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FLASH STORAGE CONTROLLER EXECUTE 
LOOP 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica 
tion Ser. No. 13/887,018, filed May 3, 2013, which is a 
continuation of U.S. patent application Ser. No. 12/082,223, 
filed Apr. 8, 2008, now U.S. Pat. No. 8,621,138, issued Dec. 
31, 2013, which claims priority to U.S. Provisional Patent 
Application No. 61/017,123, filed Dec. 27, 2007, all of 
which are incorporated herein by reference in their entire 
ties. 

FIELD OF THE INVENTION 

The invention described herein relates to the field of data 
storage, and in particular to data storage applications using 
Solid state nonvolatile memory devices. This technology has 
particular relevance to high performance enterprise systems 
involving multi-user computing and storage platforms 
deployed in large datacenters, but is also applicable to 
Smaller-scale enterprise applications and to end-user mass 
Storage. 

BACKGROUND OF THE INVENTION 

Current enterprise-level mass storage relies on hard drives 
that are typically characterized by a 3.5" form factor, a 
15,000 rpm spindle motor and a storage capacity between 73 
GB and 450 GB. The mechanical design is identical to the 
traditional hard drive with a single actuator and 8 read/write 
heads moving across 8 surfaces. The constraints of the 
head/media technology limit the read/write capabilities to 
only one active head at a time. All data requests sent to the 
drive are handled in a serial manner with long delays 
between each operation as the actuator moves the read/write 
head to the required position and the media rotates to place 
the data under the read/write head. 
As a result of the queue of requests waiting for the 

actuator, the system sees response times increasing to the 
point where it becomes intolerable to users. Mass storage 
systems have adapted to this problem by limiting the number 
of outstanding requests to each drive. This has had the effect 
of reducing the effective and usable capacity of each drive 
to as low as 12 GB per drive, even though these devices are 
available at up to 450 GB capacities. The lower capacity, in 
turn, has exacerbated floor space, cooling and power issues, 
all of which have become extremely problematic for enter 
prise-level mass storage systems. 

In an attempt to relieve these problems, the industry is 
moving towards 2.5" drives. However, although the smaller 
form factor allows for a larger number of drives in the same 
space, the serial nature of hard drive operations means that 
even Smaller form factor drives present serious space, cool 
ing and power problems. 

Flash memory is attractive in an enterprise mass-storage 
environment, since flash memory systems do not have the 
mechanical delays associated with hard drives, thereby 
allowing higher performance and commensurately lower 
cost, power, heating and space usage. Nevertheless, flash 
memory has not traditionally been used in Such environ 
ments due to certain technical constraints. 
The first technical problem is write speed, which may be 

as slow as one-tenth that of a mechanical hard drive. This 
results from the fact that data cannot be overwritten on a 
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2 
NAND flash device without a long erase cycle prior to the 
write. Because the erase cycle directly affects the write 
performance, most flash designs move the write data to a 
new location and delay the erase until later. In a busy system, 
delayed erase cycles may build up until the processor runs 
out of free flash pages and has to stop to create new ones, 
thereby significantly affecting system performance. 
The second technical problem is the specified limit for 

each flash memory page of 100,000 erase cycles for Single 
Level Cell (“SLC) devices and 10,000 cycles for Multi 
Level Cell (“MLC) devices. These pose particular prob 
lems for datacenters that operate with unpredictable data 
streams that may cause "hot spots.” resulting in certain 
highly-used areas of memory being Subject to a large num 
ber of erases. 
The third issue is data loss, which can occur as the result 

of various factors affecting flash memory, including read 
disturbs or program disturbs, which lead to the loss of data 
bits caused by the reading or writing of memory cells 
adjacent to the disturbed cell. The state of a flash memory 
cell may also change in an unpredictable manner as the 
result of the passage of time. 

These technical problems create serious issues for the use 
of flash memory in high-capacity, high-performance storage 
applications. In each case, technical Solutions exist, but the 
Solutions place significant strain on the processing power 
available in standard flash memory controllers, which gen 
erally include a single processor. That Strain makes it 
difficult to overcome these technical problems in these 
environments. 

SUMMARY OF THE INVENTION 

In one embodiment, the described solution to the perfor 
mance limitations of flash memory involves the use of 
multiple microprocessors in the controller design, thereby 
creating multiple parallel independent pipelines, each of 
which is capable of handling a portion of a single transac 
tion. This design maximizes use of the host and flash 
interfaces, and allows individual transactions to be broken 
up into many Small portions, which can be reordered and 
handled in parallel to increase performance. The architecture 
is designed to allow multiple processors to perform their 
functions without the use of costly and inefficient interrupts. 
The use of parallel pipelines allows the controller to 

effectively mask the write latencies inherent in the use of 
flash memory. In addition, the use of multiple independent 
processors provides Sufficient processing power to handle 
overhead imposed by solutions to the endurance and error 
problems described above. By breaking host-initiated trans 
actions into a large number of independent flash reads and 
writes, the controller architecture described herein allows 
for a high level of performance that is impossible using 
conventional controller designs. 

DETAILED DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates a system containing an SSD (“Solid 
State Drive') controller and flash memory. 

FIG. 2 illustrates a hierarchy of data structures used to 
translate host commands into flash reads and writes. 

FIG. 3 illustrates the system of FIG. 1 in greater detail. 
FIG. 4 illustrates a host read operation at a high level. 
FIG. 5 illustrates a host write operation at a high level. 
FIG. 6 illustrates an organization of flash memory. 
FIG. 7 illustrates a relationship between a flash memory 

group and a flash port. 
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FIG. 8 illustrates input and output signals to a flash 
memory device. 

FIG. 9 illustrates input and output signals to a flash HEMi 
block. 

FIG. 10 illustrates connections between a flash port and a 
flash memory bank. 

FIG. 11 illustrates multiplexing of CS and RB signals onto 
a single pin. 

FIG. 12 illustrates a flash memory hierarchy. 
FIG. 13 illustrates the organization of an SPage sector. 
FIG. 14 illustrates the organization of a flash page. 
FIG. 15 illustrates an organization of data within a Super 

Block. 
FIG. 16 illustrates a stripe organization of data. 
FIG. 17 illustrates data and control flow through host 

ports. 
FIG. 18 illustrates a host port. 
FIG. 19 illustrates primitive match logic. 
FIG. 20 illustrates a command parser block. 
FIG. 21 illustrates a command distribution block. 
FIG. 22 illustrates connections between HEMi’s and 

shared RAM data structures through a crossbar switch. 
FIG. 23 illustrates a RAM controller. 
FIG. 24 illustrates the relationship between a shared RAM 

controller and a shared RAM bank. 
FIG. 25 illustrates DRAM channels. 
FIG. 26 illustrates HEMi stages. 
FIG. 27 illustrates a flash HEMi and its tightly coupled 

logic block. 
FIG. 28 illustrates receive HEMi and transmit HEMi 

unique registers. 
FIG. 29 illustrates the contents of a flash HEMi mRAM. 
FIG. 30 illustrates the transfer of a data block from shared 

RAM. 
FIG. 
FIG. 
FIG. 
FIG. 
FIG. 
FIG. 
FIG. 
FIG. 
FIG. 
FIG. 
FIG. 
FIG. 

31 illustrates ECC logic. 
32 illustrates the contents of a data path DRAM. 
33 illustrates a forward table. 
34 illustrates a reverse table. 
35 illustrates a SuperBlock metadata table. 
36 illustrates an IOP data buffer. 
37 illustrates a CDBinfo. 
38 illustrates an IOP 
39 illustrates a transfer request. 
40 illustrates a page request. 
41 illustrates the contents of a shared RAM block. 
42 illustrates initiator information. 

FIG. 43 illustrates SLC flash write timing. 
FIG. 44 illustrates MLC flash write timing. 
FIGS. 45A and 45B illustrate steps followed by a host port 

when a host command is received. 
FIGS. 46A and 46B illustrate the initial phases of han 

dling of a CDB. 
FIG. 47 illustrates special-case CDB handling. 
FIGS. 48A-48D illustrate the manner in which IOPS and 

transfer requests are set up based on a CDBinfo. 
FIGS. 49A and 49B illustrates the manner in which a flash 

HEMi sets up page requests. 
FIGS. 50A and 50B illustrate the flash HEMi execute 

loop. 
FIGS. 51A and 51B illustrate the page request read 

handler. 
FIGS. 52A and 52B illustrate a flash read operation in 

greater detail. 
FIGS. 53A and 53B illustrate the execution of a page 

request write handler. 
FIG. 54 illustrates allocation of a SuperPage to a page 

request. 
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FIG.55 illustrates clean-up of a completed transaction. 
FIG. 56 illustrates a garbage collection process. 
FIG. 57 illustrates a patrol function process. 
FIGS. 58A-58D illustrate a rebuilding process. 

DETAILED DESCRIPTION OF CURRENTLY 
PREFERRED EMBODIMENTS 

I. Overview 

A. System Overview. 
In the currently preferred embodiment, the system 

described herein is designed to operate with various enter 
prise-level mass storage protocols, including SAS ("Serial 
Attached SCSI), FC (“Fibre Channel') and FC-AL (“Fibre 
Channel Arbitrated Loop), all of which are based on the 
Small Computer Systems Interface (“SCSI), and Serial 
ATA ("SATA) protocols. These protocols are highly famil 
iar to those of ordinary skill in the art, and will not be further 
described herein. Except where particular protocols are 
called out, the systems and methods disclosed herein do not 
depend on the particular protocol being used and are 
designed to operate correctly with all of them. Moreover, 
these systems and methods may be adapted for use with 
other similar protocols, either currently in use or not yet 
developed, including protocols designed for enterprise-level 
applications as well as protocols designed for other appli 
cations. Such as end-user. 
As a matter of convenience, the protocols relevant herein 

are oftentimes referred to collectively as the “SCSI Proto 
col.” though, as should be understood, this includes non 
SCSI protocols and does not include those SCSI protocols 
that are not relevant. 
The system described herein includes a novel architecture 

for controlling a mass storage module consisting of flash 
memory chips. The overall system is illustrated in a high 
level overview in FIG. 1. As with other block diagram 
drawings herein, the elements shown in FIG. 1 are concep 
tual in nature, showing the nature of interrelationships 
among functional blocks, and are not intended to represent 
actual, physical circuit-level implementations. 

Hosts 101 and 102 are conventional host devices, e.g., 
two servers that use mass storage resources or two hostbus 
adapters serving one such server. In certain protocols, each 
Host may support multiple initiators. In SCSI-based sys 
tems, initiators are host-side endpoints for data transfers, and 
may constitute separate physical devices or processes. 

Board 103 (represented by dashed lines) represents one or 
more PCBs. It could, for example, consist of a single PCB 
board, or of multiple boards connected together in a mother 
daughter configuration. In the currently preferred embodi 
ment, Board 103 is designed so that, from the perspective of 
Hosts 101 and 102, Board 103 appears to constitute a 
conventional, rotating disk mass storage device. This 
requires that Host Ports 104 and 105 be designed so that they 
are physically and logically indistinguishable from conven 
tional mass storage interfaces for which Hosts 101 and 102 
have been designed. Thus, in the currently preferred 
embodiment, use of Board 103 does not require any redesign 
of Hosts 101 or 102. 

In the currently preferred embodiment, SSD Controller 
106 represents a single integrated circuit device that is 
attached to Board 103 and runs at 200 MHz. In alternate 
embodiments, SSD Controller 106 can consist of more than 
one integrated circuit device, without departing from the 
principles of the invention(s) described herein. Clock speed, 
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of course, represents an implementation choice, and will 
vary among implementations. 

In the currently preferred embodiment, Data Path DRAM 
107 is a 64-bit wide 256 Mbyte DDR SDRAM with a clock 
speed of 200 MHz sold by Micron Technology, Inc. of 5 
Boise, Id., under the product designation MT47H16M16BC 
5E. This provides an effective rate of 128 bits of data transfer 
per cycle, consisting of two 64-bit transfers per cycle. For 
purposes of simplicity, this will be described herein as a 
128-bit interface. This device automatically checks ECC on 
all transfers. In an alternate embodiment involving greater 
overall storage capacity, the Micron MT47H32M16CC-5E, 
a 512 Mbyte DDR SDRAM, can be substituted. As should 
be understood, many different options are available for the 
Data Path DRAM, including the use of types of memory 
other than DRAM, and the specific products identified here 
are not integral to the inventions disclosed herein. As is 
shown in FIG. 1, Data Path DRAM 107 communicates with 
SSD Controller 106, but does not have any direct connection 
to any other element in the system. 

Flash Memory Module 108 represents a number of flash 
memory chips. In the currently preferred embodiment, Flash 
Memory Module 108 consists of 1922 gigabyte NAND 
flash chips, each running at 40 MHz. As is explained below, 
this configuration provides 300 gigabytes of user data capac 
ity. As should be understood, the described system can 
operate with a larger or Smaller overall capacity, with flash 
memory chips that have more or less capacity than 2 
gigabytes and with flash memory chips that operate faster or 
slower than is currently preferred. In addition, Flash 
Memory Module 108 may consist of multiple “daughter 
boards” that are stacked together. 

Flash Memory Module 108 communicates with SSD 
Controller 106, but does not have any connection with any 
other element in the system. 
As is illustrated in FIG. 1, SSD Controller 106 occupies 

a central location, since it communicates with all other 
elements in the system, none of which communicate with 
each other. The design and operation of each of the elements 
shown as part of Board 103 will be described in detail below. 
B. Data Structures Overview. 
SSD Controller 106 operates by accepting commands 

from a host and breaking those commands into Smaller tasks 
that eventually result in a sequence of reads and writes in 
Flash Memory Module 108. FIG. 2 illustrates this process at 
a high level. 
When SSD Controller 106 receives a Host-initiated read 

or write command, it creates a data structure known as a 
“CDBinfo' (e.g., CDBinfo 201), which contains the Com 
mand Descriptor Block (“CDB) or other corresponding 
command-related information from the Host. Among other 
information, the CDBinfo specifies the address range to be 
read from or written to, in Logical Block Addresses 
(“LBAs"). 

Based on the CDBinfo, SSD Controller 106 creates a data 
structure known as an “Input-Output Process” (“IOP) (e.g., 
IOP 202). Under most circumstances, a single IOP controls 
the entire transaction requested by the Host. 

Each IOP can invoke up to seven data structures known 
as “Transfer Requests” (e.g., Transfer Requests 203-209). 
Each Transfer Request is designed to handle a portion of the 
LBA range specified by the IOP. 

Each Transfer Request can invoke up to three data struc 
tures known as "Page Requests (e.g., Page Requests 210, 
211 and 212, invoked by Transfer Request 206; Page 
Requests invoked by the other Transfer Requests are not 
shown in FIG. 2). Each Page Request is designed to read 
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from or write to a segment of Flash Memory Module 108 
corresponding to a portion of the LBA range specified by the 
Transfer Request. 
As FIG. 2 shows, the three illustrative Page Requests each 

accesses a region of Flash Memory Module 108 known as a 
“SuperPage' (e.g., SuperPages 213, 214 and 215). As is 
further described below, each SuperPage consists of four 
flash Pages, each of which is stored on a different Flash Die. 

Each of these data structures is described in greater detail 
below. 
C. Detailed System Overview. 

FIG. 3 provides additional detail to the overall system 
design illustrated in FIG. 1, though, as before, numerous 
elements and details are omitted for purposes of clarity. FIG. 
3 shows Hosts 101 and 102 connected to Board 103, with 
Board 103 including SSD Controller 106, Data Path DRAM 
107 and Flash Memory Module 108. 

Flash Memory Module 108 is divided into eight Flash 
Groups, designated as Flash Groups 0-7. Of these, three are 
shown in the Figure: Flash Groups 0, 1 and 7, designated as 
301, 302 and 303. In the currently preferred embodiment, 
Flash Memory Module 108 can hold between eight and 
twelve Flash Groups. 
SSD Controller 106 also contains a number of Flash Ports 

equal to the number of Flash Groups contained in Memory 
Module 108, e.g., Flash Ports 304,305 and 306. Each Flash 
Port communicates with one Flash Group (e.g., Flash Port 0 
304 communicates with Flash Group 0.301). As with the 
Flash Groups, in the currently preferred embodiment, SSD 
Controller 106 can have a minimum of eight and a maximum 
of twelve Flash Ports and the embodiment illustrated con 
tains eight, of which three are shown. As is described below, 
each Flash Port operates independently, thereby supporting 
parallel operations in the Flash Groups. 

Each Flash Port includes a Flash HEMianda Stage Buffer 
(e.g., Flash Port 0304 contains Flash HEMi 0307 and Flash 
Stage Buffer 0308). “HEMi” stands for Hardware Execution 
Machine. HEMi’s are logic blocks that operate as dedicated, 
special-purpose microprocessors. The design and function 
of HEMi’s is explained in greater detail below. Each Flash 
HEMi controls transfer operations for a single Flash Group 
(e.g., Flash HEMi 0307 controls Flash Group 0301, Flash 
HEMi 1309 controls Flash Group 1302, etc.) 

Flash Stage Buffers (e.g., Flash Stage Buffer 0308) are 
used to buffer data transfers between Data Path DRAM 107 
and the Flash Groups. In the currently preferred embodi 
ment, each Flash Stage Buffer is a dual port SRAM that can 
handle one read and one write concurrently, and is capable 
of holding 16 Kbytes of data, representing four flash pages. 
As is explained below, this constitutes a “SuperPage' of 
data. 
As is described below, in the currently preferred embodi 

ment, the data interface from each Flash Group is capable of 
transmitting 32 bits at a time (one doubleword), whereas 
Data Path DRAM 107 is capable of sending or receiving 
data 128 bits at a time (as is described above, in the current 
embodiment, the Data Path DRAM transmits and receives 
data in 64-bit chunks, but does so twice in each clock, 
thereby providing an effective data rate of 128 bits). 
The Flash Stage Buffers buffer communications between 

the Flash Groups and the Data Path DRAM and therefore 
allow transfers to occur without requiring wait states on the 
part of the DRAM. In the currently preferred embodiment, 
in the case of transmissions from the Flash Group to the 
DRAM, the Flash Stage Buffers accept the data in double 
word chunks. Once a sufficient amount of data has been 
received (preferably an entire SuperPage), the Flash Stage 
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Buffer then burst transfers the data to the Data Path DRAM 
in a DMA transfer that uses the entirety of the Data Path 
DRAM data bus. The Flash Stage Buffers are controlled by 
DMA logic that handles DMA transmissions to and from the 
DRAM (see discussion of FIG. 10, below). 
As FIG. 3 shows, Hosts 101 and 102 communicate with 

Host Interface 310, which, as should be understood, includes 
Host Ports 104 and 105 (not shown). In general Hosts issue 
commands, provide data that is to be written into mass 
storage and request data from mass storage. As is understood 
by those of ordinary skill in the art, the details of the manner 
in which Hosts communicate with mass storage is protocol 
dependent. Typically, however (and without limitation), 
Hosts communicate with mass storage using “frames.” 
which contain commands and/or data. Typically, commands 
are contained in Command Descriptor Blocks (“CDBs), 
which are familiar to those of ordinary skill in the art. 

Host Interface 310 is designed to respond to CDBs in a 
manner transparent to the Host, meaning that from the 
perspective of Host 101, Host Interface 310 appears to 
constitute an interface to a conventional mass storage 
device. 

Control flow proceeds as follows (each of the logic blocks 
and metadata structures mentioned is explained in greater 
detail below): Upon receiving a CDB requesting a read or 
write, Host Interface 310 generates a CDBinfo to handle the 
operation (e.g., CDBinfo 201). That CDBinfo is then passed 
to Command Parser Block 311. 
Upon receiving a CDBinfo, Command Parser Block 311 

performs coherency and other types of checks, which are 
described below, and then passes the CDBinfo to Command 
Distribution Block 312. 
Command Distribution Block 312 evaluates the CDBinfo 

and creates an IOP (e.g., IOP 202) to carry out the requested 
transfer. Command Distribution Block 312 then generates 
one or more Transfer Requests (e.g., Transfer Requests 
203-209), each to carry out a portion of the transfer required 
by the IOP. For each Transfer Request, Command Distribu 
tion Block 312 then determines which Flash Group contains 
the data to be read, or the address location to be written. 
Command Distribution Block 312 then passes the Trans 

fer Requests to the Flash Ports corresponding to the Flash 
Group containing the relevant flash memory addresses, e.g., 
Flash Port 0304, Flash Port 1305 and Flash Port 7 306. 
When a Flash Port receives a Transfer Request from 

Command Distribution Block 312, the Flash HEMi for that 
Flash Port breaks the Transfer Request into Page Requests 
(e.g., Page Requests 210, 211 and 212) and uses the Page 
Requests to control actual read and write operations in the 
associated Flash Group, with each Page Request accessing 
up to a SuperPage of data. 

Control flow in FIG. 3 for a read or write operation in 
Flash Group 0 thus proceeds as follows. Host 101->Host 
Interface 310->Command Parser Block 311->Command 
Distribution Block 312->Flash HEMi 0 307->Flash Group 
O3O1. 

Data flow proceeds differently. In the case of a read, data 
is returned by the Flash Group to the Flash Stage Buffer 
contained in the connected Flash Port. For example, Flash 
Stage Buffer 0308 is connected to Flash Group 0301, Flash 
Stage Buffer 1314 is connected to Flash Group 1302 and 
Flash Stage Buffer 7315 is connected to Flash Group 7303. 
From the Flash Stage Buffer, the data obtained from the 

Flash Group is written into Data Path DRAM 107 through 
Bus 316. From Data Path DRAM 107 it passes through Host 
Interface 310 to Host 101. Write operations proceed in the 
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opposite direction: Host 101->Host Interface 310->Data 
Path DRAM 107->Flash Stage Buffer 0308->Flash Group 
O3O1. 
The fact that control flow and data flow follow different 

paths is illustrated by the lines connecting the various 
elements in FIG. 3. Thus, the arrows connecting the Flash 
HEMi’s with the Flash Groups symbolize control flow 
between these elements, whereas the arrows connecting the 
Flash Groups with the Stage Buffers indicate data flow. 
FIG.3 also shows RAM Controller 317 and Shared RAM 

Block 318, each of which is described in greater detail 
below. In general, Shared RAM Block 318 contains memory 
used by the HEMi’s, and RAM Controller 317 contains logic 
that controls Data Path DRAM 107 and Shared RAM Block 
318 and arbitrates access to both of those resources. 
D. Read and Write Overview. 

FIG. 4 illustrates the high-level data flow for a read 
operation handled by SSD Controller 106. 

In Step 401, the Host (e.g., Host 101) issues a read 
command, including the LBA of the data. 

In Step 402, SSD Controller 106 identifies the location of 
the requested LBA(s) in Flash Memory Module 108 and 
issues one or more read commands to the Flash Memory 
Module. 

In Step 403, Flash Memory Module 108 performs a read 
operation and returns data to SSD Controller 106. 

In Step 404, the returned data is passed through SSD 
Controller 106 and Stored in Data Path DRAM 107. 

In Step 405, a check is made to determine if all of the data 
requested by Host 101 has been obtained. If not, (“no' 
outcome to Step 405), control returns to Step 403 so that the 
additional data can be obtained from the Flash Memory 
Module and Stored in the Data Path DRAM. 
Once all data requested by the Host has been obtained 

from the Flash Memory Module and stored in the Data Path 
DRAM (“yes” outcome from Step 405), in Step 406, the data 
is read out of Data Path DRAM 107 and into SSD Controller 
106. 

In Step 407, the data is transmitted from SSD Controller 
106 to Host 101, and the read operation requested by Host 
101 is complete. 
As should be understood, FIG. 4 describes the read 

operation using high-level conceptual steps, the details of 
which are explained below. 

FIG. 5 uses similar high-level conceptual steps to illus 
trate a write operation, in which Host 101 is seeking to store 
data in memory. 

In Step 501, Host 101 issues a write command, with an 
LBA, and provides the data to SSD Controller 106. 

In Step 502, SSD Controller 106 stores the data to be 
written in Data Path DRAM 107. 

In Step 503, SSD Controller 106 identifies the location of 
the LBA in Flash Memory Module 108. 

In Step 504, SSD Controller 106 issues a read command 
to Flash Memory Module 108 sufficient to read the Super 
Page containing the LBA. This read command does not store 
data into the DRAM, and therefore proceeds from Step 403 
of FIG. 4 to Step 405, skipping Step 404, and loops through 
those two Steps until all of the data has been received. 

In Step 505, the data from Data Path DRAM 107 is 
transferred to the Controller and integrated with the data 
read from the Flash Memory Module. As a result of this 
integration, the Controller now holds a SuperPage in which 
the new data has overwritten the old data stored at that LBA, 
but all other LBAs in the SuperPage are unchanged. 

In Step 506, SSD Controller 106 issues a write command 
to Flash Memory Module 108. 
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In Step 507, Flash Memory Module 108 performs a write 
operation. 

In Step 508, a check is done to determine if all informa 
tion has been written in Flash Memory Module 108. 

If additional write operations are required (“no' 
from Step 508), control returns to Step 507. 

If all data has been written to Flash Memory Module 108 
(“yes” result from Step 508), in Step 509, SSD Controller 
106 updates location information for the LBAs that were 
written. As is explained in detail below, because of the 
nature of flash memory, a write operation does not physi 
cally overwrite the existing SuperPage, but instead writes 
the updated SuperPage to a new location in Flash Memory 
Module 108, thereby requiring an update to the address 
translation information associated with the LBAs stored in 
that SuperPage. 

The write operation then completes. 

result 

II. Flash Memory Architecture 

A. Physical Memory Architecture. 
FIG. 6 illustrates the organization of one Flash Group 

(e.g., Flash Group 0.301), and its relationship to its associ 
ated Flash Port (e.g., Flash Port 0304). As should be 
understood, the details of this organization may differ in 
different embodiments. 

Flash Group 301 consists of eight Flash Chips, designated 
as 601-608. Each Flash Chip includes two Dies; e.g., Flash 
Chip 601 contains Dies 609 and 610. 

In one embodiment, each Die (e.g., Die 609) has a raw 
capacity of approximately 1.11 gigabytes, consisting of 
8224 blocks, each made up of 64 pages, with each page 
consisting of 2212 bytes. When system and spare memory 
space is Subtracted, this leaves a user data capacity of 
approximately 1 gigabyte per die, or 2 gigabytes per NAND 
flash chip. In a system including twelve Flash Groups and 
eight Banks per Flash Group, this provides a raw user 
memory space of approximately 384 gigabytes, but the total 
useable space for user data is approximately 300 gigabytes, 
since some space is devoted to spare and system functions 
that do not fall within the LBA address space made available 
to users. System space Stores various types of system 
metadata, including SCSI mode pages, and also contains 
free space. 
The use of 2 gigabyte NAND flash chips, each containing 

two 1 gigabyte Dies, is a reflection of the current state of the 
art in available flash memory technology. The described 
system can operate equally well with other flash memory 
sizes and configurations, including four dies contained in 
one flash memory chip, or one die per chip. Because the next 
generation of NAND flash chips will incorporate four Dies 
per chip, it is likely that Flash Group 301 will use such chips. 
The principles described herein are easily applicable to 
four-Die designs. For example, if each Die in a four-Die chip 
has its own CE and RB Pin, but all four Dies share common 
address/command/data pins, then each Die can be incorpo 
rated into a separate Bank. On the other hand, if each 
four-Die chip has two CE and RB Pins, with two Dies 
sharing each Pin, then from the perspective of SSD Con 
troller 106, the two Dies that share common CS and RB Pins 
will appear indistinguishable from a single Die described 
above (e.g., Die 609). 
The currently preferred embodiment also operates equally 

well with 1 Gigabyte NAND flash chips, each containing 2 
half-gigabyte dies. In this configuration, only 4112 blocks 
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10 
are included per die. Other than the capacity, this configu 
ration operates the same as the configuration described 
above. 

Note that the flash memory chips themselves are of 
conventional design, and the illustration in FIG. 6 is not 
intended to convey details of the internal design of these 
chips, but instead to allow for an understanding of the 
organization of the chips and the manner in which the Dies 
interface with the rest of the system. 

Flash Group 301 is divided into four Banks (611, 612, 613 
and 614), each made up of four Dies. Thus, Bank 611 
consists of Die 609 from Flash Memory 601, Die 615 from 
Flash Memory 602, Die 616 from Flash Memory 603 and 
Die 617 from Flash Memory 604. Bank 612 consists of Die 
610 from Flash Memory 601, Die 618 from Flash Memory 
602, Die 619 from Flash Memory 603 and Die 620 from 
Flash Memory 604. Banks 613 and 614 are similarly orga 
nized among the other Flash Memories and Dies. 

FIG. 6 shows four Banks. In the currently preferred 
embodiment, each Flash Group contains between four and 
eight Banks, depending on the amount of capacity desired by 
the user. 

FIG. 7 provides additional details regarding the intercon 
nections between Flash Memory Module 108, SSD Control 
ler 106 and Data Path DRAM 107. Although FIG. 7 shows 
Flash Group 0.301 and Flash Port 0304, the same inter 
connections exist between all Flash Groups and their accom 
panying Flash Ports and Data Path DRAM 107. 
As is shown in FIG. 7, Flash Group 0301 is connected to 

Flash Port 0304 by two buses, Flash Bus 701 and CS/RB 
BLS 702. 
CS/RB Bus 702 consists of a separate line connecting 

Flash HEMi307 to each of the Banks of Flash Group 301. 
In the embodiment shown, which has four Banks, CSIRB 
Bus 702 consists of four lines: Line 703, connecting Flash 
HEMi 307 with Bank 614, Line 704, connecting Flash 
HEMi 307 with Bank 613, Line 705, connecting Flash 
HEMi 307 with Bank 612, and Line 706, connecting Flash 
HEMi 307 with Bank 611. In an embodiment including a 
larger number of Banks (e.g., eight), CS/RB Bus 702 would 
consist of a correspondingly larger number of signals. As 
should also be understood, the signals from Flash HEMi307 
travel through pins on SSD Controller 106. FIG. 7 is not 
intended to show the physical details of the transmission 
paths, but instead illustrates the flow of data and control 
signals. 
The lines of CS/RB Bus 702 carry Ready-Busy (“RB) 

signals from Flash Group 301 to Flash HEMi307, and Chip 
Select (“CS”) signals from Flash HEMi307 to Flash Group 
301. 

Only one of the CS signals carried on CS/RB Bus 702 is 
active at any given time. The Bank connected to the cur 
rently active CS signal is connected to Flash Bus 701, and 
all other Banks are disconnected from that Bus (again, this 
is a logical rather than a physical concept, depending on the 
implementation, the “connected Bank may communicate 
with the Flash Bus whereas all other Banks ignore the Flash 
Bus, even though a physical connection exists between the 
Flash Bus and all of the Banks). 

Address and control information from Flash HEMi 307 is 
transmitted on Flash Bus 701 to each of the Banks. This 
includes Control Signals 708 (described below in connection 
with FIG. 8) and Address/Command Signals 709 (described 
below in connection with FIG. 9). Similarly, Bus 707 
connects Flash Stage Buffer 308 to Flash Bus 701. Data is 
transmitted from Stage Buffer 308, on Bus 707, along Flash 



US 9,483,210 B2 
11 

Bus 701 and to the Banks Data is transmitted from the Banks 
to Stage Buffer 308 in the opposite direction. 
As is further shown in FIG. 7, Data Path DRAM 107 is 

connected to Stage Buffer 308. Thus, data passes from Data 
Path DRAM 107 to Stage Buffer 308, and is then sent along 
Bus 701 to the Bank that has the currently active CS signal. 
Data from Flash Group 301 is transmitted to Data Path 
DRAM 107 along the opposite path. 

FIG. 8 shows portions of the pin-out of a single flash 
memory chip, e.g., Flash Chip 601, which includes Dies 609 
and 610. In the currently preferred embodiment, the Flash 
Chips use a standard NAND flash interface, typically con 
sisting in relevant part of 8 bits of address/data (801), 4 bits 
of control (Address Latch Enable (“ALE) Signal 802. 
Command Latch Enable (“CLE”) Signal 803, Write Enable 
(“WE’) Signal 804 and Read Enable (“RE) Signal 805, 
which collectively are referred to as Control Signals 708), 
one Chip Enable pin per Die (this is connected to the CS 
signal from the Controller and the designations Chip Enable 
and Chip Select will sometimes be used interchangeably), 
and one Ready/Busy line per die. As is indicated, the A/D 
signals 801 and the ALE, CLE, WE and RE signals are all 
connected to Flash Bus 701, though these are not the only 
signals connected to that Bus. 
As is shown in FIG. 8, ALE, CLE, WE, RE and both Chip 

Enable signals are inputs to Flash Memory 601. A/D Bus 
801 is made up of eight bidirectional signals. Both RB 
signals are outputs. 

All signals shown in FIG. 8, except for the two CE and 
two RB signals, are shared by both Dies. Thus, the same 
eight A/D pins 801 are shared by Dies 609 and 610. As 
should be understood from the discussion of FIG. 6, these 
Dies are each in separate Banks. For this reason, the sharing 
of pins does not create a conflict, since under no circum 
stances are these signals active for more than one Bank at a 
time. 
As is typical of flash memory, each Die has an associated 

Flash Page Buffer that can hold one page of data that is being 
written into or read out of the corresponding Die. FIG. 8 
shows these as Page Buffers 806 and 807. 

FIG. 9 illustrates the portion of the signal output of a Flash 
HEMi (e.g., Flash HEMi307) which is devoted to a Flash 
Memory Port (e.g., Flash Memory Port 0304). As should be 
understood, Flash HEMi 307 also has additional inputs and 
outputs devoted to other functions. AS is explained above, 
signals connecting Flash HEMi 307 with the Flash Group 
are routed through pins of SSD Controller 106. Neither those 
pins, nor the logic that handles the routing, are shown. As is 
true in other Figures showing signal routing, FIG. 9 is 
intended as a conceptual illustration, and is not intended to 
illustrate the details of actual physical layout. 

This portion of Flash HEMi307's interface is made up of 
signals devoted to the following functions: 

1. Control Signals 708, made up of four control lines: 
ALE Signal 802, CLE Signal 803, WE Signal 804 and RE 
Signal 805. These signals are outputs from Flash HEMi307. 

2. CS/RB Bus 702, which is made up of CS/RB Lines 
703-706. As is explained above, each Flash HEMi can 
control one Flash Memory Bank per connected CS/RB Line. 
Thus, in the embodiment illustrated in FIG. 9, Flash HEMi 
307 controls four Flash Memory Banks (e.g., Banks 611, 
612. 613. 614 shown in FIG. 6). In a system including eight 
Banks per Flash Group, each Flash HEMi would have eight 
signals devoted to this purpose (note that the logic necessary 
to Support the extra four signals is present even if those 
signals are not in fact used). 
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CS/RB Bus 702 transmits CS signals from HEMi 307 to 

the Flash Banks, and transmits RB signals from the Flash 
Blanks to HEMi 307. Since the signals are multiplexed in 
this manner, each Such Line may transmit only one type of 
signal at a time. The CS/RB signals are “one hot signals, 
meaning that one and only one of these signals can be active 
at any given time. 

Using the same signals for both CS and RB purposes 
saves pins on SSD Controller 106, and therefore reduces the 
cost and complexity of the SSD Controller. However, this 
limits the number of Banks that can be controlled by Flash 
HEMi 307, since one RB signal, and therefore one pin, is 
required for each bank. Because in the current embodiment 
SSD Controller 106 includes eight CS/RB pins for each 
Flash Port, in that embodiment a maximum of eight Banks 
may be controlled by each Flash HEMi. 

3.31 signals making up Address/Command Signals 709. 
This bus, which connects to Flash Bus 701, runs at the same 
40 MHz speed as the flash memory chips and carries 
addresses and commands from Flash HEMi 0 307 to Flash 
Group 0301. Address/Command Signals 709 can be thought 
of as four separate eight-bit buses (consisting of lines 0-7, 
8-15, 16-23 and 24-31), each of which routes an eight-bit 
payload to a separate Die in a Flash Memory Bank. Thus, 
eight lines from Address/Command Bus 709 connect to A/D 
signals 801, shown in FIG. 8. 
As should be clear from the foregoing, 44 pins of SSD 

Controller 106 are devoted to each Flash Port (keeping in 
mind that each Flash Port can Support a maximum of eight 
Banks and therefore requires eight CS/RB pins, though only 
four such signals are shown in FIG.9). Since SSD Controller 
106 can support up to 12 Flash Ports, 528 pins of SSD 
Controller 106 are devoted to the flash interface, though 
Some of these pins may be no-connects, if fewer than 12 
Flash Ports are used. Note that, if separate CS and RB pins 
were required, an additional 96 pins would be needed for the 
flash interface (1 pin per Bankx8 Banksx 12 Flash Ports). 
Combining the CS and RB signals onto a single pin therefore 
provides a very significant savings in terms of the number of 
required pins. 
The embodiment shown in FIG. 9 is currently preferred, 

but various other embodiments are also possible. In a 
different embodiment, the eight CS/RB pins currently 
devoted to a particular Flash Group are connected to a muX 
or other similar logic device located in the Flash Group. The 
muX, in turn, has a set of output signals that connect to the 
CE inputs of all Flash Dies in a Bank, with each signal 
causing the CE inputs of a particular Bank to be selected. 
Because the eight SSD Controller CS/RB pins are capable of 
transmitting 256 separate states, in theory, it would be 
possible to use those pins to select among 256 separate 
Banks, by designing the muX or other logic So as to generate 
a signal along a different output line for each of the 256 
possible input states. However, since in the current embodi 
ment all of the Banks share the same A/D Bus, there would 
be little or no benefit in adding such a large number of Banks 
Instead, in a more desirable embodiment, such a muX or 
other similar logic would be used to add a modest number 
of Banks (e.g., eight), or to reduce the number of CS/RB 
pins per Bank (e.g., from eight to four). 

Note that in this alternate embodiment, because the num 
ber of CS/RB pins is less than the number of Banks, the 
CS/RB pins can no longer handle the RB signals for each 
Bank. In this embodiment, therefore, the SSD Controller 
CS/RB pins no longer handle the RB input. However, 
because standard flash chips Support a software-only status 
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check of the RB state, each Flash HEMi could check the RB 
state of the Banks using the A/D Bus. 

This alternate embodiment therefore allows SSD Control 
ler 106 to devote fewer pins to the flash memory interface or 
to support a larger number of Banks with the same number 
of pins, though at the cost of Some additional logic com 
plexity. 

FIG. 10 illustrates the manner in which the Dies in a 
single Bank (e.g., Dies 609, 615, 616 and 617 in Bank 611) 
are connected together and to the associated Flash Port (e.g., 
Flash Port 0304, containing Flash HEMi 307 and Stage 
Buffer 308). 
As is shown in FIG. 6, Die 609 is one of two Dies in Flash 

Chip 601, Die 615 is one of two Dies in Flash Chip 602, Die 
616 is one of two Dies in Flash Chip 603 and Die 617 is one 
of two Dies in Flash Chip 604. For ease of illustration, FIG. 
10 only shows one of the two Dies in each Flash Chip. (As 
is described above, Memory Module 108 may well incor 
porate Flash Chips that have four Dies each (or more), 
though the principles of the design disclosed herein would 
remain the same.) 
As is shown, Line 706 constitutes the CS/RB signal 

interface between Flash HEMi 307 and Bank 611. That Line 
carries the CS signal from Flash HEMi307 to Bank 611, and 
the RB signal from Bank 611 to Flash HEMi 307. FIG. 10 
illustrates this by showing arrows going in both directions 
between Flash HEMi 307 to Point 1001 on Line 706. From 
Point 1001, the signal path divides, and carries the CS signal 
as an input to the Dies (shown by arrows pointing into each 
Die with the label “CS) and carries the RB signal as an 
output from each of the Dies (shown by arrows pointing out 
of each Die with the label “RB). As should be understood, 
Point 1001 is figurative in nature, and neither it nor the rest 
of the Figure are intended as a literal illustration of physical 
implementation. 
As is shown, the RB output signals from each Die in the 

Bank are logically ORed together (or otherwise similarly 
combined), so that a Busy signal is sent from Bank 611 to 
HEMi307 along Line 706 if any one of the four Dies in the 
Bank is outputting "Busy.'. Line 706 also carries the CS 
signal from Flash HEMi307 to each of the Dies in the Bank. 
When the CS signal devoted to the Bank is set by Flash 
HEMi 307, that signal is sent simultaneously to the CE pin 
of each Die in the Bank, thereby selecting each such Die 
simultaneously. 

FIG. 10 also shows Address/Command Bus 709, which 
represents the connections between the A/D pins of Flash 
Chips 601-604 and the Address/Command signals of HEMi 
307. As is shown, 32-bit Bus 709 carries signals from Flash 
HEMi307 to Bus Switch 1002. Bus Switch 1002 represents 
logic that combines, divides and routes signals as described, 
and does not necessarily constitute a single physical Switch. 

Bus Switch 1002 divides the signals from Bus 709 into 
sub-buses. Signals 0-7 are transmitted to the A/D pins of 
Flash Chip 601 using 8-bit Bus 801 (also shown in FIG. 8), 
Signals 8-15 are transmitted to the A/D pins of Flash Chip 
602 using 8-bit Bus 1003, Signals 16-23 are transmitted to 
the A/D pins of Flash Chip 603 using 8-bit Bus 1004 and 
Signals 24-31 are transmitted to the A/D pins of Flash Chip 
604 using 8-bit Bus 1005. Note that the A/D pins are shared 
by both Dies in a Flash Chip, so that the signals transmitted 
to the Flash Chip pins would be received by the appropriate 
Die in a manner specific to the internal design of the Flash 
Chips. 

FIG. 10 also shows the connections between Control 
Signals 708 of Flash HEMi 307 and each of the Dies. As is 
described above, these Control Signals consist of ALE, 
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CLE, RE and WE, and they are transmitted from Flash 
HEMi 307 to the Flash Dies. Control Signals 708 are sent 
from Flash HEMi307 to Bus Switch 1002. From Bus Switch 
1002, an identical set of Control Signals (designated in each 
case as 708) is transmitted to each of the Flash Memory 
Chips. As with the A/D pins, the ALE, CLE, RE and WE 
pins are shared by both Dies in each Flash Memory Chip. 

FIG. 10 also shows Flash Stage Buffer 308, which is 
connected to Bus Switch 1002 by 32-bit Bus 707. Unlike 
Bus 709, Bus 707 is bidirectional, and thus transmits data in 
both directions. 

Transfers between Stage Buffer 308 and the Dies occur 
under the control of Stage Buffer DMA Controller 1006. 

Note that Flash Stage Buffer 308 also connects to the RE 
and WE inputs of Flash Chips. These connections, which for 
clarity's sake are not shown in the Figures, are used to 
control DMA operations. 
Bus Switch 1002 divides the signals from Bus 707 into 

four sets of eight-bit signals, and transmits those signals to 
Dies 609, 615, 616 and 617 using 8-bit Buses 801, 1003, 
1004 and 1005. Similarly, Bus Switch 1002 receives data 
from Dies 609, 615, 616 and 617 on 8-bit Buses 801, 1003, 
1004 and 1005, then transmits the entire 32-bit value to 
Stage Buffer 308 on Bus 707. 

Switch 1002 thus multiplexes signals from Flash HEMi 
307 and signals to and from Stage Buffer 308 on the same 
8-bit Buses. Switch 1002 determines which set of signals to 
pass through to the 8-bit Buses depending on the particular 
stage of the read or write cycle, with address information 
from Flash HEMi 307 being connected to the Dies during 
one stage of the cycle, whereas data to or from Stage Buffer 
308 is connected to the 8-bit Buses during a different stage 
of the cycle. (Again, as is described above, Switch 1002 is 
conceptual in nature and does not necessarily constitute a 
single dedicated Switch. In addition, aspects of the function 
ality described in connection with Switch 1002 may be 
found in other logic blocks.) 

FIG. 10 shows only a single Flash Memory Bank, 611. In 
an actual embodiment, Bus Switch 1002 would interface to 
each of the Flash Memory Banks in the Flash Group, and 
each interface would duplicate all of the signals output from 
Bus Switch 1002 to Bank 611 that are shown in FIG. 10, 
with the exception of Signal 706, which, as is explained 
above, is specific to Bank 611. As is also explained above, 
Flash Memory Switch 1002 connects Buses 707, 708 and 
709 to each of the Flash Banks, but the only Bank that is 
responsive is the Bank associated with the currently active 
CS signal from Flash HEMi 307. 

Note that Flash Bus 701 includes Buses 708,801, 1003, 
1004 and 1005. 

FIG. 11 shows the CS and RB logic related to Line 706 
in greater detail. As is shown, SSD Controller CS/RB Pin 
1101 connects to the RB and CE pins associated with Flash 
Dies 609 and 615. As is described above in connection with 
FIG. 6, Dies 609 and 615 are two of the four Dies in Bank 
611. For purposes of illustration, the other two dies in the 
Bank are not shown, but are connected in the same manner 
as Dies 609 and 615. 
SSD Controller 106 drives CS/RB Pin1101 high to select 

Bank 611. This signal is inverted by Inverter 1102 and 
received low by the CE pins of the Dies in the Bank. These 
pins are active low. 
CS/RB Pin 1101 is driven low by SSD Controller 106 

when the Controller is driving another one of the CS pins in 
the same Flash Group high (thereby selecting another Bank 
in the Flash Group). 
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When Flash HEMi 307 wants to read the Ready-Busy 
state of Bank 611, SSD Controller 106 floats CS/RB Pin 
1101. When the CS/RB Pin is floated by the SSD Controller, 
that Pin will receive a low input if any of the Flash Die RB 
pins is driving a low signal, indicating that the Bank is busy, 
since a low output on any of the Die RB pins will override 
Pullup 1103. If, on the other hand, the Bank is in the Ready 
state, the Flash Dies allow the RB pins to float. Because 
Pullup 1103 is connected to the RB pins, when all of those 
pins are floated, and when CS/RB Pin1101 is floated, the Pin 
receives a high input signal, which indicates that the Bank 
is ready. 

Thus, this circuit connects the R/B pins of the Banks 
together in an OR configuration, since all of the pins must 
be in the Ready state (floating) in order for a ready signal to 
be received by CS/RB Pin 1101, so that the circuit effec 
tively ORs together the Busy state of the Pins. The use of 
Inverter 1102 allows SSD Controller 106 to drive the CS 
signal high to select a Bank, even though the Bank’s CE pins 
are active low. This is necessary because the CS signal must 
be driven high in order to override the incoming RB signal. 
In this way, the RB input to SSD Controller 106 can be 
active high, but can still be overridden by a high output on 
CS/RB Pin1101, since a high CS output will override a high 
RB input created by Pullup 1103. 
B. Logical Memory Architecture. 

Hosts such as 101 and 102 typically organize memory in 
terms of Logical Block Addresses, or “LBAs.” When a Host 
writes data to mass storage, the Host typically transmits a 
CDB that contains a write command and an LBA, though the 
details of Host communication vary depending on the spe 
cific protocol used by the Host. When the Host subsequently 
wishes to read that data, it issues a read command using the 
same LBA. 

Typically, a Hosts memory architecture divides data into 
millions of LBAs, with each LBA numbered sequentially, 
beginning with LBA 0. As is familiar to those of ordinary 
skill in the art, a Host will often communicate with a number 
of mass storage controllers, and will assign a Subset of the 
Hosts overall LBA range to each controller. In the current 
embodiment, SSD Controller 106 responds to an LBA range 
that begins with LBA 0 and ends with the highest LBA 
addressable by the Controller. Mapping that sequence of 
LBAS onto a larger Host LBA address space is the respon 
sibility of the Host or a hostbus adapter, and is transparent 
to SSD Controller 106. 

FIG. 12 illustrates the memory hierarchy used in Flash 
Memory Module 108 in the currently preferred embodiment. 

Each Flash Group is made up of a number of Banks (e.g., 
Bank 611). Each Bank consists of a number of Blocks, 
designated as Block 0-Block n (e.g., Block 01201). As is 
commonplace in flash memory systems, a Block represents 
a segment of flash memory that is erasable in a single 
operation. 
The exact number of Blocks stored in a Bank is imple 

mentation-dependent. To take one example, in a system 
providing 300 gigabytes of available user data, the number 
of Blocks per Bank would ordinarily be in the range of 
7,000-9,000, depending on various factors, including defect 
management and the amount of memory set aside for free 
Space. 
As is shown in FIG. 12, each Block consists of 64 

SuperPages, designated as SuperPages 0-63. As is explained 
above, each SuperPage consists of four flash Pages (e.g., 
SuperPage 30 consists of Page 30 1202, Page 30 1203, Page 
30 1204 and Page 30 1205). Pages 1202, 1203, 1204 and 
1205 are stored at the same address location on four different 
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Flash Memory Dies in the same Flash Bank. Thus, Super 
Page 30 is spread across four separate Dies. As is standard 
in flash memory systems, each Page represents the Smallest 
increment of the flash memory that can be read from or 
written to. 
As is shown in FIG. 12, each Page stores fifteen memory 

segments known as PSectors, designated as PSectors 0-14. 
FIG. 12 also shows an additional memory structure: 

SPage Sector 0 1206. As is shown, SPage Sector 0 consists 
of four PSector 0s, one on each Page. 

SPage Sector 0 corresponds generally to a classic mass 
storage sector, but is physically spread across four PSectors, 
each of which is stored at the same address of a different Die 
on the same Bank. 
The currently preferred embodiment also makes use of an 

additional memory structure that is not shown in FIG. 12: 
SuperBlocks, which are made up of the same Block on each 
Bank in the Flash Group (e.g., Block 01201 is part of 
SuperBlock 0 of the Flash Group). 

In the described embodiment, the data and metadata 
associated with a particular LBA is stored in a single SPage 
Sector (e.g., SPage Sector 1206), and is referred to herein as 
the Sector Contents, made up of the Sector Data and the 
Sector Metadata. 

FIG. 13 illustrates the organization of a SuperPage Sector, 
e.g., SPage Sector 1206. The entire SPage Sector consists of 
556 bytes in flash memory. Each SPage Sector is divided 
into four PSectors, each consisting of 139 bytes, each on a 
different Flash Die. 

In the example, shown, 528 bytes of SPage Sector 1206 
is allocated to data, shown as Sector Data Field 1301. 
Different Host protocols associate differing amounts of data 
with a single address, so that, depending on the protocol 
used, Sector Data Field 1301 may be as small as 512 bytes. 
As is shown in FIG. 13, in the currently preferred embodi 

ment, each SPage Sector also includes 8 bytes of End-to-End 
(“E2E) information (Field 1302) and 20 bytes of ECC 
information (Field 1303). These Fields collectively consti 
tute the Sector Metadata. 
E2E information is specified by newer versions of the 

SCSI Protocol. This information can be used by Initiators to 
track data and insure that the data returned by a mass storage 
device matches the data requested. ECC information is used 
for error correction purposes. 
E2E Field 1302 is further divided into RefTag Field 1304, 

AppTag Field 1305 and CRC Field 1306. 
RefTag Field 1304 consists of four bytes and contains an 

address that may be associated by the Initiator with the 
Sector Data. RefTag support is not required by the SCSI 
Protocol (and was not part of earlier versions of the Proto 
col), so an Initiator may or may not use RefTags. If an 
Initiator does use RefTags, the value associated with RefTag 
Field 1304 is taken from the CDB that triggered the original 
write of the Sector Contents. Typically, this value is the same 
as the LBA, though the Initiator may assign a different 
RefTag. The Initiator may choose to have the RefTag value 
for each Subsequent sector in the same write incremented, or 
to assign a single RefTag value for all sectors associated 
with a single write. If the incrementing option is chosen, 
SSD Controller 106 performs that operation, based on the 
initial RefTag value and the number of sectors received. 

If the Initiator does not support the use of RefTags, SSD 
Controller 106 fills in RefTag Field 1304 with the LBA 
address. This field is used by SSD Controller 106 for internal 
error checking purposes whether or not the Initiator requests 
the use of RefTags. 
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The value stored in RefTag Field 1304 should match the 
RefTag value of any CDB that causes a subsequent read or 
write to any LBA assigned to this SPage Sector. (If no 
RefTag is assigned by the Initiator, the RefTag value should 
match the LBA based on the CDB.) If the two values do not 5 
match, this indicates Some type of error, which may result 
from a mistake in the received RefTag, data corruption in 
RefTag Field 1304, or a problem in the address translation 
tables used by SSD Controller 106 to select SPage Sector 
1206 as the appropriate target for the read or write. Such a 
condition, if detected, results in the issuance of an appro 
priate SCSI sense code to the Host, indicating a transaction 
failure (or other similar communication, depending on the 
protocol being used). 
AppTag Field 1305 consists of two bytes, and is used for 

Initiator-specified information relating to the particular 
application that created the associated Sector Data. AppTag 
information is supported by the SCSI Protocol, but is not 
required. If this information is not supplied by the Initiator, 
AppTag Field 1305 is filled in with a default value chosen 
so that it will not overlap any valid AppTag value assigned 
by an Initiator that does Support the use of AppTags. 
As with the RefTag value, the AppTag information for 

data received from the flash memory can be checked against 
an AppTag Supplied by the Initiator as part of a read 
command, with a mismatch indicating an error. 
CRC Field 1306 consists of two bytes, and contains 

Cyclic Redundancy Check (“CRC) data that is used to 
check the integrity of the data and metadata stored in SPage 
Sector 1206. As with the RefTag and AppTag information, 
the CRC tag can be checked against a value received from 
the Initiator, to determine whether the data and metadata are 
COrrect. 

The SCSI Protocol allows an Initiator to request checking 
of any or all of the three E2E values. 
ECC Field 1303 contains Error Correcting Code (“ECC) 

information that can be used to correct errors in the LBA 
Data and Sector Metadata. ECC checking used in the 
preferred embodiment is described below in connection with 
FIG. 31. 

Returning to FIG. 12, in the currently preferred embodi 
ment, each Page (e.g., Page 1202) consists of 2212 bytes of 
flash memory space, and includes 15 PSectors, designated in 
each case as PSector 0-14, plus metadata (not shown). 

In the currently preferred embodiment, each of the four 45 
PSectors that make up an SPage Sector stores one-quarter of 
the Sector Contents that are stored in that SPage Sector. That 
data is allocated among the PSectors on a byte-interleaved 
basis. Thus, the first byte of the first doubleword of the 
Sector Contents is written into the first byte of PSector 0 of 50 
Page 1202, the second byte of the first doubleword is written 
into the first byte of PSector 0 of Page 1203, the third byte 
of the first doubleword is written into the first byte of 
PSector 0 of Page 1204, the fourth byte of the first double 
word is written into the first byte of PSector 0 of Page 1205, 55 
the first byte of the second doubleword is written into the 
second byte of PSector 0 of Page 1202, etc. 
As should be understood from this explanation, the Sector 

Contents stored in SPage Sector 0 are spread among the four 
P Sectors 0. Thus, each of the four Pages stores one-quarter 60 
of the Sector Contents, or 139 bytes (556/4). 

FIG. 14 illustrates Flash Page 1202 in additional detail, 
showing elements that are not shown in FIG. 12. In a typical 
flash architecture, a flash page consists of 2048 bytes of data 
and/or metadata plus an additional 64“spare’ bytes used for 65 
other purposes, adding up to a total of 2212 bytes. In the 
currently preferred embodiment, on the other hand, although 
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each Page consists of 2212 bytes, 2085 of those bytes are 
used for Sector Contents (15x139), and the extra 27 bytes 
store metadata associated with the SuperPage. FIG. 14 
shows PSectors 0-14, consisting of 2085 bytes, and Super 
Page Metadata 1401, which consists of 27 bytes per flash 
page. As with the PSectors, the SuperPage Metadata is 
spread across all four Flash Pages that make up a SuperPage, 
so that SuperPage Metadata Field 1401 stores one-quarter of 
the metadata associated with the SuperPage. 

SuperPage Metadata 1401 consists of SPage Index 1402 
and Time Stamp 1403. SPage Index 1402 stores an index 
into a table known as the "Forward Table,” which contains 
physical location information for LBAs. The Forward Table 
is described below, in connection with FIG. 33. 
Time Stamp 1403 contains a time stamp representing the 

time when the SuperPage was written. 
The SPage Index and Time Stamp are written redundantly 

into each of the four Flash Pages that make up a SuperPage. 
The redundancy is necessary because this metadata is not 
protected by the ECC mechanisms that protect other infor 
mation. 

SuperPage Metadata 1401 is filled in by the Flash HEMi 
when the SuperPage is written. The Flash HEMi derives the 
SPage Index from the Page Request that initiates the write, 
and derives the Time Stamp information from an internal 
clock. The SuperPage Metadata is used for reconstructing 
open SuperBlocks following an unanticipated power loss. 
Power loss reconstruction is described below in connection 
with FIG. 58. 

FIG. 15 illustrates the manner in which Sector Contents 
are organized among Blocks 0 and 1 of a Bank. As should 
be understood, the same organization would be followed for 
all remaining Blocks stored in the Bank. 

Each SPage Sector stores the Sector Contents associated 
with a single LBA, and the SPage Sectors of a SuperPage 
store Sector Contents associated with fifteen contiguous 
LBAs. As is explained below, however, the fifteen contigu 
ous LBAS associated with one SuperPage may have no 
relationship with the fifteen contiguous LBAs associated 
with the next SuperPage. 

This organization is illustrated by identifying LBAs by 
letter. Thus, LBA(A) indicates a particular address, and LBA 
(A+14) indicates an LBA address that is fourteen higher than 
LBA (A) (e.g., if LBA(A) were LBA(O), then LBA (A+14) 
would be LBA(14). However, there is no relationship 
between LBA(A) and LBA(B), for example, other than that 
each will be evenly divisible by fifteen. Thus, LBA(A) might 
represent LBA(9,000), whereas LBA(B) might represent 
LBA(60). 

Note that the LBAs stored in each SuperPage will change 
during operation. For example, at one point, SPage Sector 0 
of SuperPage 1 of Block 0 might store the Sector Contents 
associated with LBA(O) (B=0), whereas at another point it 
might store the Sector Contents associated with LBA(900) 
(B=900). The manner in which the association of LBAs and 
SuperPages and Blocks changes in use is described below. 

FIG. 16 illustrates the manner in which the Host address 
space is mapped onto Flash Memory Module 108 during 
initialization. As is described above, Hosts typically issue 
reads and writes using LBAs, which isolate the Host from 
the details of the physical memory organization. 

In the currently preferred embodiment, each Flash Group 
is the same size, and each stores data corresponding to the 
same number of LBAs (or other Host addressing scheme). In 
the current embodiment, LBAs are distributed among the 
Flash Groups in sets that are multiples of 45, since, as is 
described below, 45 LBAs is the maximum number that can 
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be handled by a single Transfer Request. The currently 
preferred embodiment uses a stripe size of 90 LBAs, so that 
LBAs 0-89 are assigned to Flash Group 0, 90-179 to Flash 
Group 1, 180-269 to Flash Group 2, etc., until the last Flash 
Group has been reached, at which point the LBA assign 
ments loop back to Flash Group 0. A variety of other striping 
algorithms is possible. In an alternate embodiment, the user 
could be allowed to specify the stripe size, though it would 
be preferable for this to be done in multiples of the number 
of LBAs that can be handled by a Transfer Request. 

FIG. 16 shows a simplified version of the flash memory 
space. This simplified version is made up of three Flash 
Groups, designated 0-2. In this simplified example, a Block 
consists of two SuperPages, designated as SP0 and SP1. 
Thus, Block 0, Bank 0 of Flash Group 0 consists of the data 
written into the slots designated 1601. As can be seen, in this 
simplified example, each Bank contains only a single Block. 
As is described above, a SuperBlock consists of the same 

Block on each Bank. In the simplified architecture shown in 
FIG. 16, therefore, SuperBlock 0 of Flash Group 0 consists 
of Block 0 from each Bank, designated in FIG. 16 as 1602 
(i.e., the entire Flash Group, in the simplified example). 
As is described below, SuperPage 0 of Block 0 of each 

SuperBlock contains a data structure known as the Super 
Block Metadata Table. This is shown as “SMT in SP0 of 
Bank 0 of each Flash Group. 

All of the other boxes in the table represent LBA ranges 
stored in a particular SuperPage. Thus, Flash Group 0, Bank 
1, SuperPage 0 contains LBAs 0-14, Flash Group 0, Bank 1, 
SuperPage 1 contains LBAS 300-314, etc. 
As can be seen, the LBAs are assigned in “stripes of 90 

LBAs each. The first such stripe (LBAS 0-89) is assigned to 
Flash Group 0, SuperPage 0 on Banks 1-6. The next stripe 
of 90 LBAs (90-179) is assigned to Flash Group 1, Super 
Page 0 on Banks 1-6. The next stripe (LBAS 180-269) is 
assigned to Flash Group 2. SuperPage 0, on Banks 1-6. 

At this point, since the last Flash Group has been reached 
(in this simplified example), the next stripe is written to 
Flash Group 0, picking up where the previous stripe left off. 
Thus, LBAS 270-284 are written to Flash Group 0, Super 
Page 0 of Bank 7. Since there are no further SuperPage 0s 
available in Flash Group 0, allocation of the stripe continues 
with SuperPage 1 of Bank 0 and continues through Super 
Page 1 of Bank 4. 
The allocation from this point is straightforward, except 

for boundary cases when the end of a SuperBlock is reached. 
For example, a new stripe begins with SuperPage 1 of Bank 
5 of Flash Group 0. Since only three SuperPages are left in 
the SuperBlock, the stripe continues on SuperPage 1 of Bank 
5 of Flash Group 1. In this way, LBAs are allocated to every 
SuperPage in each SuperBlock, despite the fact that the 
SuperBlocks do not hold an even number of stripes. 

This method of allocating LBAs tends to maximize flash 
memory parallelism. Because each Flash Group operates 
independently, it is advantageous to stripe LBAS across 
Flash Groups, since this maximizes the likelihood that a 
single transaction will address data held on more than one 
Flash Group, thereby allowing multiple flash reads or writes 
relevant to the transaction to occur simultaneously. Because 
a Transfer Request can only address LBAS on a single Flash 
Group, it is sensible to specify stripe sizes in increments of 
45 (the maximum number of LBAs that can be addressed by 
a Transfer Request), to minimize the number of Transfer 
Requests required for a transaction. In the current embodi 
ment, a stripe is made up of two Such 45-LBA increments, 
since this represents six SuperPages. As is described below, 
a Flash Group can handle five simultaneous write opera 
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tions, on five separate Banks. Using a stripe size of 90 LBAs 
tends to maximize parallel usage of the flash interface, since 
a large transfer can execute five simultaneous writes on each 
Flash Port, and can execute on multiple Flash Ports in 
parallel. This organization therefore contributes to the ability 
of SSD Controller 106 to handle large Host-initiated reads or 
writes quickly, using a high degree of parallelism. 

Thus, a hypothetical transfer involving LBAs 0-190 as 
shown in FIG. 16 could occur using one IOP and five 
Transfer Requests. A first Transfer Request could handle 
LBAs 0-44, a second Transfer Request could handle LBAs 
45-89, a third Transfer Request could handle LBAS 90-134, 
a fourth Transfer Request could handle LBAS 135-179 and 
a fifth Transfer Request could handle LBAS 180-190. Note 
that this transfer involves three different Flash Groups, 
thereby allowing for a high degree of parallelism. In addi 
tion, since (as is explained below), Page Requests that target 
different Banks can operate in parallel even on the same 
Flash Group, the Page Requests issued by each Transfer 
Request in this example could also operate in parallel, since 
each Page Request targets a different Bank. 
The allocation of LBAs to Flash Groups is permanent. 

The allocation to Banks within a Flash Group, however, may 
change over time. As is explained below, when a Host write 
is received for an LBA, thus requiring that the SuperPage 
containing that LBA be invalidated and the new data (and 
any non-overwritten old data from the SuperPage) be written 
to a new SuperPage, the Flash HEMi attempts to use a new 
SuperPage from the same Bank as the old SuperPage. 
Occasionally, however, this is not possible and the Flash 
HEMi will move the LBAs to a SuperPage on another Bank. 
This will tend to affect the performance of the flash memory 
system, since, if enough such alterations occur, stripes of 
data could be concentrated on a single or a relatively small 
number of Banks, therefore reducing the opportunity for 
parallel operations. However, in practice, the shifts from 
Bank to Bank tend to occur in a patternless fashion, so that 
even after significant operation the LBA groups in a given 
stripe tend to be spread across the Banks, so that a high 
degree of parallelism may be maintained. 

III. Hardware Details 

A. Host Interface. 
FIG. 17 shows Host Interface 310 in greater detail than is 

shown in FIG. 3. Host Interface 310 consists of Physical 
Interface 1701 and two separate Host Ports, designated as 
Host Port 0 104 and Host Port 1105. Physical Interface 1701 
is further described below, but for present purposes it is 
sufficient to understand that it routes signals between Hosts 
101 and 102 and Host Ports 104 and 105. Each Host Port is 
capable of interfacing to a separate Host. 

In general, Host Interface 310 performs the following 
functions on the receive side: 

Receive frames 
Deconstruct frames into constituent features 
Pass command information on to the next stage 
Pass data on to the Data Path DRAM 
In general, Host Interface 310 performs the following 

functions on the Transmit side: 
Receive data from Data Path DRAM 107 and organize the 

data for transmission to the Host 
Generate frames for transmission to the Host 
Transmit frames, including data frames, to the Host 
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Each Host Port includes a Receive HEMi (1702 and 
1703), a Transmit HEMi (1704, 1705), a Receive Stage 
Buffer (1706, 1707) and a Transmit Stage Buffer (1708, 
1709). 
As is shown, each Receive HEMi receives control infor 

mation from one of the Hosts through Physical Interface 
1701, and communicates control information to other ele 
ments of SSD Controller 106. “Control information, in this 
context, means commands, control signals and addresses, 
but does not include data. Note that the control information 
received from the Host by each Receive HEMi may differ 
from the control information communicated by the Receive 
HEMS. 

Each Transmit HEMi receives control information from 
other SSD Controller elements and communicates control 
information to one of the Hosts through Physical Interface 
1701. Again, the control information transmitted to a Host 
by a Transmit HEMi may differ from the control information 
received by the Transmit HEMi. 

Each Receive Stage Buffer receives data from one of the 
Hosts through Physical Interface 1701 and transmits that 
data on to Data Path DRAM 107. The Receive Stage Buffers 
are 16 Kbytes, which allows them to accept up to 4 FC AL 
(“Fibre Channel Arbitrated Loop) data frames. 

Each Transmit Stage Buffer receives data from Data Path 
DRAM 107 and transmits that data on to one of the Hosts 
through Physical Interface 1701. The Transmit Buffers are 4 
Kbytes, which allows them to store one outgoing frame and 
one incoming frame from Data Path DRAM 107. 

FIG. 18 shows certain additional details regarding Host 
Port 0104. As is understood by those of ordinary skill in the 
art, communications between SSD Controller 106 and Host 
101 are organized according to the dictates of the particular 
protocol used by the Host. In general, the relevant protocols 
(e.g., SAS, SATA, Fibre Channel) specify that communica 
tion to and from the Host take place using frames, which 
consist of defined groups of commands and data. 

Since the precise frame format used differs among the 
various relevant protocols, SSD Controller 106 must be 
modified for each protocol. SSD Controller 106 has been 
designed, however, so that the modifications are minimal, 
amounting to different firmware for the Receive and Trans 
mit HEMi’s, and a different physical connector. All other 
aspects of SSD Controller 106 are unchanged for the various 
protocols. This is a significant advantage of the pipelined 
and modular design of SSD Controller 106, and also of the 
design of Host Interface 310. 
Though the specific details of the frame organization 

differ from protocol to protocol, certain aspects of the SATA 
protocol will be used to illustrate the design and operation of 
Host Port 0 104. In this protocol, a frame consists of a Start 
of Frame (“SOF) primitive, a frame header (metadata 
specified by the protocol, but generally including informa 
tion necessary to identify the payload and possibly the 
Initiator), a payload (e.g., data, command, etc.), a CRC value 
for validation of the entire frame, and an End of Frame 
(“EOF) primitive. The receive side of Host Port 0 104 is 
responsible for receiving the frame, dividing it into its 
constituent parts, and taking whatever action is needed to 
either route data to its intended destination and/or set up the 
transaction. The transmit side of the Host Port is responsible 
for receiving relevant data and command information from 
other elements of SSD Controller 106 and packaging that 
information into a frame for transmission to Host 101. 

Direct communication with the Host is handled by Giga 
Blaze 1801, which is a transceiver core available from LSI 
Corporation, headquartered in Milpitas, Calif., under the 
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designation 0.11 micron GigaBlaze(R) GflxTMx1 Core. This 
core contains an 8b/10b encoder, a serializer/deserializer and 
a phy, which performs physical conversion between 
received bits and voltage levels. GigaBlaze 1801 has two 
serial ports capable of attaching to 3G SATA, 3G SAS, 4g 
FC AL and 4G FC buses. The details of the internal 
operation of GigaBlaze 1801 are not relevant herein, except 
that it handles the physical interface to the Host. In the 
example shown, GigaBlaze 1801 is connected to Host 101. 
Note that, although FIG. 18 only shows one of the two Host 
Ports on SSD Controller 106, the other Host Port is identical, 
and contains its own GigaBlaze. 
As is shown in FIG. 18, GigaBlaze 1801 is connected to 

Primitive Match Logic 1802. The Primitive Match Logic is 
designed to allow the same physical level protocol to 
interface with various different logical level protocols that 
handle frames and primitives differently. When GigaBlaze 
1801 receives a primitive from Host 101, GigaBlaze 1801 
routes that primitive to the Primitive Match Logic, which is 
described in detail below in connection with FIG. 19. 
The Primitive Match Logic controls Frame Router 1803, 

which receives frames from GigaBlaze 1801 and routes 
portions of the frames under the control of the Primitive 
Match Logic. Data is routed to Receive Stage Buffer 01706, 
headers are routed to Non-Data Payload FIFO 1804 and 
primitives are routed to Inbound Primitive FIFO 1808. 

Receive HEMi O 1702 uses information in the Header and 
Primitive FIFOs to identify actions to be taken. Data routed 
to the Receive Stage Buffer is sent via DMA transfer to Data 
Path DRAM 107. 

Receive HEMi 1702 generates primitives and routes them 
to Outbound Primitive FIFO 1805. These generated primi 
tives include ACK (acknowledging correct receipt of a 
frame), NAK (indicating that a frame was not received 
correctly) and RRDY (reporting frame credit to an Initiator). 
Primitives on Outbound Primitive FIFO 1805 are inserted 
into transmissions to Host 101 immediately, and may be 
inserted in the middle of other transactions (e.g., an out 
bound data frame). 
The transmit side of the Host Port shown in FIG. 18 is 

made up of Transmit HEMi 1704, Transmit Stage Buffer 0 
1708 and Transmit Frame Buffers 1806. Transmit Stage 
Buffer 01708 contains data received from Data Path DRAM 
107 that is to be transmitted to Host 101 as part of a frame 
responsive to a read command. Transmit Frame Buffers 
1806 consist of one or more buffers that hold metadata used 
to construct frames. The Transmit Frame Buffers operate 
similarly to the receive-side buffers, though, as should be 
understood, they are used to construct frames, rather than to 
deconstruct them. 

Cut-Through Logic 1807 helps interface SSD Controller 
106 to Fibre Channel networks. If SSD Controller 106 is 
connected to a Fibre Channel network, Primitive Match 
Logic 1802 evaluates received primitives to determine if the 
primitives are intended for SSD Controller 106. Primitives 
determined not to be intended for SSD Controller 106 are 
sent to Cut-Through Logic 1807. The Cut-Through Logic 
then passes the primitives to the GigaBlaze to be returned to 
the Fibre Channel network, for transmission on to the next 
node on the network. 
The physical connectors required for the various different 

protocols (SAS, SATA and Fibre Channel) are incompatible. 
In the currently preferred embodiment, a different version of 
SSD Controller 106 will exist for each protocol. However, 
because the Primitive Match Logic operates correctly with 
each of the protocols (see below), the only difference 
required for each protocol is the use of a different physical 
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connector, though different firmware may also be required 
for the Receive and Transmit HEMi’s. In a different embodi 
ment, SSD Controller 106 could incorporate three different 
physical connectors, one for each protocol, and thereby 
allow the same physical controller to be used with any of the 
protocols. 

Primitive Match Logic 1802 is shown in greater detail in 
FIG. 19. This logic includes a state machine that matches 
received primitives and identifies actions to be taken based 
on the matched primitive and on the current state. 

Primitives received from a Host are transmitted from 
Gigablaze 1801 to Primitive Latch 1901. The primitives are 
then matched against the bit patterns contained in Primitive 
Match Registers 1902, which consists of sixteen registers. If 
no match is found, the value from Primitive Latch 1901 is 
routed directly onto Inbound Primitive FIFO 1808. 

Primitive Match Control Registers 1903 consists of six 
teen registers, one for each of the Primitive Match Registers. 
The Primitive Match Control Registers contain bits that 
indicate which bits in the associated Primitive Match Reg 
ister must match the value in Primitive Latch 1901 in order 
for an overall match to be found. For example, these bits 
may require that the first byte match, with no requirement 
that any other bits match. These bits from the Primitive 
Match Control Registers therefore act as a mask, allowing 
multiple received primitives to match a single Primitive 
Match Register. This is useful in cases where the same action 
is to be taken for a class of received primitives, and is also 
useful in Screening out portions of primitives that represent 
data rather than commands. 

Other bits in Primitive Match Control Registers 1903 
indicate actions to be taken if the value in the corresponding 
register in Primitive Match Registers 1902 matches Primi 
tive Latch Register 1901. For example, these bits can control 
Frame Router 1803 so that some of the data following the 
primitive is moved into Non-Data Payload FIFO 1804 and 
data following that is moved into Receive Stage Buffer 
1706. This would generally occur in the case of an SOF 
primitive received in connection with a data frame. 
The Primitive Match Control Registers operate as a state 

machine. For example, certain bits can set a counter (not 
shown) that can cause a certain number of Subsequent 
primitives to be operated on by the current Control Register, 
rather than a Control Register chosen through the Primitive 
Match Registers. In addition, the Primitive Match Control 
Registers can alter the values contained in various other 
registers that are not shown. 
As should be understood, Primitive Match Logic 1802 

contains logic that performs comparisons between the value 
in Primitive Latch 1901 and Primitive Match Registers 
1902, and that implements the control functions required by 
Primitive Match Control Registers 1903. 
As is explained below in connection with FIG. 28, Primi 

tive Match Registers 1902 and Primitive Match Control 
Registers 1903 are loaded by the associated Receive HEMi. 
using data overlays. These overlays are used to customize 
Primitive Match Logic 1802 for different protocols (e.g., 
SAS, SATA), since each protocol has its own set of primi 
tives. In addition, overlays can be used to handle different 
sets of primitives, or different states, within a single proto 
col. The values used by the Receive HEMi to load the 
Primitive Match and Primitive Match Control Registers are 
taken from an initialization firmware code load. Thus, in 
many cases it will be possible to update Primitive Match 
Logic 1802 for new protocols or modifications to existing 
protocols by a modification to the Receive HEMi firmware, 
without any alteration to the hardware. 
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The use of different overlays in the primitive match logic 

thus allows SSD Controller 106 to respond to different 
protocols without requiring individualized logic for each 
protocol. 

Primitive Match Logic 1802 also contains Frame Crack 
ing Logic 1904. This logic block receives the initial dword 
in a frame and evaluates that dword to determine the nature 
of the frame (e.g., data, command). Based on the type of 
frame, the Frame Cracking Logic routes the frame appro 
priately. For example, if the frame is a command frame, the 
Frame Cracking Logic routes the entire frame to Non-Data 
Payload FIFO 1804, whereas if the frame is a data frame, the 
Frame Cracking Logic routes the header portion to the 
Non-Data Payload FIFO, and routes the data portion to the 
appropriate Receive Stage Buffer. 
As is described above, the Primitive Match Logic is 

advantageous in that it allows SSD Controller 106 to handle 
different protocols, involving different frame encodings, 
without the need for software or significant hardware 
changes. In addition, by routing data to a specialized data 
FIFO, contained in the Receive Stage Buffers, while meta 
data and command information are routed to different FIFOs 
(e.g., Non-Data Payload FIFO 1804 and Inbound Primitive 
FIFO 1808), the Receive Host Port design allows for more 
efficient transfers of data, since the data FIFO contains only 
data and does not contain commands or metadata, and 
allows data to be transferred to the Data Path DRAM via 
DMA transfers in parallel with Receive HEMi operations on 
header and primitive metadata, thereby increasing overall 
system performance. 
As is described above, SSD Controller 106 can be used 

for a variety of different protocols, requiring only a modi 
fication to HEMi firmware and a different physical connec 
tor. The protocols described above are all relatively similar. 
SSD Controller 106 can also be adapted easily for protocols 
with significant differences from those described above. In 
one embodiment, for example, SSD Controller 106 can be 
adapted for use with lane-oriented protocols such as PCI 
Express. As is understood by those of skill in the art, in PCI 
Express systems, external devices transmit and receive data 
and metadata using “lanes, each of which carries a portion 
of the transmission, with doublewords of data striped across 
the lanes. The number of lanes is implementation-depen 
dent, but SSD Controller could be adapted for use with a 
4-lane PCI Express system by adding two additional Giga 
Blazes (as should be understood, each GigaBlaze would be 
a version designed for the PCI Express interface), two 
additional Receive HEMi’s and two additional Transmit 
HEMi’s. One GigaBlaze, one Receive HEMi and one Trans 
mit HEMi would be devoted to each lane. In this embodi 
ment, SCSI HEMi 2001 (see below) is not used. That HEMi 
can instead be used as an additional RdWr HEMi. 

In this embodiment, a device driver operating on the 
external Host is responsible for formatting PCI Express 
transmissions into IOPs. Most of the Host Port logic is 
therefore unnecessary (e.g., Primitive Match, various 
FIFOs, etc.). The Receive and Transmit HEMi’s are respon 
sible for destriping and restriping the data, respectively. 
Once a received IOP has been destriped, it can then be 
handed directly to a RdWr HEMi (see below). Processing 
then proceeds as per the other protocols described above. 

Although use of SSD Controller 106 with a lane-oriented 
protocol Such as PCI Express requires some additional 
modifications, these modifications are relatively minor, and 
easily accommodated as a result of the Controller's modular 
design. Addition and subtraction of HEMis is relatively 
simple, and because different stages of the Controller pipe 
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line operate independently, changes at one stage (e.g., the 
Host Port), do not require changes at other stages (e.g., the 
Flash Ports). 
SSD Controller 106 can similarly be designed for use with 

the iSCSI protocol, though this requires addition of one or 
more TCP/IP stacks to the Host Port, with the Receive 
HEMi(s) responsible for extracting CDBs from that stack, 
and Transmit HEMi(s) responsible for encoding frame infor 
mation as required by the TCP/IP protocol. 
B. Command Parser. 

FIG. 20 shows additional detail about Command Parser 
Block 311 from FIG. 3. As is described in connection with 
FIG. 3, Command Parser Block 311 communicates with 
Host Interface 310 and with Command Distribution Block 
312. 
Command Parser Block 311 includes SCSI HEMi 2001. 

SCSI HEMi 2001 receives Host commands from Receive 
HEMi’s 1702 and 1703. SCSI HEMi 2001 determines if the 
Host command is a read/write, or some other type of 
command. If the command is other than a read/write com 
mand, SCSI HEMi 2001 hands the command off to ARM 
Processor 2002, which handles non-read/write commands. 
ARM Processor 2002 is further described below. 

If SCSI HEMi 2001 determines that the command is a 
read/write command, it validates the command to insure 
coherency, meaning that, if the read or write command 
relates to the same data as a read or write command that is 
currently being processed by Command Distribution Block 
312, the second command is deferred until certain process 
ing of the first command is completed. 

Read/write coherency is not required by the SCSI proto 
col, which allows for reads and writes to be reordered. 
However, as is described below, SSD Controller 106 breaks 
Host-initiated commands into multiple Suboperations, and 
these suboperations may be handled out of order. 

If SSD Controller 106 were to allow more than one 
command to operate on the same data at the same time, it is 
possible that portions of the second command would be 
carried out before the first command had completed. For 
example, if SSD Controller 106 were to receive a write 
command for a particular block of LBAS and Subsequently 
were to receive a read command for an overlapping block of 
LBAs, and if the read command were allowed to begin 
operation before the write command had finished, it is 
possible that the read command might result in the return of 
some data that had already been updated by the write 
command, and some data that had not been updated. 

For this reason, SSD Controller 106 keeps track of 
currently active commands in two locations: in SCSI HEMi 
2001 and in the Flash HEMi’s (described below). 

SCSI HEMi Command Table 2003, which is stored in an 
internal memory of the HEMi known as its mRAM (see 
below in connection with FIG. 26), contains the LBA and 
transfer length of every Host read and write command that 
has been sent by SCSI HEMi 2001 to Command Distribu 
tion Block 312 but has not yet been sent on to the Flash 
HEMS. 
As is described below, the Command Distribution Block 

contains several HEMi’s known as RdWr HEMi’s. Com 
mand Table 2003 contains the identification of the RdWr 
HEMi working on each command. SCSI HEMi 2001 uses 
this information to balance out the workload among the 
RdWr HEMi’s, sending new commands to RdWr HEMi’s 
with relatively fewer currently active commands. 
When a new command is received, SCSI HEMi 2001 

checks Command Table 2003 to determine if any of the LBA 
addresses affected by that command are already present. If 
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a match is found, SCSI HEMi 2001 stalls execution of the 
new command until the previous command is removed from 
the Table. Commands are removed from Command Table 
2003 once the RdWr HEMi to which the command has been 
dispatched reports that it has created and dispatched all 
necessary Transfer Requests corresponding to the command 
(the process by which RdWr HEMi’s dispatch such Transfer 
Requests is described below). At that point, the new com 
mand is no longer stalled. As should be understood, at this 
point the earlier command is still executing, but that com 
mand is now Subject to coherency checking at the Flash 
HEMilevel (described below). 

Thus, SSD Controller 106 enforces read/write coherency 
at two points in the pipelined execution of a Host command: 
SCSI HEMi 2001 Stalls a new command that conflicts with 
an existing command's LBA range until the existing com 
mand has been sent to the Flash HEMi’s, and each Flash 
HEMi enforces coherency on its own operations, so that it 
stalls execution of a new command covering the same range 
as an existing command until the existing command is 
complete. 

This two-stage system of coherency enforcement is 
advantageous, since it allows processing of conflicting com 
mands to proceed as long as they are at different stages in the 
pipeline. Thus, the RdWr HEMi’s can be setting up a second 
conflicting command at the same time as the first conflicting 
command is operating in the flash memories, thereby 
improving overall system performance. 
As is described above, Command Parser Block 311 also 

contains ARM Processor 2002, which controls certain inter 
nal administrative operations and is responsible for handling 
host-initiated commands other than reads or writes. In the 
currently preferred embodiment, ARM Processor 2002 is an 
ARM7TDMi-s available from ARM Holdings plc of Cam 
bridge, UK. As should be understood, however, the func 
tions of ARM Processor 2002 can be handled by a variety of 
logic devices. 

Although the exact nature of Host commands handled by 
ARM Processor 2002 is protocol-dependent, in one embodi 
ment, these commands include the following: 

Test Unit Ready 
Read Capacity 
Mode Select 
Mode Sense 
Log Select 
Log Sense 
Report Luns 
Send Diagnostic 
Request Sense 
Write Buffer 
Read Buffer 

C. Command Distribution. 
FIG. 21 illustrates Command Distribution Block 312 in 

greater detail. As is shown, Command Distribution Block 
312 constitutes a group of RdWr HEMi’s, designated as 
2101-2106. In the currently preferred embodiment, Com 
mand Distribution Block 312 consists of six RdWr HEMi’s. 
However, because of the modular design of SSD Controller 
106, the number of RdWr HEMi’s can be increased or 
decreased without requiring any significant redesign of the 
rest of the Controller. A larger number of RdWr HEMi’s 
increases performance, but at the cost of greater expense and 
complexity. 
As FIG. 21 shows, SCSI HEMi 2001 passes information 

to each of the RdWr HEMi’s. In general, this consists of 
CDBinfos, which SCSI HEMi 2001 allocates to a particular 
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RdWr HEMi based on the relative workload of that HEMi 
compared to the other RdWr HEMi’s. 
The RdWr HEMi’s generate IOPs based on the CDBinfos, 

then generate Transfer Requests as required by the IOPs, and 
transmit those Transfer Requests to a particular Flash Port 
based on the flash address of the data to be transferred. 
RdWr HEMi’s also communicate with Transmit HEMis; in 
the case of Host writes, the responsible RdWr HEMi sends 
a communication to the Transmit HEMi indicating that the 
Transmit HEMi should inform the Host that the Controller 
is ready for the data associated with the write. 
D. Crossbar; Shared RAM, DRAM. 

Preceding Figures have illustrated the interconnections 
between functional blocks in terms of data and control flow 
and have not attempted to show physical connections. FIG. 
22 illustrates the manner in which many of the functional 
blocks of SSD Controller 106 are physically interconnected 
in the current embodiment. 

FIG. 22 shows Crossbar Switch 2201. As is commonly 
understood by those of ordinary skill in the art, a crossbar 
Switch operates So as to connect any element on one side of 
the switch with any element on the other side of the switch. 
Crossbar Switch 2201 connects elements on its HEMi side 
with elements on its Shared RAM side, in a manner that will 
be explained below. 

The HEMi side of Crossbar Switch 2201 has two-way 
connections to each of the HEMi’s contained in SSD Con 
troller 106. (The HEMi’s shown in FIG. 22 are actually a 
combination of the HEMi and tightly coupled logic that is 
associated with each HEMi, logic that is further described 
elsewhere herein). 
As is described elsewhere herein, the number of HEMi’s 

may differ depending on implementation decisions (e.g., the 
Controller may include between eight and twelve Flash 
HEMi’s). 

In the current embodiment, the Shared RAM Side of 
Crossbar Switch 2201 is connected to ten RAM banks, 
designated as Shared RAM Bank 0 (2202) through Shared 
RAM Bank 7, Global Registers 2203 and PIO Buffer 2204 
and collectively designated as Shared RAM Block 318. In 
the currently preferred embodiment, each Shared RAM 
Bank consists of 4 Kbytes of RAM storage space. Crossbar 
Switch 2201 is designed to connect to a larger number of 
Shared RAM Banks, therefore supporting modular expand 
ability, as is explained below. 

All ten of the Shared RAM Banks share an address space, 
though, as is explained above, certain of these Banks have 
a specialized function. 
As is shown in FIG. 22, CrossBar Switch 2201 includes 

a Port for each of the Shared RAM Banks. Each Shared RAM 
Bank includes four FIFO's and a Data Structures section, 
and each of the FIFOs is controlled by an associated FIFO 
Register Block (e.g., Register Block 2205 controls FIFO 0. 
Block 2206 controls FIFO 1, etc.) 
As is illustrated by the arrows connecting Shared RAM 

Port 0 with Shared RAM Bank 0, Shared RAM Port 0 is the 
only input or output path to FIFO's 0-3 or the Data Struc 
tures section of Shared RAM Bank 0, with the path to and 
from the FIFO's proceeding through the associated Regis 
ters. As is explained below, reads or writes to the FIFO's 
take place through the associated Register Block, whereas 
reads or writes to the Data Structures section access that 
section without going through the associated Registers. 

In the currently preferred embodiment, only 27 of the 
FIFO's are actually used (23 for HEMi Worklists, four for 
freelists). The other five are available for expanding the 
number of HEMi’s supported by the system. 
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Crossbar Switch 2201 Global Registers Port 2207 is 

connected to Global Registers 2203, which consists of a 
RAM bank made up of registers that perform a variety of 
functions, including controlling GigaBlaze 1801 and setting 
up DRAM Controller 2305 (described below in connection 
with FIG. 23). 

Crossbar Switch DRAM Port 2208 is connected to PIO 
(“Programmed IO) DRAM Buffer 2204, which in turn is 
connected to Data Path DRAM 107. PIO DRAM Buffer 
2204 is a 64-doubleword FIFO contained in a bank in Shared 
RAM, which is used to buffer communications between the 
HEMi’s and the Data Path DRAM. Such buffering is needed 
because the Data Path DRAM runs at a higher clock speed 
and is capable of reading and writing four doublewords at a 
time, whereas the HEMi’s are only capable of reading and 
writing a single doubleword at a time. In order to avoid 
slowing Data Path DRAM operations, PIO DRAM Buffer 
2204 buffers data transfers to and from the DRAM. When 
the HEMi’s are writing data to the Data Path DRAM, PIO 
DRAM Buffer 2204 stores the data, a doubleword at a time, 
until the write is complete or the buffer is full, at which point 
it bursts the data to the Data Path DRAM. When the HEMi’s 
are reading data from the Data Path DRAM, PIO DRAM 
Buffer 2204 stores four doublewords of data from the Data 
Path DRAM at a time, and once all of the necessary data is 
available (or the PIO Buffer is full) the HEMi’s read that 
data in a burst a doubleword at a time. Again, as should be 
understood, data is actually transferred between the DRAM 
and one of a number of buffers. 

Note that the connection from Crossbar Switch 2201 to 
PIO Buffer 2204 is not used for data transfers between the 
Data Path DRAM and the Flash Port Stage Buffers or the 
Host Interface Transmit and Receive Stage Buffers, but is 
instead used only for communication with the HEMi’s. 
Transfers to and from the various Stage Buffers do not travel 
through Crossbar Switch 2201. 

Crossbar Switch Debug Port 2209 is connected to Debug 
FIFO 2210. Debug FIFO 2210 is a large SRAM bank that 
acts as a FIFO for debug information from the HEMi’s. 
Debug FIFO 2210 accepts information from the HEMi’s a 
doubleword at a time, and stores that information in a FIFO 
structure that is 4 doublewords wide. Once Debug FIFO 
2210 reaches a set capacity threshold, it arbitrates for access 
to a DRAM port, and, once it has gained Such access, it burst 
writes the debug information into DRAM 107, 4 double 
words at a time. 
As is customary with crossbar switches, Crossbar Switch 

2201 can simultaneously connect multiple elements from the 
HEMi side with multiple elements on the Shared RAM side, 
limited only by the number of Ports on each side. 

Crossbar Switch 2201 is capable of connecting each 
HEMi to each Shared RAM Bank, as well as the other 
resources on the Shared RAM side of the Switch. As should 
be understood, however, the Switch does not connect 
HEMi’s directly to each other, nor does it connect Shared 
RAM Banks directly to each other. Communication between 
HEMi’s is accomplished indirectly, by using Crossbar 
Switch 2201 to leave information in the Shared RAM Banks. 

Thus, when (as is described below), SCSI HEMi 2001 
generates an IOP as a result of a received CDB, and passes 
that IOP to a RdWr HEMi, this is handled by SCSI HEMi 
2001 storing a pointer to the IOP location in a worklist for 
the RdWr HEMi, the worklist also being stored in one of the 
Shared RAM Bank FIFOs. The RdWr HEMi then receives 
the IOP by checking the worklist, identifying the location 
containing the IOP, and copying the IOP from that location 
into its own internal memory. Communication among other 
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HEMi’s proceeds in a similar fashion. The details of the data 
structures contained in the Shared RAM Banks, and the 
manner in which the HEMi’s use those data structures to 
transfer information, are described below. 
DRAM Access Register Block 2211 controls accesses to 

Data Path DRAM 107. As is explained above, HEMi’s do 
not directly access Data Path DRAM 107, but instead use 
PIO Buffer 2204 for this purpose. These are DMA transfers, 
which require the HEMi to supply only the starting address 
and the size of the transfer. 

Address Register 2212 stores the starting location in the 
Data Path DRAM for the transfer. Transfer Count Register 
2213 stores the number of transfers required. Data Register 
2214 stores the data to be sent to PIO Buffer 2204, or 
received from the PIO Buffer. 
A read from Data Path DRAM 107 begins by the HEMi 

placing the DRAM address in Register 2212 and placing the 
size of the transfer (in quad-doublewords) into Transfer 
Count Register 2213. Those actions cause DRAM DMA 
Engine 2302 (see below) to transfer data, in four doubleword 
chunks, into PIO Buffer 2204. As each transfer takes place, 
the DRAM DMA Engine decrements Transfer Count Reg 
ister 2213, and the DMA transfer ends when Transfer Count 
Register 2213 reaches zero. 

After the DMA transfer completes, the data is automati 
cally read from the PIO Buffer to Data Register 2214, in 
doubleword increments. 
A write from the HEMito Data Path DRAM 107 operates 

similarly. 
Note that Address Register 2212 increments each time 

Transfer Count Register 2213 decrements. This is not nec 
essary for the transfer currently taking place, since the 
DRAM DMA Engine only requires the initial address plus 
the transfer count. However, incrementing Address Register 
2212 results in the ending address for the transfer being held 
in that Register once the transfer is complete, and this may 
be useful in setting up future transfers. 
RAM Controller 317 is illustrated in FIG. 23. In general, 

the RAM Controller controls and arbitrates access to Shared 
RAM Block 318 and Data Path DRAM 107. 
RAM Controller 317 includes the following logic blocks 

(as should be understood, and as is true of other hardware 
diagrams herein, the illustration in FIG. 23 is conceptual in 
nature and is not intended to convey details of the actual 
physical layout): 

Shared RAM Controller 2301. 
Crossbar Switch 2201. 
DRAM Controller 2305, consisting of logic purchased 

from Denali Software, Inc. of Palo Alto, Calif., that manages 
the physical interface into Data Path DRAM 107. 
DRAM Controller 2305 includes DRAM DMA Engine 

2302. DMA Engine 2302 handles DMA transfers between 
Data Path DRAM 107 and the various Buffers that commu 
nicate with the DRAM (e.g., Receive Buffer 1706, Transmit 
Buffer 1708, Flash Stage Buffer 308, PIO Buffer 2204, 
Debug FIFO 2210). DMA Engine 2302 receives from a 
HEMi the starting address and transfer count of a DMA 
transfer and controls the transfer from there, with no require 
ment of additional information from the HEMi. 
E2E Logic 2303 performs three types of tasks relating to 

E2E tags, which are described above, in connection with 
FIG. 13: (a) attaching E2E tags to each sector of data that is 
being sent to the flash; (b) checking tag values against 
expected values and generating an error condition if the 
values don’t match, and (c) Stripping E2E tags from data that 
is being transmitted back to the Host, if the Initiator does not 
use these values (and therefore does not expect them). 
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The E2E tags attached to each sector of data are RefTag 

1304, AppTag 1305 and CRC 1306. As is explained above, 
for data received from Initiators that support E2E, these 
values are taken from, or calculated based on, information 
received from the Initiator, and for data received from 
Initiators that do not support E2E, these values are generated 
internally. 
E2E Logic 2303 is capable of checking RefTag, AppTag 

or CRC values. These checks are described above in con 
nection with FIG. 13. E2E Logic 2303 performs these 
checks whenever data is transferred between Data Path 
DRAM 107 and a Flash Stage Buffer, or transferred between 
Data Path DRAM 107 and a Receive Buffer or Transmit 
Buffer. The Initiator specifies which of these fields are to be 
checked, unless the Initiator does not support E2E. If the 
Initiator does not support E2E, the checks performed are 
based on parameters selected by the user at initialization. 
Note that the RefTag value is always checked for internal 
error-checking purposes, even if the Initiator does not Sup 
port E2E and the user does not ask for this check to be done. 
E2E Logic 2303 attaches E2E tags to each sector of data 

that passes from Data Path DRAM 107 to the Flash Stage 
Buffers. As is explained above, in connection with FIG. 13, 
the RefTag information is taken from information supplied 
by the Initiator, if the Initiator supports E2E. The Initiator 
can require that the RefTag be incremented for each sector 
of data, in which event E2E Logic 2303 performs the 
increment operation prior to attaching the Reflag. If the 
Initiator does not support E2E, E2E Logic 2303 inserts the 
LBA into RefTag Field 1304. If the Initiator supports E2E, 
the AppTag and CRC fields are filled in with information 
supplied by the Initiator. If the Initiator does not support 
E2E, the AppTag is filled in with a default value, and the 
CRC field is either filled in with a default value or with an 
internally calculated CRC value, depending on an option 
chosen by the user at the time of initialization. 
DRAM Scheduler 2304 consists of an ordered list of 

every channel that can access Data Path DRAM 107. These 
channels are described below in connection with FIG. 25. 
Since the DRAM only has a single input/output port, only 
one channel can access it at a time. DRAM Scheduler 2304 
rotates through each channel, checking whether that channel 
requires access to the DRAM, and, if so, allowing that 
channel to connect to the DRAM port. Once that access has 
completed, DRAM Scheduler 2304 moves to the next chan 
nel in the list. In this way, DRAM Scheduler 2304 arbitrates 
accesses to the DRAM port in a round-robin fashion. 

FIG. 24 shows certain aspects of Shared RAM Controller 
2301 and the relationship between register blocks contained 
in Shared RAM Controller 2301 and FIFOs contained in the 
Shared RAMs. In particular, FIG. 24 shows FIFO Pointer 
Registers 2205, 2206, 2401 and 2402, which correlate to 
FIFO's 0-3, contained in Shared RAM Bank 0 2202. Shared 
RAM Controller 2301 contains four Pointer Register blocks 
per Shared RAM Bank, for a total of 32, though some of 
these may be unused. Note that, for purposes of clarity, the 
portions of Shared RAM Controller 2301 that control Shared 
RAM Banks other than Bank 0 are not shown. 
As is shown in FIG. 23, FIFO 0 Pointer Registers 2205 are 

associated with FIFO 0 (2403), which is contained in Shared 
RAM Bank 0 2202. Pointer Registers 2205 consist of the 
following registers: 

Base Register 2404 contains a pointer to the address 
location within Shared RAM Bank 2202 that constitutes one 
boundary of the portion of Shared RAM Bank 2202 that is 
dedicated to FIFO 2403. Ceiling Register 2405 contains a 
pointer to the address location within Shared RAM Bank 0 
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that constitutes the other boundary of the portion of Shared 
RAM Bank 0 that is dedicated to FIFO 2403. These registers 
define the location and size of FIFO 0. In the currently 
preferred embodiment, they are set at initialization, and not 
changed during operation. In an alternative embodiment, 
these values may be reset dynamically, thereby allowing 
more efficient allocation of space within Shared RAM Bank 
2202, but at the cost of adding complexity. 
FIFO 2403 is a First-In, First-Out memory structure. As 

Such, it has a top, which represents the entry that was most 
recently inserted, and a bottom, which represents the oldest 
entry. FIFO 2403 wraps around, and the location of the 
current top and the current bottom will change during use. 

Top Register 2406 contains a pointer to the address 
location within Shared RAM Bank 2202 that constitutes the 
current top of FIFO 2403. Bottom Register 2407 contains a 
pointer to the address location within Shared RAM Bank 
2202 that constitutes the current bottom of FIFO 2403. 

Count Register 2408 contains a value representing the 
number of currently active elements in FIFO 2403. This 
same information can be derived by comparing Top Register 
2406 and Bottom Register 2407, but a performance advan 
tage is derived from having this information available with 
out the need for a calculation. Count Register 2408 is 
automatically incremented whenever an item is added to 
FIFO 2403, and automatically decremented whenever an 
item is removed. 
As is shown in FIG. 24, Shared RAM Controller 2301 

also contains FIFO Pointer Registers 2206, 2401 and 2402. 
corresponding to FIFO's 1-3, though the individual registers 
are not shown. 

Shared RAM Bank 0 also contains Data Structures 2409. 
As is explained in connection with FIG. 41, a variety of 
non-FIFO data structures are stored in Shared RAM, includ 
ing the Initiator Table, CDBinfo Table, IOPTable, Transfer 
Request Table and Global Variables. 

Note that each Freelist and its associated Table must be 
stored on the same Shared RAM Bank (see below in 
connection with FIG. 41). 

Shared RAM Controller 2301 also contains Crossbar 
Arbitration Logic 2410. As is described above, Crossbar 
Switch 2201 has one Port for each HEMi and connects those 
Ports with eight Shared RAM Ports (one for each Shared 
RAM Bank), Global Registers, the Debug FIFO r and the 
Data Path DRAM. This requires some means of arbitrating 
among the HEMi’s (23 in the current embodiment) for 
access to the Shared RAM and DRAM ports. 

This arbitration is handled by Crossbar Arbitration Logic 
2410. This logic uses a fair arbitration algorithm to arbitrate 
among HEMi’s if more than one HEMi requires access to 
the same Port. In the currently preferred embodiment, this 
arbitration proceeds in a round-robin fashion, starting with 
the HEMi that most recently obtained access to the Port, and 
counting upwards through the HEMi’s until reaching the 
first HEMi that desires access, wrapping around from the 
highest-numbered HEMi (HEMi 22 in the current embodi 
ment) to HEMi 0. Thus, if HEMi’s 5 and 10 require access 
to a particular Shared RAM Port, and the most recent HEMi 
having access to that Port was HEMi 15, HEMi5 would be 
awarded the access, since Crossbar Arbitration Logic 2410 
would count upwards from 15, wrapping around after 22, 
and HEMi 5 would be the first HEMi it would reach that 
required access to the Port. As should be understood, a 
variety of other arbitration algorithms could be used. 

Crossbar Arbitration Logic 2410 also contains a mecha 
nism to place a hold on a Port at the request of a HEMi that 
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has obtained access to the Port. This allows a HEMi to 
complete a transaction that should not be interrupted. 

Note that the design illustrated in FIG. 24 allows for 
modular expandability, in that the capacity of a system may 
be increased by adding a single Flash Port at a time. Doing 
so requires adding a Flash Port, flash memory, and a Flash 
HEMi as well as adding one Shared RAM for each four 
HEMi’s that are added (to hold the HEMi Worklists (see 
below)), plus four sets of FIFO Pointer Registers for each 
Shared RAM. Adding Shared RAM also adds space that can 
be allocated to additional CDBinfos, IOPs and Transfer 
Requests. In addition, it is relatively easy to add a new 
Shared RAM Port to Crossbar Switch 2201. 

This type of expansion requires a minor redesign of the 
layout of the Shared RAM Banks, in order to spread the data 
across the newly added Banks, but this can be handled by 
modifying the data used to initialize the Shared RAM Banks 
No changes are required to the HEMI's or the HEMi 
firmware. 

This modular design allows for expansion from a simple 
system containing two to three Flash Ports to a much larger 
system containing up to 23 Flash Ports with no requirement 
of any software or major hardware changes. Thus, the same 
architecture can be used for an inexpensive workstation 
design, involving only two to three HEMi’s, or a much 
larger system. 

Shared RAM Controller 2301 also includes Shared RAM 
Access Register Block 2411, which is used by HEMi’s for 
accesses to Shared RAM Block 318. Block 2411 includes 
the following registers: 

Shared RAM Address Register 2412 contains the address 
in Shared RAM of the doubleword that is the subject of the 
access. The high order bits of this address indicate the 
particular Shared RAM Bank to be selected, and the low 
order bits indicate the location in that Bank. 

Shared RAM Data Autoinc Register 2413 holds a double 
word of data that is read from or to be written to the address 
stored in the Address Register. Use of the Shared RAM Data 
Autoinc Register causes the value in Address Register 2412 
to automatically increment. On a read. Address Register 
2412 increments once the data is copied into Register 2413. 
On a write. Address Register 2412 increments once the data 
is written out of Register 2413. 

This Autoinc Register is used with Repeat Count Register 
2702 (see below in connection with FIG. 27) for DMA-type 
block transfers of data. The number of transfers required is 
written into Repeat Count Register 2702 and the initial 
address is written into Address Register 2412. Data Autoinc 
Register 2413 will then repeat the read or write for the 
number of iterations indicated in the Repeat Count Register, 
with each repetition causing Address Register 2412 to 
increment, so that the next access is to the next doubleword 
in Shared RAM. 

Shared RAM Data Register 2414 performs the same 
function as the Data Autoinc Register, but does not cause 
Address Register 24.12 to increment. Register 2414 is used 
for multiple accesses to the same memory location, e.g., 
reading a variable and then modifying it. 
Mapnum Register 2415 is used to select one of the FIFO's 

in Shared RAM Block 318. 
Top Register 2416, Append Register 2417, Push Register 

2418 and Pop Register 2419 each hold a doubleword of data. 
These registers are used for four different types of access to 
the FIFO selected by Mapnum Register 2415. A HEMican 
read the value from the top of the FIFO without modifying 
the location of the top value in the FIFO or it can “pop” the 
top value from the FIFO, thereby causing the FIFO top to 
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point to the next value in the FIFO. These operations result 
in the returned value being written into Top Register 2416 or 
Pop Register 2419, respectively. 
A HEMican also “push” a value onto the top of the FIFO, 

so that the new value becomes the new top of the FIFO, or 
add a value onto the bottom of the FIFO. For these opera 
tions, the data to be written is placed by the HEMi into Push 
Register 2418 or Append Register 2417, respectively. 
The ability to place information at the top or the bottom 

of FIFO's provides additional flexibility. For example, this 
allows more important tasks to be placed at the top of a 
Worklist and less important tasks to be placed at the bottom. 

FIG. 25 illustrates the input and output paths to and from 
Data Path DRAM 107. In the current embodiment, SSD 
Controller 106 may include 18 resources that require access 
to the DRAM (depending on configuration): up to 12 Flash 
Stage Buffers (shown as FSB 0308, FSB 1314 and FSB 11 
2501, with the Flash Stage Buffers between 1 and 11 not 
shown for purposes of clarity; as is explained above, par 
ticular implementations of SSD Controller 106 may have 
fewer than 12 Flash Ports, and therefore fewer than 12 Flash 
Stage Buffers), PIO Buffer 2204, Debug FIFO 2210, 
Receive Stage Buffer 0 1706, Transmit Stage Buffer 01708, 
Receive Stage Buffer 1 1707 and Transmit Stage Buffer 1 
1709. 

The paths between these resources and the Data Path 
DRAM are referred to herein as “channels.” As should be 
understood, although each of the resources is necessarily 
connected to the DRAM by a physical transmission path, 
channels are conceptual in nature and are do not necessarily 
reflect actual bus structures. 

In the current embodiment, Data Path DRAM 107 has a 
single input/output port, designated as DRAM Port 2502, 
though other memories that may be used for this purpose 
may have a larger number of ports. As is explained above, 
DRAM Scheduler 2304 arbitrates among the channels, 
assigning access to channels that need access to DRAM Port 
2502 in a round-robin fashion. In an alternate embodiment, 
other arbitration schemes could be used. For example, 
access could be prioritized according to the type of data 
being transferred, or the resource seeking access to the 
DRAM, e.g., Debug FIFO 2210 could be prioritized below 
Flash Stage Buffer accesses. 

FIG. 25 illustrates the connection between the channels 
and DRAM Port 2502 as proceeding through Switch 2503. 
Operating under the control of DRAM Scheduler 2304. 
Switch 2503 connects one of the channels to DRAM Port 
2502 at a time. The arrows shown in FIG. 25 illustrate the 
directionality of the allowed connections, e.g., Flash Stage 
Buffer 308 can read from or write to the DRAM, Debug 
FIFO 2210 can write to but not read from the DRAM and 
Transmit Buffer 1708 can read from but not write to the 
DRAM. 

Switch 2503 is conceptual in nature and does not neces 
sarily represent a single, large Switch. Instead, this function 
ality may consist of a number of logic gates disposed at 
different locations. The exact physical design of this func 
tionality is implementation-specific. 
When a channel gains access to DRAM Port 2502, the 

movement of data between that channel and the DRAM 
occurs in a burst, made up of transfers each of which consists 
of four doublewords. That burst continues until the read or 
write is complete, or until the resource connected to the 
channel is full (for a transfer from the DRAM) or empty (for 
a transfer to the DRAM). Once the burst is terminated, that 
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channel loses its access through Switch 2503, and DRAM 
Scheduler 2304 gives access to the next channel requiring 
that access. 
E. HEMS. 
As is described above, SSD Controller 106 contains a 

number of processors referred to herein as HEMi’s. As used 
herein, the term “processor or “microprocessor refers to 
any distinct logic block that includes an ALU capable of 
performing at least basic arithmetic and/or logical opera 
tions, a memory specific to the processor that holds data, and 
control logic that controls operations of the ALU, the control 
logic consisting of hardware, Software and/or firmware. As 
used herein, “HEMi” refers to the particular processors used 
in the currently preferred embodiment, though, as should be 
understood, many details of the internal HEMi design are 
irrelevant herein and are omitted for purposes of clarity. In 
addition, although the HEMi design constitutes the currently 
preferred processor embodiment, as those of ordinary skill 
in the art understand, many other processor designs are 
possible. 

In the current embodiment, SSD Controller 106 may 
contain up to 23 HEMi’s, designated as follows (note that in 
this embodiment the numbering system includes gaps): 
HEMi O Receive HEMi for Host Port 0 (1702). 
HEMi 1: Transmit HEMi for Host Port 0 (1704) 
HEMi 2: Receive HEMi for Host Port 1 (1703) 
HEMi 3: Transmit HEMi for Host Port 1 (1705) 
HEMi 8: SCSI HEMi (2001) 
HEMi’s 9-14: RdWr HEMi’s (2101-2106) 
HEMI's 15-26: Flash HEMi’s (e.g., 307, 309, 313) 
Certain aspects of the internal functioning of the HEMi’s 

are illustrated in FIG. 26. In the currently preferred embodi 
ment, all HEMi’s share the same hardware elements, but are 
customized for different functions through the use of differ 
ent firmware overlays and through being connected to 
different tightly-coupled elements, both of which are 
described in greater detail below. 

Each HEMi includes iRAM 2601, which is an instruction 
RAM capable of holding firmware to implement 1,000 56 bit 
VLIW instructions. These instructions are each able to read 
1-2 Shared RAM or register locations, perform ALU opera 
tions, and write back or branch on the result. 
As is described below, Data Path DRAM 107 stores up to 

eight different firmware overlays for each type of HEMi, and 
these overlays are copied into iRAM 2601 when needed 
based on the function being performed. This allows each 
HEMi to implement a much larger number of instructions 
than would be possible if the firmware were limited to the 
size of the iRAM. 
HEMi instructions are fetched based on a 16-bit address. 

3 bits of the address select the firmware overlay, and 13 bits 
constitute the address of the instruction in iRAM 2601. A 
firmware swap is triggered if the 3 firmware overlay bits of 
the instruction being fetched do not match the overlay that 
is currently stored in iRAM 2601. 

In general, Swapping firmware overlays is avoided by 
aggregating together the firmware that Supports instructions 
needed to perform common tasks. For example, a single 
firmware overlay can handle most common operations nec 
essary for reads and writes. Other firmware overlays handle, 
for example, initialization and error correction handling. 

Each HEMialso includes two KByte mRAM 2602, which 
serves as a storage space for data being used by the HEMi. 
As FIG. 26 shows, each HEMi includes a six-stage 

pipeline made up of Fetch Stage 2603, IBuffer Stage 2604, 
Decode Stage 2605, Read Stage 2606, ALU Stage 2607 and 
Write Back Stage 2608. In the currently preferred embodi 
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ment, each of these Stages constitutes a logical block within 
the HEMi, though in an alternate embodiment these could 
represent HEMi states, independent of the underlying pro 
cessor hardware used to generate the state. 
The Fetch Stage determines the iRAM address of the 

firmware associated with the instruction to be executed. That 
address is then passed to the iRAM, as is indicated by the 
arrow between Fetch Stage 2603 and iRAM 2601. 
The firmware at that address is then loaded into a buffer, 

as is indicated by the arrow between iRAM 2601 and IBuffer 
Stage 2604. 
The firmware is then handed off to Decode Stage 2605 (as 

shown by the arrow between IBuffer Stage 2604 and Decode 
Stage 2605). The Decode Stage decodes the instruction and 
performs jumps and calls. It transmits jumps and calls back 
to Fetch Stage 2603 (indicated by the arrow from Decode 
Stage 2605 to Fetch Stage 2603). In the case of straight-line 
instruction execution, Decode Stage 2605 passes parameters 
to Read Stage 2606. These parameters include the location 
from which data is to be retrieved for the required operation. 

Read Stage 2606 reads 1 or 2 memory or register locations 
as required by the instruction. In the case of a read to two 
locations, Read Stage 2606 repeats, as is indicated by the 
arrow looping back from the output of Read Stage 2606 to 
its input. As indicated by the arrow pointing to Read Stage 
2606 from External Read 2609, sources for the information 
include mRAM 2602 and external memory or registers 
(indicated conceptually by External Read 2609). Informa 
tion may also come from internal registers that are not 
shown in FIG. 26. 
Read Stage 2606 passes the obtained information to ALU 

Stage 2607, for operation by the HEMi’s ALU. Results from 
the operation are passed to Fetch Stage 2603 (in the case of 
a conditional branch) or to Write Back Stage 2608. 

Write-Back Stage 2608 writes the results of the ALU 
operation into a location specified by the instruction. As is 
indicated by the arrow pointing out of Write Back Stage 
2608, results may be written into mRAM 2602 or to an 
external resource (indicated conceptually by External Write 
2610). 

FIG. 27 illustrates aspects of the HEMi design not shown 
in FIG. 26, including registers used for access to various 
memory ranges and logic that is tightly coupled to the HEMi 
(Tightly Coupled Logic Block 2701). As should be under 
stood, both the HEMi and the tightly coupled logic may 
include registers and other components that are not shown 
herein. In addition, the register sets themselves have been 
simplified for purposes of illustration. 

FIG. 27 illustrates Flash HEMi 307 and its Tightly 
Coupled Logic Block 2701. As is described above, the 
internal design of all HEMi’s is the same. However, different 
types of HEMi’s have different Tightly Coupled Logic 
Blocks. Block 2701 is specific to Flash HEMi’s. Differences 
in tightly coupled logic for other types of HEMi’s are 
described below. 
HEMi 307 includes Repeat Count Register 2702, which 

holds a value used to calculate the number of times an 
operation should be repeated. Loading a value into the 
Repeat Count Register causes the next instruction executed 
by the HEMi to be repeated the specified number of times, 
with each repetition causing the value in the Repeat Count 
Register to be decremented. 
A value of “1” can be forced into Repeat Count Register 

2702, thereby ending the loop, under various circumstances: 
(a) If a conditional branch instruction is looping as a result 

of the Repeat Count Register, and the condition occurs, so 
that the branch is taken, the Repeat Count Register is 
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automatically forced to “1,” which has the effect of causing 
the next instruction to occur once. As should be understood, 
in the conditional branch case, this next instruction would be 
the first instruction in the branch. 

(b) When a flag associated with the Repeat Count Register 
is set, any action that increments certain FIFO count regis 
ters from Zero to one forces a value of one into the Repeat 
Count Register. The FIFO count registers are those associ 
ated with the Worklist for the HEMi (e.g., Count Register 
2408, described in connection with FIG. 24) and the Receive 
Buffer Count Register (described below in connection with 
FIG. 28). 

This capability is used to force the HEMi’s out of sleep 
mode when they have a task to perform. When a HEMi has 
no work to perform, it enters a sleep mode, in which a nop 
is repeated a set number of times, following which the HEMi 
wakes up, checks its Worklist, and, if no tasks are present on 
the Worklist, resumes executing nops. This is accomplished 
by loading a set number into Repeat Count Register 2702 
and then executing a nop. 
When a HEMi is in sleep mode, writing a task into the 

HEMi’s Worklist (see below) causes the HEMi to wake up. 
This is accomplished by a signal from the relevant Count 
Register, which forces a “1” into Repeat Count Register 
2702, thereby causing the HEMi to wake up and take 
appropriate action after the next nop is executed. 

This use of the Repeat Count Register to force repeated 
nops allows the HEMi to go into low-power sleep mode 
without the need for any specialized sleep mode logic. In 
addition, this allows for very fine granularity in terms of how 
long the HEMi will remain in sleep mode. For example, if 
the HEMi is going into sleep mode because it has no current 
work to accomplish, a maximum value is written into the 
Repeat Count Register. In the currently preferred embodi 
ment, this value is slightly over 1 million, and causes the 
HEMi to remain in sleep mode (unless earlier woken up) for 
approximately 4 milliseconds. 

In another example, when a HEMi begins a multiply or 
divide operation, the Repeat Count Register can be used to 
force 32 nops, since such an operation takes 32 HEMi 
cycles. This allows the HEMi to go into low-power sleep 
mode while waiting for the results of the multiply or divide, 
which, as is described below, are handled by logic that can 
operate independently of the operation of the rest of the 
HEM. 
Note that the flag described above is used so that the 

Repeat Count will be forced to one only if it is executing 
nops, since otherwise a code loop might be interrupted. For 
this reason, the flag is set when a nop follows the Repeat 
Count, but is not set for other instructions. 
HEMi 307 also includes Local Register Block 2703, 

which controls access to the HEMi’s iRAM 2601 and 
mRAM 2602. 

Local Address Register 2704 holds an address in local 
memory. This address may be in either iRAM or mRAM, 
depending on the high-order bits of the address. Local Data 
Autoinc Register 2705 holds a doubleword of data read from 
or to be written to local memory. Writing from this register 
causes Local Address Register 2704 to increment. By writ 
ing a value into Local Address Register 2704, loading a 
value into Repeat Count Register 2702, and executing a 
move from mRAM into Register 2705 and from Register 
2705 into another location (these moves can be performed in 
one instruction), the HEMi can perform a DMA-like move 
of a sequence of doublewords from Successive addresses in 
the mRAM. Each loop causes Register 2704 to automati 
cally increment and Repeat Count Register 2702 to auto 
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matically decrement, and the moves continue until Repeat 
Count Register 2702 reaches zero. Note that if the target is 
similarly using a data-autoinc register, the move would be 
stored in Successive addresses in the target, again, without 
the need for additional logic or instructions. 

Local Data Register 2706 holds a doubleword of data read 
from or to be written to local memory, but this register does 
not cause an address increment. 
ARM 2002 communicates with Local Register Block 

2703 through a dedicated port. ARM 2002 is the only source 
that is able to write addresses into Local Address Register 
2704 corresponding to iRAM 2601. ARM 2002 uses this 
capability to control the process of overlaying new firmware 
into iRAM 2601. 
HEMi 307 also includes Window Registers 2707, which 

consist of five registers each of which holds an address in the 
HEMi’s mRAM 2602. Four of these Registers are used to set 
up windows in mRAM consisting of 128 doublewords each. 
These windows are used for manipulation of data structures 
Such as Transfer Requests and Page Requests. For example, 
if a Flash HEMi is required to operate on a PageRequest, the 
address of that Page Request in mRAM can be loaded into 
one of the Window Registers. Accesses to particular areas of 
the Page Request can then be handled as an offset from the 
value in the Window Register, thereby simplifying the 
process of address calculation when repeated operations are 
required on a data structure. 
The fifth Window Register is used for the mRAM stack, 

which stores local variables and function arguments. The 
stack window register operates similarly to the other four 
Window Registers, except that the HEMi’s have special 
stack-related instructions that automatically increment or 
decrement the value in the stack Window Register and 
provide an automated mechanism for adding an offset to the 
stack window address, thereby allowing one clock stack 
manipulation. 
The HEMi’s internal registers, including Local Register 

Block 2703 and Window Registers 2707 are “hazard 
checked.” Because the HEMi is a pipelined processor, if a 
write operation immediately precedes a move operation 
without Such protection, the write may actually occur after 
the move. Thus, if a write instruction writes a value into a 
register, and the immediately Subsequent instruction moves 
the register's contents to another location, the pipeline could 
result in moving the register's old contents, prior to the 
write. Hazard checking avoids this possibility by checking 
for Such cases and delaying the Subsequent instruction until 
the proper data has been loaded. 

Multiply/Divide Engine 2717 is used to perform multiply 
and divide operations. Because the Multiply/Divide Engine 
can operate independently from the rest of the HEMi, the 
HEMi can write the values to be operated on into registers 
in Multiply/Divide Engine 2717 and then go into a sleep 
mode while the operation takes place, thereby saving power. 
This sleep mode is described above. 

Manual CRC Engine 2719 generates a CRC value for 
information written in by the associated HEMi. 

Switch-Endian Engine 2720 is a 32-bit register that auto 
matically swaps the byte order of data written into the 
register. This is used because different protocols have dif 
ferent byte orderings. Data is stored in flash in little-endian 
format, but for certain protocols is received and must be 
transmitted in big-endian format. 

Each HEMi also has an associated block of tightly 
coupled logic, e.g., Tightly Coupled Logic Block 2701. 
Tightly Coupled Logic Block 2701 illustrates logic that is 
tightly coupled to each Flash HEMi. As is described below, 
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the logic blocks tightly coupled to other types of HEMi’s 
differ in some respects from Tightly Coupled Logic Block 
2701. Thus, even though the internal design of all HEMi’s 
is identical, the use of different tightly coupled logic, plus 
the use of different firmware, allows each type of HEMi to 
be customized for its particular tasks. 

Tightly Coupled Logic Block 2701 consists of resources 
that are “tightly coupled to HEMi307, meaning that HEMi 
307 is the only HEMi that can access these resources, these 
resources share an address space, and accesses to these 
resources occur on a no-wait state basis. 

Although in the currently preferred embodiment, the 
Tightly Coupled Logic is external to the HEMi, in an 
alternate embodiment some or all of this Logic could be 
incorporated into the HEMi itself. 

Tightly Coupled Logic Block 2701 includes Stage Buffer 
Access Register Block 2708, which controls accesses to the 
Flash Stage Buffer associated with the Flash HEMi (e.g., 
Flash Stage Buffer 308. 

Address Register 2709, Data Register 2710 and Data 
Autoinc Register 2711 operate similarly to the correspond 
ing registers in Shared RAM Access Register Block 2411. 
The Flash HEMi’s use this access path to the Stage 

Buffers to modify Time Stamp information stored in Super 
Block Metadata Tables passing through the Stage Buffer, 
and during rebuilds required after an unexpected loss of 
power (the rebuild process is described below, in connection 
with FIG. 58). 

Flash Transfer Count Register 2712, Flash Address Reg 
ister 2713 and Flash Data Register 2714 control DMA 
operations between the Flash Group and the Flash Stage 
Buffer. Register 2713 contains the flash address to be 
accessed. Register 2712 contains the number of reads or 
writes, in doublewords. Register 2714 contains data received 
from, or to be sent to, the flash. 
DMA Address Register 2715 and DMA Transfer Count 

Register 2716 are used to control the Stage Buffer side of a 
DMA transfer between Data Path DRAM 107 and the Stage 
Buffer. Register 2715 holds the Stage Buffer address for the 
transfer, and Register 2716 holds the number of double 
words to be transferred between the Stage Buffer and the 
PIO Buffer. Writing a value into Register 2716 causes a 
DMA transfer between the Stage Buffer and the PIO Buffer 
to begin. 

In general, a HEMi can use internal move commands to 
move data between internal locations, Tightly Coupled 
Logic and certain external locations. Thus, for example, 
when it a new firmware overlay is needed, ARM Processor 
2002 sets up the DRAM address for the overlay in DRAM 
Address Register 2212 (as is described below, firmware 
overlays are stored in the DRAM), sets up the iRAM address 
for the overlay in Local Address Register 2704, places the 
number of transfers from the DRAM in Transfer Count 
Register 2213 and places the number of doublewords needed 
for the transfer in Repeat Count Register 2702. The DMA 
transfer from DRAM through the PIO Buffer and to Data 
Register 2214 proceeds as is described above. Internal 
HEMilogic causes the data from Register 2214 to be written 
to Local Data Autoinc Register 2705, and from there to the 
iRAM location pointed to by Local Address Register 2704. 
Repeat Count Register 2702 is then decremented, the Local 
Address Register increments, and the process repeats. ARM 
2002 uses this capability at system boot time to load the 
initial firmware overlay into each HEMi’s iRAM. 
To take another example, copying an IOP from Shared 

RAM (see below in connection with FIG. 41) into the 
HEMi’s mRAM only requires four HEMi commands: 
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Write Shared RAM Address Register, Shared RAM 
Address; this writes the address of the IOP in Shared RAM 
into Register 24.12. 

Write Local Address Register, mRAM Address; this 
writes the address in mRAM where the IOP is to be stored 
into Register 2704. 

Write Repeat Count Register, if Dwords in IOP; this loads 
Repeat Count Register 2702 with the number of double 
words contained in the IOP. 
Move Local Data-Autoinc Register, Shared RAM Data 

Autoinc Register; this moves the value from Register 2413 
to Register 2705. The value in Register 2413 is the double 
word in Shared RAM pointed to by Register 24.12. Moving 
that value to Register 2705 causes it to be transferred to the 
mRAM location pointed to by Address Register 2704. 
Specifying the two Data Autoinc registers automatically 
causes the associated Address Registers to be incremented 
once the move occurs. As is described above, this move 
instruction repeats until the value in the Repeat Count 
Register reaches Zero. 

In this way, the HEMican accomplish DMA-like accesses 
that occur automatically and with a minimum number of 
commands. 

Tightly Coupled Logic Block 2701 also includes Debug 
Register Block 2718, which includes registers relevant to 
transfers to and from Debug FIFO 2210. 
As is noted above, Tightly Coupled Logic Block 2701 is 

specific to Flash HEMi’s. Tightly Coupled Logic Blocks 
associated with other HEMi’s do not include Stage Buffer 
Access Register Block 2708. 
The Tightly Coupled Logic Block for Receive and Trans 

mit HEMi’s (e.g., Receive HEMi 0 1702 and Transmit 
HEMi 0 1704) include additional registers designed to 
Support Host Port operations. These registers are shown in 
FIG. 28. 
The Tightly Coupled Logic Blocks for Receive HEMi’s 

contain registers that are used for communication with and 
control of receive functions relating to the Host Port, includ 
ing the following: 

Receive Buffer Access Register Block 2801: this is used 
to set up DMA transfers from the Receive Stage Buffer to 
Data Path DRAM 107. This block includes DMA Address 
Register 2802, which holds the DRAM address for the 
transfer and DMA Transfer Count Register 2803, which 
holds the number of transfers to be made. 

Receive Buffer Count Register 2804: this gives the num 
ber of entries in the Receive Stage Buffer data FIFO. Writing 
a value to this Register causes the Receive HEMi to wake up 
if it is in sleep mode. 

Primitive FIFO Access Register Block 2805: this set of 
registers communicates with Inbound Primitive FIFO 1808. 
These registers include Top Register 2806 (reads from the 
FIFO without changing the top of the FIFO), Pop Register 
2807 (reads the top item from the FIFO and moves the FIFO 
top to the next item), Count Register 2808 (contains the 
number of items in the FIFO) and Append Register 2809 
(adds items to the end of the FIFO). 

Non-Data Payload Access Register Block 2810: this set of 
registers communicates with Non-Data Payload FIFO 1804. 
These registers include Top Register 2811, Pop Register 
2812, Count Register 2813 and Append Register 2814, 
which operate the same as the similarly named registers in 
the Primitive FIFO Access Register Block. 

Header Size Register 2815: this indicates how long the 
current header is. This value allows the Receive HEMi to 
differentiate between one header and the next on the Non 
Data Payload FIFO. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

40 
Primitive Match Register Block 2816: these registers are 

used to load values into Primitive Match Logic 1802 to 
customize the Primitive Match Logic for a particular pro 
tocol. Use and customization of Primitive Match Logic 1802 
is explained above in connection with FIG. 19. 
As is described above, Primitive Match Logic 1802 

contains two sets of registers: Primitive Match Registers 
1902 and Primitive Match Control Registers 1903. Primitive 
Match # Register 2817 points to one of sixteen registers in 
each set, resulting in the value stored in Primitive Match 
Load Register 2818 being loaded into the corresponding 
register in Primitive Match Registers 1902 and the value 
stored in Primitive Match Control Load Register 2819 being 
loaded into the corresponding register in Primitive Match 
Control Registers 1903. 
WWN Hash Engine 2830 is used to generate a 24-bit hash 

of a received 64-bit Worldwide Name value. This hash is 
used internally so that received frames (which may contain 
the 24-bit hash value of the sender's WWN) may be matched 
with Initiator Table 4108 (see below), which contains the 
64-bit value. 

FIG. 28 also shows unique Transmit HEMi tightly 
coupled registers: 

Transmit Buffer Access Register Block 2820: this is used 
to set up the Transmit Stage Buffer side of DMA transfers 
from Data Path DRAM 107. This Register Block includes 
DMA Address Register 2821 and DMA Transfer Count 
Register 2822. 

Transmit Frame Buffer FIFO Access Register Block 
2823: this set of registers communicates with a FIFO which 
is part of the Transmit Frame Buffers 1806. These registers 
include Pop Register 2824, Count Register 2825 and 
Append Register 2826. 
Command FIFO Access Register Block 2827: this set of 

registers communicates with a FIFO which is part of the 
Transmit Frame Buffers 1806. These registers include Count 
Register 2828 and Append Register 2829. 

FIG. 29 illustrates the contents of the mRAM of a Flash 
HEMi, e.g., HEMi 307: 

1. Local Transfer Request Table 2901. This contains space 
for holding up to six Transfer Requests. These can be a 
combination of Transfer Requests that have been copied 
from Shared RAM into this Flash HEMi’s mRAM and Local 
Transfer Requests, issued in connection with internal opera 
tions such as garbage collection (see below). For example, 
Slot 2902 can store one Transfer Request, and Slot 2903 can 
store a second Transfer Request. 

2. Local Transfer Request Queue 2904. This is a FIFO 
queue of Transfer Requests that are stored in Table 2901 and 
are queued up to be worked on by the Flash HEMi. 
As is explained below, in general, Transfer Requests are 

placed on this Queue when the Page Requests associated 
with the Transfer Request have completed and the Transfer 
Request itself is ready to enter into a done state. 

3. Local Transfer Request Freelist 2905. This holds a list 
of pointers to slots in Local Transfer Request Table 2901 that 
are empty and are therefore capable of holding new Transfer 
Requests. 

4. Page Request Table 2906. This contains space for 
holding up to eighteen Page Requests. Each Transfer 
Request can invoke three Page Requests, so Page Request 
Table 2906 contains space for the eighteen Page Requests 
that can be invoked by the six Transfer Requests that can fit 
into Flash HEMi Transfer Request Table 2901. In the 
example shown, Page Request Table 2906 includes Page 
Requests in Slots 2907 and 2908, which hold Page Requests 
for the Transfer Request in Flash HEMi Transfer Request 
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Table 2901 Slot 2902, and the Page Request in Slot 2909 is 
for the Transfer Request in Slot 2903. In this example, the 
other Page Request slots are empty, meaning that the space 
has been allocated but is not currently filled by valid Page 
Requests. 

5. Page Request Freelist 2910. This is a list of all Page 
Request slots in Page Request Table 2906 that are free, 
meaning they do not currently hold valid Page Requests. 
This list therefore represents new Page Requests that the 
Flash HEMi can issue. 

6. Bank Queues 2911. This is a set of FIFO queues of Page 
Requests that are stored in Table 2906. There is a separate 
Page Request Queue for every Bank in the Flash Group. 
Once a Page Request is ready for execution, it is appended 
to the end of the Bank Queue for the Bank holding the 
address that the Page Request is required to read from or 
write to. The Flash HEMirotates among the Bank Queues in 
order. When it rotates to a Bank Queue that contains a Page 
Request, it evaluates the top Page Request on the Queue to 
determine if the resources necessary for continued execution 
of the Page Request are available. If the resources are 
available, the Flash HEMicarries out those tasks required by 
the Page Request that are possible given the available 
resources and then rotates to the next Bank Queue. In this 
way, the Flash HEMi handles the Page Requests in a 
round-robin fashion, but without the need for any arbitration 
logic. Page Requests that have completed processing are 
removed from the Bank Queue. This process is explained in 
greater detail in connection with FIG. 53. 

In the current embodiment, the Bank Queues are FIFOs, 
and Page Requests are handled in the order received. In an 
alternate embodiment, high priority Page Requests are 
added to the top of a Bank Queue, rather than being 
appended to the bottom. In this embodiment, a priority bit 
may be set in the Page Request, based on a priority bit in the 
calling Transfer Request that identifies a particularly sig 
nificant transaction. 

8. SuperBlock Freelist 2912. This contains identifiers for 
the SuperBlocks contained in the Flash Group controlled by 
this Flash HEMi that are free, and therefore available to be 
written. 

9. SuperBlock Freelist Counter 2913. This contains the 
number of SuperBlocks on Freelist 2912. This number is 
separately tracked as a performance optimization, so that it 
does not have to be calculated as needed. 

10. Open SuperBlock Pointer 2914. This holds the des 
ignation for the SuperBlock that is currently open for 
writing. 

11. Garbage Collection Thresholds 2915. In the current 
embodiment, this holds two variables, both used for garbage 
collection purposes: the Critical Threshold and the Non 
Critical Threshold. Use of these variables in garbage col 
lection is described below. 

12. Local Variables 2916. In the current embodiment, this 
holds various local variables used by the HEMi. 

13. Stack Space 2917. This holds a stack used by the 
HEMi for processing tasks. 

14. Command Table 2918. This holds a list of commands 
and LBA ranges affected by all Transfer Requests that are 
currently being handled by the Flash HEMi. 
As is described above, SSD Controller 106 enforces 

read/write coherency to insure that operations do not com 
plete out of order. Command Table 2918 is used by the Flash 
HEMi to enforce coherency at the Flash Port level. When a 
Transfer Request is popped from the Flash HEMi’s Worklist, 
and copied into Local Transfer Request Table 2901, the LBA 
range affected by the Transfer Request is checked against 
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Command Table 2918. If an overlap exists, execution of the 
Transfer Request is stalled until the earlier Transfer Request 
has been completed, at which point its entry is removed from 
Command Table 2918 and the hold placed on the later 
Transfer Request is removed. Once a Transfer Request has 
been cleared for execution in the Flash HEMi, the LBA 
range affected by that Transfer Request is added to Com 
mand Table 2918. 

15. SuperPage Pointer List 2919. This list contains one 
entry for each Bank in the Flash Group associated with this 
Flash HEMi. For each Bank, the associated entry points to 
the next free SuperPage in the currently open SuperBlock. 
When a SuperBlock is initially opened up, and contains no 
data, Banks 1-7 point to SuperPage 0 and Bank 0 points to 
SuperPage 1 (SuperPage 0 of Bank 0 of each SuperBlock 
contains the SuperBlock Metadata Table, and is therefore 
not available for normal writes). 
The Flash HEMi uses these counters to allocate Super 

Pages to Page Requests that include a write command and 
therefore require a free SuperPage. When a SuperPage has 
been allocated to a Page Request (this occurs during Page 
Request initialization), the entry in SuperPage Pointer List 
2919 for the Bank containing that SuperPage is incremented. 

Note that List 2919 may, in one embodiment, be con 
tained in the same data structure as the Open SuperBlock 
2914 information. 

16. Bank Bitmap 2920. This table holds two bits for each 
Bank. One of the bits indicates whether or not the Page 
Request at the top of the Bank Queue needs the Bank to 
operate. The second bit indicates whether the R/B signal for 
the Bank is in the Ready state. The Flash HEMi checks this 
bitmap in determining whether to begin servicing a Page 
Request. 
Use of Shared RAM Access Register Block 2411 to 

access Shared RAM is illustrated in FIG. 30, which shows 
a sequence of steps used for transferring a data block (e.g., 
a Transfer Request) from Shared RAM. 

In Step 3001, the address of the desired data in Shared 
RAM is written into Shared RAM Address Register 2412. In 
this example, this is the address of the Transfer Request in 
Transfer Request Table 4111 (see below). 

In Step 3002, the HEMimRAM address to which the data 
is to be transferred is written into Local Address Register 
2704. In this case, the address points to an empty slot in 
Local Transfer Request Table 2901. 

In Step 3003, a value is written into Repeat Count 
Register 2702 that corresponds to the number of double 
words that will be required to complete the transfer. 

In Step 3004, the HEMi executes a command that causes 
a read from Shared RAM to Shared RAM Data Autoinc 
Register 2413 and from there to Local Data Autoinc Register 
2705. The read from Shared RAM occurs at the address 
specified in Shared RAM Address Register 2412. The read 
to the Local Data Autoinc Register causes the data to be 
written to the location in mRAM specified by Local Address 
Register 2704. The use of the two Data Autoinc Registers 
causes the respective Address Registers to automatically 
increment. Execution of the command causes Repeat Count 
Register 2702 to decrement. Note that the HEMi design 
allows this step to be handled with a single instruction. 

In Step 3005, Repeat Count Register 2702 is checked to 
determine if it contains a value of Zero. 

If Repeat Count Register 2702 has a value of Zero (“yes” 
outcome to Step 3005), the transfer is complete, and the 
process ends. 

If Repeat Count Register 2702 has a value that exceeds 
Zero (“no outcome to Step 3005), this indicates that addi 
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tional transfers are needed. Control returns to Step 3004 for 
transfer of the next doubleword. 

Note that the loop between Steps 3004 and 3005 contin 
ues without further intervention by the Flash HEMi. The 
incrementing Address Registers, and the Repeat Count reg 
ister, which forces a repeat of the executing instruction, 
allow the HEMi to transfer data quickly and efficiently in a 
DMA-like burst. 
F. ECC Handling. 
SSD Controller 106 generates and checks Error Correc 

tion Code (“ECC) information when data is written to and 
read from Flash Memory Module 108. (As is described 
above, Data Path DRAM 107 also has an internal ECC 
capability, but SSD Controller 106 does not control this 
capability, and interfaces with it only in the case of a 
reported error, which causes SSD Controller 106 to issue an 
error message.) 
The ECC process is illustrated in FIG. 31, which shows 

Flash Port 0 304. As is described above, Flash Port 0 
includes Flash HEMi 0 307 and Flash Stage Buffer 0308, 
and is connected to Flash Group 0.301. 

FIG. 31 also shows ECC Correction Engine 3101. As is 
explained above, SSD Controller 106 includes a number of 
Flash Ports, each with an associated Flash Group. However, 
in the current embodiment, SSD Controller 106 only 
includes a single ECC Correction Engine, which is shared 
among the Flash Ports. Since only one ECC Correction 
Engine exists, when a Flash HEMi requires the ECC Cor 
rection Engine, it must first check if the ECC Correction 
Engine is busy. If the ECC Correction Engine is not busy, the 
Flash HEMi may use it. If the ECC Correction Engine is 
busy, the Flash HEMi must append its ID to an ECC 
Correction FIFO contained in Global Registers 2203 (see 
FIG. 22). That FIFO includes an ordered list of all Flash 
HEMi’s that require access to the ECC Correction Engine. 
A HEMi is awarded access to the ECC Correction Engine 
when its ID comes to the top of the FIFO. 

In a different embodiment, SSD Controller 106 may 
include more than one ECC Correction Engine, up to a total 
of one for each Flash Port. This embodiment increases cost 
and complexity, but allows for faster performance if a large 
volume of errors must be corrected. In this embodiment, 
Flash HEMi’s are not required to wait for access to the ECC 
Correction Engine. In other alternate embodiments, there 
may be one ECC Correction Engine for a given number of 
Flash Ports (e.g., two or four). 
As is shown in FIG. 31, Flash Port 0304 includes ECC 

Logic 3102. ECC Logic 3102 further consists of ECC 
Generation 3103 and ECC Check 3104. 
ECC Generation 3103 generates ECC bits for a sector of 

data at a time. It does So when data is being transferred 
between Flash Stage Buffer 308 and Flash Group 301. On a 
write from the Stage Buffer to the Flash Group, the ECC 
information is stored along with the data, the ECC infor 
mation being stored in ECC Field 1303 of the SPage Sector 
(see FIG. 13). On a read from the Flash Group to the Stage 
Buffer, the ECC information is used by ECC Check 3104, as 
is described below. 

In the currently preferred embodiment, ECC Generation 
3103 generates twelve ECC symbols per sector, thus using 
12 ECC bytes per sector, using the Hamming algorithm. 
This requires a little less than 20 bytes for storage, and it is 
for this reason that SPage Sector ECC Field 1303 consists of 
20 bytes. The amount of ECC generated per sector is 
programmable, based on a register in ECC Logic 3102 that 
is set at initialization. In an alternate embodiment, by setting 
the ECC size to Zero, and rearranging or eliminating the 
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space taken up by other fields, it would be possible to shrink 
the size of an SPage Sector and therefore allow each 
SuperPage to hold 16 sectors (and therefore handle 16 
LBAs). 
When data is read from Flash Group 301, ECC Genera 

tion 3103 generates a new set of ECC bits for each sector. 
ECC Check 3104 then compares the newly-generated ECC 
bits against the contents of ECC Field 1303. The results of 
this comparison are conveyed using a flag, which indicates 
either that the ECC bits matched, or that an error was 
discovered. Methods for generating and checking ECC 
information are well-known in the art and will not be further 
described herein. 
When ECC Check 3104 discovers an ECC error, Flash 

HEMi 307 copies the Sector data and metadata (including 
ECC Field 1303) from Stage Buffer 308 into ECC Correc 
tion Engine 3101. The ECC Correction Engine uses the 
contents of ECC Field 1303 to attempt to correct errors 
introduced into the data during the course of writing to or 
reading from Flash Group 301. Again, the details of ECC 
correction processes are well-understood in the art and are 
not described herein. In the currently preferred embodiment 
the ECC Correction Engine is capable of correcting twelve 
errors per sector, based on the approximately 20 bytes of 
ECC information. 

If ECC Correction Engine 3101 is successful in correcting 
the data, Flash HEMi 307 takes the output from ECC 
Correction Engine 3101 and writes it back into Stage Buffer 
308, with the corrected data then being used for the ultimate 
transmission to the Host. (As should be understood from the 
discussion in connection with FIG. 27 above, although two 
transfers are involved, the HEMi design allows for each 
doubleword of data to be transferred from ECC Correction 
Engine 3101 to Stage Buffer 308 using a single HEMi 
instruction). If the number of errors is too great for ECC 
Correction Engine 3101 to correct, a second-level error 
correction protocol is invoked. This protocol has two stages. 
In the first stage, the read from the Flash Group to the Stage 
Buffer is repeated one or more times, initiating the error 
correction cycle again with the same sector. This is done 
because errors sometimes result from cells that are at the 
threshold between reporting one state and another, and a 
reread may generate additional valid bits. If the ECC Cor 
rection Engine is able to correct the data the second (or 
Subsequent) time, the corrections are made, the physical 
sector is marked as “bad,” and the data is rewritten into 
another sector. 

In a second stage of the second-level error correction 
protocol, the data is read repeatedly and OR'd together with 
the results of earlier reads. As a result of the OR operations, 
if a “1” is encountered at a bit position during any of the 
reads, that “1” will be maintained, even if the value at that 
bit position is read as “0” during earlier or later reads. This 
procedure is used because flash memory errors commonly 
result from a leakage of charge from a flash cell, causing the 
value in the cell to be read as a “0” rather than a “1” (e.g., 
read disturbs). Because the leakage may result in the cell 
having an intermediate charge level, between 0 and 1. 
different reads may result in different values being returned. 
The OR process maximizes the number of 1s received from 
the reads. Once the OR process has completed a set number 
of times, the value is returned to ECC Correction Engine 
3101 to determine if the data can now be corrected. 
The OR process may actually increase data corruption, if 

that corruption resulted from charge increasing on a cell, 
such that a “0” value is intermittently read as a “1.” This case 
is relatively rare, however, though it makes sense to use the 
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OR process only after the first stage of the second-level error 
correction (reading without OR'ing) has failed. 

If ECC Correction Engine 3101 is ultimately unable to 
correct the data, the Flash HEMi issues an error message that 
is sent through the Host Port to the Initiator associated with 
the data. 

In the currently preferred embodiment, the corrected data 
is not written back into the flash unless the number of errors 
exceeds a threshold. The threshold is set based on the 
number of correctable errors (12 per sector, in the current 
embodiment), minus a guardband calculated based on the 
likelihood of additional errors being introduced on a subse 
quent read. In the currently preferred embodiment, the 
inventors have determined that the number of errors found 
in a sector read is very unlikely to be greater than three more 
(or three less) than the number of errors found in the 
immediately preceding read of that sector. Thus, for 
example, if on a read a sector has three correctable errors, on 
the next read it is highly likely to have six or fewer 
correctable errors. 
As should be understood, this behavior means that, if a 

sector has nine or fewer correctable errors on a read, it is 
highly likely that on the next read the sector will have twelve 
or fewer errors, meaning that the errors will be correctable 
on the next read. This, in turn, means that it is unnecessary 
to write the corrected data back to the flash. Avoiding such 
writes is significant, since writing corrected data to the flash 
requires that the entire SuperPage be rewritten. 

In the current embodiment, the guardband is set at four, 
rather than three, to further minimize the possibility that 
uncorrectable errors will be found on a subsequent read. 
Thus, the threshold of correctable errors discovered on a 
read is set at eight. If more than eight errors are discovered, 
the write handler is called and the SuperPage containing the 
sector is rewritten to the flash, including the corrected data. 
If fewer than eight errors are discovered, the SuperPage is 
not rewritten, since it is anticipated that the number of errors 
will still be correctable in the next read. 

In an alternate embodiment, a SuperBlock containing 
errors may be identified for preferential garbage collection, 
since the presence of errors in certain sectors may mean that 
adjoining sectors also contain errors. Preferential garbage 
collection involves a certain amount of inefficiency, since 
the selected SuperBlock will probably contain more valid 
data than the SuperBlock that would have been selected 
without the preference (see below for a discussion of gar 
bage collection), but this inefficiency is much less than the 
inefficiency imposed by immediately rewriting any Super 
Page found to contain errors. 

IV. Metadata Structures 

A. DRAM Structures. 
FIG. 32 illustrates data structures found Data Path DRAM 

107, each of which is set up and initialized at system 
initialization. These include the following structures: 

Forward Table 3201, which is used to translate between 
LBA addresses and flash memory addresses. This Table is 
described in greater detail in connection with FIG. 33. 
IOP Data Buffer 3202, which stores data being transferred 

between Host Interface 310 and Flash Memory Module 108. 
ARM Execution Code 3203, which stores software 

executed by ARM Processor 2002. In the currently preferred 
embodiment, this software is written in the C++ program 
ming language. 
ARM Data 3204, which constitutes a memory space used 

by ARM Processor 2002 during processing. 
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Reverse Table Block 3206, which is used for garbage 

collection and for recovering from a power loss. Reverse 
Table Block 3206 contains a separate table for each Flash 
Port, e.g., Table 3205 contains the Reverse Table for Flash 
Port 0. Reverse Table 3205 is described in greater detail in 
connection with FIG. 34. 

SuperBlock Metadata Tables Block 3207, which contains 
metadata tables for the currently open SuperBlock for each 
Flash Port. These tables are further described in connection 
with FIG. 35. 
HEMi Code Overlay Table 3208, which contains firm 

ware that is loaded into each HEMi at initialization. This 
Table contains eight code overlays for each type of HEMi, 
e.g., Entry 3209 contains eight firmware overlays for the two 
Receive HEMi’s, Entry 3210 contains eight firmware over 
lays for the two Transmit HEMi’s, etc. These overlays are 
swapped into and out of the HEMi iRAMs as necessary, in 
a manner explained in greater detail above. 
SCSI Tag Table 3211, which contains one row for each 

currently active Initiator, and one column for each of the 
65,536 possible values allowed for a SCSI Tag according to 
the SCSI Protocol. When a CDB is received containing a 
particular SCSI Tag, the bit is set in the SCSI Tag Table 
location corresponding to that Initiator and that SCSI Tag. 
When execution of the CDB has completed, that bit is 
cleared. This allows SSD Controller 106 to check to make 
sure that all received SCSI Tags are unique, and that an 
Initiator never has two active CDBs with the same SCSI Tag. 
Debug Buffer 3212. This is a circular buffer that stores 

debug data received from Debug FIFO 2210. This debug 
data is collected during normal system operation, in 
response to debug commands in HEMi firmware. Informa 
tion collected includes the basic command flow of CDBs 
received and data structures generated as a result (CDBInfo, 
IOP, Transfer Requests). In the case of a detected error, 
additional debug information is collected in order to identify 
the type of error and the nature of the response made to the 
error, if any. 

FIG. 33 shows Forward Table 3201. Forward Table 3201 
is used to translate LBA addresses received from Hosts 101 
and 102 into actual physical flash memory addresses in 
Flash Memory Module 108. 

Forward Table 3201 is indexed by LBA, and contains one 
entry for each fifteen LBAs that the system can support. As 
is shown in FIG. 33, the first entry in Forward Table 3201 
relates to LBAs 0-14, the second entry to LBAS 15-29, the 
third entry to LBAS 30-44, etc. Note that the number of 
LBAs per entry is the same as the number of LBAs that can 
be stored in a SuperPage. In a different embodiment, involv 
ing larger or Smaller SuperPages, the number of LBAS per 
Forward Table entry would likewise become larger or 
Smaller. 
The size of Forward Table 3201 is dependent on the total 

memory size of Flash Module 108. In the currently preferred 
embodiment, a 300 Gigabyte Flash Module can store 
approximately 600 million LBAs, thereby requiring 
approximately 40 million possible entries in Forward Table 
3201. The size of Forward Table 3201 would be correspond 
ingly larger or Smaller for larger or Smaller quantities of 
memory. 

For each LBA entry, Forward Table 3201 includes infor 
mation that can be used to identify the location of the 
corresponding data on the physical flash memory chips: 
Port, Bank, Block and Page. 

In addition, Forward Table 3201 contains a field desig 
nated “User,” which can store information that a particular 
customer may find useful. In one embodiment, the user field 
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stores the number of times the associated LBAs have been 
accessed (read or written) during a predefined maintenance 
period (e.g., one month). Users may use this information to 
determine whether a particular group of LBAS contains 
information that is used more or less often. Information used 
often may be moved into a faster, higher cost memory. 
Information not used very often may be moved into slower, 
archival memory. 

In operation, Forward Table 3201 operates as follows: an 
LBA is received from a Host, e.g., LBA23. The LBA is 
divided by 15, with the whole-number quotient used to 
obtain an index into Forward Table 3201. For example, for 
LBA23, dividing by 15 gives a quotient of “1,” meaning that 
the physical address information for that LBA is found by 
indexing one row into the Forward Table. This is the row 
labeled LBA 15-29 in FIG. 33. 
The selected row identifies the Port at which the LBA 

information is stored, and therefore the Flash HEMi and 
Flash Group used to access the information. The selected 
row further identifies the particular Bank at which the 
information is stored, and therefore the CS signal used by 
the selected Flash HEMi to select the information. 

The selected row also identifies the Block in which the 
information is found. Note that this is the same block on 
each chip of the Bank. 

Finally, the selected row identifies the Page in which the 
information is found. For example, the row may identify 
Page 1 of Block 1. (As should be understood, in this 
example, the LBA would actually be stored in SuperPage 1 
of Block 1.) 
As is described above, each SuperPage includes fifteen 

SPage Sectors, each of which can store contents relating to 
a single LBA. Once the SuperPage has been identified from 
Forward Table 3201, the actual SPage Sector in the Super 
Page is obtained by taking the remainder from the division 
described above. In the example given, the remainder is 
eight (23/15=1, remainder 8). The requested LBA informa 
tion would thus be found in the ninth PSector slot in each 
selected Page (ninth, rather than eighth because the Table 
begins with LBA 0). 

FIG. 34 shows Reverse Table 3205. As is described 
above, Data Path DRAM 107 contains one Reverse Table for 
every Flash Memory Group. 
As is described above, each Block consists of 64 Super 

Pages, each of which is made up of memory space from four 
Pages, one from each Die in the Bank. As is also described 
above, a SuperBlock consists of the same Block from each 
Bank in the Group. For example, SuperBlock 0 of a par 
ticular Flash Group consists of all Block 0s from all Banks 
in that Group. 
Column 3401 represents SuperBlock(0), with rows for 

SuperPages 0-63 of Bank 0, SuperPages 0-63 of Bank 1, 
etc., with each group of 64 SuperPages on one Bank 
representing a Block. 

Each of the SuperPage rows in Table 3205 (e.g., Row 
3402) contains an entry for the same SuperPage in every 
SuperBlock (e.g., SuperPage 0 of SuperBlocks 0-n). 

Each SuperPage field in Reverse Table 3205 contains a 
single Valid bit. When set to “1,” the Valid bit indicates that 
the SuperPage either contains currently valid, programmed 
data (i.e., the SuperPage has been written with data that 
remains valid), or has been erased and is available to be 
written (i.e., contains a value of 0xffffffff, which is the 
default state after an erase). When set to "0, the Valid bit 
indicates that the SuperPage contains invalid data, meaning 
that it cannot be read from and is not available to be written 
to. A SuperPage is invalidated when the LBAs stored on that 
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SuperPage are subjected to a later write. Because flash 
memory does not allow direct overwrites, when an LBA on 
a SuperPage is overwritten, the new data, plus any old data 
that remains valid on the SuperPage, are copied to a new 
SuperPage, and the old SuperPage is marked invalid, mean 
ing that it is no longer to be used (pending garbage collec 
tion, which is described below). 

Thus, for example, a “1” in Field 3403 would indicate that 
SuperPage 1 of Block 0 of Bank 0 of the Flash Group either 
contains valid data or has been erased and is available for 
writing, whereas a “0” in that field would indicate that the 
data in SuperPage 1 of Block 0 of Bank 0 of the Flash Group 
is invalid. 

Reverse Table 3205 also contains a Count row. Each entry 
in this row contains a number representing the total number 
of SuperPages in the SuperBlock that are currently invalid. 
Thus, Field 3404 stores a number representing the number 
of currently invalid SuperPages in SuperBlock 0. 
The Count can be calculated by adding up the number of 

“0” Valid bits in the column. The Count is separately 
maintained, however, as a performance optimization, since 
maintaining the total count in a separate field avoids the 
necessity for calculating this number when it is needed. The 
Count is used for garbage collection purposes, in a manner 
described in greater detail below. 

Reverse Table 3205 also contains a Time Stamp row, 
shown as Row 3405. This contains a Time Stamp indicating 
the time when each SuperBlock was originally closed for 
writing. This fields uses include the rebuilding process, 
which is described below in connection with FIG. 58. 

Reverse Table 3205 also contains an Erase Count row, 
shown as Row 3406. This contains a count of the number of 
times the SuperBlock has been erased, and can be used, for 
example, to prioritize SuperBlocks with higher erase counts 
for garbage collection. 

FIG. 35 illustrates SuperBlock Metadata Table 3501, 
which contains metadata information relating to one Super 
Block. A SuperBlock Metadata Table is stored in SuperPage 
0 of Bank 0 of each SuperBlock (e.g., the SuperBlock 
Metadata Table for SuperBlock 0 of Port 0 is stored in 
SuperPage 0 of Block 0 of Port 0). In addition, the Super 
Block Metadata Table for the SuperBlock that is currently 
open for writing for each Flash Group is stored in Super 
Block Metadata Tables Block 3207 of DRAM 107. 

SuperBlock Metadata Table 3501 contains one row for 
each SuperPage in the SuperBlock, organized by Bank. 
Thus, Row 3502 contains information for SuperPage 0 of 
Bank 0. This is followed by Row 3503, which contains 
information for SuperPage 1 of Bank 0, and on through 
SuperPage 63 of Bank 0, followed by Row 3504, which 
contains information for SuperPage 0 of Bank 1, and so on 
until the last Bank (designated as Bank n in FIG. 35) is 
reached. 

SuperBlock Metadata Table 3501 stores three types of 
metadata for each SuperPage: a SuperPage Time Stamp, 
Defect Flag, and LBA. 

SuperPage Time Stamp Column 3505 contains the time 
when the SuperPage was written. This information is also 
appended to the end of the SuperPage, and is used for 
rebuilding purposes in the event of a loss of data, in a 
manner described below. 

Defect Flag Column 3510 contains a single bit indicating 
whether the SuperPage has been marked as “defective. A 
SuperPage is identified as defective if any page from the 
SuperPage is indicated as being defective during a flash read 
or a write. If this occurs during a read, in one embodiment, 
the SuperBlock is forced into garbage collection. If this 


















































