
(12) United States Patent 
Seide et al. 

US009477925B2 

(10) Patent No.: US 9,477,925 B2 
(45) Date of Patent: Oct. 25, 2016 

(54) DEEP NEURAL NETWORKS TRAINING FOR 
SPEECH AND PATTERN RECOGNITION 

(71) Applicant: Microsoft Corporation, Redmond, WA 
(US) 

(72) Inventors: Frank Torsten Bernd Seide, Beijing 
(CN); Gang Li, Beijing (CN); Dong 
Yu, Bothell, WA (US); Adam C. 
Eversole, Redmond, WA (US); Xie 
Chen, LianYuan (CN) 

(73) Assignee: Microsoft Technology Licensing, LLC, 
Redmond, WA (US) 

(*) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 581 days. 

(21) Appl. No.: 13/682,372 

(22) Filed: Nov. 20, 2012 

(65) Prior Publication Data 

US 2014/O142929 A1 May 22, 2014 

(51) Int. Cl. 
GIOL II/00 (2006.01) 
G06N, 3/08 (2006.01) 
G 10L 15/06 (2013.01) 

(52) U.S. Cl. 
CPC ................. G06N 3/08 (2013.01); G 10L 15/06 

(2013.01) 
(58) Field of Classification Search 

CPC ........... G10L 15/16: G 10L 2021/0575; G 10L 
21/0364; G 10L 15/063; G1OL 15/12: G1 OL 

15/34: G 10L 17/02; G 10L 17/18: G 10L 
19/00: G 10L 15/02; G 10L 15/20: G 10L 
19/0018; G 10L 19/0208; G 10L 19/093; 

G10L 19/265; G 10L 21/0272; G 10L 25/18: 
G10L 25/30; G 10L 25/90; G 10L 25/93; 

G10L 15/10; G 10L 25/00; G06F 17/30224; 
G06F 9/30036; G06F 9/50: G06F 11/0769; 

GO6F 13/OO 

500 

USPC ....... 704/1-10, 251, 255, 257, 242, 256, 16, 
704/41, 232, 202; 706/31 

See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

5,150,449 A 9, 1992 Yoshida et al. 
5,404422 A 4/1995 Sakamoto et al. 
5,687.286 A 11, 1997 Bar-Yam 
5,799,276 A 8/1998 Komissarchik et al. 
5,862.519 A 1/1999 Sharma et al. 

(Continued) 

OTHER PUBLICATIONS 

Abrash, et al., “Connectionist Speaker Normalization and Adapta 
tion'. Eurospeech, Sep. 1995, 4 pages. 

(Continued) 

Primary Examiner — Huyen Vo 
(74) Attorney, Agent, or Firm — Sandy Swain; Judy Yee; 
Micky Minhas 

(57) ABSTRACT 

The use of a pipelined algorithm that performs parallelized 
computations to train deep neural networks (DNNs) for 
performing data analysis may reduce training time. The 
DNNs may be one of context-independent DNNs or context 
dependent DNNs. The training may include partitioning 
training data into sample batches of a specific batch size. The 
partitioning may be performed based on rates of data trans 
fers between processors that execute the pipelined algo 
rithm, considerations of accuracy and convergence, and the 
execution speed of each processor. Other techniques for 
training may include grouping layers of the DNNS for 
processing on a single processor, distributing a layer of the 
DNNs to multiple processors for processing, or modifying 
an execution order of steps in the pipelined algorithm. 

20 Claims, 5 Drawing Sheets 

502 

ALLOCATBATCHES OF TRAINING DATA FORTRAINING ONN's 
USINGAPIPELINEDALGORTHM 

N Group 

LAYER 

Yes 

DISTRIBUTE THE TO LAYER OF THEDMMSACROSSMULTIPLE 
MULTI-CORE PRocessors FOR PARALLELIZED PROCESSING 

-504 
ATLAST TWOLAYERS 

oR PROCESSING 

Yes 
508 

GROUP ATLAST Two LAYERS OF THE DNNSOR PROCESSING 
ONASINGLE MULTI-CORE PROCESSOR 

508 M 
MODEL STRIPING ATOP 

510 

52 
PIPELINING ANEXECUTION OF THE PIPELINEDALGORTHMONA 
seT or MULT-CORE PRocessoRST TRANTHEDMMS BASED 

ONTHE BATCHES 



US 9,477,925 B2 
Page 2 

(56) References Cited 

U.S. PATENT DOCUMENTS 

6,128,609 A 10, 2000 Rose 
6.421,654 B1* 7/2002 Gordon ........................... TO6/16 
6,539,368 B1* 3/2003 Chernikov et al. ............. TO6/41 
6,574,597 B1 6, 2003 Mohri et al. 
6,691,088 B1 2/2004 Blasig 
6,999,931 B2 2/2006 Zhou 
7,254,538 B1 8/2007 Hermansky et al. 
7,392, 185 B2 6, 2008 Bennett 
7,444,282 B2 10/2008 Choo et al. 
7,689,419 B2 3/2010 Mahajan et al. 
7,720,683 B1 5, 2010 Vermeulen et al. 

2004/0243412 A1 
2004/0260550 A1 
2006/0116877 A1 

12/2004 Gupta et al. 
12/2004 Burges et al. 
6/2006 Pickering et al. 

2008/0319933 A1* 12/2008 Moussa et al. ................. TO6/31 
2009,0055336 A1* 2, 2009 Chen ................. GO6F 17/30017 

T06/20 
2009/O132253 A1 
2009, 0216528 A1 
2009,0287624 A1 
2010.0049503 A1 
2010.0057435 A1 
2010.0057453 A1 
2010/017895.6 A1 
2012,0065976 A1 
2012fOO72215 A1 
2012.0089392 A1 
2012/0134548 A1 

5/2009 Bellegarda 
8, 2009 Gemello et al. 
11/2009 ROuat et al. 
2/2010 Kempe et al. 
3/2010 Kent et al. 
3/2010 Valsan 
7, 2010 Safadi 
3/2012 Deng et al. 
3/2012 Yu et al. 
4/2012 Larco et al. 
5, 2012 Rhoads et al. 

OTHER PUBLICATIONS 

Baker, et al., “Research Developments and Directions in Speech 
Recognition and Understanding, Part 1", IEEE Signal Processing 
Magazine, vol. 75, May 2009, 6 pages. 
Baker, et al., “Updated Minds Report on Speech Recognition and 
Understanding, Part 2", IEEE Signal Processing Magazine, vol. 78, 
Jul. 2009, 9 pages. 
Bengio, et al., “Greedy Layer-Wise Training of Deep Networks', 
Conference on Neural Information Processing Systems (NIPS 
2006), Dec. 2006, 8 pages. 
Bergen, et al., “A Senone Based Confidence Measure for Speech 
Recognition', retrieved at <<http://citeseerx.ist.psu.edu/viewdoc/ 
download?doi=10.1.1.57915&rep1&type=pdf>>, Sep. 1997, 4 
pageS. 
Bilmes, et al., “A Review of Graphical Model Architectures for 
Speech Recognition', retrieved at <<http://citeseerx.ist.psu.edu/ 
viewdoc/download?doi=10.1.80.8512&rep=rep1&type=pdf>. 
May 2005. 23 pages. 
Bourlard, et al., “REMAP Recursive Estimation and Maximization 
of a Posteriori Probabilities in Connectionist Speech Recognition'. 
Retrieved at <<http://www.icsi.berkeley.edu/ftp/pub/speech/papers/ 
euro95-remap.pdf>>, 1995, 4 pages. 
Bridle, et al., “An Alphanet Approach to Optimising Input Trans 
formations for Continuous Speech Recognition'. International 
Conferenc on Acoustics, Speech, and Signal Processing (ICASSP 
91), Apr. 1991, pp. 277-280. 
Chen, et al., “Using Deep belief Nets for Chinese Named Entity 
Categorization'. Proceedings of the 2010 Named Entities Work 
shop, Jul. 2010, pp. 102-109. 
Chong, et al., “Scalable HMM Based Inference Engine in Large 
Vocabulary Continuous Speech Recognition'. Proceedings of IEEE 
International Conference on Multimedia and Expo (ICME'09), 
Jun.-Jul. 2009, 4 pages. 
Notice on the First Offic eAction, The State Intellectual Property 
Office of the People's Republic of China, mailed Oct. 25, 2012 for 
Application No. 201110299678.0, 6 pages. 
Dahl, et al., “Context Dependent PreTrained Deep Neural Networks 
for Large-Vocabulary Speech Recognition', IEEE Transactions on 
Audio, Speech, and Language Processing, vol. 20, No. 1, Jan. 2012, 
pp. 30-42. 

Deng, et al., “Binary Coding of Speech Spectograms Using Deep 
Auto-Encoder'. Interspeech 2010, Sep. 2010, pp. 1692-1695. 
Deng, et al., “Structured Speech Modeling”, IEEE Transactions on 
Audio, Speech, and Language Processing, vol. 14, No. 5, Sep. 2006, 
pp. 1492-1504. 
Deselaers, et al., “A Deep Learning Approach to Machine Trans 
literation'. Proceedings of the Fourth Workshop on Statistical 
Machine Translation, Mar. 2009, pp. 233-241. 
Duch, et al., “Optimization and global minimization methods suit 
able for neural networks'. Neural Computing Surveys, vol. 2, Dec. 
1998, 41 pages. 
Fiscus, et al., “2000 NIST Evaluation of Conversaional Speech 
Recognition Over the Telephone: English and Mandarin Perfor 
mance Results', National Institute of Standards and Technology 
(NIST), Information Technology Laboratory (ITL), Gaithersburg, 
MD, May 2000, 9 pages. 
Franco, et al., “Context-Dependent Connectionist Probability Esti 
mation in a Hybrid HMM-Neural Net Speech Recognition”. Com 
puter Speech and Language, vol. 8, Jul. 1994, 24 pages. 
Fritsch, et al., “ACID/HNN: Clustering Hierarchies of Neural 
Networks for Context-Dependent Connectionist Acoustic Model 
ing”. Proceedings of the IEEE International Conferenc on Acous 
tics, Speech and Signal Procesing, May 1998, pp. 505-508. 
Gales, “Maximum Likelihood Linear Transforms for HMM-Based 
Speech Recognition'. CUED/F-InFeng TR 291, retrieved from 
<<www.ee.columbia.edu/~dpwe?papers/Gales.97-millr.pdf>>, May 
1997, 20 pages. 
Godfrey, et al., “Switchboard-1 Release 2', in Linguistic Data 
Consortium, 1997, retreived from <<http://www.ldc.upenn.edu/ 
Catalog/CatalogEntry.jsp?catalogId=LDC97S62>> on Jul. 13, 
2011, 2 pages. 
Hamel, et al., “Automatic Identification of Instrument Classes in 
Polyphonic and Poly-Instrument Audio”, retrieved at <<http:// 
ismir2009.ismir.net/proceedings/PS3-2.pdf>>, Oct. 2009, 6 pages. 
Hassibi, et al., “Second Order Derivatives for Network Pruning: 
Optimal Brain Surgeon', Advances in Neural Information Process 
ing Systems (NIPS), Nov.-Dec. 1992, 8 pages. 
He, et al., “Discriminative Learning in Sequential Pattern Recog 
nition', IEEE Signal Processing Magazine, vol. 14, Sep. 2008, 23 
pageS. 
Hinton, et al., “A fast learning algorithm for deep belief nets'. 
Neural Computation 2006, vol. 18, Issue 7, Jul. 2006, 16 pages. 
Hinton, “A Practical Guide to Training Restricted Boltzmann 
Machines”, Technical Report UTML TR Mar. 2010, retrieved from 
<<http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf>. Aug. 
2010, 21 pages. 
Hinton, et al., “Reducing the Dimensionality of Data with Neural 
Networks”, Science, vol. 313, No. 5786, Jul. 2006, pp. 504-507. 
International Search Report, Mailed Jan. 4, 2012 for Application 
No. PCT/US2011/050472, Filed Date Sep. 6, 2011, 9 pages. 
International Search Report, Mailed Mar. 21, 2012 for Application 
No. PCT/US2011/050738, Filed Date Sep. 7, 2011, 9 pages. 
Kershaw, “Phonetic Context-Dependency in a Hybrid ANN/HMM 
Speech Recognition System”. Dissertation Submitted to the Uni 
versity of Cambridge, Jan. 1997. 127 pages. 
Kingsbury, "Lattice-Based Optimization of Sequence Classification 
Criteria for Neural-Network Acoustic Modeling”, IEEE Interna 
tional Conference on Acoustics, Speech and Signal Processing 
(ICASSP2009), Apr. 2009, pp. 3761-3764. 
Kirchhoff, “Combining Articulatory and Acoustic Information for 
Speech Recognition in Noisy and Reverberant Environments', 
International Conference on Spoken Language Processing, Nov. 
1998, 4 pages. 
Langford, et al., “Sparse Online Learning via Truncated Gradient'. 
Journal of Machine Learning Research, vol. 10, Mar. 2009, pp. 
777-8O1 
Larochelle, et al., “An Empirical Evaluation of Deep Architectures 
on Problems with Many Factors of Variation'. Proceedings if the 
24th International Conference on Machine Learning, Jun. 2007, 8 
pageS. 
Le Roux, et al., “Deep Belief Networks are compact universal 
approximators'. Journal Neural Computation, vol. 22. Issue 8, Aug. 
2010, 19 pages. 



US 9,477,925 B2 
Page 3 

(56) References Cited 

OTHER PUBLICATIONS 

LeCun, et al., "Optimal Brain Damage'. Advances in Neural 
Information Processing Systems, NIPS1989, Nov. 1989, 8 pages. 
Lee, et al., “Sparse deep belief net model for visual area V2'. 
retrieved at <<http://ai. Stanford.edu/~ang/papers/nips07 
sparsedeepbeliefnetworkv2.pdf>. Dec. 2007, 8 pages. 
Lee, et al., “Unsupervised feature learning for audio classification 
using convolutional deep belief networks', NIPS 2009, Dec. 2009, 
9 pages. 
Mohamed, et al., “Deep BeliefNetworks for Phone Recognition'. 
retrieved at <<www.cs.toronto.edu/~gdahl/papers/dbnPhoneRec. 
pdf>>, May 2009, 9 pages. 
Mohamed, et al., “Deep Belief Networks Using Discriminative 
Features for Phone Recognition', IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP, May 2011, 4 
pageS. 
Mohamed, et al., “Phone Recognition Using Restricted Boltzmann 
Machines', IEEE International Conference on Acoustics Speech 
and Signal Processing (ICASSP), Mar. 2010, 4 pages. 
Morgan, et al., “Pushing the Envelope—Aside", IEEE Signal Pro 
cessing Magazine, vol. 22, Issue 5, Sep. 2005, pp. 81-88. 
Peterson, et al., “A Mean Field Theory Learning Algorithm for 
Neural Networks', Complex Systems, vol. 1, 1987, pp. 995-1019. 
Renals, et al., “Connectionist Probability Estimators in HMM 
Speech Recognition', IEEE Transactions on Speech and Audio 
Processing, vol. 2, No. 1, Part II, Jan. 1994, pp. 161-174. 
Rumelhart, et al., “Learning Representations by Back-Propagating 
Errors”, Nature, vol. 323, Oct. 1986, pp. 553-536. 
Salakhutdinov, et al., “On the Quantitative Analysis of Deep Belief 
Networks”. Proceedings of the 25th International Conference on 
Machine Learning, Jul. 2008, 8 pages. 
Saon, et al., “Maximum Likelihood Discriminant Feature Spaces”. 
Proceedings of the IEEE International Conference on Acoustics, 
Speech and Signal Processing, Jun. 2000, 4 pages. 
Saul, et al., “Mean Field Theory for Sigmoid Belief Networks', 
Journal of Artificial Intelligence Research, vol. 4. Mar. 1996, pp. 
61-76. 
Scanzio, et al., “Parallel Implementation of Artificial Neural Net 
work Training”, IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP2010), Mar, 2010, pp. 
4902-4905. 
Schwarz, et al., "Hierarchical Structures of Neural Networks for 
PHONEME Recognition'. Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), 
May 2006, 4 pages. 

Seide, et al., “Conversational Speech Transcription Using Context 
Dependent Deep Neural Networks”, INTERSPEECH 2011, Aug. 
2011, pp. 437-440. 
Seide, et al., “Feature engineering in Context Dependent Deep 
Neural Networks for Conversational Speech Transcription', IEEE 
Automatic Speech Recognition and Understanding Workshop 
(ASRU2011), Dec. 2011, pp. 24-29. 
Stolcke, et al., “Recent Innovations in Speech-to-Text Transcription 
at SRI-ICSI-UW”. IEEE Transactions on Audio, Speech, and Lan 
guage Processing, vol. 14, No. 5, Sep. 2006, pp. 1-16. 
Yu, et al., “A Novel Framework and Training Algorithm for Vari 
able-Parameter Hidden Markov Models', IEEE Transactions on 
Audio, Speech, and Language Processing, vol. 17, No. 7, Sep. 2009, 
pp. 1348-1360. 
Yu, et al., “Automated Directory Assistance System from Theory 
to Practice”, 8th Annual Conference of the International Speech 
Communication Association (INTERSPEECH 2007), Aug. 2007, 
pp. 2709-2712. 
Yu, et al., “Deep Learning and its Applications to Signal and 
Information Processing”, IEEE Signal Processing Magazine, vol. 
28, No. 1, Jan. 2011, pp. 145-154. 
Yu, et al., “Deep-Structured Hidden Conditional Random Fields for 
Phonetic Recognition'. Interspeech 2010, Sep. 2010, pp. 2986 
2989. 
Yu, et al., “Exploiting Sparseness in Deep Neural Networks for 
Large Vocabulary Speech Recognition', IEEE International Con 
ference on Acoustic, Speech and Signal Processing, Mar. 2012, pp. 
4409-4412. 
Yu, et al., “Language Recognition Using Deep-Structured Condi 
tional Random Fields”, ICASSP2010, Mar. 2010, pp. 5030-5033. 
Yu, et al., “Learning in the Deep-Structured Conditional Random 
Fields”. Conference on Neural Information Processing Systems 
(NIS, 2009), Dec. 2009, 8 pages. 
Yu, et al., “Roles of Pre-Training and Fine-Tuning in Context 
Dependent DBN-HMMs for Real-World Speech Recognition', 
NIPS 2010 Workshop on Deep Learning and Unsupervised Feature 
Learning, Dec. 2010, 8 pages. 
Yu, et al., “Solving Nonlinear Estimation Problems. Using Splines', 
IEEE Signal Processing Magazine, vol. 26, Issue 4, Jul. 2009, pp. 
86-90. 
Zhan, Vocal Tract Length Normalization for Large Vocabulary 
Continuous Speech Recognition, Technical Report CMU-CS-97 
148, retrieved at <<http://citeseerx.ist.psu.edu/viewdoc/download 
?doi=10.1. 145.2780&rep=rep1&type=pdf>>, May 1997, 20 pages. 
Zweig, et al., “A Segmental CRF Approach to Large Vocabulary 
Continuous Speech Recognition', IEEE Workshop on Automatic 
Speech Recognition and Understanding (ASRU2009), Dec. 2009, 
pp. 152-157. 

* cited by examiner 







U.S. Patent Oct. 25, 2016 Sheet 3 of 5 US 9,477,925 B2 

300 \ 
3O2 

ASSIGNAPIPELINED ALGORITHM TO TRAINDNNS 

304 NO IMPLEMENT 
PIPELINE ROUNDTRIP 

REDUCTION? 

MODIFY THE PIPELINED ALGORITHM TO IMPLEMENT PIPELINE 
ROUNDTRIP REDUCTION 

NO IMPLEMENT 3O8 
DATA TRANSFER AND COMPUTATION 

PARALLELIZATION? 

Yes 31 O 

MODIFY THE PIPELINED ALGORITHM TOIMPLEMENT DATA 
TRANSFER AND COMPUTATION PARALLELIZATION 

312 

PROVIDE THE PIPELINED ALGORITHM TO TRAIN THE DNNS 

FIG. 3 

    

  

  

    

  



U.S. Patent Oct. 25, 2016 Sheet 4 of 5 US 9,477,925 B2 

400 
N 

402 

DETERMINE ABATCH SIZE FOR TRAINING DATAUSED TO TRAIN 
DNNS 

404 

PARTITION THE TRAINING DATA INTO BATCHES ACCORDING TO 
THE BATCH SIZE 

406 

EXECUTE A PIPELINED ALGORITHM TO TRAIN THE DNNS USING 
THE BATCHES OF THE TRAINING DATA 

FIG. 4 

  



U.S. Patent Oct. 25, 2016 Sheet S of 5 US 9,477,925 B2 

500 N 
502 

ALLOCATE BATCHES OF TRAINING DATA FOR TRAINING DNNS 
USING A PIPELINED ALGORITHM 

NO GROUP 
AT LEAST TWO LAYERS 

OR PROCESSING2 

YeS 
506 

GROUP AT LEAST TWO LAYERS OF THE DNNS FOR PROCESSING 
ON A SINGLE MULTI-CORE PROCESSOR 

508 NO 
MODEL STRIPING ATOP 

LAYER7 

DISTRIBUTE THE TOPLAYER OF THE DNNS ACROSS MULTIPLE 
MULTI-CORE PROCESSORS FOR PARALLELIZED PROCESSING 

PIPELINING AN EXECUTION OF THE PIPELINED ALGORITHMONA 
SET OF MULTI-CORE PROCESSORS TO TRAIN THE DNNS BASED 

ON THE BATCHES 

512 

FIG. 5 

  

  

  

    

  



US 9,477,925 B2 
1. 

DEEP NEURAL NETWORKS TRAINING FOR 
SPEECH AND PATTERN RECOGNITION 

BACKGROUND 

Acoustic modeling techniques that use context-dependent 
deep neural network hidden Markov models (CD-DNN 
HMMs) for speech recognition or speech-to-text transcrip 
tion can outperform acoustic modeling techniques that use 
conventional Gaussian-mixture based HMMs. Unlike 
Gaussian-mixture based HMMs, CD-DNN-HMMs use arti 
ficial neural networks with multiple hidden layers to directly 
model tied context-dependent states. However, the training 
of CD-DNN-HMMs for use in speech recognition is gener 
ally more time consuming that the training of Gaussian 
mixture based HMMs. This larger amount of training time 
for CD-DNN-HMMs is a major obstacle to the widespread 
adoption and use of CD-DNN-HMMs for speech recogni 
tion. 

The training of conventional Gaussian-mixture based 
HMMs for speech recognition may be optimized via paral 
lelization. For example, the Baum-Welch training of Gauss 
ian-mixture based HMMs may include statistics collection 
that is parallelized over hundreds or even thousands of 
servers. In Such training, speech utterances may be pro 
cessed independently across multiple servers. At the end of 
a batch of hundreds of millions of frames, partial statistics 
from the servers may be merged, and an updated model may 
be distributed to the servers. However, techniques for train 
ing Gaussian-mixture based HMMs are inapplicable to the 
training of CD-DNN-HMMs due to differences in model 
type, training procedures, and computation resource usage. 

SUMMARY 

Described herein are enhanced techniques for training 
deep neural networks (DNN), herein referred to as DNNs, to 
speed up the training of the DNNs for use in performing 
pattern recognition and data analysis, such as speech rec 
ognition. In various embodiments, the DNNs may be con 
text-dependent DNNs or context-independent DNNs. In 
Some instances, such as for speech recognition, the context 
dependent DNNs may be used in conjunction with hidden 
Markov Models (HMMs). In such instances, the combina 
tion of context-dependent DNNs and HMMs is known as 
context-dependent DNN-HMMs (CD-DNN-HMMs). Thus, 
the techniques described herein for training DNNs may be 
applied to train the CD-DNN-HMMs. The techniques 
described herein may include the use of a pipelined algo 
rithm to parallelize the training of the DNNs across multiple 
multi-core processors, such as multiple general-purpose 
graphics processing units (GPGPUs). Accordingly, multiple 
layers of DNNs may be processed in parallel on the multiple 
multi-core processors. Further, the pipelined algorithm may 
be configured to process input data sample batches having a 
size that is defined to optimize a tradeoff between compu 
tation accuracy and execution efficiency. 

The techniques may further include the use of model 
striping. In model Striping, the top layer, which is the output 
layer of the DNNs, may be processed in parallel across 
multiple multi-core processors. Load balancing multiple 
layers of the DNNs across different multi-core processors 
may be another technique that is implemented. Other tech 
niques may include the use of pipeline roundtrip reduction 
and parallelized data transfer with computation during the 
execution of the pipelined algorithm. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
This Summary is provided to introduce a selection of 

concepts in a simplified form that is further described below 
in the Detailed Description. This Summary is not intended to 
identify key features or essential features of the claimed 
subject matter, nor is it intended to be used to limit the scope 
of the claimed subject matter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The detailed description is described with reference to the 
accompanying figures. In the figures, the left-most digit(s) of 
a reference number identifies the figure in which the refer 
ence number first appears. The use of the same reference 
number in different figures indicates similar or identical 
items. 

FIG. 1 is a block diagram that illustrates an example 
scheme for implementing a training engine that uses a 
pipelined algorithm to train DNNs. 

FIG. 2 is an illustrative diagram that shows example 
components of the training engine that uses a pipelined 
algorithm to train the DNNs. 

FIG. 3 is a flow diagram that illustrates an example 
process for modifying the execution order of propagation 
steps in the execution of a pipelined algorithm to reduce 
delay due to the exchange of data between multi-core 
processors. 

FIG. 4 is a flow diagram that illustrates an example 
process for configuring the size of batches obtained from 
training data to reduce training runtime of the DNNs. 

FIG. 5 is a flow diagram that illustrates an example 
process for load balancing parallelized computations 
between multiple multi-core processors to reduce training 
runtime of the DNNs. 

DETAILED DESCRIPTION 

Described herein are enhanced techniques for training the 
deep neural networks (DNNs), herein referred to as DNNs. 
In various embodiments, the DNNs may be context-depen 
dent DNNs or context-independent DNNs. In some 
instances, such as for speech recognition, the context-de 
pendent DNNs may be used in conjunction with hidden 
Markov Models (HMMs). In such instances, the combina 
tion of context-dependent DNNs and HMMs is known as 
context-dependent DNN-HMMs (CD-DNN-HMMs). Thus, 
the techniques described herein for training DNNs may be 
applied to train the CD-DNN-HMMs. The training of the 
DNNs as described herein may be used to speed up the 
preparation of the DNNs for use in performing pattern 
recognition and data analysis, Such as speech recognition. 
The techniques may include the use of a pipelined algorithm 
to parallelize the training of the DNNs across multiple 
multi-core processors. Such as multiple general-purpose 
graphics processing units (GPGPUs). In at least one imple 
mentation, the multi-core processors may exchange data 
through an internal interface bus (e.g. PCIe), rather than a 
network. Accordingly, multiple layers of the DNNs may be 
processed in parallel on the multiple multi-core processors. 
Further, the pipelined algorithm may be configured to pro 
cess input data sample batches having a size that is defined 
to optimize a tradeoff between computation accuracy and 
execution efficiency. In other words, the size may maximize 
both computation accuracy and execution efficiency of the 
pipelined algorithm 110. 
The training techniques may further include the use of 

model Striping. In model Striping, the top layer, which is the 
output layer of the DNNs, may be processed in parallel 



US 9,477,925 B2 
3 

across multiple multi-core processors. Load balancing mul 
tiple layers of the DNNs across different multi-core proces 
sors may be another training technique that is implemented. 
Other techniques may include the use of pipeline roundtrip 
reduction and parallelized data transfer with computation 
during the execution of the pipelined algorithm. The model 
striping of a top layer may be applied more frequently in the 
training of context-dependent DNNs because in context 
independent DNNs the top layer size is typically much 
smaller than that in the context-dependent DNNs. 
The techniques may reduce the amount of time used to 

train the DNNs for a particular purpose, such as for speech 
recognition. The decreased training time may lead to an 
increase in the implementation and usage of the DNNs in 
performing speech-to-text transcription or text-to-speech 
synthesis. Various examples of techniques for training of the 
DNNs for data analysis in accordance with various embodi 
ments are described below with reference to FIGS. 1-5. 

Example Scheme 

FIG. 1 is a block diagram that illustrates an example 
scheme 100 for implementing a training engine that uses a 
pipelined algorithm to train DNNs. The example scheme 
100 may include a training engine 102 and a data analysis 
engine 104. The training engine 102 may be running on a 
computing device 106. The computing device 106 may 
include multiple multi-core processors 108(1)-108(N). In 
some embodiments, each of the multi-core processors 108 
(1)-108(N) may be a general-purpose graphics processing 
unit (GPGPU). In other embodiments, each of the multi-core 
processors 108(1)-108(N) may be a field-programmable 
gate array (FPGA), or another type of customizable multi 
core processor. The multi-core processors 108(1)-18(N) may 
exchange data through an internal bus, such as a peripheral 
component interconnect express (PCIe) bus. However, in 
additional embodiments, one or more of the multi-core 
processors 108 may be substituted with a single-core pro 
cessor in Some instances. 
The training engine 102 may use a pipelined algorithm 

110 to train DNNs 112 for performing data analysis, such as 
for use in speech recognition. The DNNs 112 may be a 
multi-layer perceptron (MLP). As such, the DNNs 112 may 
include a bottom input layer 114(1) and a top layer 114(N). 
as well as multiple hidden layers, such as the multiple layers 
114(2)-114(4), in which N denotes any integer. In some 
embodiments, the context dependent DNNs 112 may include 
a total of eight layers. Accordingly, in Such embodiments, 
the value of N is “8” as there are eight layers. In various 
embodiments, the DNNs 112 may be context-dependent 
DNNs or context-independent DNNs. Training data 116 may 
be used by the pipelined algorithm 110 as training data to 
train the DNNs 112. The training data 116 may be a speech 
corpus that includes a collection of sample speech from 
human speakers. For example, the speech corpus may 
include North American English speech samples collected 
from speakers of North American English in the United 
States and Canada. However, in other implementations, the 
training data 116 may include sample speech in other 
respective languages (e.g., Chinese, Japanese, French, etc.), 
depending on the desired language of the speech to be 
recognized, or other kinds of training data for entirely 
different applications like handwriting or images. 
The computations performed by the pipelined algorithm 

110 may be parallelized across the multi-core processors 
108(1)-108(N). For example, during pipelined back-propa 
gation, a computation on input data performed by the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
multi-core processor 108(1) may produce a first computation 
result. The first computation result may be pipelined to the 
multi-core processor 108(2) for further computation to gen 
erate a second computation result. However, concurrent with 
the generation of the second computation result, the multi 
core processor 108(1) may be processing additional input 
data to generate a third computation result. Such concurrent 
computations by the multi-core processors 108(1)-108(N) 
may result in a pipelining of computations that train the 
DNNs 112, and, accordingly, to a reduction of computation 
time due to the resulting parallelism of computation. 

In various embodiments, the computations performed by 
the pipelined algorithm 110 may be enhanced using one or 
more techniques, such as batch size optimization 118, layer 
grouping 120, model striping 122, pipeline roundtrip reduc 
tion 124, and data transfer parallelization 126. Since the 
training data 116 is processed by the pipelined algorithm as 
batches of input samples 128, batch size optimization 118 
may include configuring the size of each input sample batch 
to optimize a tradeoff between computation accuracy and 
execution efficiency. 

Further, the layers 114(1)-114(N) in the DNNs 112 may 
have varying sizes due to differences in the number of units 
in each layer. Thus, layer grouping 120 is the grouping of at 
least two layers of the layers 114(1)-114(N) for executing by 
a single multi-core processor for the purpose of load bal 
ancing. For example, a largest layer in the DNNs 112 may 
have a size that is ten times larger than that of the one or 
more Smallest layers. Accordingly, it may be more efficient 
to devote a particular multi-core processor to process the 
largest layer, while processing two or more of the Smallest 
layers on another multi-core processor. Such grouping may 
further eliminate some pipeline roundtrip delays and 
improve efficiency. 
Model striping 122 is the parallelized processing of a 

particular layer of the DNNs 112 across multiple multi-core 
processors, such as a plurality of the processors of the 
multi-core processors 108(1)-108(N). For example, the top 
layer 114(N) of the DNNs 112 may have a size that is ten 
times larger than that of the next largest layer in the DNNs 
112. Accordingly, the processing of the top layer 114(N) 
may be paralleled across multiple multi-core processors. In 
this way, the model striping 122 of the top layer 114(N) may 
reduce the execution time of the pipelined algorithm 110 for 
training the DNNs 112. 
A computation iteration of the pipelined algorithm 110 

may execute the following steps in sequence: forward propa 
gation of input data, error back propagation, and model 
update. However, pipeline roundtrip reduction 124 is based 
on the execution of a model update step before a forward 
propagation step during one or more computation iterations. 
The execution of the model update step before the forward 
propagation step may reduce pipeline roundtrip delay, which 
may in turn reduce the overall execution time of the pipe 
lined algorithm 110 in completing the training. Additionally, 
data transfer parallelization 126 may include parallelizing 
the streaming of the output data from a computation iteration 
of the pipelined algorithm 110 with other steps in the 
computation iteration. In instances in which streaming time 
is shorter than computation time, such parallelization may 
reduce or eliminate time delay due to the exchange of data 
between multi-core processors during execution of the pipe 
lined algorithm 110. 

Thus, by using the pipelined algorithm 110 and the 
training data 116, the training engine 102 may produce 
trained DNNs 130 from the DNNs 112. In turn, the data 
analysis engine 104 may use the trained DNNs 130 to 



US 9,477,925 B2 
5 

produce output data 132 from the input data 134. In some 
implementations, the data analysis engine 104 may be a 
speech-to-text engine that uses the trained DNNs 130 in the 
form of trained context-dependent DNN-HMMs. The 
speech-to-text engine may use the trained context-dependent 
DNN-HMMs to produce output data 132 in the form of 
output text from the input data 134 that is in the form of 
input speech. The data analysis engine 104 may be executed 
on the computing device 106 or a computing device that is 
similar to the computing device 106. Moreover, the data 
analysis engine 104 may receive live input data 134 from a 
microphone and audio processing components of the com 
puting device. Alternatively, the data analysis engine 104 
may receive input data 134 from a media file or stream, for 
example for the purpose of audio-indexing of the spoken 
content in said media file? stream. In other embodiments, the 
data analysis engine 104 may also be a text-to-speech engine 
that uses the trained context-dependent DNNs to synthesize 
output speech based on input text. 

In alternative embodiments, the pipelined algorithm 110, 
as enhanced with one or more of the techniques 118-126, 
may be implemented to produce trained context-indepen 
dent DNNs 130 under other scenarios that exhibit similar 
characteristics. In this way, context-independent forms of 
the DNNs 112 may be trained with appropriate training data 
for a variety of other data analysis purposes. The character 
istics may include a larger set of training data that results in 
prolonged processing time (e.g., greater than 50 million 
samples), the implementation of DNNs in which the output 
of each network of the DNNs exceeds a threshold (e.g., 
greater than fourthousand data outputs), and/or so forth. The 
data analysis purposes may include using trained context 
independent DNNS for activities such as image recognition, 
computer vision, video tracking, and/or so forth. 

Example Components 

FIG. 2 is an illustrative diagram that shows example 
components of the computing device 106 that implements 
the training engine 102 to train the DNNs 112. In various 
embodiments, the DNNs 112 may be context-dependent 
DNNs or context-independent DNNs. The computing device 
106 may include one or more main processors 202, a 
plurality of multi-core processors 108(1)-108(N), an inter 
face bus 204, a user interface 206, a network interface 208, 
and memory 210. In various embodiments, the computing 
device 106 may be a server, a desktop computer, another 
type of electronic device, or a combination of the above that 
is capable of hosting multiple multi-core processors to 
process data. 

Each of the main processors 202 may be a single-core 
processor or a multi-core processor. The main processors 
202 may be responsible for executing an operating system 
that is installed on the computing device 106. In some 
embodiments, each of the multi-core processors 108(1)-108 
(N) may be a general-purpose graphics processing unit 
(GPGPU). In other embodiments, each of the multi-core 
processors 108(1)-108(N) may be a field-programmable 
gate array (FPGA), or another type of customizable proces 
sor. In still other embodiments, the multi-core processors 
108(1)-108(N) may be a heterogeneous mixture of multiple 
types of processors. For example, the multi-core processors 
108(1)-108(N) may be a combination of one or more GPG 
PUs and one or more FPGAs. The multi-core processors 
108(1)-18(N) may exchange data through the interface bus 
204. For example, the interface bus 204 may be a peripheral 
component interconnect express (PCIe) bus. In some imple 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
mentations, the main processors 202 and the multi-core 
process 108(1)-108(N) may be the same processors. 
The user interface 206 may include a data output device 

(e.g., visual display, audio speakers), and one or more data 
input devices. The data input devices may include, but are 
not limited to, combinations of one or more of keypads, 
keyboards, mouse devices, touch screens that accept ges 
tures, microphones, Voice or speech recognition devices, and 
any other suitable devices or other electronic/software selec 
tion methods. 
The network interface 208 may include wireless and/or 

wireless communication interface components that enable 
the computing device 106 to transmit and receive data via a 
network. In various embodiments, the wireless interface 
component may include, but is not limited to cellular, Wi-Fi, 
Ultra-wideband (UWB), Bluetooth, satellite transmissions, 
and/or so forth. The wired interface component may include 
a direct I/O interface, such as an Ethernet interface, a serial 
interface, a Universal Serial Bus (USB) interface, and/or so 
forth. As such, the computing device 106 may have network 
capabilities. For example, the computing device 106 may 
exchange data with other electronic devices (e.g., laptops 
computers, servers, etc.) via one or more networks, such as 
the Internet. 
The memory 210 may be implemented using computer 

readable media, Such as computer storage media. Computer 
readable media includes, at least, two types of computer 
readable media, namely computer storage media and 
communication media. Computer storage media includes 
volatile and non-volatile, removable and non-removable 
media implemented in any method or technology for storage 
of information such as computer readable instructions, data 
structures, program modules, or other data. Computer stor 
age media includes, but is not limited to, RAM, ROM, 
EEPROM, flash memory or other memory technology, CD 
ROM, digital versatile disks (DVD) or other optical storage, 
magnetic cassettes, magnetic tape, magnetic disk storage or 
other magnetic storage devices, or any other non-transmis 
sion medium that may be used to store information for 
access by a computing device. In contrast, communication 
media may embody computer readable instructions, data 
structures, program modules, or other data in a modulated 
data signal. Such as a carrier wave, or other transmission 
mechanism. As defined herein, computer storage media does 
not include communication media. 
The memory 210 of the computing device 106 may store 

the modules of the training engine 102. The modules may 
include an operating system 212, an algorithm execution 
module 214, a batch generation module 216, an algorithm 
configuration module 218, a load balance module 220, and 
a model Striping module 222. Additionally, a data store 224 
may reside in the memory 210. 
The operating system 212 may include components that 

enable the computing device 106 to receive data via various 
inputs (e.g., user controls, network interfaces, and/or 
memory devices), and process the data using the main 
processors 202 to generate output. The operating system 212 
may further include one or more components that present the 
output (e.g., display an image on an electronic display, store 
data in memory, transmit data to another electronic device, 
etc.). The operating system 212 may enable a user to interact 
with modules of the training engine 102 using the user 
interface 206. Additionally, the operating system 212 may 
include other components that perform various other func 
tions generally associated with an operating system. 
The algorithm execution module 214 may use the pipe 

lined algorithm 110 to train the DNNs 112 based on the 



US 9,477,925 B2 
7 

training data 116, which may be a speech corpus. In 
instances in which the DNNs 112 are trained for speech 
analysis purposes, the DNNs 112 may be context-dependent 
DNNs that are used in conjunction with HMMs. However, 
in other instances in which the DNNs are trained for other 
types of data analysis, the DNNs may be context-indepen 
dent DNNs. The DNNs 112 may be a MLP that models the 
posterior probability P (slo) of a class s, given an obser 
Vation vector o, as a stack of (L-1) layers of log-linear 
models. The first L layers, l=0 . . . L-1, model posterior 
probabilities of hidden binary vectors h’ given input vectors 
v', while the top layer L models the desired class posterior 
aS 

(1) 

(y1) (2) 

(3) def 

with weight matrices W and bias vectors a', where h' and 
z (v) are the j-th component of h' and z* (v), respectively. 
Full out-summation over all hidden variables, which is 
infeasible, may be approximated by a “mean-field approxi 
mation” where the input v' to each hidden layer is taken as 
the expectation of the output vector h' of the previous layer. 
Further, for use with the DNNs 112, state posteriors P (slo) 
may be converted to scaled likelihoods by dividing by their 
prior. 

Accordingly, the algorithm execution module 214 may 
train the DNNs 112 according to the following cross entropy 
criterion: 

D=X, 'P' log P(s(t) lott), (4) 
by using stochastic gradient descent: 

'a') - (W. at D 3 3 (5) (w", a') - (w", a' + saw 0s is L. 

with learning rate e and gradients as follows: 

D D 6 
awi X. v'(t)(a)(f)e'(t)); at Xone (6) 

e'(t) = W. el (t). e(t) for 0 < t < L (8) 

(9) 
reo for Os i < L co'(t) = 

1 else 

and with error signals e'(t), the component-wise derivatives 
o, (Z)-O,(Z)-(1-O,(z)), and (log softmax), (Z)-6, -soft 
max,(Z), and Kronecker delta 8. 
The training of the DNNs 112 may be achieved by 

pipelining computations of back-propagation in a paral 
lelized fashion (i.e., simultaneously executing multiple com 
putations) using the multiple multi-core processors 108(1)- 
108(N). This pipelined back-propagation is an 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
approximation due to the distributions of the layers 114(1)- 
114(N) of the DNNs 112 across the multiple multi-core 
processors 108(1)-108(N) to form a pipeline. In the pipeline, 
data flows sequentially from each multi-core processor to 
the next multi-core processor, in which all of the multi-core 
processors 108(1)-108(N) work simultaneously on the 
received data. However, such data flows may result in 
pipeline roundtrip delays that affect computation accuracy. 

Thus, because of the highly non-linear nature of the 
training, reasonable convergence (i.e., training completion) 
may be achieved by performing the stochastic gradient 
descent, as described above in expression (5), using dis 
cretely sized batches of randomly sampled frames 128 from 
the training data 116. The size of the batches may be limited 
by the parallelized computation nature of the pipelined 
algorithm 110. For instance, model updates to the DNNs 
112, which involve the exchange of data between multi-core 
processors, are used for the computation iterations of the 
algorithm 110. However, model updates across multiple 
multi-core processors may use a high amount bandwidth 
during the execution of the pipelined algorithm 110. In one 
example, the DNNs 112 (with seven hidden layers) may 
include 10° parameters. In such an example, the processing 
of a reasonably sized batch of sample frames with respect to 
the DNNs 112 may translate into the gathering and redis 
tribution of 400 megabyte (MB) worth of gradients and 
another 400 MB of model parameters by each of the 
multi-core processors 108(1)-108(N). 

In other words, the size of each batch that is used to train 
the DNNs may be constrained by two factors. The upper 
constraint for the batch size is the frequency of model 
updates. Larger batch size for the batches of sample frames 
128 may result in less model updates. However, increasing 
the batch size may result in the loss of computation accu 
racy, especially during early computation iterations of the 
pipelined propagation algorithm 110. Such loss of compu 
tation accuracy may result in prolonged execution time for 
the pipelined algorithm 110 to reach convergence, i.e., 
completes the training of the DNNs 112. In extreme cases, 
the prolonged execution time may even result in a failure of 
the pipelined algorithm 110 to reach convergence, i.e., 
failure to complete the training. The lower constraint for the 
batch size is the efficiency in the utilization of the multi-core 
processors. The efficiency in the use of the computation 
cycles performed by the multi-core processors may decrease 
as a batch size for the sample frame batches 128 is reduced. 
Thus, excess reduction in batch size may also lead to 
inefficiencies that prolong the execution time for the pipe 
lined algorithm 110 to reach convergence. 

In practical terms, the batch generation module 216 may 
configure the batch size for the sample frame batches 128 
based on rates of data transfers between the multi-core 
processors and a number of operations per second that each 
of the multi-core processors 108(1)-108(N) is capable of 
executing. For example, given an array of 2-4 GPGPUs that 
are capable of 2-4 tera floating point operations per second 
(TFLOPS), and transfer rates of 6 gigabytes (GB)/s between 
the GPGPUs, the batch size may be in the range of 256 to 
1024 sample frames per sample batch. Accordingly, batch 
size optimization 118 may produce the lowest amount of 
computation accuracy loss and the Smallest amount of 
efficiency loss. 

Generally speaking, the batch generation module 216 may 
configure a larger batch size when the rates of data transfers 
for the multi-core processors 108(1)-108(N) are relatively 
Superior to the execution speeds of the multi-core processors 
108(1)-108(N). Conversely, the batch generation module 



US 9,477,925 B2 

216 may configure a smaller batch size when the execution 
speeds of the multi-core processors 108(1)-108(N) are rela 
tively superior to the rates of data transfers between the 
multi-core processors 108(1)-108(N). The batch generation 
module 216 may partition the training data 116 into ran 
domly sampled frame batches 128 based on the configured 
batch size. 

The algorithm configuration module 218 may modify the 
pipelined algorithm 110 with the pipeline roundtrip reduc 
tion 124 and the data transfer parallelization 126 techniques. 
The algorithm configuration module 218 may perform each 
modification based on a corresponding user configuration 
input. Each of the computation iterations performed by the 
pipelined algorithm 110 may execute the following steps in 
sequence: forward propagation of input data, error back 
propagation, and model update. The forward propagation of 
the input data is described by the equations (1)–(3), the error 
back propagation is described by the equation (8), and the 
model update is described by the expression (5). 

However, the pipeline roundtrip reduction 124 modifica 
tion may cause the pipelined algorithm 110 to perform a 
model update step before a forward propagation step during 
one or more of the computation iterations. Each application 
of pipeline roundtrip reduction 124 may reduce the pipeline 
roundtrip delay by one batch, which may in turn reduce 
approximation performed by the pipelined algorithm 110. In 
turn, the reduction in approximation may increase the execu 
tion efficiency of the pipelined algorithm 110. 

Further, the data transfer parallelization 126 technique 
involves the parallelization of data transfer with computa 
tion. A first part of the data transfer parallelization 126 may 
occur after the performance of an error back propagation 
step. In this part, output data from a computation at a 
multi-core processor that processes an upper layer may be 
streamed to another multi-core processor that processes a 
lower layer of the DNNs 112. Such streaming may be 
performed in parallel or partially in parallel with a model 
update step and/or an input data forward propagation step, as 
the model update step and the forward propagation step use 
data that is different from the output data. 
A second part of the data transfer parallelization 126 may 

occur after the performance of the input data forward 
propagation step. In this part, output data from a computa 
tion at the multi-core processor that processes the lower 
layer may be streamed to the multi-core processor that 
processes the upper layer in the DNNs 112. Such streaming 
may be performed in parallel or partially in parallel with the 
computation of an error for another error back propagation 
step. Thus, since streaming time is generally short than 
compute time, the use of the data transfer parallelization 126 
may reduce or eliminate any time delay resulting from the 
exchange of data between multiple multi-core processors. 
The load balance module 220 may determine whether to 

perform layer grouping 120. In order to perform layer 
grouping 120, the load balance module 220 may distribute 
the layers 114(1)-114(N) of the DNNs 112 between the 
multi-core processors 108(1)-108(N) in groups for process 
ing by the pipelined algorithm 110. For instance, the layers 
114(1)-114(N) may have varying sizes and thus takes vary 
ing runtimes to process. Thus, a large layer (Such as the top 
layer 114(N)) may act as a bottleneck that prevents the 
multi-core processors from processing the other Smaller 
layers during the execution of the pipelined algorithm 110. 
In other instances in which there are more layers to be 
processed than multi-core processors, the layer grouping 
120 may be used to allocate the layers into groups for 
processing by the multi-core processors. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
For example, the load balance module 220 may assign 

each of four groups of multiple layers from the layers 
114(1)-114(N) to a corresponding multi-core processor. Such 
that the amount of data processed by each of the four 
multi-core processors for its respective assigned layers is 
equalized or as equalized as possible. In another example, 
the load balance module 220 may assign a largest layer to be 
processed by a first multi-core processor, while assigning the 
remaining multiple layers to be processed by a second 
multi-core processor. However, the load balance module 220 
may assign each of one or more sets of multiple layers of the 
layers 114(1)-114(N) to a corresponding multi-core proces 
sor in any combination, in order to balance computations 
performed for the pipelined algorithm 110 between the 
multi-core processors 108(1)-108(N). Thus, the load balance 
module 220 may perform layer grouping 120 based on the 
number of the multi-core processors 108(1)-108(N) and the 
size of each layer in the DNNs 112. The grouping of multiple 
layers into a single set for processing may also eliminate 
pipeline roundtrip delay, thereby increasing the execution 
efficiency of the pipelined algorithm 110. 
The model striping module 222 may determine whether 

the algorithm execution module 214 is to be configured to 
perform model striping 122 with respect to the top layer 
114(N) of the DNNs 112. Model striping 122 is the paral 
lelization of the processing of a particular layer of the DNNs 
112 across multiple multi-core processors, such as the multi 
core processors 108(1)-108(N). In various embodiments, the 
model striping 122 may be applied more frequently to the 
training of context-dependent DNNs because in context 
independent DNNs the top layer size is typically much 
smaller than that in the context-dependent DNNs. By imple 
menting model Striping with respect to the top layer 114(N), 
the input v' of the top layer 114(N) may be distributed across 
the multi-core processors 108(1)-108(N) in forward propa 
gation, in which each of the multi-core processors 108(1)- 
108(N) may compute a slice of the output vector E{H}. The 
slices may then be distributed to the other multi-core pro 
cessors of the multi-core processors 108(1)-108(N) for com 
puting the next layer. In back-propagation, error vectors are 
parallelized as slices, but the resulting matrix products from 
each slice are partial Sums that are further Summed up. As a 
result, in both forward propagation and back propagation, 
each vector is transferred K-1 times, in which K is the 
number of the multi-core processors 108(1)-108(N). 

In various embodiments, the decision to implement model 
striping 122 for the top layer 114(N) may be based on a 
comparison of the size of the top layer 114(N) to a size of 
at least one other layer in the DNNs 112. The model striping 
module 222 may detect the size of each layer of the DNNs 
112. Accordingly, in one instance, the model Striping module 
222 may direct the implementation of the model striping 122 
when a ratio between a size of the top layer 114(N) and a size 
of the next largest layer in the DNNs 112 exceeds a 
predetermined ratio value threshold. For example, model 
striping 122 may be implemented for the top layer 114(N) 
when the size of the top layer 114(N) is over ten times larger 
than the next largest layer in the DNNs 112. 

In another instance, the model striping module 222 may 
direct the implementation of the model striping 122 when a 
ratio between a size of the top layer 114(N) and a total size 
of the remaining layers in the DNNs 112 exceeds a prede 
termined ratio value threshold. For example, model Striping 
122 may be implemented for the top layer 114(N) when the 
size of the top layer 114(N) is over four times larger than the 
total size of the remaining layers in the DNNs 112. 



US 9,477,925 B2 
11 

In additional instances, the model Striping module 222 
may use other predetermined ratio value thresholds to deter 
mine whether to implement model striping 122 for the top 
layer 114(N). For example, the model striping module 222 
may compare the size of the top layer 114(N) to an average 
size of the hidden layers, such as the hidden layers 114(2)- 
114(4), to produce a ratio value, a size of the Smallest layer 
(e.g., input layer 114(1)) of the DNNs 112 to produce a ratio 
value or a total size of the hidden layers 114(2)-114(4) 
produce a ratio value, etc. Accordingly, depending on the 
particular ratio value used, the model Striping module 222 
may implement model striping 122 for the top layer 114(N) 
when the particular ratio value exceeds a corresponding ratio 
value threshold. The implementation of model striping 122 
on the top layer 114(N) may alleviate bottlenecks in the 
execution of the pipelined algorithm 110 caused by an 
excessively large top layer 114(N). 
The data store 224 may store data that are used by the 

various modules. In at least one embodiment, the data store 
may store the training data 116, the DNNs 112, temporary 
variables and other data used for training the DNNs 112, and 
the DNNs 130. Each set of data may be stored in a data table, 
a data array, and/or other data storage structures. 

While the multi-core processors 108(1)-108(N) are 
described as residing on the computing device 106 and 
connected by the interface bus 204 in the above the embodi 
ments, the multi-core processors 108(1)-108(N) may also 
reside on different computing devices in other embodiments. 
In some alternative embodiments, each of the multi-core 
processors 108(1)-108(N) may reside on a corresponding 
computing device, and may exchange data through a net 
work via a network interface. The network may be a local 
area network (LAN), a wide area network (WAN), or a 
combination of both, such as the Internet. In other alterna 
tive embodiments, at least two of the multi-core processors 
108(1)-108(N) may reside on different computing devices. 
In Such embodiments, multi-core processors on the same 
computing device may use an interface bus of the computing 
device to exchange data, while multi-core processors on 
different computing devices may exchange data via the 
network. 

Example Processes 

FIGS. 3-5 describe various example processes for using a 
pipelined algorithm to train DNNs for performing data 
analysis, such as for the purpose of speech recognition. The 
order in which the operations are described in each example 
process is not intended to be construed as a limitation, and 
any number of the described operations may be combined in 
any order and/or in parallel to implement each process. 
Moreover, the operations in each of the FIGS. 3-5 may be 
implemented in hardware, Software, and a combination 
thereof. In the context of software, the operations represent 
computer-executable instructions that, when executed by 
one or more processors, cause one or more processors to 
perform the recited operations. Generally, computer-execut 
able instructions include routines, programs, objects, com 
ponents, data structures, and so forth that cause the particu 
lar functions to be performed or particular abstract data 
types to be implemented. 

FIG. 3 is a flow diagram that illustrates an example 
process 300 for modifying the execution order of propaga 
tion steps in the execution of a pipelined algorithm to reduce 
delay due to the exchange of data between multi-core 
processors. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
At block 302, the training engine 102 may assign the 

pipelined algorithm 110 to train the DNNs 112 for perform 
ing data analysis. The training of the DNNs 112 may be 
achieved by pipelining computations of back-propagation in 
a parallelized fashion (i.e., simultaneously executing mul 
tiple computations) using the multiple multi-core processors 
108(1)-108(N). 
At decision block 304, the training engine 102 may 

determine whether to implement the pipeline roundtrip 
reduction 124. The pipeline roundtrip reduction 124 
includes configuring the pipelined algorithm 110 to perform 
a model update step before a forward propagation step 
during one or more of the computation iterations. In various 
embodiments, the training engine 102 may determine 
whether to implement the pipeline roundtrip reduction 124 
based on a configuration input from a user. Accordingly, if 
the training engine 102 implements the pipeline roundtrip 
reduction 124 (“yes” at decision block 304), then the process 
300 may proceed to block 306. 
At block 306, the training engine 102 may modify the 

pipelined algorithm 110 to implement the pipeline roundtrip 
reduction 124 during execution. The pipeline roundtrip 
reduction may reduce the pipeline roundtrip delay by one 
batch for each of the computation iterations performed by 
the pipelined algorithm 110, which may in turn reduce 
approximation performed by the pipelined algorithm 110. 
At decision block 308, the training engine 102 may 

determine whether to implement the data transfer paral 
lelization 126. The data transfer parallelization 126 may 
include parallelizing the streaming of the output data from a 
computation iteration of the pipelined algorithm 110 with 
other steps in the computation iteration. In various embodi 
ments, the training engine 102 may determine whether to 
implement the data transfer parallelization 126 based on a 
configuration input from a user. Accordingly, if the training 
engine 102 implements the data transfer parallelization 126 
(“yes” at decision block 308), then the process 300 may 
proceed to block 310. 
At block 310, the training engine 102 may modify the 

pipelined algorithm 110 to implement the data transfer 
parallelization during execution. Accordingly, since stream 
ing time is generally short than compute time, the configu 
ration of pipelined algorithm 110 to implement the data 
transfer parallelization 126 may reduce or eliminate any 
time delay resulting from the exchange of data between 
multiple multi-core processors during execution. At block 
312, the training engine 102 may provide the pipelined 
algorithm 110 to train the DNNs 112 for performing data 
analysis, such as speech recognition. 

However, returning to decision block 304, if the training 
engine 102 does not implement the pipeline roundtrip reduc 
tion 124 ('no' at decision block 304), then the process 300 
may proceed directly to decision block 308. Further, return 
ing to decision block 308, if the training engine 102 does not 
implement the data transfer parallelization 126 (“no” at 
decision block 308), then the process 300 may proceed 
directly to block 312. At block 312, the training engine 102 
may provide the pipelined algorithm 110 to train the DNNs. 

FIG. 4 is a flow diagram that illustrates an example 
process 400 for configuring the size of batches 128 obtained 
from the training data to reduce training runtime of the 
DNNs. At block 402, the training engine 102 may determine 
a batch size for partitioning training data 116 (e.g., a speech 
corpus) that is used to train the DNNs. In at least one 
embodiment, the training engine 102 may configure the 
batch size based on rates of data transfers between the 



US 9,477,925 B2 
13 

multi-core processors and execution speed, i.e., a number of 
operations per second, of each of the multi-core processors 
108(1)-108(N). 

For example, the training engine 102 may designate a 
larger batch size when the rates of data transfers of the 
multi-core processors 108(1)-108(N) are relatively superior 
to the execution speeds of the multi-core processors 108(1)- 
108(N). Conversely, training engine 102 may designate a 
smaller batch size when the execution speeds of the multi 
core processors 108(1)-108(N) are relatively superior to the 
rates of data transfers between the multi-core processors 
108(1)-108(N). 
At block 404, the training engine 102 may partition the 

training data into batches 128 according to the batch size, in 
which each batch is designed to optimize the tradeoff 
between computation accuracy and execution efficiency. In 
various embodiments, each batch may include randomly 
sampled frames from the training data 116. 
At block 406, the training engine 102 may execute the 

pipelined algorithm 110 to train the DNNs 112 using the 
batches 128 derived from the training data 116. In various 
embodiments, the pipelined algorithm 110 may have been 
modified according to the process 300 described in FIG. 3. 

FIG. 5 is a flow diagram that illustrates an example 
process 500 for load balancing parallelized computations 
between multiple multi-core processors to reduce training 
runtime of the DNNs. In at least one embodiment, the 
process 500 may further describe block 406 of the process 
400. 
At block 502, the training engine 102 may allocate the 

batches 128 of sample frames from the training data 116 
(e.g., a speech corpus) for training the DNNs 112. The 
training may be performed using the pipelined algorithm 
110. 
At decision block 504, the training engine 102 may 

determine whether to implement the layer grouping 120 to 
group at least two layers in the DNNs 112 together for 
processing on a single multi-core processor by the pipelined 
algorithm 110. In some embodiments, the at least two layers 
may be at least two consecutive layers. The layer grouping 
120 may be performed to load balance computations per 
formed for the pipelined algorithm 110 between the multi 
core processors 108(1)-108(N). Thus, the number of group 
ings and the layers in each grouping may be based on the 
number of the multi-core processors 108(1)-108(N) and the 
size of each layer in the DNNs 112. Thus, if the training 
engine 102 implements the layer grouping 120 (“yes” at 
decision block 504), then the process 500 may proceed to 
block 506. 

At block 506, the training engine 102 may group at least 
two layers of the DNNs 112 for processing on a single 
multi-core processor. In various embodiments, the training 
engine 102 may group the layers in the DNNs 112 into 
multiple sets of two or more layers, in which each of the 
multiple sets may be processed by a corresponding multi 
core processor. 
At decision block 508, the training engine 102 may 

determine whether to implement the model striping 122 to 
distribute the processing of the top layer 114(N) of the 
DNNs 112 across multiple multi-core processors. In various 
embodiments, the training engine 102 may make Such a 
determination based on a ratio of the size of the top layer 
114(N) to the size of at least one other layer in the DNNs 
112. Thus, if the training engine 102 implements the model 
striping 122 for the top layer 114(N) (“yes” at decision block 
508), then the process 500 may proceed to block 510. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
At block 510, the training engine 102 may distribute the 

top layer 114(N) of the DNNs 112 across the multi-core 
processors 108(1)-108(N) for parallelized processing by the 
pipelined algorithm 110. However, in other embodiments, 
the training engine 102 may distribute the top layer 114(N) 
across a set of multiple multi-core processors other than the 
multi-core processors 108(1)-108(N), or distribute the top 
layer 114(N) to a plurality of but less than all of the 
multi-core processors 108(1)-108(N). 
At block 512, the training engine 102 may pipeline an 

execution of the algorithm 110 on a set of multi-core 
processors to train the DNNs 112 based on the batches 128 
of the training data 116. The set of multi-core processors 
may include the multi-core processors 108(1)-108(N). The 
pipelined algorithm 110 that is executed may be configured 
through the process 300 shown in FIG. 3 The training may 
produce the trained DNNs 112 that are used for a performing 
data analysis, such as speech recognition. 

However, returning to decision block 504, if the training 
engine 102 does not implement the layer grouping 120 (“no' 
at decision block 504), then the process 500 may proceed 
directly to decision block 508. Further, at decision block 
508, if the training engine 102 does not implement the model 
striping 122 for the top layer 114(N) (“no” at decision block 
508), then the process 500 may proceed directly to block 
512. Once again, at block 512, the training engine 102 may 
pipeline an execution of the algorithm 110 on a set of 
multi-core processors to train the DNNs 112 based on the 
batches 128 of training data 116. 
The training techniques described herein may reduce the 

amount of time used to train DNNs for a particular purpose, 
such as for speech recognition. The decreased training time 
may lead to an increase in the implementation and usage of 
the DNNs in performing speech-to-text transcription or 
text-to-speech synthesis. 

CONCLUSION 

In closing, although the various embodiments have been 
described in language specific to structural features and/or 
methodological acts, it is to be understood that the Subject 
matter defined in the appended representations is not nec 
essarily limited to the specific features or acts described. 
Rather, the specific features and acts are disclosed as exem 
plary forms of implementing the claimed Subject matter. 
What is claimed is: 
1. A system comprising: 
one or more processors; and 
one or more computer storage media storing computer 

executable instructions that are executable to cause the 
one or more processors to perform acts comprising: 

providing a pipelined algorithm to train deep neural 
networks (DNNs) for performing data analysis based 
on training data, the DNNs being one of context 
dependent DNNs or context-independent DNNs; 

partitioning the training data into sample batches of a 
specific batch size based on rates of data transfers 
between the one or more processors for executing the 
pipelined algorithm and an execution speed of each of 
the one or more processors; and 

pipelining an execution of the pipelined algorithm on the 
DNNs through the one or more processors to train the 
DNNs using the sample batches. 

2. The system claim 1, further comprising grouping at 
least two consecutive layers of DNNs for processing on a 
single processor of the one or more processors by the 
pipelined algorithm. 



US 9,477,925 B2 
15 

3. The system of claim 1, further comprising distributing 
a top layer of the DNNs across multiple processors of the 
one or more processors for parallelized processing by the 
pipelined algorithm through model Striping. 

4. The system of claim 1, wherein the specific batch size 
maximizes computation accuracy for reaching convergence 
and execution efficiency of the pipelined algorithm in train 
ing the DNNs. 

5. The system of claim 1, wherein the one or more 
processors include multi-core general-purpose graphics pro 
cessing units (GPGPUs) that exchange data through a 
peripheral component interconnect express (PCIe) bus of a 
computing device. 

6. The system of claim 1, wherein the one or more 
processors include field programmable gate arrays (FPGAS) 
that exchange data through an internal bus of a computing 
device. 

7. The system of claim 1, wherein the pipelining includes 
executing a model update prior to an input data forward 
propagation in a computation iteration of the pipelined 
algorithm. 

8. The system of claim 1, wherein the DNNs include 
multiple layers, and wherein the pipelining includes stream 
ing output data from a computation at a first processor of the 
one or more processors that processes an upper layer to a 
second processor of the one or more processors that pro 
cesses a lower layer following a performance of an error 
back propagation step of a computation iteration, the stream 
ing of the output data occurring at least partially in parallel 
with one or more of an model update or an input data 
forward propagation. 

9. The system of claim 8, wherein the pipelining further 
includes streaming additional output data from a computa 
tion at the second processor of the one or more processors 
that processes the lower layer to the first processor of the one 
or more processors that processes the upper layer following 
the input data forward propagation, the streaming of the 
additional output data occurring at least partially in parallel 
with a computation of an error for another error back 
propagation. 

10. A computer-implemented method, comprising: 
providing a pipelined algorithm to train deep neural 

networks (DNNs) for performing data analysis based 
on training data, the DNNs being one of context 
dependent DNNs or context-independent DNNs and 
including multiple layers; 

determining that a ratio between a size of a top layer and 
a size of one or more of the multiple layers exceeds a 
predetermined threshold; 

based at least in part on the determining, distributing the 
top layer of the DNNs across multiple processors 
through model Striping for parallelized processing by 
the pipelined algorithm; and 

pipelining an execution of the pipelined algorithm on the 
DNNs through the multiple processors to train the 
DNNs using sample batches of the training data. 

11. The computer-implemented method of claim 10, fur 
ther comprising partitioning the training data into the sample 
batches having a specific batch size based on rates of data 
transfers between the multiple processors for executing the 
pipelined algorithm and an execution speed of each of the 
multiple processors. 

12. The computer-implemented method of claim 10, fur 
ther comprising grouping at least two layers of the DNNs for 
processing on a single processor of the multiple processors 
by the pipelined algorithm. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
13. The computer-implemented method of claim 10, 

wherein the distributing includes distributing the top layer in 
response to a determination that a ratio of a size of the top 
layer to a size of another layer or an average size of multiple 
layers in the DNNs exceeds a ratio threshold. 

14. The computer-implemented method of claim 10, 
wherein the providing includes providing the pipeline algo 
rithm to train a combination of the context-dependent DNNs 
and hidden Markov models (HMMs) for performing speech 
recognition. 

15. The computer-implemented method of claim 10, 
wherein the pipelining includes executing a model update 
prior to an input data forward propagation in a computation 
iteration of the pipelined algorithm. 

16. A system, comprising: 
a plurality of processors; 
a memory that includes a plurality of computer-execut 

able components that are executable by the plurality of 
processors, comprising: 
a batch generation component that partitions training 

data into sample batches of a specific batch size; and 
an algorithm execution component that pipelines an 

execution of a pipelined algorithm through the plu 
rality of processors to train deep neural networks 
(DNNs) using the sample batches, the execution 
including executing a model update prior to an input 
data forward propagation in a computation iteration 
of the pipelined algorithm, the DNNs being one of 
context-dependent DNNs or context-independent 
DNNs, wherein the algorithm execution component 
trains the DNNs based at least in part on performing 
gradient descent techniques, wherein the DNNs 
include multiple layers, and wherein the execution 
further includes streaming output data from a com 
putation at a first processor of the plurality of pro 
cessors that processes an upper layer to a second 
processor of the plurality of processors that pro 
cesses a lower layer following a performance of an 
error back propagation of the computation iteration, 
the streaming of the output data occurring at least 
partially in parallel with one or more of the model 
update or the input data forward propagation. 

17. The system of claim 16, wherein the execution further 
includes streaming additional output data from an additional 
computation at the second processor that processes the lower 
layer to the first processor that processes the upper layer 
following the input data forward propagation, the streaming 
of the additional output data occurring at least partially in 
parallel with a computation of an error for another error back 
propagation. 

18. The system of claim 16, wherein the batch generation 
component partitions the training data into the sample 
batches of the specific batch size based on rates of data 
transfers between the plurality of processors and an execu 
tion speed of each of the plurality of processors. 

19. The system of claim 16, further comprising a load 
balance component that at least one of groups multiple 
layers of the DNNs for processing on a single processor of 
the plurality of processors by the pipelined algorithm, or 
distributes a top layer of the DNNs across multiple ones of 
the plurality of processors through model Striping for par 
allelized processing by the pipelined algorithm. 

20. The system of claim 16, further comprising a load 
balance component that groups a first layer and a second 



US 9,477,925 B2 
17 

layer of the multiple layers of the DNNs based at least in part 
on a number of the plurality of processors. 

k k k k k 

18 


