
(12) United States Patent
Piszczek et al.

US009477551B1

US 9,477,551 B1
Oct. 25, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR DATA
MGRATION BETWEEN HIGH
PERFORMANCE COMPUTING
ARCHITECTURES AND FILE SYSTEM
USING DISTRIBUTED PARTY GROUP
INFORMATION STRUCTURES WITH
NON-DETERMINISTC DATA ADDRESSING

(71) Applicant: DATADIRECT NETWORKS, INC.,
Chatsworth, CA (US)

(72) Inventors: Michael J. Piszczek, Laurel, MD (US);
Jason M. Cope, Highland, MD (US);
Paul J. Nowoczynski, Brooklyn, NY
(US); Pavan Kumar Uppu, Woodbine,
MD (US)

(73) Assignee: DataDirect Networks, Inc.,
Chatsworth, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 224 days.

(21) Appl. No.: 14/556,571

(22) Filed: Dec. 1, 2014

(51) Int. Cl.
GIC 29/00 (2006.01)
G06F II/I) (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC G06F II/1076 (2013.01); G06F 17/30079

(2013.01)
(58) Field of Classification Search

CPC G06F 11/1076; G06F 11/1008; G06F
11/1004; H05K 999/99: G 11B 20/1833

USPC .. 714f766
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,009,344 A * 2/1977 Flemming H04Q 11/04
370,321

8,086,794 B2 12/2011 Fellinger et al.
8,843,805 B1* 9/2014 Goel G11C 7/24

T14f763
2014/O108473 A1 4/2014 Nowoczynski et al.
2014/O108707 A1 4/2014 Nowoczynski et al.
2014/0108.723 A1 4/2014 Nowoczynski et al.
2014/O108863 A1 4/2014 Nowoczynski et al.
2014/035.1300 Al 11/2014 Uppu et al.

* cited by examiner
Primary Examiner — Albert Decady
Assistant Examiner — Enam Ahmed
(74) Attorney, Agent, or Firm — Rosenberg, Klein & Lee
(57) ABSTRACT
The present invention is directed to data migration, and
particularly, Parity Group migration, between high perfor
mance data generating entities and data storage structure in
which distributed NVM arrays are used as a single interme
diate logical storage which requires a global registry/ad
dressing capability that facilitates the storage and retrieval of
the locality information (metadata) for any given fragment
of unstructured data and where Parity Group Identifier and
Parity Group Information (PGI) descriptors for the Parity
Groups members tracking, are created and distributed in the
intermediate distributed NVM arrays as a part of the non
deterministic data addressing system to ensure coherency
and fault tolerance for the data and the metadata. The PGI
descriptors act as collection points for State describing the
residency and replay status of members of the Parity Groups.

33 Claims, 8 Drawing Sheets

ingesting --- lngesting Phose
echanism -----------------------M. S

94 9. 34. 94. 94. 94.
Empty PG| initial pdated Updated (pdated Complete
Structire Scte PG Stricture PG Structure PG Structure GStre

36 EE - E.L. ... I
Backs i PG File:1 P PGig4 BEB e? BBC cost

BBB1 20 B382 E33 BBBn 3 Be BBBBBB2 |Ben
Residency

Blocks cott reference costs Blocks court
Data fragments to: SS Blocks count
cont incrementing counts during "writes

J. Repla t
94 34 94 Replay Phase --> g/

Empty PG Structure ta.
Residency

eference counts

DiscCrd

Decrementing counts during "replay

U.S. Patent Oct. 25, 2016 Sheet 1 of 8 US 9,477,551 B1

Computer
iode

Computer -
Node

:

i. 3. 8 i.

Yr- N28
Storage Fabric - is

(ggregating
itey

ties
is Seiy&s

US 9,477,551 B1

joseii
justiglio&

Sheet 2 of 8

s
is 38.

33;

SS

c

S
3.

ÁS 8.

Oct. 25, 2016

s
s

N

U.S. Patent

US 9,477,551 B1 Sheet 3 of 8 Oct. 25, 2016 U.S. Patent

zvz'el) {

-------(rrrrrrrrrrrrrrrrrrrrr!?

US 9,477,551 B1 Sheet S of 8 Oct. 25, 2016 U.S. Patent

dnouo uo?opsupu? oquunn

U.S. Patent Oct. 25, 2016 Sheet 6 of 8 US 9,477,551 B1

38

A node Pio
Next pgidA

100-11. Metodota Ol
psidA

U.S. Patent Oct. 25, 2016 Sheet 7 of 8 US 9,477,551 B1

s BBBo &

Block on commit of t?
83

Obtain PGID from
reply for BB80

cofit

i.

iii.28 is st
site of w

composing biocks, -
erasure coding type

{: size

Seid BBB1-n d
BB8p to the other iO t-roo $

8 . series if the pool 8

Resent the parity
groip corportenis
to city O Sever
which has yet is

rigest a parity 8 : O .
190-1 group member

isie
any serves

failed2/ Yes i.

Complete the posity & O

FG 4A group pit O

Beck of commit of Six
180 - BBB1-n & BBEp

U.S. Patent Oct. 25, 2016 Sheet 8 of 8 US 9,477,551 B1

-

1. this N
- 8 first is \ No

<but block (BB30) D.I.Y. m. of G group 1

Yes 8,
Assig next PGID - 170 8 -1

to the I/O s date i B88-r
is sites is

8.
it h8 eigcao -
sectioi of the g

site date

88

Enqueue New FG
did reply 8 a

tick

88
Yes

PG update
copies

Setic respoise - to
is 333

US 9,477,551 B1
1.

METHOD AND SYSTEM FOR DATA
MGRATION BETWEEN HIGH
PERFORMANCE COMPUTING

ARCHITECTURES AND FILE SYSTEM
USING DISTRIBUTED PARTY GROUP
INFORMATION STRUCTURES WITH

NON-DETERMINISTC DATA ADDRESSING

FIELD OF THE INVENTION

The present system and method are directed to data
migration between high performance computing cluster
architectures (also referred to herein as data generating
entities, or clients, as well as compute nodes) and long-term
data storage, and in particular, to migration of parity groups
between high performance compute nodes and Parallel File
System in data storage systems.
More in particular, the present system relates to a data

migration system employing a Burst Buffer (BB) tier
coupled between the data generating entities and the file
system to store parity group structures in the Burst Buffer
tier in an expedited manner prior to writing the parity group
structures to the File System.

In overall concept, the present system and method
embrace the I/O (Input/Output) activity in a data migration
system equipped with an intermediate storage tier facilitat
ing in a multi-step data migration process beginning with the
client's aggregation of dirty buffers and construction of
parity groups therefrom followed by ingestion of the parity
groups from the client, i.e., the receipt and temporary
storage of the dirty buffers in an unstructured manner in the
intermediate storage tier, and subsequent replaying the tem
porary stored buffers (parity groups) into a File System for
long-term (or permanent) storage in an orderly manner, with
an ensured fault tolerance for data and metadata, and redun
dancy for data processing.

In addition, the present system is directed to a data storage
system using an Infinite Memory Engine (IME) which is
supported by the concept of a Burst Buffer tier, serving as a
mediator between high performance computing clients and
an existing Parallel File System for long term data storage,
in which non-deterministic write methods are combined
with inferential data location techniques based on address
domains to provide system Support for expedited data inges
tion into the data storage system combined with a consistent
read view of the underlying File System.

Further, the Subject system is directed to a data storage
system using an intermediate data storage Sub-system (BB
tier) which exploits a distributed array of Non-Volatile
Memory (NVM) devices interconnected via a low-latency
infrastructure to enable a fast ingest of Parity Group struc
tures from high performance computers to the NVM devices
by storing the data constituting the Parity Group structures
in an unstructured manner, and allowing for an orderly,
germane egress of the data from the distributed NVM array,
through the data restructuring aggregation, to a long-term
(or permanent) data storage where it resides in a highly
structured format.
The Subject system further constitutes a data storage

system, in which the use of distributed NVM arrays as a
single intermediate logical storage requires a global registry
(addressing) capability that facilitates the storage and
retrieval of the locality (residency) information (metadata)
for any given fragment of unstructured data, where Parity
Group Information (PGI) descriptors are created and dis
tributed in the Infinite Memory Engine (IME) supported by
the non-deterministic data addressing system, to ensure

5

10

15

25

30

35

40

45

50

55

60

65

2
coherency and fault tolerance for the data and the metadata,
and where the PGI descriptors act as collection points for
state describing the residency and replay status of Parity
Group structures.

BACKGROUND OF THE INVENTION

Storage information in a high performance computing
environment presents certain challenges and requires data
storage architecture and data migration procedures permit
ting a high level of efficiency and fault tolerance for the data
migrating between the high performance computers and
long-term (or permanent) data storage.

Data storage architectures handling high performance
computations have been developed, including those
described in U.S. Patent Application Publication No. 2014/
0108723, filed as a Ser. No. 14/056,265, directed to “Reduc
ing Metadata in a Write-Anywhere Storage Sub-System':
U.S. Patent Application Publication #2014/0108473, filed as
a Ser. No. 14/050,156, directed to “Maintaining Order and
Fault-Tolerance in a Distributed Hash Table System”; U.S.
Patent Application Publication #2014/0108863, filed as a
Ser. No. 14/035,913, describing “Handling Failed Transac
tion Peers in a Distributed Hash Table'; U.S. Patent Appli
cation Publication #2014/0108707, filed as a Ser. No.
14/028,292, related to “Data Storage Architecture and Sys
tem for High Performance Computing'; and patent applica
tion Ser. No. 14/045,170, directed to “Method and System
for Data Transfer between Compute Clusters and File Sys
tem'.

All these architectures use distributed data storage and a
specific addressing system capable of pointing a request
(when a file access is requested) to a particular location (or
locations) within a group of distributed memories.

For example, a data storage architecture and system for
high performance computing (described in the U.S. patent
application Ser. No. 14/028,292, filed on 16 Sep. 2013)
includes an intermediate storage tier interconnected between
a Super computer and a primary storage to temporarily store
data from the compute nodes of the Super computer in the
intermediate storage tier.
The intermediate storage is built with Non-Volatile

Memory (NVM) units which store data items generated by
the compute nodes. The intermediate storage employs Input/
Output (I/O) nodes to maintain information on the data items
residency in the Non-Volatile Memory units via a hash table
distributed among the I/O nodes. The use of a Distributed
Hash Table (DHT) allows for quick access to data items
stored in the Non-Volatile Memory units.

Although mentioning the possibility of storing Parity
Group Information (PGI) in the DHT, the specifics of Parity
Groups migration between the high performance compute
nodes and the permanent storage, or details on creation and
distribution of the Parity Group Information (PGI) descrip
tors for non-deterministic data addressing, have not been
addressed in the prior data storage architectures.

SUMMARY OF THE INVENTION

It is therefore an object of the subject system and method
to provide a data storage architecture and a data migration
process using an intermediate storage tier operatively
coupled between high performance computers and a long
term (or permanent) data storage and permitting fast ingress
of unstructured data, built into a Parity Group Structure,
from the high performance compute nodes into Non-Volatile
Memory (NVM) units in the intermediate storage tier in a

US 9,477,551 B1
3

distributed manner, and, after restructuring aggregation of
the ingested unstructured data, orderly egress of that data
from the distributed NVM arrays in the intermediate storage
tier to the permanent storage for residing there in a highly
structured format.

It is another object of the subject system and method to
provide data storage architecture which uses a distributed
intermediate storage sub-system, Such as a Burst Buffer
(BB) tier, between unstructured ingress of data from high
performance computers and orderly egress of that data into
the permanent storage. This system provides a Parity Group
(PG) structure which is constructed by a compute node and
ingested into a group of I/O nodes (or I/O servers) consti
tuting a local storage pool within the BB tier, and where a
non-deterministic data addressing of the Parity Group is
performed through construction and distribution of Parity
Group Information (PGI) structures which are used to track
members of the Parity Group distributed among the I/O
servers in the BB tier.

It is an additional object of the subject concept to provide
a data storage system and method for data migration
between high performance computing clusters and perma
nent storage in the most efficient manner by employing an
intermediate burst buffer tier composed of NVM arrays and
Distributed Hash Table (DHT), where each data block, as
well as each parity block (also referred to herein as RAID
block), included in a Parity Group is consumed by a different
I/O server in a local storage pool composed of the I/O
servers (and associated NVMs) for handling a specific Parity
Group. Pool-local PGI descriptors are created and distrib
uted for handling the Parity Group in question, to act as
collection points describing the residency and replay status
of the Parity Group.

In one aspect, the concept embraces a method for data
migration between data generating entities and a File System
in a data storage system composed of a Burst Buffer (BB)
tier operatively coupled between at least one data generating
entity and the File System, and configured with a plurality
of Burst Buffer Nodes (BBNs) and arrays of Non-Volatile
Memory (NVM) units operatively associated with respec
tive BBNs. At least a portion of the plurality of BBNs are
arranged in at least one local storage pool.
The method is carried out through the steps of:
initially, composing, by the data generating entity, a Parity

Group from the unstructured data fragments to be ingested
in the BB tier via the following routines:

filling a plurality of Buffers (also referred to herein as
Parity Group buffers) with data fragments produced by the
data generating entity and metadata associated with the data
fragments, thus forming data blocks BBB1, BBB.
BBB, where each of the data blocks is filled with corre
sponding data fragments and contains the metadata associ
ated with data fragments filling the corresponding data
block,

applying an error correction code to the data blocks
BBB, BBB. BBB, and forming at least one parity
block BBB containing the error correction coded data
constituting the data blocks BBB, BBB. BBB, and

constructing a Parity Group containing the data blocks
BBB, BBB. BBB and the at least one parity block
BBB.
The I/O ingestion procedure is further continued through:
sending, from the data generating entity, a “write' request

for writing the constructed Parity Group to the BB tier, and

10

15

25

30

35

40

45

50

55

60

65

4
assigning a Burst Buffer Node, i.e., the BBN from the

plurality of Burst Buffer Nodes (BBNs) to handle a “write”
request for the first data block BBB of the Parity Group in
question.
Upon receipt of the “write' request, the assigned Burst

Buffer Node BBN, creates a Parity Group Identifier (PGID)
for the subject Parity Group which is an identifier providing
a globally unique handle for the Parity Group in question.
The PGID resides in a metadata section within the NVM
associated with the respective BBN.
The PGID serves as a component of the addressing

system and includes the prescribed residency of the Parity
Group Information (PGI) structure encoded in the PGID.
The BBN also creates an initial Parity Group Information
(PGI) structure for the data block BBB. The PGI also
constitutes a component of the addressing system, since it
includes information associated with each data block BBB.
BBB. BBB, of the Parity Group, as well as their
residency, i.e., the associated BBNs in the BB tier containing
the data blocks and the parity block of the Parity Group.
The BBN continues with the writing the data block BBB

and the associated metadata to a NVM associated with the
BBN, and sends the PGID to the data generating entity.
Upon receipt of the PGID, the data generating entity

attempts to send the remaining data blocks BBB.
BBB, and the parity block BBB to the BB tier (sequen
tially or in parallel). In this process, each remaining block of
the Parity Group is sent to a respective one of the BBNs, i.e.,
BBN, ..., BBN, BBN for storage.

Following the writing of the Parity Group's members in
the respective BBNs, each BBN consuming the block,
updates the initial PGI to reflect the storage of each subse
quent block BBB. . . . , BBB, and BBB in a respective
NVM unit. During the process of the PGI updating, the
updated PGIs are replicated to other BBNs which share the
local pool affinity. Once the entire Parity Group is ingested
in the BB tier, an updated complete PGI is saved to the
NVMs associated with the BBNs which consumed the
members of the Parity Group, and may be replicated to other
BBNs of the BB tier sharing the same local pool affinity.

If, during the Parity Group ingestion routine, at least one
BBN in the local storage pool has failed, the block attempted
to be written therein, is resent to another BBN in the pool
which has not yet consumed any member of the Parity
Group in question, and the PGI is updated accordingly.
The Subject process is enhanced by operatively coupling

a Distributed Hash Table (DHT) server to the BB tier, where
the DHT server includes a plurality of DHT portions, with
each DHT portion being maintained by a respective one of
the BBNs sharing the local pool affinity. DHT objects are
written in respective DHT portions, wherein each DHT
object includes the metadata and PGI structure associated
with each of the blocks, i.e., BBBo, BBB, ..., BBB and
BBB of the Parity Group in question.

Preferably, a Jumbo Transaction Group (JTG) structure is
created in the memory of the DHT server, and distributed
among the DHT server's portions. The JTG structure holds
a list of commands that mutate the DHT server's portions
during the I/O ingesting routine.

Specifically, for every member of the subject Parity
Group, the DHT objects (metadata and PGI) are placed in
the JTG structure, associated with a corresponding BBN.
Once the JTG is committed (commit command is issued) at
the corresponding BBN, the data generating entity, respon
sive to the JTG commit, indicates the block “write' as
complete.

US 9,477,551 B1
5

Upon completion of the subject Parity Group ingestion to
the BB tier, the process continues with cleaning the Parity
Group buffers in the data generating entity.

During the Parity Group ingestion phase of operation, a
Residency Reference Counts Unit (also referred to herein as
Structure) counts the number of active references to each
DHT object and increments the residency reference counts
for each data fragment added to a block (BBB,
BBB. . . . , BBB) or for each data block (BBB,
BBB, ..., BBB.) and the parity block BBB, written into
the BB tier.
When operating in a Replay Phase of operation, i.e.,

during the replay of the Parity Group into the File System,
the Subject method continues through the steps of

acquiring, by at least one of the BBNs, the metadata
stored in the DHT server portion associated with the data
fragments included in the BBN in question,

reading the data fragments from the data block BBB in the
BBN in question,

aggregating the data fragments in a respective buffer in a
structured format in accordance with the corresponding
metadata, and

once the respective buffer is full, committing the struc
tured data fragments to the File System.

For example, for the DHT object which is the PGI, the
Residency Reference Counts Structure is arranged as a
bitmap representing the blocks of the subject Parity Group
added to the PGI during the PGI update routine.

During the Replay Phase of operation, when the data
fragments are replayed to the File System, the subject
method continues through the steps of:

decrementing the Residency Reference Structure counts
until the reference count for the respective block of the
Parity Group in question reaches Zero, and

clearing the residency reference bit associated with said
block of said parity group in the PGI’s bitmap.
When the Residency Reference counts reach Zero for all

the blocks BBB, BBB.,..., BBB, and BBB of the Parity
Group in question, the PGI is deleted from the BBNs.

If, during the replay phase of operation, data migration
experiences a faulty condition, the complete updated PGI is
used to track the parity group's blocks needed for data
reconstruction.
The PGID includes information on the PGI’s residency.

Thus, upon obtaining the PGID, the data generating entity
has the capability of recreating a copy of the initial PGI, as
well as any updated PGI, including the complete PGI, by
utilizing the PGID and filling the copy of the PGI with the
related information.

In another aspect, the Subject concept is directed to a data
migration system which includes:

a Burst Buffer (BB) tier operatively coupled between at
least one data generating entity and the File System, and
configured with a plurality of Burst Buffer Nodes (BBNs)
and a plurality of Non-Volatile Memory (NVM) units,
wherein each NVM unit is operatively associated with a
respective BBN, and where at least a portion of the plurality
of BBNs are arranged in at least one local storage pool.
The data generating entity is equipped with a parity group

buffer and is configured to compose a Parity Group to be
ingested in the BB tier. The Parity Group in question is
constructed with a plurality of data blocks BBB.
BBB, ..., BBB, each being filled with corresponding data
fragments and containing metadata associated with the cor
responding data fragments, and

at least one parity block BBB containing error correction
coded data fragments contained in the data blocks BBB,
BBB. and BBB.

10

15

25

30

35

40

45

50

55

60

65

6
The data blocks BBB1, BBB. BBB and the parity

block BBB in the same Parity Group share the local storage
pool affinity.
The data generating entity is configured to send a “write'

request for writing the Parity Group in question to the BB
tier, and to assign a Burst Buffer Node BBN from the
plurality of BBNs to handle the first data block BBB
“write in the BB tier.
The BBN is configured to, upon receipt of the “write'

request, generate a Parity Group Identifier (PGID) for the
subject Parity Group, and an initial Parity Group Informa
tion (PGI) descriptor reflecting the data block BBB infor
mation and its residency, to write the data block BBB, and
the metadata associated therewith to a NVMassociated with
the BBN, and to send the PGID to the data generating
entity.
The data generating entity is further configured to:
upon receipt of the PGID from the BBN, send the

remaining members of the Parity Group in question, i.e., the
blocks BBB. . . . , BBB, and BBB to respective BBNs
sharing the local storage pool for storage therein.

Each BBN responsible for handling a corresponding data
block or parity block is further configured to create an
authoritative PGI, i.e., to update the initial PGI to reflect the
storage of each subsequent block BBB. BBB, and
BBB in a respective NVM unit associated with one of the
BBN, BBN, and BBN, respectively, and

to replicate the authoritative PGI created by the BBN
responsible for the block to other BBNs in the same local
pool.
Upon completion of the Parity Group ingestion to the BB

tier, the complete PGI is stored in the NVMs of the BBNs.
The Subject system is further configured to, upon identi

fication of at least one failed BBN in the local storage pool,
track, using the PGI, a block of the Parity Group in question
written in the failed BBN, and to re-send the block to another
BBN in the local storage pool, which has not yet consumed
any of the Parity Group's members.
The subject system further includes a Distributed Hash

Table (DHT) server operatively coupled to the BB tier. The
DHT server includes a plurality of DHT portions, with each
DHT portion maintained by a respective one of plurality of
BBNs. The DHT server is configured to store DHT objects
in a corresponding DHT portion, wherein the DHT object
may include the metadata and PGI associated with each of
the BBB, BBB. . . . , BBB, and BBB.
The system further includes a Jumbo Transaction group

(JTG) structure created in the memory of the DHT server for
holding a list of commands that mutate the DHT server's
portions. The DHT objects are placed in the JTG structure
associated with the corresponding BBN.
The subject system is further equipped with a Residency

Reference Counts Structure coupled to the BB tier to indi
cate the number of active references to a DHT object. The
Residency Reference Counts Structure is configured to
increment count for data fragments added to a respective
block in the Parity Group.

If the DHT object is the PGI, the Residency Reference
Counts Structure is configured as a bitmap representing the
blocks added to the PGI.
The subject system is further configured to replay the

Parity Group into the File System. Each BBN is further
configured to (during the Replay Phase of operation) acquire
a metadata stored in the DHT server portion associated with
each BBN, to read the data fragments from the correspond
ing data block, store the data fragment in a respective buffer

US 9,477,551 B1
7

in a structured format in accordance with the metadata, and
to write the Parity Group in the File System, once the
respective buffer is full.
When, during the Replay Phase of operation, the data

fragments are replayed from a respective block to the File
System, the Residency Reference Count Structure is con
figured to:

decrement count till the reference count for the respective
block of the Parity Group in question reaches zero,

to clear the residency reference bit associated with the
Parity Group in the PGI’s bitmap, and

to delete the PGI from the BBNs when the Residency
Reference Counts reach Zero for all the blocks BBB,
BBB, ... BBB, and BBB of the Parity Group in question.
The system is also configured to (during the Replay Phase

of operation) use the updated complete PGI to track the
parity group's blocks needed for data reconstruction if data
migration experiences faulty conditions.

These objects and advantages of the present invention will
become apparent when considered in view of further
detailed description accompanying the Patent Drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the subject data storage
system;

FIGS. 2A1-2A2 represent schematically the process of
construction the Parity Group followed by the Ingestion of
the Parity Group in the BB tier;

FIG. 2B is a schematic representation of the routine of
updating of the PGI during the Ingestion Phase of operation
and during the Replay Phase of operation, and a correspond
ing residency reference counting routine;

FIG. 2C is an abstraction representation of a Jumbo
Transaction Group (JTG) used in the subject system;

FIG. 3 is a diagram showing schematically the replication
routine of the DHT object to other I/O nodes sharing the
local pool affinity in the Subject system; and

FIGS. 4A-4B represent a flow chart diagram reflecting the
client-I/O nodes interaction process underlying the I/O
ingestion phase of operation for handling the “write'
requests and involving creation and update of PGIs in the
present data storage system.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present system's operation is based on an Infinite
Memory Engine (IME) concept which aims to integrate
Non-Volatile Memory (NVM) into the parallel storage stra
tum. A Burst Buffer (BB) tier in the subject system serves as
a mediator between HPC (High Performance Computers
(clients) and existing parallel file systems for long-term data
storage. The IME combines non-deterministic write meth
ods with inferential data location techniques based on
address domains. By using these techniques in a cooperative
manner, a data storage system Support is provided for
extremely fast data ingestion into a set of I/O nodes within
the BB tier while supporting a consistent “read view of the
entire underlying file system.
As a technology, the IME exploits a large array of NVM

devices which are connected via a low-latency infrastructure
for enabling fast ingest of data to NVM arrays by allowing
the data to be stored in the NVM arrays in an unstructured
manner, and allowing the system to provide an orderly,

10

15

25

30

35

40

45

50

55

60

65

8
germane egress of the data from the distributed NVM arrays
to a “permanent” (or long-term) storage, where it resides in
a highly structured format.

Specifically, referring to FIG. 1, the data migration system
10 of the present invention includes a number of compute
nodes 12. The compute nodes may be arranged in computing
groups (or compute clusters) to perform complex computa
tions of various types. The operation of the compute nodes
depends on the system application. They may function as
servers, Supercomputing clusters, etc., and have the capacity
to “write' by outputting data to, as well as “read data from,
an external memory, or any other storage device. In the
present description, the above presented devices may also be
intermittently referenced further as data generating entities,
or computing architectures, as well as clients, or hosts.
The compute nodes 12 are operatively connected through

a High Speed Network (HSN) 14 to File Servers 16 which
may manage data migration from and to the compute nodes
12. The File Servers 16 may communicate through a Storage
Fabric 28. The ratio of the compute nodes 12 to the File
Servers 16 may in some cases be greater than 1,000. The
High Speed Network (HSN) 14 functions as a high speed
Switch, and may be based on any of the network transport
protocols, such as, for example, InfiniBand (IB), Fibre
Channel (FC), Gigabit Ethernet (GigE), etc.

During the input/output (I/O) cycle of the compute node's
operation, the data may be transferred from the compute
node's cache to the File Servers 16 which may place data in
the File System 18 for subsequent retrieval.
The subject system 10 is capable of handling any type of

data transfer. However, as an example, the following
description of the system operation will be centered on the
Parity Group migration in the Ingestion phase of operation,
including the creation and distribution of the Parity Group
Information (PGI) serving as part of the addressing mecha
nism, as will be detailed further herein.

Data retrieved from compute nodes 12, and/or File Serv
ers 16, are intended to be written into the File System 18, and
stored in a primary storage sub-system 20 which typically
includes data storage devices 22 in the form of Hard Disk
Drives (HDDs), Solid-State Drives (SSDs), flash memory
devices, magnetic tapes, or other storage media. For the sake
of simplicity, and only as an example, the storage devices 22
will be referred to as disk drives, although any other storage
media may operate as the primary storage Sub-system 20.
The data storage devices 22 may be arranged according to

any of a variety of techniques, and in any format, for
example, as storage disk arrays 24. For example, the storage
disk arrays may be arranged in the RAID (Redundant Array
of Independent Drives) format. The RAID storage system is
a multi-dimensional array 24 of disk drives (or flash memory
devices) 22 distributed in READ/WRITE tier groups 26 for
storing data D and parity values P corresponding to data
stored in the array 24. Each tier group 26 in the array of data
storage devices 22 constitutes a multiplicity of data storage
channels.
A storage controller 36 controls the operation of the data

storage devices 22 in their arrays 24. In the present system,
the data storage devices 22 are preferably accessed in an
optimally sequential (orderly) manner for disk drive exploi
tation, or in another efficient manner providing the uncom
promised I/O performance of a storage controller 36 of the
storage disk array 24.

Data storage devices 22 are provided with the capability
of receiving data in the most efficient manner so that the
system 10 avoids the need for an excessive number of data
storage devices for storing the parity group data. Thus, the

US 9,477,551 B1

storage devices which do not participate in data transfer,
may stay deactivated, as controlled by the storage controller
36 for the period they are not accessed. This avoids exces
sive power consumptions of the storage disk arrays.

Each compute node 12 is equipped with a software unit 30
which controls the operation of the compute node for the
intended purposes and, as an example, is configured for
construction of a Parity Group 32, as presented in FIGS.
2A1-2A2, further referred to herein combinedly as FIG. 2A,
and detailed in following paragraphs.

In addition, each compute node (or client) 12 is equipped
with a write-back cache 34 configured for construction and
migration of the Parity Group 32 as will be detailed infra.

Connected between the High Speed Network 14 and the
File Servers 16 are I/O nodes 38 (also referred to herein as
I/O servers) which serve as an interface and render com
munication between the compute nodes 12, High Speed
Network 14, and the File Servers 16 using a number of data
transfer protocols (for example IB, FC, GigE, etc.), as
needed by the system. The I/O nodes 38 are adapted for
interfacing with the File Servers 16, as well as with the File
System 18 in its entirety.
The capability of storing the data in an expedited and

efficient manner is provided by utilizing a tier of Storage
hardware, also referred to herein as a Burst Buffer (BB) tier
40. The BB tier 40 is based on Non-Volatile Memory (NVM)
technology which is operatively coupled between the com
pute nodes 12 and the File System 18. The BB tier 40, also
referred to herein as an intermediate storage Sub-system,
includes a number of NVM units 42. Each NVM unit 42
augments a respective I/O node 38 operatively coupled to an
I/O Forwarding Software 44 in the I/O nodes 38.
The I/O nodes 38, also referred to herein as Burst Buffer

Nodes (BBNs), each of which is a server which acts as a
temporary and fast store for data. Generally speaking, each
burst buffer node is a member of a set which operates in
conjunction to provide high performance and reliability.

In addition, each I/O node 38 has a portion of a Distrib
uted Hash Table (DHT) server 46 included therein. DHT,
DHT. . . . , DHT are the portions of the DHT server
maintained by the I/O nodes 38 of the BB tier 40.
A Distributed Hash Table (DHT) is a class of a decen

tralized distributed system that provides a lookup service
similar to a hash table in which (key, value) pairs are stored
in a DHT server, and any participating node can efficiently
retrieve the value associated with a given key. Responsibility
for maintaining the mapping from keys to values is distrib
uted among the nodes, in Such a way that any change in the
set of participants causes a minimal amount of disruption.
This allows the DHT to scale to extremely large numbers of
nodes and to handle continual node arrivals, departures, and
failures.
A foundation of the DHT represents an abstract keyspace.

A keyspace partitioning scheme splits ownership of the
keyspace among the participating nodes. An overlay net
work then connects the nodes, allowing them to find the
owner of any given key in the keyspace. Consistent hashing
provides that a removal or an addition of one node changes
only the set of keys owned by the nodes with adjacent IDs,
and leaves all other nodes unaffected.
The DHT 46 in the subject system is primarily used to

maintain location information for stored data items, also
referred to herein as Unstructured Layout Metadata (ULM)
for data fragments of the parity groups written by the
compute nodes 12 in the BB tier 40. The ULM refers to the
layout information of a Parallel File System whose contents
may be arbitrarily distributed among the storage elements.

5

10

15

25

30

35

40

45

50

55

60

65

10
The DHT46 may also store Parity Group Information (PGI)
as will be detailed in further paragraphs, data item (or file)
attributes, file replay status, and other information about the
stored data item.
The present system 10 provides the data movement from

the BB tier 40 into the File System 18 in a highly efficient
manner while servicing "WRITE' requests. Similarly, when
servicing "READ” requests, data migrates from the file
system 18 into the requesting compute node(s) 12 in an
efficient manner due to the usage of the intermediate data
storage sub-system 40 (or BB tier).

Applications 52 running on compute nodes 12 facilitate
the mitigation of the Parity Group to the Burst Buffer tier 40
instead of writing the Parity Group directly into the File
System 18. The input performance of the NVM unit 42 is at
least one order of magnitude faster than the input activity of
HDD-based Parallel File System. Thus, the increase in I/O
speed permits the applications to complete their calculating
activity in an expedited fashion.

Fast ingest is crucial for enabling an application’s check
pointing and restart which has been a signature problem in
high-performance computing for several decades. However,
dealing with unstructured data is an expensive operation.
Over time, it is not economical to maintain data in this
manner, due to the metadata overhead expense. Therefore,
the system 10 must restructure the ingested data stored in the
NVMs 42 in the BB tier 40 at Some later time.
The Parity Group 32 resident in the Burst Buffer tier 40

is moved into the Parallel File System 18 at some point to
make room for a next Parity Group to transfer to the Burst
Buffer tier 40 from a compute node. This is carried out
during the Replay Phase of operation for which the present
system is provided with a restructuring aggregation mecha
nism 48 which allows for the migration of seemingly
random or unrelated data fragments from any single storage
element (i.e., NVM 42 in the BB tier 40) to the File System
18.

Preferably, the restructuring operation occurs as part of
the data migration process as data is moved from the NVMs
42 to the HDDs 22. The storage elements participating in
this process may be called the restructuring aggregators
since they are responsible for the ingestion of highly
entropic data streams and the output of large structured
segments. As part of the restricting aggregation, a software
based unit, referred to herein as Burst Buffer Network
Aggregator 50 (or BBNA), is included in the system. The
BBNA50 may run either on File Servers 16 or alternatively
on the Parallel File System I/O nodes. The BBNA unit 50,
shown in FIG. 1, is configured to coalesce the data fragments
that are germane to the Parallel File System 18.
NVMs 42 are well suited for handling unstructured data,

because of their high efficient random access properties.
Additionally, as low latency interconnects become more
commonplace, the boundaries between storage, network,
and compute will become more opaque. This will enable the
efficient interconnection of hosts (clients) storage devices.
However, the use of distributed NVM arrays as a single
logical store requires a global registry capability that can
store and retrieve the locality information (metadata) for any
given segment of unstructured data. The present system
provides means for the global registration of the locality
information in a fully parallel and fault tolerant manner.
A global registry mechanism 54 is included in the Subject

system with the purpose of using highly interconnected
NVM devices 42 as part of the restructuring aggregating
mechanism 48. Using the global registry mechanism 54, the
NVM storage tier 40 may be used in the present system 10

US 9,477,551 B1
11

as a high performance buffer between two parties which are
largely at odds with one another, i.e., applications 52 which
do not have to be aware of the I/O alignment properties of
the storage stack 40 and the HDD-based Parallel File
Systems 18 that require highly structured data streams to
achieve reasonable performance.
The present system, in one of the operational modes,

addresses the creation of Parity Group Information (PGI)
descriptors. PGI may be considered as the metadata associ
ated with a Parity Group. PGIs include the set of extents
from each burst buffer block of the Parity Group and each
BBN in the BB tier. Once built by a client, a PGI is
immutable and therefore may be easily replicated to multi
ply BBNs for resiliency. PGIs may be used to track members
of a parity group and maintain state regarding garbage
collection.

Specifically, the present system creates and distributes the
PGIs in the Infinite Memory Engine (IME) to ensure coher
ency and fault tolerance for the data and the metadata in the
non-deterministic data addressing system (which is the part
of the Global Registry mechanism) 54. PGIs act as collec
tion points for state describing the residency and replay
status of Parity Groups, and will be detailed in following
paragraphs.

Performing I/O in the IME based subject system 10 is a
multi-step process starting with the clients aggregation of
dirty buffers, followed by the receipt and ingestion of those
buffers by the I/O servers 38 in the BB tier 40, and ending
with replay of those buffers onto the Backing File System
18. In this context, the Backing File System is the storage
system for which burst buffer capabilities are provided.
Commonly this is a Parallel File System such as Lustre,
PanFS, or GPFS. Along the way, the IME ensures fault
tolerance for data and metadata in addition to redundancy
for data processing.
The processes of handling “writes” in the IME based

system 10 may be divided into the following phases: the
phase of I/O ingestion which is carried out through the
Ingestion mechanism 115 (shown in FIGS. 1, 2A-2B, and 4),
the phase of replay into the Backing File System (BFS)
which is carried out through the Replay Engine 117 (shown
in FIGS. 1 and 2B), and the phase of a post-replay of garbage
collection. These three phases are operationally intercon
nected, but each has a set of transactional instructions which
are unique to each phase.
The present description will focus on the I/O ingestion

phase for handling Parity Group ingestion into the NVMs
42, construction, and distribution of the PGI descriptors
accompanying the Parity Group handling as part of the
addressing mechanism. The restructuring aggregation of the
Parity Group data migrating from the NVMs 42 to the
primary storage 20 will be described to the extent involving
the Parity Group and PGI creation, distribution, and pro
cessing for data reconstruction when needed for fault toler
aCC.

Referring to FIG. 2A, in the I/O ingestion phase addressed
by the Ingestion mechanism 115, an Application 52 initiates
data storage within the IME system 10 which may be carried
out by using, for example, the client library available on the
compute nodes 12. The client (or the compute node) 12 is
outfitted with the write-back cache 34, best shown in FIGS.
1 and 2A. Cache entities are maintained in an interval tree
which is designed to aid in the aggregation management
process for the output held in the write-back cache 34 of the
compute node 12, specifically for the output of the Parity
Group 32 constructed by the Application 52. The Parity
Group in this context is referred to as a set of burst buffers

10

15

25

30

35

40

45

50

55

60

65

12
blocks (BBBs), also referred to herein as Parity Group
buffers, originating from a single client which form a
redundant data set. A parity group's size and redundancy
level may be determined solely by the client 12.
The client’s write-back cache 34 is tailored to place data

blocks of the Parity Group (described further in detail in
conjunction with FIG. 2A) onto the I/O servers 38 (also
referred to herein intermittently as I/O nodes, or Burst Buffer
Nodes BBNs) in the BB tier 40. Each I/O node 38 is
responsible for a corresponding block's contents (extents)
via the DHT 46 (best shown in FIG. 1), which is a lookup
mechanism which is load-balanced across a set of nodes
using deterministic functions to generate lookup handles.
The multi-step process of handling writes in the system

begins with the clients aggregation of “dirty buffers”. The
“dirty buffers” in this context refer to blocks in the database
buffer cache that have been changed (processed) but are not
yet written to the primary storage Sub-system.
The storage system 10 potentially includes thousands of

I/O servers 38. The I/O servers 38 in the present invention
are grouped into Smaller failure domains which are called
pools. In this manner, the system can easily Survive multiple
failures if the failures occur in different pods. All extents
which are stored in the same pool, possess the “extent
affinity”. The extents that make up a PGI will all be affiliated
with a single pool. The “pool-wise affinity” refers to the
extents (data fragments) which “land” in the same pool 60.
As shown in FIG. 2A, when in the process of flushing

dirty write-back contents to the I/O servers 38, the compute
node 12 attempts to compose a Parity Group 32 from a set
of extents which share pool-wise affinity. As will be pre
sented further, the extents (data fragments) that constitute a
PGI will be affiliated with a single pool 60, also referred to
herein as a BBN Pool which is a group of Burst Buffer
Nodes (BBNs) which form a fault tolerance group. The
Parity Group 32 is entirely housed within a single pool 60.

Within the Parity Group 32, the client 12 attempts to build
each block of data 62, 64, 66, ... , 68, also referred to herein
as BBBo, BBB1, BBB. BBB, to maximize server
level affinity to the best degree possible.

Each BBB. BBB is referred to herein as a memory
block, or a buffer, which is a unit (or a member) of the parity
group 32. Burst buffer blocks may contain one or more
extents (data fragments) 96 from any region of the same file.
Burst buffer blocks are fixed size and may be ingested by
any I/O node 38 which does not hold a member of the Parity
Group 32.
As it is seen in FIG. 2A, each data block 62,

64, 66. . . . , 68 is composed of data fragments 96 which may
be related or unrelated each to the other.
When the compute node 12 completes the operation of

assembling the group of blocks, an operation of the erasure
coding is applied to the data blocks 62-68, and a parity block
70 (also referred to herein as BBB) is thus resulted from
the erasure coding. The parity (or RAID) block 70 in
conjunction with the data blocks 62, 64, 66. . . . , 68, forms
the Parity Group 32.
An erasure code is a forward error correction (FEC) code

for the binary erasure channel, which transforms a message
of k symbols into a longer message (code word) with n
symbols such that the original message can be recovered
from a subset of the n symbols.
The present system may use optimal erasure codes for the

erasure coding routine which have the property that any k
out of the n code word symbols are sufficient to recover the
original message (i.e., they have optimal reception effi
ciency). Optimal erasure codes include maximum distance

US 9,477,551 B1
13

separable codes (MDS codes). Parity check is the special
case where n-k+1. Parity eraser codes are usually used in
RAID storage systems.
The Subject system also may use near-optimal erasure

codes which trade correction capabilities for computational
complexity; i.e., practical algorithms can encode and decode
with linear time complexity. Such may include Tornado
codes, as well as low-density parity check codes, Fountain
codes, Reed-Solomon coding, Erasure Resilient Systematic
Coding, Regenerating Coding, etc., which may be used in
the Subject process.
Once assembled, the parity group 32 is delivered to the

appropriate pool 60 of NVM units 42 in the intermediate
data storage sub-system (or BB tier) 40.

In the BB tier 40, each member of the parity group 32, i.e.
the data blocks 62, 64, 66. . . . , 68, and the parity block 70,
is consumed by a respective I/O server 38 within the BB tier
40.
When the client has generated enough fragments 96 to

form data blocks 62-68 to be written to corresponding I/O
nodes 72-78, the client groups the blocks 62-68 into a stripe,
and calculates the parity block 70 to form the Parity Group
32 which may be presented as a stripe of data to be
distributed across the I/O servers in the local pool 60. Thus,
the Parity Group 32 is envisioned as a stripe of Ad Hoc data
to be written across multiple I/O nodes 38 with parity
protection.
As shown in FIGS. 1 and 2A, when the data generating

entity (or client) 12 generates a "WRITE request, the parity
group's blocks BBBo, BBB1, BBB. BBB, and the
parity block BBB are distributed among the I/O nodes 38
of the BB tier 40 participating in the process in a non
deterministic way, and thus tracking of the BBBs supported
through their effective addressing is an important feature of
the Subject system.

The system 10 is a distributed system where each respec
tive I/O node 72, 74, 76, . . . 78, and 80 stores one of the
blocks 62, 64, 66. . . . , 68, and 70, respectively. When the
client writes the Parity Group 32 in the BB tier 40, the client
selects I/O nodes based on a hashing scheme for each data
fragment 96.
The Global Registry/Addressing mechanism 54 for the

Parity Group 32 tracking is enhanced via construction and
distribution of a Parity Group Identifier (PGID) and Parity
Group Information (PGI) structure. Parity Group Identifiers
(PGIDs) are configured to provide globally unique handles
for every Parity Group in the system. In principle, all I/O
nodes 38 may generate PGIDs on behalf of any client.
Further, the prescribed residency of the PGI structure is
encoded into the PGID such by knowing the PGID, the
location of the PGI may be inferred.

FIG. 2A details the data Ingestion mechanism 115 con
trolling the data ingestion from a single client (compute
node) 12 to multiple I/O servers 38 within the IME system
10. Assuming the data blocks 62, 64, 66. . . . , 68, and the
RAID block 70 constituting the parity group 32, are to be
distributed to the I/O nodes 72, 74, 76, . . . , 78, and 80,
respectively, along with associated metadata 82.
84, 86, ..., 88, and 90 corresponding to the data blocks 62,
64, 66, ... , 68, and the parity block 70, respectively, which
are also written in the BB nodes 72-80. The metadata copies
written into the I/O servers 72-80 are identified as 82, 84',
86', . . . , 88, and 90'.
The metadata 82-90 are formed by the client 12 for the

data fragments 96, and are assembled in the write back cache
34.

10

15

25

30

35

40

45

50

55

60

65

14
Due to the distributed nature of Parity Group members

ingested into the BB tier 40, the addressing of the data
“writes’ into the BB tier 40 is an important part of the
Subject system which is enhanced by creation and dissemi
nation of the PGID and the PGI structures. The Parity Group
Information (PGI) is a structure that holds all the informa
tion about each of the blocks 62-68 and the parity block 70
of the Parity Group 32 including their residency, the I/O
nodes they are written in, the location of the parity data, and
the RAID protection being used (N+P). The PGI is thus
represented as a distributed fully scalable network-level
RAID on Ad Hoc data. The construction and distribution of
the PGI will be detailed in the following description.
The I/O ingestion mechanism 115 in question requires the

client 12 to first obtain a PGID 92 from the I/O server chosen
to handle the first “write' request, for example, the I/O
server 72. The I/O node 72 handling a first block “write,
assigns a PGID 92 to the PGI 94 for the Parity Group 32
built by the client 12.

For example, upon receipt of the "WRITE' request from
the client 12, the I/O server 72 assigns a unique PGID 92 to
the Parity Groups I/O and commits the data block 62, along
with the metadata 82, to the NVM unit 106 associated with
the I/O node 72. The PGID 92 is committed in the metadata
section 82 of the I/O server 72 along with the bulk data of
the block 62. This insures that on reboot, the last allocated
PGID can be found through a simple File System Check
(FSCK).
The PGID is also provided to the client 12 for writing in

the metadata sections 84, 86, 88, and 90 of the data blocks
64, 66. . . . , 68 and the RAID block 70, respectively, so that
all members of the Parity Group 32 are identified with the
same PGID 92. The I/O nodes assign PGIDs sequentially to
the step of updating the PGI, i.e., subsequently to the
addition of the next member to the PGI.
The DHT 46 contains a DHT object 100 which is the

object in the I/O node that holds the state of the system
including the data fragment 96 and the PGI Data 92.

For every Parity Group's member (block) sent from the
compute node 12 to a given I/O server, this server places
resulting DHT objects 100 within a Jumbo Transaction
Group (JTG) 102 of the I/O sever and proceeds to issue and
commit that JTG. Once the I/O server in question has
committed the JTG, the client 12 learns of this action, and
marks that member (block) of the Parity Group as complete.
Once the client 12 has received the notice from each server
involved in the storing of the Parity Group 32, the client may
free buffers 34 composing that Parity Group.

Specifically, each I/O node 38 stores the fragment data 96
with the metadata copies 82,84', 86', ..., 88, and 90' in the
NVMs 42. The DHT object 100 holds a copy of the metadata
82, 84', 86', ..., 88', and 90' in the main memory 104 with
a pointer to the BBB in the NVRAM.
JTGs are created in the memory on the DHT server 46 and

are distributed among the DHT server's peers, i.e., DHT,
DHT, DHT. . . . , DHT, during the first phase of a
transaction commit. JTGs include a list of commands that
mutate the DHT (i.e., related to objects insertion into the
DHT, objects deletion from the DHT), and (if necessary) the
list of objects 100 that will reside in the DHT.

Specifically, shown in FIG. 2C, is an abstract represen
tation of the JTG 102, which is constructed with a plurality
of batched operations designated for the plurality of the I/O
node peers (I/O nodes 72, 74,..., 80) sharing the local pool
(60) affinity.
The JTG 102 includes columns 200 dedicated to each of

the plurality of I/O nodes involved in the JTG 102. The rows

US 9,477,551 B1
15

202 of the JTG 102 are illustrative in FIG. 2C of the
two-stage commit protocol for transactions between the I/O
nodes 72, 74, . . . , 80.
The first stage of the commit protocol addresses a “filled

request (meaning that a group of requests has been filled to
capacity and is ready for the JTG to begin the delivery
process), a “delivered’ request (meaning that the request has
been sent to an appropriate I/O node), and a “delivery
acknowledgement request (meaning that the request has
been acknowledged by the intended I/O node).

The second shape of the commit protocol addresses the
“commit” command and “commit acknowledge” request.
The “commit” is a command to fulfill the request, such as,
for example, to “write' it to the I/O node(s). The “commit
acknowledge' is a response that the request has been com
pleted.

This process ensures that these batched transactions are
completed by each I/O node that is relevant to the request.
By requiring “commits’ and "commit acknowledgements'.
failures of I/O nodes during the process can be quickly
alleviated, and non-responsive I/O nodes can be quickly
identified.
JTGs may be used to batch a series of DHT objects

requests, so that a given I/O node may make requests to all
its peers in the same local pool 60. In this manner, the
volume of traffic across the I/O nodes can be minimized.

After committing the bulk data 62 in the I/O server 72 (the
first I/O node to ingest the member of the Parity Group 32),
the I/O server 72 proceeds to enqueue a number of trans
action-based operations into the current JTG 102.
Once a client has obtained the PGID 92 from the first I/O

server 72 which ingested the data burst buffer block 62
(BBB), it may proceed to send the remaining Parity
Group's is members (data blocks BBB, BBB, ..., BBB
as well as the parity block BBB) to other I/O servers 64,
66, ... , 68, and 70 forming the pool 60. This bulk sends may
occur sequentially or in parallel. Upon receiving the remain
ing parity group members (blocks 64, 66, 68, and 70), the
I/O nodes enqueue the parity block reference count updates
to the pool-local PGI maintainers, i.e., add the updates to
their queue.

Each PGI is fully independent. The PGI information may
be replicated across multiple I/O nodes for redundancy, as
shown in FIG. 3 which is a diagram representing the
replication process of the DHT object 100 containing the
PGI 94 metadata 82 to other I/O nodes in the present
system. In this process, the I/O node which holds a part of
the parity group, has a copy of the PGI 94, or knows which
I/O node has an authoritative copy of the PGI.

In the I/O initiation process, the client requests that an I/O
node creates a new (updated) PGI when the client sends a
new data block that is not part of an existing PGI. Referring
to FIGS. 2A and 2B, representing the dynamics of the PGI
creation and distribution Supported by the Ingestion mecha
nism 115, an initial PGI 94 (for example, shown as PGIao)
is created by the first I/O node 72 to reflect the ingestion of
the first “write data block 62. The client adds further
additional “write' data blocks of the subject Parity Group
32, such as block 64, 66. . . . , 68, to the originally created
PGI 94 by sending the remaining members of the Parity
Group, i.e., BBB. BBB, (blocks 64, 66. . . . , 68) to
other nodes, such as 74, 76, ... 78, all of which share their
unique PGID.

The PGI update message is sent to an authoritative I/O
node, i.e. the node handling a respective member of the
Parity Group 32 which is entitled to create an authoritative

10

15

25

30

35

40

45

50

55

60

65

16
PGI reflecting the writing of this respective member. The
PGI update command is sent out each time the data block
64, 66, . . . , 68 is written.

For example, for the data block BBB, the I/O node 74 is
the authoritative node. Similarly, for the data block BBB
the I/O node 78 is the authoritative node. Once the updated
PGI is generated by the authoritative I/O node, the copy of
the updated PGI is sent to all I/O nodes sharing the local pool
affinity. Responsive to the storing of the block in the BB tier,
the authoritative node updates the previous PGI to create
updated PGIs (PGIa1, PGla2, PGIa3, etc.) and sends the
updated PGIs to other I/O nodes in the same local pool.

In FIGS. 2A-2B, the updated PGI after ingesting the data
block 64 (BBB) in the I/O node 74 is shown as PGIa1. The
updated PGI after ingesting the data block 66 (BBB) in the
I/O node 76 is shown as PGlo2. Similarly, the updated PGI
after ingesting the RAID block 70 in the I/O node 90 is
shown as PGIo4.
The PGI is initialized with a number of composing blocks

when it is created. This prevents the PGI from being reaped
before it has been fully rectified by the entire complement of
JTG updates from the I/O servers. The client completes the
parity group put once each I/O server has replied Success.
Should one more server fail, the client is free to resend the
parity group components to any I/O server in the pool which
has yet to ingest a parity group member.
The parity (RAID) data are added to the PGI when the

client allocates new data blocks for the RAID protection,
calculates and saves the RAID protection data into the RAID
segment buffers, and sends the RAID block 70 to I/O
node(s) 80 that has not yet consumed a data block from the
current PGI.
Upon completion of the process of writing each compo

nent of the parity group into the BB tier 40, the client sends
an update message to the authoritative I/O node for the PGI
update for each RAID block added. The authoritative I/O
node is the node responsible for a given range of the file
system address mapping for read. The number of authorities
for a given range is dependent on the value of the burst
buffer configuration. When the PGI is full and all the I/O
nodes have responded that the data block 62-68 and the
RAID (parity) block 70 have been saved to the NVMs in the
BB tier 40, the PGI is closed and saved.
The “first to write" I/O node 62 creates the unique PGID

92 for the initial PGI94, sends it to the client 12 for storage
in the respective metadata section of the write blocks
64. . . 68, as well as of the parity block 70, and subsequently
writes each block to the corresponding NVM unit 42.
The PGI on the I/O node 62 which has created the PGI,

becomes an authoritative PGI. The client then sends updates
to the I/O node 62 to update the authoritative PGI when
additional data or parity blocks are added to it. Subsequently,
the updated PGI is sent to other I/O nodes in the pool 60. The
client 12 who has requested the creation of the PGI will be
the only one to add the write blocks of the parity group 32
to the PGI in question.
The PGI structure contains the information which is used

to locate each data block and parity block of the parity group
32. Each data block and parity block 62, ..., 70 has a unique
ID in the system. The PGI holds the blocks' ID and the ID
of the I/O node where the data block or parity block is
located. However the PGI does not have a sufficient infor
mation on the data fragments 96 in each data and parity
block, or which file the data fragments 96 belong to. That
information is stored in the metadata region 82, 84, 86, 88
and 90 of each data and parity blocks 62-70, respectively.

US 9,477,551 B1
17

The I/O node 62 that creates the initial PGI structure 94
stores the authoritative copy of the PGI in its main memory
104. Contents of the authoritative PGI are replicated to other
I/O nodes as shown in FIG. 3. When the PGI is full and
closed, it is saved into the NVM unit of the authoritative I/O
node that created it.
As shown in FIG. 2A, for any given data or parity block

62. . . . , 70 of the parity group 32, there is a single
corresponding I/O node 72,..., 80 which is responsible for
this block. The authoritative I/O node for the PGI is the one
that has created the PGI and assigned it a unique PGID. In
FIG. 2A, the node 72 is considered an authoritative I/O node
for the PGIa0. All other copies of the PGI on other I/O nodes
are non-authoritative. If the authoritative I/O node fails, then
one of the non-authoritative copies of the PGI will become
the authoritative PGI.

The non-authoritative PGIs will be identical to the
authoritative PGI. However, any changes that are performed
on the PGI are done on the authoritative PGI first and
replicated to the non-authoritative PGIs.

Referring to FIGS. 4A-4B, further referred to herein
combinedly as FIG. 4, representing the flow chart diagram
of the IME client and the IME server(s) interaction during
the Ingestion Phase 115 for the creation and distribution of
the PGI in the process of writing the parity group to the BB
tier, upon the construction of the parity group, the client
attempts to store the parity group in the intermediate storage
sub-system, by first requesting in step 150 the BBB flush to
an I/O node (server).
Upon receiving, at step 166, the “write” request for BBBo

block, the procedure moves to logical block 168, where the
I/O node decides if the BBBo "write” request is the first burst
buffer block of a parity group in question. If the BBB is the
first burst buffer block of the parity group, the I/O node
assigns the PGID to the Parity Group in question in block
170 and PGID is committed in the metadata section of the
write data in block 172.

Subsequently to the step 172, the logic passes to block
174 to execute PGI create routine at the I/O node side of the
process.
The following transactional PGI related instructions are

employed in the I/O ingestion phase: Parity Group Infor
mation create (PGI create) and Parity Group Information
update (PGI update).
PGI CREATE
PGIs act as collection points for the state describing the

residency and replay status of parity groups. PGI create
instructions are issued by an I/O server when that I/O server
detects a new parity group being stored by client. The I/O
server recognizes this fact in step 168 by simply noticing
that a client has attempted to store the first burst buffer block
BBB of a parity group. At this moment the I/O server
enqueues the PGI create instruction to the servers in the
pool which maintain the authoritative PGI (PGIa) shown in
FIG. 2A

It may be the case that the server handling BBB is a
member of the set PGIaO-M. Any member of the pool
which holds a data or metadata segment for a given PGID
will have a PGI structure for this purpose. However, only the
properly designated nodes may manage the authoritative
PGIs for the pool.
The PGI create command is executed by the nodes PGIa

0-M before the commit of JTG has occurred.
This is done to avoid erase conditions where I/O servers

attempt to operate on the PGI before it has been initialized.

10

15

25

30

35

40

45

50

55

60

65

18
Since an empty PGI is only a handle, creating it in this
manner does not cause metadata consistency issues if the
JTG fails to be committed.

PGIs are initialized with the parity group identifier
(PGID) and the properties of the parity group, such as
erasure coding type and size. At initialization time the PGI
has no information regarding the residency or fragment
count of its blocks.

In the subsequent step 174, a new PGI (i.e., the PGIao
shown in FIGS. 2A-2B) is created by the I/O node handling
the first “write” BBB. Subsequently, the first PGI is
enqueued into the main memory 104 of the I/O node 72,
particularly into JTG 102 corresponding to the I/O server
handling the BBBo write.
Upon completion of the PGI create instruction, in sub

sequent step 176, the data block BBB is stored in the NVM
42. The PGI on the I/O node which created it becomes the
authoritative PGIa.

Subsequently, in step 178, the I/O node sends response
containing PGID to the client.
At the client's side of the process, subsequent to step 150,

in step 152 the client executes a block on commit of the
BBBo so that the client after flushing the BBBo to the
respective server waits for the server to perform
the PGI create and “write” the BBBo to the respective NVM
in steps 170-176. At the client side, in the subsequent block
154, the client obtains the PGID assigned in block 170 by the
I/O server from the reply for BBBo commit received from
the I/O server and follows to step 156 to initialize the PGI
with a number of composing blocks of the corresponding
parity group, erasure coding type, and the size of the parity
group and composing blocks.
The client does not receive a copy of the PGI that was

created by the I/O server, but upon obtaining the PGID, the
client has all the information necessary to recreate the PGI
created by the I/O server. So, the client fills in its copy of the
PGI with the PGID sent from the I/O server in step 178, and
the information for the first block BBB it added.

Subsequent to the step 156, the logic attempts, in step 158,
to send the rest of the blocks of the parity group to the other
I/O servers in the pool which have not ingested the blocks
of the parity group in question yet. Prior to sending the rest
of the data blocks and the parity block of the parity group in
question, the logic, in step 160, puts block on commit of
blocks BBB1, BBB.,..., BBB, and BBB in order to wait
for the corresponding I/O servers to save the buffers (blocks)
to their NVMs after the client sends the buffers to these
SWCS.

At the I/O server's side, when the I/O servers (other than
the I/O node handling the first block BBBo write), receive
the “write' request for the remaining blocks in the parity
group, i.e., for those which are not the first burst buffer block
BBB of the parity group, the process flows from the logic
block 168 to the block 180 where the data in BBB,
BBB, ..., BBB is stored in the respective NVMs 108, and
110, . . . , 112, respectively.
The BBB. . . . , BBB, “writes” may be performed

sequentially or in parallel. Each time an additional block
BBB, ..., BBB is written with the corresponding NVM,
the authoritative I/O node performs the PGI-update routine
in block 182 resulting in the initial PGI update to add the
information corresponding to each added data block. Upon
writing each remaining data block (other than the data block
BBB), the I/O node sends, in step 184, a response to the
client which waits in step 160 for the response from the I/O
servers ingesting the data blocks BBB. BBB.

US 9,477,551 B1
19

The logic further follows to logical block 186 where the
decision is made whether the parity (RAID) block 70 is
ingested within in the corresponding NVM 114.

If it is identified in logic block 186 that the parity block
has not been stored in the NVM 114 yet, the logic sends a 5
request to the client to send the parity block to the I/O node.
PGI UPDATE
If, however, the parity block is stored in the NVM 114, the

logic performs the PGI update routine in step 188, thus
creating the PGI for the complete parity group, and thus the 10
procedure for storing the parity group, PGI creation is
completed.
The PGI update instructions are delivered to the I/O

nodes holding authoritative PGIa 0-M after the ingest of a
block by a server. Unlike the PGI create instructions, the 15
PGI update instructions are executed only after the owing
JTG has been committed by the initiating server. PGI up
date instructions instruct the authoritative nodes PGIa 0-M
to attach the provided burst buffer block state to the corre
sponding PGI. The parameters provided by the instruction 20
are the PGID (which does not change), the block number
within the parity group, the number of discrete extents
within the block (data fragment count), and the residency
information. The residency information may take two forms
including a server address or a blockaddress if the block has 25
been stored locally, i.e. in the local pool.
Once the PGI has been fully populated, the IME system

10 may perform rebuilds on behalf of failed nodes or NVM
devices. Thus from block 160, the logic flows to the logical
block 162 where a decision is made whether any I/O server 30
has failed. If none of the servers failed, the logic flows to
block 164 to complete the parity group put and the procedure
is terminated.

If, however, in the logic block 162, a failure of at least one
server has been found, the procedure follows to block 190 35
where the client can resend the parity group components to
any I/O server which has yet to ingest a parity group
member. Upon completion of step 190, the logic returns to
block 160.
A Residency Reference Instruction is a transactional 40

command which is employed in the I/O ingestion phase in
the Subject system. The residency reference command is
used to denote data residency within the BB tier on behalf
of a specific file object. These are generally composed of
pool-local and global reference objects. 45
The residency references are accumulated as part of the

data ingestion phase and are removed as data is replayed into
the BFS. Once the last reference has been removed, the
system may assume that no dirty data remains in the Burst
Buffer storage. 50
The Residency Reference Counts Structure 120 (shown in

FIGS. 1 and 2B) indicates the number of active references
to an object, such as a PGI or a “write' block, in the system.
A “write block contains a number of fragments 96 of file
data, so its residency reference counts may be represented by 55
an integer that counts the fragments of file data.
As presented in FIG. 2B, in the Ingesting Phase 115, the

reference count is incremented for each data fragment 96
added to the block. Similarly, the counts for blocks are
incremented as new blocks BBBo, BBB1, BBB. BBB 60
and BBB are added to the PGI, i.e., the empty PGI is
updated to the Initial PGI when the block BBB is added.
The ingestion process continues as the remaining blocks
BBB1, BBB. . . . , BBB, and BBB are added till a
complete PGIa4 is created for the completed Parity Group 65
put. The Residency reference count is incremented as the
blocks are added to the PGI.

20
For the PGI, the residency reference count is represented

by a bitmap where the bits represent the write blocks that
were added to the PGI during PGI update routine.

Further, the fragment count may be used by the Replay
Engine 117 (shown in FIGS. 1 and 2B) to track garbage
collection readiness for the Parity Group in question. When
the fragments in the “write' blocks are replayed to the
Parallel File System, the reference count is decremented.
When the reference count on the data block reaches zero,
then all of the fragments 96 in the data block BBB have been
replayed, and the residency reference bit in the PGI for the
“write block is cleared. When all of the residency reference
counts are Zero (for all blocks), then the entire PGI has been
replayed, and the PGI can be discarded.
Along with the reference count updates, the extent

descriptors themselves are placed into the JTG 102 for
dissemination to the appropriate peers (I/O servers in the
pool 60).

Global and Pool-Local reference counts count objects are
used in the present systems.

Global objects are used in the Subject system in cases
where an exclusive entity must be maintained across the
entire system. Such examples include tracking of open() and
close() calls issued by a large parallel application. Similarly,
on replay of files that span many or all I/O nodes, global
reference objects are used by the system to track when
replay activities have been completed. Another case could
be inode (index node) attributes for a given object. Any
place where a single authoritative entity is required a global
object can be used to meet that need.
The foundation of the global distributed reference object

is the pool-local reference object which itself is used by a
variety of tasks. These include determining when a parity
group may be garbage collected and acting as Subcompo
nents for global reference counts. The complexity Surround
ing replicated reference count objects within the DHT is
hidden by the two-phase commit distributed transaction
engine, which consistently manages updates to replica
objects.

Pool-local reference counts operate in the following man
ner. The DHT 46 application wishing to establish a reference
count does so by first hashing the reference object’s iden
tifier in a manner which exposes the owning pool and I/O
nodes.

For example, to establish a reference object for extents
belonging to a given file, the application would present a
tuple composed of the file identifier (FID), rank number, and
a specific number which is assigned to the reference type, to
the hash function. The hash function outputs the correspond
ing server, though any server in the pool is valid target for
the request.
Upon receiving a reference request, the server uses this

information along with the operation type (increment, dec
rement, create, destroy) to construct a DHT object on behalf
of the reference. Subsequently, the server will submit the
DHT reference object through its two-phase commit tech
nique so that the relevant Successors will become aware of
its existence. Querying of the reference may be done by
clients and servers alike through direct access by sending a
DHT fetch request to one of the available successors.
However, modifications of reference objects, as previously
described, must be handled through the transactional mecha
nism to ensure consistency.

Global reference objects are composed of multiple pool
local reference objects which have been designed as com
ponents. This object type is meant to provide scalability in
situations where a large number of clients are performing a

US 9,477,551 B1
21

coordinated global activity Such as I/O on a large shared file.
Theoretically, global reference objects allow for a scaling
factor equivalent to the number of pools in the system.
The global reference object does not resemble a typical

reference counter but rather, it appears as a bit field where
a single bit is designated for each pool in the system.
Creating global references is carried out by first creating a
pool-local reference object which has been tagged with
Some state designating it as a member of a global reference.
The local pool (Pool) encapsulates its pool-local reference
request within a JTG. Upon execution of the JTG, the
Successors of the object will message the global pool
(Pool) instructing it to establish the global reference. This
request will block until the Pool has committed the request
via a transaction in its pool. Once the Pool has created this
object and instructed Pool to do its part, Pool may proceed
with local operations on the reference object until the local
object count reaches Zero. At that time Pool is contacted
and instructed to remove Pool’s reference.
When the global object no longer contains any pool-local

references an arbitrary routine may be executed on behalf of
the object. For example, consider the IME replay engine.
Replay represents a case where certain operations must
block until the entire system has completed the data move
ment portion of the replay procedure. While a given pool has
extents to replay, the global reference object reflects this
state with a single bit for the pool. When the pool has
completed its extent operations the global object is unref
erenced. Subsequently, when the global object is fully
unreferenced a single finalization operation, Such as a
namespace operation, may occur in a fully non-reentrant
COInteXt.

When the Parity Group in the system needs to be replayed
from the BB tier 40 to the Parallel File System, an I/O node
begins taking all of the data fragments and metadata stored
in the DHT and “flattens them. The term “flattens’ means
in this context that any older fragment data that was over
written by newer fragments is discarded so that only the
latest (or final) fragment data is written to the PFS.

Subsequently, the I/O node begins reading the flattened
data fragments out of the NVM and places them into buffers,
thus performing a somewhat random read from the NVM.

Subsequently, when the buffers are full, the I/O node
issues “write' requests to the PFS to commit the data. The
information, about the blocks contents (data fragments in
each block) is stored in the metadata section of each block
in the NVM of the corresponding I/O node, as shown in FIG.
2A. The data fragments information is also stored in a more
compact format in the main memory 104 of the I/O node.
The PGI does not have all information of the data frag

ments. The PGI’s function is to track BBBs which are the
members of the Parity Group. The PGI is used for redun
dancy purposes. If an I/O node, or memory unit (HDD, SSD,
etc.) fails, or a device reports a “bad” block, then the PGI
tracks all of the members of the Parity Group that are needed
to reconstruct the missing data. Once all of the blocks in the
PGI are replayed to the PFS, the PGI will be discarded.

Although this invention has been described in connection
with specific forms and embodiments thereof, it will be
appreciated that various modifications other than those dis
cussed above may be resorted to without departing from the
spirit or scope of the invention as defined in the appended
claims. For example, functionally equivalent elements may
be substituted for those specifically shown and described,
certain features may be used independently of other features,
and in certain cases, particular locations of the elements may

10

15

25

30

35

40

45

50

55

60

65

22
be reversed or interposed, all without departing from the
spirit or scope of the invention as defined in the appended
claims.

What is being claimed is:
1. A method for data migration between data generating

entities and a File System in a data storage system, com
prising:

(a) operatively coupling a Burst Buffer (BB) tier between
at least one data generating entity and the File System,
and configuring said BB tier with a plurality of Burst
Buffer Nodes (BBNs) and a plurality of Non-Volatile
Memory (NVM) units, wherein each NVM unit is
operatively associated with a respective BBN of said
plurality thereof;

(b) composing, by said at least one data generating entity,
a Parity Group having a plurality of data blocks BBB,
BBB. and BBB, and at least one parity block
BBB.:

(c) sending, from said at least one data generating entity,
a “write' request for writing said Parity Group to said
BB tier;

(d) assigning a Burst Buffer Node BBN from said plu
rality of BBNs to handle a “write' request for said first
data block BBB of said Parity Group, and, upon
receipt of said “write' request from said at least one
data generating entity:
generating, by said BBN, a Parity Group Identifier

(PGID) for said Parity Group and an initial Parity
Group Information (PGI) structure for said Parity
Group, wherein said initial PGI contains information
addressing said data block BBB.

writing said data block BBB and said metadata asso
ciated therewith to a NVM associated with said
BBN,

writing said PGID to metadata section in said BBN,
and

sending said PGID to said at least one data generating
entity;

(e) upon receipt of said PGID by said at least one data
generating entity from said BBN, assigning said PGID
to at least one Subsequent of said data blocks
BBB. BBB, and said at least one parity block
BBB and sending said at least one subsequent block
to a respective at least one BBN of said Burst Buffer
Nodes BBN,..., BBN, and BBN:

(f) updating said initial PGI after each writing of said at
least one subsequent block from said BBB, ..., BBB
and BBBp in a respective NVM unit associated with
said respective at least one of said Burst Buffer Nodes
BBN, ..., BBNn, and BBNp, respectively, to reflect
the writing of said at least one Subsequent block, until
all remaining said data blocks BBB, ..., BBB and
said at least one parity block BBB have been written
in said respective Burst Buffer Nodes BBN.
BBN, and BBN, thus generating a complete PGI for
said Parity Group; and

(g) saving said complete PGI to said NVMs associated
with said BBN, BBN, ... BBN, BBN, upon comple
tion of said Parity Group ingestion in said BB tier.

2. The method of claim 1, further comprising:
in said step (b), forming, in Parity Group buffers of said

at least one data generating entity, said plurality of data
blocks BBB, BBB. and BBB

filling each of said plurality of data blocks with unstruc
tured data fragments,

US 9,477,551 B1
23

establishing, in association with said each data block, a
metadata section containing metadata addressing said
unstructured data fragments filling said each data
block,

applying an error correction code to said data fragments
in said blocks BBB, BBB. BBB, and

forming said at least one parity block BBBp containing
the error correction coded data fragments and metadata
contained in said plurality of data blocks BBB,
BBB. and BBB, and

constructing said Parity Group containing said plurality of
data blocks BBB, BBB. and BBB, and said at
least one parity block BBB.

3. The method of claim 2, further comprising:
in said step (a), arranging at least a portion of said

plurality of BBNs in at least one local storage pool,
wherein said data blocks BBB, BBB. and BBB
and said at least one parity block BBB of said Parity
Group share said at least one local storage pool affinity.

4. The method of claim 3, further comprising:
prior to said step (g), identifying if at least one BBN in

said at least one local storage pool has failed;
resending a block assigned to be written in said failed at

least one BBN to another BBN in said at least one local
storage pool; and

repeating steps (f) and (g).
5. The method of claim 4, wherein in said step (e), said

respective at least one BBN is free of any of said Parity
Group's blocks.

6. The method of claim 3, further comprising:
in said step (f), updating said initial PGI by said respective

at least one of said Burst Buffer Nodes consuming said
at least one Subsequent block, thus creating an authori
tative updated PGI, and

after said step (f), replicating said authoritative updated
PGI created by said respective at least one of said Burst
Buffer Nodes to other Burst Buffer Nodes in Said at
least one local storage pool.

7. The method of claim 2, further comprising:
in said step (e), sending said blocks BBB. . . .

and BBB to their respective BBNs sequentially.
8. The method of claim 2, further comprising:
in said step (e), sending said blocks BBB. BBB,

and BBB to their respective BBNs in parallel.
9. The method of claim 2, further comprising:
in said step (a), operatively coupling a Distributed Hash

Table (DHT) server to said BB tier, wherein said DHT
server includes a plurality of DHT portions, each DHT
portion being maintained by a respective one of said
plurality of BBNs, and

writing at least one DHT object in a corresponding one of
said DHT portions, wherein said each DHT object
includes said PGI and metadata associated with a
corresponding one of said Parity Group's blocks BBB
BBB, ..., BBB, and BBB.

10. The method of claim 9, further comprising:
in said step (a), creating a Jumbo Transaction Group

(JTG) structure in a memory of said DHT server, and
distributing said JTG structure among said DHT serv
er's portions, wherein said JTG structure holds a list of
commands that mutate said DHT server's portions,

in said step (d), for every block in said Parity Group,
placing said at least one DHT object in said JTG
structure, associated with said respective at least one of
said BBNs,

Subsequently, committing said JTG at said respective at
least one of said BBNs, and

, BBB

10

15

25

30

35

40

45

50

55

60

65

24
Subsequently, indicating, at said at least one data gener

ating entity, said every block writing as complete.
11. The method of claim 2, further comprising:
in said step (g), upon completion of said Parity Group

ingestion to said BB tier, cleaning, at said at least one
data generating entity, said Parity Group buffers.

12. The method of claim 9, further comprising:
in said step (a), coupling a Residency Reference Counts

Structure to said BB tier to indicate the number of
active references to said at least one DHT object, and

in said step (f), incrementing said Residency Reference
Counts Structure for said corresponding Parity Group's
block for each said data fragment added thereto.

13. The method of claim 12, further comprising:
for said at least one DHT object including said PGI,

configuring said Residency Reference Counts Structure
as a bitmap representing said Parity Group's blocks
added to said PGI.

14. The method of claim 13, wherein said steps (b)-(g)
constitute an Ingestion Phase of operation, further compris
ing:

after said step (g), performing a Replay Phase of operation
for said Parity Group into said File System through the
steps of

acquiring, by at least one of said BBNs, the metadata
stored in said DHT server portion associated with said
at least one of said BBNs,

reading said data fragments from a respective block
written in said at least one of said BBNs,

aggregating said data fragments,
storing said data fragments in a respective buffer in a

structured format in accordance with said metadata,
and

once said respective buffer is full, committing said struc
tured data fragments to said file system.

15. The method of claim 14, further comprising:
if during the Replay Phase of operation, data migration

experiences a faulty condition, using said complete PGI
to indicate the Parity Group's blocks needed for data
reconstruction.

16. The method of claim 14, further comprising:
in said Replay Phase of operation, when said data frag

ments are replayed to the File System,
decrementing said Residency Reference Structure Counts

until the reference count for said respective block of
said Parity Group reaches zero, and

clearing the residency reference bit associated with said
respective block of said Parity Group in said PGI’s
bitmap.

17. The method of claim 16, further comprising:
when said Residency Reference Counts reach Zero for all

said blocks BBB1, BBB.,..., BBB, and BBBof said
Parity Group, deleting said PGI from said BBNs.

18. The method of claim 2, further comprising:
upon obtaining said PGID in said step (d) at said at least

one data generating entity, recreating a copy of said
initial PGI by utilizing said PGID and filling said copy
of the PGI with information related to said block BBB.

19. The method of claim 2, wherein said PGI includes an
information associated with each said block BBB.
BBB. . . . , BBB, and BBB of said Parity Group and
residency of said each block of said Parity Group indicating
said BBNs containing said each of said blocks BBB,
BBB, ..., BBB, and BBB.

20. The method of claim 19, wherein said PGID includes
information on said PGI’s residency.

US 9,477,551 B1
25

21. A system for data migration between data generating
entities and a File System, comprising:

a Burst Buffer (BB) tier operatively coupled between at
least one data generating entity and the File System,
and configured with a plurality of Burst Buffer Nodes
(BBNs) and a plurality of Non-Volatile Memory
(NVM) units, wherein each NVM unit is operatively
associated with a respective BBN of said plurality
thereof, and wherein at least a portion of said plurality
of BBNs are arranged in at least one local storage pool,
said at least one data generating entity having at least
one parity group buffer and being configured to com
pose a Parity Group to be ingested in said BB tier,

a Parity Group Ingestion mechanism operatively coupled
between said at least one data generating entity and said
BB tier,

a Parity Group Replay Engine operatively coupled
between said BB tier and the File System, and

an Addressing Mechanism operatively coupled to said at
least one data generating entity, said BB tier, said Parity
Group Ingestion mechanism, and said File System;

wherein said Parity Group includes:
a plurality of data blocks BBB1, BBB2,..., BBBn, each

of said data blocks BBB1, BBB2, ..., BBBn, being
filled with corresponding unstructured data fragments
and containing metadata associated with said corre
sponding data fragments, and

at least one parity block BBBp containing error correction
coded data fragments contained in said data blocks
BBB1, bbb2, ..., and BBBn, and

wherein said at least one data generating entity is further
configured to send a “write' request for writing said
Parity Group to said BB tier, and to assign a Burst
Buffer Node BBN1 from said plurality of BBNs to
handle the writing of said first data block BBB1;

wherein said Parity Group Ingestion mechanism is con
figured with said BBN1 configured to, upon receipt of
said “write' request from said at least one generating
entity, cooperate with said Addressing mechanism con
figured to generate a Parity Group Identifier (PGID) for
said Parity Group and an initial Parity Group Informa
tion (PGI) containing information for said data block
BBB1,

to write said first data block BBB1 and said metadata
associated therewith to a NVM associated with said
BBN1, and

to send said PGID to said at least one data generating
entity;

wherein said at least one data generating entity is further
configured to cooperate with said Parity Group Inges
tion mechanism to:

upon receipt of said PGID from said BBN1, send a
remaining at least one of said blocks BBB2.
BBBn, and BBBp to a respective at least one BBN in
said at least one local storage pool for temporary
storage therein; and

wherein each said respective at least one BBN is further
configured to:

update said initial PGI to reflect the storage of each
remaining at least one of said blocks BBB2 ..., BBBn,
BBBp of said Parity Group, in a respective NVM unit
associated with said respective at least one of said
BBN2, ..., BBNn and BBNp, respectively,

replicate said updated PGI created by said respective at
least one BBN to other Burst Buffer Nodes sharing said
local pool affinity with said respective at least one
BBN, and

5

10

15

25

30

35

40

45

50

55

60

65

26
save a complete updated PGI in said NVM of said each

respective BBN upon completion of said Parity Group
ingestion to said BB tier.

22. The system of claim 21, further configured, upon
identifying of at least one failed BBN in said at least one
local storage pool, to determine, using said complete
updated PGI, a block of said Parity Group written in said at
least one failed BBN, and to re-send said block to another
BBN in said at least one local storage pool, which is free of
said Parity Group's blocks.

23. The system of claim 21, wherein said at least one data
generating entity is further configured to send said blocks
BBB, ..., BBB, and BBB to their respective BBNs in
parallel or sequentially.

24. The system of claim 21, further including:
a Distributed Hash Table (DHT) server operatively

coupled to said BB tier, wherein said DHT server
includes a plurality of DHT portions, each DHT portion
being maintained by a respective one of said plurality
of BBNs,

said DHT server being configured to store at least one
DHT object in a corresponding DHT portion, wherein
said at least one DHT object includes said metadata and
said PGI associated with a corresponding one of said,
BBB1, BBB, ..., BBB, and BBB.

25. The system of claim 24, further including:
a Jumbo Transaction group (JTG) structure created in the
memory of said DHT server, wherein said JTG struc
ture holds a list of commands that mutate said DHT
server's portions, and

wherein said at least one DHT object is placed in said JTG
structure associated with said corresponding BBN.

26. The system of claim 21, wherein said PGID resides in
a metadata section within said NVM associated with said
respective BBN.

27. The system of claim 24, further including:
a Residency Reference Counts Structure coupled to said
BB tier to indicate the number of active references to
said at least one DHT object, wherein said Residency
Reference Counts Structure is configured to cooperate
with said Parity Group Ingestion mechanism to incre
ment count for said data fragments added to said
corresponding block.

28. The system of claim 27, wherein for said at least one
DHT object including said PGI, said Residency Reference
Counts Structure is configured as a bitmap representing said
blocks added to said PGI.

29. The system of claim 28, further configured to replay
said Parity Group into said File System, wherein at least one
of said BBNs is configured to cooperate with said Replay
Engine to acquire, during a Replay Phase of operation, a
metadata stored in said corresponding DHT portion associ
ated with said at least one BBN, to read said data fragments
from said block written in said at least one BBN, to store
said data fragments in a respective buffer in a structured
format in accordance with said metadata, and to write said
structured data fragments in said File System, once said
respective buffer is full.

30. The system of claim 29, wherein during the Replay
Phase of operation, said system is configured to use said
complete PGI to indicate the Parity Group's blocks needed
for data reconstruction if data migration experiences faulty
conditions.

31. The system of claim 29, wherein, in said Replay Phase
of operation, when said data fragments from said block
within said at least one BBN are replayed to the File System,
said Residency Reference Count Structure is configured to

US 9,477,551 B1
27

cooperate with said Replay Engine to decrement count till
the reference count for said block of said Parity Group
reaches Zero, and

to clear the residency reference bit associated with said
Parity Group in said PGI’s bitmap.

32. The system of claim 31, further configured to delete
said PGI from said BBNs when residency reference counts
reach zero for all said blocks, BBB1, BBB. . . . BBB, and
BBB, of said Parity Group.

33. The method of claim 21, wherein said at least one data
generating entity is configured to cooperate with said
Addressing Mechanism to recreate a copy of said PGI by
utilizing said PGID.

5

10

28

