
(12) United States Patent

US0094793.85B1

(10) Patent No.: US 9,479,385 B1
Bhave et al. (45) Date of Patent: Oct. 25, 2016

(54) SYSTEM FOR ORGANIZING AND FAST USPC .. 709/224, 225
SEARCHING OF MASSIVE AMOUNTS OF See application file for complete search history.
DATA

(56) References Cited
(71) Applicants: Ajit Bhave, Pune (IN); Arun

Ramachandran, Cupertino, CA (US); U.S. PATENT DOCUMENTS
Sai Krishnam Raju Nadimpalli, 5,179.378 A 1, 1993 Ran than et al 341.51

J. - gananan et al. Bangalore (IN); Sandeep Bele, Pune 5,613,113 A 3/1997 Goldring
(IN) 5,668,928 A 9/1997 Groner

(72) (IN) 6,128,628 A 10/2000 Waclawski et al. 707/2O3
72) Inventors: Ajit Bhave, Pune (IN); Arun 6,598,078 B1 7, 2003 Ehrlich

Ramachandran, Cupertino, CA (US); 3. R 158. Sh
W - w

s that 'iNE" 6,763,347 B1 7/2004 Zhang angalore (IN); Sandeep Bele, Pune 7.340,477 B1 3/2008 Tolbert et al. 707/102
(IN) 8, 112,425 B2 2/2012 Baum et al. 707/746

(73) Assignee: CUMULUS SYSTEMS, INC., (Continued)
Mountain View, CA (US)

OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Walker, JET Diagnostics'Vacuum Windows, Development, Assess
patent is extended or adjusted under 35 f Fail Classificati dP Se. 1995 33-36 U.S.C. 154(b) by 831 days. ment of Failures, Classifications and Prep . . . Sep. , pp. 55-50.

(21) Appl. No.: 13/853,288 Primary Examiner John B. Walsh
SSIS OF EXOFife — W1W1 N1 Assistant E. W Stilt

(22) Filed: Mar. 29, 2013 (74) Attorney, Agent, or Firm — Ronald C. Fish

Related U.S. Application Data (57) ABSTRACT

(63) Continuation of application No. 13/200,996, filed on A system to collect and store in a special data structure
Oct. 5, 2011. arranged for rapid searching massive amounts of data.

erOrmance metric data 1S One example. The performance Perf ic data i ple. The perf
(51) Int. Cl. metric data is recorded in time-series measurements, con

G06F 5/73 (2006.01) verted into unicode, and arranged into a special data struc
H04L 29/08 (2006.01) ture having one directory for every day which stores all the
G06F 7/30 (2006.01) metric data collected that day. The data structure at the

Server Where analVS1S 1S done has a SubdirectOrV TOr eve H04L 29/06 (2006.01) h lysis is done h bdi ry f ry
(52) U.S. Cl. resource type. Each subdirectory contains text files of per

CPC. H04L 29/08099 (2013.01); G06F 17/30392 formance metric data values measured for attributes in a
(2013.01); G06F 17/30424 (2013.01); G06F group of attributes to which said text file is dedicated. Each

17/30542 (2013.01); G06F 17/30864 attribute has its own section and the performance metric data
(2013.01); H04L 29/06047 (2013.01) values are recorded in time series as unicode hex numbers as

(58) Field of Classification Search a comma delimited list. Analysis of the performance metric
CPC H04L 29/06047; H04L 29/08099;

G06F 17/30864; G06F 17/30424; G06F
17/30392

data is done using regular expressions.

6 Claims, 11 Drawing Sheets

Racias AcSS ANAR

stoy
cary essarie 33 AA later

:ERES
CONFIGUATCN

A FORAN
A&

3. Y

series sorce
AAABUFATES
CNFRAONN
FERCANATA

Nils Access ANAa: KC

Ni3
CNEFGRANAA
perrorisiance AA

CACHEN
syst

US 9,479,385 B1
Page 2

(56) References Cited 2009 OO37640 A1* 2, 2009 Cankurt GO6F 11.2733
T11 100

U.S. PATENT DOCUMENTS 2009,0199.196 A1 8, 2009 Peracha
2009,0287681 A1 11/2009 Paek

8,386,633 B2 2/2013 Smith et al. 2010, 0121868 A1 5, 2010 Biannic
8,522, 192 B1 8, 2013 Avalos 2010, 0131928 A1 5/2010 Parthasarathy

2001/0044751 A1 11/2001 Pugliese 2010, 0146291 A1 6, 2010 AnbuSelvan
2004/0243607 Al 12/2004 Tummalapalli............... 7O7/1OO 2010/0174718 A1 7, 2010 Chen
2005/0022207 A1 1/2005 Grabarnik 2010/0261977 A1* 10/2010 Seely A61B 5,412
2005/0049997 A1 3/2005 Shipp 600/300
2005/0076067 A1 4, 2005 Bakalash 2010/0274810 A1 10, 2010 Walker
2005/02787O3 A1 12, 2005 LO 2011/0037625 A1* 2/2011 Joyce GO6F 17,2217
2006/0200452 A1 9, 2006 Lee 341.51
2006/021845.0 A1 9, 2006 Malik T14.f47 2011 0145891 A1 6, 2011 Bade
2007/0113031 A1 5, 2007 Brown 2011 O1536.16 A1 6, 2011 Torres
2007.0143309 A1 6, 2007 Malik 2011 O187861 A1 8, 2011 Totani
2007/0226204 A1 9, 2007 Feldman 707/5 2011/0225582 A1 9, 2011 Iikura et al. T18, 1
2007/0226554 A1 9, 2007 Greaves 2012/0096.558 A1 4/2012 Evrard 726/25
2008/0098454 A1 4/2008 Toh T26.1 2012fO143912 A1 6, 2012 Horton
2008/O165747 A1 7/2008 Budka 2012fO270505 A1 10/2012 Prakash et al. 455, 68.1

2012/0278663 Al 11/2012 Hasegawa 714.f47.1
2008/O177766 A. T/2008 Park . 7O7/1OO 2012/0284369 A1 11/2012 Fishgait et al. TO9.218
2008, 0208890 A1 8/2008 Milam GO5B 1941.83

2013,0036265 A1 2, 2013 Bert 2008/0256070 A1 10/2008 Inglis 2014/02897O2 A1 9/2014 McMahon
2008/0288599 A1 11/2008 Kutchmark 2015,01994.14 A1 7/2015 Braginsky
2008/0310763 A1* 12/2008 Senoo GO6F 17,30265

382,305 * cited by examiner

US 9,479,385 B1 Sheet 1 of 11 Oct. 25, 2016 U.S. Patent

assssssssssssaxa.as

%

Nouvoinnwoo Naaaaaaaaaaa.

saaaasasasasaasis

xxxx Xaxxx xxxaaaaa

Assssssssssssaxxas

XXX

assass

Six-xxx-xxx-xxxx

SSSSSSSS

89),

US 9,479,385 B1 Sheet 2 of 11

X:
g

Oct. 25, 2016 U.S. Patent

& {}{} {

US 9,479,385 B1

CD
i.

•~~~~~~);

U.S. Patent

U.S. Patent Oct. 25, 2016 Sheet S of 11 US 9,479,385 B1

EGAROSE AIA FORER - 230
iiiAS FOR NEX

DAA insposal Schibuier RUNS-E SCHEDEME
iA is Ray A REGAR
EAS

ass-races assass-as-as-as-a-YY

* 3.
axxxaasax assa

ECKS - 3 AA

— sassassarrassass &: --&S *Y. * &

^ ^ C
& NEW DATA ARRIVE De No &xxxxx

x- x

ASS S.S.. x S GE
- S - {C}^fix is
ERRián ÁA ES -
SE: E

sa-a-a-axaa-axx-xxxxxxxxxaaaaaaaaaaasaxaaaaaaaaaaaaaaaaaaaaaaaaaaaaSaxxxxx-xx-xx-xx-aaaaaaaaaaa

No -16s \ N. - AS RERFORMANCE Y
- DATA --

s -- ---

w - 242

- HAS CONFIGURATION - No s
sERA x -- sa ^ -* a--

S is is £g H o
FG. 8A

U.S. Patent Oct. 25, 2016 Sheet 6 of 11 US 9,479,385 B1

EARE AA EReis & R.
s' sis

S ERRfA, i.
F.ES (SORED)

AES - SS ASE IN
PERFORMANCE COi NER GRO. F. ONE
F. GROUP RAC prohiANCE

CNE GRO

xas-a-aaaaaaaaaaaaaaaaasaasaxxxxxsaxaaaaaaaaaaaaaaaaaaa. www.www.www.xxxxxx8ws

CREES. f. if {x :-
CESSES - 3: S \

AS
xxxxx xxxxx-xx-xxxxxxx-xx-xx-aaSXXXXX-XXXX-XXXXXXXXX-XXXXXXXXX-XXX-xx-aaaaaaaaaaaaaaaa-XXXX-Xaayaaaaaarxx-Araxas

-s:
Narsssssss-axx-aassass

- EAC ri-fi
READS FES, FNS RESORCES AN

CREATES RESORCECOi NTER GRO S.
NE SERC CEE

E: E?ri ES:-
asssssssssssssssaaraxxxxxaasaasaasaasssssaasaaaaaa.

- 254
gS. f* A AN

SSES - ES: E
R&S

N EAC Ei:
R{SSES AC -Si-C

CONTER Gi-O is AA, AES
£A SES Y.

y ass
CS - CANES : N

FG. 8B

U.S. Patent Oct. 25, 2016 Sheet 7 of 11 US 9,479,385 B1

REA-88. AARER COSANAA

www.www.www-WX-W--------SaxxSSSSSS (iraxx

S NAN Af
F.S SORED}

MaxxxxxxxaaxxxxxxxaaXXaaaaaaaaaaaXaxxxxx-xxxxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

262

PARSES F.E, FNS RES Avi
is ES{{E Si.

x-rayarrrrrrrrass-as-a-Xxx-xx-xx-xxxxxsaaaaaaasaxxxx-xxxxx-axxxxxxxx-xxxxx-xx-xxx-a-sa

EÉS -ESCE -
win SNARSHO F.E N NRD8

with AVAILABLEgNFIGURATION

/268
C{}^A:\; -ij-i-S is
EENS 3E SAE N

AS - N Nr.

RESS Nii-Y
{{ {{{N if BY
ECAN : R \8

xxxx-aasssssssssssssssssssssssssssssssssassassassax --SS

F.G. 8C

U.S. Patent Oct. 25, 2016 Sheet 8 of 11

Esi is a SS A&E

310
Y S A.

{ES : y
CONGRAON

ANE 3: CiviANCE
g

300

CESS Niš

assassissaxxxx xxxxxxxxxxarxxxx xxxxxxxxxxxxxxxxxxxxxx was saxxx xxxxxx xxxxxx

{}^i: ; ; ;

Riis AA waxx

302

$8 if is:

ES SS
Ai is is:S
{{S} is
Exiii. C. gig,

www.xxxxx Aw88Awww.

{{Cr is
SYSE

US 9,479,385 B1

U.S. Patent

310,
CRY

{ESS
is:

^ ax y

3. -PERF DATANYS BAA DATA::Ps &ACH: Dys
pet - ^

T
w32;

xxssrssssssssssssssssssaxx

Oct. 25, 2016 Sheet 9 of 11 US 9,479,385 B1

E;8: 833 is

conifacache ANAGER:
RES A; i.
(Nix, Air

:

PERFCACHEMANAGER:
a^3:

:
:

SAS &
FRC NR8,
£3 :
ACE

Sassssssssssssssssssssssssssssssssssssssaysaesaassass

RESS

:
:
:
:
:
:
:

:
8
:

8

8

NRDB AccESSMANAGER

SS

FERFORiiANCE,
ÉÉ,

SA
RCNFEFA's

f
percaic row
g; FijS-ES CANGESO -. r
more NRBAN EATES r

TiE RESPEC v. CAC-E

CONFIGURATION DATA

(300

CNSAN
CAC-E (IN.
AERORY

FER FORA C
CAC-E (No.

Y AN
E SYSE

exas saxxaasaaaaassass

SEE
errormance DATA ^X. - sa yxWasser

U.S. Patent Oct. 25, 2016 Sheet 11 of 11 US 9,479,385 B1

As EYES, ESS

auERY REquest PRocessor

GETS ALL HIGH LEVEL RESOURCES ("
- YES N

E ORY

R3 &{SS
ACE

CA. A 3.
CCESS EAC RESCE

CONFIGURATION DATA
A-Y ES AS SEE

Nei Y PERFORMANCE DAA
s assassaaraaaaaaaaaaassass ---...---

331 as 38

DiSCAR - RESOURCE -
A. -

st
- ANY SUB sys
s FAT-is? -“

x: S.

- - / 33
NQ ---for LEVEL RESOURCEs.

Saintifies - : ^ ^
: ---.

S& WXXXX-XXX

: rarerunner assuran-Xuan-arraruary Yi. RES..

“Y CACHE A RES: ES is

F.G.
ANY PERF DATA to THE RESULT CACHE

xxx-xxxassassassassassasaasaarasasaasaasasasaasasasasasaasa-sa-sass-aa-3-3-Sarass-as-aaSasaaaaaaaa

US 9,479,385 B1
1.

SYSTEM FOR ORGANIZING AND FAST
SEARCHING OF MASSIVE AMOUNTS OF

DATA

BACKGROUND OF THE INVENTION

In the management of IT systems and other systems where
large amounts of performance data is generated, there is a
need to be able to gather, organize and store large amounts
of performance data and rapidly search it to evaluate man
agement issues. For example, server virtualization systems
have many virtual servers running simultaneously. Manage
ment of these virtual servers is challenging since tools to
gather, organize, store and analyze data about them are not
well adapted to the task.
One prior art method for remote monitoring of servers, be

they virtual servers or otherwise, is to establish a virtual
private network between the remote machine and the server
to be monitored. The remote machine to be used for moni
toring can then connect to the monitored server and observe
performance data. The advantage to this method is that no
change to the monitored server hardware or software is
necessary. The disadvantage of this method is the need for
a reliable high bandwidth connection over which the virtual
private network sends its data. If the monitored server runs
Software which generates rich graphics, the bandwidth
requirements go up. This can be a problem and expensive
especially where the monitored server is overseas in a data
center in, for example, India or China, and the monitoring
computer is in the U.S. or elsewhere far away from the
server being monitored.

Another method of monitoring a remote server's perfor
mance is to put an agent program on it which gathers
performance data and forward the gathered data to the
remote monitoring server. This method also suffers from the
need for a high bandwidth data link between the monitored
and monitoring servers. This high bandwidth requirement
means that the number of remote servers that can be Sup
ported and monitored is a smaller number. Scalability is also
an issue.

Other non IT systems generate large amount of data that
needs to be gathered, organized, stored and searched in order
to evaluate various issues. For example, a bridge may have
thousands of stress and strain sensors attached to it which are
generating stress and strain readings constantly. Evaluation
of these readings by engineers is important to managing
safety issues and in designing new bridges or retrofitting
existing bridges.
Once performance data has been gathered, if there is a

huge Volume of it, analyzing it for patterns is a problem.
Prior art systems such as performance tools and event log
tools use relational databases (tables to store data that is
matched by common characteristics found in the dataset) to
store the gathered data. These are data warehousing tech
niques. SQL queries are used to search the tables of time
series performance data in the relational database.

Several limitations result from using relational databases
and SQL queries. First, there is a ripple that affects all the
other rows of existing data as new indexes are computed.
Another disadvantage is the amount of storage that is
required to store performance metric data gathered by the
minute regarding multiple attributes of one or more servers
or other resources. Storing performance data in a relational
database engenders an overhead cost not only in time but
also money in both storing it and storing it in an indexed way
so that it can be searched since large commercial databases
can be required if the amount of data to be stored is large.

10

15

25

30

35

40

45

50

55

60

65

2
Furthermore, SQL queries are efficient when joining rows

across tables using key columns from the tables. But SQL
queries are not good when the need is to check for patterns
in values of columns in a series of adjacent rows. This
requires custom programming in the form of “stored proce
dures” which extract the desired information programmati
cally. This is burdensome, time consuming and expensive to
have to write a custom program each time a search for a
pattern is needed. As the pattern being searched for becomes
more complex, the complexity of the stored procedure
program also becomes more complex.
The other way of searching for a pattern requires joining

the table with itself M-1 number of times and using a
complex join clause. This becomes impractical as the num
ber of joins exceeds 2 or 3.
As noted earlier, the problems compound as the amount of

performance data becomes large. This can happen when, for
example, receiving performance data every minute from a
high number of sensors or from a large number of agents
monitoring different performance characteristics of numer
ous monitored servers. The dataset can also become very
large when, for example, there is a need to store several
years of data. Large amounts of data require expensive,
complex, powerful commercial databases such as Oracle.

There is at least one prior art method for doing analysis of
performance metric data that does not use databases. It is
popularized by the technology called Hadoop. In this prior
art method, the data is stored in file systems and manipu
lated. The primary goal of Hadoop based algorithms is to
partition the data set so that the data values can be processed
independent of each other potentially on different machines
thereby bring Scalability to the approach. Hadoop technique
references are ambiguous about the actual processes that are
used to process the data.

Therefore, a need has arisen for an apparatus and method
to reduce the amount of performance data that is gathered so
that more sensors or servers can be remotely monitored with
a data link of a given bandwidth. There is also a need to
organize and store the data without using a relational data
base and to be able to search the data for patterns without
having to write stored procedure programs, or do table joins
and write complex join clauses.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a typical server on which the
processes described herein for organizing, storing and
searching performance data can run.

FIG. 2 is an example of a directory structure storing one
day's performance data on a resource the performance of
which is being monitored remotely.

FIG. 3 is another example of a file system containing a
separate directory for storing performance metric data for
three different days for three different resources, each
resource having two groups of attributes.

FIG. 4 is a diagram of the directory structure of an
example of data collected by a probe.

FIG. 5 is a flowchart of the high level process the
monitoring server performs to receive probe data and stored
it in the directory structure for search and analysis.

FIG. 6 is a template for a regular expression used to
explain the syntax of a typical regular expression query.

FIG. 7 is a flowchart of one embodiment of the Query
Request Handler module.

FIG. 8, comprised of FIGS. 8A through 8C, is a flowchart
of the processing of the probe data importer.

US 9,479,385 B1
3

FIG.9, comprised of FIGS. 9A and 9B, is a diagram of the
modules in the system and a flowchart of the processing of
the NRDB Access manager module.

FIG. 10 is a block diagram of one embodiment of the
overall system including the major functional modules in the
central server called Megha, where the query request pro
cessing for analysis of performance metric data occurs and
where the NRDB stores the performance metric data and
configuration data.

FIG. 11 is a flowchart of the processing by one embodi
ment of the Query Request Processor.

DETAILED DESCRIPTION OF THE VARIOUS
EMBODIMENTS

There is disclosed herein apparatus and processes for
infrastructure performance data analysis (and analysis of
other large amounts of performance data) which uses search
techniques instead of relational databases to store and orga
nize data. Data is stored in a special folder and directory
structure with one directory for every day's worth of data.
This allows data to be collected, processed and stored at a
faster rate. Performance data is stored in a file system having
one directory for each day. All the performance data col
lected from one or more resources in an IT environment or
one or more sensors in Some other environment on the day
corresponding to the directory is stored in files within the
directory. There is a subdirectory for each resource where
the directory name is the signature for that resource. There
is one file for a group of attributes. Each attribute file has N
sections, one for each attribute defined to be in the group.
Each section has M values, where M values comprise the
entire times series of values for that attribute for the entire
day corresponding to the resource.
The result is that all the collected performance data is

stored as patterns; the patterns being data from many sources
which are sorted and stored in a time series in the special
directory structure described above; so all data from all
Sources for a particular day is stored in one directory
structure. This data structure allows the data set to be
searched with time as one axis and each data element as the
other axis.

Attribute values are stored either as band values or delta
values. Each value for an attribute for a particular reading on
a particular day is stored as Java UTF-8 encoded string with
each value encoded as a single Unicode character. In other
words, the numbers of each performance metric value are
converted to letters of a Java UTF-8 encoded string. This
allows searching using standard regular expressions the
Syntax of which is known and comprises a form of formal
language. The various elements of syntax can be used to
construct search queries which search through the perfor
mance data for patterns. Regular expressions can only search
text and not numbers and that is why the performance metric
readings or values have their numbers converted to text
before storage.

The syntax of regular expression is rich with tools that
allow complex searches and pattern analysis simply by
writing an expression of the proper syntax thereby elimi
nating the time consuming need to write a custom program
or “stored procedure' in SQL to do the same thing in
searching the data of a relational database.

Unicode is a computing industry standard for the consis
tent encoding, representation and handling of text expressed
in most of the world’s writing systems. It is a set of
approximately 1 million characters that span from hex 0 to
hex 10FFFF. There are enough unicode characters to devote

10

15

25

30

35

40

45

50

55

60

65

4
a single one to every symbol in the Japanese and Chinese
languages and all the alphabets in the world and all the
numbers in which performance metrics are expressed. Each
performance metric value received from an agent is con
verted to one of these unicode characters.

Searching the performance data with regular expressions
defining particular patterns of data from certain resources
which satisfy certain conditions expressed in the regular
expressions is analogous to searching large amounts of text
for keywords and reporting only those portions of the text
which fit a certain semantic usage.
The performance metric data is automatically converted

by the system to Unicode strings of alphabetic characters
from the set of 109,000 characters in the Unicode Standard.
The use of regular expressions allows complex patterns of

performance data to be searched without having to write
complex, custom programs called 'stored procedures'
which would be necessary if a relational database was used
to store the data and SQL was used to search the database.
The system of the invention allows users to draft their

search queries as regular expressions. The user must know
the syntax of regular expressions in order to do this unless
the user wishes to only use predefined searches which some
embodiments of the system of the invention provide for
selection and execution by a user. A regular expression
provides a concise and flexible means for matching strings
of text, such as particular characters, words, or patterns of
characters.
A regular expression is written in a formal language that

can be interpreted by a regular expression processor, a
program that either serves as a parser generator or examines
text and identifies parts that match the provided specifica
tion.

Storing the Unicode characters encoding the performance
metric data in the special directory structure described
herein eliminates the need for use of an expensive database
system such as Oracle even where very large amounts of
data are collected and stored.
The performance data is collected by agent programs

which are coupled to the sensors or are programmed on the
IT resources being monitored. These agent programs collect,
compress and send the performance data over the data link
to the remote monitoring server which collects it, converts
it to Unicode and stores it in the directory structure defined
above. The remote monitoring server also provides an
interface for a user to compose regular expression search
queries and also provided “canned searches which can be
run by a user, each canned search being a predefined regular
expression which the user may modify slightly to Suit his or
her purposes.
The process and apparatus for collecting, storing and

processing performance metric data differs from SQL Data
base technology in at least two ways. First, the partition
algorithm stores performance data based upon time slices.
Data is stored in file systems sorted by time slices. A time
slice represents a point in time and over time, and there are
many such slices. Unlike a traditional database, this tech
nique allows the inventors to not impact the overall database
when new data for a time slice is introduced or a new time
slice is created. That is, there is no ripple effect.

Storing the data in time slices in the special directory
structure, examples of which are shown in FIGS. 2 and 3.
allows the data to be searched with time as one axis and each
data element as the other axis. This is analogous to searching
a large amount of text for keywords and then reporting only
those portions of text that fit a certain semantic usage.

US 9,479,385 B1
5

The second difference is that the method of analysis and
search of the performance data is based upon regular expres
sions which are used to search Unicode encoded text where
the performance metric numbers have been converted to
Unicode text characters. Regular expressions have a fixed,
predefined syntax and semantics (together considered a
grammar) and a variety of expressions can be formed using
this syntax and semantics to search the performance data for
patterns that meet criteria expressed in the regular expres
sions composed for the custom search. Regular expressions
can be derived for all different kinds of search to limit the
search to particular resources, particular attributes of those
resources, particular days or particular time intervals during
particular days, etc. Great flexibility is provided without the
complexity and labor of having to write custom programs in
the form of stored procedures to find the right data and
analyze it.
The processes described here to search and analyze per

formance metric data are inspired by and somewhat similar
to XPATH technology. XPATH is a technique used to
traverse XML document data. XPATH-like techniques are
used here to analyze infrastructure performance metric data
and changes to that data over time. The processes described
herein extend the XPATH notions to the search and analysis
of data organized and stored by time slice which makes the
search and analysis techniques taught herein efficient and
fast. Search and analysis of the performance data is done
using path-based techniques. A graph is created that repre
sents the data. The graph G is a representation of vertex and
edges (VE). An edge connects two vertices and vertex has
the ability to evaluate an expression and then, based on the
expression, allow for a traversal through an appropriate
edge.

FIG. 1 is a block diagram of a typical server on which the
processes described herein for organizing, storing and
searching performance data can run. Computer system 100
includes a bus 102 or other communication mechanism for
communicating information, and a processor 104 coupled
with bus 102 for processing information. Computer system
100 also includes a main memory 106, such as a random
access memory (RAM) or other dynamic storage device,
coupled to bus 102 for storing information and instructions
to be executed by processor 104. Main memory 106 also
may be used for storing temporary variables or other inter
mediate information during execution of instructions to be
executed by processor 104. Computer system 100 further
usually includes a read only memory (ROM) 108 or other
static storage device coupled to bus 102 for storing static
information and instructions for processor 104. A storage
device 110. Such as a magnetic disk or optical disk, is
provided and coupled to bus 102 for storing information and
instructions. Usually the performance data is stored in
special directory structures on storage device 110.
Computer system 100 may be coupled via bus 102 to a

display 112, such as a cathode ray tube (CRT) of flat screen,
for displaying information to a computer user who is ana
lyzing the performance data. An input device 114, including
alphanumeric and other keys, is coupled to bus 102 for
communicating information and command selections to
processor 104. Another type of user input device is cursor
control 116. Such as a mouse, a trackball, a touchpad or
cursor direction keys for communicating direction informa
tion and command selections to processor 104 and for
controlling cursor movement on display 112. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

10

15

25

30

35

40

45

50

55

60

65

6
The processes described herein to organize, store and

search performance data uses computer system 100 as its
hardware platform, but other computer configurations may
also be used such as distributed processing. According to
one embodiment, the process to receive, organize, store and
search performance data is provided by computer system
100 in response to processor 104 executing one or more
sequences of one or more instructions contained in main
memory 106. Such instructions may be read into main
memory 106 from another computer-readable medium, such
as storage device 110. Execution of the sequences of instruc
tions contained in main memory 106 causes processor 104
to perform the process steps described herein. One or more
processors in a multi-processing arrangement may also be
employed to execute the sequences of instructions contained
in main memory 106. In alternative embodiments, hard
wired circuitry may be used in place of or in combination
with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific
combination of hardware circuitry and software.
The term “computer-readable medium' as used herein

refers to any medium that participates in providing instruc
tions to processor 104 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media, Volatile media, and transmission media. Non-volatile
media include, for example, optical or magnetic disks. Such
as storage device 110.

Volatile media include dynamic memory, Such as main
memory 106. Transmission media include coaxial cables,
copper wire and fiber optics, including the wires that com
prise bus 102. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio
frequency (RF) and infrared (IR) data communications.
Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns off holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer readable media may be
involved in Supplying one or more sequences of one or more
instructions to processor 104 for execution. For example, the
instructions may initially be borne on a magnetic disk of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 100 can receive the data on a telephone line or
broadband link and use an infrared transmitter to convert the
data to an infrared signal. An infrared detector coupled to
bus 102 can receive the data carried in the infrared signal
and place the data on bus 102. Bus 102 carries the data to
main memory 106, from which processor 104 retrieves and
executes the instructions. The instructions received by main
memory 106 may optionally be stored on storage device 110
either before or after execution by processor 104.
Computer system 100 also includes a communication

interface 118 coupled to bus 102. Communication interface
118 provides a two-way data communication coupling to a
network link 120 that is connected to a local network 122.
For example, communication interface 118 may be an inte
grated services digital network (ISDN) card or a modem to
provide a data communication connection to a correspond
ing type of broadbank link to the internet. As another
example, communication interface 118 may be a local area
network (LAN) card to provide a data communication

US 9,479,385 B1
7

connection to a compatible LAN. Wireless links may also be
implemented. In any Such implementation, communication
interface 118 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types of information.

Network link 120 typically provides data communication
through one or more networks to other data devices. For
example, network link 120 may provide a connection
through local network 122 to a host computer 124 or to data
equipment operated by an Internet Service Provider (ISP)
126. ISP 126 in turn provides data communication services
through the worldwide packet data communication network,
now commonly referred to as the “Internet' 128. Local
network 122 and Internet 128 both use electrical, electro
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 120 and through communication interface 118,
which carry the digital data to and from computer system
100, are exemplary forms of carrier waves transporting the
information.

Computer system 100 can send messages and receive
data, including program code, through the network(s), net
work link 120, and communication interface 118. In the
Internet example, a server 130 which is having its perfor
mance data monitored might transmit performance data via
an agent program that collects it through Internet 128, ISP
126, local network 122 and communication interface 118 to
computer system 100. The received performance data is
stored and can be searched by the processes described later
herein.

The system according to the teachings of the invention
has on the software and data side the following components
which are executed and stored on the hardware platform
described above or similar.
Data Store Manager;
Query Request Handler;
Data Access Manager;
Probe Interface; and
Proprietary non-relational database referred to as the NRDB
and detailed in the Directory Structure heading below and
illustrated in FIGS. 2 and 3
Data Store Manager

This component receives data from probes in a well
defined format, it and stores it in NRDB. A probe is an
external Software program which collects data on a periodic
basis from an external data Source and writes data into a
format which can be processed by Data Store Manager. The
Data Store Manager can have any program structure so long
as it can receive data in the probe data format described
elsewhere herein, decompress it and store it in the NRDB in
the directory structure and data format described herein for
the NRDB. In the preferred embodiment, it will have a
program structure which can perform the processing of the
flowchart of FIG. 5. It can run on any off the shelf computer
having Sufficient speed, memory capacity and disk capacity
to store the performance data being collected.
Query Request Handler

This component accepts search queries from external
applications or users, and provides back the results. The
query language is a proprietary syntax for regular expres
sions which is given below under the Query Definition
Language Heading, and which provides constructs for speci
fying search patterns to analyze data. The Query Request
Handler can have any program structure which can receive
query requests with regular expressions embedded therein
having the syntax described below, and parse those queries
and perform the processing of the flowchart of FIG. 7. It can

10

15

25

30

35

40

45

50

55

60

65

8
run on any off the shelf computer having Sufficient speed,
memory capacity and disk capacity to store the performance
data being collected.
Data Access Manager

This component provides access to the data stored in
Megha's proprietary non-relational database (NRDB). This
internal employs standard caching techniques to provide
results faster. The Data Access Manager can have any
program structure which can access directory structures like
those of the NRDB of which FIGS. 3 and 4 are examples,
and which supports the Query Request Handler requests for
data from the NRDB to perform the processing of the
flowchart of FIG. 7. It can run on any off the shelf computer
having Sufficient speed, memory capacity and disk capacity
to store the performance data being collected.
Probe Interface
NRDB

All the data in Megha is stored in NRDB. NRDB uses a
normal file system consisting of files and folders. It uses a
special folder structure and special encoding of data files to
optimize the storage and access of data.
The entire software that implements the Data Store Man

ager, the Search Handler, the Data Access Manager and the
Probe Interface, in the preferred embodiment is designed to
run on commodity hardware inside a Java virtual machine.
Commodity hardware is defined as regularly available Intel
x86/64 architecture based computers. Standard Linux dis
tribution such as CentOS is used as the base operating
system.
As an example of how the system works to collect

performance metric data and analyze it, Suppose server 130
is a server which has a couple of virtual machines running
on it the performance of which is to be monitored. The
performance metric data for each virtual machine is col
lected by an agent or probe process (not shown) or, in some
embodiments, a separate probe process for every virtual
machine. The performance data is gathered on a per day
basis to measure various performance metrics on server 130.
Performance data of the server 130 itself such as CPU cycle
utilization, hard disk access time, hard disk capacity, etc.
may also be gathered. There are usually several metrics that
are measured simultaneously, often on a per minute basis.

This performance metric data gathered by the agent
process is compressed and packetized and the packets are
sent over the internet 128 to ISP 126 to which a local area
network 122 is connected. The local area network is coupled
via a network line 120 to the communications interface 118
of the monitoring server system 100.
Probe Data Format
The performance metric data for every element is col

lected by a probe. A probe is a program running on the
computer having the element or attribute being monitored.
The probe for each element periodically or sporadically
(usually a call is made every minute) makes application
programmatic interface calls to the operating system of the
computer or other machine to gather the performance data
on the element it is monitoring. The probes can be any agent
hardware and/or software combination that can collect the
desired performance metric data and put it into the data
format described below for probe data.

Probes don't have to be just for IT attributes. They can
also gather data for mechanical structures or automotive
systems. For example, engineers designing bridges may
attach temperature and strain sensors at various positions on
the structures, each of which is read by a probe program
running on a computer which periodically interrogates each
sensor from time to time, takes its reading and sends it

US 9,479,385 B1

elsewhere for storage and analysis. The probe gathers all the
sensor data, formats the data into the data structure format
described below, compresses the data structure and pack
etizes the compressed data for transmission over any data
path to a system elsewhere for analysis. Likewise for cars,
engines, etc. The probe System is more or less like the
modern day equivalent of telemetry systems used on satel
lites and missiles that feed performance data back to an earth
station by a radio telemetry link.
The performance metric data values gathered by the

probes are typically packetized for transmission over the
internet. The primary objective of the probe data format is to
reduce the amount of data which probe will produce so as to
reduce bandwidth requirements on the data link over which
the probe data is sent. This reduces the amount of storage
required to store the data and also makes the transmission to
another location faster. The probe programs do not do the
conversion of the performance metric data to unicode in the
preferred embodiment, but in some alternative embodi
ments, they could.
The probe collects all the attribute data for one day on all

the elements it is monitoring and creates a directory struc
ture such as the one shown in FIG. 4. The directory structure
contains files which store the time series of attribute values
(performance metric data) for every attribute for which the
probe collected data. The attribute values are numbers and
are not converted by the probe to unicode values. That
happens at the monitoring server end.

In FIG. 4, block 180 represents the top level directory,
block 182 represents a folder for all host type elements,
block 184 represents a folder for all disk type elements being
monitored. Each of the folders 182 and 184 contains a text
file which contains the attribute values obtained by the probe
for every element being monitored of the type symbolized
by the subdirectory. Each text file contains all the perfor
mance metric values for all the monitored elements in the
same group with one row containing the performance metric
values measured for one of the elements being monitored in
that group. For example, the host folder 182 may have a
single text file A1.txt, but that file contains multiple rows,
one for each host element being monitored. For example,
blocks 186 and 188 contain the performance metric values
for two particular hosts being monitored in the group within
A1.txt called H1 and H2. H1 and H2 in blocks 186 and 188
represent unique strings uniquely identifying the hosts for
which the performance metric data was collected. H1 has
1440 performance metric measurements stored in the row
symbolized by the V1,V2 . . . V 1440 values in a comma
delimited list. For host H1, a performance value was mea
sured every minute. The same is true for host H2. Blocks
190 and 192 contain performance metric values collected by
the probe for two disks D1 and D2 in the group of monitored
elements “disk” represented by folder 184. These perfor
mance metric values for disks D1 and D2 are stored in
different sections or rows of a text file named A2.txt.
The whole collection of data files and subdirectories is

Zipped by the probe into one zip file which is a compressed
version of the data structure. By sending a compressed
version of the data, the bandwidth requirement on the data
path between the probe and the monitoring server(s) is
greatly reduced. When the zip file is unzipped, the data
structure like that in FIG. 4 (or whatever the data structure
is the number of elements and attributes being monitored)
results.
Any payload produced by the probe must conform to the

following structure:

10

15

25

30

35

40

45

50

55

60

65

10
The first file named

ListOfFiles<YYYY.MM.DD HHmmSS> <base64 encoded
text of encrypted value of (SiteName+ +ServerName+
* +ArraySerialNumber)> <ProbeType>.txt
6.
7. Each line inside this file will have name of a file which is

part of this payload
7. If the file has configuration or events data, the file must be
named Conf-YYYYMMDD HHmmSS> <base64
encoded text of encrypted value of (SiteName+" +
ServerName+ +ArraySerialNumber)> <Probe
Type.Zip.enc

7. If the file has performance data, the file must be named
Perf-YYYY.MM.DD HHmmSS> <base64 encoded text
of encrypted value of (SiteName+ +ServerName+" +
ArraySerialNumber)> <ProbeTypes.zip..enc
Where:
SiteName name of the site assigned for the probe
ServerName name of the entity from which data is

being collected, it is the text filled in by the user during
probe configuration.

ArraySerialNumber Optional additional information to
further identify the entity.

ProbeType Type of entity from which data is being
collected VMWare, SMIS, NetApp., Amazon ECS,
Bridge Sensors

One or more .zip file are identified in the list of files
The configuration Zip file contains one or more files which

can be of two types:
6. Snapshot
7. Mini-snapshot
Snapshot
The Snapshot type file contains the entire configuration

about the data source to which the probe is connected. The
name of this file is: <Site Name> <Data
Source> snapshot <YYYY|MM|DD> <HHMMSSD
<Version>.txt, where:

<Site Name>: Identifier for location (actual physical site)
where the probe is situated

<Data Source>: Identifier for the data source (resource,
i.e., host, disk array, printer, etc.) from which the data
is being collected

<YYYYMMDDD <HHMMSSD: The date and time
when the Snapshot was made

<Versions: Version of the file.
The file format of snapshot is as follows:

% meta
probe id:<Identifiers
probe type:<Probe Types
probe site:<Site Name
probe server: <Server Name>
probe version:<Probe Version>
% meta

R:<ResourceType-it-Resource Idd.
O:{<ResourceType-ikAnother Resource idid.}+?
b: <Begin Time YYYY.MM.DD HHMMSS>?
e:<End Time YYYY|MM|DD HHMMSSD?
a:{<Attribute Idd=<Attribute Valued}+
r:{<Resource Typedit-Resource Idd.}+
S:{<Event Idd <space><Event String>}+

US 9,479,385 B1
11

Example

% meta
probe id:Cust 192.168.0.63
probe type:VMWare
probe site:Cust1
probe server: 192.168.0.63
probe version: 10
% meta
t:20110624 062248
R:dcHCust 192.168.0.63 datacenter-2
aname=MTNVIEW
R:dsiiCust 192.168.0.63 datastore-205
a:name=FAS960 home
a:capacity=51322806272
a:freeSpace=42685091840
a:uncommitted=17323200512
a:provisioned.Space=25960914944
a:type=NFS
a:URL=netfs://192.168.0.50//vol/vol10/home?
a:sioc=disabled
rhiiCust1192.168.0.63 host-171,
R:dsiiCust1 192.168.0.63 datastore-10
a:name Storage 1
S:AlarmSnmpCompleted Alarm Host error—an SNMP
trap for entity 192.168.0.48 was sent
Updates
As configuration changes and configuration related events

occur, they will be written to a mini snapshot file. The name
of this file will be: <Site name> <Data
Source> minisnapshot <YYYY|MM|DD> <HHMMSS>
<version>.txt <YYYYMMDDD <HHMMSSD:
The format of this file is exactly same as the snapshot file.

The primary difference is that it will only have a subset of
the data of the snapshot type of file. The subset captures the
changes which have occurred in configuration data since the
last time a Snapshot file was made.
Performance Data
The performance data is a zip file which must have the

following directory structure:
<YYYY|MM|DD HHMMSSD. This directory name is

the start time of the time series specified in this data set
<Resource Type One directory for each resource

type
<Attribute Idd.txt One file for each performance

metric
Each <Attribute Idd.txt has one or more lines where each

line has the following format:
<Resource Signature>, Value} . . <Values +
The value list is a time ordered series of values for that

performance metric for the resource specified at the begin
ning of the time. If the metric value does not exist for a
particular point in time, then a blank or empty value is
allowed.
NRDB File System Structure

The performance metric data is stored in a filesystem
structure as defined below. One directory is created for each
day in the format YYYY|MM|DD. All performance data for
all the resources in the data model for a particular day are
stored in this directory. Under this directory, there is a
directory for each resource where the directory name is the
signature of that resource. Under this directory, there is one
file for a group of attributes. The directory will look some
thing like this:

5

10

15

25

30

35

40

45

50

55

60

65

12
<YYYY|MM|DD> One Folder for each day

<Resource Type
<Attribute(Group Idd. perf

<YYYY|MM|DD HHMMSSD. This directory name con
tains the start time of the time series specified in this
data set
<Resource Type One directory for each resource

type
<Attribute Idd.txt One file for each performance

metric
<Attribute(Group Id-perf file stores processed values for

each sample in a compressed format. This format is now
described in detail.
The file is divided into “n number of Sections. Where “n

is the attributes which are defined to be in the same group.
Each section will hold “m' number of values—the entire
time series values of that day for that resource's attribute.
So, for example, if the probe sampling interval is 1 minute
then there will be 1440 (1440 minutes in a day) values. Each
<Attribute Idd.txt has one or more lines where each line has
the following format:
<Resource Signature>, Value} . . <Valued}+
The value list is a time ordered series of values for that

performance metric for the resource specified at the begin
ning of the time. If the metric value does not exist for a
particular point in time, then a blank or empty value is
allowed.

Currently, corresponding to each raw value of a perfor
mance metric attribute received from the probe, two types of
processed value are stored:
Band value
An attribute can define the “fidelity” with which it will

store the raw value. This is called in Band Factor.
Band factor is an integer with a minimum value of 1
and maximum of any positive integer value. With a
band factor of 1, there is no loss of fidelity. The
processed value is same as raw value. With a band
factor 10, the processed value will be /10" of the raw
value rounded to the nearest integer.

Delta value
It is the change in percentage from band value at time

t-1 and band value at time t.
Each set of 1440 values of a performance metric attribute

(assuming one value is measured every minute) are stored as
a Java UTF-8 encoded String. Each performance metric
attribute value is encoded as a single Unicode character in
the String.

FIG. 2 is an example of a directory structure storing one
day's performance data on a resource the performance of
which is being monitored remotely. The processor 104 in
FIG. 1 is programmed by instructions stored in main
memory 106, according to one embodiment of the invention,
to create a special directory structure with one directory for
each day's worth of data, and one subdirectory for each
resource for which performance metric data is being
received. In FIG. 2, block 150 represents the directory
created for storing the performance metric data collected on
Aug. 14, 2011. The subdirectory represented by block 152
represents the subdirectory where performance data for the
resource E1 is to be stored. Suppose in this example, that
resource E1 is the server 130 in FIG. 1.

Each Subdirectory has the directory name in its signature.
In this case, subdirectory 152 has 20110814 in its directory
name which is the name of the directory of which it is a part.

Each subdirectory contains one attribute file for each
group of attributes that are being measured by the perfor
mance metric data that stores performance metric values.

US 9,479,385 B1
13

Each attribute file has N sections, one section for each
attribute defined to be in the group for which the file was
created. Each section holds M performance metric values for
the particular attribute whose values are recorded in that
section. That section's data comprises the entire time series
of values for the attribute to which the section is devoted.

In the example of FIG. 2, there are only two groups of
attributes in subdirectory 152 so there are only two files 154
and 156. Suppose each of these files represents one of the
virtual machines running on server 130. Each file is a time
slice of performance metric data values that records the
entire days worth of a metric in the section of that file
devoted to storing values for that performance metric. Typi
cally, if a metric has a measured value every minute, the
section of the file devoted to that metric will have 140
comma delimited values for that metric encoded as a Java
UTF-8 encoded string. UTF-8 is a multibyte character
encoding for unicode. UTF-8 can represent every character
in the unicode character set. Each of the 1,112,064 code
points in the unicode character set is encoded in a UTF-8
string comprised of one to four 8-bit bytes termed octets.
The earlier characters in the unicode character set are
encoded using fewer bytes leading to greater efficiency. The
first 128 unicode character set coincide with the 128 ASCII
characters.
The system of the invention has a mapping table that maps

performance metric values into unicode characters and then
encodes them with UTF-8. Since unicode only supports
positive values, the unicode range is split and a first range of
unicode values is mapped to positive performance metric
values and a second range of unicode values is mapped to
negative performance metric values.

Each performance metric value from a measurement is
encoded as a single unicode character in the hexadecimal
number system (hex).

Each new day's worth of data from all resources and all
probes is stored in a new directory structure. The names of
the directories, subdirectories and files include information
about the day during which the data was gathered, the
resources from which it was gathered and the particular
group of attributes whose performance metric data is stored
in the various sections of the file.

In the example of FIG. 2, the directory structure 150 has
files 154 and 156 for one day of metric data gathered every
minute for two different metrics from the same resource,
represented by subdirectory 152. In other words, there is
only one resource being monitored. Also, for the example of
FIG. 2, there is only one attribute in each group of attributes
and only two attributes in total have performance metric data
gathered. The performance metric data is gathered on Aug.
14, 2011 so the directory 150 created to store that day's
metric data is named 20110814. There is only one resource
being monitored called E1 so there is created a subdirectory
152 called 20110814 E1. That subdirectory contains two
files. The first file 154 is named E1/G1, and it stores the
metric values for metric M1 in group 1 (which has only one
section because there is only one metric M1 in the group
E1/G1). The values of metric M1 are gathered every minute
and are symbolized as values V1 through V 1440 which are
stored as a comma delimited list. The value V1 is the value
of metric M1 taken at time 00:01:01 on 8/14/2011, i.e., the
first minute of 8/14/2011. The value V2 is the value of metric
M1 taken at time 00:02:01 on 8/14/2011, the second minute
of 8/14/2011. The value V 1440 is the value of metric M1
taken at time 23:59:01 which is the last minute of 8/14/2011.

5

10

15

25

30

35

40

45

50

55

60

65

14
Therefore, the position of any particular value on the comma
delimited list denotes the time at which the value was
captured on 8/14/2011.
The second file 156 in the resource E1 subdirectory is

named E1/G2 and it stores values for a metric M2 in group
2 (which also only has one metric in the group so there is
only one section in the file). It has not been shown in detail
since it has the same structure as the file E1/G1.
The values stored in each position of the file are Unicode

encoded meaning the numeric value of the metric's value
has been mapped to a text character or string of characters
in the encoding process.

This allows these values to be searched using regular
expressions which are a form of formal language (used in the
sense computer Scientists use the term “formal language’)
which has predefined rules of syntax and semantics (together
called its grammar). The elements from which regular
expressions can be formed are known and each element has
its own known syntax for how it is structured and has its own
unique and known semantics defining what it means. Per
Sons wishing to analyze the performance metric data in any
way, can compose a regular expression using the available
elements for composing a regular expression and their
Syntax and semantics.

FIG. 3 is another example of a file system containing a
separate directory for storing performance metric data for
three different days for three different resources, each
resource having two groups of attributes. The file system
storing metric data is represented by block 158. Three days
of performance data are stored in directories 160, 162 and
164, respectively. Each of these directories has three subdi
rectories named R1, R2 and R3, each of which is a folder
which contains actual files of text data encoding perfor
mance metric values that have been measured and transmit
ted by the agents. Blocks 166 and 168 represent comma
delimited text files named GRP1.TXT and GRP2.TXT Stor
ing the performance metric data gathered on Jul. 27, 2011
for resource 1 for group 1 and group 2 attributes, respec
tively.
The reason for grouping different attributes performance

values in the same file is for speed of loading and analysis.
Typically, an analysis of a resource will involve looking at
patterns or values or value changes of several different
attributes over a particular interval. If the attributes involved
in the analysis are all grouped in the same group, they will
be stored in the same file. In this way, all the data needed to
do the analysis can be loaded into memory for analysis
simply by reading appropriate file containing the attribute
group for the resource under analysis from the directory
structure corresponding to the day of interest. That file is
loaded into memory by a standard file access call to the
operating system, and the regular expression search or
searches can be performed on the data. This is faster than
having to load several different files or having to do SQL
queries to a database which would require a larger number
of reads.

FIG. 5 is a high level flowchart of the process the
monitoring server performs to receive the Zip files of per
formance metric data from a probe, recover the data and
store it. Block 200 represents the process of receiving the Zip
file of performance metric data from the probe. Block 202
represents the process of decompressing the Zip file to
recover the data structure such as that shown in FIG. 4.
Block 204 represents the process of converting the numeri
cal performance metric values stored in the text files to
unicode characters using a mapping table the server uses for
Such purposes. Block 206 represents the process of storing

US 9,479,385 B1
15

the unicode data structure derived in step 204 in the appro
priate parts of the NRDB data structure. Usually this just
entails storing the entire directory and all its files on disk
since the data structure is already structured as one directory
for the particular day on which the data was collected with
individual text files of metric data for each element being
monitored in subdirectories for the type of element each text
file represents.
Example of how a Regular Expression can be Used to
Analyze the Metric Performance Data

Suppose an analyst wanted to know if CPU utilization
was between 90% and 100% for at least 5 minutes or more.
The regular expression syntax to make a search and analysis
of the performance metric data for CPU utilization would be
in generic syntax:
U90-U100{5,-100-200
To convert this regular syntax to take into account the

unicode encoding of the CPU utilization metric values,
suppose a CPU utilization metric value representing 90%
utilization is mapped to unicode hex charactera, 92.5% CPU
utilization is mapped to unicode hex character b, 95% to hex
character c. 97.5% to hex character d, and 100% to hex
character e. If CPU utilization metric values are measured
every minute, then a regular expression to determine if the
CPU utilization was between 90% and 100% for at least 5
minutes would be:
a-el{5}g
which means if five consecutive values in the file storing
CPU utilization values for the CPU in question on the day
in question were any combination of heX characters a
through e, then the expression evaluates to true. This means
that every time on that particular day the CPU utilization
metric values had five consecutive values which were any
combination of hex a through hex e, then for each of those
intervals, the CPU utilization was between 90% and 100%.
This may mean the CPU is maxing out and another CPU
should be added.

In the preferred embodiment of the invention, the user
must know the syntax of regular expressions in order to
compose his or her query. In alternative embodiments, a user
interface is provided which allows the user to think in the
problem space and compose his queries in plain English, and
the system converts that query into the proper syntax for a
regular expression which will perform that query and analy
sis. In some embodiments, the software portion of the
system of the invention presents a user interface which has
a set of predefined searches which the user can use to do
various forms of analysis. Each predefined search, when
selected causes a regular expression to be generated and
used to search the performance metric data and return the
results. In some embodiments, these predefined searches are
templates which have variables that can be set by the user.
For example, there may be a predefined search to determine
if CPU utilization is between X % and y '% for more than Z
minutes where x, y and Z are variables that the user can set
before the search is run.

To run a search/query, in the preferred embodiment, the
Software of the system of the invention displays a query
expression box and two time range boxes, one for a start
time and one for an end time. These start and end time boxes
are calendars in the preferred embodiment, and the user
simply picks the first day for which data is to be examined
and picks a second day in the end time calendar which is the
last day of data to be examined. He then types his query into
the query expression box in the syntax of the regular
expression and hit return. The software then automatically
accesses the appropriate directory structures for the day or

10

15

25

30

35

40

45

50

55

60

65

16
days specified by the user, accesses the appropriate files that
contain the performance metric attribute values as specified
in the query expression, reads those attribute values into
memory and examines the data using the logic specified in
the query expression.

FIG. 6 is a template for a regular expression used to
explain the syntax of a typical regular expression query. The
h at the beginning of the regular expression indicates that
this particular query is designed to search host performance
metric data. If the query was about disks or something else,
Something indicative of the type of resource in question
would be in the place of the h.
The large left bracket indicates the beginning of the actual

query expression. The (a symbol at the beginning of the
query expression is a keyword. The “CPU usage' term is the
name of the attribute data to be searched and it is this
attribute name which causes the software to look up the
correct file name which contains the performance metric
data for CPU usage. The “rx' term indicates that what
follows is a regular expression, and the “b' term indicates
that the type of search is for band data as opposed to delta
data. The IU90-U100{5} is a regular expression that indi
cates the actual criteria to be used in performing the band
data search, i.e., it defines which performance metric data
satisfy the query and which do not. The regular expression
could also be a pointer to another regular expression stored
in a file. The pointer would contain a unique ID for the
regular expression to be used.
The band values are computed or mapped values for

internal representation of numbers which are greater than the
highest number which can be unicoded (around 1,000,000).
For example, if a data transfer rate is 20 million bits per
second and the metric is 20,000,000, a band value will be
computed for that metric using a reduction factor of for
example 10 million so as to reduce the 20 million number to
the number 2 before it is unicoded. Any reduction factor that
brings the range of a performance metric which is a high
number down into the unicode range may be used for
internal representation purposes. The searches are then done
on the computed band values and not the actual performance
metric numbers.

Delta values are useful for analyzing performance metric
data that spikes. A delta value records how much a value has
changed since the previous time it was measured.
The system, in the preferred embodiment, calculates and

stores both a band value and a delta value for some or all
performance metrics.
Query Definition Language
Objectives
Be able to traverse from a set of resources to another set

of related resources and so on
At each stage of traversal apply certain filtering criteria:

Configuration attributes: Matching certain value,
change in value

Relations: Addition or deletion of a relation
Performance metrics: Matching certain patterns

Basic Syntax Building Blocks that May Be Used to Build a
Query
XPath style data processing/filtering and this processing

will be applied to various search queries.
<Resource Types/<Related resource type =<conf attrld>
rx <regex> ORIAND... -<confattrid , , , (a)<perf attr
ide <rx bladlrxld <regex or regex pattern ide-IIS-event
id , , , +1-(related resource type/Related resource
type? . . . }{Related resource type? ... }

US 9,479,385 B1
17

Relation Traversal:
<resource types/<related resource typed/
Ex: V/h/d
The above expression will result the following path:

v-sh-ed
Multiple Traversal Paths:
<resource typed/related resource type>/ . . . } {another
related type>/ ... }
Ex: V/{h/n}{r/d}
The above expression results to the following traversals:
v/h/n (v->h-en)
v/r/d (v->r->d
Note: There is no limit on number or sub paths or any

level of nested paths are Supported as shown in the following
sample:
v/h/{r/d}{n}}{r/d}

The above sample results:
V/h/r/d
V/h/n
v/r/d

Look for Changes in Configuration:
<resource type-- <attridd, <attrid , , ,
Ex: V/h-attrl attr2/n

It takes all resources of type v, finds the related
resources of type h' which have configuration attributes
attrl and atttr2 have changes in the given time window. Then
it finds resources of type in which are related to the resulting
resources of type h'.
Find Patterns in Performance Data:
<resource type-(a)*-attridd <rx blad Irxld-expression or
idd(a)
<resource type)-(a)*#tw1H-attr Idd rx bla <expr . .
type>(a) tw1 <attridd <rx bl did . . .)
<resource type>(a)*#tw1#-attr Idd rx bla <expr . . . >/<r
type>(a)#tw2#tw1 <attridd <rx blad.)
Where
*: ignores the resulted data 1) can be used to derive time

windows for Subsequent use 2) can be used to build logical
pattern
b: for banded data d: for delta values
Special note: Any numeric value in actual regex

(exclusion=>quantifiers) should be prefix with “U” e.g. 40
90{5} will become U40-U90{5}. Here numbers within
the character class have been modified but not the quantifier

Examples of Regular Expression Queries of
Various Types

Examples

v(a attr1 rx b U90+/h
It finds all the virtual machines which have performance

data of metric attr1 value equal or exceeds 90 in the given
time window. Then it finds the respective hosts. It also
returns the matched performance data

V(a)attr1 rxld rxp1/h
It is similar to the example 2 but it specifies the regex

pattern id which will be defined in a separate file.
v(a)#tw1 it attr1 rx b U90+/h (a) tw1 attr12 rx b U80+
The first metric has defined a time spanid (tw1) which can

be referred by any other metric in the subsequent path. If
metric attr1 has generated any matched data, the respective
time windows will be assigned the id “tw1 and the same
time windows will be used on metric attr2. Note that if the
connected host has narrower time windows than the resulted
tw1, the common slots will be used on metric attr2.

10

15

25

30

35

40

45

50

55

60

65

18

Event Filter:
Syntax: S*
Where
*: ignores the resulted data (won't produce any output but
can be used to build logical patterns) t: will search against
the type of the event d: will search against the
description of the event

:<regex pattern-d:<regex pattern

The following are valid:
• St:rm Added if type check
• Sd:error if description
check

St:rmAdded.d:error fi logical OR
• S*t:rm Added if type check and ignore the
result
• S*d:error if description check and ignore
the result
• S*t:rm Added.d:error if logical OR and ignore the
result
Resource addition deletion:
<resource types--- srelated resource types added, , , ,-
<related resource types removed, , , ,

The above expression will return resources of type 'v' on
which relation of type h', 'd', 'n' has added or relation of
type h', 'd has been removed.
How to exclude the data of a matched relation:

<resource types/<related resource>/<sub resource>
Ex: Vf h/d
The above express will return resources of type vand the

related resources of typed directly. But, it will skip the data
of the matched resources of type h' in the output.

Note: One can mix any of the above combinations. One
can specify configuration changes, performance data filters,
events list, multiple paths, etc. in the same query.

Logical AND operator
Logical AND operations are Supported at path level and filter
evel.
At path level:
Syntax: P1/|&P2/&P3/P4. . .
Example 1: p.1/&p2 p1 && p2 Note: p1 qualifies only if
p2 qualifies
Example 2: p1/&p2/&p3 p1 && p2 && p3 Note: p2
is dependent on p3 and p1 is dependent on p2
Example 3: p1/p2f&p3 p1, p2 && p3 Note: p1
can qualify irrespective of p2 status but p2 can qualify only if p3
qualifies
Example 4: p.1/&p2/p3/&p4 p1&&p2, p3&&p4 Note:
p2 can qualify irrespective of p3 status
At filter level:
Syntax: P1 filter1&filter 2&filter 3/P2 filter 1 &
filter 2 . . .
Example 1: p1 =1001 rx Demo3&G)2001 rx b U10+ Note:
P1 qualifies if both the filters find matches
Example 2: pf1 f2&pf3 i (f1 || f2) && f3

Note: if f1 fails, it exits (no processing of f2 or f3). Short circuit
execution on Logical AND failure. But if f1 succeeds, it
processes both f2 and f3 irrespective of their results Consider
“I for union rather than logical OR.
Example 6: pfl &&&&&f2 fl && f2 Note: multiple &s
will be collapsed into one
Example 7: pf1 f2& f1 || f2 Note: trailing & will be
ignored
Others
Regular expression patterns can include brackets, but only with
matching pairs.
When a resource is included in the higher level path, it will not
be repeated in lower level paths.
Example
v=attr1 rx Demo3/*hiv
in third level in the result, Demo3 will not be repeated.
*v=attr1 rx Demo3/*hiv

US 9,479,385 B1
19

-continued

Since in first level Demo3 is not included, it will appear in
the third level

Regex Patterns
Query supports both regular expression string or regular

expression pattern id which will be defined in a separate file
in the following format:

10

<PatternLists -Pattern id="
extraDataPoints="><!CDATA-pattern-></Pattern
< Pattern List Example
<Pattern List> < Pattern id="rxp1 extraDataPoints="30"> 15
<!CDATA9--> </Pattern ~/Pattern List>

Pattern with id “rxp2 will directly apply the regular
expression pattern to the performance data.

ExtraDataPoints will be used in the result set to return 20
additional data in addition to the matched values. It adds 30
points before and after to the matched values.
Query Processing Flow
The configuration data tells the system what types of

resources have performance metric data stored in the system 25
and what are the attributes of each type of resource, some of
which may have had performance data measured. The
configuration data basically tells what resources have
existed for what periods of time.

FIG. 7 is a flowchart of the processing of the query 30
processor. When the query processor starts, it first reads the
query to determine the start and end times of the interval of
performance data to be searched, and then reads a configu
ration data file to determine for the time frame of the query
(as set by the user by setting the start date and end date for
the query expression) what resources exist or have existed.
These processes are represented by step 210. If a resource or
resources existed for only part of the relevant query interval,
the query processor determines from the configuration data
the valid times these resources existed during the relevant
interval, and, if the resources still exist, at what time they
came into existence during the relevant query interval.
Resources can come and go such as when a server is taken
offline or a disk is Swapped out. Reading the query and the
configuration data file and determining what resources
existed at any time during the relevant interval is symbolized
by step 210. The configuration file also contains data which
tells which resources are related to the resources named in
the query. For example, a disk which is contained in or
connected to a particular server is indicated as related to that
SeVe.

The server reads all this data in the configuration file and,
in step 212, creates a map of only the relevant resources, i.e.,
the resources of the system that match the resource type
identified at 208 in the query of FIG. 6 and which existed at
any time during the query interval and any related resources.
In the preferred embodiment, the string at 208 identifies only
a resource type. In this example of FIG. 6, the resource type
is a host. Step 214 represents the process of loading the
entire day of performance metric data for the relevant day,
relevant resources (named resource and related resources)
and the relevant attribute (the attribute named in the query).
This results in all the performance data for all resources of
that type being loaded into memory as described below for
the entire day or days which include the relevant interval
starting at the start time and ending at the end time identified
in query. These start and end times are given by the user in

35

40

45

50

55

60

65

20
separate boxes (not shown) from the query expression box
when the user enters the query expression of FIG. 6 by
interacting with a display on a computer that shows the
query box and start and end time boxes.

This filtering out of performance data for resources not of
the named type allows the query processor to easily and
quickly find performance metric data which has been stored
in the NRDB for only the relevant resource types indicated
at 208 in the query syntax of FIG. 6.
The query processor then starts parsing the query expres

sion and determines from element 213 of the query of FIG.
6 what type of attribute data for the resource type named at
208 which is stored in the NRDB and which the query
processor needs to perform the query. In the example of the
query of FIG. 6, parsing the query and reading portion 213
thereof, the query processor determines it will be performing
a search on performance metric data for CPU usage on all
hosts as identified by the string at 208. This is symbolized by
step 214 of FIG. 7.

Also in step 214, the query processor examines the start
time (date and time) and end time (date and time) set by the
user on the query screen (not shown). The query processor
then goes to the NRDB and examines the directory struc
tures and finds the directory structures for the relevant day
or days that contain the start time and end time of the query.
The query processor then determines which subdirectory or
subdirectories in these relevant directories contain perfor
mance metric data for resources of the type indicated at 208
in FIG. 6. The query processor then determines the text files
in the relevant subdirectories and determines which text files
contain the performance metric data for the group of attri
butes which contain the attribute identified in the query
expression, i.e., the attribute identified at 213. The query
processor also determines from the configuration data file
what other resources are related to the resource types iden
tified at 208 and loads the performance metric data for these
related resources for the relevant interval into memory also,
which is also part of step 214 in some embodiments.

Next, in step 216, the query processor determines whether
the needed data is already stored in cache. If so, the needed
data is loaded from the cache memory to save the time of a
disk read. If the needed data is not stored in the cache, the
query processor sends a read request to the operating system
API to read the appropriate text file or files containing the
data needed for the query into memory in step 218. Step 218
loads the entire day's worth of performance data for the
resources of the type identified in the string at 208 in FIG.
6 and for the group of attributes including the attribute
identified at 213 of the query expression.
Now all the performance metric data for the file contain

ing the performance metric data for the entire group of
attributes that contain the relevant attribute, and for the
entire day or days spanning the start date and end date are
stored in memory. The data in memory contains both per
formance metric data for attributes not named in the query
as well as performance metric data for the relevant attribute
which is outside the start time and end time given in the
query. To eliminate this excess data, the query process builds
a new string containing only the data for the relevant
attribute and only starting at the starting time and ending at
the ending time named in the query. This process is sym
bolized by step 220. To do this, the query processor finds the
row in the loaded file which contains the performance metric
data for the relevant attribute identified at 213 of the relevant
resource identified at 208 and counts entries until it reaches
the value recorded for the named start time. That perfor
mance metric value and all Subsequent values extending out

US 9,479,385 B1
21

to the end time are copied to a new file in the same sequence
they were stored in the NRDB, all as symbolized by step
220.

In step 222, the logic of the regular expression shown at
221 is applied to the performance data in the new file created
in step 220 to find values which meet the criteria expressed
in the regular expression at 221 of the search query for every
resource of the type identified at step 208. The values so
found are returned and decoded from unicode back to the
original performance metric values received from the probe.
If multiple substrings from multiple resources of the type
indicated at 208 are found which match the query, all such
matching Substrings are returned along with identifying data
as to which resource returned each String. In some embodi
ments including the preferred embodiment, the metadata
about the resource identity (the specific host identity in the
example of FIG. 6), the attribute identity (CPU usage in the
example of FIG. 6), as well as the start time and end time of
the query and the times the returned values were recorded is
also returned for help in analyzing the results. In some
embodiments, only a true or false result is returned. In some
embodiments, if a true result is returned, and the Sub String
of performance metric values which matched the regular
expression is also returned after being decoded from unicode
back to the performance metric value received from the
probe.
Nested Queries

Sometimes complex situations arise where trouble shoot
ing of the performance metric data is needed to solve a
problem. An example would be where a host is running
multiple virtual machines and one of them has slowed down
considerably or stopped responding and the reason why
needs to be determined. In Such a case, a set of nested
queries such as those given below can be used to determine
the source of the problem.
Vm (alreadlatency rx b U20-U1000 {5}/h (alreadlatency

rx b U20-U1000{5}/vm (alreadiop rx b U1000-U2000
{5}
The above query is actually three nested queries designed

to drill down into the performance data to find out what the
problem is with a slow virtual machine.
The first part of the query is: Vm(a)readlatency rx b

U20-U1000 {5}/ This query looks at the readlatency
attribute (a measure of speed) of all virtual machines which
is between U20 and U1000 for 5 consecutive readings. This
range U20-U1000 finds all the virtual machines which are
running pretty slow.
The question then becomes why are these virtual

machines running slowly. To find that out, one question
would be are the hosts that are executing the code of the
virtual machines themselves running slowly for some rea
son. In parsing this query, the query processor determines all
host type resources which are related to the virtual machine
type identified by the string Vm at the beginning of the query.
The performance metric data for all these hosts is loaded into
memory when the virtual machine performance metric data
is loaded into memory according to the processing of FIG.
7. In order to find out if the host or hosts are running slowly,
the second part of the query is used. That part is:

h(a)readlatency rx b U20-U1000{5}/
This second part of the query looks at all the readlatency

performance metric values for host type resources that are
related to the virtual machine resource type identified in the
first part of the query and determines which ones of these
hosts are running slowly. The returned data indicates which
hosts have slow read latency. The question then becomes
why is this host or hosts running slowly. To answer that, the

10

15

25

30

35

40

45

50

55

60

65

22
third part of the query is used. That part determines which
virtual machines which are related to the hosts have high IO
operations going on which are bogging down the hosts. The
third part of the query is:
vm(a readiop rx b V1000-V2000{5}
This query returns the identities of the virtual machine

which have high levels of input/output operations going on.
This high level of I/O operation will bog down the hardware
of the host and will be the explanation why other virtual
machines have slowed down or stopped. The results can then
be used to shut down the virtual machine that is bogging
down the system or modify its operations somehow so as to
not slow down the other virtual machines.
The results returned, for example, might indicate that

virtual machine 1 on host 1 is running slowly and host 1 is
running slowly because virtual machine 3 on that host is
running a high number of I/O operations. Another set of data
that matches the three queries may show also that virtual
machine 2 running on host 2 is running slowly because host
2 is running slowly because virtual machine 4 running on
host 2 is carrying out a high number of I/O operations.
Module Processing Flows

FIG. 8, comprised of FIGS. 8A through 8C, is a flowchart
of the processing of the probe data importer. The Probe Data
Importer runs a Data Import Scheduler routine which runs
data import operations at regular intervals, as symbolized by
step 230. Step 232 checks the probe data folder for new data
to be processed. Test 234 determines if new data has arrived,
and, if not, processing returns to step 230. If new data has
arrived, step 236 is performed to parse the list of files to get
the list of configuration and performance metric data files in
the new data in sorted order. Test 238 determines if the new
data has performance metric data in it. If so, step 240 is
performed to import the performance data. If the new data
does not have performance data files in it, processing skips
from step 238 to step 242 where a test is performed to
determine if configuration data has arrived. If not, process
ing returns to step 230 to wait for the next data import. If
new configuration data has arrived, step 244 is performed to
import the new configuration data.

Step 246 starts the processing of performance metric data
files listed in the sorted list. Related performance counters of
each resource will be grouped together for storage and
access optimization. Step 248 creates file groups based on
performance counter group wherein one file group is formed
for each performance counter group. Step 250 creates a
thread pool and processes the file groups in multiple threads.
Using Java API (ava. util.concurrent package), it creates a
pool of threads and each thread will pick one FileGroup at
a time and processes it. After completion of one FileGroup
processing, the same thread will pick the next FileGroup, if
any, for processing and the process repeats until all the
FileGroups are processed. Total thread count in the thread
pool is configured through application properties file. Step
252 is the processing for each thread. In each thread, the files
are read and the resources identified in the files are found
and resource counter groups are created. There is one
resource counter group per each resource. In step 254,
another thread pool is formed, and the resource counter
groups are processed as explained above. In step 256, for
each thread, the resource counter group data is processed,
and data structures in memory are updated to reflect the
collected performance metric data for each resource. The
resource counters are used to determine where in each text
file each performance metric data value is to be stored to
properly reflect the time at which it was gathered. Finally, in
step 258, the data structures created in memory, i.e., the text

US 9,479,385 B1
23

files created when the performance metric values are con
verted to unicode and stored in text files per the structure
described elsewhere herein, are written to non volatile
storage of the NRDB.

Step 260 on FIG. 8C represents the start of processing of 5
the configuration files listed on the sorted list. In step 262,
the configuration data file is parsed and the timestamp and
resource signature is found. Test 264 determines whether the
resource identified by the resource signature is found in the
NRDB. If not, step 266 creates a minisnapshot file in the
NRDB using the available configuration data. If test 264
determines that the resource identified in the configuration
file is already in the NRDB, step 268 is jumped to where the
configuration changes and events are saved in an updates file
in the NRDB. Finally, in step 270, the in-memory configu
ration data is refreshed by re-loading it from the NRDB.

FIG. 9, comprised of FIGS. 9A and 9B, is a module
diagram and flowchart of the processing of the NRDB
Access manager module. The NRDB access manager mod
ule 300 controls access to the non relational data base file
system 302 where the configuration data and performance
metric data is stored. The NRDB access manager module
300 retrieves data from the NRDB and uses a cache 304 in
memory of the server which is running module 300 and a
cache 306 in the file system to store data which is frequently
accessed to speed up data access. Performance data and
configuration data are imported from the probes by the
Probe Data Importer module 308 by the processing previ
ously described and put into the NRDB via the NRDB
access manage module 300. Query requests to analyze the
performance metric data in the NRDB are handled by Query
Request Handler module 310 which accesses the data in the
NRDB via the NRDB Access Manager module 300.

In FIG.9B, the NRDB Access Manager processing starts
with receiving a request for performance metric data from
the Query Process Handler, this request symbolized by line
312. Step 314 determines if the requested performance data
is in the performance data cache 304 in the system RAM and
in the file system. If it is, step 316 is jumped to, and the
performance data is returned from the cache to the Query
Process Handler 310. If test 314 determines the performance
data requested is not in the cache, step 318 is performed to
load the requested data from the NRDB file system into the
cache 304, and then step 316 returns the requested data to the
Query Process Handler 310.
The Probe Data Importer 308 adds updated and new

configuration data and new performance data via data path
321 to the NRDB through step 320, and updates the respec
tive configuration data cache 323 in RAM or the perfor
mance data cache 304 in RAM and in the NRDB file system
itself. NRDB Access Manager before processing perfor
mance metric data gets the in-memory representation (Java
object) of the performance metric data through Performance
cache. Performance cache first verifies in memory whether
it is already loaded from the file. If not, it loads the data from
the file for the given date. If data is not available, it creates
a file with template data (default values) for all the sampling
intervals for that day. Based on the start time, it updates the
in-memory performance metric data at appropriate loca
tions. Once all the metrics data in the group is processed, it
commits the changes back to the file. The data will be
compressed (deflate format) before saved into the file.

FIG. 10 is a block diagram of one embodiment of the
overall system including the major functional modules in the
central server called Megha(R), where the query request
processing for analysis of performance metric data occurs
and where the NRDB stores the performance metric data and

10

15

25

30

35

40

45

50

55

60

65

24
configuration data. Persons who want to query the perfor
mance metric data send an asynchronous request using a
web browser running on a client computer 330 to a Web
Request Controller 332 running on the Megha server using
a REST application programmatic interface (API). The Web
Request Controller 332 receives the request, validates it and
then forwards it to the Query Request Processor module 310
with an asynchronous Java API call. Then the Web Request
Controller returns the status to the client computer 330 by
hinting that the client needs to come back for the result. The
Query Request Processor 310 processes the request and
incrementally saves the results in a Results Cache 311. The
client computer 330 then sends back a request for the results
to the Web Request Controller 332 which checks the Results
Cache 311. The results are then returned by the Web Request
Controller 332 to the client 330 in an XML format if
available. If the Query Request Processor is still processing
the request, the Web Request Controller send the status hint
to the client indicating it needs to send another request for
the results later. The Report Engine 313 is a Java class object
which sends query requests to the Query Request Processor
310 using Java API invocation asynchronously and reads the
results data from the Result Cache 311 through a Java API.

FIG. 11 is a flowchart of the processing by one embodi
ment of the Query Request Processor. Step 323 parses the
search query. If the search query has an invalid format, the
result cache is updated with an error and processing is
terminated. Each query starts with a high level resource
type. The Query Request Processor reads the resource type
and responds by making a request in step 322 for all the
performance metric data in the NRDB for all resources of
the type specified in the query. That request is made through
the NRDB Access Manager. In step 324, a thread pool is
created to process the data from each resource of the type
identified in the query. Each thread processes data from one
of the resources of the type identified in the query. The
number of threads created is configured in the application
properties file.

In step 326, any filters specified in the query are applied.
Filters can be things like configuration attribute matches,
events, performance data patterns, etc. All the specified
filters are applied in sequential order. For example, the
following query
Vm=name rx exchangevmlSt:Network adapter added

(a usedCapacity rx bu40+
has one configuration attribute match filter, an event filter
and one performance data pattern match filter specified.

After applying the filters, if a thread finds that a resource's
performance metric data meets the criteria specified in the
query in test 328, then test 330 is performed. If test 328
determines that the performance metric data of a resource
does not meet the criteria in a query, step 331 is performed
to discard the performance metric data. In step 330, the
query is examined to determine if there is a Sub path to a Sub
resource specified therein. If there is a sub path specified, the
performance metric data of the Sub path to Sub resource is
loaded from the NRDB. Then any specified filters are
applied again in step 326 to determine if the sub resource
qualifies, i.e., the performance metric data of the Sub
resource meets the specified criteria in the query. This
process continues until all Sub paths specified in the query to
sub resources have been processed. When there are no more
sub paths, or, if there were no sub paths specified in the first
place, test 332 is performed to determine if the top level
resource qualified, and, if not, the data is discarded in step
331. If the top level resource does qualify, the resource that

US 9,479,385 B1
25

qualified along with any performance data that met the
criteria specified in the query are added to the Result Cache
in step 334.

Those skilled in the art will appreciate alternative embodi
ments that do not depart from the spirit and scope of the
above described embodiments. All such alternative embodi
ments are intended to be included within the scope of the
claims appended hereto.

What is claimed is:
1. An apparatus comprising a server having a program

mable processor coupled to a memory which can be any type
of memory including RAM and a disk drive or disk array,
said programmable processor also coupled to a communi
cation interface for coupling to a data path Such as the
internet, operations of said programmable processor con
trolled by one or more computer programs, said one or more
computer programs structured to control said server to
prepare a non relational database file system storing perfor
mance metric data encoded in a manner Suitable for search
ing by regular expression by performing the following steps:

receiving, via said communications interface, a plurality
of time series of performance metric data numerical
values, each time series measured from an attribute of
an instance of a resource type being monitored, each
time series of performance metric data numerical val
ues spanning an entire day and wherein each numerical
value in a time series is collected during a timeslot
during said day;

mapping each and every time series of performance
metric data numerical values to a time series of Uni
code characters;

encoding each Unicode character of each time series of
Unicode characters into a digital representation that can
be stored in said memory; and

storing each digital representation of a Unicode character
in a non relational database file system stored in said
memory in a manner So as to preserve the temporal
relationship between a location in said non relational
database file system where each Unicode character is
stored and the timeslot during which each said perfor
mance metric data numerical value said Unicode char
acter represents was measured; and

wherein said one or more computer programs are struc
tured to control said programmable processor to imple
ment a user interface which allows a user to specify a
relevant interval and to compose a search query using
a query definition language implemented by said one or
more computer programs, said query definition lan
guage having syntax building blocks which allow said
user to use a regular expression to specify filter or
matching conditions for each search of said Unicode
characters, and to specify an attribute for each search
and to specify a resource type for each search, said
Syntax building blocks allowing a user to specify more
than one search in a search query, and wherein said one
or more computer programs further structured to con
trol said programmable processor in accordance with
said search query to retrieve from said non relational
database file Unicode characters representing time
series performance metric data numerical values col
lected during said relevant interval from one or more
user specified attributes of one or more user specified
resource types and carry out one or more searches using
said one or more filter or matching conditions specified
in said one or more regular expressions of said one or
more searches.

5

10

15

25

30

35

40

45

50

55

60

65

26
2. The apparatus of claim 1 wherein said one or more

computer programs are structured to control said program
mable processor to carry out said step of storing said digital
representations of Unicode characters in a manner so as to
preserve metadata of each performance metric data numeri
cal value in the structure itself of said non relational database
file system, said metadata including the date and timeslot
during which each performance metric data numerical value
was measured or gathered, and the identities of the resource
instance and attribute of said resource instance from which
each performance metric data numerical value was mea
Sured or gathered.

3. A process comprising the steps:
A) receiving a plurality of time series of performance

metric data numerical values, each said time series of
performance metric data numerical values collected or
measured from one attribute of an instance of one or
more resources being monitored, each said time series
of performance metric data numerical values showing
the changes in said attribute over time, and wherein
each said numerical value in a said time series of
performance metric data numerical values having been
measured or collected during a timeslot;

B) mapping each and every time series of performance
metric data numerical values to a time series of Uni
code characters, each Unicode character representing
one performance metric data numerical value;

C) encoding each said Unicode character into a digital
representation that can be stored in a digital memory;

D) storing each said time series of digital representations
of Unicode characters in a non relational database file
system stored in said memory in such a way as to
preserve temporal relationships between the timeslot
during which each performance metric data numerical
value was measured and a location in a file in said non
relational database file system in which is stored the
digital representation of the Unicode character into
which said performance metric data numerical value
was mapped;

E) providing a user interface and syntax building blocks
of a query definition language which a user can use to
specify a relevant interval and a search query defining
one or more searches each of which specifies a resource
type and an attribute of said resource type whose data
collected during said relevant interval from instances of
said resource type is to be compared to a user specified
filter or matching criteria specified in each said search
as a regular expression specified by said user; and

F) controlling a computer to retrieve from said non
relational database file system relevant Unicode char
acters for each said search contained within said search
query, said relevant Unicode characters being Unicode
characters representing performance metric data
numerical values which were collected during said
relevant interval from a user specified attribute of
instances of a user specified resource type and com
paring said relevant Unicode characters retrieved for
each said search to said filter or matching condition
specified in said regular expression of said search and
returning any instances of said user specified resource
type which meet said filter or matching condition.

4. The process of claim 3 wherein step D is carried out in
any manner that preserves metadata of each performance
metric data numerical value in the structure of the non
relational database file system itself, said metadata including
the date and timeslot during which each performance metric
data numerical value was gathered or measured, the identi

US 9,479,385 B1
27

fication of the instance of a resource type from which a
performance metric data numerical value was measured or
gathered and the identification of the attribute from which
each said performance metric data numerical value was
measured or gathered.

5. The process of claim 3 wherein step D comprises
creating said non relational database file system as a file
system having one directory for each day during which said
performance metric data numerical values stored therein
were measured, each said directory comprised of files Stor
ing performance metric data numerical values in the form of
digital representations of the Unicode characters into which
each said performance metric data numerical values was
mapped, all of said digital representations representing per
formance metric data numerical values measured on the day
represented by said directory, said directory having the date
of said day in its name.

28
6. The process of claim 5 wherein step B further com

prises, before mapping a performance metric data numerical
value into a Unicode character, computing a band value for
at least each said performance metric data numerical value
which has a value which is larger than the largest number
which can be represented by a Unicode character, said band
value representing a reduction factor which brings said
actual performance metric data numerical value down to a
numerical value which can be represented by a Unicode
character, and further comprises, before mapping a perfor
mance metric data numerical value into a Unicode character,
the step of computing a delta value for at least Some of said
performance metric data numerical values, said delta value
recording how much said performance metric data numeri
cal value has changed since the previous time said perfor
mance metric data numerical value was measured.

k k k k k

