

US009481910B2

(12) United States Patent

Rosen et al.

(54) METHODS AND COMPOSITIONS FOR THE DETECTION OF DRUG RESISTANT BRAF ISOFORMS

- (75) Inventors: Neal Rosen, Englewood, NJ (US);
 Poulikos Poulikakos, New York, NY (US); David Solit, New York, NY (US)
- (73) Assignee: MEMORIAL SLOAN-KETTERING CANCER CENTER, NY, NY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 560 days.
- (21) Appl. No.: 13/480,050
- (22) Filed: May 24, 2012

(65) **Prior Publication Data**

US 2012/0301878 A1 Nov. 29, 2012

Related U.S. Application Data

(60) Provisional application No. 61/519,593, filed on May 25, 2011.

(2006.01)

- (51) Int. Cl. *C12Q 1/68*
- (52) U.S. Cl. CPC *C12Q 1/6886* (2013.01); *C12Q 2600/156*
- (2013.01); *C12Q 2600/158* (2013.01) (58) **Field of Classification Search** None

See application file for complete search history.

(10) Patent No.: US 9,481,910 B2

(45) **Date of Patent:** Nov. 1, 2016

(56) **References Cited**

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

Seth et al. (Gut, 2009:58, p. 1234-1241, Abstract only).* Smith et al. (Human Pathology, 2011, 42:500-506).* Nazarian et al. (Nature, 2010, vol. 468:973-978).* Flaherty, Keith T., et al , "Inhibition of Mutated, Activated BRAF in Metastatic Melanoma", *The New England Journal of Medicine*, vol. 363(9), pp. 809-819 (2010).

* cited by examiner

Primary Examiner — Stephanie K Mummert (74) Attorney, Agent, or Firm — Heslin Rothenberg Farley and Mesiti, PC; Kathy Smith Dias, Esq.

(57) ABSTRACT

The present invention provides methods and compositions for the detection of novel BRAF splice variants that mediate resistance to BRAF and/or pan-RAF inhibitors. In particular, the invention provides $\bar{\text{PCR}}$ primer(s) to be used in the disclosed methods of detection. In some embodiments, the compositions and methods of the present invention are used to predict resistance to BRAF and/or pan-RAF inhibitors in a subject suffering from or suspected of having cancer and further provides alternative treatment strategy(ies) for a subject predicted to be resistant to BRAF and/or pan-RAF inhibitors. In a further embodiment, methods and composition for the identification of novel agents useful to overcome resistance to BRAF and/or pan-RAF inhibitors are disclosed. The present invention also provides isolated polynucleotide sequences of novel 5' BRAF splice variant(s) and proteins produced from such polynucleotide sequences as well as cell line(s) that endogenously or exogenously express the splice variant(s).

7 Claims, 30 Drawing Sheets

Par. C1	C2 C3 C4 (+ + +	C5 + PLX4032/2	μM
	••		
		pMEK	
		pERK	
-		рАКТ	
		MEK	
	Figure	1C	

GENOMIC DNA

	Control	p61VE	
	*	•••••	PLX 2µM/1 hour
			pMEK
	-	600	pERK
		<u> </u>	NIEK
			BRAF
			V5
SI	KMEL239- F	Parental	
		Figu	ire 11A

METHODS AND COMPOSITIONS FOR THE DETECTION OF DRUG RESISTANT BRAF ISOFORMS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application No. 61/519,593 filed May 25, 2011, the contents of which are hereby incorporated by reference in their ¹⁰ entirety into the present disclosure.

SEQUENCE LISTING

This application contains a Sequence Listing, created on ¹⁵ Apr. 24, 2012; the file, in ASCII format, is designated 3314020A_Sequence Listing_ST25.txt and is 38.3 kilobytes in size. The sequence listing file is hereby incorporated by reference in its entirety into the application.

FIELD OF THE INVENTION

This invention relates generally to splice variants of the BRAF gene and in particular to BRAF splice variants that correlate with resistance to inhibition of activated BRAF. ²⁵ The invention further relates to methods for detecting the presence of gene products of BRAF splice variants.

BACKGROUND OF INVENTION

The v-raf murine sarcoma viral oncogene homolog B1, also known as NS7; BRAF1; RAFB1; B-RAF1; FLJ95109; MGC126806; MGC138284; or BRAF, (as used herein, "BRAF"), is a serine/threonine protein kinase that plays a critical role in the MAP Kinase/ERK signaling pathway 35 which mediates physiological cell functions such as growth and differentiation. Aberrant activation of MAP Kinase/ ERK signaling can result in the development and progression of multiple types of cancer. As such, the components of the MAP Kinase/ERK signaling pathway are considered 40 attractive therapeutic targets for cancer treatment. In particular, activating mutations in BRAF have been shown to occur in ~80% of melanoma, ~50% of papillary thyroid cancer, and 10% of colon cancers with an overall occurrence in ~8% in all types of cancer. SEQ ID NO 1 displays the full 45 length mRNA Homo sapiens BRAF mRNA and is from Genebank accession number NM 004333.4. In BRAF, the single nucleotide substitution at nucleotide position 1798 (T→A, thymine to adenine) produces an amino acid substitution at amino acid position 600 (V→E, valine to gluta- 50 mate) in the catalytic kinase domain resulting in constitutive activation of BRAF (as used herein "V600E" or "BRAF (V600E)"). The V600E mutation accounts for ~90% of all activating BRAF mutations.

Given the importance of activated BRAF and, in particu-55 lar, BRAFV600E in cancer progression, there has been much effort to develop both pan-RAF and selective BRAF inhibitors as potential therapeutics; multiple agents are currently undergoing clinical evaluation including GSK218436, ARQ 736, PLX3603, PLX4032 (also known as vemurafenib, RG7204 or RO5185426 and herein referred to as "PLX4032"), BMS908662, RAF265, XL281, and BAY 43-9006. Clinical results have shown that tumors harboring activating BRAF mutations show remarkable response, including delay in progression and/or tumor regression, to 65 treatment with such pan-RAF and selective BRAF inhibitors. Despite the initial response to such treatment, the

majority of the patients develop resistance to treatment with such pan-RAF and/or BRAF inhibitors within 2-18 months. Preliminary in vitro and animal model experiments have suggested that such acquired resistance can arise from activating mutations in the MAP Kinase/ERK signaling pathway upstream RAS or downstream MEK and from activation of parallel signaling pathways. However, it is still not clear if all cases of resistance are mediated by such mechanisms nor is it clear if such mechanisms are clinically relevant. To date, no compensatory mutations in BRAF itself have been shown to drive said resistance.

Therefore there is a need in the art for further evaluating the mechanism of acquired resistance and to validate such mechanisms in the clinical setting. This will allow more ¹⁵ complete diagnostic tests to be developed in order to stratify patients for treatment and will provide an opportunity to better tailor treatment strategies in the resistant patient. Further, there is a need in the art for novel second-line therapeutics to treat patients who become resistant to treat-²⁰ ment with pan-RAF and/or BRAF inhibitor(s) and exhibit progression or relapse despite an initial response to BRAF inhibition.

SUMMARY OF THE INVENTION

The present invention is based on the identification of novel 5' BRAF splice variants in tumor cells and cell lines that are resistant to BRAF inhibitors. The splice variants are the results of splicing events in which exons or portions thereof of the regulatory domain of BRAF are lost.

In one aspect, therefore, the invention relates to purified polypeptides comprising the amino acid sequence of a BRAF(V600E) splice variant. These include splice variants in which all or some portion of exons 2-10 have been deleted. Included are BRAF(V600E) splice variants containing a deletion of exons 2-10, exons 4-10, exons 2-8, exons 4-8, etc. Polypeptides of the BRAF(V600E) splice variants disclosed herein will therefore, contain a deletion of amino acids encoded by the deleted exons. These include without limitation those having the amino acid sequence of any of SEQ ID NOS: 16-19, for example.

In a related aspect, the invention relates to isolated nucleic acids that encode the BRAF(V600E) splice variant polypeptides disclosed herein. Nucleic acids disclosed herein include: a nucleic acid having the nucleotide sequence of BRAF(V600E) in which exons 2-10 of BRAF(V600E) are deleted, giving rise to a splice variant in which exon 1 is joined to exons 11-18 of BRAF(V600E); a nucleic acid having the nucleotide sequence of BRAF(V600E) in which exons 2-8 have been deleted, giving rise to a splice variant in which exon 1 is joined to exons 9-18 of BRAF(V600E); a nucleic acid having the nucleotide sequence of BRAF (V600E) in which exons 4-8 are deleted, giving rise to a splice variant in which exons 1-3 are joined to exons 11-18 of BRAF(V600E); a nucleic acid having the nucleotide sequence of BRAF(V600E) in which exons 2-8 have been deleted giving rise to a splice variant in which exons 1-3 are joined to exons 9-18 of BRAF(V600E); and so on. The nucleotide sequences of some embodiments of splice variants disclosed herein are set forth in SEQ ID NOS: 13-15.

In yet another related aspect, the invention relates to vectors comprising the nucleic acids disclosed herein as well as cells that have been transfected with these vectors to express the BRAF(V600E) splice variants. Isolated cells that endogenously express the BRAF(V600E) splice variants disclosed herein are also encompassed by the invention. These include, for example, SKMEL-239 clones C1-05.

In another aspect, the invention relates to synthetic oligonucleotides that hybridize under stringent conditions to a gene product encoded by the BRAF(V600E) splice variants. These oligonucleotides find use as primers and probes for techniques such as PCR and microarray technology for the 5 detection, identification and characterization of BRAF (V600E) splice variants in a sample. Oligonucleotides that specifically hybridize to a region of exon 1 of BRAF (V600E) (SEQ ID NO: 20), a region of exons 11-18 (SEQ ID NO: 21) and/or to new splice junctions (e.g. 1-11, 1-9, 10 3-11 and 3-9) created by the deletion of one or more exons (e.g., SEQ ID NOS: 4, 6, 7) are advantageous. Synthetic oligonucleotides may be from about 10-30 nucleotides in length; in some embodiments, synthetic oligonucleotides are about 18-21 nucleotides in length. In other embodiments, a 13 synthetic oligonuceotide that hybridizes to a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7 plus 0 to 12 contiguous nucleotides of SEQ ID NO: 13 flanking SEQ ID NO: 7 may be useful as a 3-11 Splice junction primer, a synthetic oligonuceotide that hybridizes to a 20 of detecting a variant form of BRAF comprising: nucleic acid comprises the nucleotide sequence of SEQ ID NO: 4 plus 0 to 12 contiguous nucleotides of SEQ ID NO: 14 flanking SEQ ID NO: 4 may be useful as a 1-9 Splice junction primer and a synthetic oligonuceotide that hybridizes to a nucleic acid comprising the nucleotide sequence of 25 SEQ ID NO: 6 plus 0 to 12 contiguous nucleotides of SEQ ID NO: 15 flanking SEQ ID NO: 6 may be useful as a 3-9 Splice junction primer.

In a related aspect, the invention relates to methods for detecting BRAF(V600E) splice variants in a sample using 30 primers and/or probes disclosed herein. In one embodiment, the method comprises contacting a sample with primers or probes that are specific for a gene product of one or more BRAF(V600E) splice variants. Gene products include mRNA, cDNA and protein. Primer pairs of the invention 35 may include a primer pair comprising a first primer with the nucleotide sequence of SEQ ID NO: 4 and a second primer with the nucleotide sequence of SEQ ID NO: 5; a primer pair comprising a first primer with the nucleotide sequence of SEQ ID NO: 6 and a second primer with the nucleotide 40 sequence of SEQ ID NO: 5; a primer pair comprising a first primer with the nucleotide sequence of SEQ ID NO: 7 and a second primer with the nucleotide sequence of SEQ ID NO: 8 and the like. A primer set for the detection of multiple variants includes a primer pair for each variant. 45

In general, oligonucleotides of the invention may be used in pairs of forward and reverse primers and in sets of pairs that are able to detect multiple variants in accordance with methods well known to those of skill in the art. Accordingly they may be employed in the detection of BRAF(V600E) 50 variants using any method known to the skilled artisan for analyzing gene products.

In another related aspect, the invention relates to a method of detecting a variant form of BRAF mRNA, the method comprising

(a) combining a sample possibly containing a variant form of BRAF cDNA selected from the group consisting of

a BRAF(V600E) gene product comprising exons 1 and 9-18 of BRAF(V600E) DNA;

a BRAF(V600E) gene product comprising exons 1-3 and 609-18 of BRAF(V600E) DNA; and

a BRAF(V600E) gene product comprising exons 1-3 and 11-18 of BRAF(V600E) DNA with: (i) a forward primer capable of hybridizing to an exon 1-9 splice junction (SEQ ID NO: X) of the cDNA encoding the variant BRAF; and a 65 reverse primer that is at least 10 nucleotides long and corresponds to a sequence from BRAF exons 11-18; (ii) a

4

forward primer capable of hybridizing to an exon 3-9 splice junction (SEQ ID NO: X) of the cDNA encoding the variant BRAF; and a reverse primer that is at least 10 nucleotides long and corresponds to a sequence from BRAF exons 11-18; or (iii) a forward primer capable of hybridizing to an exon 3-11 splice junction (SEQ ID NO: X) of the cDNA encoding the variant BRAF and a reverse primer that is at least 10 nucleotides long and corresponds to a sequence from BRAF exons 11-18; or a combination of (i), (ii), and (iii). The method further comprises combining the sample with reagents for PCR to form a mixture and subjecting the mixture to thermocycling, and determining the absence or the presence of the cDNA corresponding to at least a portion of the variant form of BRAF mRNA in the thermocycled

mixture, wherein the presence of the cDNA indicates that the sample comprises a variant form of BRAF. In one embodiment, detection of three variants is desired.

In another aspect, the invention also relates to a method

(a) combining a sample with:

- (i) a first primer capable of hybridizing under stringent conditions to an exon 1-9 splice junction of a nucleic acid encoding a BRAF (V600E) variant; and a second primer that hybridizes to a sequence from exons 11-18 of BRAF(V600E);
- (ii) a third primer capable of hybridizing under stringent conditions to an exon 3-9 splice junction of a nucleic acid encoding a BRAF (V600E) variant; and a fourth primer that hybridizes to a sequence from exons 11-18 of BRAF(V600E);
- (iii) a fifth primer capable of hybridizing under stringent conditions to an exon 3-11 splice junction of a nucleic acid encoding a BRAF(V600E) variant and a sixth primer that hybridizes to a sequence from exons 11-18 of BRAF(V600E); or
- (iv) any combination of (i), (ii), and (iii); and

(b) combining the sample with reagents for PCR to form a mixture and subjecting the mixture to thermocycling, and determining the absence or the presence of a nucleic acid corresponding to at least a portion of the variant form of BRAF mRNA in the thermocycled mixture, wherein the presence of the nucleic acid indicates that the sample comprises a variant form of BRAF.

In a related aspect, therefore, the present invention provides a kit comprising at least one PCR primer as described herein. Such kit can further comprise reagents required for PCR and instructions for practicing the methods of the present invention.

In yet another related aspect, the invention relates to a gene expression panel or array for detecting a splice variant of BRAF, wherein the panel or array comprises probes capable of detecting splice junctions of BRAF.

In another aspect, the compositions of the invention can 55 be used to perform a method to determine the resistance of a cell or tissue to a BRAF inhibitor, the method comprising (a) contacting a sample containing a gene product isolated from said cell or tissue with a detectable primer/probe of the invention that binds to a splice variant of BRAF(V600E); and (b) measuring the amount of detectable primer/probe to determine the presence in said sample of a BRAF(V600E) splice variant, wherein the presence of said splice variant indicates that the cell or tissue is resistant to the BRAF inhibitor.

In a related aspect, the invention relates to an in vitro method for monitoring vemurafenib treatment in an subject, the method comprising:

- (a) contacting a gene expression product from a melanoma cell or tumor sample from the subject with a detectable probe or primer that can hybridize to a BRAF(V600E) splice variant in said sample;
- (b) measuring the amount of detectable probe or primer in 5said sample to determine the presence of said BRAF (V600E) splice variant, wherein the presence of said BRAF(V600E) splice variant indicates that the cell or tumor is resistant to vemurafenib. The BRAF(V600E) variant may have a nucleotide sequence selected from SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15.

In yet another aspect, the invention provides a cell-based method of screening a test compound for use as a RASindependent RAF inhibitor, said method comprising:

- (a) contacting a cell comprising a BRAF(V600E) splice variant with said test compound under conditions suitable for cell growth;
- (b) measure the amount of cell growth and/or cell death of cells grown in the presence and absence of the test 20 compound;
- (c) compare the amount of cell growth and/or cell death of cells grown in the presence and absence of the test compound, wherein increased cell death and/or decreased cell growth in the presence of said test 25 compound indicates that said test compound has RASindependent BRAF inhibitory activity.

In yet another related aspect, the invention relates to a method of screening a test compound for use as a RASindependent BRAF inhibitor, said method comprising: 30

- (a) contacting a sample that comprises BRAF(V600E)splice variant polypeptides with said test compound;
- (b) measuring the amount of dimerization of said BRAF (V600E) splice variant polypeptides in said sample in the presence and absence of the test compound;
- (c) compare the amount of dimerization in the presence and absence of the test compound, wherein a decrease in dimerization in the presence of said test compound compared with the amount of dimerization in the compound has RAS-independent BRAF inhibitory activity. The measuring step may be performed using an assay selected from the group consisting of western blot, immunoprecipitation, Förster resonance energy transfer (FRET), or bimolecular fluorescence comple- 45 PLX4032. mentation. (BiFC).

DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1E show that resistance to the RAF inhibitor 50 PLX4032 is associated with failure of the drug to inhibit ERK signaling.

FIG. 1A shows IC50 curves for the SKMEL-239 parental cell line and five PLX4032-resistant clones treated with PLX4032 for 5 days.

FIG. 1B shows the effects of 2 µM PLX4032 at various time points on ERK signaling in parental (Par) and resistant clones (C1-5).

FIG. 1C shows a Western blot for components of the ERK and AKT signaling pathways in parental and resistant clones 60 treated with 2 µM PLX4032 for 24 hours.

FIG. 1D shows the dose-response of pMEK and pERK downregulation at 1 hour to increasing concentrations of PLX4032 in parental and two representative resistant clones (C3 and C5). 65

FIG. 1E shows a graphic representation of the chemiluminescent signal intensities from 1D and determination of IC50s for inhibition of MEK phosphorylation by PLX4032 in the parental and C3 and C5 clones.

FIGS. 2A-2E shows a newly identified BRAF(V600E) variant that lacks exons 4-8 and is resistant to the RAF inhibitor PLX4032.

FIG. 2A shows the PCR analysis of BRAF in cDNA from parental (P) and C3 cells. PCR primers of the present invention [SEQ ID NOS 2 and 3] were used to amplify the BRAF gene. Sequencing of the 1.7 kb product expressed in the C3 clone, but not in parental cells, revealed an in frame deletion of five exons (exons 4-8) in cis with the V600E mutation resulting in the creation of a novel splice junction joining exon 3 and exon 9 (referred to herein as the "3_9 splice junction"). The expected protein product from the 1.7 kb mRNA has 554 amino acids and a predicted molecular weight of 61 kd.

FIG. 2B. Full length wild-type BRAF and the novel 1.7 kb/61 kd splice variant of BRAF(V600E) lacking exons 4-8 (referred to herein as "p61 BRAF(V600E)") were cloned into a pcDNA3.1 vector with a FLAG tag at the C-terminus and expressed in 293H cells. The effect of PLX4032 (2 µM for 1 hour) on ERK signaling in the 293H cells expressing p61 BRAF(V600E) was analyzed by Western blot for pMEK and pERK.

FIG. 2C. To compare levels of dimerization, 293H cells co-expressing FLAG tagged and c-terminal V5-tagged p61BRAF(V600E), full length BRAF(V600E) and the corresponding dimerization-deficient mutants p61 BRAF (V600E/R509H) and BRAF(V600E/R509H) were lysed followed by immunoprecipitation with FLAG antibody. Western blots with V5 or FLAG antibodies were performed as indicated.

FIG. 2D shows a comparison of MEK/ERK activation 35 and sensitivity of ERK signaling to 2 µM PLX4032 treatment for 1 hour in 293H cells expressing either Flag-tagged BRAF(V600E) or the dimerization mutant Flag-tagged BRAF(V600E/R509H).

FIG. 2E. Constructs expressing V5-tagged BRAF absence of said test compound indicates that said test 40 (V600E), p61 BRAF(V600E) or the dimerization mutant p61 BRAF(V600E/R509H) were transfected into 293H cells and treated with 2 µM PLX4032 for 1 hour.

> FIGS. 3A-3C illustrates the identification of novel splice variants of BRAF(V600E) in human tumors resistant to

FIG. 3A. PCR analysis of cDNA derived from tumor samples using PCR primers of the present invention [SEQ ID NOS 2 and 3]. In samples with only one band (full-length BRAF), the inventors of the present invention detected both BRAF(V600E) and wild-type BRAF (bands 1+2). In resistant tumor samples expressing shorter transcripts, the shorter transcript was a splice variant of BRAF(V600E) (bands 3, 4, 5). The figure shows samples from three patients with acquired resistance to PLX4032: pre- and post-treatment 55 samples from patient I and post-treatment samples from patients II and III. A tumor sample from a patient with de novo resistance to PLX4032 (patient IV) is also shown.

FIG. 3B. Representative Sanger sequencing trace showing the novel BRAF splice junction joining exon 3 and exon 11 (referred to herein as the "3_11 splice junction") (i.e. novel 5' BRAF splice variant with deletion of exons 4-10) in the tumor sample obtained at the time of acquired resistance from patient I, compared to the full-length transcript derived from the pre-treatment sample from the same patient.

FIG. 3C shows the exon organization of the novel 5' BRAF splice variants found in tumors from three patients that relapsed on PLX4032. The variant from patient II was

40

identical to the one identified in the C1, C3 and C4 PLX4032-resistant SKMEL-239 clones.

FIG. 4 is a model of p61 BRAF(V600E)-mediated resistance resulting from loss of the RAS-binding domain.

In the context of low RAS activity, the N' terminal 5 regulatory domain(s) of BRAF prevents dimerization and thus BRAF(V600E) exists predominantly as a monomer. Deletion of the RAS binding domain allows p61 BRAF (V600E) to dimerize even in the setting of low RAS activity. Under these conditions, drug binding promotes the active state of p61 BRAF(V600E), stabilizing in trans the active state of the non-drug-bound protomer within the dimer. The mechanism is reminiscent of the phenomenon of transactivation in the wild-type BRAF context, but with RAF kinase already in a highly active state, further induction of ERK signaling does not occur. The result is a failure of the RAF inhibitor to downregulate ERK signaling.

FIGS. 5A-5B shows the effects of PLX4032 on ERK pathway activation and survival in parental SKMEL-239 20 cells and the PLX4032-resistant clones.

FIG. 5A shows immunoblots of BRAF, phosphorylated MEK and ERK and total MEK. Cells were treated with $2\,\mu M$ PLX4032 for 24 hours. B. PLX4032 induced cell death in parental SKMEL-239 cells but not in the five resistant 25 clones as measured by accumulation of a sub-G1 peak by FACS analysis.

FIGS. 6A-6B shows that PLX4032-resistant cells are sensitive to MEK inhibition.

FIG. 6A shows IC50 (nM) curves following treatment of 30 parental SKMEL-239 cells and the five PLX4032-resistant cell lines with the MEK inhibitor PD0325901 for 5 days.

FIG. 6B shows the dose-response of pMEK and pERK inhibition to increasing concentrations of the MEK inhibitor PD0325901 in parental and two representative resistant 35 clones (C3 and C5).

FIG. 7 shows the results of Sanger sequencing and Sequenom traces from genomic DNA (A) and cDNA (B) showing that the parental SKMEL-239 cells and the C3 and C5 clones express the BRAF(V600E) mutant.

FIG. 8 shows the results from a phospho-tyrosine array showing RTK activity in the parental SKMEL-239 cells and the C3 and C5 resistant clones showing that PLX4032resistant SKMEL-239 clones maintain a similar global receptor tyrosine kinase ("RTK") activation state as the 45 parental SKMEL-239.

FIG. 9 shows an immunoblot for BRAF using an N-terminal directed antibody showing p61BRAF(V600E) in the C3 clones but not in a panel of 15 PLX4032 treatment naïve melanoma cell lines. The BRAF and NRAS status of the cell 50 require BRAF. lines is as indicated, showing that p61 BRAF(V600E) is not detected by western blot in a panel of PLX4032 treatmentnaïve melanoma cell lines.

FIG. 10 shows the quantitation of the transcript encoding p61 BRAF(V600E) in the parental and PLX4032-resistant 55 clones

RNA was extracted from the indicated cell lines and qPCR was carried out on reverse transcription products (cDNA). The PCR primers of the present invention were used to measure total BRAF [SEQ ID NOS 10 and 11] and 60 p61BRAF(V600E) [SEQ ID NOS 6 and 5]. Relative quantification is shown as fold-change of signal compared to the total amount of BRAF in the SKMEL-239 parental cell line. The amount of p61 BRAF(V600E) in the parental, C2 and C5 cell lines, was below the lower limit of detection. The 65 plot represents the mean of three independent experiments and error bars represent standard deviation.

FIG. 11A-11B show that ectopic expression of p61BRAF (V600E) in melanoma and colon cancer cell lines results in resistance to PLX4032.

FIG. 11A shows ectopic expression of p61 BRAF(V600E) in parental SKMEL-239 cells which endogenously expresses BRAF(V600E) and analysis of the effects of PLX4032 on inhibition of ERK signaling at 1 hour post PLX4032 treatment.

FIG. 11B shows ectopic expression of p61 BRAF(V600E) in HT-29 colon cancer cell line which endogenously expresses BRAF(V600E) and analysis of the effects of PLX4032 on inhibition of ERK signaling at 1 hour post PLX4032 treatment.

FIG. 12 shows that p61 BRAF(V600E) kinase activity can be inhibited in vitro by PLX4032 indicating p61 BRAF (V600E) is capable of binding PLX4032.

V5-tagged full length BRAF(V600E) or V5-tagged p61 BRAF(V600E) were ectopically expressed in 293H cells. 24 hours later, cells were harvested, lysed and BRAF was immunoprecipitated using a V5 antibody. Immunocomplexes were subjected to a kinase assay in the presence of the indicated concentrations of PLX4032 with recombinant inactive MEK (K97R) as substrate. Kinase activity was estimated by western blot for pMEK.

FIG. 13 shows the results of transfection of HT-29 cells (colorectal; BRAF(V600E)) with EGFP or HA-tagged NRAS(G12V) and subsequent treatment with PLX4032 at various concentrations for 1 h. The results indicate that expression of active RAS in BRAF(V600E) expressing cells renders MEK/ERK insensitive to RAF inhibitor.

FIG. 14 shows the results of transfection of HT-29 cells (colorectal; BRAF(V600E)) with EGFP or mutationally activated HER2 (V654E) and subsequent treatment with PLX4032 at various concentrations for 1 h. The results indicate that expression of active HER2 in BRAF(V600E) expressing cells renders MEK/ERK insensitive to RAF inhibitor.

FIG. 15 is a schematic showing the strategy employed to identify new mechanisms of resistance to vemurafenib. Cell lines resistant to the drug were generated by exposing the BRAF-mutant (V600E) melanoma cell line SKMEL-239 to a high dose of vemurafenib (2 μ M). After approximately 2 months of continuous drug exposure, vemurafenib-resistant cell populations were isolated and propagated for further analysis.

FIG. 16 shows the results of wild-type (+/+), BRAF knockout (BRAF-/-) or CRAF knockout (CRAF-/-) MEFs treated with the indicated concentrations of PLX4032 for 1 h. The results indicate that MEK/ERK activation does not

DETAILED DESCRIPTION OF THE INVENTION

All publications, patents and other references cited herein are incorporated by reference in their entirety into the present disclosure.

In practicing the present invention, many conventional techniques in molecular biology are used, which are within the skill of the ordinary artisan. These techniques are described in greater detail in, for example, Molecular Cloning: a Laboratory Manual 3rd edition, J. F. Sambrook and D. W. Russell, ed. Cold Spring Harbor Laboratory Press 2001; "Oligonucleotide Synthesis" (M. J. Gait, ed., 1984); "Current Protocols in Molecular Biology" (F. M. Ausubel et al., eds., 1987, and periodic updates); "PCR: The Polymerase Chain Reaction", (Mullis et al., ed., 1994); "A Practical Guide to Molecular Cloning" (Perbal Bernard V., 1988). The contents of these references and other references containing standard protocols, widely known to and relied upon by those of skill in the art, including manufacturers' instructions are hereby incorporated by reference as part of the 5 present disclosure.

As used herein, "cancer" refers to cells or tissues that have characteristics such as uncontrolled proliferation, immortality, metastatic potential, increased anti-apoptotic activity, etc. Some non-limiting examples of cancer include mela- 10 noma, colon cancer, lung cancer, breast cancer, pancreatic cancer, glioblastoma, sarcoma, leukemia, blood cancers, etc. As used herein, "tumor" refers to a group of cancer cells or tissues within a subject.

As used herein, a "subject" refers to any animal (e.g. a 15 mammal), including, but not limited to, humans, non-human primates, companion animals, rodents, and the like. Typically, the terms "subject" and "patient" are used interchangeably herein, particularly in reference to a human subject.

As used herein, "response" refers to the outcome when a 20 cell or subject is contacted with an agent (e.g. the cell or subject responds to such agent). A response can be favorable (e.g. desired) or unfavorable (e.g. undesired). By way of non-limiting example, a favorable response can be inhibition of cell growth when a cell is contacted with a particular 25 agent and an unfavorable response can be the accelerated growth of a tumor when a patient with a tumor is contacted with a particular agent.

As used herein, "agent" refers to a substance that elicits a response from a cell or subject when said cell or subject is 30 contacted with an agent. An agent can be a small molecule, a peptide, an antibody, a natural product, a nucleic acid, a chemical, etc. In some cases, an agent can be a composition used in the treatment of, or used to treat, a subject. An "inhibitor" is an agent that interferes with the normal 35 function of a polypeptide, cell, subject, etc.

As used herein, "inhibition" or "to inhibit" means to reduce a function of a polypeptide, cell or subject in response to an agent (e.g. an inhibitor) relative to such function of said polypeptide, cell or subject in the absence 40 of such agent.

As used herein, "treatment" or to "treat" means to address a disease in a subject and includes preventing the disease, delaying the onset of disease, delaying the progression of the disease, eradicating the disease (e.g. causing regression of 45 the disease), etc.

As used herein, "resistance" refers to a lack of response of a cell to an agent to which the cell used to respond (e.g. the cell is "resistant to" such agent). In the context of a patient, "resistance" refers to lack of response of a patient to 50 an agent to which said patient used to respond. Resistance can be acquired (e.g. develops over time) or inherent or de novo (e.g. a cell or subject never responds to an agent to which other similar cells or subjects would respond). By way of non-limiting example, a subject is said to be resistant 55 to treatment when such subject no longer responds to such treatment (e.g. the initial treatment of a subject with an agent results in delay of disease progression, but then such disease progresses even if said subject is still treated with such agent, the subject therefore becomes resistant, or develops 60 resistance to, to said agent, etc.)

As used herein, "nucleotide" refers to a nucleoside (e.g. a monosaccharide linked in glycosidic linkage to a purine (adenine (A) or guanine (G)) or pyrimidine (thymine (T), cytosine (C) or uracil (U)) base with at least one phosphate 65 group linked, typically at a 3' or a 5' position (for pentoses) of the saccharide, but can be at alternative positions of the

saccharide. The naturally occurring nucleotides are A, G, T, C, and U, but non-natural, artificial, and modified nucleotides are known in the art. A nucleotide can also be referred to as a "base" or "base pair".

As used herein, "polynucleotide" refers to a molecule comprised of multiple nucleotides linked in sequential fashion. A modification or derivative of naturally occurring nucleotides may occur at any sequential position in an oligonucleotide or a polynucleotide. The order in which the nucleotides are linked is typically referred to as the "nucleic acid sequence" or "DNA sequence" or "RNA sequence." Polynucleotides can be any number of nucleotides in length (e.g. anywhere from ~20 nucleotides to tens of thousands of nucleotides or more). Polynucleotides of shorter length (e.g. ~10-50 nucleotides) are typically referred to as "oligonucleotides" or "oligos."

As used herein, "gene" refers to a polynucleotide nucleic acid sequence (e.g. DNA) that comprises coding sequences necessary for the production of a polypeptide or precursor including both the full length coding sequence as well as any portion(s) of the coding sequence sufficient to produce a polypeptide, or portions thereof, with at least a portion of the functional property(ies) of the full length polypeptide. A "gene" can further include the nucleotide sequences that are upstream (e.g. 5') or downstream (e.g. 3') to the coding sequences. Such upstream and downstream sequences generally contain regulatory elements necessary for the transcription of the gene and subsequent translation of the mRNA polynucleotide and generally do not contain sequences which are translated and included in a polypeptide or precursor. Such sequences are generally referred to as the "untranslated region" or "UTR." A "gene" can encompass both the cDNA and genomic forms of a gene. The genomic form of a gene contains the coding regions of the gene (e.g. as used herein an "exon") interrupted with noncoding regions commonly referred to as introns, intervening regions, or intervening sequences (as used herein "intron"). Exons are typically numbered sequentially from the 5' end of a gene. Introns are typically removed from the nuclear or primary transcript by a mechanism called "splicing" and are absent in the messenger RNA (mRNA) transcript that is translated into the functional polypeptide. As used herein a "splice junction" refers to the boundary between two exons following the removal of intron(s) by splicing. Typical splicing of a gene will create splice junctions between sequential exons of a gene (e.g. splice junctions between exon 1 and exon 2, exon 2 and exon 3, exon 3 and exon 4, . . . etc.). In some cases, splicing will create splice junctions between non-sequential exons of a gene (e.g. splice junctions between exon 1 and exon 5, exon 5 and exon 10, etc) resulting in removal, or deletion, from the resulting mRNA of both the non-coding introns and coding exons, or portions thereof, that are located between the two exons that flank the splice junction (e.g. removal of exons 2, 3, and 4 or exons 6, 7, 8, and 9, of the above example). This process is typically referred to as "alternative splicing" with the resulting mRNA being referred to as an "alternative splice variant" or "splice variant." The polypeptide translated from such alternatively spliced mRNA may also be referred to as a "splice variant" or simply "variant." See FIG. 2A for a schematic representation of both typical splicing and alternative splicing of the BRAF mRNA. Alternative splicing can produce an in-frame mRNA splice variant, meaning translation of the mRNA results in a stable polypeptide with functionality; the functionality of such resulting polypeptide may or may not be different than that of a polypeptide translated from the normally spliced mRNA. However,

alternative splicing can also produce an out-of-frame mRNA splice variant, meaning translation of the mRNA results in a truncated unstable polypeptide. Alternative splicing can occur under normal physiological conditions or aberrant conditions. The novel 5' splice variants of the present 5 invention include any BRAF mRNA that has deletion of at least one exon, at least two exons, at least three exons, at least four exons, at least five exons, at least six exons, at least seven exons, at least eight exons, at least nine exons, or at least 10 exons, of any of the exons between exon 1 and the 10 exon(s) coding the catalytic domain of BRAF mRNA (~exon 11), whereby the BRAF polypeptide translated from such 5' splice variant has increased ability to form RASindependent dimers and becomes resistant to BRAF and/or pan-RAF inhibitors. Such splice variants can also include 15 deletion of exon 1. In one embodiment of the present invention, said novel 5' splice variant comprises deletions of exons 4-10 of BRAF mRNA. In another embodiment of the present invention, said novel 5' splice variant comprises deletions of exons 4-8 of BRAF mRNA. In vet another 20 embodiment of the present invention, said novel splice variant comprises deletions of exons 2-8 of BRAF mRNA. Alterations to a gene, cDNA, mRNA, RNA, etc are herein referred to as "genetic alterations"

As used herein, the term "polymerase chain reaction" 25 ("PCR") refers to the methods described in U.S. Pat. Nos. 4,683,195, 4,683,202, and 4,965,188 which describe a method for increasing the concentration of a segment of a target nucleotide sequence (a "template"). This process for amplifying the template consists of introducing a large 30 excess of two oligonucleotide primers (a "PCR primer pair") to the DNA mixture containing the desired template, followed by a precise sequence of thermal cycling in the presence of a DNA polymerase. The two primers of the PCR primer pair are complementary to their respective strands of 35 the double stranded template. The mixture is denatured and the primers then annealed to their complementary sequences within the template. Following annealing, the primers are extended with a polymerase so as to form a new pair of complementary strands. The steps of denaturation, primer 40 annealing, and polymerase extension can be repeated many times (i.e., denaturation, annealing and extension constitute one "cycle"; there can be numerous "cycles") to obtain a high concentration of an amplified segment of the desired target sequence (an "amplicon" or "PCR product" or "ampli- 45 fication product"). The cycling conditions are dependent on the template sequence and the primer design. Standard cycling conditions are known in the art and can be optimized by one skilled in the art. The length of the amplicon of the template is determined by the relative positions of the two 50 primers of the PCR primer pair with respect to each other, and therefore, this length is a controllable parameter. In addition to genomic DNA, any oligonucleotide or polynucleotide sequence (e.g. cDNA etc.) can be amplified with the appropriate PCR primer pairs.

As used herein, the term "primer" or "PCR primer" refers to an oligonucleotide that is complementary to a particular nucleic acid sequence of a template and is capable of acting as a point of initiation of extension with a polymerase under suitable PCR conditions and when used in suitable PCR ⁶⁰ primer pairs, will produce an amplicon of the target. The primer is preferably single stranded but can also be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. Preferably, the primer is an oligodeoxyribonucleotide. The exact number of nucleotides in the primers will depend on many factors, including temperature, source of

primer and the use of the method. The PCR primers of the present invention have about 20 nucleotides but can contain more or less. In addition, the PCR primers of the present invention can have any number of nucleotides substituted from those listed in SEQ ID NOS 2-11 including 1 nucleotide substituted, 2 nucleotides substituted, 3 nucleotides substituted, 4 nucleotides substituted, 5 nucleotides substituted, etc. up to 50% (or more) of the original nucleotide sequence listed in SEQ ID NOS 2-11 as long as such substituted PCR primer provides the desired amplicon under suitable PCR conditions. Methods for the design and synthesis of PCR primers are readily known in the art and any such method of synthesis is sufficient for production of the PCR primer(s) of the present invention.

As used herein, the terms "reverse-transcriptase" and "RT-PCR" refer to a type of PCR where the starting material is mRNA. The starting mRNA is enzymatically converted to complementary DNA or "cDNA" using a reverse transcriptase enzyme. The cDNA is then used as a template for a PCR reaction.

As used herein, the term "real-time PCR" or "quantitative PCR" or "qPCR" refers to measuring changes in mRNA for determination of levels of specific DNA or RNA sequences in tissue samples. It is based on detection of a fluorescent signal produced proportionally during amplification of a PCR product.

As used herein, "complement" and "complementary" refers to two sequences whose bases form complementary base pairs, base by base. By way of non-limiting example, for naturally occurring bases, adenine (A) is complementary to thymine (T) and uridine (U) whereas guanine (G) is complementary to cytosine (C). Two nucleotides that are complementary to each other will "hybridize" or "anneal" to each other under suitable conditions.

As used herein, "sequencing" or "sequence analysis" refers to the determination of the nucleotide sequence of a polynucleotide fragment. Multiple methods of sequencing are readily known to those in the art and include, without limitation, chain terminator sequencing methodologies such as Sanger sequencing as well as paired end sequencing methodologies such as Illumina, SOLiD or other next generation sequencing methodologies under development. In one embodiment of the present invention, sequencing is performed using the Sanger method.

As used herein, "detection" or "detecting" etc. refers to measuring the presence of one or more of the novel 5' splice variant(s) of the present invention. Multiple methods of detection are readily known to those in the art and can be used to measure the presence of the novel 5' splice variant(s) of the present invention and include, without limitation, PCR, sequencing, Northern blotting, 5' RACE, immunohistochemistry, Western blot, etc. In one embodiment of the present invention, PCR is used to detect such novel 5' splice variant(s) using the PCR primer(s) described herein. In another embodiment, PCR is used to detect such novel 5' splice variant(s) using the PCR primer pair wherein the first primer of said PCR primer pair binds to a region surrounding and including the novel splice junction of said novel 5' splice variant, or portions thereof, and the second primer of said PCR primer pair binds any region on the opposite strand to which said first primer binds whereby said PCR primer pair is effective to provide an amplicon that includes said novel splice junction and wherein said PCR primer pair fails to provide an amplicon that lacks said novel splice junction; such novel splice junction being 5' to exon(s) that encode the catalytic domain of BRAF.

30

As used herein, "sample" refers to a subject, cell, or tissue and is meant to include a specimen or culture obtained from any source, in particular as a biological sample. Biological samples may be obtained from subjects (including humans) and encompass fluids, solids, gases, tissues, cells, and bones. 5 Such biological samples can be obtained by methods readily known in the art including, without limitation, biopsy, surgery, etc. In one embodiment of the present invention, such sample is obtained from a subject by biopsy of a subject's tumor.

As used herein, "kit" refers to a diagnostic kit useful for detecting the novel 5' splice variant(s) of the present invention in a human subject. In one embodiment, such kit comprises vessel(s) containing the compositions necessary to practice the methods of the present invention and include at least one PCR primer pair useful for the detection of such novel 5' splice variants and a carrier to compartmentalize such vessels. Such embodiment further includes a positive control comprising a polynucleotide sequence of BRAF containing the novel 5' splice variant detected by said PCR primer pair and a negative control comprising a polynucleotide sequence of BRAF that does not contain said novel 5' splice variant detected by said PCR primer pair. Such embodiment further includes reagents necessary for PCR analysis. Such embodiment further includes instructions. As used herein "kit" also refers to a screening kit useful for identifying agents useful in the treatment of cells and/or subjects resistant to treatment with BRAF and/or pan-RAF inhibitors as well as agents useful for disrupting RASindependent BRAF dimers.

RAF inhibitors have remarkable clinical activity in mutant BRAF melanomas but that activity is limited by acquisition of resistance to the drugs.

Identification of Splice Variants of BRAF(V600E)

35 BRAF mRNA is comprised of 18 exons and the starting and ending nucleotides of each exon, using the sequence numbering of Genebank accession number NM_004333, are described in Table 1. The regulatory domains of BRAF are located in the more 5' exons, or portions thereof, (e.g. exons 40 ~1-10) while the catalytic and kinase domains are located in the more 3' exons, or portions thereof, (e.g. exons ~11-18).

TABLE 1

Starting and ending nucle	eotide of exons of BRAF	45
Exon Number	Start Nucleotide- End Nucleotide	
1	1-199	
2	200-301	50
3	302-565	50
4	566-669	
5	670-772	
6	773-921	
7	922-1041	
8	1042-1201	
9	1202-1238	22
10	1239-1375	
11	1376-1493	
12	1494-1578	
13	1579-1755	
14	1756-1802	
15	1803-1921	60
16	1922-2053	
17	2054-2088	
18	2189-2947	

Unique splice variants of BRAF were identified, each of 65 which lacked exons, or portions thereof, of the regulatory domain(s) of BRAF which lie 5' to the catalytic kinase

14

domain: e.g., deletion of exons 4-10, deletion of exons 4-8, and deletion of exons 2-8 etc. The present disclosure results from the observation that patients with tumors that express one of these BRAF splice variant(s) are resistant to therapeutic intervention with BRAF and/or pan-RAF inhibitors. That is, patients with tumors that express a variant form of BRAF containing a deletion of any exon(s), or portions thereof, within the 5' regulatory domain(s) of BRAF, which increase RAS-independent dimerization of BRAF, will be resistant, or develop resistance, to therapeutic intervention with BRAF and/or pan-RAF inhibitors. The identification of these splice variants, therefore, provides, among other things, a method to monitor a patient who is undergoing treatment with a BRAF inhibitor for the development of resistance to the inhibitor by assaying a tumor cell from the patient to detect the presence of a BRAF splice variant described herein.

The present invention further describes compositions and 20 methods to identify novel agents that are useful to overcome resistance to therapeutic intervention with BRAF and/or pan-RAF inhibitors using cell lines that, endogenously or ectopically, express the novel 5' BRAF splice variants described herein and/or isolated polynucleotides of the novel 5' BRAF splice variants described (and proteins translated therefrom).

Detection of BRAF Splice Variants

The splice variants identified herein are the result of a deletion of 5' exons, or portions thereof, of the regulatory domain of BRAF including those exons, or portions thereof, encoding conserved region 1 (as used herein "CR1") and conserved region 2 (as used herein "CR2") of BRAF, which include domains critical for BRAF activation, most notably, the RAS-binding domain (as used herein "RBD") and the cysteine-rich domain (as used herein "CRD") (FIG. 2A).

In FIG. 3C, each novel splice variant is shown as a schematic denoting the missing exons. In one BRAF variant (as used herein "BRAF 3_11"), deletion of exons 4-10 gives rise to a new splice junction which has the nucleotide sequence of SEQ ID NO: 7. The full nucleotide sequence for a cDNA generated by the deletion of exons 4-10 is given in SEQ ID NO: 13. Similarly, BRAF variant "BRAF 3_9" is generated by the deletion of exons 4-8. The full length cDNA for BRAF 3_9 is set forth as SEQ ID NO: 15 and the 5 splice junction encompasses SEQ ID NO: 6. The full length sequence for another BRAF variant, "BRAF 1_9," the result of the deletion of exons 2-8, is shown by SEO ID NO: 14 having a new 1-9 splice junction which encompasses SEQ ID NO: 4.

The resulting in-frame mRNA transcript for the splice variants, when translated, produces truncated BRAF protein monomers which form constitutively active dimers (i.e. RAS-independent dimerization) which drive downstream signaling, promote cancer progression and cause resistance 55 to treatment with BRAF and/or pan-RAF inhibitors.

The availability of a method for detection of these splice variants provides a unique opportunity to identify tumor cells that are likely to be or become resistant to BRAF inhibitors.

Clinical Application

The use of the methods of the present invention to detect BRAF splice variants in patients permits the identification of patients likely to be resistant or become resistant to BRAF and/or pan-RAF inhibitors so that alternative treatment strategies for such resistant patients can be implemented early on. The present invention further provides compositions and methods to screen for novel agents capable of overcoming resistance to BRAF and/or pan-RAF inhibitors driven by the mechanisms of resistance described herein. Primers and Probes

A number of methods are currently available in the art, which enable the skilled artisan to detect gene products, both 5 protein and nucleic acid, of the BRAF splice variants disclosed herein. These methods include without limitation, for example, PCR and exon-junction microarray (see e.g. Rahman et al., Differential detection of alternatively spliced variants of Ciz1 in normal and cancer cells using a custom 10 exon junction microarray. BMC Cancer 10:482 2010). In one aspect, therefore, the present invention provides polymerase chain reaction (as used herein "PCR") primers capable of detecting the novel 5' BRAF splice variants described herein. Methods for the design of primers and 15 probes for use in PCR and microarray analysis are well known in the art (see e.g., Castle et al., Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing. Genome Biology 4:R66 2003).

In one embodiment, the invention includes a synthetic oligonucleotide that hybridizes under stringent conditions to a nucleic acid comprising the nucleotide sequence of BRAF exon 1 (SEQ ID NO: 20).

In one aspect, the present invention provides PCR prim- 25 ers, primer pairs and primer sets that hybridize, under suitable conditions, to a sense or anti-sense strand of a BRAF gene or gene product of a BRAF gene. In one embodiment, the first primer of a PCR primer pair hybridizes at any position (in either coding or untranslated 30 region(s)) 5' in each respective strand to a deletion of exon(s), or portions thereof, of a BRAF gene that encodes CR1 and/or CR2 including domains critical for BRAF activation, such as the RBD and/or the CRD, such exon(s) being 5' to exon(s) which encode the catalytic domain of 35 BRAF. The second PCR primer of a PCR primer pair hybridizes to any region on the opposite strand to which said first primer hybridizes whereby said PCR primer pair is effective to provide an amplicon. General primer structures are provided based on SEQ ID NOS: 2, 9 and 3 and may be 40 longer or shorter than SEQ ID NOS: 2, 9 and 3, for example between 10-30 nucleotides or in some embodiments between 18-21; those of skill in the art will recognize a size that is optimal. Primers may also have a certain number of bases in SEQ ID NOS 2, 9 and 3 substituted to other bases 45 to the extent that such substituted primers are capable of providing an amplicon.

In one embodiment of the present invention, the first primer of a PCR primer pair hybridizes to a polynucleotide containing exon 1 of the BRAF gene and the second primer ⁵⁰ of the PCR primer pair hybridizes to a polynucleotide that contains exon 11 through exon 18 of a BRAF gene. In another embodiment of the present invention, the first primer of said PCR primer pair hybridizes to a polynucleotide containing the 5' untranslated region ("5' UTR") of a ⁵⁵ BRAF gene and the second primer of said PCR primer pair hybridizes to a polynucleotide containing the second primer of said PCR primer pair hybridizes to a BRAF gene.

Another aspect of the present invention provides a PCR primer pair that hybridizes, under suitable conditions, to a 60 sense or anti-sense strand of a BRAF gene 5' to the novel splice junction of the BRAF splice variants described herein wherein the first primer of said PCR primer pair hybridizes to a region surrounding and including the novel splice junction, or portions thereof, and the second primer of said 65 PCR primer pair hybridizes any region on the opposite strand to which said first primer binds whereby said PCR

primer pair is effective to provide an amplicon that includes said novel splice junction and wherein said PCR primer pair fails to provide an amplicon that lacks said novel splice junction; such novel splice junction being 5' to exons(s) which encode for the catalytic domain of BRAF. General primer structures are provided based on SEQ ID NOS 4-8 and may be longer or shorter than SEQ ID NOS 4-8 and may also have a certain number of bases in SEQ ID NOS 4-8 substituted to other bases to the extent that such substituted primers are capable of providing an amplicon if the polynucleotide sequence of a BRAF gene contains a novel splice junction(s) described herein but fails to provide an amplicon if the polynucleotide sequence of a BRAF gene lacks a novel splice junction(s).

In one embodiment of the present invention, the first primer of said PCR primer pair contains ~17 base pairs of the 3' end of the 5' exon and ~3 base pairs of the 5' end of the 3' exon that flank the novel splice junction. In another 20 embodiment of the present invention the first primer of said PCR primer pair is chosen from the group comprising i) a PCR primer containing ~17 base pairs of the 3' end of exon 3 and ~3 base pairs of the 5' end of exon 11; ii) a PCR primer containing ~17 base pairs of the 3' end of exon 3 and ~3 base pairs of the 5' end of exon 9; and iii) a PCR primer containing ~17 base pairs of the 3' end of exon 1 and ~3 base pairs of the 5' end of exon 9. See FIG. 13 for schematic representation of the novel splice junction sequence(s) between the 5' exons and the 3' exons that flank such novel splice junctions along with sequence of exemplary first primer(s) of the PCR primer set described herein. In one embodiment of the present invention, the second primer of said PCR primer set hybridizes to polynucleotide sequence of a BRAF gene ~100-1500 base pairs from the first primer of said PCR primer set. In another embodiment of the present invention, the second primer of said PCR primer set hybridizes to a polynucleotide sequence of a BRAF gene ~100-1500 base pairs from the first primer of said PCR primer set and is 3' relative to said first primer.

A further aspect of the present invention provides a method of detecting the novel 5' BRAF splice variants described herein comprising isolating a sample from a subject having or suspected of having cancer, treating the sample, if necessary, to liberate nucleic acids contained therein, contacting said nucleic acids with appropriate pairs of any of the PCR primers described herein, carrying out a PCR reaction under conditions suitable to provide an amplicon, and analyzing such amplicon to determine if it contains the novel 5' BRAF splice variant(s) described herein. In one embodiment, such method uses a pair of PCR primers that is effective to provide an amplicon that includes the novel splice junction of the BRAF splice variants described herein.

Yet another aspect of the present invention provides a method for predicting resistance to the therapeutic effects of BRAF and/or pan-RAF inhibitors (e.g. PLX4302) in a subject suffering from or suspected of having cancer. This method utilizes the composition and methods described herein and concludes that upon detection of any of the novel 5' BRAF splice variant(s) described herein, the subject is predicted to be resistant to treatment with such BRAF and/or pan-RAF inhibitors.

Another aspect of the present invention provides a method for treatment of a subject predicted to be resistant to the therapeutic effects of BRAF and/or pan-RAF inhibitors (e.g. PLX4302) by the methods herein whereby such treatment comprises treatment selected from the group consisting of an inhibitor to BRAF dimerization or inhibitor of signaling molecules downstream of BRAF (e.g. MEK). Such treatment may further comprise a BRAF and/or pan-RAF inhibitor.

A further aspect of the present invention provides isolated polynucleotide sequences of the novel 5' BRAF splice 5 variant(s) described herein and proteins translated from such polynucleotide sequences. In one embodiment of the present invention, such isolated polynucleotide sequence(s) (or protein translated therefrom) are chosen from a group comprising a BRAF mRNA with deletion of exons 4-10, BRAF mRNA with deletion of exons 4-8, and BRAF mRNA with deletion of exons 2-8. Such isolated polynucleotide sequences (and proteins translated therefrom) may further comprise N' terminal or C' terminal tags such as FLAG, V5, 15 MYC, HA, fluorescent moiety(ies) (e.g. GFP, YFP, etc.) etc. The isolated polynucleotide sequences can be cloned into an appropriate expression vector and ectopically expressed in a cell for use in the methods of the present invention for identifying an agent useful for treating cells and/or tumors 20 that are resistant to BRAF inhibition and/or identifying an agent useful for the disruption of RAS-independent BRAF dimers. In one embodiment of the present invention, said expression vector is comprised of pcDNA3.1.

A further aspect of the present invention provides a cell ²⁵ that endogenously or ectopically expresses any of the novel 5' BRAF splice variants described herein. In one embodiment, the cell is chosen from the group comprising SKMEL-239 clone C1, SKMEL-239 clone C3, and SKMEL-239 clone C4. These cells have demonstrated resistance to a ³⁰ BRAF inhibitor following extended exposure of the cells to the BRAF inhibitor.

In another aspect, the invention relates to a cell comprising a recombinant nucleic acid that encodes a BRAF splice variant protein. The nucleic acid has a nucleotide sequence 35 that encodes a BRAF splice variant as described herein and, in some embodiments, is placed in an expression vector for transfection into a cell, for example, a cell chosen from the group comprising SKMEL-239, HT-39, and 293H cells. The cell transfected with the BRAF variant is resistant to a 40 BRAF inhibitor. The process for transfecting a cell with an appropriate nucleic acid is well known in the art.

A further aspect of the present invention therefore, provides a method for identifying an agent useful for treating cells and/or tumors that are resistant to BRAF and/or pan- 45 RAF inhibition comprising contacting a cell that endogenously or ectopically expresses any of the novel 5' BRAF splice variant(s) described herein with a potential agent, measuring the amount of cell death and/or cell growth of said cell, and comparing the amount of cell death and/or cell growth in presence of said potential agent to the amount of cell death and/or cell growth in the absence of said potential agent, wherein increased cell death and/or decreased cell growth in the presence of said potential agent indicates that 55 said potential agent is effective to treat cells and/or tumors that are resistant to said BRAF and/or pan-RAF inhibition. Such contacting may further include contacting with said potential agent in combination with a BRAF and/or pan-RAF inhibitor Such measuring may further comprise mea- 60 suring ERK activation and comparing the amount of ERK activation in presence of said agent to the amount of ERK activation in the absence of said agent, wherein a decrease in ERK activation in the presence of said agent indicates that 65 said potential agent is effective to treat cells and/or tumors that are resistant to said BRAF and/or pan-RAF inhibition.

18

Assays for measurement of cell death, both apoptosis and necrosis, are well known in the art and include, without limitation, measurement of accumulation of a sub-G1 peak by FACS, caspase activation assays, TUNEL and DNA fragmentation assays, PARP cleavage assays, Annexin V assays, exclusion of trypan blue, etc. Assays for measurement cell growth are well known in the art and include, without limitation, measurement of absolute cell number, cell cycle analysis via FACS, MTT assay, etc. Assays for measurement of ERK activation are well known in the art and include, without limitation, quantification of phospho-ERK levels, luciferase-based reporter assays, and biomarker signatures of activated ERK, etc. All such assays for measurement are envisioned to be within the scope of preferred embodiment(s) of the present invention. In one embodiment of the present invention, a cell used in the above method endogenously expresses BRAF mRNA with deletion of exons 4-8. In another embodiment of the present invention, said cell is chosen from the group comprising SKMEL-239 clone C1, SKMEL-239 clone C3, and SKMEL-239 clone C4 as described herein. In another embodiment of the present invention, a cell used in the above method that ectopically expresses BRAF mRNA is chosen from the group comprising BRAF mRNA with deletion of exons 4-10, BRAF mRNA deletion of exons 4-8, and BRAF mRNA deletion of exons 2-8. In another embodiment of the present invention said cell is chosen from the group comprising SKMEL-239, HT-39, and 293H.

A further aspect of the present invention provides a method for identifying an agent useful for disrupting RASindependent BRAF dimers comprising contacting isolated polypeptides translated from of the novel 5' BRAF splice variant(s) described herein with a potential agent, measuring the amount of BRAF dimers, and comparing the amount of BRAF dimers in the presence of said potential agent to the amount of BRAF dimers in the absence of said potential agent, wherein a decrease in the amount of BRAF dimers in the presence of said potential agent indicates such potential agent is effective to disrupt RAS-independent BRAF dimers. Such agent effective to disrupt RAS-independent dimers is useful to re-sensitive resistant cells and/or tumors to BRAF and/or pan-RAF inhibition and can be used as combination treatment with BRAF and pan-RAF inhibitors. Assays to measure the amount of a protein dimer are well known in the art and include, without limitation, FRET based methodologies, immunoprecipitation, non-reducing Western blotting, bimolecular fluorescence complementation etc. Methods for these and other assays suitable for evaluation of dimer formation are known to those of skill in the art. All such assays within the scope of preferred embodiment(s) of the present invention.

A further aspect of the present invention provides an additional kit(s) comprising vessel(s) containing varying combinations of a cell line of the present invention, isolated polynucleotide sequences of the novel 5' BRAF splice variant(s) described herein, purified proteins of the 5' BRAF splice variant(s) described herein and a BRAF and/or pan-RAF inhibitor. Such kit further comprises additional reagents useful for practicing the method of the present invention for identifying an agent useful for treating cells and/or tumors that are resistant to BRAF and/or pan-RAF inhibition and/or identifying an agent useful for disrupting

30

RAS-independent BRAF dimers. Such kit(s) can further contain instructions on practicing the methods of the present invention.

EXAMPLES

Example 1

Acquired Resistance: Generation of Cell Populations Resistant to BRAF Inhibition Via Continued Exposure to PLX4032

RAF inhibitors have remarkable clinical activity in mutant BRAF melanomas that is limited by acquisition of resistance to the drug8. In order to identify novel mecha- 15 nisms of resistance to RAF inhibitors, the inventors of the present invention generated cell lines resistant to PLX4032, a clinically relevant BRAF inhibitor, by exposing the melanoma cell line SKMEL-239 to a set high dose of PLX4032 (2 μ M). At this concentration, PLX4032 effectively inhibits 20 ERK signaling in SKMEL-239 which results in accumulation of cells in G1 and a significant induction of cell death (FIG. 1A-C, FIG. 5B and data not shown). Five independent PLX4032-resistant cell populations were generated after approximately 2 months of continuous drug exposure (FIG. 25 1A). This approach, rather than one of gradual adaptation to increasing concentrations of drug, was chosen since continuous exposure to a high dose of drug more closely represents the clinical situation.

Example 2

Characterization of BRAF Inhibitor Resistant Clones Reveals a Novel Genetic Alteration not Previously Described in Known Mechanisms of Resistance to BRAF Inhibitor(s)

Resistance of SKMEL-239 cells to PLX4032 was associated with decreased sensitivity of ERK signaling to the drug (FIG. 1B-C, FIG. 5A). Analysis revealed the presence 40 of two distinct classes of resistant clones. In the first, exemplified by the C3 clone, the IC50 for pMEK inhibition was more than 100-fold higher than that of the parental cell line (FIG. 1D, E). Despite a similar degree of resistance to the anti-proliferative and pro-apoptotic effects of PLX4032, 45 the second class of clones, exemplified by clone C5, demonstrated only a modest increase in pMEK IC50 (4.5-fold higher than the parental clone). All five resistant clones retained sensitivity to the MEK inhibitor, PD032590113, albeit at slightly higher doses than required to inhibit MEK 50 in the parental cell line (FIG. 6A, B).

Sequence analysis of both DNA and cDNA derived from the five resistant clones showed that all clones retained expression of BRAF(V600E) (FIG. 7). No mutations in BRAF at the gatekeeper site14, RAS mutation(s), or upregu- 55 lation of receptor tyrosine kinases were detected (FIG. 8 and data not shown), indicating a novel mechanism of resistance to BRAF inhibition. Western blot analysis of BRAF protein expression showed that each of the resistant clones expressed a 90 kd band that co-migrated with the band 60 observed in parental cells. In the C1, C3 and C4 clones, a new more rapidly migrating band was also identified, which ran at an approximate molecular weight of 61 kd, FIG. 1C, FIG. 5A). No band of this size was detected in parental SKMEL-239 cells or in a panel of 14 other melanoma cell 65 lines (FIG. 9) suggesting that its expression is a result of acquired resistance to BRAF inhibition.

PCR analysis of cDNA derived from each resistant cell line using the PCR primers of the present invention [SEQ ID NOS: 2 and 3] revealed the expected single transcript of 2.3 kb, representing full-length BRAF in parental cells and two transcripts of 2.3 kb and 1.7 kb respectively in C3 cells as shown by gel electrophoresis. Sanger sequence analysis of the 1.7 kb PCR product from C3 cells revealed that it was a BRAF transcript that contained the V600E mutation and an in-frame deletion of exons 4-8 (FIG. 2A) (mRNA transcript ¹⁰ and resulting translated protein herein referred to individually and collectively as "p61 BRAF(V600E)"). This 1.7 kb transcript is predicted to encode a protein of 554 amino acids and a molecular weight of 61 kd, consistent with the lower band detected by immunoblotting with the anti-BRAF antibody (FIG. 10). Exons 4-8 encodes the majority of CR1 and CR2 of BRAF, which include domains critical for RAF activation, most notably, the RBD and the CRD3. The p61BRAF(V600E) variant identified in C3 was also detected in clones C1 and C4 by real time PCR, with the PCR primers of the present invention that anneal specifically to the 3_9 splice junction [SEQ ID NOS 5-6] (FIG. 10). Inspection of the BRAF locus on chromosome 7q34 by array comparative genomic hybridization data suggested no evidence of an intragenic somatic deletion within the BRAF gene.

Example 3

Novel 5' BRAF Splice Variant Lacking Exons 4-8 is Sufficient for Conferring Resistance to BRAF Inhibition

The 1.7 kb transcript encoding p61 BRAF(V600E) was cloned into an expression vector and ectopically expressed in 293H cells, alone or together with full-length wild-type 35 BRAF. As shown in FIG. 2B, ERK signaling was resistant to PLX4032 in 293H cells in which p61 BRAF(V600E) was ectopically expressed. Furthermore, expression of p61 BRAF(V600E) in parental SKMEL-239 cells or in the HT-29 colorectal cancer cell line, which endogenously expresses BRAF(V600E), resulted in failure of PLX4032 to effectively inhibit ERK signaling (FIG. 11A, B). PLX4032 has been shown to inhibit the kinase activity of RAF immunoprecipitated from cells, but activates intracellular RAF4. This suggests that the conditions required for transactivation in vivo are not recapitulated in the in vitro assay. The inventors of the present invention tested whether p61 BRAF(V600E) is also sensitive to PLX4032 in vitro. Although the in vitro activity of p61 BRAF(V600E) was slightly higher than full-length BRAF(V600E), similar concentrations of PLX4032 cause inhibition of both p61 BRAF (V600E) and full-length BRAF(V600E) in vitro (FIG. 12). These data suggest that p61 BRAF(V600E) is capable of binding PLX4032 and that resistance of p61 BRAF(V600E) to PLX4032 is not due to its inability to bind the inhibitor.

Example 4

The Novel 5' BRAF Splice Variant(s) Promote Dimerization and Activation of BRAF in the Absence of RAS Signaling

The inventors of the present invention then determined whether deletion of exons 4-8 promoted dimerization of p61 BRAF(V600E). To determine levels of dimerization, the inventors ectopically co-expressed two constructs encoding the same protein; either p61 BRAF(V600E) or full-length BRAF(V600E) with different tags (Flag or V5). When

50

ectopically expressed in 293H cells, dimerization of p61 BRAF(V600E) was significantly elevated compared to that of full-length BRAF(V600E) (FIG. 2C). The R509 residue (arginine at amino acid position 509 in BRAF protein) is within the BRAF dimerization interface; mutation of this 5 residue to a histidine abolishes the ability of wild-type BRAF to dimerize and results in loss of its catalytic activity in cells4,16. However, full length BRAF(V600E) with a point mutation converting R509 to H509 (R509H, arginine-histidine at amino acid 509 in BRAF protein (referred 10 to herein as "R509H"), ectopically expressed in 293H cells retained its ability to fully activate ERK signaling and remained sensitive to PLX4032 (FIG. 2D). These data indicate that BRAF(V600E) can signal as a monomer and support the idea that elevated RAS-GTP levels and RAF 15 dimerization are necessary for the activation of wild-type RAF proteins but not that of the BRAF(V600E) mutant.

To test directly whether resistance mediated by p61 BRAF(V600E) was the result of elevated dimer formation, the inventors of the present invention introduced the R509H 20 dimerization-deficient mutation into cDNA encoding for p61 BRAF(V600E) (hereinafter referred to as "p61 BRAF (V600E/R509H)"). In 293H cells ectopically expressing p61 BRAF(V600E), phosphorylation of ERK was elevated and was insensitive to PLX4032 (FIG. 2E). ERK activity was 25 also elevated in cells expressing p61 BRAF(V600E/ R509H), but to a slightly lesser degree. p61 BRAF(V600E/ R509H) does not dimerize in these cells, confirming that the R509H mutation located within the dimerization interface disrupts the formation of p61 RAF(V600E) dimers (FIG. 30 2C). This monomeric p61 BRAF(V600E/R509H) was sensitive to RAF inhibitors; in cells ectopically expressing the protein, ERK signaling was inhibited by PLX4032 (FIG. 2E). Thus, the R509H mutation both prevents the RASindependent dimerization of p61 BRAF(V600E) and sensi- 35 tizes it to the RAF inhibitor. These data confirm that deletion of exons 4-8 from BRAF(V600E) causes it to become insensitive to RAF inhibitors by promoting dimerization in a RAS-independent manner (FIG. 4). These data therefore further suggest that any N' terminal BRAF splice variant that 40 promotes increased RAS-independent BRAF dimerization results in resistance to BRAF inhibition.

Example 5

Analysis of Clinical Samples Confirms that i) the N' Terminal Splice Variant(s) of the Present Invention can be Used to Predict Patient Response to BRAF and/or Pan-RAF Inhibitor(s); and ii) N' Terminal Splice Variants, in Addition to p61BRAF (V600E), are Clinically Relevant

To determine whether BRAF splice variants can account for clinical resistance to RAF inhibitors, the inventors of the present invention analyzed tumors from eight melanoma 55 patients with resistance to PLX4032. The inventors performed PCR analysis of cDNA from these tumors using the PCR primers of the present invention [SEQ ID NOS: 2 and 3], and the resulting PCR product were Sanger sequenced. Pre-treatment samples from two patients showed a single 60 band of the expected size (2.3 kb) which, by sequencing, was confirmed to include both BRAF(V600E) and wild-type BRAF transcripts as expected (FIG. **3**A and data not shown). In a matching post-treatment sample, the inventors of the present invention identified two PCR amplicons of different 65 sizes as resolved by gel electrophoresis. Sequencing revealed that the larger band encoded both the full-length

wild-type BRAF and full-length BRAF(V600E), whereas the smaller band encoded a BRAF(V600E) transcript lacking exons 4-10 with a novel 3_11 splice junction (FIG. 3A-C, Patient I). Similarly, in a another post-treatment sample (patient II) the larger band represented both the full-length wild-type BRAF and full-length BRAF(V600E), whereas the smaller transcript represented a BRAF(V600E) variant lacking exons 4-8 with a novel 3_9 splice junction, a splice variant identical to the variant p61 BRAF(V600E) identified in the C1, C3 and C4 clones (FIG. 3A, C). Finally, in a third post-treatment sample, the inventors identified a transcript encoding a BRAF(V600E) variant that lacked exons 2-8 with a novel 1_9 splice junction (patient III). A single PCR amplicon was identified in three additional post-treatment samples and the two samples derived from patients with intrinsic resistance (patient IV shown) and was shown by sequencing to encode full-length BRAF (FIG. 3A and Table 2).

Example 6

The Presence of the N' Terminal BRAF Splice Variant(s) of the Present Invention Suggest Alternative Treatment Strategies in Subjects Resistant to BRAF Inhibitor(s)

As resistance to PLX4032 resulting from expression of p61 BRAF(V600E) is attributable to attenuation of the ability of the drug to inhibit RAF activation, tumors expressing p61 BRAF(V600E) retain sensitivity to inhibitors of downstream effectors of RAF, such as MEK, which was shown by the inventors of the present invention (FIG. 6). Therefore, MEK inhibitors, when used in combination with BRAF inhibitors such as PLX4032, delay or prevent the onset of this mechanism of resistance. Furthermore, MEK inhibitors can be used as a second-line therapy in subjects that develop resistance to BRAF inhibitors driven by the expression of the novel 5' BRAF splice variants described herein. Additionally, any compound that inhibits the RASindependent dimerization of the novel 5' BRAF splice variants described herein can be successful alternative treatment strategies in subjects resistant to BRAF inhibitor(s).

Example 7

Novel Model of Resistance Provides Composition and Methods to Predict Patient Response to Treatment with BRAF Inhibitor(s) and Redirection of Treatment Strategy(ies) Following Said Prediction of Response

In the tumors from patients that have been analyzed, resistance to PLX4032 is associated with inability of the drug to inhibit ERK signaling. The present invention and the inventors' previous work suggests that this can be due to increased BRAF dimer formation in the cell4. This can happen in at least two ways i) increasing RAS-GTP levels; and/or ii) induction of RAS-independent dimerization. NRAS mutation has now been reported in BRAF inhibitorresistant tumors9. The present invention discloses novel genetic alteration(s) that causes increased RAS-independent dimerization in patient tumors; namely novel 5' BRAF splice variant(s) lacking exons, or portions thereof, that regulate BRAF dimerization. Other mechanisms of resistance to RAF inhibitors in model systems and in patients have also been reported recently and include activation of the receptor tyrosine kinases PDGFRβ and IGF1R9,11. Another MEK kinase, COT, that can bypass the requirement of BRAF (V600E) for ERK signaling has also been shown to cause resistance to RAF inhibitors as has mutation of MEK110,12.

p61BRAF(V600E), and the additional 5' BRAF splice variants described herein, is the first resistance mechanism 5 identified that involves a structural change in BRAF itself. Notably, the 5' BRAF splice variants described herein identified both in the resistant cell lines and patients have all been confined to the mutant BRAF allele (e.g. BRAF 10(V600E)). This suggests that generation of the 5' BRAF splice variants described herein is likely due to a mutation or epigenetic change that affects BRAF splicing and not to a loss of global splicing fidelity18. In particular, the identification of 5' BRAF splice variants lacking the RAS-binding 15 domain, or portions thereof, in three of six patients with acquired resistance suggests that this mechanism is clinically important. Furthermore, the clarification of such mechanism of resistance permits the predication of patient response to treatment with BRAF inhibitor using the com-20 positions and methods of the present invention and also permits redirection of treatment strategy(ies) following said prediction of response.

Example 8

Chemicals and Plasmids

The BRAF inhibitor, PLX403219 (vemurafenib) was obtained from Plexxikon Inc. PD0325901 was synthesized 30 in the MSKCC Organic Synthesis Core Facility. Flag-tagged BRAF constructs have been described previously4. All other plasmids were created using standard cloning methods, with pcDNA3.1 (Invitrogen) as a vector. Mutations were introduced using the site-directed Mutagenesis Kit (Stratagene). ³⁵ For transfection studies, cells were seeded on 35 mm or 100 mm plates and transfected the following day using Lipofectamine 2000 (Invitrogen). Cells were collected 24 hours later for subsequent analysis. cDNA Preparation and PCR. 40

The Superscript III First-Strand Synthesis kit (Invitrogen) was used to generate cDNA. Primers designed for the 5'- and 3'- of BRAF mRNA had the following sequences:

> (SEQ ID NO: 2) F' GGCTCTCGGTTATAAGATGGC and

Sanger sequencing of the products was outsourced to the contract research organization Genewiz. For qPCR analysis, cDNA synthesis was carried out with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). qPCR was performed with the iQ SYBR Green RT-PCR 55 Super Mix (BioRad) and the C1000 Thermal Cycler (Bio-Rad). The comparative Ct method was employed to quantify transcripts and delta Ct was measured in triplicate. Primers for the total amount of BRAF:

24

Primers for the novel splice junctions: 1_9 Splice Junction

F' CTGCCATTCCGGAGGAGGACT and	(SEQ	ID	NO :	4
	(SEO	тр	NO·	5

R'TTAGTTAGTGAGCCAGGTAATGA

3_9 Splice Junction [SEQ ID NO 6 and 5]:

	(SEQ	ID	NO:	6)
F'ACAAACAGAGGACAGTGGAC				
and				

(SEO ID NO: 5) R'TTAGTTAGTGAGCCAGGTAATGA

3 11 Splice Junction [SEO ID NO 7 and 8]:

F'	CAAACAGAGGACAGTGAAA	(SEQ	ID	NO :	7)
R'	ACAGGAAACGCACCATATCC	(SEQ	ID	NO :	8)

Patient Samples.

25

50

60

65

Melanoma tumor specimens from patients treated with vemurafenib (PLX4032) on an Memorial Sloan-Kettering Cancer Center IRB-approved protocol were flash frozen in liquid nitrogen immediately after resection or biopsy. To determine tumor content, 5 µm sections from frozen patient tumor specimens were cut, stained with hematoxylin and eosin, and scored by a pathologist. If the specimen had >70% tumor content (excluding necrosis), the remainder of the frozen tumor was homogenized using a Bullet Blender (Next Advance, Inc.) with 0.9-2 mm stainless steel beads for 5 min at a speed setting of 10. RNA was then extracted from the tumor homogenate using the RNeasy Mini Kit (Invitrogen) and quantified. Clinical characteristics of the melanoma tumors from patients are shown in Table 2.

Cell Proliferation and Cell Cycle Analysis.

All melanoma cell lines were generated by A. Houghton (MSKCC) or obtained from ATCC. 293H cells were 45 obtained from Invitrogen. Cells were maintained in RPMI (SKMEL-239) or DMEM (293H), supplemented with 2 mM glutamine, antibiotics and 10% fetal bovine serum. The inventors of the present invention confirmed by DNA fingerprinting using methods standard in the art (see ref. 20: PMID 10.1016/j.ccr.2010.11.023 (2010)) that all PLX4032resistant SKMEL-239 clones were derived from the same patient, thus excluding the possibility of contamination (Table 3).

TABLE 3

Sample 1	Sample 2	p-Value	Bonferroni correction
SKMEL-239 Parental	SKMEL-239 C1	8.05037E-15	6.85247E-11
SKMEL-239 Parental	SKMEL-239 C2	8.05037E-15	6.85247E-11
SKMEL-239 Parental	SKMEL-239 C3	8.05037E-15	6.85247E-11
SKMEL-239 Parental	SKMEL-239 C4	8.05037E-15	6.85247E-11
SKMEL-239 Parental	SKMEL-239 C5	8.05037E-15	2.97542E-11

10

For proliferation assays, cells were plated in 6-well plates, and 24 hours later were treated with varying concentrations of inhibitors, or vehicle control, as indicated. IC50 values were calculated using Graph Pad Prism v.5. For cell cycle and apoptosis studies, cells were seeded in 6-well dishes the day prior to drug treatment. For analysis, both adherent and floating cells were harvested and stained with ethidium bromide as described previously 21.

Western blotting and receptor tyrosine kinase (RTK) arrays. Western blot analysis was performed as previously described13. The following antibodies were used: p217/ p221-MEK (pMEK), p202/p204-ERK (pERK), MEK, ERK, (Cell Signaling), V5 tag (Invitrogen), BRAF, cyclin Flag tag, β-actin (Sigma). For immunoprecipitations of tagged proteins: anti-Flag M2 affinity gel (Sigma). The Human Phospho-RTK array Kit (R&D Systems) was utilized to detect kinase activation within a panel of RTKs. Briefly, cells were plated in 10 cm dishes and harvested after 24 hours. Following lysis, 500 µg of lysate was applied to a membrane- 20 anchored RTK array and incubated at 4° C. for 24 hours. Membranes were exposed to chemiluminescent reagents and images captured using the ImageQuant LAS 4000 instrument (GE HealthCare).

Immunoprecipitations and kinase assays. Cells were lysed 25 in lysis buffer (50 mM Tris, pH7.5, 1% NP40, 150 mM NaCl, 10% glycerol, 1 mM EDTA) supplemented with protease and phosphatase inhibitor cocktail tablets (Roche). Immunoprecipitations were performed at 4° C. for 4 h, followed by three washes with lysis buffer and, in cases of subsequent kinase assay, one final wash with kinase buffer (25 mM Tris, pH 7.5, 10 mM MgCl2). Kinase assays were conducted in the presence of 200 μM ATP at 30° C. for 20 min with inactive MEK(K97R) (Millipore) as a substrate. 35 The kinase reaction was terminated by adding sample buffer and boiling. Kinase activity was determined by immunoblotting for pMEK.

From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of the present $_{40}$ invention, and without departing from the spirit and scope thereof, can make changes and modifications to the present invention to adapt it to various usages and conditions and to utilize the present invention to its fullest extent. The preceding embodiments and examples are to be construed as 45 26. 10.1126/scitranslmed.3000758 (2010). merely illustrative, and not limiting of the scope of the invention in anyway whatsoever.

REFERENCES

- 1. 1 Weber, C. K., Slupsky, J. R., Kalmes, H. A. & Rapp, U. R. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61, 3595-3598 (2001).
- 2. 2 Rushworth, L. K., Hindley, A. D., O'Neill, E. & Kolch, W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26, 2262-2272, doi:26/6/2262 [pii]
- 3. 10.1128/MCB.26.6.2262-2272.2006 (2006).
- 4. 3 Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5, 60 875-885, doi:nrm1498 [pii]
- 5. 10.1038/nrm1498 (2004).
- 6. 4 Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 65 464, 427-430, doi:nature08902 [pii]
- 7. 10.1038/nature08902 (2010).

- 8. 5 Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209-221, doi:S0092-8674(09)01626-2 [pii]
- 9. 10.1016/j.cell.2009.12.040 (2010).
- 10. 6 Hatzivassiliou, G. et al. RAF inhibitors prime wildtype RAF to activate the MAPK pathway and enhance growth. Nature 464, 431-435, doi:nature08833 [pii]
- 11. 10.1038/nature08833 (2010).
- 12. 7 Joseph, E. W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 107, 14903-14908, doi:1008990107 [pii]
- 15 13. 10.1073/pnas.1008990107 (2010).
 - 14. 8 Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363, 809-819, doi:10.1056/NEJMoa1002011 (2010).
 - 15. 9 Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973-977, doi:nature09626 [pii]
 - 16. 10.1038/nature09626 (2010).
 - 17. 10 Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972, doi:nature09627 [pii]
 - 18. 10.1038/nature09627 (2010).
 - 19. 11 Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683-695, doi:S1535-6108(10)00484-8 [pii]
 - 20. 10.1016/j.ccr.2010.11.023 (2010).
 - 21. 12 Wagle, N. et al. Dissecting Therapeutic Resistance to RAF Inhibition in Melanoma by Tumor Genomic Profiling. J Clin Oncol, doi:JCO.2010.33.2312 [pii]
 - 22. 10.1200/JCO.2010.33.2312 (2011).
 - 23. 13 Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358-362, doi:nature04304 [pii]
 - 24. 10.1038/nature04304 (2006).
 - 25. 14 Whittaker, S. et al. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci Transl Med 2, 35ra41, doi:2/35/35ra41 [pii]

 - 27. 15 Cutler, R. E., Jr., Stephens, R. M., Saracino, M. R. & Morrison, D. K. Autoregulation of the Raf-1 serine/ threonine kinase. Proc Natl Acad Sci USA 95, 9214-9219 (1998)
- ⁵⁰ 28. 16 Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542-545, doi:nature08314 [pii]
 - 29. 10.1038/nature08314 (2009).

55

- 30. 17 Poulikakos, P. I. & Rosen, N. Mutant BRAF melanomas-dependence and resistance. Cancer Cell 19, 11-15, doi:S1535-6108(11)00009-2 [pii]
- 31. 10.1016/j.ccr.2011.01.008 (2011).
- 32. 18 Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16-26, doi:S0092-8674(10)01378-4 [pii]
- 33. 10.1016/j.cell.2010.11.056 (2011).
- 34. 19 Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596-599, doi:nature09454 [pii]
- 35. 10.1038/nature09454 (2010).

36. 20 Janakiraman, M. et al. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res 70, 5901-5911, doi:0008-5472.CAN-10-0192 [pii]

37. 10.1158/0008-5472.CAN-10-0192 (2010).

<160> NUMBER OF SEQ ID NOS: 21

28

38. 21 Nusse, M., Beisker, W., Hoffmann, C. & Tarnok, A. Flow cytometric analysis of G1- and G2/M-phase subpopulations in mammalian cell nuclei using side scatter and DNA content measurements. Cytometry 11, 813-821, doi:10.1002/cyto.990110707 (1990).

60

SEQUENCE LISTING

<210> SEQ ID NO 1 <211> LENGTH: 2949 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 1 cgcctccctt ccccctcccc gcccgacagc ggccgctcgg gccccggctc tcggttataa gatggcggcg ctgagcggtg gcggtggtgg cggcgggag ccggggccagg ctctgttcaa 120 cgggggacatg gageeegagg eeggegeegg egeeggegee geggeetett eggetgegga 180 ccctgccatt ccggaggagg tgtggaatat caaacaaatg attaagttga cacaggaaca 240 tatagaggcc ctattggaca aatttggtgg ggagcataat ccaccatcaa tatatctgga 300 ggcctatgaa gaatacacca gcaagctaga tgcactccaa caaagagaac aacagttatt 360 ggaatetetg gggaacggaa etgattttte tgtttetage tetgeateaa tggatacegt 420 tacatettet teetetteta geettteagt getaeettea tetettteag ttttteaaaa 480 toccacagat gtggcacgga gcaaccoccaa gtcaccacaa aaacctateg ttagagtett 540 cctgcccaac aaacagagga cagtggtacc tgcaaggtgt ggagttacag tccgagacag 600 660 720 tcaggatgga gagaagaaac caattggttg ggacactgat atttcctggc ttactggaga 780 agaattgcat gtggaagtgt tggagaatgt tccacttaca acacacaact ttgtacgaaa aacgtttttc accttagcat tttgtgactt ttgtcgaaag ctgcttttcc agggtttccg 840 ctgtcaaaca tgtggttata aatttcacca gcgttgtagt acagaagttc cactgatgtg 900 tgttaattat gaccaacttg atttgctgtt tgtctccaag ttctttgaac accacccaat 960 accacaggaa gaggegteet tageagagae tgeeetaaca tetggateat eeetteege 1020 accegecteg gatetattg ggececaaat teteaccagt cegteteett caaaateeat 1080 tccaattcca cagccettcc gaccagcaga tgaagatcat cgaaatcaat ttgggcaacg 1140 agaccgatcc tcatcagctc ccaatgtgca tataaacaca atagaacctg tcaatattga 1200 tgacttgatt agagaccaag gatttcgtgg tgatggagga tcaaccacag gtttgtctgc 1260 taccccccct gcctcattac ctggctcact aactaacgtg aaagccttac agaaatctcc 1320 aggaceteag egagaaagga agteatette ateeteagaa gacaggaate gaatgaaaae 1380 acttggtaga cgggactcga gtgatgattg ggagattcct gatgggcaga ttacagtggg 1440 acaaagaatt ggatctggat catttggaac agtctacaag ggaaagtggc atggtgatgt 1500 ggcagtgaaa atgttgaatg tgacagcacc tacacctcag cagttacaag ccttcaaaaa 1560 tgaagtagga gtactcagga aaacacgaca tgtgaatatc ctactcttca tgggctattc 1620 cacaaagcca caactggcta ttgttaccca gtggtgtgag ggctccagct tgtatcacca 1680 tetecatate attgagacea aatttgagat gateaaaett atagatattg eaegaeagae 1740 tgcacagggc atggattact tacacgccaa gtcaatcatc cacagagacc tcaagagtaa 1800 taatatattt cttcatgaag acctcacagt aaaaataggt gattttggtc tagctacagt 1860

29

-continued

30

gaaatetega tggagtgggt eecateagtt tgaacagttg tetggateea ttttgtgga	t 1920
ggcaccagaa gtcatcagaa tgcaagataa aaatccatac agctttcagt cagatgtat	a 1980
tgcatttgga attgttctgt atgaattgat gactggacag ttaccttatt caaacatca	aa 2040
caacagggac cagataattt ttatggtggg acgaggatac ctgtctccag atctcagta	a 2100
ggtacggagt aactgtccaa aagccatgaa gagattaatg gcagagtgcc tcaaaaaga	a 2160
aagagatgag agaccactct ttccccaaat tctcgcctct attgagctgc tggcccgct	c 2220
attgccaaaa attcaccgca gtgcatcaga accctccttg aatcgggctg gtttccaaa	ac 2280
agaggatttt agtctatatg cttgtgcttc tccaaaaaca cccatccagg cagggggat	a 2340
tggtgcgttt cctgtccact gaaacaaatg agtgagagag ttcaggagag tagcaacaa	aa 2400
aggaaaataa atgaacatat gtttgcttat atgttaaatt gaataaaata ctctctttt	t 2460
ttttaaggtg aaccaaagaa cacttgtgtg gttaaagact agatataatt tttccccaa	aa 2520
ctaaaattta tacttaacat tggattttta acatccaagg gttaaaatac atagacatt	g 2580
ctaaaaattg gcagagcete ttetagagge tttaetttet gtteegggtt tgtateatt	c 2640
acttggttat tttaagtagt aaacttcagt ttctcatgca acttttgttg ccagctato	a 2700
catgtccact agggactcca gaagaagacc ctacctatgc ctgtgtttgc aggtgagaa	ig 2760
ttggcagtcg gttagcctgg gttagataag gcaaactgaa cagatctaat ttaggaagt	c 2820
agtagaattt aataattota ttattattot taataatttt totataacta tttottttt	a 2880
taacaatttg gaaaatgtgg atgtetttta ttteettgaa geaataaaet aagtttett	t 2940
ttataaaaa	2949
<210> SEQ ID NO 2 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 2	
ggctctcggt tataagatgg c	21
<210> SEQ ID NO 3 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 3	
acaggaaacg caccatatcc	20
<pre><210> SEQ ID NO 4 <211> LENGTH: 21 <212> TYPE: DNA <212> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 4</pre>	
ctgccattcc ggaggaggac t	21
<210> SEQ ID NO 5 <211> LENGTH: 23 <212> TYPE: DNA	

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 5	
ttagttagtg agccaggtaa tga	23
<210> SEQ ID NO 6 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 6	
acaaacagag gacagtggac	20
<210> SEQ ID NO 7 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 7	
caaacagagg acagtgaaa	19
<210> SEQ ID NO 8 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 8	
acaggaaacg caccatatcc	20
<210> SEQ ID NO 9 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 9	
congester gettataag	19
<210> SEQ ID NO 10 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 10	
tcaatcatcc acagagacct c	21
<210> SEQ ID NO 11 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 11	

ggatccagac aactgttcaa ac

<210)> SE	EQ II ENGTH) NO 1. 76	12											
<212	2> TY 2> TY	PE :	PRT	Home) gar	niena	3								
<400)> SE	COUEN	ICE :	12			-								
Met 1	Ala	~ Ala	Leu	Ser 5	Gly	Gly	Gly	Gly	Gly 10	Gly	Ala	Glu	Pro	Gly 15	Gln
Ala	Leu	Phe	Asn 20	Gly	Asp	Met	Glu	Pro 25	Glu	Ala	Gly	Ala	Gly 30	Ala	Gly
Ala	Ala	Ala 35	Ser	Ser	Ala	Ala	Asp 40	Pro	Ala	Ile	Pro	Glu 45	Glu	Val	Trp
Asn	Ile 50	Lys	Gln	Met	Ile	Lys 55	Leu	Thr	Gln	Glu	His 60	Ile	Glu	Ala	Leu
Leu 65	Aap	Lys	Phe	Gly	Gly 70	Glu	His	Asn	Pro	Pro 75	Ser	Ile	Tyr	Leu	Glu 80
Ala	Tyr	Glu	Glu	Tyr 85	Thr	Ser	Lys	Leu	Aap 90	Ala	Leu	Gln	Gln	Arg 95	Glu
Gln	Gln	Leu	Leu 100	Glu	Ser	Leu	Gly	Asn 105	Gly	Thr	Asp	Phe	Ser 110	Val	Ser
Ser	Ser	Ala 115	Ser	Met	Asp	Thr	Val 120	Thr	Ser	Ser	Ser	Ser 125	Ser	Ser	Leu
Ser	Val 130	Leu	Pro	Ser	Ser	Leu 135	Ser	Val	Phe	Gln	Asn 140	Pro	Thr	Aap	Val
Ala 145	Arg	Ser	Asn	Pro	Lys 150	Ser	Pro	Gln	Lys	Pro 155	Ile	Val	Arg	Val	Phe 160
Leu	Pro	Asn	Lys	Gln 165	Arg	Thr	Val	Val	Pro 170	Ala	Arg	Суз	Gly	Val 175	Thr
Val	Arg	Asp	Ser 180	Leu	Lys	Lys	Ala	Leu 185	Met	Met	Arg	Gly	Leu 190	Ile	Pro
Glu	Cys	Cys 195	Ala	Val	Tyr	Arg	Ile 200	Gln	Asp	Gly	Glu	Lys 205	Lys	Pro	Ile
Gly	Trp 210	Asp	Thr	Asp	Ile	Ser 215	Trp	Leu	Thr	Gly	Glu 220	Glu	Leu	His	Val
Glu 225	Val	Leu	Glu	Asn	Val 230	Pro	Leu	Thr	Thr	His 235	Asn	Phe	Val	Arg	Lys 240
Thr	Phe	Phe	Thr	Leu 245	Ala	Phe	Суа	Aap	Phe 250	Суа	Arg	ГЛа	Leu	Leu 255	Phe
Gln	Gly	Phe	Arg 260	Суз	Gln	Thr	Суз	Gly 265	Tyr	Lys	Phe	His	Gln 270	Arg	Суз
Ser	Thr	Glu 275	Val	Pro	Leu	Met	Cys 280	Val	Asn	Tyr	Asp	Gln 285	Leu	Asp	Leu
Leu	Phe 290	Val	Ser	Lys	Phe	Phe 295	Glu	His	His	Pro	Ile 300	Pro	Gln	Glu	Glu
Ala 305	Ser	Leu	Ala	Glu	Thr 310	Ala	Leu	Thr	Ser	Gly 315	Ser	Ser	Pro	Ser	Ala 320
Pro	Ala	Ser	Asp	Ser 325	Ile	Gly	Pro	Gln	Ile 330	Leu	Thr	Ser	Pro	Ser 335	Pro
Ser	Lys	Ser	Ile 340	Pro	Ile	Pro	Gln	Pro 345	Phe	Arg	Pro	Ala	Asp 350	Glu	Asp
His	Arg	Asn 355	Gln	Phe	Gly	Gln	Arg 360	Aap	Arg	Ser	Ser	Ser 365	Ala	Pro	Asn
Val	His 370	Ile	Asn	Thr	Ile	Glu 375	Pro	Val	Asn	Ile	Asp 380	Asp	Leu	Ile	Arg

-continued

Asp 385	Gln	Gly	Phe	Arg	Gly 390	Asp	Gly	Gly	Ser	Thr 395	Thr	Gly	Leu	Ser	Ala 400
Thr	Pro	Pro	Ala	Ser 405	Leu	Pro	Gly	Ser	Leu 410	Thr	Asn	Val	Lys	Ala 415	Leu
Gln	Lys	Ser	Pro 420	Gly	Pro	Gln	Arg	Glu 425	Arg	Lys	Ser	Ser	Ser 430	Ser	Ser
Glu	Asp	Arg 435	Asn	Arg	Met	Lys	Thr 440	Leu	Gly	Arg	Arg	Asp 445	Ser	Ser	Asp
Asp	Trp 450	Glu	Ile	Pro	Asp	Gly 455	Gln	Ile	Thr	Val	Gly 460	Gln	Arg	Ile	Gly
Ser 465	Gly	Ser	Phe	Gly	Thr 470	Val	Tyr	Lys	Gly	Lys 475	Trp	His	Gly	Asp	Val 480
Ala	Val	rÀa	Met	Leu 485	Asn	Val	Thr	Ala	Pro 490	Thr	Pro	Gln	Gln	Leu 495	Gln
Ala	Phe	Lys	Asn 500	Glu	Val	Gly	Val	Leu 505	Arg	Lys	Thr	Arg	His 510	Val	Asn
Ile	Leu	Leu 515	Phe	Met	Gly	Tyr	Ser 520	Thr	Lys	Pro	Gln	Leu 525	Ala	Ile	Val
Thr	Gln 530	Trp	Cys	Glu	Gly	Ser 535	Ser	Leu	Tyr	His	His 540	Leu	His	Ile	Ile
Glu 545	Thr	Lys	Phe	Glu	Met 550	Ile	Lys	Leu	Ile	Asp 555	Ile	Ala	Arg	Gln	Thr 560
Ala	Gln	Gly	Met	Asp 565	Tyr	Leu	His	Ala	Lys 570	Ser	Ile	Ile	His	Arg 575	Aap
Leu	Lys	Ser	Asn 580	Asn	Ile	Phe	Leu	His 585	Glu	Asp	Leu	Thr	Val 590	Lys	Ile
Gly	Asp	Phe 595	Gly	Leu	Ala	Thr	Glu 600	Lys	Ser	Arg	Trp	Ser 605	Gly	Ser	His
Gln	Phe 610	Glu	Gln	Leu	Ser	Gly 615	Ser	Ile	Leu	Trp	Met 620	Ala	Pro	Glu	Val
Ile 625	Arg	Met	Gln	Asp	Lys 630	Asn	Pro	Tyr	Ser	Phe 635	Gln	Ser	Asp	Val	Tyr 640
Ala	Phe	Gly	Ile	Val 645	Leu	Tyr	Glu	Leu	Met 650	Thr	Gly	Gln	Leu	Pro 655	Tyr
Ser	Asn	Ile	Asn 660	Asn	Arg	Asp	Gln	Ile 665	Ile	Phe	Met	Val	Gly 670	Arg	Gly
Tyr	Leu	Ser 675	Pro	Asp	Leu	Ser	Lys 680	Val	Arg	Ser	Asn	Cys 685	Pro	Гла	Ala
Met	Lys 690	Arg	Leu	Met	Ala	Glu 695	Сув	Leu	Lys	Lys	Lys 700	Arg	Asp	Glu	Arg
Pro 705	Leu	Phe	Pro	Gln	Ile 710	Leu	Ala	Ser	Ile	Glu 715	Leu	Leu	Ala	Arg	Ser 720
Leu	Pro	Lys	Ile	His 725	Arg	Ser	Ala	Ser	Glu 730	Pro	Ser	Leu	Asn	Arg 735	Ala
Gly	Phe	Gln	Thr 740	Glu	Asp	Phe	Ser	Leu 745	Tyr	Ala	СЛа	Ala	Ser 750	Pro	ГЛа
Thr	Pro	Ile 755	Gln	Ala	Gly	Gly	Tyr 760	Gly	Ala	Phe	Pro	Val 765	His		

<210> SEQ ID NO 13 <211> LENGTH: 2109 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

37

<400> SEQUI	ENCE: 13					
cgcctccctt	ccccctcccc	gcccgacagc	ggccgctcgg	gccccggctc	tcggttataa	60
gatggcggcg	ctgagcggtg	gcggtggtgg	cggcgcggag	ccgggccagg	ctctgttcaa	120
cggggacatg	gagcccgagg	ccggcgccgg	cgccggcgcc	gcggcctctt	cggctgcgga	180
ccctgccatt	ccggaggagg	tgtggaatat	caaacaaatg	attaagttga	cacaggaaca	240
tatagaggcc	ctattggaca	aatttggtgg	ggagcataat	ccaccatcaa	tatatctgga	300
ggcctatgaa	gaatacacca	gcaagctaga	tgcactccaa	caaagagaac	aacagttatt	360
ggaatctctg	gggaacggaa	ctgatttttc	tgtttctagc	tctgcatcaa	tggataccgt	420
tacatcttct	tcctcttcta	gcctttcagt	gctaccttca	tctctttcag	tttttcaaaa	480
tcccacagat	gtggcacgga	gcaaccccaa	gtcaccacaa	aaacctatcg	ttagagtctt	540
cctgcccaac	aaacagagga	cagtgaaaac	acttggtaga	cgggactcga	gtgatgattg	600
ggagattcct	gatgggcaga	ttacagtggg	acaaagaatt	ggatctggat	catttggaac	660
agtctacaag	ggaaagtggc	atggtgatgt	ggcagtgaaa	atgttgaatg	tgacagcacc	720
tacacctcag	cagttacaag	ccttcaaaaa	tgaagtagga	gtactcagga	aaacacgaca	780
tgtgaatatc	ctactcttca	tgggctattc	cacaaagcca	caactggcta	ttgttaccca	840
gtggtgtgag	ggctccagct	tgtatcacca	tctccatatc	attgagacca	aatttgagat	900
gatcaaactt	atagatattg	cacgacagac	tgcacagggc	atggattact	tacacgccaa	960
gtcaatcatc	cacagagacc	tcaagagaaa	taatatattt	cttcatgaag	acctcacagt	1020
aaaaataggt	gattttggtc	tagctacagt	gaaatctcga	tggagtgggt	cccatcagtt	1080
tgaacagttg	tctggatcca	ttttgtggat	ggcaccagaa	gtcatcagaa	tgcaagataa	1140
aaatccatac	agctttcagt	cagatgtata	tgcatttgga	attgttctgt	atgaattgat	1200
gactggacag	ttaccttatt	caaacatcaa	caacagggac	cagataattt	ttatggtggg	1260
acgaggatac	ctgtctccag	atctcagtaa	ggtacggagt	aactgtccaa	aagccatgaa	1320
gagattaatg	gcagagtgcc	tcaaaaagaa	aagagatgag	agaccactct	ttccccaaat	1380
tctcgcctct	attgagctgc	tggcccgctc	attgccaaaa	attcaccgca	gtgcatcaga	1440
accctccttg	aatcgggctg	gtttccaaac	agaggatttt	agtctatatg	cttgtgcttc	1500
tccaaaaaca	cccatccagg	caggggggata	tggtgcgttt	cctgtccact	gaaacaaatg	1560
agtgagagag	ttcaggagag	tagcaacaaa	aggaaaataa	atgaacatat	gtttgcttat	1620
atgttaaatt	gaataaaata	ctctctttt	ttttaaggtg	aaccaaagaa	cacttgtgtg	1680
gttaaagact	agatataatt	tttccccaaa	ctaaaattta	tacttaacat	tggattttta	1740
acatccaagg	gttaaaatac	atagacattg	ctaaaaattg	gcagagcctc	ttctagaggc	1800
tttactttct	gttccgggtt	tgtatcattc	acttggttat	tttaagtagt	aaacttcagt	1860
ttctcatgca	acttttgttg	ccagctatca	ctacctatgc	ctgtgtttgc	aggtgagaag	1920
ttggcagtcg	gttagcctgg	gttagataag	gcaaactgaa	cagatctaat	ttaggaagtc	1980
agtagaattt	aataattcta	ttattattct	taataatttt	tctataacta	tttctttta	2040
taacaatttg	gaaaatgtgg	atgtctttta	tttccttgaa	gcaataaact	aagtttcttt	2100
ttataaaaa						2109

<210> SEQ ID NO 14 <211> LENGTH: 1947 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

39

<400> SEQUENCE:	14				
cgcctccctt cccc	ectecce gecegaeage	ggccgctcgg	gccccggctc	tcggttataa	60
gatggcggcg ctga	ageggtg geggtggtg	ı cggcgcggag	ccgggccagg	ctctgttcaa	120
cggggacatg gagc	ccgagg ccggcgccgg	a caccaacacc	gcggcctctt	cggctgcgga	180
ccctgccatt ccgg	aggagg acttgattag	y agaccaagga	tttcgtggtg	atggaggatc	240
aaccacaggt ttgt	ctgcta cccccctgo	ctcattacct	ggctcactaa	ctaacgtgaa	300
agccttacag aaat	ctccag gacctcage	agaaaggaag	tcatcttcat	cctcagaaga	360
caggaatcga atga	aaacac ttggtagaco	ggactcgagt	gatgattggg	agattcctga	420
tgggcagatt acag	utgggac aaagaattgo	g atctggatca	tttggaacag	tctacaaggg	480
aaagtggcat ggtg	atgtgg cagtgaaaat	gttgaatgtg	acagcaccta	cacctcagca	540
gttacaagcc ttca	aaaatg aagtaggagt	actcaggaaa	acacgacatg	tgaatatcct	600
actcttcatg ggct	atteca caaageeaca	actggctatt	gttacccagt	ggtgtgaggg	660
ctccagcttg tatc	accatc tccatatcat	tgagaccaaa	tttgagatga	tcaaacttat	720
agatattgca cgac	agactg cacagggcat	ggattactta	cacgccaagt	caatcatcca	780
cagagacctc aaga	agaaata atatatttct	tcatgaagac	ctcacagtaa	aaataggtga	840
ttttggtcta gcta	acagtga aatctcgato	gagtgggtcc	catcagtttg	aacagttgtc	900
tggatccatt ttgt	ggatgg caccagaagt	catcagaatg	caagataaaa	atccatacag	960
ctttcagtca gatg	statatg catttggaat	tgttctgtat	gaattgatga	ctggacagtt	1020
accttattca aaca	itcaaca acagggacca	a gataatttt	atggtgggac	gaggatacct	1080
gtctccagat ctca	agtaagg tacggagtaa	u ctgtccaaaa	gccatgaaga	gattaatggc	1140
agagtgcctc aaaa	agaaaa gagatgagag	g accactcttt	ccccaaattc	tcgcctctat	1200
tgagetgetg geee	gctcat tgccaaaaat	tcaccgcagt	gcatcagaac	cctccttgaa	1260
tegggetggt ttee	aaacag aggattttag	g tctatatgct	tgtgcttctc	caaaaacacc	1320
catccaggca gggg	gatatg gtgcgtttco	tgtccactga	aacaaatgag	tgagagagtt	1380
caggagagta gcaa	acaaaag gaaaataaat	gaacatatgt	ttgcttatat	gttaaattga	1440
ataaaatact ctct	tttttt ttaaggtgaa	u ccaaagaaca	cttgtgtggt	taaagactag	1500
atataatttt tccc	caaact aaaatttata	u cttaacattg	gatttttaac	atccaagggt	1560
taaaatacat agac	attgct aaaaattggo	agagcetett	ctagaggctt	tactttctgt	1620
teegggtttg tate	attcac ttggttattt	taagtagtaa	acttcagttt	ctcatgcaac	1680
ttttgttgcc agct	atcaca tgtccacta	ggactccaga	agaagaccct	acctatgcct	1740
gtgtttgcag gtga	agaagtt ggcagtcggt	tagcctgggt	tagataaggc	aaactgaaca	1800
gatctaattt agga	agtcag tagaatttaa	a taattctatt	attattctta	ataatttttc	1860
tataactatt tctt	tttata acaatttgga	a aaatgtggat	gtcttttatt	tccttgaagc	1920
aataaactaa gttt	cttttt ataaaaa				1947
<210> SEQ ID NO <211> LENGTH: 2 <212> TYPE: DNA <213> ORGANISM: <400> SEQUENCE:) 15 313 A Homo sapiens 15				
cgcctccctt cccc	ctcccc gcccgacago	: ggccgctcgg	gccccggctc	tcggttataa	60

cgcctccctt ccccctcccc gcccgacage ggccgctcgg gccccggetc tcggttataa

gatggeggeg etgageggtg geggtggtgg eggegeggag eegggeeagg etetgtteaa

120

40

41

-continued

cggggacatg	gagcccgagg	ccggcgccgg	cgccggcgcc	gcggcctctt	cggctgcgga	180	
ccctgccatt	ccggaggagg	tgtggaatat	caaacaaatg	attaagttga	cacaggaaca	240	
tatagaggcc	ctattggaca	aatttggtgg	ggagcataat	ccaccatcaa	tatatctgga	300	
ggcctatgaa	gaatacacca	gcaagctaga	tgcactccaa	caaagagaac	aacagttatt	360	
ggaatctctg	gggaacggaa	ctgattttc	tgtttctagc	tctgcatcaa	tggataccgt	420	
tacatcttct	tcctcttcta	gcctttcagt	gctaccttca	tctctttcag	tttttcaaaa	480	
tcccacagat	gtggcacgga	gcaaccccaa	gtcaccacaa	aaacctatcg	ttagagtctt	540	
cctgcccaac	aaacagagga	cagtggactt	gattagagac	caaggatttc	gtggtgatgg	600	
aggatcaacc	acaggtttgt	ctgctacccc	ccctgcctca	ttacctggct	cactaactaa	660	
cgtgaaagcc	ttacagaaat	ctccaggacc	tcagcgagaa	aggaagtcat	cttcatcctc	720	
agaagacagg	aatcgaatga	aaacacttgg	tagacgggac	tcgagtgatg	attgggagat	780	
tcctgatggg	cagattacag	tgggacaaag	aattggatct	ggatcatttg	gaacagtcta	840	
caagggaaag	tggcatggtg	atgtggcagt	gaaaatgttg	aatgtgacag	cacctacacc	900	
tcagcagtta	caagccttca	aaaatgaagt	aggagtactc	aggaaaacac	gacatgtgaa	960	
tatcctactc	ttcatgggct	attccacaaa	gccacaactg	gctattgtta	cccagtggtg	1020	
tgagggctcc	agcttgtatc	accatctcca	tatcattgag	accaaatttg	agatgatcaa	1080	
acttatagat	attgcacgac	agactgcaca	gggcatggat	tacttacacg	ccaagtcaat	1140	
catccacaga	gacctcaaga	gaaataatat	atttcttcat	gaagacctca	cagtaaaaat	1200	
aggtgattt	ggtctagcta	cagtgaaatc	tcgatggagt	gggtcccatc	agtttgaaca	1260	
gttgtctgga	tccattttgt	ggatggcacc	agaagtcatc	agaatgcaag	ataaaaatcc	1320	
atacagcttt	cagtcagatg	tatatgcatt	tggaattgtt	ctgtatgaat	tgatgactgg	1380	
acagttacct	tattcaaaca	tcaacaacag	ggaccagata	atttttatgg	tgggacgagg	1440	
atacctgtct	ccagatctca	gtaaggtacg	gagtaactgt	ccaaaagcca	tgaagagatt	1500	
aatggcagag	tgcctcaaaa	agaaaagaga	tgagagacca	ctctttcccc	aaattctcgc	1560	
ctctattgag	ctgctggccc	gctcattgcc	aaaaattcac	cgcagtgcat	cagaaccctc	1620	
cttgaatcgg	gctggtttcc	aaacagagga	ttttagtcta	tatgcttgtg	cttctccaaa	1680	
aacacccatc	caggcagggg	gatatggtgc	gtttcctgtc	cactgaaaca	aatgagtgag	1740	
agagttcagg	agagtagcaa	caaaaggaaa	ataaatgaac	atatgtttgc	ttatatgtta	1800	
aattgaataa	aatactctct	ttttttaa	ggtgaaccaa	agaacacttg	tgtggttaaa	1860	
gactagatat	aatttttccc	caaactaaaa	tttatactta	acattggatt	tttaacatcc	1920	
aagggttaaa	atacatagac	attgctaaaa	attggcagag	cctcttctag	aggetttaet	1980	
ttctgttccg	ggtttgtatc	attcacttgg	ttattttaag	tagtaaactt	cagtttctca	2040	
tgcaactttt	gttgccagct	atcacatgtc	cactagggac	tccagaagaa	gaccctacct	2100	
atgcctgtgt	ttgcaggtga	gaagttggca	gtcggttagc	ctgggttaga	taaggcaaac	2160	
tgaacagatc	taatttagga	agtcagtaga	atttaataat	tctattatta	ttcttaataa	2220	
tttttctata	actatttctt	tttataacaa	tttggaaaat	gtggatgtct	tttatttcct	2280	
tgaagcaata	aactaagttt	ctttttataa	aaa			2313	

<210> SEQ ID NO 16 <211> LENGTH: 432 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 16

Met 1	Ala	Ala	Leu	Ser 5	Gly	Gly	Gly	Gly	Gly 10	Gly	Ala	Glu	Pro	Gly 15	Gln
Ala	Leu	Phe	Asn 20	Gly	Asp	Met	Glu	Pro 25	Glu	Ala	Gly	Ala	Gly 30	Ala	Gly
Ala	Ala	Ala 35	Ser	Ser	Ala	Ala	Asp 40	Pro	Ala	Ile	Pro	Glu 45	Glu	Asp	Leu
Ile	Arg 50	Asp	Gln	Gly	Phe	Arg 55	Gly	Asp	Gly	Gly	Ser 60	Thr	Thr	Gly	Leu
Ser 65	Ala	Thr	Pro	Pro	Ala 70	Ser	Leu	Pro	Gly	Ser 75	Leu	Thr	Asn	Val	Lys 80
Ala	Leu	Gln	Lys	Ser 85	Pro	Gly	Pro	Gln	Arg 90	Glu	Arg	Гла	Ser	Ser 95	Ser
Ser	Ser	Glu	Asp 100	Arg	Asn	Arg	Met	Lys 105	Thr	Leu	Gly	Arg	Arg 110	Asp	Ser
Ser	Asp	Asp 115	Trp	Glu	Ile	Pro	Asp 120	Gly	Gln	Ile	Thr	Val 125	Gly	Gln	Arg
Ile	Gly 130	Ser	Gly	Ser	Phe	Gly 135	Thr	Val	Tyr	ГÀа	Gly 140	Lys	Trp	His	Gly
Asp 145	Val	Ala	Val	Гла	Met 150	Leu	Asn	Val	Thr	Ala 155	Pro	Thr	Pro	Gln	Gln 160
Leu	Gln	Ala	Phe	Lys 165	Asn	Glu	Val	Gly	Val 170	Leu	Arg	Lys	Thr	Arg 175	His
Val	Asn	Ile	Leu 180	Leu	Phe	Met	Gly	Tyr 185	Ser	Thr	Lys	Pro	Gln 190	Leu	Ala
Ile	Val	Thr 195	Gln	Trp	Суз	Glu	Gly 200	Ser	Ser	Leu	Tyr	His 205	His	Leu	His
Ile	Ile 210	Glu	Thr	Lys	Phe	Glu 215	Met	Ile	Lys	Leu	Ile 220	Asp	Ile	Ala	Arg
Gln 225	Thr	Ala	Gln	Gly	Met 230	Asp	Tyr	Leu	His	Ala 235	Гла	Ser	Ile	Ile	His 240
Arg	Asp	Leu	Lys	Ser 245	Asn	Asn	Ile	Phe	Leu 250	His	Glu	Asp	Leu	Thr 255	Val
ГÀа	Ile	Gly	Asp 260	Phe	Gly	Leu	Ala	Thr 265	Val	Lys	Ser	Arg	Trp 270	Ser	Gly
Ser	His	Gln 275	Phe	Glu	Gln	Leu	Ser 280	Gly	Ser	Ile	Leu	Trp 285	Met	Ala	Pro
Glu	Val 290	Ile	Arg	Met	Gln	Asp 295	Lys	Asn	Pro	Tyr	Ser 300	Phe	Gln	Ser	Asp
Val 305	Tyr	Ala	Phe	Gly	Ile 310	Val	Leu	Tyr	Glu	Leu 315	Met	Thr	Gly	Gln	Leu 320
Pro	Tyr	Ser	Asn	Ile 325	Asn	Asn	Arg	Asp	Gln 330	Ile	Ile	Phe	Met	Val 335	Gly
Arg	Gly	Tyr	Leu 340	Ser	Pro	Asp	Leu	Ser 345	Lys	Val	Arg	Ser	Asn 350	Сүз	Pro
Lys	Ala	Met 355	Lys	Arg	Leu	Met	Ala 360	Glu	Cys	Leu	Lys	Lys 365	Lys	Arg	Aap
Glu	Arg 370	Pro	Leu	Phe	Pro	Gln 375	Ile	Leu	Ala	Ser	Ile 380	Glu	Leu	Leu	Ala
Arg 385	Ser	Leu	Pro	Lys	Ile 390	His	Arg	Ser	Ala	Ser 395	Glu	Pro	Ser	Leu	Asn 400

-continued

Arg	Ala	Gly	Phe	Gln 405	Thr	Glu	Asp	Phe	Ser 410	Leu	Tyr	Ala	Cys	Ala 415	Ser		
Pro	Lys	Thr	Pro 420	Ile	Gln	Ala	Gly	Gly 425	Tyr	Gly	Ala	Phe	Pro 430	Val	His		
<210 <211 <212 <213	0> SH L> LH 2> TY 3> OH	EQ II ENGTH ZPE : RGANI	D NO H: 3' PRT LSM:	17 74 Homa	o saj	pien	8										
<400	D> SH	EQUEI	ICE :	17													
Met 1	Ala	Ala	Leu	Ser 5	Gly	Gly	Gly	Gly	Gly 10	Gly	Ala	Glu	Pro	Gly 15	Gln		
Ala	Leu	Phe	Asn 20	Gly	Asp	Met	Glu	Pro 25	Glu	Ala	Gly	Ala	Gly 30	Ala	Gly		
Ala	Ala	Ala 35	Ser	Ser	Ala	Ala	Asp 40	Pro	Ala	Ile	Pro	Glu 45	Glu	Lys	Thr		
Leu	Gly 50	Arg	Arg	Asp	Ser	Ser 55	Asp	Asp	Trp	Glu	Ile 60	Pro	Asp	Gly	Gln		
Ile 65	Thr	Val	Gly	Gln	Arg 70	Ile	Gly	Ser	Gly	Ser 75	Phe	Gly	Thr	Val	Tyr 80		
Lys	Gly	Lys	Trp	His 85	Gly	Asp	Val	Ala	Val 90	Гла	Met	Leu	Asn	Val 95	Thr		
Ala	Pro	Thr	Pro 100	Gln	Gln	Leu	Gln	Ala 105	Phe	ГÀа	Asn	Glu	Val 110	Gly	Val		
Leu	Arg	Lys 115	Thr	Arg	His	Val	Asn 120	Ile	Leu	Leu	Phe	Met 125	Gly	Tyr	Ser		
Thr	Lys 130	Pro	Gln	Leu	Ala	Ile 135	Val	Thr	Gln	Trp	Cys 140	Glu	Gly	Ser	Ser		
Leu 145	Tyr	His	His	Leu	His 150	Ile	Ile	Glu	Thr	Lys 155	Phe	Glu	Met	Ile	Lys 160		
Leu	Ile	Asp	Ile	Ala 165	Arg	Gln	Thr	Ala	Gln 170	Gly	Met	Asp	Tyr	Leu 175	His		
Ala	Lys	Ser	Ile 180	Ile	His	Arg	Asp	Leu 185	Lys	Ser	Asn	Asn	Ile 190	Phe	Leu		
His	Glu	Asp 195	Leu	Thr	Val	Lys	Ile 200	Gly	Asp	Phe	Gly	Leu 205	Ala	Thr	Val		
Lys	Ser 210	Arg	Trp	Ser	Gly	Ser 215	His	Gln	Phe	Glu	Gln 220	Leu	Ser	Gly	Ser		
Ile 225	Leu	Trp	Met	Ala	Pro 230	Glu	Val	Ile	Arg	Met 235	Gln	Asp	Lys	Asn	Pro 240		
Tyr	Ser	Phe	Gln	Ser 245	Asp	Val	Tyr	Ala	Phe 250	Gly	Ile	Val	Leu	Tyr 255	Glu		
Leu	Met	Thr	Gly 260	Gln	Leu	Pro	Tyr	Ser 265	Asn	Ile	Asn	Asn	Arg 270	Asp	Gln		
Ile	Ile	Phe 275	Met	Val	Gly	Arg	Gly 280	Tyr	Leu	Ser	Pro	Asp 285	Leu	Ser	Lys		
Val	Arg 290	Ser	Asn	Сүз	Pro	Lys 295	Ala	Met	Lys	Arg	Leu 300	Met	Ala	Glu	Cys		
Leu 305	Гла	Lys	Гла	Arg	Asp 310	Glu	Arg	Pro	Leu	Phe 315	Pro	Gln	Ile	Leu	Ala 320		
Ser	Ile	Glu	Leu	Leu 325	Ala	Arg	Ser	Leu	Pro 330	Lys	Ile	His	Arg	Ser 335	Ala		
Ser	Glu	Pro	Ser 340	Leu	Asn	Arg	Ala	Gly 345	Phe	Gln	Thr	Glu	Asp 350	Phe	Ser		

46

-continued

L€	eu	Tyr	Ala 355	Суз	Ala	Ser	Pro	Lys 360	Thr	Pro	Ile	Gln	Ala 365	Gly	Gly	Tyr
Gl	·У	Ala 370	Phe	Pro	Val	His										
<2 <2 <2 <2	210 211 212 213	> SH > LH > TY > OF	EQ II ENGTH (PE : RGAN]) NO 1: 59 PRT [SM:	18 54 Homa	วรลา	bien	3								
< 4	100)> SH	EQUEI	ICE :	18	-										
M∈ 1	et	Ala	Ala	Leu	Ser 5	Gly	Gly	Gly	Gly	Gly 10	Gly	Ala	Glu	Pro	Gly 15	Gln
Al	.a	Leu	Phe	Asn 20	Gly	Asp	Met	Glu	Pro 25	Glu	Ala	Gly	Ala	Gly 30	Ala	Gly
Al	.a	Ala	Ala 35	Ser	Ser	Ala	Ala	Asp 40	Pro	Ala	Ile	Pro	Glu 45	Glu	Val	Trp
As	'n	Ile 50	ГЛа	Gln	Met	Ile	Lуя 55	Leu	Thr	Gln	Glu	His 60	Ile	Glu	Ala	Leu
Lе 65	eu S	Asp	Lys	Phe	Gly	Gly 70	Glu	His	Asn	Pro	Pro 75	Ser	Ile	Tyr	Leu	Glu 80
Al	.a	Tyr	Glu	Glu	Tyr 85	Thr	Ser	Lys	Leu	Asp 90	Ala	Leu	Gln	Gln	Arg 95	Glu
Gl	.n	Gln	Leu	Leu 100	Glu	Ser	Leu	Gly	Asn 105	Gly	Thr	Asp	Phe	Ser 110	Val	Ser
Se	er	Ser	Ala 115	Ser	Met	Asp	Thr	Val 120	Thr	Ser	Ser	Ser	Ser 125	Ser	Ser	Leu
S€	r	Val 130	Leu	Pro	Ser	Ser	Leu 135	Ser	Val	Phe	Gln	Asn 140	Pro	Thr	Asp	Val
A1 14	.a 15	Arg	Ser	Asn	Pro	Lys 150	Ser	Pro	Gln	Lys	Pro 155	Ile	Val	Arg	Val	Phe 160
L€	eu	Pro	Asn	Lys	Gln 165	Arg	Thr	Val	Asp	Leu 170	Ile	Arg	Asp	Gln	Gly 175	Phe
Ar	g	Gly	Asp	Gly 180	Gly	Ser	Thr	Thr	Gly 185	Leu	Ser	Ala	Thr	Pro 190	Pro	Ala
Se	er	Leu	Pro 195	Gly	Ser	Leu	Thr	Asn 200	Val	Lys	Ala	Leu	Gln 205	Lys	Ser	Pro
Gl	.y	Pro 210	Gln	Arg	Glu	Arg	Lys 215	Ser	Ser	Ser	Ser	Ser 220	Glu	Asp	Arg	Asn
A1 22	g 5	Met	Lys	Thr	Leu	Gly 230	Arg	Arg	Aab	Ser	Ser 235	Asp	Asp	Trp	Glu	Ile 240
Pr	:0	Asp	Gly	Gln	Ile 245	Thr	Val	Gly	Gln	Arg 250	Ile	Gly	Ser	Gly	Ser 255	Phe
G]	-y	Thr	Val	Tyr 260	Lys	Gly	Lys	Trp	His 265	Gly	Asp	Val	Ala	Val 270	Lys	Met
Le	eu	Asn	Val 275	Thr	Ala	Pro	Thr	Pro 280	Gln	Gln	Leu	Gln	Ala 285	Phe	ГÀа	Asn
Gl	.u	Val 290	Gly	Val	Leu	Arg	Lys 295	Thr	Arg	His	Val	Asn 300	Ile	Leu	Leu	Phe
Ме З (et)5	Gly	Tyr	Ser	Thr	Lys 310	Pro	Gln	Leu	Ala	Ile 315	Val	Thr	Gln	Trp	Суз 320
Gl	.u	Gly	Ser	Ser	Leu 325	Tyr	His	His	Leu	His 330	Ile	Ile	Glu	Thr	Lуя 335	Phe
Gl	.u	Met	Ile	Lys 340	Leu	Ile	Asp	Ile	Ala 345	Arg	Gln	Thr	Ala	Gln 350	Gly	Met

дам	Tyr	Leu 355	His	Ala	Lys	Ser	Ile 360	Ile	His	Arg	Asp	Leu 365	Lys	Ser	Asn
Asn	Ile 370	Phe	Leu	His	Glu	Asp 375	Leu	Thr	Val	Lys	Ile 380	Gly	Asp	Phe	Gly
Leu	Ala	Thr	Val	Lys	Ser	Arg	Trp	Ser	Gly	Ser	His	Gln	Phe	Glu	Gln
385	9	G]	G	- 1	390					395	** - 7			M - 1	400
Leu	ser	GIY	ser	11e 405	Leu	Trp	Met	AIA	Pro 410	GIU	vai	11e	Arg	Met 415	GIN
Asp	Lys	Asn	Pro 420	Tyr	Ser	Phe	Gln	Ser 425	Asp	Val	Tyr	Ala	Phe 430	Gly	Ile
Val	Leu	Tyr 435	Glu	Leu	Met	Thr	Gly 440	Gln	Leu	Pro	Tyr	Ser 445	Asn	Ile	Asn
Asn	Arg 450	Aab	Gln	Ile	Ile	Phe 455	Met	Val	Gly	Arg	Gly 460	Tyr	Leu	Ser	Pro
Asp	Leu	Ser	Lys	Val	Arg	Ser	Asn	Cys	Pro	Lys 475	Ala	Met	Lys	Arg	Leu
Met	Ala	Glu	Cys	Leu	Lys	Lys	Lys	Arg	Aap	Glu	Arg	Pro	Leu	Phe	Pro
Gln	Ile	Leu	Ala	485 Ser	Ile	Glu	Leu	Leu	490 Ala	Arq	Ser	Leu	Pro	495 Lvs	Ile
			500		a 1	_	a	505				a 1	510	-	-
HIS	Arg	Ser 515	Ala	Ser	GIU	Pro	Ser 520	Leu	Asn	Arg	Ala	G1y 525	Pne	GIN	Inr
Glu	Asp 530	Phe	Ser	Leu	Tyr	Ala 535	Cys	Ala	Ser	Pro	Lys 540	Thr	Pro	Ile	Gln
Ala 545	Gly	Gly	Tyr	Gly	Ala 550	Phe	Pro	Val	His						
~ * *) - CT	tt os		10											
<210	12 21	- <u>x</u>	110	тэ											
<210 <211 <212	1> L L> L 2> T 2> OF	ENGTH	H: 49 PRT	96 Home		hien	-								
<210 <211 <211 <211 <211)> 51 L> LH 2> TY 3> OF 0> SH	ENGTH (PE : RGAN] EQUEN	I: 49 PRT ISM: NCE:	19 96 Homo 19	saj	piens	3								
<210 <211 <211 <211 <211 <400 Met)> 51 L> LH 2> TY 3> OF 0> SH Ala	ENGTH (PE: RGANI EQUEN Ala	H: 49 PRT ISM: NCE: Leu	Homo 19 Ser 5	saj Gly	pien: Gly	Gly	Gly	Gly 10	Gly	Ala	Glu	Pro	Gly 15	Gln
<210 <211 <211 <211 <211 <400 Met 1 Ala	L> LH 2> TY 3> OF D> SH Ala Leu	ENGTH (PE: RGANI EQUEN Ala Phe	I: 49 PRT ISM: ICE: Leu Asn	Homo 19 Ser 5 Gly	Gly Asp	gien: Gly Met	Gly Glu	Gly Pro	Gly 10 Glu	Gly Ala	Ala Gly	Glu Ala	Pro Gly	Gly 15 Ala	Gln Gly
<210 <211 <212 <212 <400 Met 1 Ala Ala	L> LE 2> TY 3> OF D> SE Ala Leu Ala	ENGTH (PE: RGANI EQUEN Ala Phe Ala	I: 49 PRT ISM: ICE: Leu Asn 20 Ser	Homo 19 Ser 5 Gly Ser	Gly Asp Ala	Gly Met Ala	Gly Glu Asp	Gly Pro 25 Pro	Gly 10 Glu Ala	Gly Ala Ile	Ala Gly Pro	Glu Ala Glu	Pro Gly 30 Glu	Gly 15 Ala Val	Gln Gly Trp
<210 <211 <211 <211 <400 Met 1 Ala Ala	L> LE 2> TY 3> OF Ala Leu Ala	ENGTH (PE: CGANI EQUEN Ala Phe Ala 35	I: 49 PRT ISM: ICE: Leu Asn 20 Ser	Homo 19 Ser 5 Gly Ser	Gly Asp Ala	Gly Met Ala	Gly Glu Asp 40	Gly Pro 25 Pro	Gly 10 Glu Ala	Gly Ala Ile	Ala Gly Pro	Glu Ala Glu 45	Pro Gly 30 Glu	Gly 15 Ala Val	Gln Gly Trp
<210 <211 <211 <211 <400 Met 1 Ala Ala Ala	<pre>SI SI S</pre>	Phe Ala Phe Lys	H: 49 PRT ISM: ICE: Leu Asn 20 Ser Gln	Homo 19 Ser 5 Gly Ser Met	Gly Asp Ala Ile	Gly Met Ala Lys 55	Gly Glu Asp 40 Leu	Gly Pro 25 Pro Thr	Gly 10 Glu Ala Gln	Gly Ala Ile Glu	Ala Gly Pro His 60	Glu Ala Glu 45 Ile	Pro Gly 30 Glu Glu	Gly 15 Ala Val Ala	Gln Gly Trp Leu
<211 <211 <211 <400 Met 1 Ala Ala Asn Leu 65	<pre>IS SF IS LF IS TY IS OF Ala Ala Leu Ala Ile 50 Asp</pre>	ENGTH (PE: CQANI EQUEN Ala Phe Ala 35 Lys Lys	I: 49 PRT ISM: JCE: Leu Asn 20 Ser Gln Phe	Homo 19 Ser 5 Gly Ser Met Gly	Gly Asp Ala Ile Gly 70	Gly Met Ala Lys 55 Glu	Gly Glu Asp 40 Leu His	Gly Pro 25 Pro Thr Asn	Gly 10 Glu Ala Gln Pro	Gly Ala Ile Glu Pro 75	Ala Gly Pro His 60 Ser	Glu Ala Glu 45 Ile Ile	Pro Gly 30 Glu Glu Tyr	Gly 15 Ala Val Ala Leu	Gln Gly Trp Leu Glu 80
<2111 <2111 <212 <211 <400 Met 1 Ala Ala Ala Leu 65 Ala	<pre>J> JF I> LH 2> TY 3> OF Ala Leu Ala Ile 50 Asp Tyr</pre>	ENGTH (PE: CGANJ EQUEN Ala Phe Ala 35 Lys Lys Glu	H: 45 PRT USM: UCE: Leu Asn 20 Ser Gln Phe Glu	Homo 19 Ser Gly Ser Gly Met Gly Tyr 85	Gly Asp Ala Ile Gly 70 Thr	Gly Met Ala Lys 55 Glu Ser	Gly Glu Asp 40 Leu His Lys	Gly Pro 25 Pro Thr Asn Leu	Gly 10 Glu Ala Gln Pro Asp 90	Gly Ala Ile Glu Pro 75 Ala	Ala Gly Pro His 60 Ser Leu	Glu Ala Glu 45 Ile Gln	Pro Gly 30 Glu Glu Tyr Gln	Gly 15 Ala Val Ala Leu Arg 95	Gln Gly Trp Leu Glu Glu
<pre><21(<211 <212 <212 <400 Met 1 Ala Ala Ala Leu 65 Ala Gln</pre>	<pre>Solution State Stat</pre>	ENGTI (PE: CQUEN Ala Phe Ala 35 Lys Glu Leu	<pre>1: 45 PRT ISM: ISM: ICE: Leu Asn 20 Ser Gln Phe Glu Leu 100</pre>	Homodon Homodon Ser Ser Ser Gly Ser Gly Tyr 85 Glu	Gly Asp Ala Ile Gly 70 Thr Ser	Gly Met Ala Lys 55 Glu Ser Leu	Gly Glu Asp 40 Leu His Lys Gly	Gly Pro 25 Pro Thr Asn Leu Asn 105	Gly 10 Glu Ala Gln Pro Asp 90 Gly	Gly Ala Ile Glu Pro 75 Ala Thr	Ala Gly Pro His 60 Ser Leu Asp	Glu Ala Glu 45 Ile Ile Gln Phe	Pro Gly 30 Glu Glu Tyr Gln Ser 110	Gly 15 Ala Val Ala Leu Arg 95 Val	Gln Gly Trp Leu Glu Glu Ser
<pre><21(<211 <212 <212 <213 <400 Met 1 Ala Ala Ala Asn Leu 65 Ala Gln Ser</pre>	<pre> > </pre>	ENGTI (PE: CQUEN Ala Phe Ala 35 Lys Glu Leu Ala	<pre>1: 45 PRT ISM: ISM: ICE: Leu Asn 20 Ser Gln Phe Glu Leu 100 Ser</pre>	Homo 19 Ser 5 Gly Ser 6ly Tyr 85 Glu Met	Gly Asp Ala Ile Gly 70 Thr Ser Asp	Gly Met Ala Lys 55 Glu Ser Leu Thr	Gly Glu Asp 40 Leu His Lys Gly Val	Gly Pro 25 Pro Thr Asn Leu Asn 105 Thr	Gly 10 Glu Ala Gln Pro Asp 90 Gly Ser	Gly Ala Ile Glu Pro 75 Ala Thr Ser	Ala Gly Pro His 60 Ser Leu Asp Ser	Glu Ala Glu 45 Ile Gln Phe Ser	Pro Gly 30 Glu Glu Glu Tyr Gln Ser 110 Ser	Gly 15 Ala Val Ala Leu Arg 95 Val Ser	Gln Gly Trp Leu Glu Glu Ser Leu
<pre><211 <211 <211 <211 <211 <211 <211 <211</pre>	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	SINGTY (PE: SQAN) SQUEN Ala Phe Ala 35 Lys Glu Leu Ala 115	H: 45 PRT [SM: [SM: [SM: [SM: [SM: [SM: 20] Ser Gln Ser Gln Leu 100 Ser Pro Pro	Homo 19 Ser 5 Gly Ser Gly Tyr 85 Glu Met Ser	Gly Asp Ala Ile Gly 70 Thr Ser Asp	Gly Met Ala Lys 55 Glu Ser Leu Thr	Gly Glu Asp 40 Leu His Lys Gly Val 120 Ser	Gly Pro 25 Pro Thr Asn Leu Asn 105 Thr Val	Gly 10 Glu Ala Gln Pro Asp 90 Gly Ser	Gly Ala Ile Glu Pro 75 Ala Thr Ser Glu	Ala Gly Pro His 60 Ser Leu Asp Ser	Glu Ala Glu 45 Ile Gln Phe Ser 125 Pro	Pro Gly 30 Glu Glu Glu Tyr Gln Ser 110 Ser Thr	Gly 15 Ala Val Ala Leu Arg 95 Val Ser	Gln Gly Trp Leu Glu Ser Leu Leu
<pre><211 <211 <211 <211 <211 <400 Met 1 Ala Ala Ala Asn Leu 65 Ala Gln Ser Ser</pre>	<pre>symbol{ symbol{ ymbol{sy</pre>	SNGTF (PE: CQUEN Ala Phe Ala 35 Lys Glu Leu Ala 115 Leu	<pre>H: 45 PRT ISM: ISM: ISM: ICE: Leu Asn 20 Ser Gln Phe Glu Leu 100 Ser Pro</pre>	Homo 19 Ser 5 Gly Ser Gly Tyr 85 Glu Met Ser Ser	Gly Asp Ala Ile Gly 70 Thr Ser Asp Ser	Gly Met Ala Lys 55 Glu Ser Leu Thr Leu 135	Gly Glu Asp 40 Leu His Lys Gly Val 120 Ser	Gly Pro 25 Pro Thr Asn Leu Asn 105 Thr Val	Gly 10 Glu Ala Gln Pro Asp 90 Gly Ser Phe	Gly Ala Ile Glu Pro 75 Ala Thr Ser Gln	Ala Gly Pro His 60 Ser Leu Asp Ser Ser Asn 140	Glu Ala Glu 45 Ile Gln Phe Ser 125 Pro	Pro Gly 30 Glu Glu Glu Tyr Gln Ser 110 Ser Thr	Gly 15 Ala Val Leu Arg 95 Val Ser Asp	Gln Gly Trp Leu Glu Glu Ser Leu Val
<pre><211 <211 <211 <211 <211 <211 <211 <211</pre>	<pre>symbol{ symbol{ ymbol{sy</pre>	SNGTF (PE: CQUEN Ala Phe Ala 35 Lys Glu Lys Glu Leu Ala 115 Leu Ser	H: 45 PRT [SM: [SM: [SM: [SM: [SM: [SM: 20 Ser Gln Ser Gln Leu 100 Ser Phe Asn 20 Ser Asn	Homo 19 Ser 5 Gly Ser Gly Ser Gly Tyr 85 Glu Met Ser Pro	Gly Asp Ala Ile Gly 70 Thr Ser Asp Ser Lys 150	Gly Met Ala Lys 55 Glu Ser Leu Thr Leu 135 Ser	Gly Glu Asp 40 Leu His Lys Gly Val 120 Ser Pro	Gly Pro Pro Thr Asn Leu Asn 105 Thr Val Gln	Gly 10 Glu Ala Gln Pro Gly Ser Phe Lys	Gly Ala Ile Glu Pro 75 Ala Thr Ser Gln Pro 155	Ala Gly Pro His 60 Ser Leu Asp Ser Asp 140 Ile	Glu Ala Glu 45 Ile Gln Phe Ser 125 Pro Val	Pro Gly 30 Glu Glu Glu Tyr Gln Ser 110 Ser Thr Arg	Gly 15 Ala Val Leu Arg 95 Val Ser Asp Val	Gln Gly Trp Leu Glu Glu Ser Leu Val Phe 160

-continued

Ser Asp Asp Trp Glu Ile Pro Asp Gly Gln Ile Thr Val Gly Gln Arg 180 185 190	
Ile Gly Ser Gly Ser Phe Gly Thr Val Tyr Lys Gly Lys Trp His Gly 195 200 205	
Asp Val Ala Val Lys Met Leu Asn Val Thr Ala Pro Thr Pro Gln Gln 210 215 220	
Leu Gln Ala Phe Lys Asn Glu Val Gly Val Leu Arg Lys Thr Arg His 225 230 235 240	
Val Asn Ile Leu Leu Phe Met Gly Tyr Ser Thr Lys Pro Gln Leu Ala 245 250 255	
Ile Val Thr Gln Trp Cys Glu Gly Ser Ser Leu Tyr His His Leu His 260 265 270	
Ile Ile Glu Thr Lys Phe Glu Met Ile Lys Leu Ile Asp Ile Ala Arg 275 280 285	
Gln Thr Ala Gln Gly Met Asp Tyr Leu His Ala Lys Ser Ile Ile His 290 295 300	
Arg Asp Leu Lys Ser Asn Asn Ile Phe Leu His Glu Asp Leu Thr Val 305 310 315 320	
Lys Ile Gly Asp Phe Gly Leu Ala Thr Val Lys Ser Arg Trp Ser Gly 325 330 335	
Ser His Gln Phe Glu Gln Leu Ser Gly Ser Ile Leu Trp Met Ala Pro 340 345 350	
Glu Val Ile Arg Met Gln Asp Lys Asn Pro Tyr Ser Phe Gln Ser Asp 355 360 365	
Val Tyr Ala Phe Gly Ile Val Leu Tyr Glu Leu Met Thr Gly Gln Leu 370 375 380	
Pro Tyr Ser Asn Ile Asn Asn Arg Asp Gln Ile Ile Phe Met Val Gly 385 390 395 400	
Arg Gly Tyr Leu Ser Pro Asp Leu Ser Lys Val Arg Ser Asn Cys Pro 405 410 415	
Lys Ala Met Lys Arg Leu Met Ala Glu Cys Leu Lys Lys Arg Asp 420 425 430	
Glu Arg Pro Leu Phe Pro Gln Ile Leu Ala Ser Ile Glu Leu Leu Ala 435 440 445	
Arg Ser Leu Pro Lys Ile His Arg Ser Ala Ser Glu Pro Ser Leu Asn 450 455 460	
Arg Ala Gly Phe Gln Thr Glu Asp Phe Ser Leu Tyr Ala Cys Ala Ser 465 470 475 480	
Pro Lys Thr Pro Ile Gln Ala Gly Gly Tyr Gly Ala Phe Pro Val His 485 490 495	
<210> SEQ ID NO 20 <211> LENGTH: 139 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 20	
gatggcggcg ctgagcggtg gcggtggtgg cggcgcgggag ccgggccagg ctctgttcaa	60
cggggacatg gageeegagg eeggegeegg egeeggegee geggeetett eggetgegga	120
<210> SEQ ID NO 21 <211> LENGTH: 987 <212> TYPE: DNA	

<213> ORGANISM: Homo sapiens

-continued

<400> SEQUI	ENCE: 21							
aaaacacttg	gtagacggga	ctcgagtgat	gattgggaga	ttcctgatgg	gcagattaca	60		
gtgggacaaa	gaattggatc	tggatcattt	ggaacagtct	acaagggaaa	gtggcatggt	120		
gatgtggcag	tgaaaatgtt	gaatgtgaca	gcacctacac	ctcagcagtt	acaagcette	180		
aaaaatgaag	taggagtact	caggaaaaca	cgacatgtga	atatcctact	cttcatgggc	240		
tattccacaa	agccacaact	ggctattgtt	acccagtggt	gtgagggctc	cagcttgtat	300		
caccatctcc	atatcattga	gaccaaattt	gagatgatca	aacttataga	tattgcacga	360		
cagactgcac	agggcatgga	ttacttacac	gccaagtcaa	tcatccacag	agacctcaag	420		
agtaataata	tatttcttca	tgaagacctc	acagtaaaaa	taggtgattt	tggtctagct	480		
acagtgaaat	ctcgatggag	tgggtcccat	cagtttgaac	agttgtctgg	atccattttg	540		
tggatggcac	cagaagtcat	cagaatgcaa	gataaaaatc	catacagctt	tcagtcagat	600		
gtatatgcat	ttggaattgt	tctgtatgaa	ttgatgactg	gacagttacc	ttattcaaac	660		
atcaacaaca	gggaccagat	aatttttatg	gtgggacgag	gatacctgtc	tccagatctc	720		
agtaaggtac	ggagtaactg	tccaaaagcc	atgaagagat	taatggcaga	gtgcctcaaa	780		
aagaaaagag	atgagagacc	actctttccc	caaattctcg	cctctattga	gctgctggcc	840		
cgctcattgc	caaaaattca	ccgcagtgca	tcagaaccct	ccttgaatcg	ggetggttte	900		
caaacagagg	attttagtct	atatgcttgt	gcttctccaa	aaacacccat	ccaggcaggg	960		
ggatatggtg	cgtttcctgt	ccactga				987		

We claim:

1. A method for determining resistance of a cell or tissue to a BRAF inhibitor, said method comprising:

(a) contacting a sample containing a gene product isolated from said cell or tissue with a detectable primer set that binds to a splice variant of BRAF(V600E), said primer set comprising:

- (i) a first primer capable of hybridizing under stringent conditions to an exon 1-9 splice junction of a cDNA encoding a BRAF (V600E) variant; and a second primer that hybridizes to a nucleic acid comprising a nucleotide sequence from exons 11-18 of BRAF (V600E);
- (ii) a third primer capable of hybridizing under stringent conditions to an exon 3-9 splice junction of a cDNA encoding a BRAF (V600E) variant; and a fourth primer that hybridizes to a nucleic acid com- 50 prising a nucleotide sequence from exons 11-18 of BRAF(V600E);
- (iii) a fifth primer capable of hybridizing under stringent conditions to an exon 3-11 splice junction of a cDNA encoding a BRAF(V600E) variant and a sixth 55 primer that hybridizes to a nucleic acid comprising a nucleotide sequence from exons 11-18 of BRAF (V600E); or
- (iv) any combination of (i), (ii), and (iii); and

(b) measuring the amount of detectable primer to determine the presence in said sample of a BRAF(V600E) splice variant, wherein the presence of said splice variant indicates that the cell or tissue is resistant to the BRAF inhibitor.

2. The method of claim 1, wherein said cell or tissue is a melanoma cell or tissue.

3. The method of claim **1**, wherein the BRAF inhibitor is vemurafenib.

4. The method of claim **2**, wherein the melanoma cell or tissue was previously exposed to the BRAF inhibitor.

primer that hybridizes to a nucleic acid comprising a nucleotide sequence from exons 11-18 of BRAF 45 (V600E); a third primer capable of hybridizing under stringent conditions to a nucleic acid comprising nucleotides 549 to 568 of SEQ ID NO: 13 plus 0 to 12 contiguous nucleotides of SEQ ID NO: 13 flanking the 5' or 3' ends thereof.

6. The method of claim **1**, wherein said primer/probe hybridizes under stringent conditions to a nucleic acid comprising nucleotides 183 to 203 of SEQ ID NO: 14 with 0 to 12 contiguous nucleotides of SEQ ID NO: 14 flanking the 5' or 3' ends thereof.

7. The method of claim 1, wherein said primer/probe hybridizes under stringent conditions to a nucleic acid comprising nucleotides 610 to 628 of SEQ ID NO: 15 with 0 to 12 contiguous nucleotides of SEQ ID NO: 15 flanking the 5' or 3' ends thereof.

* * * * *