
(12) United States Patent
Glover et al.

US009477538B2

US 9,477,538 B2
*Oct. 25, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR THE SUPPORT
OF APPLICATION SPECIFIC POLICES FOR
CONVENTIONAL OPERATING SYSTEMS

(71) Applicant: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

(72) Inventors: Frederick S. Glover, Hollis, NH (US);
Diane Lebel, Methuen, MA (US);
Thomas J. Engle, Nashua, NH (US);
Angelo Pruscino, Los Altos, CA (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 55 days.
This patent is Subject to a terminal dis
claimer.

(21)

(22)

Appl. No.: 14/486,646

Filed: Sep. 15, 2014

(65) Prior Publication Data

US 2015/004.0143 A1 Feb. 5, 2015

Related U.S. Application Data
Continuation of application No. 13/450,396, filed on
Apr. 18, 2012, now Pat. No. 8,839,272.

(63)

Int. C.
G06F 9/54
G06F 9/46
G06F II/30
U.S. C.
CPC G06F 9/545 (2013.01); G06F 9/468

(2013.01); G06F II/3034 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(51)
(2006.01)
(2006.01)
(2006.01)

(52)

(58)

YS

S383

(56) References Cited

U.S. PATENT DOCUMENTS

8,756,461 B1* 6/2014 Jacob G06F 11.3476
T14/45

2006/0174229 A1 8/2006 Muser 717/128
2006/0230391 A1* 10, 2006 Alexander et al. 717/130

(Continued)

OTHER PUBLICATIONS

Whaley, “Tunning High Performance Kernels through Empirical
Compilation', dated 2005, pp. 1-10.
IBM AIX Version 7.1 Differences Guide, IBM, dated 2010, pp.
1-454.

(Continued)

Primary Examiner — Tuan Dao
(74) Attorney, Agent, or Firm — Hickman Palermo
Becker Bingham LLP

(57) ABSTRACT

The approaches described herein provide support for appli
cation specific policies for conventional operating systems.
In an embodiment, a kernel module representing a kernel
Subsystem is executed within an operating system’s kernel.
The kernel Subsystem may be configured to respond to
particular requests with one or more default actions. Addi
tionally, the kernel subsystem may define a number of
Sub-modules which represent application specific policies
that deviate from the default actions. Each sub-module may
define one or more sets of conditions which indicate when
the Sub-module is applicable to a request and one or more
sets of corresponding actions to take when the conditions are
met. When an application sends a request to the kernel
subsystem, the kernel subsystem determines whether the
request meets the conditions of a particular Sub-module. If
the particular sub-module’s conditions are met, the kernel
Subsystem performs the corresponding actions of the par
ticular sub-module.

20 Claims, 4 Drawing Sheets

S&ts:: S-kills

US 9,477,538 B2
Page 2

(56) References Cited OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS U.S. Appl. No. 13/450,396, filed Apr. 18, 2012, Office Action, Nov.

2008/0320496 A1 12, 2008 Bari tal 13, 2013.
2009,0265780 A1* 10, 2009 E. 726/22 U.S. Appl. No. 13/450,396, filed Apr. 18, 2012, Notice of Allow

2010.0042977 A1 2/2010 Chinchalkar et al. 717/128 ance, May 1, 2014.
2013,0159977 A1* 6, 2013 Crosetto G06F 11.3636

717/128 * cited by examiner

U.S. Patent Oct. 25, 2016 Sheet 1 of 4 US 9,477,538 B2

FG.

iser Space
E.

Rcquests and Responscs

Conannications Endpoint Application Administrative Configratics Too:

Kerei Space
(5

Kerne Saisystem
(3

Enable:Disabie? violify Sub-edule

Sub-modic Su-nui Sub-modulic

U.S. Patent Oct. 25, 2016 Sheet 2 of 4 US 9,477,538 B2

FIG. 2

Stat-module
f

Cofiditions 2}} Actions 20

Task: Read Collect Cache i Rate
Metrics

File: data CS

Application Process
Identification Nii inher: 5.

Conditions 202 Actions 203

D: () Make Cache Hit vetrics
Available to the Requesting
Applicatio?

U.S. Patent

F.G. 3

Ferfeifi Aeikhs associated wi: the
y Cyfeilins

3.

i'ee: y
Sty-nick's
sidias yet

35

Is lic
S-link:
Es:
33

Oct. 25, 2016

23:48& Sixsystein
33

Receive Reines. Fra Asic::c-
3C)

Sheet 3 of 4 US 9,477,538 B2

s: 3:fit &
Actin Retsin Response to Apl.

3.

Sec NxS-Isis
33

Petit Estefani Atic
308

U.S. Patent Oct. 25, 2016 Sheet 4 of 4 US 9,477,538 B2

FG. 4

WAN SORAGE sER,
Disra,12 MEMORY DEVICE

4.
428

NPTDEVICE
44 426

CRSOR
CONTROL

416
PROCESSOR CONCAON OCA NEWORK

44. AERFACE NETWORK
48 422

US 9,477,538 B2
1.

METHOD AND SYSTEM FOR THE SUPPORT
OF APPLICATION SPECIFIC POLICES FOR
CONVENTIONAL OPERATING SYSTEMS

PRIORITY CLAIMS

Related Applications

This application is a continuation of U.S. patent applica
tion Ser. No. 13/450,396, filed Apr. 18, 2012, entitled
“METHOD AND SYSTEM FOR THE SUPPORT OF
APPLICATION SPECIFIC POLICIES FOR CONVEN
TIONAL OPERATING SYSTEMS, now issued as U.S.
Pat. No. 8,839,272 B2, the entire contents of which is
incorporated for all purposes as though fully stated herein.

FIELD OF THE INVENTION

The techniques presented herein are directed towards
Support of application specific policies for conventional
operating systems.

BACKGROUND

An operating system (OS) is a set of programs that
manage computer hardware resources and provide common
services for application software. In many cases, developers
of operating systems will organize the various management
and service functions that the operating system provides into
a set of components. These components may cover aspects
of the operating system such as networking, security, and the
user interface.
One component, referred to as the kernel, is generally

considered the main component of the operating system and
acts as a bridge between the applications and the data
processing performed at the hardware level. The kernels
basic functions typically include process management,
memory management, device management, and system
calls. The kernel may also be compartmentalized into sev
eral subsystems, each of which controlling a different func
tionality. For example, one Subsystem may implement a
virtual file system and another Subsystem may implement
the kernel's scheduler.
A conventional computer operating system typically seg

regates virtual memory into kernel space and user space.
Kernel space is reserved for running the kernel and user
space is the memory area where all user mode applications
work.

In order to protect the operation of the kernel, many
central processing unit (CPU) architectures implement
modes which can place restrictions on the type and scope of
operations performed by certain processes being run by the
CPU. Typically, a CPU will support at least two modes.
Kernel mode, also known as Supervisor mode, has unre
stricted access to the computer's resources. For example, in
kernel mode the CPU may perform any operation allowed
by its architecture, execute any instruction, initiate any I/O
operation, and access any area of memory. By contrast, user
mode is restricted and certain instructions are not permitted.
For example, an application running in user mode may be
restricted from accessing memory locations in kernel space.

In some implementations, an application running in user
mode gains access to resources reserved to the kernel by
making a system call which requests a service provided by
the kernel. This system call causes the CPU to switch from
user mode to kernel mode and invokes the kernel which then
performs the requested service on behalf of the application.

10

15

25

30

35

40

45

50

55

60

65

2
Typically, system calls are implemented by a software
interrupt that transfers control to the kernel. As a result, an
application making a system call sets a register with an
identifier unique to the particular system call being made
and triggers the interrupt. Once control is transferred to the
kernel, the kernel looks up the identifier in a table, known as
a system call table, to locate the memory address of the code
that that will be executed to perform the system calls
service. In addition, in order to pass parameters for the
system call, the application sets other registers with memory
addresses specifying the location of the parameters, which
will often times reference the application’s own call stack.
Due to the power that kernel mode possesses, great care

is taken in selecting the code allowed to run within the
kernel. Malicious code which finds its way into the kernel
can often times be difficult to detect and can cause undesir
able results ranging from a system crash to an attacker taking
control of the system. Typically, users and administrators
only run code within the kernel that comes from a trusted
Source. Such as the developer or owner of the particular
Subsystem that the code is intended to implement, extend, or
modify.

Balanced against the danger of introducing code into the
kernel is the desire to add functionality to the kernel which
may not have existed at the time the kernel was originally
loaded into the system.

In some cases, an application may require metrics regard
ing a Subsystem's performance of the application's tasks.
User space tools can be used to collect a fairly wide range
of application level metrics using existing OS provided
library and system calls. However, customized application
specific views into operating system information are gener
ally not available. For example, conventional OSIO metric
collection APIs do not offer access to fine grained charac
terizations of the IO access patterns of a specific application
or application group of processes nor the ability to direct the
collection of the metrics.

Furthermore, in other cases, an application may require
content management information from the Subsystem. For
example, an application may be interested in monitoring
changes made by itself or other applications to a particular
set of files. However, customized application specific reports
into the modification history of files are generally not
available from a conventional OS.
More often than not, the applications which require the

customized functionality do not come from a trusted Source
Such as those previously mentioned. As such, applications
are typically not allowed to load code into the kernel to
create the extended functionality. Furthermore, even if the
applications were trusted, without Support from the kernel
Subsystem no interface would exist to allow the application
to communicate to the Subsystem when and how the new
functionality should be applied. Therefore, support of appli
cation specific policies for conventional operating systems
remains an ongoing problem.
The approaches described in this section are approaches

that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any
of the approaches described in this section qualify as prior
art merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accompany

US 9,477,538 B2
3

drawings and in which like reference numerals refer to
similar elements and in which:

FIG. 1 is a block diagram that illustrates an embodiment
of an operating system design which can Support application
specific policies.

FIG. 2 is an example of a sub-module which defines the
conditions and actions constituting an application specific
policy.

FIG. 3 is a flow diagram showing an embodiment kernel
Subsystem handling a request from an application.

FIG. 4 is a block diagram that illustrates a computer
system upon which an embodiment may be implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of expla
nation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur
ing the present invention.
General Overview

In some embodiments, the kernel Subsystem may provide
Support for a particular set of requests. For example, a kernel
Subsystem that implements a virtual file system may handle
requests to read or write to files on the virtual file system.

In an embodiment, the kernel Subsystem may handle each
type of request the same way regardless of the circumstances
of the request. For example, in the case of a request to write
to a file, the kernel Subsystem may provide a response that
simply performs the write without collecting any kind of
extra information. This type of response does not depend
upon the circumstances of the request Such as the specific
application making the request or the targets of the request.
Thus, the same response may be applied generally to satisfy
the requests of a multitude of different applications. In some
cases, such a response may be considered a “default action”
of the kernel subsystem.

However, there are times when, under certain circum
stances, an application may require requests to be handled in
a way that deviates from the default actions.

For example, a kernel Subsystem's default actions may
collect metrics related to file access frequency, but without
keeping track of the particular applications which have been
accessing the files. As such, the kernel Subsystem may only
be able to provide general metrics related to the overall
access frequency of the files. If an application requires a
more specialized metric, such as its own access frequency,
the kernel subsystem may not be able to provide that
information.

In order to Support Such specialized metrics the kernel
Subsystem may require the ability to recognize when a
particular application is making a request and perform an
action that is tailored to that particular application. For
example, the kernel Subsystem may keep track of a separate
file access frequency that only considers accesses made by
the particular application.
As another example, an application may need to monitor

a specific set of files and collect content management
information Such as how the files change over time and/or
which applications initiated those changes. However, a
kernel Subsystem may satisfy write requests with a default
action that does not keep track of a change log containing the
pertinent information. Therefore, again, the default actions

5

10

15

25

30

35

40

45

50

55

60

65

4
of the kernel Subsystem may be inadequate to provide the
information required by the application.

In order to support customized content management infor
mation, the kernel Subsystem may require the ability to
recognize when certain files have been made the target of an
applications request and perform an action tailored to that
circumstance. For example, the kernel Subsystem may
update a change log to indicate the file being changed, the
byte range being modified, the content of the change and/or
the application initiating the change. The application may
then, upon receiving the collected information, perform
analysis and take appropriate actions such as applying a
specific tag to the file.

In some embodiments, a kernel Subsystem may define
sub-modules which represent policies that dictate how to
handle requests depending on the circumstances. The Sub
modules may define one or more sets of conditions which
inform the kernel subsystem when the sub-module should be
applied. Additionally, the Sub-modules may define one or
more sets of actions to take when that Sub-module’s condi
tions have been met. As such, the actions of a Sub-module
may take the place of or augment the kernel Subsystems
default actions when the sub-module’s conditions have been
met. “Augmenting, in this case, means performing the
sub-module’s actions in addition to the default actions. In
other embodiments, Sub-modules may also provide Support
for entirely new requests which have no corresponding
default actions.

Thus, in an embodiment, a kernel module representing a
kernel Subsystem is executed within an operating systems
kernel. The kernel Subsystem may be configured to respond
to particular requests with one or more default actions.
Additionally, the kernel subsystem may define a number of
Sub-modules which represent application specific policies
that deviate from the default actions. Each sub-module may
define one or more sets of conditions which indicate when
the Sub-module is applicable to a request and one or more
sets of corresponding actions to take when the conditions are
met. When an application sends a request to the kernel
subsystem, the kernel subsystem determines whether the
request meets the conditions of a particular Sub-module. If
the particular sub-module’s conditions are met, the kernel
Subsystem performs the corresponding actions of the par
ticular sub-module.
Structural Overview

FIG. 1 is a block diagram that illustrates an embodiment
of an operating system design which can Support application
specific policies.

Kernel subsystem 103 may represent any number of
Subsystems including, but not limited to, a virtual file
system, a scheduler, or a device driver. Kernel Subsystem
103 contains a number of sub-modules such as sub-modules
106, 107, and 108. In addition, kernel subsystem 103 is in
communication with a number of user space 104 entities
Such as application 101 and administrative configuration
tool 102. Messages between kernel subsystem 103 and user
space entities Such as application 101 may take place
through an intermediary Such as communications endpoint
100. While only communications endpoint 100 between
application 101 and kernel subsystem 103 is depicted, any
user space entity including administrative configuration tool
102 may make use of a communication endpoint. In addi
tion, while only a specific number of kernel Subsystems,
Sub-modules, applications, administrative configuration
tools and communication endpoints have been illustrated for
the sake of convenience, an embodiment may in fact contain
any number of these entities.

US 9,477,538 B2
5

FIG. 2 is an example of a sub-module which defines the
conditions and actions constituting an application specific
policy.

Sub-module 106 defines sets of conditions 200 and 202 as
well as corresponding actions 201 and 203 to take if those
conditions are met. Note that while sub-module 106 depicts
only two sets of conditions, a Sub-module may in fact define
any number of sets of conditions. Furthermore, while only
one action is defined by sub-module 106 for each set of
conditions, a Sub-module may in fact define multiple actions
for each set of conditions.

Functional Overview

Loading the Kernel Subsystem

FIG. 3 is a flow diagram showing an embodiment kernel
Subsystem handling a request from an application.
At block 300 the kernel subsystem is loaded into the

kernel. In an embodiment, the kernel Subsystem may be
loaded into the kernel by means of an update requiring the
entire kernel to be rebuilt and rebooted. However, other
embodiments may make use of tools such as Loadable
Kernel Modules (LKMs) to alleviate the need to rebuild or
reboot the kernel. LKMs are typically object files that
contain code to extend the running kernel, also referred to as
the base kernel, of an operating system. One example of how
LKMs can be implemented and used is described by a
document authored by Peter Jay Salzman entitled “The
Linux Kernel Module Programming Guide.” 2007, the entire
contents of which is incorporated by reference for all pur
poses as if fully set forth herein. While this reference only
describes LKMs with regard to the Linux operating system,
many operating systems provide similar functionality under
slightly different names such as kernel loadable modules for
FreeBDS and kernel extensions for Mac OS X. As a few
additional examples, Windows, AIX, and Solaris also pro
vide support for LKMs. LKMs and other modules that
extend the base kernel will be referred to as kernel extension
modules.

Application Requests

At block 301 the kernel subsystem receives a request from
an application. In an embodiment, once the kernel Subsys
tem is loaded, applications can begin to send requests to the
kernel Subsystem to perform tasks on the application’s
behalf. For example, if the kernel subsystem is a virtual file
system an application may make a system call that sends a
request to write to a particular file. While a system call is
used in this example, any inter-process communication
mechanism which is capable of sending a message from an
application to a kernel Subsystem may be employed Such as
interrupts and call gates.

In some embodiments, the messages sent by the applica
tion may be handled by an intermediary between the kernel
Subsystem and the application Such as a communication
endpoint. In some cases, a communication endpoint may
define an interface for sending messages back and forth
between user-space to kernel-space. As such, the application
and the kernel subsystem may be insulated from the imple
mentation details of the context switch between user mode
and kernel mode. In addition, if multiple kernel Subsystems
are running concurrently, a communication endpoint might
ensure that the correct kernel Subsystem receives a given
message.

10

15

25

30

35

40

45

50

55

60

65

6
Sub-Module Selection

At block 302 the kernel subsystem determines whether
any Sub-modules have yet to be considered. In some
embodiments, after the kernel Subsystem receives a request
from an application, the kernel Subsystem determines
whether the request meets the conditions of an enabled
Sub-module. As such, the kernel Subsystem may check each
Sub-module that the kernel Subsystem possesses in order to
determine if any applicable sub-modules exist. However,
other embodiments may check only a subset of the sub
modules. For example, metadata may be stored by the kernel
Subsystem indicating that certain Sub-modules are only
applicable to certain requests. When a request is received,
the metadata may be used to limit the sub-modules that are
to be considered.

If the kernel subsystem determines that there are sub
modules that still need consideration, the kernel subsystem
chooses a sub-module at block 303. In some embodiments,
the kernel Subsystem may check the Sub-modules serially.
For example, the kernel Subsystem may keep track of a list
of all sub-modules that the kernel subsystem possesses. The
kernel Subsystem may then progress through that list, select
ing sub-modules in the order that they appear. However, the
exact order in which the sub-modules are selected is not
critical and data structures other than a list can also be
employed. In still further embodiments, sub-modules may
be considered in parallel through techniques such as multi
processing. In such embodiments, more than one Sub-mod
ule may be selected at block 303 depending on the degree of
parallelism.

Enabled and Disabled Sub-Modules

At block 304 the kernel subsystem checks whether the
sub-module is enabled. In an embodiment, once the kernel
subsystem is loaded, the sub-modules of that kernel subsys
tem begin as disabled by default. When disabled the sub
module’s code may be inactive. As such, the conditions
defined by a disabled sub-module may be ignored by the
kernel subsystem. However, in other embodiments, the
kernel Subsystem may set all or a Subset of its Sub-modules
to enabled by default.

In order to enable a disabled sub-module, an administra
tive configuration tool is employed to send a command that
informs the kernel subsystem to enable the sub-module. In
Some embodiments, the administrative configuration tool
provides a command line or graphical user interface that
allows the user to specify the one or more sub-modules to be
enabled. Alternatively, the administrative configuration tool
may be used by an application to enable a disabled Sub
module through use of an interface Such as an application
programming interface (API). The administrative configu
ration tool may also be used to disable one or more enabled
Sub-modules using the same techniques.
The administrative configuration tool has thus far been

described and depicted as communicating directly with the
kernel subsystem. However, in some embodiments the
administrative configuration tool may communicate with the
kernel Subsystem indirectly through an intermediary Such as
a communication endpoint.

If the sub-module is disabled, the kernel subsystem may
return to block 302.

Conditions

If the sub-module is enabled, the kernel subsystem checks
whether the conditions defined by the enabled sub-module
are met at block 305.

US 9,477,538 B2
7

The conditions defined by the sub-modules of a kernel
subsystem may relate to the function of that kernel subsys
tem. For example, a kernel Subsystem which represents a
virtual file system may be suited to collecting metrics related
to file access patterns. If an application requires a metric
Such as how often it receives cache hits when accessing a
particular file, the Sub-module may define a set of conditions
identifying the application, the particular file and the task to
be performed on the file. FIG. 2 illustrates such a case where
sub-module 106 defines set of conditions 200 which is met
when an application process with process identification
number 54 sends a request to read file data1.
The previous example identifies an application by a single

process identification number, but that may not always be
the case. An application may be implemented as multiple
processes, each of which potentially generating IO for
multiple storage targets that are important to the IO analysis
of a given application's process group. As such, an embodi
ment may define a sub-module with a condition that is met
when the process making the request belongs to a particular
application’s process group.

In another embodiment, a Sub-module may define a
condition that specifies a group of related or unrelated
processes that are of interest to the policy implemented by
the Sub-module. Unrelated processes are processes that do
not share a family relationship. Such as a common parent
process. This group of related or unrelated processes may be
considered an application group. In some embodiments,
application groups can be created, modified, or removed by
a user through the administrative configuration tool. In an
embodiment, the condition identifies each process in the
application group. In another embodiment, the condition is
satisfied when the requesting process is a member of the
application group.

In an embodiment, an application may require content
management information related to a specific set of files. As
a result, a sub-module may define a condition that specifies
the files that are to be monitored. In such an embodiment, the
condition may be satisfied when a request targets one or
more of those files. In another embodiment, the application
may only be interested in certain types of requests that target
the files. For example, the application may only be interested
in requests that will modify the files, such as a write request.
In an embodiment, the Sub-module also defines a condition
that specifies the request type.

In some embodiments, Sub-modules may define condi
tions which relate to attributes of the request such as which
application the request came from, what files the request
would access, or what devices the request would utilize. One
example of when a Sub-module may define Such conditions
is when the Sub-module implements a policy that monitors
those applications, files, or devices. As another example, a
set of actions within a Sub-module may be keyed to a
specific application or group of applications. Thus, in order
to limit those actions to the specific application or applica
tion group, the conditions that correspond to those actions
may identify the applications privileged to trigger those
actions. As a result, the conditions may only be satisfied
when a request is received from one of the privileged
applications. In an embodiment, this type of restriction may
be tied to actions that return information. As a result,
ensuring that the information is sent only to the applications
privileged to receive the information.

In other embodiments, Sub-modules may define condi
tions which check for special identifiers contained within the
request. For example, an application may use a generic
input/output control system call to send a request containing

10

15

25

30

35

40

45

50

55

60

65

8
a particular identifier to the kernel subsystem. FIG. 2 illus
trates such a case where sub-module 106 defines set of
conditions 202 which checks whether a system call sent a
message with identifier '10'. In some embodiments, iden
tifiers located within messages may indicate that the appli
cation is making a request that is specific to the functionality
provided by a particular Sub-module. As such, in an embodi
ment, the kernel Subsystem may not define any default
actions which can satisfy that request.

Additionally, a Sub-module may define conditions relating
to attributes of the file or device that the request will act
upon. For example, an application may require metrics
relating to a set of files tagged with an identifier Such as a
particular string. A sub-module may then define conditions
which are met when I/O occurs on files which contain that
identifier.

In some cases, the conditions that a Sub-module defines
may require modification. The administrative configuration
tool, in some embodiments, may provide an interface which
allows a user or application to add, modify, or delete
conditions defined by a given Sub-module. For example, a
user may employ the administrative configuration tool to
modify the conditions of sub-module 106 to collect cache hit
metrics when an application process with process identifi
cation number 54 reads file data2 instead of data1.
The conditions described by way of example in this

section are not exclusive. A Sub-module may in fact define
numerous different types and combinations of conditions
which, for the sake of brevity, have not been explicitly
described. As such, the conditions of a sub-module should
not be interpreted as limited to the examples provided above.

If the conditions of the enabled sub-module are not met
the kernel subsystem may return to block 302.

Sub-Module Actions

If the conditions of the enabled sub-module are met the
kernel Subsystem performs the corresponding actions
defined by the enabled sub-module at block 306. In some
embodiments, the actions defined by a sub-module are
implemented by code which is executed by the kernel
Subsystem when the corresponding conditions are met.

Referring back to FIG. 2, sub-module 106 defines set of
conditions 200 which is met when an application process
with process identification number 54 reads file data1. Once
the kernel Subsystem receives a request which satisfies that
condition, the code implementing the corresponding action
is executed. In this case, the executed code collects cache hit
rates experienced when the kernel subsystem services the
request to read file data1.

Although the collection of cache hit metrics is used for the
purposes of illustration in the embodiment of FIG. 2. Sub
module actions in different embodiments may collect other
information Such as different metrics and/or content man
agement information. A few non-limiting examples of other
metrics that may be collected are access patterns related to
specific files or devices, the speed with which the kernel
Subsystem performs certain tasks, and measurements of how
much time the kernel subsystem devotes to the requests of
certain applications. Furthermore, content management
information that a sub-module may collect in response to a
request to write to a file can include a change log indicating
the file being changed, the byte range being modified, the
content of the change and/or the application initiating the
change.

Sub-module 106 defines set of conditions 202 which is
met when an application makes a system call with the

US 9,477,538 B2

identifier '10'. Once the kernel subsystem receives such a
request, the kernel Subsystem executes code which makes
the collected metric data available to the application which
sent the request.

In some embodiments, the code that returns collected
information to an application may make the information
available by sending a message to the application. In other
embodiments, rather than sending the message itself, the
code may compile the information into a message and rely
on the default actions of the kernel subsystem to perform
additional steps needed to deliver the message.

In an embodiment, a request may contain information in
addition to the identifier, such as information indicating how
the application wants the collected information to be for
matted. For example, in the case where a sub-module defines
actions that collect more than one type of metric, the
additional information may specify which metrics are to be
returned. In another embodiment, the formatting may be
associated with settings associated with the Sub-module. In
Such embodiments, the settings may be modified by employ
ing the administrative configuration tool.

In an embodiment, a Sub-module may define more than
one set of actions. For example, in the case of metric
collection, each set of actions may collect a different type of
metric. In such embodiments, the administrative configura
tion tool may be employed to enable or disable sets of
actions within a sub-module. In this fashion, if a sub-module
defines a policy that performs sets of actions which are not
needed at the moment, those actions can be suspended to
save on overhead costs.

In some embodiments, the Sub-module may cause the
kernel Subsystem to send a response containing the collected
information to an application without waiting for a request
from an application. For example, the Sub-module may
cause the kernel Subsystem to push the collected information
to the application at periodic intervals once the Sub-module
is enabled. As a result, the conditions associated with the
actions of pushing the collected information may relate to
the periodic interval and check whether that interval has
elapsed. Since in these embodiments the conditions are
timer based, rather than request based, the process of check
ing whether the interval has elapsed may occur outside the
flow diagram depicted by FIG. 3. For example, the checking
may be performed by a background process. In an embodi
ment, the frequency with which the collected information is
pushed and/or an indication of the application that the
information is to receive the information may be stored as a
setting capable of being modified through the administrative
configuration tool.

In Some embodiments, once the Sub-module’s actions
have been performed, the kernel subsystem returns to block
302, to check whether the request has satisfied the conditions
of other sub-modules. However, other embodiments may
only allow one sub-module to perform actions for each
request. In Such embodiments, the kernel Subsystem may
skip block 302 and proceed directly to block 307.

Kernel Subsystem Default Actions

At block 307, the kernel subsystem determines if any
default actions are required.

In some embodiments, the kernel Subsystem defines a
number of default actions. The default actions may be
actions which are taken when the request does not meet the
conditions of any enabled Sub-module.

For example, if an application makes a request to a write
to a file, the request may not satisfy the conditions of any

5

10

15

25

30

35

40

45

50

55

60

65

10
enabled sub-module. Thus, there may be no specific policy
in effect which applies to the request. However, the appli
cation may still need the substantive work of writing to the
file completed. As such, the kernel Subsystem may define
default actions which apply generally to requests of a certain
type and at least performs the Substantive work required to
satisfy the request. In this case, the kernel Subsystem may
execute code which performs the default action of writing to
the file. In an embodiment, the default actions may still
collect information Such as metrics or content management
information, however the information collection may not be
as fine grained as the policies defined by the Sub-modules.

In some embodiments, a default action may be defined for
each type of request that an application can send to the
kernel subsystem. However, other embodiments may define
a default action for some types of requests but not others. If
a request is received for which no default action is defined,
the kernel Subsystem may send an error message back to the
application informing the application that the request cannot
be satisfied. For example, a Sub-module Such as the one
depicted in FIG. 2 may define a policy that collects appli
cation specific metrics and Supports a system call represent
ing a new type of request that returns the collected metrics.
If an application uses the system call while the sub-module
is disabled, the kernel subsystem may not have a default
action which can satisfy that request. As such, the kernel
Subsystem may return an error message to the application.

In other embodiments, the kernel subsystem may perform
the default action regardless of whether the applications
request met the conditions of an enabled sub-module. For
example, the default actions may perform the substantive
work needed to satisfy the request and the sub-module
actions may perform work which is beyond the scope of the
request, Such as collecting metrics. In such an embodiment,
block 307 may be skipped and the kernel subsystem may
proceed directly to block 308. Alternatively, in another
embodiment, the default actions may be performed before
the sub-module actions, and the metrics collected by the
Sub-module actions may relate to the Substantive work
performed to satisfy the request (i.e. the default actions).

In still other embodiments, the previous approaches may
be mixed. In Such embodiments, some Sub-modules may
define actions which replace the default actions and other
Sub-modules may define actions which augment the default
actions. As such, the Sub-module may provide a flag or some
other indication that the default action is to be replaced
rather than augmented. If the flag is encountered, the kernel
Subsystem may determine that no default action is required.

If a default action is determined to be required at block
307, the default action is performed at block 308 and the
kernel subsystem proceeds to block 309. If a default action
is determined to not be required, the kernel Subsystem may
proceed directly to block 309.

Response to the Application

At block 309 the kernel subsystem returns a response to
the application.

In some embodiments, the kernel Subsystem sends the
response by leaving the message in a user space memory
location where the application can access the response.
However, in other embodiments, the kernel subsystem may
make use of an intermediary, such as a communications
endpoint, to send the response to the requesting application.
The exact mechanism that the kernel Subsystem uses to
return a response is not critical. As such, the kernel Subsys

US 9,477,538 B2
11

tem may employ any number of different kinds of inter
process communication mechanisms to return a response to
the requesting application.

In an embodiment, the response will indicate whether or
not the request was successfully handled. For example, if an
application made a request to write to a file, the response
may indicate success by returning how many bytes had been
written. If the request was not handled successfully, the
response may contain an error message indicating why the
request could not be fulfilled.

In another embodiment, the response may contain infor
mation Such as content management updates or metrics
which have been requested by the application. In some
embodiments, the metrics may have been formatted into a
message by the actions of a sub-module at block 306. As
Such, the kernel Sub-module may return that message to the
application at block 309. However, in other embodiments,
the actions at block 306 may simply identify the metrics and
rely on block 308 or 309 to format the metrics into a message
that can be provided to the application.

Alternatives

The flow diagram of FIG. 3 depicts only one potential
embodiment. In some embodiments the blocks may be
ordered differently than they are currently depicted. In
addition, Some embodiments may combine, divide, remove,
or add blocks compared to the flow diagram depicted in FIG.
3. For example, an embodiment may check the conditions of
a sub-module at the same time or before checking whether
the sub-module is enabled. Also, an embodiment may deter
mine whether a default action is required before determining
whether an enabled Sub-module applies to the request.
Consequently, such an embodiment may perform the default
actions prior to performing the Sub-module’s actions.

Furthermore, in some embodiments, the interplay
between sub-module actions and default actions may follow
a call and return model rather than one being performed
before or after the other as depicted in FIG. 3. For example,
the code implementing the Sub-module actions may call the
code implementing the default actions rather than the kernel
Subsystem performing an explicit determination at block
307. As another example, the code implementing the default
actions may call a function of the kernel Subsystem that
determines if an applicable sub-module should be applied
before returning to the default action’s code. As a result,
depending on the embodiment, the Sub-module’s actions
may be called during the execution of the default actions and
Vice versa.

Additional Examples

As discussed above, sub-modules may be defined to
implement policies that collect file I/O metrics and content
management information. However, Sub-modules are not
limited to those uses and may in fact implement many
different types of features. The following will serve as a few
additional non-limiting examples of policies that can be
defined by sub-modules.

In an embodiment, a Sub-module may be defined to create
an access control policy for IO operations. When this
Sub-module is enabled, requests that perform IO operations
(open, close, read, write, etc) trigger the Sub-module’s
actions which perform an additional access check. Each OS
user (Subject) and file (object) is given an additional
enhanced set of security attributes (mandatory access control
security label) beyond the traditional OS file access security

10

15

25

30

35

40

45

50

55

60

65

12
model of users and user groups. These labels may include
attributes specifying non-classified, secret, and top secret
access. Whenever a subject attempts to access an object, an
additional authorization rule enforced by the sub-module
examines the enhanced subject and object security attributes
and decides whether the access can take place. In some
embodiments, any operation by any subject on any object
will be tested against the sub-module’s rule set to determine
if the operation is allowed. In other embodiments, the
Sub-module may define conditions that only trigger the
additional security check when the request targets a specific
object, is performed on behalf of a particular user, and/or
requires a particular IO operation to be performed.

In an embodiment, a Sub-module may be defined to create
limits on the operations users can perform on specific files.
For example, the sub-module’s policy may allow all users to
have access to update a particular file. However, the sub
module may constrain the operations that can be performed
during the update to only allow extension updates to the file
and deny updates to existing data blocks of the file. In some
embodiments, such a policy may be used in Support of an
Information Lifecycle Management (ILM) system that pre
serves the original state of all files through implementation
of an “append mode only file update model. In an embodi
ment, the Sub-module may define conditions that trigger the
limitation for all users or only a particular set of users. In
another embodiment, the Sub-module may define a condition
that only triggers the limitation during select time intervals,
such as updates occurring between 11:00 pm and 6:00 a.m.

In an embodiment, a Sub-module may define a policy that
collects file usage data. When this sub-module is enabled,
each IO operation is recorded with the operation type, file
ID, user, and time of access. An application can Subse
quently request this information from the Sub-module and
generate reports Summarizing which users accessed which
files for which operations during what timeframes for sub
sequent audit or monitoring purposes.

In an embodiment, a Sub-module may define a policy to
collect tiered storage candidate information. Tiered storage
or hierarchical storage management includes moving Stor
age objects to different storage classes based upon frequency
and/or recency of access. When this sub-module is enabled,
the sub-module will collect access frequency metrics for
files in a given file system over a repeating interval of time.
In some embodiments, at the end of each interval, the
Sub-module stores the frequency measurements within a log
file and begins collecting frequency measurements for the
next interval. This information can later be used by an
application that collects this data from Sub-module, analyzes
the collected metrics, and uses the results in applying the file
migration model for tiered storage. For example, the top N
most frequently accessed files for a given interval can be
candidates for migration to faster storage, such as Solid state
disks, and files on the fastest storage that have not accessed
during the interval can be candidates for migration to slower
storage for example, a Just a Bunch Of Disks (JBOD)
drive, an optical drive, or a tape drive. In other embodi
ments, the Sub-module may perform the analysis and use the
information to migrate files to different storage tiers, rather
than an application.

In an embodiment, a Sub-module may define a policy that
converts files from one format to another. For example, the
format of files generated by different operating systems,
such as Windows and Unix text files, may differ to some
degree. In Windows, lines in text files end with both a line
feed and a carriage return ASCII character, whereas UNIX
text lines end with a line feed character only. As a conse

US 9,477,538 B2
13

quence, some Windows applications will not show the line
breaks in Unix-format files. Likewise, Unix applications
may display the carriage returns in Windows text files with
Ctrl-m (M) characters at the end of each line. Thus, when
a UNIX user accesses a Windows text file, the Windows text
file will be automatically converted to a UNIX text file.
Likewise, when a Windows user accesses a UNIX text file,
the UNIX text file will be automatically converted to a
Windows text file. In some embodiments, rather than con
verting the file in place, the sub-module may perform the
conversion process transparently, thus allowing the applica
tion to view the file as though the file were converted,
without modifying the original file. For example, an appli
cation may access the file through a Network Attached
Storage (NAS) client. The sub-module may intercept the
request to access the NAS and convert the file's data before
returning the data to the calling application.
Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro
grammable gate arrays (FPGAs) that are persistently pro
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus
tom hard-wired logic, ASICs, or FPGAs with custom pro
gramming to accomplish the techniques. The special-pur
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 4 is a block diagram that illustrates a
computer system 400 upon which an embodiment of the
invention may be implemented. Computer system 400
includes a bus 402 or other communication mechanism for
communicating information, and a hardware processor 404
coupled with bus 402 for processing information. Hardware
processor 404 may be, for example, a general purpose
microprocessor.

Computer system 400 also includes a main memory 406,
Such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 402 for storing information
and instructions to be executed by processor 404. Main
memory 406 also may be used for storing temporary vari
ables or other intermediate information during execution of
instructions to be executed by processor 404. Such instruc
tions, when stored in non-transitory storage media acces
sible to processor 404, render computer system 400 into a
special-purpose machine that is customized to perform the
operations specified in the instructions.

Computer system 400 further includes a read only
memory (ROM) 408 or other static storage device coupled
to bus 402 for storing static information and instructions for
processor 404. A storage device 410. Such as a magnetic disk
or optical disk, is provided and coupled to bus 402 for
storing information and instructions.
Computer system 400 may be coupled via bus 402 to a

display 412, Such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 414, includ
ing alphanumeric and other keys, is coupled to bus 402 for
communicating information and command selections to
processor 404. Another type of user input device is cursor

10

15

25

30

35

40

45

50

55

60

65

14
control 416. Such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com
mand selections to processor 404 and for controlling cursor
movement on display 412. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., X) and
a second axis (e.g., y), that allows the device to specify
positions in a plane.
Computer system 400 may implement the techniques

described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 400 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 400 in response to
processor 404 executing one or more sequences of one or
more instructions contained in main memory 406. Such
instructions may be read into main memory 406 from
another storage medium, Such as storage device 410. Execu
tion of the sequences of instructions contained in main
memory 406 causes processor 404 to perform the process
steps described herein. In alternative embodiments, hard
wired circuitry may be used in place of or in combination
with software instructions.
The term “storage media' as used herein refers to any

non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 410.
Volatile media includes dynamic memory, such as main
memory 406. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Storage media is distinct from but may be used in con
junction with transmission media. Transmission media par
ticipates in transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com
prise bus 402. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be involved in carrying one
or more sequences of one or more instructions to processor
404 for execution. For example, the instructions may ini
tially be carried on a magnetic disk or Solid state drive of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 400 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in
the infra-red signal and appropriate circuitry can place the
data on bus 402. Bus 402 carries the data to main memory
406, from which processor 404 retrieves and executes the
instructions. The instructions received by main memory 406
may optionally be stored on storage device 410 either before
or after execution by processor 404.
Computer system 400 also includes a communication

interface 418 coupled to bus 402. Communication interface
418 provides a two-way data communication coupling to a
network link 420 that is connected to a local network 422.
For example, communication interface 418 may be an
integrated services digital network (ISDN) card, cable

US 9,477,538 B2
15

modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele
phone line. As another example, communication interface
418 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire
less links may also be implemented. In any such implemen
tation, communication interface 418 sends and receives
electrical, electromagnetic or optical signals that carry digi
tal data streams representing various types of information.

Network link 420 typically provides data communication
through one or more networks to other data devices. For
example, network link 420 may provide a connection
through local network 422 to a host computer 424 or to data
equipment operated by an Internet Service Provider (ISP)
426. ISP 426 in turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet” 428. Local
network 422 and Internet 428 both use electrical, electro
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 420 and through communication interface 418,
which carry the digital data to and from computer system
400, are example forms of transmission media.

Computer system 400 can send messages and receive
data, including program code, through the network(s), net
work link 420 and communication interface 418. In the
Internet example, a server 440 might transmit a requested
code for an application program through Internet 428, ISP
426, local network 422 and communication interface 418.
The received code may be executed by processor 404 as

it is received, and/or stored in storage device 410, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven
tion have been described with reference to numerous spe
cific details that may vary from implementation to imple
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
Scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which Such claims issue, including any
Subsequent correction.

What is claimed is:
1. A method comprising:
executing a module within a kernel of an operating

system, wherein the module includes a plurality of
sub-modules and each sub-module of the plurality of
Sub-modules is configured to detect a respective one or
more conditions and cause execution of a respective
one or more corresponding actions when the one or
more conditions are met:

the module receiving a command from an administrative
configuration tool executing in user space which speci
fies to modify the respective one or more conditions of
a particular sub-module of the plurality of sub-mod
ules;

the module modifying the respective one or more condi
tions of the particular sub-module based on the com
mand while the particular Sub-module is executing
within the kernel; and

wherein the method is performed by one or more com
puting devices.

2. The method of claim 1, further comprising:
the module receiving a request to perform a task on behalf

of a first application;

10

15

25

30

35

40

45

50

55

60

65

16
in response to a determination that the request meets the

respective one or more conditions of the particular
Sub-module, the module performing the respective one
or more corresponding actions of the particular Sub
module.

3. The method of claim 2, wherein, in response to the
determination that the request meets the respective one or
more conditions of the particular sub-module, the module
performs one or more default actions associated with the
task in addition to the one or more corresponding actions of
the particular sub-module.

4. The method of claim 2, wherein the one or more
corresponding actions of the particular sub-module collect
metrics related to performance of the task.

5. The method of claim 2, wherein the one or more
corresponding actions of the particular Sub-module perform
one or more of (a) access control for the task, (b) limit
operations that can be performed on a particular file, (c)
collects file usage data, (d) collects tiered storage candidate
information, or (e) converts data from a first format to a
second format.

6. The method of claim 2, wherein the first application is
executed by one or more processes, the one or more pro
cesses belong to an application group containing a plurality
of processes, and at least one condition of the one or more
conditions of the particular Sub-module specify the applica
tion group.

7. The method of claim 1, wherein the module represents
a virtual file system.

8. The method of claim 1, further comprising:
the module receiving a second command from the admin

istrative configuration tool to disable a currently
enabled sub-module of the plurality of sub-modules:

in response to receiving the second command, the module
disabling the currently enabled sub-module.

9. The method of claim 1, wherein at least one condition
of the one or more respective conditions of the particular
Sub-module specifies at least a particular file.

10. The method of claim 1, wherein at least one condition
of the one or more respective conditions specifies at least a
particular identifier associated with a file.

11. A non-transitory computer-readable storage medium
storing instructions which, when executed by one or more
processors, cause the one or more processors to:

execute a module within a kernel of an operating system,
wherein the module includes a plurality of sub-modules
and each sub-module of the plurality of sub-modules is
configured to detect a respective one or more condi
tions and cause execution of a respective one or more
corresponding actions when the one or more conditions
are met;

receive, by the module, a command from an administra
tive configuration tool executing in user space which
specifies to modify the respective one or more condi
tions of a particular sub-module of the plurality of
Sub-modules; and

modify, by the module, the respective one or more con
ditions of the particular sub-module based on the
command while the particular Sub-module is executing
within the kernel.

12. The non-transitory computer-readable storage
medium of claim 11, wherein the instructions, when
executed by the one or more processors further cause the one
or more processors to:

receive, by the module, a request to perform a task on
behalf of a first application:

US 9,477,538 B2
17

in response to a determination that the request meets the
respective one or more conditions of the particular
sub-module, perform, by the module, the respective
one or more corresponding actions of the particular
Sub-module.

13. The non-transitory computer-readable storage
medium of claim 12, wherein, in response to the determi
nation that the request meets the respective one or more
conditions of the particular sub-module, the module per
forms one or more default actions associated with the task in
addition to the one or more corresponding actions of the
particular sub-module.

14. The non-transitory computer-readable storage
medium of claim 12, wherein the one or more corresponding
actions of the particular sub-module collect metrics related
to performance of the task.

15. The non-transitory computer-readable storage
medium of claim 12, wherein the one or more corresponding
actions of the particular sub-module perform one or more of
(a) access control for the task, (b) limit operations that can
be performed on a particular file, (c) collects file usage data,
(d) collects tiered storage candidate information, or (e)
converts data from a first format to a second format.

16. The non-transitory computer-readable storage
medium claim 12, wherein the first application is executed

10

15

18
by one or more processes, the one or more processes belong
to an application group containing a plurality of processes,
and at least one condition of the one or more conditions of
the particular sub-module specify the application group.

17. The non-transitory computer-readable storage
medium claim 11, wherein the module represents a virtual
file system.

18. The non-transitory computer-readable storage
medium claim 11, wherein the instructions, when excuted by
the one or more processors, further cause the one or more
processors to:

receive, by the module, a second command from the
administrative configuration tool to disable a currently
enabled sub-module of the plurality of sub-modules:

in response to receiving the second command, disabling,
by the module, the currently enabled sub-module.

19. The non-transitory computer-readable storage
medium of claim 11, wherein at least one condition of the
one or more respective conditions of the particular sub
module specify at least a particular file.

20. The non-transitory computer-readable storage
medium claim 11, wherein at least one condition of the one
or more respective conditions specifies at least a particular
identifier associated with a file.

