8-bit Bus 801 (also shown in FIG. 8),
Signals 8-15 are transmitted to the A/D pins of Flash Chip
602 using 8-bit Bus 1003, Signals 16-23 are transmitted to
the A/D pins of Flash Chip 603 using 8-bit Bus 1004 and
Signals 24-31 are transmitted to the A/D pins of Flash Chip
604 using 8-bit Bus 1005. Note that the A/D pins are shared
by both Dies in a Flash Chip, so that the signals transmitted
to the Flash Chip pins would be received by the appropriate
Die in a manner specific to the internal design of the Flash
Chips.

FIG. 10 also shows the connections between Control
Signals 708 of Flash HEMi 307 and each of the Dies. As is
described above, these Control Signals consist of ALE,

10

15

25

30

35

40

45

50

55

60

65

14
CLE, RE and WE, and they are transmitted from Flash
HEMi 307 to the Flash Dies. Control Signals 708 are sent
from Flash HEMi307 to Bus Switch 1002. From Bus Switch
1002, an identical set of Control Signals (designated in each
case as 708) is transmitted to each of the Flash Memory
Chips. As with the A/D pins, the ALE, CLE, RE and WE
pins are shared by both Dies in each Flash Memory Chip.

FIG. 10 also shows Flash Stage Buffer 308, which is
connected to Bus Switch 1002 by 32-bit Bus 707. Unlike
Bus 709, Bus 707 is bidirectional, and thus transmits data in
both directions.

Transfers between Stage Buffer 308 and the Dies occur
under the control of Stage Buffer DMA Controller 1006.

Note that Flash Stage Buffer 308 also connects to the RE
and WE inputs of Flash Chips. These connections, which for
clarity's sake are not shown in the Figures, are used to
control DMA operations.
Bus Switch 1002 divides the signals from Bus 707 into

four sets of eight-bit signals, and transmits those signals to
Dies 609, 615, 616 and 617 using 8-bit Buses 801, 1003,
1004 and 1005. Similarly, Bus Switch 1002 receives data
from Dies 609, 615, 616 and 617 on 8-bit Buses 801, 1003,
1004 and 1005, then transmits the entire 32-bit value to
Stage Buffer 308 on Bus 707.

Switch 1002 thus multiplexes signals from Flash HEMi
307 and signals to and from Stage Buffer 308 on the same
8-bit Buses. Switch 1002 determines which set of signals to
pass through to the 8-bit Buses depending on the particular
stage of the read or write cycle, with address information
from Flash HEMi 307 being connected to the Dies during
one stage of the cycle, whereas data to or from Stage Buffer
308 is connected to the 8-bit Buses during a different stage
of the cycle. (Again, as is described above, Switch 1002 is
conceptual in nature and does not necessarily constitute a
single dedicated Switch. In addition, aspects of the function
ality described in connection with Switch 1002 may be
found in other logic blocks.)

FIG. 10 shows only a single Flash Memory Bank, 611. In
an actual embodiment, Bus Switch 1002 would interface to
each of the Flash Memory Banks in the Flash Group, and
each interface would duplicate all of the signals output from
Bus Switch 1002 to Bank 611 that are shown in FIG. 10,
with the exception of Signal 706, which, as is explained
above, is specific to Bank 611. As is also explained above,
Flash Memory Switch 1002 connects Buses 707, 708 and
709 to each of the Flash Banks, but the only Bank that is
responsive is the Bank associated with the currently active
CS signal from Flash HEMi 307.

Note that Flash Bus 701 includes Buses 708,801, 1003,
1004 and 1005.

FIG. 11 shows the CS and RB logic related to Line 706
in greater detail. As is shown, SSD Controller CS/RB Pin
1101 connects to the RB and CE pins associated with Flash
Dies 609 and 615. As is described above in connection with
FIG. 6, Dies 609 and 615 are two of the four Dies in Bank
611. For purposes of illustration, the other two dies in the
Bank are not shown, but are connected in the same manner
as Dies 609 and 615.
SSD Controller 106 drives CS/RB Pin1101 high to select

Bank 611. This signal is inverted by Inverter 1102 and
received low by the CE pins of the Dies in the Bank. These
pins are active low.
CS/RB Pin 1101 is driven low by SSD Controller 106

when the Controller is driving another one of the CS pins in
the same Flash Group high (thereby selecting another Bank
in the Flash Group).

US 9,483,210 B2
15

When Flash HEMi 307 wants to read the Ready-Busy
state of Bank 611, SSD Controller 106 floats CS/RB Pin
1101. When the CS/RB Pin is floated by the SSD Controller,
that Pin will receive a low input if any of the Flash Die RB
pins is driving a low signal, indicating that the Bank is busy,
since a low output on any of the Die RB pins will override
Pullup 1103. If, on the other hand, the Bank is in the Ready
state, the Flash Dies allow the RB pins to float. Because
Pullup 1103 is connected to the RB pins, when all of those
pins are floated, and when CS/RB Pin1101 is floated, the Pin
receives a high input signal, which indicates that the Bank
is ready.

Thus, this circuit connects the R/B pins of the Banks
together in an OR configuration, since all of the pins must
be in the Ready state (floating) in order for a ready signal to
be received by CS/RB Pin 1101, so that the circuit effec
tively ORs together the Busy state of the Pins. The use of
Inverter 1102 allows SSD Controller 106 to drive the CS
signal high to select a Bank, even though the Bank’s CE pins
are active low. This is necessary because the CS signal must
be driven high in order to override the incoming RB signal.
In this way, the RB input to SSD Controller 106 can be
active high, but can still be overridden by a high output on
CS/RB Pin1101, since a high CS output will override a high
RB input created by Pullup 1103.
B. Logical Memory Architecture.

Hosts such as 101 and 102 typically organize memory in
terms of Logical Block Addresses, or “LBAs.” When a Host
writes data to mass storage, the Host typically transmits a
CDB that contains a write command and an LBA, though the
details of Host communication vary depending on the spe
cific protocol used by the Host. When the Host subsequently
wishes to read that data, it issues a read command using the
same LBA.

Typically, a Hosts memory architecture divides data into
millions of LBAs, with each LBA numbered sequentially,
beginning with LBA 0. As is familiar to those of ordinary
skill in the art, a Host will often communicate with a number
of mass storage controllers, and will assign a Subset of the
Hosts overall LBA range to each controller. In the current
embodiment, SSD Controller 106 responds to an LBA range
that begins with LBA 0 and ends with the highest LBA
addressable by the Controller. Mapping that sequence of
LBAS onto a larger Host LBA address space is the respon
sibility of the Host or a hostbus adapter, and is transparent
to SSD Controller 106.

FIG. 12 illustrates the memory hierarchy used in Flash
Memory Module 108 in the currently preferred embodiment.

Each Flash Group is made up of a number of Banks (e.g.,
Bank 611). Each Bank consists of a number of Blocks,
designated as Block 0-Block n (e.g., Block 01201). As is
commonplace in flash memory systems, a Block represents
a segment of flash memory that is erasable in a single
operation.
The exact number of Blocks stored in a Bank is imple

mentation-dependent. To take one example, in a system
providing 300 gigabytes of available user data, the number
of Blocks per Bank would ordinarily be in the range of
7,000-9,000, depending on various factors, including defect
management and the amount of memory set aside for free
Space.
As is shown in FIG. 12, each Block consists of 64

SuperPages, designated as SuperPages 0-63. As is explained
above, each SuperPage consists of four flash Pages (e.g.,
SuperPage 30 consists of Page 30 1202, Page 30 1203, Page
30 1204 and Page 30 1205). Pages 1202, 1203, 1204 and
1205 are stored at the same address location on four different

10

15

25

30

35

40

45

50

55

60

65

16
Flash Memory Dies in the same Flash Bank. Thus, Super
Page 30 is spread across four separate Dies. As is standard
in flash memory systems, each Page represents the Smallest
increment of the flash memory that can be read from or
written to.
As is shown in FIG. 12, each Page stores fifteen memory

segments known as PSectors, designated as PSectors 0-14.
FIG. 12 also shows an additional memory structure:

SPage Sector 0 1206. As is shown, SPage Sector 0 consists
of four PSector 0s, one on each Page.

SPage Sector 0 corresponds generally to a classic mass
storage sector, but is physically spread across four PSectors,
each of which is stored at the same address of a different Die
on the same Bank.
The currently preferred embodiment also makes use of an

additional memory structure that is not shown in FIG. 12:
SuperBlocks, which are made up of the same Block on each
Bank in the Flash Group (e.g., Block 01201 is part of
SuperBlock 0 of the Flash Group).

In the described embodiment, the data and metadata
associated with a particular LBA is stored in a single SPage
Sector (e.g., SPage Sector 1206), and is referred to herein as
the Sector Contents, made up of the Sector Data and the
Sector Metadata.

FIG. 13 illustrates the organization of a SuperPage Sector,
e.g., SPage Sector 1206. The entire SPage Sector consists of
556 bytes in flash memory. Each SPage Sector is divided
into four PSectors, each consisting of 139 bytes, each on a
different Flash Die.

In the example, shown, 528 bytes of SPage Sector 1206
is allocated to data, shown as Sector Data Field 1301.
Different Host protocols associate differing amounts of data
with a single address, so that, depending on the protocol
used, Sector Data Field 1301 may be as small as 512 bytes.
As is shown in FIG. 13, in the currently preferred embodi

ment, each SPage Sector also includes 8 bytes of End-to-End
(“E2E) information (Field 1302) and 20 bytes of ECC
information (Field 1303). These Fields collectively consti
tute the Sector Metadata.
E2E information is specified by newer versions of the

SCSI Protocol. This information can be used by Initiators to
track data and insure that the data returned by a mass storage
device matches the data requested. ECC information is used
for error correction purposes.
E2E Field 1302 is further divided into RefTag Field 1304,

AppTag Field 1305 and CRC Field 1306.
RefTag Field 1304 consists of four bytes and contains an

address that may be associated by the Initiator with the
Sector Data. RefTag support is not required by the SCSI
Protocol (and was not part of earlier versions of the Proto
col), so an Initiator may or may not use RefTags. If an
Initiator does use RefTags, the value associated with RefTag
Field 1304 is taken from the CDB that triggered the original
write of the Sector Contents. Typically, this value is the same
as the LBA, though the Initiator may assign a different
RefTag. The Initiator may choose to have the RefTag value
for each Subsequent sector in the same write incremented, or
to assign a single RefTag value for all sectors associated
with a single write. If the incrementing option is chosen,
SSD Controller 106 performs that operation, based on the
initial RefTag value and the number of sectors received.

If the Initiator does not support the use of RefTags, SSD
Controller 106 fills in RefTag Field 1304 with the LBA
address. This field is used by SSD Controller 106 for internal
error checking purposes whether or not the Initiator requests
the use of RefTags.

US 9,483,210 B2
17

The value stored in RefTag Field 1304 should match the
RefTag value of any CDB that causes a subsequent read or
write to any LBA assigned to this SPage Sector. (If no
RefTag is assigned by the Initiator, the RefTag value should
match the LBA based on the CDB.) If the two values do not 5
match, this indicates Some type of error, which may result
from a mistake in the received RefTag, data corruption in
RefTag Field 1304, or a problem in the address translation
tables used by SSD Controller 106 to select SPage Sector
1206 as the appropriate target for the read or write. Such a
condition, if detected, results in the issuance of an appro
priate SCSI sense code to the Host, indicating a transaction
failure (or other similar communication, depending on the
protocol being used).
AppTag Field 1305 consists of two bytes, and is used for

Initiator-specified information relating to the particular
application that created the associated Sector Data. AppTag
information is supported by the SCSI Protocol, but is not
required. If this information is not supplied by the Initiator,
AppTag Field 1305 is filled in with a default value chosen
so that it will not overlap any valid AppTag value assigned
by an Initiator that does Support the use of AppTags.
As with the RefTag value, the AppTag information for

data received from the flash memory can be checked against
an AppTag Supplied by the Initiator as part of a read
command, with a mismatch indicating an error.
CRC Field 1306 consists of two bytes, and contains

Cyclic Redundancy Check (“CRC) data that is used to
check the integrity of the data and metadata stored in SPage
Sector 1206. As with the RefTag and AppTag information,
the CRC tag can be checked against a value received from
the Initiator, to determine whether the data and metadata are
COrrect.

The SCSI Protocol allows an Initiator to request checking
of any or all of the three E2E values.
ECC Field 1303 contains Error Correcting Code (“ECC)

information that can be used to correct errors in the LBA
Data and Sector Metadata. ECC checking used in the
preferred embodiment is described below in connection with
FIG. 31.

Returning to FIG. 12, in the currently preferred embodi
ment, each Page (e.g., Page 1202) consists of 2212 bytes of
flash memory space, and includes 15 PSectors, designated in
each case as PSector 0-14, plus metadata (not shown).

In the currently preferred embodiment, each of the four 45
PSectors that make up an SPage Sector stores one-quarter of
the Sector Contents that are stored in that SPage Sector. That
data is allocated among the PSectors on a byte-interleaved
basis. Thus, the first byte of the first doubleword of the
Sector Contents is written into the first byte of PSector 0 of 50
Page 1202, the second byte of the first doubleword is written
into the first byte of PSector 0 of Page 1203, the third byte
of the first doubleword is written into the first byte of
PSector 0 of Page 1204, the fourth byte of the first double
word is written into the first byte of PSector 0 of Page 1205, 55
the first byte of the second doubleword is written into the
second byte of PSector 0 of Page 1202, etc.
As should be understood from this explanation, the Sector

Contents stored in SPage Sector 0 are spread among the four
P Sectors 0. Thus, each of the four Pages stores one-quarter 60
of the Sector Contents, or 139 bytes (556/4).

FIG. 14 illustrates Flash Page 1202 in additional detail,
showing elements that are not shown in FIG. 12. In a typical
flash architecture, a flash page consists of 2048 bytes of data
and/or metadata plus an additional 64“spare’ bytes used for 65
other purposes, adding up to a total of 2212 bytes. In the
currently preferred embodiment, on the other hand, although

10

15

25

30

35

40

18
each Page consists of 2212 bytes, 2085 of those bytes are
used for Sector Contents (15x139), and the extra 27 bytes
store metadata associated with the SuperPage. FIG. 14
shows PSectors 0-14, consisting of 2085 bytes, and Super
Page Metadata 1401, which consists of 27 bytes per flash
page. As with the PSectors, the SuperPage Metadata is
spread across all four Flash Pages that make up a SuperPage,
so that SuperPage Metadata Field 1401 stores one-quarter of
the metadata associated with the SuperPage.

SuperPage Metadata 1401 consists of SPage Index 1402
and Time Stamp 1403. SPage Index 1402 stores an index
into a table known as the "Forward Table,” which contains
physical location information for LBAs. The Forward Table
is described below, in connection with FIG. 33.
Time Stamp 1403 contains a time stamp representing the

time when the SuperPage was written.
The SPage Index and Time Stamp are written redundantly

into each of the four Flash Pages that make up a SuperPage.
The redundancy is necessary because this metadata is not
protected by the ECC mechanisms that protect other infor
mation.

SuperPage Metadata 1401 is filled in by the Flash HEMi
when the SuperPage is written. The Flash HEMi derives the
SPage Index from the Page Request that initiates the write,
and derives the Time Stamp information from an internal
clock. The SuperPage Metadata is used for reconstructing
open SuperBlocks following an unanticipated power loss.
Power loss reconstruction is described below in connection
with FIG. 58.

FIG. 15 illustrates the manner in which Sector Contents
are organized among Blocks 0 and 1 of a Bank. As should
be understood, the same organization would be followed for
all remaining Blocks stored in the Bank.

Each SPage Sector stores the Sector Contents associated
with a single LBA, and the SPage Sectors of a SuperPage
store Sector Contents associated with fifteen contiguous
LBAs. As is explained below, however, the fifteen contigu
ous LBAS associated with one SuperPage may have no
relationship with the fifteen contiguous LBAs associated
with the next SuperPage.

This organization is illustrated by identifying LBAs by
letter. Thus, LBA(A) indicates a particular address, and LBA
(A+14) indicates an LBA address that is fourteen higher than
LBA (A) (e.g., if LBA(A) were LBA(O), then LBA (A+14)
would be LBA(14). However, there is no relationship
between LBA(A) and LBA(B), for example, other than that
each will be evenly divisible by fifteen. Thus, LBA(A) might
represent LBA(9,000), whereas LBA(B) might represent
LBA(60).

Note that the LBAs stored in each SuperPage will change
during operation. For example, at one point, SPage Sector 0
of SuperPage 1 of Block 0 might store the Sector Contents
associated with LBA(O) (B=0), whereas at another point it
might store the Sector Contents associated with LBA(900)
(B=900). The manner in which the association of LBAs and
SuperPages and Blocks changes in use is described below.

FIG. 16 illustrates the manner in which the Host address
space is mapped onto Flash Memory Module 108 during
initialization. As is described above, Hosts typically issue
reads and writes using LBAs, which isolate the Host from
the details of the physical memory organization.

In the currently preferred embodiment, each Flash Group
is the same size, and each stores data corresponding to the
same number of LBAs (or other Host addressing scheme). In
the current embodiment, LBAs are distributed among the
Flash Groups in sets that are multiples of 45, since, as is
described below, 45 LBAs is the maximum number that can

US 9,483,210 B2
19

be handled by a single Transfer Request. The currently
preferred embodiment uses a stripe size of 90 LBAs, so that
LBAs 0-89 are assigned to Flash Group 0, 90-179 to Flash
Group 1, 180-269 to Flash Group 2, etc., until the last Flash
Group has been reached, at which point the LBA assign
ments loop back to Flash Group 0. A variety of other striping
algorithms is possible. In an alternate embodiment, the user
could be allowed to specify the stripe size, though it would
be preferable for this to be done in multiples of the number
of LBAs that can be handled by a Transfer Request.

FIG. 16 shows a simplified version of the flash memory
space. This simplified version is made up of three Flash
Groups, designated 0-2. In this simplified example, a Block
consists of two SuperPages, designated as SP0 and SP1.
Thus, Block 0, Bank 0 of Flash Group 0 consists of the data
written into the slots designated 1601. As can be seen, in this
simplified example, each Bank contains only a single Block.
As is described above, a SuperBlock consists of the same

Block on each Bank. In the simplified architecture shown in
FIG. 16, therefore, SuperBlock 0 of Flash Group 0 consists
of Block 0 from each Bank, designated in FIG. 16 as 1602
(i.e., the entire Flash Group, in the simplified example).
As is described below, SuperPage 0 of Block 0 of each

SuperBlock contains a data structure known as the Super
Block Metadata Table. This is shown as “SMT in SP0 of
Bank 0 of each Flash Group.

All of the other boxes in the table represent LBA ranges
stored in a particular SuperPage. Thus, Flash Group 0, Bank
1, SuperPage 0 contains LBAs 0-14, Flash Group 0, Bank 1,
SuperPage 1 contains LBAS 300-314, etc.
As can be seen, the LBAs are assigned in “stripes of 90

LBAs each. The first such stripe (LBAS 0-89) is assigned to
Flash Group 0, SuperPage 0 on Banks 1-6. The next stripe
of 90 LBAs (90-179) is assigned to Flash Group 1, Super
Page 0 on Banks 1-6. The next stripe (LBAS 180-269) is
assigned to Flash Group 2. SuperPage 0, on Banks 1-6.

At this point, since the last Flash Group has been reached
(in this simplified example), the next stripe is written to
Flash Group 0, picking up where the previous stripe left off.
Thus, LBAS 270-284 are written to Flash Group 0, Super
Page 0 of Bank 7. Since there are no further SuperPage 0s
available in Flash Group 0, allocation of the stripe continues
with SuperPage 1 of Bank 0 and continues through Super
Page 1 of Bank 4.
The allocation from this point is straightforward, except

for boundary cases when the end of a SuperBlock is reached.
For example, a new stripe begins with SuperPage 1 of Bank
5 of Flash Group 0. Since only three SuperPages are left in
the SuperBlock, the stripe continues on SuperPage 1 of Bank
5 of Flash Group 1. In this way, LBAs are allocated to every
SuperPage in each SuperBlock, despite the fact that the
SuperBlocks do not hold an even number of stripes.

This method of allocating LBAs tends to maximize flash
memory parallelism. Because each Flash Group operates
independently, it is advantageous to stripe LBAS across
Flash Groups, since this maximizes the likelihood that a
single transaction will address data held on more than one
Flash Group, thereby allowing multiple flash reads or writes
relevant to the transaction to occur simultaneously. Because
a Transfer Request can only address LBAS on a single Flash
Group, it is sensible to specify stripe sizes in increments of
45 (the maximum number of LBAs that can be addressed by
a Transfer Request), to minimize the number of Transfer
Requests required for a transaction. In the current embodi
ment, a stripe is made up of two Such 45-LBA increments,
since this represents six SuperPages. As is described below,
a Flash Group can handle five simultaneous write opera

10

15

25

30

35

40

45

50

55

60

65

20
tions, on five separate Banks. Using a stripe size of 90 LBAs
tends to maximize parallel usage of the flash interface, since
a large transfer can execute five simultaneous writes on each
Flash Port, and can execute on multiple Flash Ports in
parallel. This organization therefore contributes to the ability
of SSD Controller 106 to handle large Host-initiated reads or
writes quickly, using a high degree of parallelism.

Thus, a hypothetical transfer involving LBAs 0-190 as
shown in FIG. 16 could occur using one IOP and five
Transfer Requests. A first Transfer Request could handle
LBAs 0-44, a second Transfer Request could handle LBAs
45-89, a third Transfer Request could handle LBAS 90-134,
a fourth Transfer Request could handle LBAS 135-179 and
a fifth Transfer Request could handle LBAS 180-190. Note
that this transfer involves three different Flash Groups,
thereby allowing for a high degree of parallelism. In addi
tion, since (as is explained below), Page Requests that target
different Banks can operate in parallel even on the same
Flash Group, the Page Requests issued by each Transfer
Request in this example could also operate in parallel, since
each Page Request targets a different Bank.
The allocation of LBAs to Flash Groups is permanent.

The allocation to Banks within a Flash Group, however, may
change over time. As is explained below, when a Host write
is received for an LBA, thus requiring that the SuperPage
containing that LBA be invalidated and the new data (and
any non-overwritten old data from the SuperPage) be written
to a new SuperPage, the Flash HEMi attempts to use a new
SuperPage from the same Bank as the old SuperPage.
Occasionally, however, this is not possible and the Flash
HEMi will move the LBAs to a SuperPage on another Bank.
This will tend to affect the performance of the flash memory
system, since, if enough such alterations occur, stripes of
data could be concentrated on a single or a relatively small
number of Banks, therefore reducing the opportunity for
parallel operations. However, in practice, the shifts from
Bank to Bank tend to occur in a patternless fashion, so that
even after significant operation the LBA groups in a given
stripe tend to be spread across the Banks, so that a high
degree of parallelism may be maintained.

III. Hardware Details

A. Host Interface.
FIG. 17 shows Host Interface 310 in greater detail than is

shown in FIG. 3. Host Interface 310 consists of Physical
Interface 1701 and two separate Host Ports, designated as
Host Port 0 104 and Host Port 1105. Physical Interface 1701
is further described below, but for present purposes it is
sufficient to understand that it routes signals between Hosts
101 and 102 and Host Ports 104 and 105. Each Host Port is
capable of interfacing to a separate Host.

In general, Host Interface 310 performs the following
functions on the receive side:

Receive frames
Deconstruct frames into constituent features
Pass command information on to the next stage
Pass data on to the Data Path DRAM
In general, Host Interface 310 performs the following

functions on the Transmit side:
Receive data from Data Path DRAM 107 and organize the

data for transmission to the Host
Generate frames for transmission to the Host
Transmit frames, including data frames, to the Host

US 9,483,210 B2
21

Each Host Port includes a Receive HEMi (1702 and
1703), a Transmit HEMi (1704, 1705), a Receive Stage
Buffer (1706, 1707) and a Transmit Stage Buffer (1708,
1709).
As is shown, each Receive HEMi receives control infor

mation from one of the Hosts through Physical Interface
1701, and communicates control information to other ele
ments of SSD Controller 106. “Control information, in this
context, means commands, control signals and addresses,
but does not include data. Note that the control information
received from the Host by each Receive HEMi may differ
from the control information communicated by the Receive
HEMS.

Each Transmit HEMi receives control information from
other SSD Controller elements and communicates control
information to one of the Hosts through Physical Interface
1701. Again, the control information transmitted to a Host
by a Transmit HEMi may differ from the control information
received by the Transmit HEMi.

Each Receive Stage Buffer receives data from one of the
Hosts through Physical Interface 1701 and transmits that
data on to Data Path DRAM 107. The Receive Stage Buffers
are 16 Kbytes, which allows them to accept up to 4 FC AL
(“Fibre Channel Arbitrated Loop) data frames.

Each Transmit Stage Buffer receives data from Data Path
DRAM 107 and transmits that data on to one of the Hosts
through Physical Interface 1701. The Transmit Buffers are 4
Kbytes, which allows them to store one outgoing frame and
one incoming frame from Data Path DRAM 107.

FIG. 18 shows certain additional details regarding Host
Port 0104. As is understood by those of ordinary skill in the
art, communications between SSD Controller 106 and Host
101 are organized according to the dictates of the particular
protocol used by the Host. In general, the relevant protocols
(e.g., SAS, SATA, Fibre Channel) specify that communica
tion to and from the Host take place using frames, which
consist of defined groups of commands and data.

Since the precise frame format used differs among the
various relevant protocols, SSD Controller 106 must be
modified for each protocol. SSD Controller 106 has been
designed, however, so that the modifications are minimal,
amounting to different firmware for the Receive and Trans
mit HEMi’s, and a different physical connector. All other
aspects of SSD Controller 106 are unchanged for the various
protocols. This is a significant advantage of the pipelined
and modular design of SSD Controller 106, and also of the
design of Host Interface 310.
Though the specific details of the frame organization

differ from protocol to protocol, certain aspects of the SATA
protocol will be used to illustrate the design and operation of
Host Port 0 104. In this protocol, a frame consists of a Start
of Frame (“SOF) primitive, a frame header (metadata
specified by the protocol, but generally including informa
tion necessary to identify the payload and possibly the
Initiator), a payload (e.g., data, command, etc.), a CRC value
for validation of the entire frame, and an End of Frame
(“EOF) primitive. The receive side of Host Port 0 104 is
responsible for receiving the frame, dividing it into its
constituent parts, and taking whatever action is needed to
either route data to its intended destination and/or set up the
transaction. The transmit side of the Host Port is responsible
for receiving relevant data and command information from
other elements of SSD Controller 106 and packaging that
information into a frame for transmission to Host 101.

Direct communication with the Host is handled by Giga
Blaze 1801, which is a transceiver core available from LSI
Corporation, headquartered in Milpitas, Calif., under the

10

15

25

30

35

40

45

50

55

60

65

22
designation 0.11 micron GigaBlaze(R) GflxTMx1 Core. This
core contains an 8b/10b encoder, a serializer/deserializer and
a phy, which performs physical conversion between
received bits and voltage levels. GigaBlaze 1801 has two
serial ports capable of attaching to 3G SATA, 3G SAS, 4g
FC AL and 4G FC buses. The details of the internal
operation of GigaBlaze 1801 are not relevant herein, except
that it handles the physical interface to the Host. In the
example shown, GigaBlaze 1801 is connected to Host 101.
Note that, although FIG. 18 only shows one of the two Host
Ports on SSD Controller 106, the other Host Port is identical,
and contains its own GigaBlaze.
As is shown in FIG. 18, GigaBlaze 1801 is connected to

Primitive Match Logic 1802. The Primitive Match Logic is
designed to allow the same physical level protocol to
interface with various different logical level protocols that
handle frames and primitives differently. When GigaBlaze
1801 receives a primitive from Host 101, GigaBlaze 1801
routes that primitive to the Primitive Match Logic, which is
described in detail below in connection with FIG. 19.
The Primitive Match Logic controls Frame Router 1803,

which receives frames from GigaBlaze 1801 and routes
portions of the frames under the control of the Primitive
Match Logic. Data is routed to Receive Stage Buffer 01706,
headers are routed to Non-Data Payload FIFO 1804 and
primitives are routed to Inbound Primitive FIFO 1808.

Receive HEMi O 1702 uses information in the Header and
Primitive FIFOs to identify actions to be taken. Data routed
to the Receive Stage Buffer is sent via DMA transfer to Data
Path DRAM 107.

Receive HEMi 1702 generates primitives and routes them
to Outbound Primitive FIFO 1805. These generated primi
tives include ACK (acknowledging correct receipt of a
frame), NAK (indicating that a frame was not received
correctly) and RRDY (reporting frame credit to an Initiator).
Primitives on Outbound Primitive FIFO 1805 are inserted
into transmissions to Host 101 immediately, and may be
inserted in the middle of other transactions (e.g., an out
bound data frame).
The transmit side of the Host Port shown in FIG. 18 is

made up of Transmit HEMi 1704, Transmit Stage Buffer 0
1708 and Transmit Frame Buffers 1806. Transmit Stage
Buffer 01708 contains data received from Data Path DRAM
107 that is to be transmitted to Host 101 as part of a frame
responsive to a read command. Transmit Frame Buffers
1806 consist of one or more buffers that hold metadata used
to construct frames. The Transmit Frame Buffers operate
similarly to the receive-side buffers, though, as should be
understood, they are used to construct frames, rather than to
deconstruct them.

Cut-Through Logic 1807 helps interface SSD Controller
106 to Fibre Channel networks. If SSD Controller 106 is
connected to a Fibre Channel network, Primitive Match
Logic 1802 evaluates received primitives to determine if the
primitives are intended for SSD Controller 106. Primitives
determined not to be intended for SSD Controller 106 are
sent to Cut-Through Logic 1807. The Cut-Through Logic
then passes the primitives to the GigaBlaze to be returned to
the Fibre Channel network, for transmission on to the next
node on the network.
The physical connectors required for the various different

protocols (SAS, SATA and Fibre Channel) are incompatible.
In the currently preferred embodiment, a different version of
SSD Controller 106 will exist for each protocol. However,
because the Primitive Match Logic operates correctly with
each of the protocols (see below), the only difference
required for each protocol is the use of a different physical

US 9,483,210 B2
23

connector, though different firmware may also be required
for the Receive and Transmit HEMi’s. In a different embodi
ment, SSD Controller 106 could incorporate three different
physical connectors, one for each protocol, and thereby
allow the same physical controller to be used with any of the
protocols.

Primitive Match Logic 1802 is shown in greater detail in
FIG. 19. This logic includes a state machine that matches
received primitives and identifies actions to be taken based
on the matched primitive and on the current state.

Primitives received from a Host are transmitted from
Gigablaze 1801 to Primitive Latch 1901. The primitives are
then matched against the bit patterns contained in Primitive
Match Registers 1902, which consists of sixteen registers. If
no match is found, the value from Primitive Latch 1901 is
routed directly onto Inbound Primitive FIFO 1808.

Primitive Match Control Registers 1903 consists of six
teen registers, one for each of the Primitive Match Registers.
The Primitive Match Control Registers contain bits that
indicate which bits in the associated Primitive Match Reg
ister must match the value in Primitive Latch 1901 in order
for an overall match to be found. For example, these bits
may require that the first byte match, with no requirement
that any other bits match. These bits from the Primitive
Match Control Registers therefore act as a mask, allowing
multiple received primitives to match a single Primitive
Match Register. This is useful in cases where the same action
is to be taken for a class of received primitives, and is also
useful in Screening out portions of primitives that represent
data rather than commands.

Other bits in Primitive Match Control Registers 1903
indicate actions to be taken if the value in the corresponding
register in Primitive Match Registers 1902 matches Primi
tive Latch Register 1901. For example, these bits can control
Frame Router 1803 so that some of the data following the
primitive is moved into Non-Data Payload FIFO 1804 and
data following that is moved into Receive Stage Buffer
1706. This would generally occur in the case of an SOF
primitive received in connection with a data frame.
The Primitive Match Control Registers operate as a state

machine. For example, certain bits can set a counter (not
shown) that can cause a certain number of Subsequent
primitives to be operated on by the current Control Register,
rather than a Control Register chosen through the Primitive
Match Registers. In addition, the Primitive Match Control
Registers can alter the values contained in various other
registers that are not shown.
As should be understood, Primitive Match Logic 1802

contains logic that performs comparisons between the value
in Primitive Latch 1901 and Primitive Match Registers
1902, and that implements the control functions required by
Primitive Match Control Registers 1903.
As is explained below in connection with FIG. 28, Primi

tive Match Registers 1902 and Primitive Match Control
Registers 1903 are loaded by the associated Receive HEMi.
using data overlays. These overlays are used to customize
Primitive Match Logic 1802 for different protocols (e.g.,
SAS, SATA), since each protocol has its own set of primi
tives. In addition, overlays can be used to handle different
sets of primitives, or different states, within a single proto
col. The values used by the Receive HEMi to load the
Primitive Match and Primitive Match Control Registers are
taken from an initialization firmware code load. Thus, in
many cases it will be possible to update Primitive Match
Logic 1802 for new protocols or modifications to existing
protocols by a modification to the Receive HEMi firmware,
without any alteration to the hardware.

10

15

25

30

35

40

45

50

55

60

65

24
The use of different overlays in the primitive match logic

thus allows SSD Controller 106 to respond to different
protocols without requiring individualized logic for each
protocol.

Primitive Match Logic 1802 also contains Frame Crack
ing Logic 1904. This logic block receives the initial dword
in a frame and evaluates that dword to determine the nature
of the frame (e.g., data, command). Based on the type of
frame, the Frame Cracking Logic routes the frame appro
priately. For example, if the frame is a command frame, the
Frame Cracking Logic routes the entire frame to Non-Data
Payload FIFO 1804, whereas if the frame is a data frame, the
Frame Cracking Logic routes the header portion to the
Non-Data Payload FIFO, and routes the data portion to the
appropriate Receive Stage Buffer.
As is described above, the Primitive Match Logic is

advantageous in that it allows SSD Controller 106 to handle
different protocols, involving different frame encodings,
without the need for software or significant hardware
changes. In addition, by routing data to a specialized data
FIFO, contained in the Receive Stage Buffers, while meta
data and command information are routed to different FIFOs
(e.g., Non-Data Payload FIFO 1804 and Inbound Primitive
FIFO 1808), the Receive Host Port design allows for more
efficient transfers of data, since the data FIFO contains only
data and does not contain commands or metadata, and
allows data to be transferred to the Data Path DRAM via
DMA transfers in parallel with Receive HEMi operations on
header and primitive metadata, thereby increasing overall
system performance.
As is described above, SSD Controller 106 can be used

for a variety of different protocols, requiring only a modi
fication to HEMi firmware and a different physical connec
tor. The protocols described above are all relatively similar.
SSD Controller 106 can also be adapted easily for protocols
with significant differences from those described above. In
one embodiment, for example, SSD Controller 106 can be
adapted for use with lane-oriented protocols such as PCI
Express. As is understood by those of skill in the art, in PCI
Express systems, external devices transmit and receive data
and metadata using “lanes, each of which carries a portion
of the transmission, with doublewords of data striped across
the lanes. The number of lanes is implementation-depen
dent, but SSD Controller could be adapted for use with a
4-lane PCI Express system by adding two additional Giga
Blazes (as should be understood, each GigaBlaze would be
a version designed for the PCI Express interface), two
additional Receive HEMi’s and two additional Transmit
HEMi’s. One GigaBlaze, one Receive HEMi and one Trans
mit HEMi would be devoted to each lane. In this embodi
ment, SCSI HEMi 2001 (see below) is not used. That HEMi
can instead be used as an additional RdWr HEMi.

In this embodiment, a device driver operating on the
external Host is responsible for formatting PCI Express
transmissions into IOPs. Most of the Host Port logic is
therefore unnecessary (e.g., Primitive Match, various
FIFOs, etc.). The Receive and Transmit HEMi’s are respon
sible for destriping and restriping the data, respectively.
Once a received IOP has been destriped, it can then be
handed directly to a RdWr HEMi (see below). Processing
then proceeds as per the other protocols described above.

Although use of SSD Controller 106 with a lane-oriented
protocol Such as PCI Express requires some additional
modifications, these modifications are relatively minor, and
easily accommodated as a result of the Controller's modular
design. Addition and subtraction of HEMis is relatively
simple, and because different stages of the Controller pipe

US 9,483,210 B2
25

line operate independently, changes at one stage (e.g., the
Host Port), do not require changes at other stages (e.g., the
Flash Ports).
SSD Controller 106 can similarly be designed for use with

the iSCSI protocol, though this requires addition of one or
more TCP/IP stacks to the Host Port, with the Receive
HEMi(s) responsible for extracting CDBs from that stack,
and Transmit HEMi(s) responsible for encoding frame infor
mation as required by the TCP/IP protocol.
B. Command Parser.

FIG. 20 shows additional detail about Command Parser
Block 311 from FIG. 3. As is described in connection with
FIG. 3, Command Parser Block 311 communicates with
Host Interface 310 and with Command Distribution Block
312.
Command Parser Block 311 includes SCSI HEMi 2001.

SCSI HEMi 2001 receives Host commands from Receive
HEMi’s 1702 and 1703. SCSI HEMi 2001 determines if the
Host command is a read/write, or some other type of
command. If the command is other than a read/write com
mand, SCSI HEMi 2001 hands the command off to ARM
Processor 2002, which handles non-read/write commands.
ARM Processor 2002 is further described below.

If SCSI HEMi 2001 determines that the command is a
read/write command, it validates the command to insure
coherency, meaning that, if the read or write command
relates to the same data as a read or write command that is
currently being processed by Command Distribution Block
312, the second command is deferred until certain process
ing of the first command is completed.

Read/write coherency is not required by the SCSI proto
col, which allows for reads and writes to be reordered.
However, as is described below, SSD Controller 106 breaks
Host-initiated commands into multiple Suboperations, and
these suboperations may be handled out of order.

If SSD Controller 106 were to allow more than one
command to operate on the same data at the same time, it is
possible that portions of the second command would be
carried out before the first command had completed. For
example, if SSD Controller 106 were to receive a write
command for a particular block of LBAS and Subsequently
were to receive a read command for an overlapping block of
LBAs, and if the read command were allowed to begin
operation before the write command had finished, it is
possible that the read command might result in the return of
some data that had already been updated by the write
command, and some data that had not been updated.

For this reason, SSD Controller 106 keeps track of
currently active commands in two locations: in SCSI HEMi
2001 and in the Flash HEMi’s (described below).

SCSI HEMi Command Table 2003, which is stored in an
internal memory of the HEMi known as its mRAM (see
below in connection with FIG. 26), contains the LBA and
transfer length of every Host read and write command that
has been sent by SCSI HEMi 2001 to Command Distribu
tion Block 312 but has not yet been sent on to the Flash
HEMS.
As is described below, the Command Distribution Block

contains several HEMi’s known as RdWr HEMi’s. Com
mand Table 2003 contains the identification of the RdWr
HEMi working on each command. SCSI HEMi 2001 uses
this information to balance out the workload among the
RdWr HEMi’s, sending new commands to RdWr HEMi’s
with relatively fewer currently active commands.
When a new command is received, SCSI HEMi 2001

checks Command Table 2003 to determine if any of the LBA
addresses affected by that command are already present. If

5

10

15

25

30

35

40

45

50

55

60

65

26
a match is found, SCSI HEMi 2001 stalls execution of the
new command until the previous command is removed from
the Table. Commands are removed from Command Table
2003 once the RdWr HEMi to which the command has been
dispatched reports that it has created and dispatched all
necessary Transfer Requests corresponding to the command
(the process by which RdWr HEMi’s dispatch such Transfer
Requests is described below). At that point, the new com
mand is no longer stalled. As should be understood, at this
point the earlier command is still executing, but that com
mand is now Subject to coherency checking at the Flash
HEMilevel (described below).

Thus, SSD Controller 106 enforces read/write coherency
at two points in the pipelined execution of a Host command:
SCSI HEMi 2001 Stalls a new command that conflicts with
an existing command's LBA range until the existing com
mand has been sent to the Flash HEMi’s, and each Flash
HEMi enforces coherency on its own operations, so that it
stalls execution of a new command covering the same range
as an existing command until the existing command is
complete.

This two-stage system of coherency enforcement is
advantageous, since it allows processing of conflicting com
mands to proceed as long as they are at different stages in the
pipeline. Thus, the RdWr HEMi’s can be setting up a second
conflicting command at the same time as the first conflicting
command is operating in the flash memories, thereby
improving overall system performance.
As is described above, Command Parser Block 311 also

contains ARM Processor 2002, which controls certain inter
nal administrative operations and is responsible for handling
host-initiated commands other than reads or writes. In the
currently preferred embodiment, ARM Processor 2002 is an
ARM7TDMi-s available from ARM Holdings plc of Cam
bridge, UK. As should be understood, however, the func
tions of ARM Processor 2002 can be handled by a variety of
logic devices.

Although the exact nature of Host commands handled by
ARM Processor 2002 is protocol-dependent, in one embodi
ment, these commands include the following:

Test Unit Ready
Read Capacity
Mode Select
Mode Sense
Log Select
Log Sense
Report Luns
Send Diagnostic
Request Sense
Write Buffer
Read Buffer

C. Command Distribution.
FIG. 21 illustrates Command Distribution Block 312 in

greater detail. As is shown, Command Distribution Block
312 constitutes a group of RdWr HEMi’s, designated as
2101-2106. In the currently preferred embodiment, Com
mand Distribution Block 312 consists of six RdWr HEMi’s.
However, because of the modular design of SSD Controller
106, the number of RdWr HEMi’s can be increased or
decreased without requiring any significant redesign of the
rest of the Controller. A larger number of RdWr HEMi’s
increases performance, but at the cost of greater expense and
complexity.
As FIG. 21 shows, SCSI HEMi 2001 passes information

to each of the RdWr HEMi’s. In general, this consists of
CDBinfos, which SCSI HEMi 2001 allocates to a particular

US 9,483,210 B2
27

RdWr HEMi based on the relative workload of that HEMi
compared to the other RdWr HEMi’s.
The RdWr HEMi’s generate IOPs based on the CDBinfos,

then generate Transfer Requests as required by the IOPs, and
transmit those Transfer Requests to a particular Flash Port
based on the flash address of the data to be transferred.
RdWr HEMi’s also communicate with Transmit HEMis; in
the case of Host writes, the responsible RdWr HEMi sends
a communication to the Transmit HEMi indicating that the
Transmit HEMi should inform the Host that the Controller
is ready for the data associated with the write.
D. Crossbar; Shared RAM, DRAM.

Preceding Figures have illustrated the interconnections
between functional blocks in terms of data and control flow
and have not attempted to show physical connections. FIG.
22 illustrates the manner in which many of the functional
blocks of SSD Controller 106 are physically interconnected
in the current embodiment.

FIG. 22 shows Crossbar Switch 2201. As is commonly
understood by those of ordinary skill in the art, a crossbar
Switch operates So as to connect any element on one side of
the switch with any element on the other side of the switch.
Crossbar Switch 2201 connects elements on its HEMi side
with elements on its Shared RAM side, in a manner that will
be explained below.

The HEMi side of Crossbar Switch 2201 has two-way
connections to each of the HEMi’s contained in SSD Con
troller 106. (The HEMi’s shown in FIG. 22 are actually a
combination of the HEMi and tightly coupled logic that is
associated with each HEMi, logic that is further described
elsewhere herein).
As is described elsewhere herein, the number of HEMi’s

may differ depending on implementation decisions (e.g., the
Controller may include between eight and twelve Flash
HEMi’s).

In the current embodiment, the Shared RAM Side of
Crossbar Switch 2201 is connected to ten RAM banks,
designated as Shared RAM Bank 0 (2202) through Shared
RAM Bank 7, Global Registers 2203 and PIO Buffer 2204
and collectively designated as Shared RAM Block 318. In
the currently preferred embodiment, each Shared RAM
Bank consists of 4 Kbytes of RAM storage space. Crossbar
Switch 2201 is designed to connect to a larger number of
Shared RAM Banks, therefore supporting modular expand
ability, as is explained below.

All ten of the Shared RAM Banks share an address space,
though, as is explained above, certain of these Banks have
a specialized function.
As is shown in FIG. 22, CrossBar Switch 2201 includes

a Port for each of the Shared RAM Banks. Each Shared RAM
Bank includes four FIFO's and a Data Structures section,
and each of the FIFOs is controlled by an associated FIFO
Register Block (e.g., Register Block 2205 controls FIFO 0.
Block 2206 controls FIFO 1, etc.)
As is illustrated by the arrows connecting Shared RAM

Port 0 with Shared RAM Bank 0, Shared RAM Port 0 is the
only input or output path to FIFO's 0-3 or the Data Struc
tures section of Shared RAM Bank 0, with the path to and
from the FIFO's proceeding through the associated Regis
ters. As is explained below, reads or writes to the FIFO's
take place through the associated Register Block, whereas
reads or writes to the Data Structures section access that
section without going through the associated Registers.

In the currently preferred embodiment, only 27 of the
FIFO's are actually used (23 for HEMi Worklists, four for
freelists). The other five are available for expanding the
number of HEMi’s supported by the system.

10

15

25

30

35

40

45

50

55

60

65

28
Crossbar Switch 2201 Global Registers Port 2207 is

connected to Global Registers 2203, which consists of a
RAM bank made up of registers that perform a variety of
functions, including controlling GigaBlaze 1801 and setting
up DRAM Controller 2305 (described below in connection
with FIG. 23).

Crossbar Switch DRAM Port 2208 is connected to PIO
(“Programmed IO) DRAM Buffer 2204, which in turn is
connected to Data Path DRAM 107. PIO DRAM Buffer
2204 is a 64-doubleword FIFO contained in a bank in Shared
RAM, which is used to buffer communications between the
HEMi’s and the Data Path DRAM. Such buffering is needed
because the Data Path DRAM runs at a higher clock speed
and is capable of reading and writing four doublewords at a
time, whereas the HEMi’s are only capable of reading and
writing a single doubleword at a time. In order to avoid
slowing Data Path DRAM operations, PIO DRAM Buffer
2204 buffers data transfers to and from the DRAM. When
the HEMi’s are writing data to the Data Path DRAM, PIO
DRAM Buffer 2204 stores the data, a doubleword at a time,
until the write is complete or the buffer is full, at which point
it bursts the data to the Data Path DRAM. When the HEMi’s
are reading data from the Data Path DRAM, PIO DRAM
Buffer 2204 stores four doublewords of data from the Data
Path DRAM at a time, and once all of the necessary data is
available (or the PIO Buffer is full) the HEMi’s read that
data in a burst a doubleword at a time. Again, as should be
understood, data is actually transferred between the DRAM
and one of a number of buffers.

Note that the connection from Crossbar Switch 2201 to
PIO Buffer 2204 is not used for data transfers between the
Data Path DRAM and the Flash Port Stage Buffers or the
Host Interface Transmit and Receive Stage Buffers, but is
instead used only for communication with the HEMi’s.
Transfers to and from the various Stage Buffers do not travel
through Crossbar Switch 2201.

Crossbar Switch Debug Port 2209 is connected to Debug
FIFO 2210. Debug FIFO 2210 is a large SRAM bank that
acts as a FIFO for debug information from the HEMi’s.
Debug FIFO 2210 accepts information from the HEMi’s a
doubleword at a time, and stores that information in a FIFO
structure that is 4 doublewords wide. Once Debug FIFO
2210 reaches a set capacity threshold, it arbitrates for access
to a DRAM port, and, once it has gained Such access, it burst
writes the debug information into DRAM 107, 4 double
words at a time.
As is customary with crossbar switches, Crossbar Switch

2201 can simultaneously connect multiple elements from the
HEMi side with multiple elements on the Shared RAM side,
limited only by the number of Ports on each side.

Crossbar Switch 2201 is capable of connecting each
HEMi to each Shared RAM Bank, as well as the other
resources on the Shared RAM side of the Switch. As should
be understood, however, the Switch does not connect
HEMi’s directly to each other, nor does it connect Shared
RAM Banks directly to each other. Communication between
HEMi’s is accomplished indirectly, by using Crossbar
Switch 2201 to leave information in the Shared RAM Banks.

Thus, when (as is described below), SCSI HEMi 2001
generates an IOP as a result of a received CDB, and passes
that IOP to a RdWr HEMi, this is handled by SCSI HEMi
2001 storing a pointer to the IOP location in a worklist for
the RdWr HEMi, the worklist also being stored in one of the
Shared RAM Bank FIFOs. The RdWr HEMi then receives
the IOP by checking the worklist, identifying the location
containing the IOP, and copying the IOP from that location
into its own internal memory. Communication among other

US 9,483,210 B2
29

HEMi’s proceeds in a similar fashion. The details of the data
structures contained in the Shared RAM Banks, and the
manner in which the HEMi’s use those data structures to
transfer information, are described below.
DRAM Access Register Block 2211 controls accesses to

Data Path DRAM 107. As is explained above, HEMi’s do
not directly access Data Path DRAM 107, but instead use
PIO Buffer 2204 for this purpose. These are DMA transfers,
which require the HEMi to supply only the starting address
and the size of the transfer.

Address Register 2212 stores the starting location in the
Data Path DRAM for the transfer. Transfer Count Register
2213 stores the number of transfers required. Data Register
2214 stores the data to be sent to PIO Buffer 2204, or
received from the PIO Buffer.
A read from Data Path DRAM 107 begins by the HEMi

placing the DRAM address in Register 2212 and placing the
size of the transfer (in quad-doublewords) into Transfer
Count Register 2213. Those actions cause DRAM DMA
Engine 2302 (see below) to transfer data, in four doubleword
chunks, into PIO Buffer 2204. As each transfer takes place,
the DRAM DMA Engine decrements Transfer Count Reg
ister 2213, and the DMA transfer ends when Transfer Count
Register 2213 reaches zero.

After the DMA transfer completes, the data is automati
cally read from the PIO Buffer to Data Register 2214, in
doubleword increments.
A write from the HEMito Data Path DRAM 107 operates

similarly.
Note that Address Register 2212 increments each time

Transfer Count Register 2213 decrements. This is not nec
essary for the transfer currently taking place, since the
DRAM DMA Engine only requires the initial address plus
the transfer count. However, incrementing Address Register
2212 results in the ending address for the transfer being held
in that Register once the transfer is complete, and this may
be useful in setting up future transfers.
RAM Controller 317 is illustrated in FIG. 23. In general,

the RAM Controller controls and arbitrates access to Shared
RAM Block 318 and Data Path DRAM 107.
RAM Controller 317 includes the following logic blocks

(as should be understood, and as is true of other hardware
diagrams herein, the illustration in FIG. 23 is conceptual in
nature and is not intended to convey details of the actual
physical layout):

Shared RAM Controller 2301.
Crossbar Switch 2201.
DRAM Controller 2305, consisting of logic purchased

from Denali Software, Inc. of Palo Alto, Calif., that manages
the physical interface into Data Path DRAM 107.
DRAM Controller 2305 includes DRAM DMA Engine

2302. DMA Engine 2302 handles DMA transfers between
Data Path DRAM 107 and the various Buffers that commu
nicate with the DRAM (e.g., Receive Buffer 1706, Transmit
Buffer 1708, Flash Stage Buffer 308, PIO Buffer 2204,
Debug FIFO 2210). DMA Engine 2302 receives from a
HEMi the starting address and transfer count of a DMA
transfer and controls the transfer from there, with no require
ment of additional information from the HEMi.
E2E Logic 2303 performs three types of tasks relating to

E2E tags, which are described above, in connection with
FIG. 13: (a) attaching E2E tags to each sector of data that is
being sent to the flash; (b) checking tag values against
expected values and generating an error condition if the
values don’t match, and (c) Stripping E2E tags from data that
is being transmitted back to the Host, if the Initiator does not
use these values (and therefore does not expect them).

10

15

25

30

35

40

45

50

55

60

65

30
The E2E tags attached to each sector of data are RefTag

1304, AppTag 1305 and CRC 1306. As is explained above,
for data received from Initiators that support E2E, these
values are taken from, or calculated based on, information
received from the Initiator, and for data received from
Initiators that do not support E2E, these values are generated
internally.
E2E Logic 2303 is capable of checking RefTag, AppTag

or CRC values. These checks are described above in con
nection with FIG. 13. E2E Logic 2303 performs these
checks whenever data is transferred between Data Path
DRAM 107 and a Flash Stage Buffer, or transferred between
Data Path DRAM 107 and a Receive Buffer or Transmit
Buffer. The Initiator specifies which of these fields are to be
checked, unless the Initiator does not support E2E. If the
Initiator does not support E2E, the checks performed are
based on parameters selected by the user at initialization.
Note that the RefTag value is always checked for internal
error-checking purposes, even if the Initiator does not Sup
port E2E and the user does not ask for this check to be done.
E2E Logic 2303 attaches E2E tags to each sector of data

that passes from Data Path DRAM 107 to the Flash Stage
Buffers. As is explained above, in connection with FIG. 13,
the RefTag information is taken from information supplied
by the Initiator, if the Initiator supports E2E. The Initiator
can require that the RefTag be incremented for each sector
of data, in which event E2E Logic 2303 performs the
increment operation prior to attaching the Reflag. If the
Initiator does not support E2E, E2E Logic 2303 inserts the
LBA into RefTag Field 1304. If the Initiator supports E2E,
the AppTag and CRC fields are filled in with information
supplied by the Initiator. If the Initiator does not support
E2E, the AppTag is filled in with a default value, and the
CRC field is either filled in with a default value or with an
internally calculated CRC value, depending on an option
chosen by the user at the time of initialization.
DRAM Scheduler 2304 consists of an ordered list of

every channel that can access Data Path DRAM 107. These
channels are described below in connection with FIG. 25.
Since the DRAM only has a single input/output port, only
one channel can access it at a time. DRAM Scheduler 2304
rotates through each channel, checking whether that channel
requires access to the DRAM, and, if so, allowing that
channel to connect to the DRAM port. Once that access has
completed, DRAM Scheduler 2304 moves to the next chan
nel in the list. In this way, DRAM Scheduler 2304 arbitrates
accesses to the DRAM port in a round-robin fashion.

FIG. 24 shows certain aspects of Shared RAM Controller
2301 and the relationship between register blocks contained
in Shared RAM Controller 2301 and FIFOs contained in the
Shared RAMs. In particular, FIG. 24 shows FIFO Pointer
Registers 2205, 2206, 2401 and 2402, which correlate to
FIFO's 0-3, contained in Shared RAM Bank 0 2202. Shared
RAM Controller 2301 contains four Pointer Register blocks
per Shared RAM Bank, for a total of 32, though some of
these may be unused. Note that, for purposes of clarity, the
portions of Shared RAM Controller 2301 that control Shared
RAM Banks other than Bank 0 are not shown.
As is shown in FIG. 23, FIFO 0 Pointer Registers 2205 are

associated with FIFO 0 (2403), which is contained in Shared
RAM Bank 0 2202. Pointer Registers 2205 consist of the
following registers:

Base Register 2404 contains a pointer to the address
location within Shared RAM Bank 2202 that constitutes one
boundary of the portion of Shared RAM Bank 2202 that is
dedicated to FIFO 2403. Ceiling Register 2405 contains a
pointer to the address location within Shared RAM Bank 0

US 9,483,210 B2
31

that constitutes the other boundary of the portion of Shared
RAM Bank 0 that is dedicated to FIFO 2403. These registers
define the location and size of FIFO 0. In the currently
preferred embodiment, they are set at initialization, and not
changed during operation. In an alternative embodiment,
these values may be reset dynamically, thereby allowing
more efficient allocation of space within Shared RAM Bank
2202, but at the cost of adding complexity.
FIFO 2403 is a First-In, First-Out memory structure. As

Such, it has a top, which represents the entry that was most
recently inserted, and a bottom, which represents the oldest
entry. FIFO 2403 wraps around, and the location of the
current top and the current bottom will change during use.

Top Register 2406 contains a pointer to the address
location within Shared RAM Bank 2202 that constitutes the
current top of FIFO 2403. Bottom Register 2407 contains a
pointer to the address location within Shared RAM Bank
2202 that constitutes the current bottom of FIFO 2403.

Count Register 2408 contains a value representing the
number of currently active elements in FIFO 2403. This
same information can be derived by comparing Top Register
2406 and Bottom Register 2407, but a performance advan
tage is derived from having this information available with
out the need for a calculation. Count Register 2408 is
automatically incremented whenever an item is added to
FIFO 2403, and automatically decremented whenever an
item is removed.
As is shown in FIG. 24, Shared RAM Controller 2301

also contains FIFO Pointer Registers 2206, 2401 and 2402.
corresponding to FIFO's 1-3, though the individual registers
are not shown.

Shared RAM Bank 0 also contains Data Structures 2409.
As is explained in connection with FIG. 41, a variety of
non-FIFO data structures are stored in Shared RAM, includ
ing the Initiator Table, CDBinfo Table, IOPTable, Transfer
Request Table and Global Variables.

Note that each Freelist and its associated Table must be
stored on the same Shared RAM Bank (see below in
connection with FIG. 41).

Shared RAM Controller 2301 also contains Crossbar
Arbitration Logic 2410. As is described above, Crossbar
Switch 2201 has one Port for each HEMi and connects those
Ports with eight Shared RAM Ports (one for each Shared
RAM Bank), Global Registers, the Debug FIFO r and the
Data Path DRAM. This requires some means of arbitrating
among the HEMi’s (23 in the current embodiment) for
access to the Shared RAM and DRAM ports.

This arbitration is handled by Crossbar Arbitration Logic
2410. This logic uses a fair arbitration algorithm to arbitrate
among HEMi’s if more than one HEMi requires access to
the same Port. In the currently preferred embodiment, this
arbitration proceeds in a round-robin fashion, starting with
the HEMi that most recently obtained access to the Port, and
counting upwards through the HEMi’s until reaching the
first HEMi that desires access, wrapping around from the
highest-numbered HEMi (HEMi 22 in the current embodi
ment) to HEMi 0. Thus, if HEMi’s 5 and 10 require access
to a particular Shared RAM Port, and the most recent HEMi
having access to that Port was HEMi 15, HEMi5 would be
awarded the access, since Crossbar Arbitration Logic 2410
would count upwards from 15, wrapping around after 22,
and HEMi 5 would be the first HEMi it would reach that
required access to the Port. As should be understood, a
variety of other arbitration algorithms could be used.

Crossbar Arbitration Logic 2410 also contains a mecha
nism to place a hold on a Port at the request of a HEMi that

10

15

25

30

35

40

45

50

55

60

65

32
has obtained access to the Port. This allows a HEMi to
complete a transaction that should not be interrupted.

Note that the design illustrated in FIG. 24 allows for
modular expandability, in that the capacity of a system may
be increased by adding a single Flash Port at a time. Doing
so requires adding a Flash Port, flash memory, and a Flash
HEMi as well as adding one Shared RAM for each four
HEMi’s that are added (to hold the HEMi Worklists (see
below)), plus four sets of FIFO Pointer Registers for each
Shared RAM. Adding Shared RAM also adds space that can
be allocated to additional CDBinfos, IOPs and Transfer
Requests. In addition, it is relatively easy to add a new
Shared RAM Port to Crossbar Switch 2201.

This type of expansion requires a minor redesign of the
layout of the Shared RAM Banks, in order to spread the data
across the newly added Banks, but this can be handled by
modifying the data used to initialize the Shared RAM Banks
No changes are required to the HEMI's or the HEMi
firmware.

This modular design allows for expansion from a simple
system containing two to three Flash Ports to a much larger
system containing up to 23 Flash Ports with no requirement
of any software or major hardware changes. Thus, the same
architecture can be used for an inexpensive workstation
design, involving only two to three HEMi’s, or a much
larger system.

Shared RAM Controller 2301 also includes Shared RAM
Access Register Block 2411, which is used by HEMi’s for
accesses to Shared RAM Block 318. Block 2411 includes
the following registers:

Shared RAM Address Register 2412 contains the address
in Shared RAM of the doubleword that is the subject of the
access. The high order bits of this address indicate the
particular Shared RAM Bank to be selected, and the low
order bits indicate the location in that Bank.

Shared RAM Data Autoinc Register 2413 holds a double
word of data that is read from or to be written to the address
stored in the Address Register. Use of the Shared RAM Data
Autoinc Register causes the value in Address Register 2412
to automatically increment. On a read. Address Register
2412 increments once the data is copied into Register 2413.
On a write. Address Register 2412 increments once the data
is written out of Register 2413.

This Autoinc Register is used with Repeat Count Register
2702 (see below in connection with FIG. 27) for DMA-type
block transfers of data. The number of transfers required is
written into Repeat Count Register 2702 and the initial
address is written into Address Register 2412. Data Autoinc
Register 2413 will then repeat the read or write for the
number of iterations indicated in the Repeat Count Register,
with each repetition causing Address Register 2412 to
increment, so that the next access is to the next doubleword
in Shared RAM.

Shared RAM Data Register 2414 performs the same
function as the Data Autoinc Register, but does not cause
Address Register 24.12 to increment. Register 2414 is used
for multiple accesses to the same memory location, e.g.,
reading a variable and then modifying it.
Mapnum Register 2415 is used to select one of the FIFO's

in Shared RAM Block 318.
Top Register 2416, Append Register 2417, Push Register

2418 and Pop Register 2419 each hold a doubleword of data.
These registers are used for four different types of access to
the FIFO selected by Mapnum Register 2415. A HEMican
read the value from the top of the FIFO without modifying
the location of the top value in the FIFO or it can “pop” the
top value from the FIFO, thereby causing the FIFO top to

US 9,483,210 B2
33

point to the next value in the FIFO. These operations result
in the returned value being written into Top Register 2416 or
Pop Register 2419, respectively.
A HEMican also “push” a value onto the top of the FIFO,

so that the new value becomes the new top of the FIFO, or
add a value onto the bottom of the FIFO. For these opera
tions, the data to be written is placed by the HEMi into Push
Register 2418 or Append Register 2417, respectively.
The ability to place information at the top or the bottom

of FIFO's provides additional flexibility. For example, this
allows more important tasks to be placed at the top of a
Worklist and less important tasks to be placed at the bottom.

FIG. 25 illustrates the input and output paths to and from
Data Path DRAM 107. In the current embodiment, SSD
Controller 106 may include 18 resources that require access
to the DRAM (depending on configuration): up to 12 Flash
Stage Buffers (shown as FSB 0308, FSB 1314 and FSB 11
2501, with the Flash Stage Buffers between 1 and 11 not
shown for purposes of clarity; as is explained above, par
ticular implementations of SSD Controller 106 may have
fewer than 12 Flash Ports, and therefore fewer than 12 Flash
Stage Buffers), PIO Buffer 2204, Debug FIFO 2210,
Receive Stage Buffer 0 1706, Transmit Stage Buffer 01708,
Receive Stage Buffer 1 1707 and Transmit Stage Buffer 1
1709.

The paths between these resources and the Data Path
DRAM are referred to herein as “channels.” As should be
understood, although each of the resources is necessarily
connected to the DRAM by a physical transmission path,
channels are conceptual in nature and are do not necessarily
reflect actual bus structures.

In the current embodiment, Data Path DRAM 107 has a
single input/output port, designated as DRAM Port 2502,
though other memories that may be used for this purpose
may have a larger number of ports. As is explained above,
DRAM Scheduler 2304 arbitrates among the channels,
assigning access to channels that need access to DRAM Port
2502 in a round-robin fashion. In an alternate embodiment,
other arbitration schemes could be used. For example,
access could be prioritized according to the type of data
being transferred, or the resource seeking access to the
DRAM, e.g., Debug FIFO 2210 could be prioritized below
Flash Stage Buffer accesses.

FIG. 25 illustrates the connection between the channels
and DRAM Port 2502 as proceeding through Switch 2503.
Operating under the control of DRAM Scheduler 2304.
Switch 2503 connects one of the channels to DRAM Port
2502 at a time. The arrows shown in FIG. 25 illustrate the
directionality of the allowed connections, e.g., Flash Stage
Buffer 308 can read from or write to the DRAM, Debug
FIFO 2210 can write to but not read from the DRAM and
Transmit Buffer 1708 can read from but not write to the
DRAM.

Switch 2503 is conceptual in nature and does not neces
sarily represent a single, large Switch. Instead, this function
ality may consist of a number of logic gates disposed at
different locations. The exact physical design of this func
tionality is implementation-specific.
When a channel gains access to DRAM Port 2502, the

movement of data between that channel and the DRAM
occurs in a burst, made up of transfers each of which consists
of four doublewords. That burst continues until the read or
write is complete, or until the resource connected to the
channel is full (for a transfer from the DRAM) or empty (for
a transfer to the DRAM). Once the burst is terminated, that

5

10

15

25

30

35

40

45

50

55

60

65

34
channel loses its access through Switch 2503, and DRAM
Scheduler 2304 gives access to the next channel requiring
that access.
E. HEMS.
As is described above, SSD Controller 106 contains a

number of processors referred to herein as HEMi’s. As used
herein, the term “processor or “microprocessor refers to
any distinct logic block that includes an ALU capable of
performing at least basic arithmetic and/or logical opera
tions, a memory specific to the processor that holds data, and
control logic that controls operations of the ALU, the control
logic consisting of hardware, Software and/or firmware. As
used herein, “HEMi” refers to the particular processors used
in the currently preferred embodiment, though, as should be
understood, many details of the internal HEMi design are
irrelevant herein and are omitted for purposes of clarity. In
addition, although the HEMi design constitutes the currently
preferred processor embodiment, as those of ordinary skill
in the art understand, many other processor designs are
possible.

In the current embodiment, SSD Controller 106 may
contain up to 23 HEMi’s, designated as follows (note that in
this embodiment the numbering system includes gaps):
HEMi O Receive HEMi for Host Port 0 (1702).
HEMi 1: Transmit HEMi for Host Port 0 (1704)
HEMi 2: Receive HEMi for Host Port 1 (1703)
HEMi 3: Transmit HEMi for Host Port 1 (1705)
HEMi 8: SCSI HEMi (2001)
HEMi’s 9-14: RdWr HEMi’s (2101-2106)
HEMI's 15-26: Flash HEMi’s (e.g., 307, 309, 313)
Certain aspects of the internal functioning of the HEMi’s

are illustrated in FIG. 26. In the currently preferred embodi
ment, all HEMi’s share the same hardware elements, but are
customized for different functions through the use of differ
ent firmware overlays and through being connected to
different tightly-coupled elements, both of which are
described in greater detail below.

Each HEMi includes iRAM 2601, which is an instruction
RAM capable of holding firmware to implement 1,000 56 bit
VLIW instructions. These instructions are each able to read
1-2 Shared RAM or register locations, perform ALU opera
tions, and write back or branch on the result.
As is described below, Data Path DRAM 107 stores up to

eight different firmware overlays for each type of HEMi, and
these overlays are copied into iRAM 2601 when needed
based on the function being performed. This allows each
HEMi to implement a much larger number of instructions
than would be possible if the firmware were limited to the
size of the iRAM.
HEMi instructions are fetched based on a 16-bit address.

3 bits of the address select the firmware overlay, and 13 bits
constitute the address of the instruction in iRAM 2601. A
firmware swap is triggered if the 3 firmware overlay bits of
the instruction being fetched do not match the overlay that
is currently stored in iRAM 2601.

In general, Swapping firmware overlays is avoided by
aggregating together the firmware that Supports instructions
needed to perform common tasks. For example, a single
firmware overlay can handle most common operations nec
essary for reads and writes. Other firmware overlays handle,
for example, initialization and error correction handling.

Each HEMialso includes two KByte mRAM 2602, which
serves as a storage space for data being used by the HEMi.
As FIG. 26 shows, each HEMi includes a six-stage

pipeline made up of Fetch Stage 2603, IBuffer Stage 2604,
Decode Stage 2605, Read Stage 2606, ALU Stage 2607 and
Write Back Stage 2608. In the currently preferred embodi

US 9,483,210 B2
35

ment, each of these Stages constitutes a logical block within
the HEMi, though in an alternate embodiment these could
represent HEMi states, independent of the underlying pro
cessor hardware used to generate the state.
The Fetch Stage determines the iRAM address of the

firmware associated with the instruction to be executed. That
address is then passed to the iRAM, as is indicated by the
arrow between Fetch Stage 2603 and iRAM 2601.
The firmware at that address is then loaded into a buffer,

as is indicated by the arrow between iRAM 2601 and IBuffer
Stage 2604.
The firmware is then handed off to Decode Stage 2605 (as

shown by the arrow between IBuffer Stage 2604 and Decode
Stage 2605). The Decode Stage decodes the instruction and
performs jumps and calls. It transmits jumps and calls back
to Fetch Stage 2603 (indicated by the arrow from Decode
Stage 2605 to Fetch Stage 2603). In the case of straight-line
instruction execution, Decode Stage 2605 passes parameters
to Read Stage 2606. These parameters include the location
from which data is to be retrieved for the required operation.

Read Stage 2606 reads 1 or 2 memory or register locations
as required by the instruction. In the case of a read to two
locations, Read Stage 2606 repeats, as is indicated by the
arrow looping back from the output of Read Stage 2606 to
its input. As indicated by the arrow pointing to Read Stage
2606 from External Read 2609, sources for the information
include mRAM 2602 and external memory or registers
(indicated conceptually by External Read 2609). Informa
tion may also come from internal registers that are not
shown in FIG. 26.
Read Stage 2606 passes the obtained information to ALU

Stage 2607, for operation by the HEMi’s ALU. Results from
the operation are passed to Fetch Stage 2603 (in the case of
a conditional branch) or to Write Back Stage 2608.

Write-Back Stage 2608 writes the results of the ALU
operation into a location specified by the instruction. As is
indicated by the arrow pointing out of Write Back Stage
2608, results may be written into mRAM 2602 or to an
external resource (indicated conceptually by External Write
2610).

FIG. 27 illustrates aspects of the HEMi design not shown
in FIG. 26, including registers used for access to various
memory ranges and logic that is tightly coupled to the HEMi
(Tightly Coupled Logic Block 2701). As should be under
stood, both the HEMi and the tightly coupled logic may
include registers and other components that are not shown
herein. In addition, the register sets themselves have been
simplified for purposes of illustration.

FIG. 27 illustrates Flash HEMi 307 and its Tightly
Coupled Logic Block 2701. As is described above, the
internal design of all HEMi’s is the same. However, different
types of HEMi’s have different Tightly Coupled Logic
Blocks. Block 2701 is specific to Flash HEMi’s. Differences
in tightly coupled logic for other types of HEMi’s are
described below.
HEMi 307 includes Repeat Count Register 2702, which

holds a value used to calculate the number of times an
operation should be repeated. Loading a value into the
Repeat Count Register causes the next instruction executed
by the HEMi to be repeated the specified number of times,
with each repetition causing the value in the Repeat Count
Register to be decremented.
A value of “1” can be forced into Repeat Count Register

2702, thereby ending the loop, under various circumstances:
(a) If a conditional branch instruction is looping as a result

of the Repeat Count Register, and the condition occurs, so
that the branch is taken, the Repeat Count Register is

10

15

25

30

35

40

45

50

55

60

65

36
automatically forced to “1,” which has the effect of causing
the next instruction to occur once. As should be understood,
in the conditional branch case, this next instruction would be
the first instruction in the branch.

(b) When a flag associated with the Repeat Count Register
is set, any action that increments certain FIFO count regis
ters from Zero to one forces a value of one into the Repeat
Count Register. The FIFO count registers are those associ
ated with the Worklist for the HEMi (e.g., Count Register
2408, described in connection with FIG. 24) and the Receive
Buffer Count Register (described below in connection with
FIG. 28).

This capability is used to force the HEMi’s out of sleep
mode when they have a task to perform. When a HEMi has
no work to perform, it enters a sleep mode, in which a nop
is repeated a set number of times, following which the HEMi
wakes up, checks its Worklist, and, if no tasks are present on
the Worklist, resumes executing nops. This is accomplished
by loading a set number into Repeat Count Register 2702
and then executing a nop.
When a HEMi is in sleep mode, writing a task into the

HEMi’s Worklist (see below) causes the HEMi to wake up.
This is accomplished by a signal from the relevant Count
Register, which forces a “1” into Repeat Count Register
2702, thereby causing the HEMi to wake up and take
appropriate action after the next nop is executed.

This use of the Repeat Count Register to force repeated
nops allows the HEMi to go into low-power sleep mode
without the need for any specialized sleep mode logic. In
addition, this allows for very fine granularity in terms of how
long the HEMi will remain in sleep mode. For example, if
the HEMi is going into sleep mode because it has no current
work to accomplish, a maximum value is written into the
Repeat Count Register. In the currently preferred embodi
ment, this value is slightly over 1 million, and causes the
HEMi to remain in sleep mode (unless earlier woken up) for
approximately 4 milliseconds.

In another example, when a HEMi begins a multiply or
divide operation, the Repeat Count Register can be used to
force 32 nops, since such an operation takes 32 HEMi
cycles. This allows the HEMi to go into low-power sleep
mode while waiting for the results of the multiply or divide,
which, as is described below, are handled by logic that can
operate independently of the operation of the rest of the
HEM.
Note that the flag described above is used so that the

Repeat Count will be forced to one only if it is executing
nops, since otherwise a code loop might be interrupted. For
this reason, the flag is set when a nop follows the Repeat
Count, but is not set for other instructions.
HEMi 307 also includes Local Register Block 2703,

which controls access to the HEMi’s iRAM 2601 and
mRAM 2602.

Local Address Register 2704 holds an address in local
memory. This address may be in either iRAM or mRAM,
depending on the high-order bits of the address. Local Data
Autoinc Register 2705 holds a doubleword of data read from
or to be written to local memory. Writing from this register
causes Local Address Register 2704 to increment. By writ
ing a value into Local Address Register 2704, loading a
value into Repeat Count Register 2702, and executing a
move from mRAM into Register 2705 and from Register
2705 into another location (these moves can be performed in
one instruction), the HEMi can perform a DMA-like move
of a sequence of doublewords from Successive addresses in
the mRAM. Each loop causes Register 2704 to automati
cally increment and Repeat Count Register 2702 to auto

US 9,483,210 B2
37

matically decrement, and the moves continue until Repeat
Count Register 2702 reaches zero. Note that if the target is
similarly using a data-autoinc register, the move would be
stored in Successive addresses in the target, again, without
the need for additional logic or instructions.

Local Data Register 2706 holds a doubleword of data read
from or to be written to local memory, but this register does
not cause an address increment.
ARM 2002 communicates with Local Register Block

2703 through a dedicated port. ARM 2002 is the only source
that is able to write addresses into Local Address Register
2704 corresponding to iRAM 2601. ARM 2002 uses this
capability to control the process of overlaying new firmware
into iRAM 2601.
HEMi 307 also includes Window Registers 2707, which

consist of five registers each of which holds an address in the
HEMi’s mRAM 2602. Four of these Registers are used to set
up windows in mRAM consisting of 128 doublewords each.
These windows are used for manipulation of data structures
Such as Transfer Requests and Page Requests. For example,
if a Flash HEMi is required to operate on a PageRequest, the
address of that Page Request in mRAM can be loaded into
one of the Window Registers. Accesses to particular areas of
the Page Request can then be handled as an offset from the
value in the Window Register, thereby simplifying the
process of address calculation when repeated operations are
required on a data structure.
The fifth Window Register is used for the mRAM stack,

which stores local variables and function arguments. The
stack window register operates similarly to the other four
Window Registers, except that the HEMi’s have special
stack-related instructions that automatically increment or
decrement the value in the stack Window Register and
provide an automated mechanism for adding an offset to the
stack window address, thereby allowing one clock stack
manipulation.
The HEMi’s internal registers, including Local Register

Block 2703 and Window Registers 2707 are “hazard
checked.” Because the HEMi is a pipelined processor, if a
write operation immediately precedes a move operation
without Such protection, the write may actually occur after
the move. Thus, if a write instruction writes a value into a
register, and the immediately Subsequent instruction moves
the register's contents to another location, the pipeline could
result in moving the register's old contents, prior to the
write. Hazard checking avoids this possibility by checking
for Such cases and delaying the Subsequent instruction until
the proper data has been loaded.

Multiply/Divide Engine 2717 is used to perform multiply
and divide operations. Because the Multiply/Divide Engine
can operate independently from the rest of the HEMi, the
HEMi can write the values to be operated on into registers
in Multiply/Divide Engine 2717 and then go into a sleep
mode while the operation takes place, thereby saving power.
This sleep mode is described above.

Manual CRC Engine 2719 generates a CRC value for
information written in by the associated HEMi.

Switch-Endian Engine 2720 is a 32-bit register that auto
matically swaps the byte order of data written into the
register. This is used because different protocols have dif
ferent byte orderings. Data is stored in flash in little-endian
format, but for certain protocols is received and must be
transmitted in big-endian format.

Each HEMi also has an associated block of tightly
coupled logic, e.g., Tightly Coupled Logic Block 2701.
Tightly Coupled Logic Block 2701 illustrates logic that is
tightly coupled to each Flash HEMi. As is described below,

10

15

25

30

35

40

45

50

55

60

65

38
the logic blocks tightly coupled to other types of HEMi’s
differ in some respects from Tightly Coupled Logic Block
2701. Thus, even though the internal design of all HEMi’s
is identical, the use of different tightly coupled logic, plus
the use of different firmware, allows each type of HEMi to
be customized for its particular tasks.

Tightly Coupled Logic Block 2701 consists of resources
that are “tightly coupled to HEMi307, meaning that HEMi
307 is the only HEMi that can access these resources, these
resources share an address space, and accesses to these
resources occur on a no-wait state basis.

Although in the currently preferred embodiment, the
Tightly Coupled Logic is external to the HEMi, in an
alternate embodiment some or all of this Logic could be
incorporated into the HEMi itself.

Tightly Coupled Logic Block 2701 includes Stage Buffer
Access Register Block 2708, which controls accesses to the
Flash Stage Buffer associated with the Flash HEMi (e.g.,
Flash Stage Buffer 308.

Address Register 2709, Data Register 2710 and Data
Autoinc Register 2711 operate similarly to the correspond
ing registers in Shared RAM Access Register Block 2411.
The Flash HEMi’s use this access path to the Stage

Buffers to modify Time Stamp information stored in Super
Block Metadata Tables passing through the Stage Buffer,
and during rebuilds required after an unexpected loss of
power (the rebuild process is described below, in connection
with FIG. 58).

Flash Transfer Count Register 2712, Flash Address Reg
ister 2713 and Flash Data Register 2714 control DMA
operations between the Flash Group and the Flash Stage
Buffer. Register 2713 contains the flash address to be
accessed. Register 2712 contains the number of reads or
writes, in doublewords. Register 2714 contains data received
from, or to be sent to, the flash.
DMA Address Register 2715 and DMA Transfer Count

Register 2716 are used to control the Stage Buffer side of a
DMA transfer between Data Path DRAM 107 and the Stage
Buffer. Register 2715 holds the Stage Buffer address for the
transfer, and Register 2716 holds the number of double
words to be transferred between the Stage Buffer and the
PIO Buffer. Writing a value into Register 2716 causes a
DMA transfer between the Stage Buffer and the PIO Buffer
to begin.

In general, a HEMi can use internal move commands to
move data between internal locations, Tightly Coupled
Logic and certain external locations. Thus, for example,
when it a new firmware overlay is needed, ARM Processor
2002 sets up the DRAM address for the overlay in DRAM
Address Register 2212 (as is described below, firmware
overlays are stored in the DRAM), sets up the iRAM address
for the overlay in Local Address Register 2704, places the
number of transfers from the DRAM in Transfer Count
Register 2213 and places the number of doublewords needed
for the transfer in Repeat Count Register 2702. The DMA
transfer from DRAM through the PIO Buffer and to Data
Register 2214 proceeds as is described above. Internal
HEMilogic causes the data from Register 2214 to be written
to Local Data Autoinc Register 2705, and from there to the
iRAM location pointed to by Local Address Register 2704.
Repeat Count Register 2702 is then decremented, the Local
Address Register increments, and the process repeats. ARM
2002 uses this capability at system boot time to load the
initial firmware overlay into each HEMi’s iRAM.
To take another example, copying an IOP from Shared

RAM (see below in connection with FIG. 41) into the
HEMi’s mRAM only requires four HEMi commands:

US 9,483,210 B2
39

Write Shared RAM Address Register, Shared RAM
Address; this writes the address of the IOP in Shared RAM
into Register 24.12.

Write Local Address Register, mRAM Address; this
writes the address in mRAM where the IOP is to be stored
into Register 2704.

Write Repeat Count Register, if Dwords in IOP; this loads
Repeat Count Register 2702 with the number of double
words contained in the IOP.
Move Local Data-Autoinc Register, Shared RAM Data

Autoinc Register; this moves the value from Register 2413
to Register 2705. The value in Register 2413 is the double
word in Shared RAM pointed to by Register 24.12. Moving
that value to Register 2705 causes it to be transferred to the
mRAM location pointed to by Address Register 2704.
Specifying the two Data Autoinc registers automatically
causes the associated Address Registers to be incremented
once the move occurs. As is described above, this move
instruction repeats until the value in the Repeat Count
Register reaches Zero.

In this way, the HEMican accomplish DMA-like accesses
that occur automatically and with a minimum number of
commands.

Tightly Coupled Logic Block 2701 also includes Debug
Register Block 2718, which includes registers relevant to
transfers to and from Debug FIFO 2210.
As is noted above, Tightly Coupled Logic Block 2701 is

specific to Flash HEMi’s. Tightly Coupled Logic Blocks
associated with other HEMi’s do not include Stage Buffer
Access Register Block 2708.
The Tightly Coupled Logic Block for Receive and Trans

mit HEMi’s (e.g., Receive HEMi 0 1702 and Transmit
HEMi 0 1704) include additional registers designed to
Support Host Port operations. These registers are shown in
FIG. 28.
The Tightly Coupled Logic Blocks for Receive HEMi’s

contain registers that are used for communication with and
control of receive functions relating to the Host Port, includ
ing the following:

Receive Buffer Access Register Block 2801: this is used
to set up DMA transfers from the Receive Stage Buffer to
Data Path DRAM 107. This block includes DMA Address
Register 2802, which holds the DRAM address for the
transfer and DMA Transfer Count Register 2803, which
holds the number of transfers to be made.

Receive Buffer Count Register 2804: this gives the num
ber of entries in the Receive Stage Buffer data FIFO. Writing
a value to this Register causes the Receive HEMi to wake up
if it is in sleep mode.

Primitive FIFO Access Register Block 2805: this set of
registers communicates with Inbound Primitive FIFO 1808.
These registers include Top Register 2806 (reads from the
FIFO without changing the top of the FIFO), Pop Register
2807 (reads the top item from the FIFO and moves the FIFO
top to the next item), Count Register 2808 (contains the
number of items in the FIFO) and Append Register 2809
(adds items to the end of the FIFO).

Non-Data Payload Access Register Block 2810: this set of
registers communicates with Non-Data Payload FIFO 1804.
These registers include Top Register 2811, Pop Register
2812, Count Register 2813 and Append Register 2814,
which operate the same as the similarly named registers in
the Primitive FIFO Access Register Block.

Header Size Register 2815: this indicates how long the
current header is. This value allows the Receive HEMi to
differentiate between one header and the next on the Non
Data Payload FIFO.

5

10

15

25

30

35

40

45

50

55

60

65

40
Primitive Match Register Block 2816: these registers are

used to load values into Primitive Match Logic 1802 to
customize the Primitive Match Logic for a particular pro
tocol. Use and customization of Primitive Match Logic 1802
is explained above in connection with FIG. 19.
As is described above, Primitive Match Logic 1802

contains two sets of registers: Primitive Match Registers
1902 and Primitive Match Control Registers 1903. Primitive
Match # Register 2817 points to one of sixteen registers in
each set, resulting in the value stored in Primitive Match
Load Register 2818 being loaded into the corresponding
register in Primitive Match Registers 1902 and the value
stored in Primitive Match Control Load Register 2819 being
loaded into the corresponding register in Primitive Match
Control Registers 1903.
WWN Hash Engine 2830 is used to generate a 24-bit hash

of a received 64-bit Worldwide Name value. This hash is
used internally so that received frames (which may contain
the 24-bit hash value of the sender's WWN) may be matched
with Initiator Table 4108 (see below), which contains the
64-bit value.

FIG. 28 also shows unique Transmit HEMi tightly
coupled registers:

Transmit Buffer Access Register Block 2820: this is used
to set up the Transmit Stage Buffer side of DMA transfers
from Data Path DRAM 107. This Register Block includes
DMA Address Register 2821 and DMA Transfer Count
Register 2822.

Transmit Frame Buffer FIFO Access Register Block
2823: this set of registers communicates with a FIFO which
is part of the Transmit Frame Buffers 1806. These registers
include Pop Register 2824, Count Register 2825 and
Append Register 2826.
Command FIFO Access Register Block 2827: this set of

registers communicates with a FIFO which is part of the
Transmit Frame Buffers 1806. These registers include Count
Register 2828 and Append Register 2829.

FIG. 29 illustrates the contents of the mRAM of a Flash
HEMi, e.g., HEMi 307:

1. Local Transfer Request Table 2901. This contains space
for holding up to six Transfer Requests. These can be a
combination of Transfer Requests that have been copied
from Shared RAM into this Flash HEMi’s mRAM and Local
Transfer Requests, issued in connection with internal opera
tions such as garbage collection (see below). For example,
Slot 2902 can store one Transfer Request, and Slot 2903 can
store a second Transfer Request.

2. Local Transfer Request Queue 2904. This is a FIFO
queue of Transfer Requests that are stored in Table 2901 and
are queued up to be worked on by the Flash HEMi.
As is explained below, in general, Transfer Requests are

placed on this Queue when the Page Requests associated
with the Transfer Request have completed and the Transfer
Request itself is ready to enter into a done state.

3. Local Transfer Request Freelist 2905. This holds a list
of pointers to slots in Local Transfer Request Table 2901 that
are empty and are therefore capable of holding new Transfer
Requests.

4. Page Request Table 2906. This contains space for
holding up to eighteen Page Requests. Each Transfer
Request can invoke three Page Requests, so Page Request
Table 2906 contains space for the eighteen Page Requests
that can be invoked by the six Transfer Requests that can fit
into Flash HEMi Transfer Request Table 2901. In the
example shown, Page Request Table 2906 includes Page
Requests in Slots 2907 and 2908, which hold Page Requests
for the Transfer Request in Flash HEMi Transfer Request

US 9,483,210 B2
41

Table 2901 Slot 2902, and the Page Request in Slot 2909 is
for the Transfer Request in Slot 2903. In this example, the
other Page Request slots are empty, meaning that the space
has been allocated but is not currently filled by valid Page
Requests.

5. Page Request Freelist 2910. This is a list of all Page
Request slots in Page Request Table 2906 that are free,
meaning they do not currently hold valid Page Requests.
This list therefore represents new Page Requests that the
Flash HEMi can issue.

6. Bank Queues 2911. This is a set of FIFO queues of Page
Requests that are stored in Table 2906. There is a separate
Page Request Queue for every Bank in the Flash Group.
Once a Page Request is ready for execution, it is appended
to the end of the Bank Queue for the Bank holding the
address that the Page Request is required to read from or
write to. The Flash HEMirotates among the Bank Queues in
order. When it rotates to a Bank Queue that contains a Page
Request, it evaluates the top Page Request on the Queue to
determine if the resources necessary for continued execution
of the Page Request are available. If the resources are
available, the Flash HEMicarries out those tasks required by
the Page Request that are possible given the available
resources and then rotates to the next Bank Queue. In this
way, the Flash HEMi handles the Page Requests in a
round-robin fashion, but without the need for any arbitration
logic. Page Requests that have completed processing are
removed from the Bank Queue. This process is explained in
greater detail in connection with FIG. 53.

In the current embodiment, the Bank Queues are FIFOs,
and Page Requests are handled in the order received. In an
alternate embodiment, high priority Page Requests are
added to the top of a Bank Queue, rather than being
appended to the bottom. In this embodiment, a priority bit
may be set in the Page Request, based on a priority bit in the
calling Transfer Request that identifies a particularly sig
nificant transaction.

8. SuperBlock Freelist 2912. This contains identifiers for
the SuperBlocks contained in the Flash Group controlled by
this Flash HEMi that are free, and therefore available to be
written.

9. SuperBlock Freelist Counter 2913. This contains the
number of SuperBlocks on Freelist 2912. This number is
separately tracked as a performance optimization, so that it
does not have to be calculated as needed.

10. Open SuperBlock Pointer 2914. This holds the des
ignation for the SuperBlock that is currently open for
writing.

11. Garbage Collection Thresholds 2915. In the current
embodiment, this holds two variables, both used for garbage
collection purposes: the Critical Threshold and the Non
Critical Threshold. Use of these variables in garbage col
lection is described below.

12. Local Variables 2916. In the current embodiment, this
holds various local variables used by the HEMi.

13. Stack Space 2917. This holds a stack used by the
HEMi for processing tasks.

14. Command Table 2918. This holds a list of commands
and LBA ranges affected by all Transfer Requests that are
currently being handled by the Flash HEMi.
As is described above, SSD Controller 106 enforces

read/write coherency to insure that operations do not com
plete out of order. Command Table 2918 is used by the Flash
HEMi to enforce coherency at the Flash Port level. When a
Transfer Request is popped from the Flash HEMi’s Worklist,
and copied into Local Transfer Request Table 2901, the LBA
range affected by the Transfer Request is checked against

10

15

25

30

35

40

45

50

55

60

65

42
Command Table 2918. If an overlap exists, execution of the
Transfer Request is stalled until the earlier Transfer Request
has been completed, at which point its entry is removed from
Command Table 2918 and the hold placed on the later
Transfer Request is removed. Once a Transfer Request has
been cleared for execution in the Flash HEMi, the LBA
range affected by that Transfer Request is added to Com
mand Table 2918.

15. SuperPage Pointer List 2919. This list contains one
entry for each Bank in the Flash Group associated with this
Flash HEMi. For each Bank, the associated entry points to
the next free SuperPage in the currently open SuperBlock.
When a SuperBlock is initially opened up, and contains no
data, Banks 1-7 point to SuperPage 0 and Bank 0 points to
SuperPage 1 (SuperPage 0 of Bank 0 of each SuperBlock
contains the SuperBlock Metadata Table, and is therefore
not available for normal writes).
The Flash HEMi uses these counters to allocate Super

Pages to Page Requests that include a write command and
therefore require a free SuperPage. When a SuperPage has
been allocated to a Page Request (this occurs during Page
Request initialization), the entry in SuperPage Pointer List
2919 for the Bank containing that SuperPage is incremented.

Note that List 2919 may, in one embodiment, be con
tained in the same data structure as the Open SuperBlock
2914 information.

16. Bank Bitmap 2920. This table holds two bits for each
Bank. One of the bits indicates whether or not the Page
Request at the top of the Bank Queue needs the Bank to
operate. The second bit indicates whether the R/B signal for
the Bank is in the Ready state. The Flash HEMi checks this
bitmap in determining whether to begin servicing a Page
Request.
Use of Shared RAM Access Register Block 2411 to

access Shared RAM is illustrated in FIG. 30, which shows
a sequence of steps used for transferring a data block (e.g.,
a Transfer Request) from Shared RAM.

In Step 3001, the address of the desired data in Shared
RAM is written into Shared RAM Address Register 2412. In
this example, this is the address of the Transfer Request in
Transfer Request Table 4111 (see below).

In Step 3002, the HEMimRAM address to which the data
is to be transferred is written into Local Address Register
2704. In this case, the address points to an empty slot in
Local Transfer Request Table 2901.

In Step 3003, a value is written into Repeat Count
Register 2702 that corresponds to the number of double
words that will be required to complete the transfer.

In Step 3004, the HEMi executes a command that causes
a read from Shared RAM to Shared RAM Data Autoinc
Register 2413 and from there to Local Data Autoinc Register
2705. The read from Shared RAM occurs at the address
specified in Shared RAM Address Register 2412. The read
to the Local Data Autoinc Register causes the data to be
written to the location in mRAM specified by Local Address
Register 2704. The use of the two Data Autoinc Registers
causes the respective Address Registers to automatically
increment. Execution of the command causes Repeat Count
Register 2702 to decrement. Note that the HEMi design
allows this step to be handled with a single instruction.

In Step 3005, Repeat Count Register 2702 is checked to
determine if it contains a value of Zero.

If Repeat Count Register 2702 has a value of Zero (“yes”
outcome to Step 3005), the transfer is complete, and the
process ends.

If Repeat Count Register 2702 has a value that exceeds
Zero (“no outcome to Step 3005), this indicates that addi

US 9,483,210 B2
43

tional transfers are needed. Control returns to Step 3004 for
transfer of the next doubleword.

Note that the loop between Steps 3004 and 3005 contin
ues without further intervention by the Flash HEMi. The
incrementing Address Registers, and the Repeat Count reg
ister, which forces a repeat of the executing instruction,
allow the HEMi to transfer data quickly and efficiently in a
DMA-like burst.
F. ECC Handling.
SSD Controller 106 generates and checks Error Correc

tion Code (“ECC) information when data is written to and
read from Flash Memory Module 108. (As is described
above, Data Path DRAM 107 also has an internal ECC
capability, but SSD Controller 106 does not control this
capability, and interfaces with it only in the case of a
reported error, which causes SSD Controller 106 to issue an
error message.)
The ECC process is illustrated in FIG. 31, which shows

Flash Port 0 304. As is described above, Flash Port 0
includes Flash HEMi 0 307 and Flash Stage Buffer 0308,
and is connected to Flash Group 0.301.

FIG. 31 also shows ECC Correction Engine 3101. As is
explained above, SSD Controller 106 includes a number of
Flash Ports, each with an associated Flash Group. However,
in the current embodiment, SSD Controller 106 only
includes a single ECC Correction Engine, which is shared
among the Flash Ports. Since only one ECC Correction
Engine exists, when a Flash HEMi requires the ECC Cor
rection Engine, it must first check if the ECC Correction
Engine is busy. If the ECC Correction Engine is not busy, the
Flash HEMi may use it. If the ECC Correction Engine is
busy, the Flash HEMi must append its ID to an ECC
Correction FIFO contained in Global Registers 2203 (see
FIG. 22). That FIFO includes an ordered list of all Flash
HEMi’s that require access to the ECC Correction Engine.
A HEMi is awarded access to the ECC Correction Engine
when its ID comes to the top of the FIFO.

In a different embodiment, SSD Controller 106 may
include more than one ECC Correction Engine, up to a total
of one for each Flash Port. This embodiment increases cost
and complexity, but allows for faster performance if a large
volume of errors must be corrected. In this embodiment,
Flash HEMi’s are not required to wait for access to the ECC
Correction Engine. In other alternate embodiments, there
may be one ECC Correction Engine for a given number of
Flash Ports (e.g., two or four).
As is shown in FIG. 31, Flash Port 0304 includes ECC

Logic 3102. ECC Logic 3102 further consists of ECC
Generation 3103 and ECC Check 3104.
ECC Generation 3103 generates ECC bits for a sector of

data at a time. It does So when data is being transferred
between Flash Stage Buffer 308 and Flash Group 301. On a
write from the Stage Buffer to the Flash Group, the ECC
information is stored along with the data, the ECC infor
mation being stored in ECC Field 1303 of the SPage Sector
(see FIG. 13). On a read from the Flash Group to the Stage
Buffer, the ECC information is used by ECC Check 3104, as
is described below.

In the currently preferred embodiment, ECC Generation
3103 generates twelve ECC symbols per sector, thus using
12 ECC bytes per sector, using the Hamming algorithm.
This requires a little less than 20 bytes for storage, and it is
for this reason that SPage Sector ECC Field 1303 consists of
20 bytes. The amount of ECC generated per sector is
programmable, based on a register in ECC Logic 3102 that
is set at initialization. In an alternate embodiment, by setting
the ECC size to Zero, and rearranging or eliminating the

10

15

25

30

35

40

45

50

55

60

65

44
space taken up by other fields, it would be possible to shrink
the size of an SPage Sector and therefore allow each
SuperPage to hold 16 sectors (and therefore handle 16
LBAs).
When data is read from Flash Group 301, ECC Genera

tion 3103 generates a new set of ECC bits for each sector.
ECC Check 3104 then compares the newly-generated ECC
bits against the contents of ECC Field 1303. The results of
this comparison are conveyed using a flag, which indicates
either that the ECC bits matched, or that an error was
discovered. Methods for generating and checking ECC
information are well-known in the art and will not be further
described herein.
When ECC Check 3104 discovers an ECC error, Flash

HEMi 307 copies the Sector data and metadata (including
ECC Field 1303) from Stage Buffer 308 into ECC Correc
tion Engine 3101. The ECC Correction Engine uses the
contents of ECC Field 1303 to attempt to correct errors
introduced into the data during the course of writing to or
reading from Flash Group 301. Again, the details of ECC
correction processes are well-understood in the art and are
not described herein. In the currently preferred embodiment
the ECC Correction Engine is capable of correcting twelve
errors per sector, based on the approximately 20 bytes of
ECC information.

If ECC Correction Engine 3101 is successful in correcting
the data, Flash HEMi 307 takes the output from ECC
Correction Engine 3101 and writes it back into Stage Buffer
308, with the corrected data then being used for the ultimate
transmission to the Host. (As should be understood from the
discussion in connection with FIG. 27 above, although two
transfers are involved, the HEMi design allows for each
doubleword of data to be transferred from ECC Correction
Engine 3101 to Stage Buffer 308 using a single HEMi
instruction). If the number of errors is too great for ECC
Correction Engine 3101 to correct, a second-level error
correction protocol is invoked. This protocol has two stages.
In the first stage, the read from the Flash Group to the Stage
Buffer is repeated one or more times, initiating the error
correction cycle again with the same sector. This is done
because errors sometimes result from cells that are at the
threshold between reporting one state and another, and a
reread may generate additional valid bits. If the ECC Cor
rection Engine is able to correct the data the second (or
Subsequent) time, the corrections are made, the physical
sector is marked as “bad,” and the data is rewritten into
another sector.

In a second stage of the second-level error correction
protocol, the data is read repeatedly and OR'd together with
the results of earlier reads. As a result of the OR operations,
if a “1” is encountered at a bit position during any of the
reads, that “1” will be maintained, even if the value at that
bit position is read as “0” during earlier or later reads. This
procedure is used because flash memory errors commonly
result from a leakage of charge from a flash cell, causing the
value in the cell to be read as a “0” rather than a “1” (e.g.,
read disturbs). Because the leakage may result in the cell
having an intermediate charge level, between 0 and 1.
different reads may result in different values being returned.
The OR process maximizes the number of 1s received from
the reads. Once the OR process has completed a set number
of times, the value is returned to ECC Correction Engine
3101 to determine if the data can now be corrected.
The OR process may actually increase data corruption, if

that corruption resulted from charge increasing on a cell,
such that a “0” value is intermittently read as a “1.” This case
is relatively rare, however, though it makes sense to use the

US 9,483,210 B2
45

OR process only after the first stage of the second-level error
correction (reading without OR'ing) has failed.

If ECC Correction Engine 3101 is ultimately unable to
correct the data, the Flash HEMi issues an error message that
is sent through the Host Port to the Initiator associated with
the data.

In the currently preferred embodiment, the corrected data
is not written back into the flash unless the number of errors
exceeds a threshold. The threshold is set based on the
number of correctable errors (12 per sector, in the current
embodiment), minus a guardband calculated based on the
likelihood of additional errors being introduced on a subse
quent read. In the currently preferred embodiment, the
inventors have determined that the number of errors found
in a sector read is very unlikely to be greater than three more
(or three less) than the number of errors found in the
immediately preceding read of that sector. Thus, for
example, if on a read a sector has three correctable errors, on
the next read it is highly likely to have six or fewer
correctable errors.
As should be understood, this behavior means that, if a

sector has nine or fewer correctable errors on a read, it is
highly likely that on the next read the sector will have twelve
or fewer errors, meaning that the errors will be correctable
on the next read. This, in turn, means that it is unnecessary
to write the corrected data back to the flash. Avoiding such
writes is significant, since writing corrected data to the flash
requires that the entire SuperPage be rewritten.

In the current embodiment, the guardband is set at four,
rather than three, to further minimize the possibility that
uncorrectable errors will be found on a subsequent read.
Thus, the threshold of correctable errors discovered on a
read is set at eight. If more than eight errors are discovered,
the write handler is called and the SuperPage containing the
sector is rewritten to the flash, including the corrected data.
If fewer than eight errors are discovered, the SuperPage is
not rewritten, since it is anticipated that the number of errors
will still be correctable in the next read.

In an alternate embodiment, a SuperBlock containing
errors may be identified for preferential garbage collection,
since the presence of errors in certain sectors may mean that
adjoining sectors also contain errors. Preferential garbage
collection involves a certain amount of inefficiency, since
the selected SuperBlock will probably contain more valid
data than the SuperBlock that would have been selected
without the preference (see below for a discussion of gar
bage collection), but this inefficiency is much less than the
inefficiency imposed by immediately rewriting any Super
Page found to contain errors.

IV. Metadata Structures

A. DRAM Structures.
FIG. 32 illustrates data structures found Data Path DRAM

107, each of which is set up and initialized at system
initialization. These include the following structures:

Forward Table 3201, which is used to translate between
LBA addresses and flash memory addresses. This Table is
described in greater detail in connection with FIG. 33.
IOP Data Buffer 3202, which stores data being transferred

between Host Interface 310 and Flash Memory Module 108.
ARM Execution Code 3203, which stores software

executed by ARM Processor 2002. In the currently preferred
embodiment, this software is written in the C++ program
ming language.
ARM Data 3204, which constitutes a memory space used

by ARM Processor 2002 during processing.

10

15

25

30

35

40

45

50

55

60

65

46
Reverse Table Block 3206, which is used for garbage

collection and for recovering from a power loss. Reverse
Table Block 3206 contains a separate table for each Flash
Port, e.g., Table 3205 contains the Reverse Table for Flash
Port 0. Reverse Table 3205 is described in greater detail in
connection with FIG. 34.

SuperBlock Metadata Tables Block 3207, which contains
metadata tables for the currently open SuperBlock for each
Flash Port. These tables are further described in connection
with FIG. 35.
HEMi Code Overlay Table 3208, which contains firm

ware that is loaded into each HEMi at initialization. This
Table contains eight code overlays for each type of HEMi,
e.g., Entry 3209 contains eight firmware overlays for the two
Receive HEMi’s, Entry 3210 contains eight firmware over
lays for the two Transmit HEMi’s, etc. These overlays are
swapped into and out of the HEMi iRAMs as necessary, in
a manner explained in greater detail above.
SCSI Tag Table 3211, which contains one row for each

currently active Initiator, and one column for each of the
65,536 possible values allowed for a SCSI Tag according to
the SCSI Protocol. When a CDB is received containing a
particular SCSI Tag, the bit is set in the SCSI Tag Table
location corresponding to that Initiator and that SCSI Tag.
When execution of the CDB has completed, that bit is
cleared. This allows SSD Controller 106 to check to make
sure that all received SCSI Tags are unique, and that an
Initiator never has two active CDBs with the same SCSI Tag.
Debug Buffer 3212. This is a circular buffer that stores

debug data received from Debug FIFO 2210. This debug
data is collected during normal system operation, in
response to debug commands in HEMi firmware. Informa
tion collected includes the basic command flow of CDBs
received and data structures generated as a result (CDBInfo,
IOP, Transfer Requests). In the case of a detected error,
additional debug information is collected in order to identify
the type of error and the nature of the response made to the
error, if any.

FIG. 33 shows Forward Table 3201. Forward Table 3201
is used to translate LBA addresses received from Hosts 101
and 102 into actual physical flash memory addresses in
Flash Memory Module 108.

Forward Table 3201 is indexed by LBA, and contains one
entry for each fifteen LBAs that the system can support. As
is shown in FIG. 33, the first entry in Forward Table 3201
relates to LBAs 0-14, the second entry to LBAS 15-29, the
third entry to LBAS 30-44, etc. Note that the number of
LBAs per entry is the same as the number of LBAs that can
be stored in a SuperPage. In a different embodiment, involv
ing larger or Smaller SuperPages, the number of LBAS per
Forward Table entry would likewise become larger or
Smaller.
The size of Forward Table 3201 is dependent on the total

memory size of Flash Module 108. In the currently preferred
embodiment, a 300 Gigabyte Flash Module can store
approximately 600 million LBAs, thereby requiring
approximately 40 million possible entries in Forward Table
3201. The size of Forward Table 3201 would be correspond
ingly larger or Smaller for larger or Smaller quantities of
memory.

For each LBA entry, Forward Table 3201 includes infor
mation that can be used to identify the location of the
corresponding data on the physical flash memory chips:
Port, Bank, Block and Page.

In addition, Forward Table 3201 contains a field desig
nated “User,” which can store information that a particular
customer may find useful. In one embodiment, the user field

US 9,483,210 B2
47

stores the number of times the associated LBAs have been
accessed (read or written) during a predefined maintenance
period (e.g., one month). Users may use this information to
determine whether a particular group of LBAS contains
information that is used more or less often. Information used
often may be moved into a faster, higher cost memory.
Information not used very often may be moved into slower,
archival memory.

In operation, Forward Table 3201 operates as follows: an
LBA is received from a Host, e.g., LBA23. The LBA is
divided by 15, with the whole-number quotient used to
obtain an index into Forward Table 3201. For example, for
LBA23, dividing by 15 gives a quotient of “1,” meaning that
the physical address information for that LBA is found by
indexing one row into the Forward Table. This is the row
labeled LBA 15-29 in FIG. 33.
The selected row identifies the Port at which the LBA

information is stored, and therefore the Flash HEMi and
Flash Group used to access the information. The selected
row further identifies the particular Bank at which the
information is stored, and therefore the CS signal used by
the selected Flash HEMi to select the information.

The selected row also identifies the Block in which the
information is found. Note that this is the same block on
each chip of the Bank.

Finally, the selected row identifies the Page in which the
information is found. For example, the row may identify
Page 1 of Block 1. (As should be understood, in this
example, the LBA would actually be stored in SuperPage 1
of Block 1.)
As is described above, each SuperPage includes fifteen

SPage Sectors, each of which can store contents relating to
a single LBA. Once the SuperPage has been identified from
Forward Table 3201, the actual SPage Sector in the Super
Page is obtained by taking the remainder from the division
described above. In the example given, the remainder is
eight (23/15=1, remainder 8). The requested LBA informa
tion would thus be found in the ninth PSector slot in each
selected Page (ninth, rather than eighth because the Table
begins with LBA 0).

FIG. 34 shows Reverse Table 3205. As is described
above, Data Path DRAM 107 contains one Reverse Table for
every Flash Memory Group.
As is described above, each Block consists of 64 Super

Pages, each of which is made up of memory space from four
Pages, one from each Die in the Bank. As is also described
above, a SuperBlock consists of the same Block from each
Bank in the Group. For example, SuperBlock 0 of a par
ticular Flash Group consists of all Block 0s from all Banks
in that Group.
Column 3401 represents SuperBlock(0), with rows for

SuperPages 0-63 of Bank 0, SuperPages 0-63 of Bank 1,
etc., with each group of 64 SuperPages on one Bank
representing a Block.

Each of the SuperPage rows in Table 3205 (e.g., Row
3402) contains an entry for the same SuperPage in every
SuperBlock (e.g., SuperPage 0 of SuperBlocks 0-n).

Each SuperPage field in Reverse Table 3205 contains a
single Valid bit. When set to “1,” the Valid bit indicates that
the SuperPage either contains currently valid, programmed
data (i.e., the SuperPage has been written with data that
remains valid), or has been erased and is available to be
written (i.e., contains a value of 0xffffffff, which is the
default state after an erase). When set to "0, the Valid bit
indicates that the SuperPage contains invalid data, meaning
that it cannot be read from and is not available to be written
to. A SuperPage is invalidated when the LBAs stored on that

10

15

25

30

35

40

45

50

55

60

65

48
SuperPage are subjected to a later write. Because flash
memory does not allow direct overwrites, when an LBA on
a SuperPage is overwritten, the new data, plus any old data
that remains valid on the SuperPage, are copied to a new
SuperPage, and the old SuperPage is marked invalid, mean
ing that it is no longer to be used (pending garbage collec
tion, which is described below).

Thus, for example, a “1” in Field 3403 would indicate that
SuperPage 1 of Block 0 of Bank 0 of the Flash Group either
contains valid data or has been erased and is available for
writing, whereas a “0” in that field would indicate that the
data in SuperPage 1 of Block 0 of Bank 0 of the Flash Group
is invalid.

Reverse Table 3205 also contains a Count row. Each entry
in this row contains a number representing the total number
of SuperPages in the SuperBlock that are currently invalid.
Thus, Field 3404 stores a number representing the number
of currently invalid SuperPages in SuperBlock 0.
The Count can be calculated by adding up the number of

“0” Valid bits in the column. The Count is separately
maintained, however, as a performance optimization, since
maintaining the total count in a separate field avoids the
necessity for calculating this number when it is needed. The
Count is used for garbage collection purposes, in a manner
described in greater detail below.

Reverse Table 3205 also contains a Time Stamp row,
shown as Row 3405. This contains a Time Stamp indicating
the time when each SuperBlock was originally closed for
writing. This fields uses include the rebuilding process,
which is described below in connection with FIG. 58.

Reverse Table 3205 also contains an Erase Count row,
shown as Row 3406. This contains a count of the number of
times the SuperBlock has been erased, and can be used, for
example, to prioritize SuperBlocks with higher erase counts
for garbage collection.

FIG. 35 illustrates SuperBlock Metadata Table 3501,
which contains metadata information relating to one Super
Block. A SuperBlock Metadata Table is stored in SuperPage
0 of Bank 0 of each SuperBlock (e.g., the SuperBlock
Metadata Table for SuperBlock 0 of Port 0 is stored in
SuperPage 0 of Block 0 of Port 0). In addition, the Super
Block Metadata Table for the SuperBlock that is currently
open for writing for each Flash Group is stored in Super
Block Metadata Tables Block 3207 of DRAM 107.

SuperBlock Metadata Table 3501 contains one row for
each SuperPage in the SuperBlock, organized by Bank.
Thus, Row 3502 contains information for SuperPage 0 of
Bank 0. This is followed by Row 3503, which contains
information for SuperPage 1 of Bank 0, and on through
SuperPage 63 of Bank 0, followed by Row 3504, which
contains information for SuperPage 0 of Bank 1, and so on
until the last Bank (designated as Bank n in FIG. 35) is
reached.

SuperBlock Metadata Table 3501 stores three types of
metadata for each SuperPage: a SuperPage Time Stamp,
Defect Flag, and LBA.

SuperPage Time Stamp Column 3505 contains the time
when the SuperPage was written. This information is also
appended to the end of the SuperPage, and is used for
rebuilding purposes in the event of a loss of data, in a
manner described below.

Defect Flag Column 3510 contains a single bit indicating
whether the SuperPage has been marked as “defective. A
SuperPage is identified as defective if any page from the
SuperPage is indicated as being defective during a flash read
or a write. If this occurs during a read, in one embodiment,
the SuperBlock is forced into garbage collection. If this

