
United States Patent

USOO9473.474B2

(12) (10) Patent No.: US 9,473.474 B2
Suffling (45) Date of Patent: Oct. 18, 2016

(54) COMMUNICATING AN IDENTITY OF A 8,316,237 B1 11/2012 Felsher et al.
GROUP SHARED SECRET TO A SERVER 2004/0158708 A1 8/2004 Peyravian et al.

2006/0205388 A1 9/2006 Semple et al.
2008/0216160 A1 9, 2008 Rollet

(71) Applicant: BlackBerry Limited, Waterloo (CA) 2010/0215172 A1 8/2010 Schneider
2010/0257365 A1 10, 2010 Anchan et al.

(72) Inventor: David Robert Suffling, Kitchener (CA) 2011/0314286 A1* 12/2011 Tie HO4L 63,1466
713,171

(73) Assignee: BlackBerry Limited, Waterloo (CA) 2012/0011360 A1 1/2012 Engels et al.
2012/0260329 A1 10/2012 Suffling

(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 275 days. FOREIGN PATENT DOCUMENTS

(21) Appl. No.: 14/332,617 CH 671663 9, 1989
EP 2224716 9, 2010

(22) Filed: Jul. 16, 2014 EP 232O348 5, 2011
WO 2009 1550O2 12/2009

(65) Prior Publication Data
US 2014/0331052 A1 Nov. 6, 2014 OTHER PUBLICATIONS

Related U.S. Application Data Bui. Notice of Allowance for U.S. Appl. No. 13/709,363, mailed
Aug. 31, 2015.

(62) Division of application No. 13/709,417, filed on Dec. ug Continued
10, 2012, now Pat. No. 8,832,444. (Continued)

(60) Provisional application No. 61/605,121, filed on Feb.
29, 2012. Primary Examiner — Jeffery Williams

(51) Int. Cl. (74) Attorney, Agent, or Firm — Integral IP; Miriam
H04L 29/06 (2006.01) Paton; Amy Scouten
H04L 9/32 (2006.01)
H04L 9/08 2006.O1

(52) U.S. Cl. () (57) ABSTRACT
CPC H04L 63/061 (2013.01); H04L 9/085 An identity is communicated by a client device to a server

(2013.01); Hu. 9/3218 (2013.01); Hot without requiring the identity to be disclosed to eavesdrop
9/3226 (2013.01); Hy 32.88: pers and without requiring the use of symmetric or asym

58) Field of Classification S h (.01) metric cryptography. In one example, the identity is an
(58) Field of Classification Searc identity of the client device, where the identity has been

None assigned to the client device by the server through the
See application file for complete search history. provisioning of a unique Subset of client-identifying keys. In

another example, the 1dent1ty 1s an 1dentity of a group share (56) References Cited h ple, the identity i identity of a group shared

U.S. PATENT DOCUMENTS

7,234,063 B1
7,627,901 B1

6/2007 Baugher et al.
12, 2009 Elliott

secret that has been provisioned by the server to the client
device.

16 Claims, 20 Drawing Sheets

US 9,473.474 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2012fO29083.0 A1* 11/2012 Resch HO4L 9.3093
T13,150

2013,0007453 A1
2013,0232344 A1
2014/OOO6792 A1

1/2013 Benantar
9/2013 Johnson et al.
1/2014 Fielder

OTHER PUBLICATIONS

Nakra, Second Office Action for CA2,805,529, mailed Oct. 19,
2015.

Bul, Jonathan. Restriction Requirement for U.S. Appl. No.
13/709,363, Nov. 21, 2014.
Nakra, Suchita. First Office Action for CA280.5529, Nov. 3, 2014.
Bui. Second Office Action for U.S. Appl. No. 13/709,363, mailed
Mar. 20, 2015.
Williams, Jeffery L. Notice of Allowance for U.S. Appl. No.
13/709,417, May 9, 2014.
Williams, Jeffery L. Restriction Requirement for U.S. Appl. No.
13/709,417, Jan. 14, 2014.
Wolters, Robert, Extended European Search Report for EP
12196295.5, Jul 15, 2014.
Wolters, Robert, Extended European Search Report for EP
121962.96.3, Jul 17, 2014.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 20 US 9,473.474 B2

12
6 - T

H(Tik- HT 2. HT k3) :
i8-7--- ---------est,

FIG. 1 24.

U.S. Patent Oct. 18, 2016 Sheet 2 of 20 US 9,473.474 B2

SERVER 2

2O4.

1 2 3.N
kikaka. kN

22

22

U.S. Patent Oct. 18, 2016 Sheet 3 of 20 US 9,473.474 B2

SAR

3.

STORE OR AWE ACCESS TO N KEYS (k1,k2, ... kN)

O EACH CENT DEVICE O BE PROVISORED,

ASSGN JNiCl, E SUBSET OF M KEYS (kci, kca, ..., kcal)
SELECTED FROM THE N KEYS (k1,k2, ..., kN)

3.

SORE NORMAON FROM FC S ERMNABE AN-C v. KEYS
AER ASSGN). C. W. C. CEN EWCE

36

TO EACH CENT DEVICE TO PROVES ONEO, PROVIDE SLESSET OF M KEYS
ASSGN. O. A C EN EWC,

EN

FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 20 US 9,473.474 B2

RECEIVE UNIQUE SUBSET OF M. KEYS (kc, kca, ..., kch)

NEE. O. NO
CCyNCAE
CNY

CA.CJLATE M HASHES (KC), (T KC2), ..., (T kCM)
A CRREN WE NERWA, WAE

C{},NCAE ESSAGE O SERVER COM FRSNG M ASES

H{T kC), H(kC2), ..., H(kcM) OR PORTIONS THEREOF OR
WAUES ONN RECN

FIG. 4

U.S. Patent Oct. 18, 2016 Sheet S of 20 US 9,473.474 B2

SAR

5O)

STORE OR HAVE ACCESS TO N KEYS (k1,k2, ... kN AND
NFORVAON ROf WC S DETERMINABE AC i? KEYS

(kc4, kca, , , kcal) OF N KEYS (k1,k2, kN) WERE PROVISIONED TO
Wi-C. CEN DEVICE

52

CA.C. AE N HASHES (T K1), (T k2), ..., {{ i kN)
A CRREN VE NERVAWA.E

SORE N ASri-ENEN WAES IN A3 E

ASSOCA AC ONE OF NAS-ENEN WAES C. CNE C. N.

KEYS (k. k2, ..., kN). FROM WHICH HASH-DEPENDENT VALUE WAS
ERNE)

RECEWE WESSAGE
RORNG O NY
PROWSON CEN

EyCE

MCREASES
YES

52 YES

EERMNE ER MESSAGE ENFES
FOWSONE EN DEW CE

EN

FIG. 5-1

U.S. Patent Oct. 18, 2016 Sheet 6 of 20 US 9,473.474 B2

54

FROV RECEIVE VESSAGE, EXRAC V. COMFONENS - RPORNG

TO BE H(T kc.), H(T kc2, ..., HCT kcM) OR PORTIONS THEREOF OR
WAUES E ENDENT ERECN:

56

CCARE EAC OF W CO-ONENS O AS--DEEN EN WAES
SORE N AB N CONSSEN ASCEEMEN WAE S.

CAE

58 EAC-COPCNEN S
CCNSSEN AT SORED
AS--E-ENEN WAE?

NO

SE ASSOCAON O CEERVNE KEYS ASSOCATE) ,
CONSSEN AS-DEPENDEN WAUES

SE SORE NORAN C. Ri KEYS
RNE A822 WR ROWSCNE O AROAR

CE: EWC,

KEYS WERE REWSNE
O ARCAR CEN EWCEP

CEER ANE AT MESSAGE EERNE -A ESSAGE
ENFES

ARCAR CEN DEWCE

ESN ENY
ANY ROWSON CEN

OW CE

FIG. 5-2

U.S. Patent Oct. 18, 2016 Sheet 7 of 20 US 9,473.474 B2

------ -------------------------------- ------

H{i k 1), H(T k2H ka k4 hit ks. ... H(T kN

FIG. 6
HTikah Tika)HTiks) Tettigssar

- - - - - - - - - - 830 N-624 628

62

U.S. Patent Oct. 18, 2016 Sheet 8 of 20 US 9,473.474 B2

STAR

7.

SORE OR AWE ACCESS C GRO SARE SECRES

(gSS1, gSS2, ..., gSSL) AMD N KEYS (ki, k2, ..., kN)
702

O EACH ONE OF GROUR SHARED SECRETS (gss, gSs2, ...,gss),
ASSGN UNOJE SuBSE OF M KEYS (k1, KG2, ..., ky)

SELECTED FROM N KEYS (k. k2, ... kN)
7.

SRENFORWAON ROW WIC S OEERNABE FC Vi KEYS
WERE ASSIGME TO WIC Gr8 SHARE SECRE

C EAC-CIEM CEV CEO E3E FROVES ONED, ASSIGN: A SUBSET OF
GROUP SHARED SECRETS (gssc?, gssC2, ...,gssCP) SELECTED FROM

GROUP SHARED SECRETS (gssigss2, ...,gss)

708

O EAC-CENT DEVICE O BE FROWSONE, ROWE ES ASSIGNED
SUBSET OF P GRO J SHARE SECRETS AND, POR EACH ONE OF P GROUP

SARED SECRETS, THE NIQUE SERSE OF M KEYS A WRE
ASSGNE O A Gri SARE SECRE

N

FIG. 7

U.S. Patent Oct. 18, 2016 Sheet 9 of 20 US 9,473.474 B2

SAR

3.

RECEIVE Si.JBSE OF P GROil SHARED SECRES AND FOR EACH ONE OF
PGROUP SHARED SECRETS, THE UNIQUE SUBSET OF A KEYS THAT WERE

ASSGNE. C. A GRC - SARE SECRE

32

NEE O COMMNCATE A
(GRC, SARE) SECRET

8. YES

SELECT ONE OF P GROUP SHARED SECRETS gssc TO COMMUNICATE

88

R EAC OF Mi KEYS HAWERE ASSIGNED O SEECE GROP

SiARED SECRET gssci, CALCJLA E CORRESPONDING ASHES
H{ i ke 1), Hi kg2},..., HT kgM) AT CURRENT TVE NERVAL VALUE

38

CALC, LATE HASH G T gsscir) USNG RANDOM VALUE r AND
OONAY SNG CRRENT ME MERVA, WAE

8

COf NCAE iSSAGE O SERVER CONANNG:

1) HASHES Hi kG), HiT kG2), H(kg) OR PORTIONS HEREOF OR
VALUES EFENEN HERECN:

2) VALUE r:
3) : ME INTERVAL VALUET;

4) HASH G T igsscr) OR PORTION THEREOF OR VALUE DEPENDENT
"HEREON

N

FIG. 8

U.S. Patent Oct. 18, 2016 Sheet 10 of 20 US 9,473.474 B2

SA-8

SORE OR 3AWE ACCESS O GRO SARE SECRES

(gSS4, gSS2, ..., gSS), N KEYS (k1,k2, ..., kN), AND INFORMATION
FROM WIC IT IS DETERMINABLE WHICH M KEYS (kg k2, ..., kgM)

fir ASSIGNE OF GROS S ARE SECRE

32

CA CATE N HASHES - k), H(T k2), ..., HT kN)
A CRRE i NWA WAE

SORE N AS-ENDENT WAS N AB

ASSOCAE EAC ONE OF NAS. EPEN EN WAUES O CNE OF N

KEYS (k1,k2, ..., kN FROM WHICH HASH-DEPENDEN VALUE WAS
ERN

RECEWE MESSAGE
UR-CRNG O CENTY GRCU

SHARE SECRET
NCREASES

YES

$1. YES

OEERN WEER MESSAGE ENTES GROUP SARE)
SECRE AN EER CEN EWCE OSSESSES DENE)

GRO SARE SECRE

EN

FIG. 9-1

U.S. Patent Oct. 18, 2016 Sheet 11 of 20 US 9,473.474 B2

4.

EXRAC FRO RECEWE WESSAGE WAES REORNG O SE.

HASHES HET kg), H(T kG2),..., HT kgM) OR PORTIONS THEREOF OR
WALUES DEPENDENT THEREON; 2) VALUE r, 3) TME MERVAL VALUET;
4) HASH G{ i jigsscir) OR PORTION THEREOF OR VA.JE DEPENDENT

TEREON

98

COMPARE EXTRACTED M COMPONENTS (1) TO STORED HASH-DEPENDENT
WAES UN CONSSEN HAS-DEFENDEN WAES ARE CCAE

98

CONSSEN AS-E-ENEN WAES CAE
NO

32O
92 YES

GROU
SE ASSOCAON O ERMN KEYS ASSOCAE) SARE

Wii CONSSEN AS-EFENDEN WAUES SECRE NO
24 ENE

USE SORED NORMAON O DENFY W-C GRO SARE

SECRET gssci (IF ANY WAS ASSIGNED KEYS DETER v NEDAT 1022

92

CA Cui. At E HASH G T gssci)
SNG XRACE WA PRORNG O BE WA

AND DENT FED GROUP SHARED SECRET gssc
923

COMPARE CALCui ATED G T gSSci) TO EXTRACTED G{ i gsscir

CN EC
CES NO OSSESS

CRO SARE SECRE
WAUES ARE CONSSEN2

S3.
YES

FIG. 9-2
CEN EWC,

OSSESSES
GRO SARE SECRE

U.S. Patent Oct. 18, 2016 Sheet 12 of 20 US 9,473.474 B2

SERVER COO

| 1 || 2 || 3 |. L.
64. 6C -88

U.S. Patent Oct. 18, 2016 Sheet 13 of 20 US 9,473.474 B2

SORE OR AWE ACCESS C G&C SARE) SECRES

(SS, CSS2, ..., , SS.)

O EAC CEN DEVC: TO BE PROWSCNED, ASSGN SUBSET OF

GROUP SHARED SECRETS (gssc 1, gssc2, ...,gssco) SELECTED FROM i.
GROP SHARE SECRETS (gSS4, gss2, ... gss)

TO EAC CEEN DEVICE TO BE PROWS ONE), ROWDE. S. BSE
O GRO SARE SECRES ASSGN) O A CN EWC

FIG. 11

U.S. Patent Oct. 18, 2016 Sheet 14 of 20 US 9,473.474 B2

STAR

123

RECEIVE SSSE O - GO, SARE SECRES

22
NEE C CCVMNCAEA NO
GROP SARE SECRE

a YES

SELECT ONE OF P GROUP SHARED SECRETS gssci TO COMMUNICATE

26

CA.C. LATE HAS- H(Tigssci) A CURRENT TIME INTERVAL VALET

18

CA.C. A E HAS- GT gsscii) isiNG RANDOM WAli Er AND
OONAY NCNG CLRREN VE NERVA WAE N AS

{COff NCAE WESSAGE O SERWER CONANG FOONCG WAS:

1) H(gssc.) OR FORTION THEREOF ORWALUE DEPENDENT THEREON:
2) WAJE :

3) VE INTERVAL VAL. E .
4) HASH G T igssci;) OR PORTION THEREOF ORVA. J.E DEPENDENT

EREON

EN

FIG. 12

U.S. Patent Oct. 18, 2016 Sheet 15 of 20 US 9,473.474 B2

SAR

30

SRE OR AWE ACCESS C GRO SARE SECRES

(SS1, SS2, ..., SSL)

32

CA.C.A.T.E. i. ASHES HET gSS1), H(gSS2), ..., H(Tigss
A. CRRENE ME INTERWA, WAE

3O4.

SORE A.S.EENCENT WAES M ABE

306

ASSO CAE EAC ONE OF AS-ENDEN WAES C NE OF

GROUP SHARED SECRETS (gss, gss2, ...,gss) FROM Wi-CH HAS--
EEEN WA, AS ERN

RECEVE MESSAGE
RFORNG ()). NY GRC

SARE SECRE
NCREASES

YES

32 YES

EERNE FEER WESSAGE ENES GRO SARE)
SEERE AN E-ER CEN EW CE ESSESSES ENE)

GRO SARE SECRE

END

FIG. 13-1

U.S. Patent Oct. 18, 2016 Sheet 16 of 20 US 9,473.474 B2

START
34.

EXRAC FRS RECEf MESSAGE CO-ONENS RPRNG 3.

1) H(Tigssc.) OR PORTION THEREOF OR VALUE DEPENDENT THEREON:
2 : 3) ; 4) G gssc) OR FORTION THEREOF OR VALUE

ENN RECN

36

COMPARE EXTRACTED COMPONENT (O STORED HASi-DEPENDENT
WAUES NL CONSSTEM ASH-DEPENDEN WALUE SOCATE

138

CONSSEN HAS-EPENDEN WAE OCAE

322 GRO

3E ASSOCAON O DEER?NE if C GRC SHARED

SHARED SECRET gssci SASSOCIAED WIT- SERENT
CONSSENT ASH-DEFENDENT WAUE

324:

CACULATE HASHGC gSSci)
USNG EXRACEO WAE PRCORNG O SE WAE

AND DENT FEED GROJE SHARED SECRET gssc
1326

COviFARE CA. Cui LATED G T |gsscir O EXTRACED Gigsscir

330

^{ CE* EWCE
WAES ARE CESSEN ? ES N OSSESS

GROUP SHARED SECRET
1332

YES CE. EWECE
OSSESSES

FG. 1 3-2 GROUP SARED SECRET

U.S. Patent Oct. 18, 2016 Sheet 17 of 20 US 9,473.474 B2

SAR

(i.

RECEWE ROW CN Vf CE ESSAGE PRORNG
ENY GRO SARE) SECRE AND PROW CEN
WCS OSSESSION OF GRC SARE SECRE

VESSAGE DENES
GRO SHARED AND CEN

DEWE POSSESSES ENED GRO
SAREO SECRET

RECEIVE FROf CEN EWC. RORE ENY
O CEN DEWCE

a 08

RPORE ENEY S EGVAE

4. O

AEN CAE ENE CEN EWCE

2
CEN EWC, SCCESSY

ANCAE?

a YES

REACCESS TO
SERVICES

FIG. 14

EYACCESS
O SERVICES

N

U.S. Patent Oct. 18, 2016 Sheet 18 of 20 US 9,473.474 B2

58 ROf SONG SER for

52 4 MEMORY
aROCESSOR 58 C.E. 5 AGREE.ON PARAVERS

c . I.

S.
COMNCAON
NERAE

5. CEN DEVCE

34 viv CFRY
1542 5. A&GREE-ON ARAMEERS

ROCESSOR 548 CODE

S$.
City. AON

NTERFACE 1552. HT kC1), H., (T KCM)

8. SS ERY
ROCESSOR 1. CODE SAGREE.ON ARAVERS

88
Ciff NEAC

NTERACE

U.S. Patent Oct. 18, 2016 Sheet 19 of 20 US 9,473.474 B2

* PROVISONNG SERVER

S3 16 MMORY
PROESSR 58 CODE AGREE.ON ARAEERS

2 (SSS1, ... , 9SS)

k k
8

COVNCAON , KN
NERFACE

82

CEN Ef CE

42 REE-CN ARAEENS
PROCESSR

168
(CSSC, ..., SSC)

1648 16
CONMNCACN
NRFACE (KG, ..., kgM}XP

658

68. SERVER

S8 Ef{RY
SC ANEE.ON DARAMEERS

83 CODE |

E. 1612 (gss...,gss) 1690T INFORMATION 1612 (9SS1 9SSL) 1690 T
685 35

CENECAN 64 (ki, K2, ..., kN)
NERACE

SS ABE

S. ASSECCAON

FIG. 16

U.S. Patent Oct. 18, 2016 Sheet 20 of 20 US 9,473.474 B2

?: RCWSONNG SERVER

EVORY f
ROCESSOR S COE AGREED-ON PARAVEERS

78
COMMNCAON
NERAE

s

7 CENT EVCE

1. MiY
742. AGRE.ON ARAMERS

ROCESSOR

f
{COINCAON

NERFACE

758

8 * 8. WCRY
ROCESSOR 1788 cope CODE AGREED-ON ARAMEERS

1712 (gSS, ..., gSSL) 1736 5: "I

88 3 752
CO?/NCATION gSSC)

NERFACE 9 ABE w.

754: G CSSC)
3. ASSOCAON

FIG. 17

US 9,473.474 B2
1.

COMMUNICATING AN IDENTITY OF A
GROUP SHARED SECRET TO A SERVER

TECHNICAL FIELD

The technology described herein relates generally to
identity protection.

BACKGROUND

A client device may seek to communicate an identity to a
server. For example, prior to permitting a client device to
gain access to one or more services in a network, a server of
the network may require authentication of the client device
as proof that the client device is a legitimate client of the
network server. In order to authenticate itself to the server,
the client device may be required to communicate an iden
tity to the server.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram illustrating a first technique
for the provisioning of client-identifying keys by a server to
a plurality of client devices, and the communication of one
client device's provisioned client-identifying key to the
server;

FIG. 2 is a schematic diagram illustrating a second
technique for the provisioning of client-identifying keys by
a server to a plurality of client devices, and the communi
cation of one client device's provisioned client-identifying
keys to the server;

FIG. 3 is a flowchart illustrating an example method to be
performed by a provisioning server for provisioning client
identifying keys to client devices;

FIG. 4 is a flowchart illustrating an example method to be
performed by a provisioned client device for communicating
its provisioned client-identifying keys to a receiving server;

FIGS. 5-1 and 5-2 are flowcharts illustrating an example
method to be performed by a receiving server for determin
ing whether a received message could have been commu
nicated by a client device that was provisioned with one or
more client-identifying keys;

FIG. 6 is a schematic diagram illustrating a first example
technique for the provisioning of group shared secrets by a
server to a plurality of client devices, and the communicat
ing of one client device's provisioned group shared secret to
the server;

FIG. 7 is a flowchart illustrating a first example method to
be performed by a provisioning server for provisioning
group shared secret identifying keys to client devices;

FIG. 8 is a flowchart illustrating a first example method to
be performed by a provisioned client device for communi
cating one of its provisioned group shared secrets to a
receiving server,

FIGS. 9-1 and 9-2 are flowcharts illustrating a first
example method to be performed by a receiving server for
determining whether a received message from a client
device identifies a group shared secret and whether the client
device possesses the identified group shared secret;

FIG. 10 is a schematic diagram illustrating a second
example technique for the provisioning of group shared
secrets by a server to a plurality of client devices, and the
communicating of one client device's provisioned group
shared secret to the server;

FIG. 11 is a flowchart illustrating a second example
method to be performed by a provisioning server for pro
visioning group shared secret identifying keys to client
devices;

5

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 12 is a flowchart illustrating a second example

method to be performed by a provisioned client device for
communicating one of its provisioned group shared secrets
to a receiving server;

FIGS. 13-1 and 13-2 are flowcharts illustrating a second
example method to be performed by a receiving server for
determining whether a received message from a client
device identifies a group shared secret and whether the client
device possesses the identified group shared secret;

FIG. 14 is a flowchart illustrating an example method to
be performed by a server for identification and authentica
tion of a client device;

FIG. 15 is a block diagram of an example provisioning
server, an example client device, and an example server
configured to perform the technique illustrated in FIG. 2;

FIG. 16 is a block diagram of an example provisioning
server, an example client device, and an example server
configured to perform the technique illustrated in FIG. 6;
and

FIG. 17 is a block diagram of an example provisioning
server, an example client device, and an example server
configured to perform the technique illustrated in FIG. 10.

DETAILED DESCRIPTION

The examples described herein are illustrated primarily in
relation to one or more servers and one or more client
devices. Each server may comprise one or more servers,
databases, computing devices, communication devices, or
other computing equipment adapted to communicate over a
network (either fixed or wireless) with client devices. Client
devices may comprise servers, personal computers, or other
data processing or communication devices, such as wireless
communication devices, communicating over fixed and
wireless networks and public networks.

It will be appreciated by those skilled in the art, however,
that this description is not intended to limit the scope of the
described examples to implementation on these particular
systems or devices. For example, the methods and systems
described herein may be applied to any appropriate com
munication device or data processing device adapted to
communicate with another communication or data process
ing device over a fixed or wireless connection, whether
portable or wirelessly enabled or not, whether provided with
Voice communication capabilities or not, and additionally or
alternatively adapted to process data and carry out opera
tions on data in response to user commands for any number
of purposes, including productivity and entertainment.

Thus, the examples described herein may be implemented
on computing devices adapted for communication or mes
saging, including without limitation cellular phones, Smart
phones, wireless organizers, personal digital assistants,
desktop computers, terminals, laptops, tablets, handheld
wireless communication devices, notebook computers,
entertainment devices such as MP3 or video players, and the
like. Unless expressly stated, a client, computing or com
munication device may include any Such device, and a
server may include similar types of devices, configured to
provide some or all of the processes described herein. The
configuration and operation of all such devices generally
will be known to those skilled in the art. The devices
described herein may be configured to manage crypto
graphic keys. For example, any of the devices described
herein may comprise or be configured to operate in con
junction with one or more key management components,
including, for example, a Subscriber Identity Module (SIM)

US 9,473.474 B2
3

card, a smart card, a trusted platform module (TPM), or a
hardware security module (HSM).
A client device may seek to provide an identity, and

optionally some proof of the identity to a network server.
This may happen, for example, as part of the process of the
client device authenticating itself to the network server. As
another example, in the case that the client device is a
satellite telephone with limited coverage, it may provide the
identity to a server as part of a check-in process to determine
if it has any pending text messages for download. In yet
another example, in the case that the client device is a
cellular telephone, it may provide the identity to a server
when periodically announcing its presence in an area. The
identity being provided by the client device may be, for
example, an identity of the client device, an identity of a
SIM card, an identity of a group to which the client device
belongs, or an identity of a group shared secret held by the
client device. It may be of interest to ensure that the identity
is communicated by the client device to the server in such a
way that the identity cannot be understood by an eavesdrop
per. It may also be of interest to ensure that the client device
cannot be tracked by an eavesdropper as a result of com
municating the identity. It may be possible for a client device
to obscure the identity it is communicating to the server by
using traditional cryptographic techniques, such as asym
metric cryptography, or by using database lookups, such that
each time the client device and the server communicate in
secret, they agree on a new random identifier to be used
during the next communication. However, these techniques
may be computationally expensive when a Denial of Service
(DoS) attack or a similar increase in computational load is
being experienced. From the point of view of the server, part
of the DoS risk is related to the fact that the server is not
privy to an identity of the purported client device with which
the server is communicating. Without being privy to this
identity, the server may be unable to screen out a purported
client device which is behaving maliciously.
A technique is herein proposed whereby a client device

that has previously been provisioned with one or more
cryptographic keys by a provisioning server is able to
communicate an identity to a server, herein described as a
“receiving server. The provisioned keys have been selected
from a plurality of cryptographic keys and embedded in the
client device at the time of manufacture, or provisioned at a
later date, for example, via a storage module like a SIM or
over a secure channel. The receiving server may have access
to the set of cryptographic keys or to data dependent on the
cryptographic keys, as well as access to information from
which it is determinable which of the cryptographic keys
were provisioned to the client device. The client device is
able to use one or more of its provisioned keys to commu
nicate an identity to the receiving server. Examples of
possible identities that may be communicated by the client
device include an identity of the client device itself, an
identity of a SIM card associated with the client device, an
identity of a group to which the client device belongs, an
identity of a group shared secret held by the client device, or
any other identity.
The basic principles of an example technique for com

municating an identity from a client device to a server are
described with respect to FIG. 1, which illustrates a server
104 and a plurality of client devices 100, including a client
device 101, a client device 102 and a client device 103. The
client devices 100 are illustrated as wireless communication
devices, however, any of the client devices 100 may alter
natively or additionally communicate via one or more fixed
connections. Properties of the client devices 100 and the

10

15

25

30

35

40

45

50

55

60

65

4
server 104 will be discussed later, with respect to FIGS.
15-17. In this simple example, the server 104 may store or
have access to a plurality of cryptographic keys 106, which
will herein be referred to as client-identifying keys 106 for
reasons that will become apparent later. The client-identi
fying keys 106, which include key k 108, key ka 110 and
key k 112, may be identified by indices 114, namely, index
1, index 2, and index 3, as shown in FIG. 1. In another
example (not shown), the client-identifying keys 106 may be
identified by arbitrary identifiers. In yet another example
(not shown), the client identifying keys may effectively
identify themselves.

Each one of the client-identifying keys 106 is a distinct
value. In one example, each of the client-identifying keys
106 is an effectively random value, such that it cannot be
generated again on another occasion, except by chance. In
this case, the client-identifying keys 106 would be stored by
the server 104 for future reference, for example, in a lookup
table. In another example, each of the client-identifying keys
106 is a quasi-random or pseudo-random value generated
using any Suitable generation algorithm, such that the same
client-identifying key 106 can be reliably generated on
another occasion in a repeatable manner. For example, a
particular client-identifying key k, could be calculated as a
hash of a concatenation of a random seed value S and an
index i. that is k=h(sli), where h is any suitable hash
algorithm, such as SHA-1, SHA-2, or MD5. In this case, the
client-identifying keys 106 may not be stored by the server
104, provided that the server 104 maintains a record of the
conditions under which the client-identifying keys 106 were
generated, including, for example, the hash algorithm hand
the random seed values. Each one of the client-identifying
keys 106 may be of a sufficient length and complexity that
it cannot be easily predicted or guessed by an attacker.
The server 104 assigns and provisions the client-identi

fying keys k 108, ka 110 and k 112 to the client devices
101, 102 and 103, respectively. The client-identifying keys
k 108, ka 110 and k 112 may be embedded in the client
devices 101, 102 and 103, respectively, at the time of
manufacture, or provisioned at a later date, for example, via
a storage module Such as a SIM, or via a transmission over
a secure channel.
The assignment of the client-identifying keys 106 to client

devices may be carried out in a random, pseudo-random or
quasi-random fashion or may be carried out in an arbitrary
fashion, and the server 104 may maintain a record (not
shown) of which of the client-identifying keys 106 was
assigned to which client device, for example, in the form of
a mapping function or a lookup table. Alternatively, the
assignment of the client-identifying keys 106 to client
devices may be carried out according to an algorithm. In
either case, the server 104 may store information (not
shown) from which it is determinable which of the client
identifying keys 106 was provisioned to which client device.
Thus, the information may comprise the relevant mapping
function, lookup table, algorithm or inverse thereof, or any
other information by which the server 104 can determine
which of the client-identifying keys 106 was provisioned to
which client device, or can determine to which client device
the subset of client-identifying keys 106 were assigned.

Alternatively, even if, at the time of assigning the client
identifying keys 106 to the client devices, the server 104
does not maintain any information from which it is deter
minable which of the client-identifying keys 106 was pro
visioned to which client device, it may still be possible for
the server 104 to subsequently obtain such information. For
example, after being provisioned with their respective cli

US 9,473.474 B2
5

ent-identifying keys, the client devices could Subsequently
inform a central infrastructure of which of the client-iden
tifying keys they possess, thereby permitting the server 104
to reconstruct a mapping function. For example, client
devices that were provisioned client-identifying keys during
manufacture could Subsequently register themselves with a
central infrastructure when first activated, and simultane
ously provide indications of the client-identifying keys with
which they were provisioned. In this case, it will be apparent
to those of ordinary skill in the art that it may be of interest
to communicate Such indications over a secure channel.

Returning to FIG. 1, the server 104 may possess a
modulating value T that changes from time to time and is
agreed on by the server 104 and any provisioned client
devices. For example, the modulating value T may be a time
interval value T and may be defined as the whole number of
fixed-length intervals (or variable-length intervals) since
Some arbitrary point in time. For ease of understanding, the
modulating value T is described herein as the time interval
value T. However, it will be appreciated that the value T may
refer to any modulating value that changes from time to
time.

The time interval value T may be updated by the server
104 and any provisioned client devices according to one or
more clocks, which may be synchronized. Alternatively or
additionally, the server 104 may broadcast a current time
interval value T to any provisioned client devices. The
provisioned client devices may check that a current time
interval value T has not been previously used.

It is possible that the time interval value T may be based
on a spatial location. For example, in the case of wireless
hotspots in coffee shops, each coffee shop may have its own
server, and each server might have its own time interval
value T.

It is also possible that the time interval value T may be
determined according to a combination of a time on a clock
and a spatial location. For example, the time interval value
T may determined by "output concatenation/Cartesian prod
uct’.

At any given moment in time, a legitimate client device
may possess a current time interval value T that differs from
a current time interval value T possessed by the server 104.
The current time interval value T of the legitimate client
device may differ from that of the server 104, for example,
due to clock disagreement or latency associated with broad
casting or synchronization.

For each new time interval value T and for each of the
client-identifying keys 106, the server 104 may apply a
function H to a combination of the time interval value T and
the client-identifying key. Such a combination of two or
more values, for example value X and value Y, is denoted
herein as (X|Y) and refers to a concatenation or to any other
combination of the values. The function H may be a function
that is difficult to reverse, such as a hash algorithm. For
example, the function H may be any of SHA-1, SHA-2, or
MD5. In one example, the function H is a SHA-2 algorithm
no smaller than SHA-256. It will be appreciated, however,
that the function H may represent other operations. For
example, the function H may correspond to a block cipher.
It will also be appreciated that the definition of the function
H may change from time to time, provided that the definition
is agreed on by the entities involved, in this case, the server
104 and the client devices 101, 102 and 103. For example,
the definition of the function H may change in accordance
with a change in the current time interval value T. The server
104 may broadcast an indication of the function H that is
currently in use. For simplicity, in the following discussion,

10

15

25

30

35

40

45

50

55

60

65

6
the function H is referred to as a hash algorithm H, and any
expression of the form HCX) is described as a hash.

It is noted that the length of time over which a particular
time interval value Tremains unchanged should generally be
sufficient to allow the server 104 to calculate and store any
required hashes for any time interval value T that is likely to
be considered current by a provisioned client device, as will
be discussed further below. For example, the shorter the
length of the time interval, the more intervals the server 104
may need to consider active at any given time, depending on
a maximum acceptable clock differential between the client
devices and the server 104. However, as will be discussed
later, it is still of interest to keep the length of the time
interval short enough to limit the window of opportunity for
replay attacks, and to reduce the risk of being tracked by an
eavesdropper. In one example, the length of any time
interval is between five minutes and twenty minutes.

In the example of FIG. 1, the server 104 uses the hash
algorithm H to compute hashes H(TIk) 118, H(TIk) 120
and H(TIk) 122. The server 104 may store each of the
hashes H(TIk) 118, H(TIk) 120 and H(TIk) 122 in a table
116. Alternatively, the server 104 may store only a portion
of each of the hashes H(TIk) 118, H(TIk) 120 and H(TIk)
122 in the table 116. In one example, the server 104 may
only store enough of each one of the hashes H(TIk) 118,
H(TIk) 120, and H(TIk) 122 to distinguish the stored value
from the rest of the values stored in the table 116. For
example, for a hash that is 256 bits in length, it may be
sufficient to store only the first 128 bits or the last 128 bits
or any predetermined 128 bits of the hash in order for the
stored value to be distinguished from rest of the values
stored in the table 116. In another example, a prefix tree, also
known as a trie, could be used to preserve Some number of
bits at the beginning of each hash, where the number of bits
preserved is the smallest number which distinguishes that
value from all other values in the trie. For example, if there
are one million hashes, but only one of the hashes has a Zero
as its first bit, only a single bit of that hash would be
preserved in the trie. In this case, the number of bits stored
for each hash may vary from hash to hash. In another
example, a variation of trie could be used in which a specific
bit is compared at each step, such that different bits are
preserved for different values. In yet another example, for
each of the hashes H(TIk) 118, H(TIk) 120 and H(TIk)
122, the server 104 may compute some other value depen
dent thereon, and store the hash-dependent values in the
table 116. For example, each hash-dependent value may be
computed by applying a hash algorithm F to a combination
of one of the hashes H(TIk) and a small random seed value
s, that is F(H(TIk)ls), where the hash algorithm F may be the
same or different from the hash algorithm H, where the seed
values is determined by trial and error such that the first N
bits of each hash-dependent value F(H(TIk)ls) are unique
amongst all the hash-dependent values, and where N may be
close to the theoretical limit on size (i.e., the minimum
number of bits for which the new hashes can still be
distinguished from each other).

Thus, while table 116 is illustrated as comprising each of
the hashes H(TIk) 118, H(TIk) 120 and H(TIk) 122 in its
entirety, the table 116 should be understood as alternatively
comprising only a portion of each of the hashes H(TIk) 118,
H(TIk) 120 and H(TIk) 122, or, alternatively, values
dependent thereon.

In addition, the combination of elements to which the
hash algorithm H is applied may comprise additional ele
ments (not shown) beyond a time interval value T and a
particular client-identifying key k. For example, the com

US 9,473.474 B2
7

bination may comprise the index i of the client-identifying
key k. Such that the hash corresponding to the particular
client-identifying key k, is expressed as H(Tilk). Including
an index as Salt in a hash calculation may make the hash
value harder to attack. 5

In any case, since each of the values stored in the table 116
may be computed as a result of applying a hash algorithm H
to a combination that includes at least the time interval value
T and a particular client-identifying key k, for simplicity,
these values will herein be referred to as hash-dependent 10
values, and any table in which these values are stored will
herein be referred to as a table of hash-dependent values.
However, it will be appreciated that a table is only one way
in which the hash-dependent values may be stored, and that
other data structures are possible for storage of the hash- 15
dependent values.

In order to account for client devices that possess adjacent
time interval values T due, for example, to clock disagree
ment or latency as discussed previously, the server 104 may
maintain one or more additional tables of hash-dependent 20
values (not shown) determined from previous time interval
values T or future time interval values T or both. Alterna
tively, the server 104 may maintain a single table that
includes hash-dependent values determined from the present
time interval value T and from previous time interval values 25
T or future time interval values T or both. For example, if the
time interval value T changes once per hour, the server 104
may store the hash-dependent values corresponding to the
time interval value T for the current hour and either the
previous hour or the next hour, or both. 30

For each table of hash-dependent values, the server 104
may associate each one of the hash-dependent values in the
table with the respective one of the client-identifying key
106 from which the hash-dependent value was determined
(or with the respective one of the indices 114 of the 35
client-identifying key 106 from which the hash-dependent
value was determined). The association may comprise, for
example, a reverse map, a hash table, an index tree, an
exhaustive linear search, or an ad-hoc function f.

In the case that the association comprises a hash table, 40
Some of the information about a hash-dependent value may
be probabilistically preserved. For example, the position of
a record in the hash table may depend on the hash-dependent
value itself, but the position of the record may not be
completely deterministic in isolation. For example, the loca- 45
tion of other records in the hash table may force a particular
record to be relocated. It is possible that one portion of a
hash-dependent value could be used to determine storage
location, while another portion could be used for compari
son with a hash-dependent value received from a client 50
device, as will be discussed later.

In the case that the association comprises an ad-hoc
function f that associates a particular hash H(TIk) to a
particular client-identifying key k, the function might be
defined as f: H(TIk)->k, for valid time interval values T and 55
valid client-identifying keys k. It will be appreciated that,
for invalid time interval values T and/or invalid client
identifying keys k, the function f need not satisfy any
particular requirements. In the example of FIG. 1, the
association (not shown) for the table 116 of hash-dependent 60
values would associate the hashes H(TIk) 118, H(TIk) 120,
and H(TIk) 122 to the client-identifying keysk 108, ka 110
and k- 112, respectively (or to index 1, index 2, and index 3.
respectively).

At any time after being provisioned with its respective 65
client-identifying key, any of the client devices 101, 102 or
103 may seek to communicate an identity to the server 104.

8
For example, a client device may be required to provide an
identity as a prerequisite to authentication with the server
104, or as part of a check-in process with the server 104. In
another example, the client device may seek to provide an
identity when periodically announcing its presence to the
Server 104.

In the example illustrated in FIG. 1, the client device 103
seeks to communicate an identity to the server 104. For
simplicity, it may be assumed that the identity is an identity
of the client device 103, however, the identity could be some
other identity, such as an identity of a SIM card of the client
device 103.

In the simplified example of FIG. 1, the identity of the
client device 103 may be communicated to the server 104
using the client-identifying key k- 112 that the client device
103 received from the server 104. Rather than sending the
client-identifying key ka 112 directly to the server 104, the
client device 103 may apply the hash algorithm H to a
combination of at least the current time interval value T and
the client-identifying key k- 112, thereby obtaining a hash
H(TIk) 124. The nature of the combination and the defini
tion of the hash algorithm Hare the same as that used by the
server 104 to calculate the hashes H(TIk) 118, H(TIk) 120
and H(TIk) 122 as described previously. The client device
103 may communicate the hash H(TIk) 124 to the server
104, and the server 104 may proceed to compare the hash
H(TIk) 124 or a portion thereof or a value dependent
thereon to the hash-dependent values in the table 116. In
addition, the server 104 may optionally compare the hash
H(TIk) 124 or a portion thereof or a value dependent
thereon to hash-dependent values stored in one or more
additional tables (not shown) corresponding to one or more
adjacent time interval values T. This may be done until the
server 104 locates a hash-dependent value that is consistent
with the hash H(TIk) 124 or a corresponding portion
thereof or a value dependent thereon. For example, upon
comparing the hash H(TIk) 124 to the hash H(TIk) 118, the
server 104 will determine that the hashes are not consistent.
The server 104 may proceed to compare the hash H(TIk)
124 to the hash H(TIk) 120. Upon determining that the hash
H(TIk) 124 is not consistent with the hash H(TIk) 120, the
server 104 may then compare the hash H(TIk) 124 to the
hash H(TIk) 122. Upon determining that the hash H(TIk)
124 is consistent with the hash H(TIk) 122, the server 104
may cease to do any more comparisons.

In another example, in the case that the table 116 stores
hash-dependent values, such as F(HCTIk)ls), as described
previously, where s is a seed value determined by trial and
error and F is a hash algorithm that is the same as or different
than the hash algorithm H. upon receipt of the hash H(TIk)
124 from the client device 103, the server 104 may compute
a corresponding hash-dependent value F(H(TIk-)ls) for
comparison with the hash-dependent values F(H(TIk)ls)
stored in the table 116. It will be appreciated that, in this
case, there will be no direct comparison between any portion
of the hashes H(TIk) 118, H(TIk) 120, and H(TIk) 122
and any portion of the hash H(TIk) 124.

In the case that only a portion of the hash H(TIk) 124 or
a value dependent thereon is used by the server 104 for
comparison to portions of hashes or hash-dependent values
stored tables of hash-dependent values, the client device 103
may only communicate the relevant portion of the hash
H(TIk) 124 or the relevant hash-dependent value to the
server 104. In this case, the portion of a particular hash
H(TIk) that is needed for comparison or the manner by
which the hash-dependent value is to be determined may be
broadcasted or otherwise communicated to the client device

US 9,473.474 B2
9

103 by the server 104. However, given that bandwidth may
be inexpensive, it may be unnecessary to strictly limit the
size of the portion of a particular hash H(TIk) that is
communicated to the server 104. It is noted that, unlike the
client devices 100, the server 104 may store the hash
dependent values for all provisioned client devices, and may
therefore be in a position to check for collisions and resolve
them using a secondary strategy, Such as a modestly-sized
secondary table to distinguish between hash-dependent val
CS.

Returning to FIG. 1, once the server 104 locates one of the
stored hash-dependent values that is consistent with the
received hash H(TIk) 124 or portion thereof or value
dependent thereon, the server 104 may use the association to
determine which one of the client-identifying keys 106 (or
the indices 114) is associated with the consistent hash
dependent value. In this case, since the stored hash H(TIk)
122 is consistent with the received hash H(TIk) 124, the
server 104 may proceed to use the association to determine
that the hash H(TIk) 122 is associated with the client
identifying key k 112 (or with the index 3). Now the server
104 may use the stored information (not shown) from which
it is determinable which of the client-identifying keys 106
was assigned to which client device in order to determine
which client device, if any, was provisioned with the client
identifying key k- 112 (or with the key having the index 3).
In this case, the server 104 determines that it was the client
device 103 that was provisioned with the client-identifying
key ka 112.

In this example, no two client devices were provisioned
with the same one of the client-identifying keys 106, and
thus the client-identifying key k- 112 is unique to the client
device 103. It follows that the client device 103 may use the
client-identifying key k- 112 to uniquely identify itself to the
server, and it may do so in a way that cannot be understood
by an eavesdropper. Furthermore, since the client device 103
is communicating a value that changes with each new time
interval value T, it is not possible for the client device 103
to be tracked by an eavesdropper from one time interval
value T to the next. The eavesdropper cannot predict which
hash-dependent value will be communicated by the client
device 103 during a future time interval value T.
As mentioned previously, the client device 103 may be

Susceptible to tracking by an eavesdropper during the period
when the time interval value T remains unchanged. For this
reason, it may be of interest to use short-length time interval
values or to provision each client device with multiple sets
of client-identifying keys, or both.
As also mentioned previously, the proposed technique is

not resistant to replay attacks during the period when the
time interval value T remains unchanged. For example, an
eavesdropper could overhear the hash H(TIk) 124 that the
client device 103 communicates to the server 104. Even
though the eavesdropper does not know the client-identify
ing key k 112 from which the hash H(TIk) 124 was
calculated, if the eavesdropper repeats the hash H(TIk) 124
to the server 104 before the time interval value T has
changed, the eavesdropper will effectively be communicat
ing the identity of the client device 103 to the server 104,
even though it is not the client device 103. The eavesdropper
may not even be aware of which client device it is purporting
to be. Thus, the server 104 can only use a received hash to
determine if the hash could have been communicated by a
client device that was provisioned with one of the client
identifying keys 106. For example, if the server 104 receives
a message comprising a value that is not consistent with any
of the hash-dependent values in the table 116 or in any other

10

15

25

30

35

40

45

50

55

60

65

10
table of hash-dependent values (not shown), the server 104
can determine with certainty that the message does not
identify a client device that was provisioned with one of the
client-identifying keys 106. Similarly, even if the value is
consistent with one of the hash-dependent values in the table
116 or in any other table of hash-dependent values (not
shown), but the consistent hash-dependent value is associ
ated with a client-identifying key that was not provisioned to
any client device, the server 104 can also determine with
certainty that the message does not identify a client device
that was provisioned with one of the client-identifying keys
106. However, if the server 104 receives a message com
prising a value that is consistent with one of the hash
dependent values in the table 116 or in any other table of
hash-dependent values (not shown), and the consistent hash
dependent value does correspond to one of the client
identifying keys 106 that was provisioned to a particular
client device, the server 104 can only determine that the
message identifies that particular client device, and therefore
could have been communicated by that particular client
device. In other words, for a received message that includes
a hash or portion thereof or value dependent thereon, the
server 104 can either determine an identity of a single client
device which could have legitimately sent the message, or
determine that no legitimate client device could have sent
the message. It is noted that, while it is theoretically possible
for a hash of one value to be the same as the hash of another
different value, it is astronomically unlikely.

It is also noted that, in the case that an attacker repeatedly
prompts a client device to disclose an identity, it is possible
that the attacker could measure the exact moment that the
time interval value T of the client device changes, thereby
permitting the attacker to track the client device in the future
based on any discrepancy in the client device's clock. For
example, the attacker might be able to track a particular
client device based on that client device's clock being 12.6
seconds fast. This risk may be mitigated by having the client
devices obtain the current time interval value T from the
server 104, by having the client devices regularly synchro
nize their clocks with a central authority, or by introducing
a small random element into the timing of each client device,
Such that clock discrepancies between client devices cannot
be accurately measured by an attacker.

For a server with a very large number of client devices,
the simplified technique illustrated in FIG. 1 may impose a
large computational burden. For example, if the server had
to communicate with one hundred million client devices, the
server would have to store at least one hundred million
client-identifying keys in order for each client device to be
provisioned with a unique client-identifying key. The server
would also have to compute one-hundred million hashes at
every new time interval value T, which might be unfeasible.
It might also be unfeasible for the server to compare a
received hash or portion thereof with one hundred million
hashes or portions thereof. Although a high-end server might
be able to handle Such a load given a modestly-optimized
implementation, power usage, key security and latency
would suffer significantly. Furthermore, with a minimum of
3200 MB of key material (based on 128-bit keys), key
management would pose a significant challenge.
The computational burden on the server could be reduced

by provisioning more than one client-identifying key to each
client device. For example, if the server were to store N
client-identifying keys, and to provision each client device
with a unique subset of Y of the N client-identifying keys,
according to the equation for the binomial coefficient C(N,
Y) with the number N of client-identifying keys being much

US 9,473.474 B2
11

larger than the number Y of client-identifying keys in the
subset, the server would be able to uniquely provision
approximately N/Y! client devices, where “Y” denotes the
factorial of the number Y. In one example, if the server stores
N=1,000,000 client-identifying keys, and each client device
is provisioned with a unique subset of Y=4 of the 1,000,000
client-identifying keys, the server would be able to uniquely
provision approximately 4.17x10° client devices. Thus, by
provisioning each client device with more than one client
identifying key, the technique described with respect to FIG.
1 may be scaled for use with a much larger number of client
devices. The size of the subset of client-identifying keys
provisioned may vary from one client device to another.

Accordingly, FIG. 2 is a schematic diagram illustrating a
second example technique for the provisioning of client
identifying keys by a server 200 to a plurality of client
devices 101, 102 and 103, and the communication of the
client device 103's provisioned client-identifying keys to the
server 200. In contrast to the example technique illustrated
in FIG. 1, the example technique illustrated in FIG. 2
involves the provisioning of a plurality of client-identifying
keys to each one of the client devices 101, 102 and 103.
The server 200 may store or have access to N client

identifying keys (k. k. k. . . . , k) 202. The N client
identifying keys 202 may be identified by N corresponding
indices (1, 2, 3, N) 204, where N may take on any
positive integer value. In another example (not shown), each
of the N client-identifying keys 202 may be identified by an
arbitrary identifier. In yet another example (not shown), each
of the N client-identifying keys 202 may effectively identify
itself. Typically, the number N of client-identifying keys 202
will be less than the number of client devices that may
communicate with the server 200. In one example, the
number N of client-identifying keys 202 is N=1,000,000.

Each one of the client-identifying keys 202 is a distinct
value. In one example, each of the client-identifying keys
202 is an effectively random value, such that it cannot be
generated again on another occasion, except by chance. In
this case, the client-identifying keys 202 would be stored by
the server 200 for future reference, for example, in a lookup
table. In another example, each of the client-identifying keys
202 is a quasi-random or pseudo-random value generated
using any Suitable generation algorithm, Such that the same
client-identifying key 202 can be reliably generated on
another occasion in a repeatable manner. For example, a
particular client-identifying key k, could be calculated as a
hash of a concatenation of a random seed value S and an
index i. that is k=h(sli), where h is any suitable hash
algorithm, such as SHA-1, SHA-2, or MD5. In this case, the
client-identifying keys 202 may not be stored by the server
200, provided that the server 200 maintains a record of the
conditions under which the client-identifying keys 202 were
generated, including, for example, the hash algorithm hand
the random seed values. Each one of the client-identifying
keys 202 may be of a sufficient length and complexity that
it cannot be easily predicted or guessed by an attacker.

In the example illustrated in FIG. 2, the server 200 assigns
and provisions a subset of four of the N client-identifying
keys 202 to each of the client devices 101, 102 and 103. In
particular, the server 200 assigns a subset 206 of client
identifying keys (ks, k, k, k) to the client device 101.
a Subset 208 of client-identifying keys (k. ka ko, ks) to
the client device 102, and a subset 210 of client-identifying
keys (k, kz, kas, ko) to the client device 103.
The subsets 206, 208 and 210 of client-identifying keys

may be embedded in the client devices 101, 102 and 103.
respectively, at the time of manufacture, or provisioned at a

10

15

25

30

35

40

45

50

55

60

65

12
later date, for example, via a storage module Such as a SIM,
or via transmission over a secure channel.
The assignment of a Subset of the client-identifying keys

202 to each client device may be carried out in a random,
pseudo-random or quasi-random fashion or may be carried
out in an arbitrary fashion, and the server 200 may maintain
a record (not shown) of which of the client-identifying keys
202 were provisioned to which client device, for example, in
the form of a mapping function or a lookup table. Alterna
tively, the assignment of a Subset of the client-identifying
keys 202 to each client device may be carried out according
to an algorithm. In either case, the server 200 may store
information (not shown) from which it is determinable
which of the client-identifying keys 202 were provisioned to
which client device. Thus, the information may comprise the
relevant mapping function, lookup table, algorithm or
inverse thereof, or any other information by which the server
200 can determine which of the client-identifying keys 202
were provisioned to which client device, or can determine to
which client device the subset of client-identifying keys 202
were assigned.

Alternatively, even if, at the time of assigning the client
identifying keys 202 to the client devices, the server 200
does not maintain any information from which it is deter
minable which of the client-identifying keys 202 were
provisioned to which client device, it may still be possible
for the server 200 to subsequently obtain such information,
for example during registration of the provisioned client
devices with a central infrastructure, as described previously
with respect to FIG. 1.

Since there are likely more client devices than client
identifying keys 202. Some client devices may share one or
more of the same client-identifying keys. For example, in
FIG. 2, the client devices 101 and 102 have each been
provisioned with the client-identifying key k. It is also
possible that some of the client-identifying keys 202 may
not yet be provisioned to any client device at all, or else that
they may be provisioned to client devices that are not
illustrated in FIG. 2. In this example, it is assumed that no
two client devices are provisioned with exactly the same
subset of client-identifying keys 202.
As described with respect to FIG. 1, the server 200 may

possess a time interval value T that changes from time to
time and is agreed on by the server 200 and any provisioned
client devices. For example, the server 200 might broadcast
the current time interval value T. For each new time interval
value T and for each of the client-identifying keys 202, the
server 200 may calculate a hash of a combination of at least
the time interval value T and the client-identifying key using
a hash algorithm H, as described with respect to FIG. 1. In
the example illustrated in FIG. 2, the server 200 uses the
hash algorithm H to compute hashes H(TIk), H(TIk),
H(TIk), ..., H(TIk). As described with respect to FIG. 1,
the server 200 may store each of the hashes H(TIk),
H(TIk), H(TIk), ..., H(TIk) in a table 212 or some other
suitable data structure (not shown). Alternatively, the server
200 may store only portions of the hashes, or some other
values dependent thereon.
As described with respect to FIG. 1, in order to account

for client devices that possess adjacent time interval values
T, the server 200 may maintain one or more additional tables
of hash-dependent values (not shown) determined from
previous time interval values T or future time interval values
T or both. Alternatively, the server 200 may maintain a
single table that includes hash-dependent values determined

US 9,473.474 B2
13

from the present time interval value T and from previous
time interval values T or future time interval values T or
both.

For each table of hash-dependent values, the server 200
may associate each one of the hash-dependent values in the
table with the respective one of the client-identifying keys
202 from which the hash-dependent value was determined
(or with the respective one of the indices 204 of the
client-identifying key 202 from which the hash-dependent
value was determined). The association may be imple
mented as described previously with respect to FIG.1. In the
example of FIG. 2, the association (not shown) for the table
212 of hash-dependent values would associate each one of
the hash-dependent values in the table 212 with a corre
sponding one of the client-identifying keys 202 (or with a
corresponding one of the indices 204).
The client device 103 may seek to communicate an

identity to the server 200, where the identity is an identity of
the client device 103 or some other identity, such as an
identity of a SIM card of the client device 103. In the
example of FIG. 2, this may be done using the client
identifying keys (k. k.ks, ko) 210 with which the client
device 103 was provisioned by the server 200. For each of
client-identifying keys (k. k. kas, ko) 210, the client
device 103 may calculate a hash by applying the hash
algorithm H to a combination of at least the current time
interval value T and the client-identifying key. The nature of
the combination and the definition of the hash algorithm H
are the same as that used by the server 200 to calculate the
hashes H(TIk), H(TIk), H(TIk),..., H(TIk) as described
previously. From these hash calculations, the client device
103 may obtain four hashes 214: H(TIk), H(TIk),
H(TIk), and H(TIko). The client device 103 may com
municate the hashes 214 to the server 200, and, for each one
of the hashes 214, the server 200 may proceed to compare
the hash or a portion thereof or a value dependent thereon to
the hash-dependent values H(TIk), H(TIk), H(TIk),
H(TIk) stored in the table 212. In addition, for each one of
the hashes 214, the server 200 may optionally compare the
hash or a portion thereof or a value dependent thereon to
hash-dependent values stored in one or more additional
tables (not shown) corresponding to one or more adjacent
time interval values T. This may be done until the server 200
locates hash-dependent values that are consistent with each
of the received hashes 214 or corresponding portions thereof
or values dependent thereon.

In the case that the table 212 stores hash-dependent
values, such as F(H(TIk)ls), as described previously with
respect to FIG. 1, upon receipt of the hashes 214 H(TIk),
H(TIk7), H(TIk), and H(TIko) from the client device 103.
the server 200 may compute corresponding hash-dependent
values F(H(TIk)ls), F(H(TIk,)ls), F(H(TIka)ls), and F(H
(TIko)ls) for comparison with the hash-dependent values
F(H(TIk)ls) stored in the table 212.

In the case that only a portion of each of the hashes 214
H(TIk), H(TIka), H(TIka), and H(TIko) or values depen
dent thereon are used by the server 200 for comparison to
portions of hashes or hash-dependent values stored tables of
hash-dependent values, the client device 103 may only
communicate the relevant portions of the hashes 214 or the
relevant hash-dependent values to the server 200. In this
case, the portion of each hash that is needed for comparison
or the manner by which each hash-dependent value is to be
determined may be broadcasted or otherwise communicated
to the client device 103 by the server 200.

Returning to FIG. 2, once the server 200 locates stored
hash-dependent values that are consistent with the received

10

15

25

30

35

40

45

50

55

60

65

14
hashes 214 or portions thereof or values dependent thereon,
the server 200 may use the association to determine which
of the client-identifying keys 202 (or the indices 204) are
associated with the consistent hash-dependent values. In this
case, the server 200 may use the association to determine
that the hash-dependent values that are consistent with the
received hashes 214 or portions thereof or values dependent
thereon are associated with the client-identifying keys ks.
k7, k, ko (or with the indices 3, 17. 43 and 60). Now the
server 200 may use the stored information (not shown) from
which it is determinable which of the client-identifying keys
202 were provisioned to which client device in order to
determine which client device, if any, was provisioned with
the client-identifying keysk, kz, ka ko (or with the keys
having the indices 3, 17, 43 and 60). In this case, the server
200 determines that it was the client device 103 that was
provisioned with the subset 210 of client-identifying keys
(ks, k17, k43, kgo).

In this example, no two client devices were provisioned
with exactly the same subset of the client-identifying keys
202, and thus the subset 210 of client-identifying keys (k,
k7, k, ko) is unique to the client device 103. It follows
that the client device 103 may use the client-identifying keys
(k. k.ks, kao) to uniquely identify itself to the server 200,
and it may do so in a way that cannot be understood or
tracked by an eavesdropper from one time interval value to
the next. It will be apparent to those of ordinary skill in the
art that, if care is taken in provisioning, it may be possible
for a client device to uniquely identify itself using only some
of the client-identifying keys with which the client device
was provisioned. For example, in this simple case, it will be
apparent that the client device 103 could uniquely identify
itself to the server 200 using any one of its subset 210 of
client-identifying keys because none of the four client
identifying keys in the subset 210 was provisioned to any of
the other client devices (i.e., client devices 101 and 102).

Similarly to the technique described with respect to FIG.
1, this technique is not resistant to replay attacks during the
period when the time interval value T remains unchanged.
For example, an eavesdropper could overhear the hashes
214 that the client device 103 communicates to the server
200. Even though the eavesdropper does not know the
client-identifying keys 210 to which the hashes 214 corre
spond, or the current time interval value T if the eavesdrop
per repeats the hashes 214 to the server 200 before the time
interval value T has changed, the eavesdropper will effec
tively be communicating the identity of the client device 103
to the server 200, even though it is not the client device 103.
The eavesdropper may not even be aware of which client
device it is purporting to be. Thus, the server 200 can only
use received hash-dependent values to determine if the
hash-dependent values could have been communicated by a
client device that was provisioned with the subset 210 of
client-identifying keys 202. For example, if the server 200
receives a message comprising values that are not consistent
with any subset of the stored hash-dependent values in the
table 212 or in any other table of hash-dependent values (not
shown), the server 200 can determine with certainty that the
message does not identify a client device that was provi
sioned with a subset of the client-identifying keys 202.
Similarly, even if the server 200 receives a message com
prising values that are consistent with a Subset of the stored
hash-dependent values stored in the table 212 or in another
other table of hash-dependent values (not shown), but the
consistent hash-dependent values are not associated with
any subset of the client-identifying keys 202 that was
provisioned to a client device, the server 200 can determine

US 9,473.474 B2
15

with certainty that the message does not identify a client
device that was provisioned with a subset of the client
identifying keys 202. However, if the server 200 receives a
message comprising values that are consistent with a Subset
of the hash-dependent values stored in the table 212 or in
any other table of hash-dependent values (not shown), and
the consistent hash-dependent values correspond to a Subset
of the client-identifying keys 202 that was provisioned to a
particular client device, the server 200 can only determine
that the message identifies that particular client device, and
therefore could have been communicated by that particular
client device. In other words, for a received message that
includes a subset of hashes or portions thereof or values
dependent thereon, the server 200 can either determine an
identity of a single client device which could have legiti
mately sent the message, or determine that no legitimate
client device could have sent the message.

It will be apparent that, in the case that a particular client
device can be uniquely identified using only some of the
client-identifying keys with which it was provisioned, as
discussed above, the server 200 could make this determina
tion when the hash-dependent values received in the mes
sage are consistent with stored hash-dependent values that
are associated with only some of the client-identifying keys
of the subset provisioned to the particular client device.

While the servers 104 and 200 are each illustrated as a
single device, it is contemplated that each of the servers 104
and 200 may comprise multiple devices. For example, each
of the servers 104 and 200 may comprise one or more
provisioning servers, each of which is configured to provi
sion one or more client-identifying keys to one or more
client devices. Each of the servers 104 and 200 may also
comprise one or more receiving servers, each of which is
able to receive a message purporting to be from a provi
Sioned client device and determine whether the message
could have been communicated by a provisioned client
device. The calculation of the hashes and the determination
of the hash-dependent values to be stored for a particular
time interval value T may be performed by the one or more
provisioning servers or by the one or more receiving servers
or by some combination thereof. For example, the one or
more provisioning servers may share information with the
one or more receiving servers, such as any of the client
identifying keys and the information from which it is
determinable which client-identifying keys were provi
sioned to which client device. In one example, the shared
information is stored on one or more databases accessible by
the one or more provisioning servers and the one or more
receiving servers. In another example, in the case of more
than one receiving server, each receiving server may only be
able to identify a subset of the client devices that were
provisioned by a provisioning server. For example, the
receiving server may not have access to all of the client
identifying keys or to the information from which it is
determinable which client-identifying keys were provi
sioned to which client device.

In a variation on this system, a given receiving server may
not be permitted or able to identify all client devices that
were provisioned by a provisioning server. For example, the
receiving server may not have access to all of the client
identifying keys or hashes.

FIG. 3 is a flowchart illustrating an example method to be
performed by a provisioning server for provisioning client
identifying keys to client devices.
The method begins at 300 by having the provisioning

server store or have access to a plurality of N client
identifying keys (k. k. k). The N client-identifying

10

15

25

30

35

40

45

50

55

60

65

16
keys may be identified by indices (1, 2, . . . , N), where N
may take on any positive integer value. Alternatively, each
of the client-identifying keys (k. k. k.) may be
identified by an arbitrary identifier or may effectively iden
tify itself. As described with respect to FIG. 2, each one of
the client-identifying keys (k. k. k) is a distinct
value. Such as an effectively random value, a quasi-random
or a pseudo-random value, or a value that can be reliably
generated on another occasion in a repeatable manner. In the
latter case, it will be appreciated that the server may not
explicitly store the client-identifying keys (k. k. k),
provided that the server maintains a record of the conditions
under which the client-identifying keys were generated.
Each one of the client-identifying keys (k. k. k.) may
be of a sufficient length and complexity that it cannot be
easily predicted or guessed by an attacker.
At 302, the provisioning server assigns to each client

device j to be provisioned a unique subset of M, client
identifying keys (kci, kca. kot) selected from the N
client-identifying keys (k. k. . . . , ky), where M, is a
positive integer less than N. In the example illustrated in
FIG. 1, the number M, of client-identifying keys in the
subset for all client devices {i} is M-1, whereas, in the
example illustrated in FIG. 2, the number M, of client
identifying keys in the subset for all client devices {j} is
M-4. In other examples, some of the client devices {j} may
have more client-identifying keys provisioned thereto than
others of the client devices {j}. In the present example, all
client devices {j} are provisioned with a subset of MM
client-identifying keys. The assignment of the Subsets of
client-identifying keys to the client devices {j} may be
carried out in a random, pseudo-random or quasi-random
fashion or may be carried out in an arbitrary fashion, and the
server may maintain a record of which of the N client
identifying keys (k. k. k) were assigned to which
client device j, for example, in the form of a mapping
function or a lookup table. Alternatively, the assignment of
the subsets of client-identifying keys to the client devices {j}
may be carried out according to an algorithm. As noted
previously, two or more client devices may be assigned one
or more of the same client-identifying keys, provided that no
two client devices are assigned the exact same Subset of
client-identifying keys (k. k. ka). It is also
possible that some of the client-identifying keys (k,
k k.) may not yet be assigned to any client device at
all.
At 304, the provisioning server may store information

from which it is determinable which M client-identifying
keys were assigned to which client device. The information
may comprise the relevant mapping function, lookup table,
algorithm or inverse thereof, or any other information by
which the server can determine which of the client-identi
fying keys were provisioned to which client device. The
provisioning server may store the information in a memory
of the provisioning server or in one or more databases that
are accessible by both the provisioning server and a receiv
ing server. Alternatively, as described previously, the pro
visioning server may reconstruct a mapping function based
on information Subsequently obtained from provisioned
client devices.
At 306, the provisioning server provides to each client

device to be provisioned the subset of M client-identifying
keys (k. k. ...,k) assigned to that client device. Each
Subset of M assigned keys (k. k. k.) may be
embedded in a client device at the time of manufacture, or
provisioned at a later date, for example, via a storage module
Such as a SIM, or via a transmission over a secure channel.

US 9,473.474 B2
17

In the case that the provisioning server reconstructs a
mapping function based on information Subsequently
obtained from provisioned client devices, it will be appre
ciated that the provisioning of the client devices at 306 may
precede the storing of the information at 304.

FIG. 4 is a flowchart illustrating an example method to be
performed by a provisioned client device for communicating
its provisioned client-identifying keys to a receiving server.

At 400, the client device receives a unique subset of M
client-identifying keys (k. k. k.) from a provi
sioning server. As described above, the subset of M client
identifying keys may be embedded in the client device at the
time of manufacture, or may be received at a later date.

At some point after being provisioned with its unique
Subset of M client-identifying keys (k1,k2, ...,k), the
client device may determine at 402 that it has a need to
communicate an identity to a server. For example, it may
seek to request services from a web server which requires
identification of the client device as a prerequisite to authen
tication of the client device.
Once the client device determines at 402 that it has a need

to communicate an identity to the server, for each of the M
client-identifying keys received at 400, the client device
may proceed at 404 to calculate a hash by applying a hash
algorithm H to a combination of at least the current time
interval value T and the client-identifying key, thereby
obtaining M hashes: H(TIk), H(TIka). . . . , H(TIk).
Although not explicitly shown, the client device may receive
one or more of the current time interval value T, an indica
tion of the hash algorithm H. and an indication of the nature
of the combination via a broadcast from the provisioning
server or a receiving server.
At 406, the client device communicates a message to the

server comprising each of the M hashes H(TIk).
H(TIk),..., H(TIk) calculated at 404. Alternatively, for
each of the M hashes H(TIk), H(TIk), . . . , H(TIk)
calculated at 404, the client device may communicate a
message to the server comprising a portion of each hash or
a value dependent thereon.
The methods described herein are based on the assump

tion that each client device is provisioned with the same
number M of client-identifying keys. However, it will be
apparent to a person of ordinary skill in the art that different
client devices may be provisioned with different numbers of
client-identifying keys, provided that no client device is
provisioned with a subset of another client device's client
identifying keys. In one example, a client device may
indicate in the message communicated at 406 the number of
client-identifying keys to which the message pertains.

FIGS. 5-1 and 5-2 are flowcharts illustrating an example
method to be performed by a receiving server for determin
ing whether a received message identifies a provisioned
client device and therefore could have been communicated
by a client device that was provisioned with one or more
client-identifying keys. The receiving server may be the
same server as the provisioning server that is configured to
perform the method illustrated in FIG. 3. Alternatively, the
receiving server may be a separate server from the provi
Sioning server, but may share information with the provi
Sioning server, including, for example, the plurality of
client-identifying keys (k. k. k.) and the information
from which it is determinable which M, client-identifying
keys were assigned to which client device j. In one example,
the shared information is stored on one or more databases
accessible by both the provisioning server and the receiving
SeVe.

10

15

25

30

35

40

45

50

55

60

65

18
The example method illustrated in FIG. 5-1 begins at 500

by having the server store or have access to the N client
identifying keys (k. k. k). The server also stores or
has access to the information from which it is determinable
which M, client-identifying keys (kci, kc. ...,k) were
assigned to which provisioned client device j. In this
example, all client devices {j} have been provisioned with
a subset of M M client-identifying keys.
At 502, the server calculates for each of the N client

identifying keys a hash of a combination of at least the
current time interval value T and the client-identifying key,
thereby obtaining Nhashes: H(TIk), H(TIk),..., H(TIk).
The nature of the combination and hash algorithm Hare the
same as that used by the client device to calculate hashes at
404.
At 504, the server may store each of the N calculated

hashes or portions thereof or values dependent thereon as
hash-dependent values in a table or some other suitable data
structure. Although not shown, the server may store one or
more additional tables of hash-dependent values determined
from previous time interval values T or future time interval
values T or both. Alternatively, the server may maintain a
single table that includes hash-dependent values determined
from the present time interval value T and from previous
time interval values T or future time interval values T or
both.
At 506, for each table of hash-dependent values, the

server associates each one of the N hash-dependent values in
the table with the respective one of the client-identifying
keys from which the hash-dependent value was determined
(or with the respective index of the one of the N client
identifying keys (k. k. k.) from which the hash
dependent value was determined).
At 508, the server checks whether it has received a

message purporting to identify a provisioned client device.
If the server does not receive any such message, and if the
server determines at 510 that the time interval value T has
increased, the server proceeds to repeat the calculation of the
N hashes H(TIk), H(TIka). . . . , H(TIk) at 502 using the
new time interval value T. The server may then store new
hash-dependent values at 504, and, at 506, associate each
one of the new hash-dependent values with the respective
one of the N client-identifying keys from which the new
hash-dependent value was determined (or with the respec
tive index of the one of the N client-identifying keys from
which the hash-dependent value was determined). As noted
above, since the server may store additional hash-dependent
values determined from previous time interval values T or
future time interval values T or both, the new hash-depen
dent values may or may not overwrite previously stored
hash-dependent values. Several tables of hash-dependent
values and associations, such as reverse maps, may be
maintained at any one time.
Once the server determines at 508 that it has received a

message purporting to identify a provisioned client device,
the server may proceed to determine at 512 whether the
message identifies a provisioned client device.
The determination made at 512 is described in more detail

by the actions illustrated in FIG. 5-2.
Since, in this example, all legitimate client devices were

provisioned with a subset of M client-identifying keys, the
server expects to receive M components in any message
purporting to identify a provisioned client device. Thus, at
514, the server extracts from the received message M
components purporting to be the hashes H(TIk), H
(TIka). . . . , H(TIk) or portions thereof or values
dependent thereon. Although not explicitly shown, the

US 9,473.474 B2
19

server may extract from the received message the M com
ponents purporting to be the hashes H(TIk).
H(TIka). . . . , H(TIk) or portions thereof, and the server
may subsequently calculate values dependent thereon.
Extraction of the M components may occur separately for
each individual component. Alternatively, in the case that
the components have been combined, for example, using a
Bloom filter, extraction of the M components may be
understood as referring to the extraction of the combination.

At 516, the server compares each extracted component, or
relevant portion thereof or value dependent thereon, to each
value in the table of hash-dependent values stored at 504, or
optionally to hash-dependent values stored in one or more
additional tables. This may be done until the server locates
hash-dependent values that are consistent with each of the M
components extracted at 512.

At 518, the server checks whether there are stored hash
dependent values that are consistent with each of the M
extracted components or relevant portions thereof or values
dependent thereon. If the server determines at 518 that one
or more of the M components or a relevant portion thereof
or value dependent thereon is not consistent with any stored
hash-dependent value, the server can determine with cer
tainty at 520 that the received message does not identify any
provisioned client device.

If the server determines at 518 that each of the M
components or relevant portions thereof or values dependent
thereon is consistent with a stored hash-dependent value, the
server may proceed to use the association at 522 to deter
mine the client-identifying key (or the index of the client
identifying key) that is associated with each consistent
hash-dependent value. At 524, the server may then proceed
to use the information stored at 500 (i.e., the information
from which it is determinable which M client-identifying
keys were assigned to which client device) to determine if
the client-identifying keys determined at 522 were provi
Sioned to a particular client device.
The server checks at 526 whether the client-identifying

keys determined at 522 correspond to a subset that was
provisioned to a particular client device. If the server deter
mines at 526 that the subset of client-identifying keys
determined at 522 was not provisioned to any particular
client device, the server can proceed to determine with
certainty at 520 that the message does not identify any
provisioned client device. This may occur even if each of the
M extracted components corresponds to a client-identifying
key that was provisioned to a client device, but there is no
single client device that has been provisioned with each of
the client-identifying keys corresponding to the M extracted
components. For example, with reference to FIG. 2, if an
eavesdropping device overhears two of the hashes commu
nicated by the client device 101 to the server 200, such as the
hashes H(TIks) and H(TIk), and the eavesdropping device
also overhears two of the hashes communicated by the client
device 102 to the server 200, such as the hashes H(TIko)
and H(TIks,), the eavesdropping device may attempt to
identify itself to the server 200 using a combination of the
eavesdropped hashes: H(Tks), H(TIk), H(TIko),
H(TIks). While the server 200 would determine at 518 that
each of the four components is consistent with a stored hash
value, after using the association at 522 and the stored
information at 524, the server 200 would determine at 526
that the particular Subset of client-identifying keys corre
sponding to the extracted components was not provisioned
to any single client device. Thus, the server 200 would
determine with certainty at 520 that the message did not
identify any provisioned client device. However, it is pos

10

15

25

30

35

40

45

50

55

60

65

20
sible that the combination of the eavesdropped hashes
H(TIks), H(TIk), H(TIko), H(TIks) could identify
another client device not shown in FIG. 2. The larger the
number N of client-identifying keys, the less likely it is that
that a combination of eavesdropped hashes or hash-depen
dent values from several client devices would allow an
eavesdropper to communicate an identity of another client
device.

If the server determines 526 that the subset of client
identifying keys determined at 522 was provisioned to a
particular client device, the server may proceed to determine
at 528 that the message identifies that particular provisioned
client device. The server is only able to determine at 528 that
the message could have been communicated by the particu
lar client device that the message purports to identify. The
sender of the message is communicating a purported identity
to the server, but is not yet proving to the server that it
legitimately possesses that identity. A client device may
prove that it possess the identity it purports to possess as part
of an authentication process. This is described in more detail
with respect to FIG. 14.
The proposed technique does not require the use of

asymmetric cryptography or the use of symmetric cryptog
raphy. The proposed technique permits a client device's
identity to be communicated in a way that cannot be
understood by eavesdroppers, provided that the hash algo
rithm used is irreversible. While an eavesdropper may
overhear the hash-dependent values communicated by a
particular client device, the eavesdropper cannot determine
the client-identifying keys from which the hash-dependent
values were calculated, and therefore cannot infer the iden
tity of the client device. Furthermore, since the hash-depen
dent values communicated by each client device change
with each new time interval value T, it is not possible for a
client device to be tracked by the eavesdropper from one
time interval value T to the next. The eavesdropper cannot
predict which hash-dependent values will be communicated
by the client device during a future time interval value T.
An analysis of the performance of the proposed technique

is presented herein using example parameters. In one
example, the number N of client-identifying keys is N=1.
000,000, and each one of the client-identifying keys is 160
bits in length. The hash algorithm H is SHA-1, which uses
512-bit blocks. This totals 64 MB of material to be hashed.
According to the crypto- + 5.6.0 benchmarks page (www.
cryptopp.com/benchmarks.html), an Intel(R) Core 2 at 1.83
GHZ running a single core in 32-bit mode can compute a
SHA-1 hash at a rate of 153 MB/s. This system should be
able to complete the required 1,000,000 hash calculations in
about two to three seconds, even with its modest CPU.
The server may build a table of hashes consisting of

2,000,00032-bit buckets. The server may use the first 21 bits
of a hash as an index into the table of hashes, and then store
the next 12 bits of the hash and a 20-bit client-identifying
key in the first free bucket. Very occasionally, the server will
be required to test more than one possible consistent client
identifying key. The required storage space for Such a table
of hashes is approximately 8 MB. The server may be
required to store two such tables of hashes, as the server will
have to pre-compute the table of hashes for the next time
interval value T before the current time interval ends. Thus,
the server will need 16 MB of RAM to Store the hash values
and corresponding reverse index. Determining a Subset of
indices from a Subset of hash values received in a message
may take nearly constant time, and may take less time than
that required for a single hash calculation. However, this

US 9,473.474 B2
21

time does not include the time required to perform a data
base lookup if random assignment of client-identifying keys
were used.

The proposed technique may be used to communicate any
identity without disclosing it to eavesdroppers. In one
example, the concept may be applied to the communication
of an identity of a group shared secret.
A server may authenticate a client device, for example,

using a secret shared between the client device and the
server, or a certificate signed by the server. In the case of the
shared secret, the server has to spend time locating the secret
in a database in order to authenticate the client device. In the
case of the certificate, the server has to spend time perform
ing computations in order to authenticate the client device.
When a server is bombarded with authentication requests

by illegitimate client devices, the server's resources may
become exhausted and the server may be unable to authen
ticate legitimate client devices. This is known as a Denial of
Service (DOS) attack. To address this issue, U.S. patent
application Ser. No. 13/083,981 to Suffling, herein incorpo
rated by reference in its entirety, discloses a method
whereby, prior to authentication, a client device may be
pre-authenticated by proving its possession of a group
shared secret that was previously provisioned to one or more
legitimate client devices of the network server. Only those
client devices that are in possession of the group shared
secret may be successfully pre-authenticated and permitted
to proceed to the more expensive step of authentication.

In one example, a provisioning server Stores L. group
shared secrets. An authenticating server also maintains the
set of L. group shared secrets. The provisioning server
provisions each client device j with a subset of P, of the L
group shared secrets. When one of the client devices seeks
to authenticate itself to the authenticating server, it transmits
a “pre-authentication” request to the authenticating server
based on a selected one of the P, group shared secrets with
which it was provisioned. The pre-authentication request
comprises some proof of knowledge of the selected group
shared secret, such as a time-dependent hash of the group
shared secret, together with an index or identifying number
that identifies the selected group shared secret in the store of
L group shared secrets. The authenticating server uses the
received index value to locate the corresponding one of the
L group shared secrets in its memory, and then calculates the
hash of this group shared secret to determine if it matches
the hashed value received from the client device. If there is
a match, then the client device is pre-authenticated.

Because some client devices may share one or more of the
same group shared secrets and the client device is only
selecting one of its group shared secrets to communicate to
the authenticating server, it is not uniquely identifying itself
in its identification message. However, by including in the
message the index of the group shared secret that it purports
to possess, it is still communicating the identity of the
selected group shared secret. This information could be used
by an eavesdropper to track the client device. For example,
an eavesdropper could overhear a particular client device
communicating a message purporting to identify the group
shared secret having index i. The next time the eavesdropper
overhears a message purporting to identify the group shared
secret having index i. the eavesdropper may be reasonably
confident that the message originated at the particular client
device. Using the index of the group shared secret selected
by the particular client device, the eavesdropper may track
the client device. To avoid this problem, the index of the
group shared secret selected by the client device may be

10

15

25

30

35

40

45

50

55

60

65

22
communicated to the server without disclosing it to eaves
droppers by applying the proposed technique.

In the examples described with respect to FIGS. 6-13,
communication takes place over a public network (such as
the Internet or a similar network), adapted to implement the
Internet Protocol Suite (TCP/IP) as defined in RFC 1122 as
published by the Internet Engineering Task Force, and
optionally its predecessor, Successor, and accompanying or
complementary standards. Reference to a TCP/IP-based
communication system is made due to its prevalence; again,
however, the person skilled in the art will appreciate that the
examples described herein may be applied in environments
and on networks implementing different communication
protocols. For example, other protocols such as the user
datagram protocol (UDP), which may also be provided over
IP, can be implemented as well.

FIG. 6 is a schematic diagram illustrating a first example
technique for the provisioning of group shared secrets by a
server 600 to a plurality of client devices 101, 102 and 103,
and the communicating of the identity of the client device
103's provisioned group shared secret to the server 600.
The server 600 may store or have access to L. group shared

secrets 602, including group shared secrets gSS 604, gss
606 and gss 608. The L group shared secrets may be
identified by L corresponding indices 610, where L may take
on any positive integer value. In another example (not
shown), each of the L group shared secrets 602 may be
identified by an arbitrary identifier. In yet another example
(not shown), each of the L. group shared secrets 602 may
effectively identify itself Typically, the number L of group
shared secrets 602 will be less than the number of client
devices that may communicate with the server 600. In one
example, the number L of group shared secrets 602 is
L=1,000,000. Each one of the group shared secrets 602 is a
distinct value. In one example, each of the group shared
secrets 602 is an effectively random value, such that it
cannot be generated again on another occasion, except by
chance. In this case, the group shared secrets 602 would be
stored by the server 600 for future reference, for example, in
a lookup table. In another example, each of the group shared
secrets 602 is a quasi-random or pseudo-random value
generated using any Suitable generation algorithm, such that
the same group shared secret 602 can be reliably generated
on another occasion in a repeatable manner. For example, a
particular group shared secret gSS, could be calculated as a
hash of a concatenation of a random seed value S and an
index i. that is k=h(sli), where h is any suitable hash
algorithm, such as SHA-1, SHA-2, or MD5. In this case, the
group shared secrets 602 may not be stored by the server
600, provided that the server 600 maintains a record of the
conditions under which the group shared secrets 602 were
generated, including, for example, the hash algorithm hand
the random seed value S. Each one of the group shared
secrets 602 may be of a sufficient length that it cannot be
easily predicted or guessed by an attacker.
The server 600 also stores N group shared secret identi

fying keys (k. k.ks, ka ks. k.) 612. The N group
shared secret identifying keys may be identified by N
corresponding indices (1, 2, 3, 4, 5, N) 614, where N
may take on any positive integer value. In another example
(not shown), each of the N group shared secret identifying
keys 612 may be identified by an arbitrary identifier. In yet
another example (not shown), each of the N group shared
secret identifying keys 612 may effectively identify itself.
Typically, the number N of group shared secret identifying
keys 612 will be less than the number of group shared
SecretS.

US 9,473.474 B2
23

Each one of the group shared secret identifying keys 612
is a distinct value. In one example, each of the group shared
secret identifying keys 612 is an effectively random value,
Such that it cannot be generated again on another occasion,
except by chance. In this case, the group shared secret
identifying keys 612 would be stored by the server 600 for
future reference, for example, in a lookup table. In another
example, each of the group shared secret identifying keys
612 is a quasi-random or pseudo-random value generated
using any Suitable generation algorithm, Such that the same
group shared secret identifying key 612 can be reliably
generated on another occasion in a repeatable manner. For
example, a particular group shared secret identifying key k,
could be calculated as a hash of a concatenation of a random
seed value S and an index i. that is k, h(sli), where h is any
suitable hash algorithm, such as SHA-1, SHA-2, or MD5. In
this case, the group shared secret identifying keys 612 may
not be stored by the server 600, provided that the server 600
maintains a record of the conditions under which the group
shared secret identifying keys 612 were generated, includ
ing, for example, the hash algorithm hand the random seed
value S. Each one of the group shared secret identifying keys
612 may be of a sufficient length and complexity that it
cannot be easily predicted or guessed by an attacker.

In the example illustrated in FIG. 6, the server 600 assigns
a subset of three of the N group shared secret identifying
keys 612 to each one of the group shared secrets 602. In
particular, the server 600 assigns a subset 616 of group
shared secret identifying keys (k. k. k.) to the group shared
secret gss, 604, a subset 618 of group shared secret identi
fying keys (k. k.ks) to the group shared secret gSS. 606,
and a subset 620 of group shared secret identifying keys (k,
ka, ks) to the group shared secret gSS. 608. The assignment
of a subset of the group shared secret identifying keys 612
to each one of the group shared secrets 602 may be carried
out in a random, pseudo-random or quasi-random fashion or
may be carried out in an arbitrary fashion, and the server 600
may maintain a record (not shown) of which of the group
shared secret identifying keys 612 were provisioned to
which group shared secret, for example, in the form of a
mapping function or a lookup table. Alternatively, the
assignment of a Subset of the group shared secret identifying
keys 612 to each one of the group shared secrets 602 may be
carried out according to an algorithm. In either case, the
server 600 may store information (not shown) from which it
is determinable which of the group shared secret identifying
keys 612 were provisioned to which group shared secret.
Thus, the information may comprise the relevant mapping
function, lookup table, algorithm or inverse thereof, or any
other information by which the server 600 can determine
which of the group shared secret identifying keys 612 were
provisioned to which group shared secret, or can determine
to which group shared secret the Subset of group shared
secret identifying keys 612 were assigned.
Some of the group shared secrets 602 may share one or

more of the same group shared secret identifying keys 612.
For example, in FIG. 6, the group shared secrets gss 604
and gSS. 608 have each been assigned the group shared
secret identifying key k. It is also possible that some of the
group shared secret identifying keys 612 may not yet be
assigned to any group shared secret at all, or else that they
may be assigned to group shared secrets that are not illus
trated in FIG. 6. In this example, it is assumed that no two
of the group shared secrets 602 are assigned exactly the
same Subset of the group shared secret identifying keys 612.

In the example illustrated in FIG. 6, the server 600 assigns
and provisions to each of the client devices 101,102 and 103

10

15

25

30

35

40

45

50

55

60

65

24
a subset of two of the group shared secrets 602. In particular,
the server 600 provisions the group shared secrets gss 604
and gss 606 to the client device 101, the group shared
secrets gss 606 and gSs 608 to the client device 102, and
the group shared secrets gSS 604 and gSS. 608 to the client
device 103. In addition, for each group shared secret pro
visioned to a client device, the client device also receives the
Subset of group shared secret identifying keys assigned to
that group shared secret. For example, the client device 103
receives the subset 616 of group shared secret identifying
keys (k. k. k.) for the group shared secret gSS 604 and the
Subset 620 of group shared secret identifying keys (k. k.
ks) for the group shared secret gSS. 608.
The subset of the group shared secrets 602 assigned to

each client device, and the Subset of group shared secret
identifying keys 612 assigned to each group shared secret,
may be embedded in the client device at the time of
manufacture, or provisioned at a later date.
The assignment of a Subset of the group shared secrets

602 to each client device may be carried out in a random,
pseudo-random or quasi-random fashion or may be carried
out in an arbitrary fashion. Alternatively, the assignment of
a subset of the group shared secrets 602 to each client device
may be carried out according to an algorithm.
As described with respect to FIG. 1 and FIG. 2, the server

600 may possess a time interval value T that changes from
time to time and is agreed on by the server 600 and any
provisioned client devices. For example, the server 600
might broadcast the current time interval value T. For each
new time interval value T, the server 600 may calculate for
each of the group shared secret identifying keys 612 a hash
of a combination of at least the time interval value T and the
group shared secret identifying key using a hash algorithm
H, as described previously. In the example of FIG. 6, the
server 600 uses the hash algorithm H to compute hashes
H(TIk), H(TIk), H(TIk), H(TIka), H(TIks), ..., H(TIk),
which the server 600 may store in a table 622 or some other
suitable data structure (not shown). Alternatively, the server
600 may store only portions of the hashes, or some other
values dependent thereon. In order to account for client
devices that possess adjacent time interval values T, the
server 600 may maintain one or more additional tables of
hash-dependent values (not shown) determined from previ
ous time interval values T or future time interval values T or
both. Alternatively, the server 600 may maintain a single
table that includes hash-dependent values determined from
the present time interval value T and from previous time
interval values T or future time interval values T or both.
Although this description indicates that the same hash
algorithm H is used to compute the hashes for all group
shared secret identifying keys, different hash algorithms
could be used to compute the hashes for different ones of the
group shared secret identifying keys. That is, a hash algo
rithm Ha could be used to compute the hash Ha(TIk) and a
different hash algorithm Hb could be used to compute the
hash Hb(TIk), provided that the provisioned client device
also knows to use the hash algorithm Ha for computing
Ha(TIk) and the hash algorithm Hb for computing
Hb(TIk).

For each table of hash-dependent values, the server 600
may associate each one of the hash-dependent values with
the respective one of the group shared secret identifying
keys 612 from which the hash-dependent value was deter
mined (or with the respective index of the group shared
secret identifying key 612 from which the hash-dependent
value was calculated). The association be implemented as
described previously with respect to FIG. 1. In the example

US 9,473.474 B2
25

of FIG. 6, the association (not shown) for the table 622 of
hash-dependent values would associate each one of the
hash-dependent values in the table 622 with a corresponding
one of the group shared secret identifying keys 612 (or with
a corresponding one of the indices 614).
The client device 103 may seek to communicate a group

shared secret to the server 600. In the example of FIG. 6, the
client device 103 selects the group shared secret gss 608 to
communicate to the server 600. Thus, for each of the group
shared secret identifying keys 620 corresponding to the
group shared secret gss 608, the client device 103 may
calculate a hash by applying the hash algorithm H to a
combination of at least the current time interval value T 624
and the group shared secret identifying key. The nature of
the combination and the definition of the hash algorithm H
are the same as that used by the server 600 to calculate the
hashes H(TIk), H(TIk), H(TIk), H(TIka), H(TIks).
H(TIk) as described previously. From these hash calcula
tions, the client device 103 may obtain three hashes 626:
H(TIk), H(TIka), and H(TIks). In the same manner that the
hashes 214 were used by the server 200 to arrive at the
identity of the client device 103, the server 600 may use the
hashes 626 to arrive at the identity of the group shared secret
gss 608 selected by the client device 103.

In addition to communicating an identity of a group
shared secret, the client device may seek to prove to the
server that it possesses the group shared secret that it has
identified. This may be done by communicating an addi
tional hash value to the server. In this example, the client
device 103 calculates an additional hash by applying a hash
algorithm G to a combination of at least the current time
interval value T 624 (optionally), the selected group shared
secret gss, 608, and a value r 630. From this hash calcula
tion, the client device 103 may obtain a hash G(Tgss-r)
628, where square brackets are used to indicate that the
current time interval value T is optional. Alternatively, a
different time interval value could be used in place of the
time interval value T. The hash algorithm G used to obtain
the hash 628 may be the same as or different than the hash
algorithm Hused to obtain the hash 626. In one example, the
value r is a pseudo-random value chosen by the client
device, and is determined by applying a hash algorithm to a
combination of the current time interval value T and a secret
constant City, specific to the client device.
The client device 103 communicates to the server 600 a

message comprising the hashes 626, the value r 630, the
current time interval value T 624, and the hash 628. The
hashes 626 are included so that the client device 103 can
communicate the identity of the group shared secret gSS. 608
that it purports to possess. The hash 628 and the value r 630
are included so that the client device 103 may prove to the
server 600 that it possesses the group shared secret gss 608.
The value r may be used to detect replay attacks. For
example, if the server 600 receives a message comprising a
value r that is the same as the value r that was communicated
in a previously received message, the server 600 may
determine that the current message is a replay attack. In the
case that the value r 630 is related in some way to the time
interval value T 624, a client device may be prevented from
communicating multiple identification messages is rapid
succession. Since the server 600 may be unable to keep a
record of every value r ever used, using the time interval
value T 624 in the calculation of the value r 630 may assure
the server 600 that the value r 630 is not some old value that
is being replayed. The current time interval value T 624 may
also be included in the message so that the server 600 is
privy to which value of the time interval value T was used

10

15

25

30

35

40

45

50

55

60

65

26
to calculate the hashes 626, and optionally the hash 628, and
so that the server 600 may confirm that client device 103
possesses the correct time interval value T.
To determine the identity of the group shared secret that

the client device 103 purports to possess, the server 600
proceeds to compare each one of the hashes 626 to the
hashes in the table 622 stored on the server 600. As
described previously with respect to FIG. 1 and FIG. 2, it
will be appreciated that, in the case that the server 600 stores
only portions of hashes or some other values dependent
thereon in the table 622, the server 600 may use correspond
ing portions of the hashes 626 or values dependent thereon
for the comparison. Once the server 600 locates stored
hash-dependent values that are consistent with the received
hashes 626 or portions thereof or values dependent thereon,
the server 600 may use the association to determine which
of the group shared secret identifying keys 612 (or the
indices 614) are associated with the consistent hash-depen
dent values. In this case, the server 600 may use the
association to determine that the hash-dependent values that
are consistent with the received hashes 626 or portions
thereof or values dependent thereon are associated with the
group shared secret identifying keys k, kaks (or with the
indices 2, 4 and 5). Now the server 600 may use the stored
information (not shown) from which it is determinable
which of the group shared secret identifying keys 612 were
assigned to which group shared secret in order to determine
which one of the group shared secrets 702, if any, was
assigned the group shared secret identifying keysk, k, and
ks (or with the keys having the indices 2, 4 and 5). In this
case, the server 600 determines that it was the group shared
secret gss 608 that was assigned the subset 620 of group
shared secret identifying keys (k. ka ks).

In this example, no two group shared secrets were
assigned exactly the same Subset of the group shared secret
identifying keys 612, and thus the subset 620 of group
shared secret identifying keys (k. k. ks) is unique to the
group shared secretgss 608. It follows that the client device
103 may use the group shared secret identifying keys (k. k.
ks) to uniquely identify its choice of group shared secret to
the server 600, and it may do so in a way that cannot be
understood or tracked by an eavesdropper from one time
interval value T to the next. It will be apparent to those of
ordinary skill in the art that, if care is taken in provisioning,
it may be possible for a client device to uniquely identify its
choice of group shared secret using only some of the group
shared secret identifying keys that were assigned to the
group shared secret. For example, in this simple case, it will
be apparent that the group shared secret gSS. 608 could be
uniquely identified to the server 200 using only the group
shared secret identifying key ka because this key was not
assigned to either of the other group shared secrets gSS or
gSS2).
At this point, the client device 103 has only communi

cated to the server 600 the identity of the group shared secret
that it purports to possess. It has not yet proven that it
actually possesses the identified group shared secret. For
example, an eavesdropping device overhearing the hashes
626 could repeat them to the server 600 during the same time
interval value T 624, and would also be purporting to
possess the group shared secretgss 608. The eavesdropping
device may not even be aware of which group shared secret
it is purporting to possess.

In order to verify that the client device 103 actually
possesses the group shared secret gSS. 608 that it has
identified, the server 600 may calculate an additional hash
(not shown) by applying the hash algorithm G to a combi

US 9,473.474 B2
27

nation of at least the current time interval value T (option
ally), the group shared secret gss 608, and the value r 630
that it received from the client device 103. From this hash
calculation, the server 600 may obtain a calculated hash
G(Tgssr) (not shown). The nature of the combination
and definition of the hash algorithm G are the same as that
used by the client device 103 to obtain the hash 628. The
server 600 may then compare the calculated hash (not
shown) to the hash 628 received from the client device 103.
Alternatively, the server 600 may only compare correspond
ing portions of the calculated hash and the hash 628, or
values dependent thereon. If the hash-dependent values are
consistent, the server 600 may determine that the client
device 103 possesses the group shared secret key gss, 608
that it has identified.

While the server 600 is illustrated as a single device, it is
contemplated that the server 600 may comprise multiple
devices. For example, the server 600 may comprise one or
more provisioning servers, each of which is configured to
provision one or more of the group shared secrets 702 and
the group shared secret identifying keys 612 to one or more
client devices. The server 600 may also comprise one or
more receiving servers, each of which is able to receive a
message purporting to identify a group shared secret and
prove the sender's possession of the identified group shared
secret. The calculation of the hashes H(TIk), H(TIk),
H(TIk), H(TIka), H(TIks), . . . , H(TIk) and the determi
nation of the hash-dependent values to be stored in the table
622 for a particular time interval value T may be performed
by the one or more provisioning servers or by the one or
more receiving servers or by some combination thereof. For
example, the one or more provisioning servers may share
information with the one or more receiving servers, such as
any of the group shared secrets 702, any of the group shared
secret identifying keys 612 and the information from which
it is determinable which group shared secret identifying keys
were assigned to which group shared secret. In one example,
the shared information is stored on one or more databases
accessible by the one or more provisioning servers and the
one or more receiving servers. In another example, in the
case of more than one receiving server, each receiving server
may only be able to identify a subset of the group shared
secrets. For example, the receiving server may not have
access to all of the group shared secret identifying keys or
to the information from which it is determinable which
group shared secret identifying keys were provisioned to
which group shared secret.

FIG. 7 is a flowchart illustrating a first example method to
be performed by a provisioning server for provisioning
group shared secrets to client devices.
The method begins at 700 by having the provisioning

server Store or have access to a plurality of L. group shared
Secrets (gSS, gSS2, gSS,), also denoted as group shared
secrets {gss }. The L group shared secrets may be identified
by indices (1,2,..., L), where L may take on any positive
integer value. Alternatively, each of the group shared secrets
{gss} may be identified by an arbitrary identifier or may
effectively identify itself. The provisioning server also stores
or has access to a plurality of N group shared secret
identifying keys (k. k. ...,k). The N group shared secret
identifying keys may be identified by indices (1,2,..., N).
Alternatively, each of the group shared secret identifying
keys (k. k. k.) may be identified by an arbitrary
identifier or may effectively identify itself.

Each one of the group shared secrets {gss} and the group
shared secret identifying keys (k. k. . . . , k) is a distinct
value. Such as an effectively random value, a quasi-random

5

10

15

25

30

35

40

45

50

55

60

65

28
or a pseudo-random value, or a value that can be reliably
generated on another occasion in a repeatable manner. In the
latter case, it will be appreciated that the server may not
explicitly store the group shared secrets {gss} and/or the
group shared secret identifying keys (k. k. kN).
provided that the server maintains a record of the conditions
under which the group shared secrets and/or the group
shared secret identifying keys were generated. Each one of
the group shared secrets {gss } and the group shared secret
identifying keys (k. k. k.) may be of a sufficient
length and complexity that it cannot be easily predicted or
guessed by an attacker
At 702, the provisioning server assigns to each group

shared secret gss, a unique subset of M, group shared secret
identifying keys (koi, koa. kg) selected from the N
group shared Secret identifying keys (k. k. k), where
M, is a positive integer less than N. In the example illus
trated in FIG. 6, the number M of group shared secret
identifying keys in the Subset for all group shared secrets
{gss} is M3. In other examples, some of the group shared
secrets {gss} may have more group shared secret identify
ing keys provisioned thereto than others of the group shared
secrets {gss. In the present example, all group shared
secrets {gss} are provisioned with a subset of M M group
shared secret identifying keys. The assignment of the Subsets
of group shared secret identifying keys to the group shared
secrets {gss} may be carried out in a random, pseudo
random or quasi-random fashion or may be carried out in an
arbitrary fashion, and the server may maintain a record of
which of the N group shared secret identifying keys (k.
k2,..., kw) were assigned to which group shared secretgss.
for example, in the form of a mapping function or a lookup
table. Alternatively, the assignment of the Subsets of group
shared secret identifying keys to the group shared secrets
{gSS } may be carried out according to an algorithm. As
noted previously, two or more group shared secrets may be
assigned one or more of the same group shared secret
identifying keys, provided that no two group shared secrets
are assigned the exact same Subset (km, k2. k) of
the group shared secret identifying keys (k. k. k). It
is also possible that Some of the group shared secret iden
tifying keys (k. k. k.) may not be assigned to any
group shared secret at all.
At 704, the provisioning server may store information

from which it is determinable which M group shared secret
identifying keys were assigned to which group shared secret.
The information may comprise the relevant mapping func
tion, lookup table, algorithm or inverse thereof, or any other
information by which the server can determine which of the
group shared secret identifying keys were assigned to which
group shared secret.
At 706, the provisioning server assigns to each client

devicej to be provisioned a subset of P, group shared secrets
(gssc.gSSc2, ..., gSSce) selected from the L. group shared
secrets (gSS, gSs2, ...,gss,), where P, is a positive integer
less than L. In the example illustrated in FIG. 6, the number
P, of group shared secrets in the subset for all client devices
{j} is P-2. In other examples, some of the client devices {i}
may have more group shared secrets provisioned thereto
than others of the client devices {j}. In the present example,
all client devices {j} are provisioned with a subset of PP
group shared secret identifying keys. The assignment of the
Subsets of group shared secrets to the client devices {j} may
be carried out in a random, pseudo-random or quasi-random
fashion or may be carried out in an arbitrary fashion.
Alternatively, the assignment of the Subsets of group shared
secrets to the client devices {j} may be carried out according

US 9,473.474 B2
29

to an algorithm. Two or more client devices may be assigned
one or more of the same group shared secrets. It is also
possible that some of the group shared secrets {gss} may
not yet be assigned to any client device at all.

It should be noted that if two client devices are provi- 5
sioned with an identical subset of P of the L group shared
secrets, and all of those P group shared secrets are compro
mised, both of the client devices will be compromised as a
result. To avoid this, each client device may be provisioned
with a unique Subset of P group shared secrets. Thus, if a
client device happens to select from its Subset a group shared
secret that is compromised, it may still proceed to attempt to
identify another one of its P group shared secrets.

At 708, the provisioning server provides to each client
device to be provisioned its respective assigned subset of P
group shared secrets (gssc.gSs, ...,gssc.). In addition,
for each one of the P group shared secrets (gSS,
gSs, gSS), the provisioning server provides to the
client device the unique subset of M group shared secret
identifying keys (k. k. koa) assigned to that group
shared secret. The Subset of P group shared secrets (gSS, 20

10

gSs, gSS) assigned to each client device, and the
unique Subset of M group shared secret identifying keys
(k1,k2, koa) assigned to each group shared Secret,
may be embedded in a client device at the time of manu
facture, or provisioned at a later date, for example, via a 25
storage module Such as a SIM, or via a transmission over a
secure channel.

FIG. 8 is a flowchart illustrating a first example method to
be performed by a provisioned client device for communi
cating one of its provisioned group shared secrets to a 30
receiving server.

At 800, the client device receives from a provisioning
server a subset of P group shared secrets (gss,
gSS2. gSS) and, for each one of the P group shared
secrets, the client device receives a unique subset of M 35
group shared Secret identifying keys (koi, ko.2 kg).
As described above, the subset of P group shared secrets
(gSSC1, gSSC2, ..., gSSCP), and the unique Subset of Mgroup
shared secret identifying keys (k1,k2, ...,k) assigned
to each group shared secret, may be embedded in the client 40
device at the time of manufacture, or received at a later date.
At some point after being provisioned with its subset of

group shared secrets (gSSC1, gSSc2, gSSCP) and the
unique Subsets of group shared secret identifying keys (k,
k2. k) corresponding to each group shared secret, 45
the client device may determine at 802 that it has a need to
communicate a group shared secret to a server. For example,
it may seek to pre-authenticate itself to a web server.
Once the client device determines at 802 that it has a need

to communicate a group shared secret to the server, the client 50
device may proceed at 804 to select one of its P group shared
Secrets (gSSC1, gSSC2, gSSC) to communicate to the
server. The selected group shared secret is denoted gSS.
At 806, the client device may proceed to calculate, for

each of the M group shared secret identifying keys assigned 55
to the selected group shared secret gss, a hash by applying
a hash algorithm H to a combination of at least the current
time interval value T and the group shared secret identifying
key, thereby obtaining M hashes: H(TIk), H(TIk),
H(TIk). Although not explicitly shown, the client device 60
may receive one or more of the current time interval value
T, an indication of the hash algorithm H. and an indication
of the nature of the combination via a broadcast from the
provisioning server or a receiving server.

At 808, the client device calculates another hash by 65
application a hash algorithm G to a combination of the
current time interval value T (optionally), the selected group

30
shared secret gSS, and a value r, thereby obtaining a hash
G(TgSSlr), where the value r is used to detect replay
attacks as described previously.
At 810, the client device communicates a message to the

server comprising each one of the M hashes H(TIk),
H(TIka). . . . , H(TIk) calculated at 806, the value r, the
current time interval value T, and the hash G(TgSslr)
calculated at 808. Alternatively to including each of the M
hashes H(TIk), H(TIka). . . . , H(TIk) in its entirety in
the message, the client device may include only portions of
the M hashes or values dependent thereon. Similarly, the
client device may include a portion of the hash G(IT
gSS, r) or a value dependent thereon. The order of the
values in the message may be agreed on by the server and
the provisioned client devices.
The methods described herein are based on the assump

tion that each group shared secret is assigned the same
number M of group shared secret identifying keys. However,
it will be apparent to a person of ordinary skill in the art that
different group shared secrets may be assigned different
numbers of group shared secret identifying keys, provided
that no group shared secret is assigned a Subset of another
group shared secrets group shared secret identifying keys.
In one example, a client device may indicate in the message
communicated at 810 the number of group shared secret
identifying keys to which the message pertains.

FIGS. 9-1 and 9-2 are flowcharts illustrating a first
example method to be performed by a receiving server for
determining whether a received message from a client
device identifies a group shared secret and whether the client
device possesses the identified group shared secret. The
receiving server may be the same server as the provisioning
server that is configured to perform the method illustrated in
FIG. 7. Alternatively, the receiving server may be a separate
server from the provisioning server, but may share informa
tion with the provisioning server, including, for example, the
group shared secrets (gSS, gSs2, gSS), the group shared
secret identifying keys (k. k. k.) and the information
from which it is determinable which M group shared secret
identifying keys were assigned to which group shared secret
gss. In one example, the shared information is stored on one
or more databases accessible by the provisioning server and
the receiving server.
The method illustrated in FIG. 9-1 begins at 900 by

having the server store or have access to the L of group
shared secrets (gSS, gSS2. gSS,), as well as the N group
shared secret identifying keys (k. k. k). The server
also stores or has access to the information from which it is
determinable which M group shared secret identifying keys
(k1,k2, koa) were assigned to which group shared
secret gss. In this example, all group shared secrets {gss}
have been assigned a subset M M group shared secret
identifying keys.
At 902, the server calculates for each of the N group

shared secret identifying keys a hash of a combination of at
least the current time interval value T and the group shared
secret identifying key, thereby obtaining N hashes: H(TIk),
H(TIka). . . . , H(TIk). The nature of the combination and
the hash algorithm H are the same as that used by the client
device to calculate hashes at 808.

In another example, not shown in FIGS. 8 and 9-1, the
client device and the server may include the index of the
group shared secret identifying key in each of the hash
calculations performed at 806 and 902, respectively. Thus,
instead of calculating M hashes H(TIk), H(TIka).
H(TIk), the client device may calculate M hashes
H(TG1(k), H(TIG2k), . . . , H(TIGMik). Similarly,

US 9,473.474 B2
31

instead of calculating N hashes H(TIk), H(TIka).
H(TIk), the server may calculate N hashes H(T|1|k),
H(T2k), . . . , H(TINIk).
At 904, the server may store each of the N calculated

hashes or portions thereof or values dependent thereon as
hash-dependent values in a table or some other suitable data
structure. Although not shown, the server may store one or
more additional tables of hash-dependent values determined
from previous time interval values T or future time interval
values T or both. Alternatively, the server may maintain a
single table that includes hash-dependent values determined
from the present time interval value T and from previous
time interval values T or future time interval values T or
both.

At 906, for each table of hash-dependent values, the
server associates each one of the N hash-dependent values in
the table with the respective one of the N group shared secret
identifying keys from which the hash-dependent value was
determined (or with the respective index of the one of the N
group shared secret identifying keys (k. k. k.) from
which the hash-dependent value was determined).

At 908, the server checks whether it has received a
message purporting to identify a group shared secret. If the
server does not receive any Such message, and if the server
determines at 910 that the time interval value T has
increased, the server proceeds to repeat the calculation of the
N hashes H(TIk), H(TIk), ..., H(TIk) at 902 using the
new time interval value T. The server may then store new
hash-dependent values at 904, and generate at 906 the
association of each one of the new hash-dependent values
with the respective one of the N group shared secret iden
tifying keys from which the new hash-dependent value was
determined (or with the respective index of the one of the N
group shared secret identifying keys from which the hash
dependent value was determined). As noted above, since the
server may store additional hash-dependent values deter
mined from previous time interval values T or future time
interval values T or both, the new hash-dependent values
may or may not overwrite previously stored hash-dependent
values. Several tables of hash-dependent values and asso
ciations may be maintained at any one time.
Once the server determines at 908 that it has received a

message purporting to identify a group shared secret, the
server may proceed to determine at 912 whether the message
identifies a group shared secret and whether the client device
from which the message was received possesses the identi
fied group shared secret.
The determination made at 912 is described in more detail

by the actions illustrated in FIG. 9-2.
At 914, the server extracts from the received message

values purporting to be: the hashes H(TIk),
H(TIka). . . . , H(TIk) or portions thereof or values
dependent thereon, as well as the value r, the current time
interval value T, and the hash G(TgSSlr) or a portion
thereof or value dependent thereon. Extraction of the com
ponents may occur separately for each individual compo
nent. Alternatively, in the case that the components have
been combined, for example, using a Bloom filter, extraction
of the components may be understood as referring to the
extraction of the combination.
At 916, the server compares each one of the M extracted

hashes H(TIk), H(TIka). . . . , H(TIk) or relevant
portions thereof or values dependent thereon to each value
in the table of hash-dependent values stored at 904, or
optionally to hash-dependent values stored in one or more
additional tables. This may be done until the server locates

10

15

25

30

35

40

45

50

55

60

65

32
hash-dependent values that are consistent with each of the M
extracted values in the received message.
At 918, the server checks whether there are stored hash

dependent values that are consistent with each of the M
extracted hashes H(TIk), H(TIka). . . . , H(TIk) or
relevant portions thereof or values dependent thereon. If the
server determines at 918 that one or more of the M extracted
hashes or relevant portions thereof or values dependent
thereon are not consistent with any stored hash-dependent
value, the server can determine with certainty at 920 that the
client device is not identifying a group shared secret.

If the server determines at 918 that each of the M
extracted hashes H(TIk), H(TIka). . . . , H(TIk) or
portions thereof or values dependent thereon is consistent
with a stored hash-dependent value, the server may proceed
to use the association at 922 to determine the group shared
secret identifying key (or the index of the group shared
secret identifying key) that is associated with each consistent
hash-dependent value. At 924, the server may use the
information stored at 900 (i.e., the information from which
it is determinable which M group shared secret identifying
keys were assigned to which group shared secret) to deter
mine which group shared secret gSS, if any, was assigned
the group shared secret identifying keys determined at 922.
Although not explicitly shown, if the server determines at
924 that there is no group shared secret that was assigned the
group shared secret identifying keys determined at 922, the
server may determine that the client device is not identifying
a group shared secret and the method may end.

In order to verify that the client device from which the
message is received actually possesses the identified group
shared secret gss, the server may calculate at 926 an
additional hash by applying the hash algorithm G to a
combination of at least the current time interval value T
(optionally), the identified group shared secret gSS, identi
fied at 924, and the value r that it extracted from the received
message at 914. From this hash calculation, the server may
obtain a calculated hash G(TgSS|r). The nature of the
combination and definition of the hash algorithm G are the
same as that used by the client device to obtain the hash at
808. At 928, the server may compare the calculated hash to
the hash G(Tigss,r) that it extracted from the received
message at 914. Alternatively, the server may only compare
corresponding portions of the calculated hash and the
received hash, or values dependent thereon. The server
checks at 930 whether the hashes are consistent. If the
hashes are consistent, the server may determine at 934 that
the client device possesses the group shared secret gss, that
it has identified. If the server determines at 930 that the
hashes are not consistent, the server may determine at 932
that the client device does not possess the group shared
secret gSS, that it has identified.
The proposed technique permits a client device to com

municate its choice of group shared secret in a way that
cannot be understood by eavesdroppers. While an eaves
dropping device may overhear the hashes H(TIk),
H(TIka). . . . , H(TIk) or portions thereof or values
dependent thereon communicated by a particular client
device, the eavesdropping device cannot determine the
group shared secret identifying keys from which the hash
dependent values were obtained, and therefore cannot infer
the identity of the group shared secret. Furthermore, since
the hash-dependent values communicated by each client
device change with each new time interval value T, it is not
possible for a client device to be tracked by the eavesdrop
ping device from one time interval value T to the next.

US 9,473.474 B2
33

Rather than identifying each group shared secret by a
plurality of group shared secret identifying keys, it may be
possible to simplify the technique by identifying each group
shared secret by a single group shared secret identifying key.
The technique may be further simplified if each group 5
shared secret identifying key and the group shared secret
that it identifies are in fact one and the same. This may be
better understood with reference to FIGS. 10-13.

FIG. 10 is a schematic diagram illustrating a second
example technique for the provisioning of group shared
secrets by a server 1000 to a plurality of client devices 101,
102 and 103, and the communicating of the identity of the
client device 103's provisioned group shared secret to the
Server 1000.

Similarly to the server 600 illustrated in FIG. 6, the server
1000 may store or have access to L. group shared secrets 702,
including group shared secrets gSS604, gss 606 and gSS
608, and L corresponding indices 610. Using this simplified
technique, the server 1000 does not need to store a separate 20
set of group shared secret identifying keys since the group
shared secrets effectively identify themselves.

In the example illustrated in FIG. 10, the server 1000
assigns and provisions to each of the client devices 101,102
and 103 a subset of two of the group shared secrets 702. In 25
particular, as described with respect to FIG. 6, the server 600
provisions group shared secrets gSS 604 and gSS. 606 to the
client device 101, a group shared secrets gss 606 and gSS
608 to the client device 102, and group shared secrets
gss 604 and gss 608 to the client device 103. 30
As described with respect to FIG. 6, for each new time

interval value T, the server 1000 may calculate for each of
the group shared secrets 702 a hash of a combination of at
least the current time interval value T and the group shared
secret. In the example of FIG. 10, the server 1000 uses the 35
hash algorithm H to compute hashes: H(TgSS), H(TgSS),
H(Tgss), ..., H(TIgss), which the server 1000 may store
in a table 1022 or some other suitable data structure (not
shown). Alternatively, the server 1000 may store only por
tions of the hashes, or some other values dependent thereon. 40
The server 1000 may maintain one or more additional tables
of hash-dependent values (not shown) determined from
previous time interval values T or future time interval values
T or both. Alternatively, the server 1000 may maintain a
single table that includes hash-dependent values determined 45
from the present time interval value T and from previous
time interval values T or future time interval values T or
both. For each table of hash-dependent values, the server
1000 may associate each one of the hash-dependent values
with the respective one of the group shared secrets 702 from 50
which the hash-dependent value was determine (or with the
respective one of the indices 610).
The client device 103 may seek to communicate a group

shared secret to the server 1000. In the example of FIG. 10,
the client device 103 selects the group shared secret gss 608 55
to communicate to the server 1000. Thus, the client device
103 may calculate a hash by applying the hash algorithm H
to a combination of at least the current time interval value T
624 and the group shared secret gss 608. The nature of the
combination and the definition of the hash algorithm H are 60
the same as that used by the server 1000 to calculate the
hashes H(TgSS), H(TgSS), H(TgSS). . . . , H(TgSs) as
described previously. From this hash calculation, the client
device 103 may obtain a hash H(Tigss) 1002. In contrast to
the technique illustrated in FIG. 6, instead of using the 65
hashes H(TIk), H(TIka), and H(TIks) 626 to communicate
the identity of the group shared secret gss 608 to the server,

10

15

34
the client device 103 may use the single hash value
H(TIgss) 1002 to communicate the identity of the group
shared secret gss 608.
As described with respect to FIG. 6, the client device may

also seek to prove to the server that it possesses the group
shared secret that it has identified. As before, this may be
done by having the client device 103 calculate the additional
hash G(Tgssr) 628.
The client device 103 communicates to the server 1000 a

message comprising the hash 1002, the value r 630, the
current time interval value T 624, and the hash 628. The hash
1002 is included so that the client device 103 can commu
nicate the identity of the group shared secret gss 608 that it
purports to possess. The hash 628 and the value r 630 are
included so that the client device 103 may prove to the
server 1000 that it possesses the group shared secret gSS
608. The current time interval value T 624 may be included
so that the server 1000 is privy to which value of the time
interval value T was used to calculate the hash 1002, and
optionally the hash 628, and so that the server 1000 may
confirm that client device 103 possesses the correct time
interval value T.
To determine the identity of the group shared secret that

the client device 103 purports to possess, the server 1000
proceeds to compare the hash 1002 to the hashes in the table
1022 stored on the server 1000. In the case that the server
1000 stores only portions of hashes or some other values
dependent thereon in the table 1022, the server 1000 may
use a corresponding portion of the hash 1002 or a value
dependent thereon for the comparison. Once the server 1000
locates a stored hash-dependent value that is consistent with
the received hash 1002 or a portion thereof or value depen
dent thereon, the server 1000 may use the association to
determine which of the group shared secrets 702 (or the
indices 610) is associated with the consistent hash-depen
dent value. In this case, the server 1000 may use the
association to determine that the hash-dependent value that
is consistent with the received hash 1002 or portion thereof
or value dependent thereon is associated with the group
shared secret gss 608 (or with the index 3). By following
the example technique illustrated in FIG. 10, the client
device 103 is effectively communicating an identity of its
choice of group shared secret to the server 1000, and is doing
so in a way that cannot be understood or tracked by an
eavesdropper from one time interval value T to the next.
At this point, the client device 103 has only communi

cated to the server 1000 the identity of the group shared
secret that it purports to possess. It has not yet proven that
it actually possesses the identified group shared secret. For
example, an eavesdropping device overhearing the hash
1002 could repeat it to the server 1000 during the same time
interval value T 624, and would also be purporting to
possess the group shared secret gSS-608. The eavesdropping
device may not even be privy to which group shared secret
is purporting to possess.

In order to verify that the client device 103 actually
possesses the group shared secret gSS-608 that it has iden
tified, the server 1000 may calculate an additional hash (not
shown) by applying the hash algorithm G to a combination
of at least the current time interval value T (optionally), the
group shared secret gss 608, and the value r 630 that it
received from the client device 103. From this hash calcu
lation, the server 1000 may obtain a calculated hash G(IT
|gssr) (not shown). The server 1000 may then compare the
calculated hash (not shown) to the hash 628 received from
the client device 103. Alternatively, the server 1000 may
only compare corresponding portions of the calculated hash

US 9,473.474 B2
35

and the hash 628, or values dependent thereon. If the
hash-dependent values are consistent, the server 1000 may
determine that the client device 103 possesses the group
shared secret key gss 608 that it has identified.

While the server 1000 is illustrated as a single device, it
is contemplated that the server 1000 may comprise multiple
devices. For example, the server 1000 may comprise one or
more provisioning servers, each of which is configured to
provision one or more of the group shared secrets 702 to one
or more client devices. The server 1000 may also comprise
one or more receiving servers, each of which is able to
receive a message purporting to identify a group shared
secret and prove the sender's possession of the identified
group shared secret. The calculation of the hashes 1022 and
the determination of the hash-dependent values to be stored
for a particular time interval value T may be performed by
the one or more provisioning servers or by the one or more
receiving servers or by some combination thereof. For
example, the one or more provisioning servers may share
information with the one or more receiving servers, such as
any of the group shared secrets 702. In one example, the
shared information is stored on one or more databases
accessible by the one or more provisioning servers and the
one or more receiving servers. In another example, in the
case of more than one receiving server, each receiving server
may only be able to identify a subset of the group shared
secrets. For example, the receiving server may not have
access to all of the group shared secret identifying keys or
to the information from which it is determinable which
group shared secret identifying keys were provisioned to
which group shared secret.

FIG. 11 is a flowchart illustrating a second example
method to be performed by a provisioning server for pro
visioning group shared secrets to client devices.
The method begins at 1100 by having the provisioning

server Store or have access to a plurality of L. group shared
Secrets (gSS, gSS2, gSS,), also denoted as group shared
secrets {gss}. The L. group shared secrets may be identified
by indices (1,2,..., L), where L may take on any positive
integer value. Alternatively, each of the group shared secrets
{gss} may be identified by an arbitrary identifier or may
effectively identify itself. Each one of the group shared
secrets {gss} is a distinct value, such as an effectively
random value, a quasi-random or a pseudo-random value, or
a value that can be reliably generated on another occasion in
a repeatable manner. In the latter case, it will be appreciated
that the server may not explicitly store the group shared
secrets {gss}, provided that the server maintains a record of
the conditions under which the group shared secrets were
generated. Each one of the group shared secrets {gss} may
be of a sufficient length and complexity that it cannot be
easily predicted or guessed by an attacker

At 1102, the provisioning server assigns to each client
devicej to be provisioned a subset of P, group shared secrets
(gssc.gssc2, gSSce) selected from the L. group shared
secrets (gss, gSs, ...,gss,), where P, is a positive integer
less than L. In the example illustrated in FIG. 10, the number
P, of group shared secrets in the subset for all client devices
{j} is P-2. In other examples, some of the client devices {i}
may have more group shared secrets provisioned thereto
than others of the client devices {j}. In the present example,
all client devices {j} are provisioned with a subset of P-P
group shared secret identifying keys. The assignment of the
Subsets of group shared secrets to the client devices {j} may
be carried out in a random, pseudo-random or quasi-random
fashion or may be carried out in an arbitrary fashion.
Alternatively, the assignment of the Subsets of group shared

10

15

25

30

35

40

45

50

55

60

65

36
secrets to the client devices {j} may be carried out according
to an algorithm. Two or more client devices may be assigned
one or more of the same group shared secrets. It is also
possible that some of the group shared secrets {gss} may
not yet be assigned to any client device at all.
At 1104, the provisioning server provides to each client

device to be provisioned its respective assigned subset of P
group shared secrets (gssc.gSSC2, gSSCP). The Subset
of P group shared Secrets (gssc.gSSc2, ..., gSSc) assigned
to each client device may be embedded in a client device at
the time of manufacture, or provisioned at a later date, for
example, via a storage module Such as a SIM, or via a
transmission over a secure channel.

FIG. 12 is a flowchart illustrating a second example
method to be performed by a provisioned client device for
communicating one of its provisioned group shared secrets
to a receiving server.
At 1200, the client device receives from a provisioning

server a Subset of P group shared secrets (gSS,
gSSC2, gSSCP). The P group shared Secrets (gSSC1,
gSs, gSS) may be embedded in the client device at
the time of manufacture, or received at a later date.
At some point after being provisioned with its subset of

group shared secrets (gSSC1, gSSC2, gSSce), the client
device may determine at 1202 that it has a need to commu
nicate a group shared secret to a server.
Once the client device determines at 1202 that it has a

need to communicate a group shared secret to the server, the
client device may proceed at 1204 to select one of its P group
shared Secrets (gssc.gSSc2, gSSc) to communicate to
the server. The selected group shared secret is denoted gSS.

At 1206, the client device may proceed to calculate a hash
by applying a hash algorithm H to a combination of at least
the current time interval value T and the selected group
shared secret gss, thereby obtaining a hash H(TgSS).
Although not explicitly shown, the client device may receive
one or more of the current time interval value T, an indica
tion of the hash algorithm H. and an indication of the nature
of the combination via a broadcast from the provisioning
server or a receiving server.
At 1208, the client device calculates another hash by

application a hash algorithm G to a combination of the
current time interval value T (optionally), the selected group
shared secret gSS, and a value r, thereby obtaining a hash
G(TgSSlr), where the value r is used to detect replay
attacks as described previously.
At 1210, the client device communicates a message to the

server comprising the hash H(TgSS) calculated at 1206,
the value r, the current time interval value T, and the hash
G(Tigss,r) calculated at 1208. Alternatively to including
the hash H(TgSS) in its entirety in the message, the client
device may include only a portion of the hash H(TgSS) or
a value dependent thereon. Similarly, the client device may
include a portion of the hash G(Tigss, r) or a value
dependent thereon. The order of the values in the message
may be agreed on by the server and the provisioned client
devices.

FIGS. 13-1 and 13-2 are flowcharts illustrating a second
example method to be performed by a receiving server for
determining whether a received message from a client
device identifies a group shared secret and whether the client
device possesses the identified group shared secret.
The receiving server may be the same server as the

provisioning server that is configured to perform the method
illustrated in FIG. 11. Alternatively, the receiving server may
be a separate server from the provisioning server, but may
share information with the provisioning server, including,

US 9,473.474 B2
37

for example, the group shared secrets (gSS, gSs2, gSS,).
In one example, the shared information is stored on one or
more databases accessible by both the provisioning server
and the receiving server.

The method illustrated in FIG. 13-1 begins at 1300 by
having the server store or have access to the L of group
shared secrets (gSS, gSS2, gSS,).
At 1302, the server calculates for each of the L group

shared secrets a hash of a combination of at least the current
time interval value T and the group shared secret, thereby
obtaining L hashes: H(TgSS), H(TgSS), . . . , H(TgSS).
The nature of the combination and the hash algorithm Hare
the same as that used by the client device to calculate hash
at 1206.

In another example, not shown in FIGS. 12 and 13-1, the
client device and the server may include the index of the
group shared secret in the hash calculations performed at
1206 and 1302, respectively. Thus, instead of calculating the
hash H(TgSS), the client device may calculate the hash
H(TICilgSS). Similarly, instead of calculating L hashes
H(TgSS), H(TgSs). . . . , H(TgSs), the server may
calculate L hashes H(T1 gSS.), H(T2gSS).
H(TILlgss). As noted previously, including an index as salt
in a hash calculation may make the hash value harder to
attack.
At 1304, the server may store each of the L calculated

hashes or portions thereof or values dependent thereon as
hash-dependent values in a table or some other suitable data
structure. Although not shown, the server may store one or
more additional tables of hash-dependent values determined
from previous time interval values T or future time interval
values T or both. Alternatively, the server may maintain a
single table that includes hash-dependent values determined
from the present time interval value T and from previous
time interval values T or future time interval values T or
both.

At 1306, for each table of hash-dependent values, the
server associates each one of the L hash-dependent values
with the respective one of the L group shared secrets from
which the hash-dependent value was determined (or with the
respective index of the one of the L. group shared secrets
(gSS, gSs, gSS) from which the hash-dependent value
was determined).

At 1308, the server checks whether it has received a
message purporting to identify a group shared secret. If the
server does not receive any Such message, and if the server
determines at 1310 that the time interval value T has
increased, the server proceeds to repeat the calculation of the
L hashes H(TgSS), H(TgSS), ..., H(Tigss,) at 1302 using
the new time interval value T. The server may then store new
hash-dependent values at 1304, and generate at 1306 the
association that associates each one of the new hash-depen
dent values with the respective one of the L group shared
secrets from which the new hash-dependent value was
determined (or with the respective index of the one of the L
group shared secrets from which the hash-dependent value
was determined). As noted above, since the server may store
additional hash-dependent values determined from previous
time interval values T or future time interval values T or
both, the new hash-dependent values may or may not
overwrite previously stored hash-dependent values. Several
tables of hash-dependent values and associations may be
maintained at any one time.
Once the server determines at 1308 that it has received a

message purporting to identify a group shared secret, the
server may proceed to determine at 1312 whether the
message identifies a group shared secret and whether the

10

15

25

30

35

40

45

50

55

60

65

38
client device from which the message was received pos
sesses the identified group shared secret.
The determination made at 1312 is described in more

detail by the actions illustrated in FIG. 13-2.
At 1314, the server extracts from the received message

values purporting to be: the hash H(TgSS) or a portion
thereof or value dependent thereon, as well as the value r, the
current time interval value T, and the hash G(TgSS|r) or
a portion thereof or value dependent thereon. Extraction of
the components may occur separately for each individual
component. Alternatively, in the case that the components
have been combined, for example, using a Bloom filter,
extraction of the components may be understood as referring
to the extraction of the combination.
At 1316, the server compares the extracted hash

H(TgSS) or relevant portion thereof or value dependent
thereon, to each value in the table of hash-dependent values
stored at 1304, or optionally to hash-dependent values stored
in one or more additional tables. This may be done until the
server locates a hash-dependent value that is consistent with
the extracted value in the received message.
At 1318, the server checks whether there is any stored

hash-dependent value that is consistent with the extracted
value H(TgSS) or relevant portion thereof or value depen
dent thereon. If the server determines at 1318 that the
extracted hash H(TgSS) or relevant portion thereof or
value dependent thereon is not consistent with any stored
hash-dependent value, the server can determine with cer
tainty at 1320 that the client device is not identifying a group
shared secret.

If the server determines at 1318 that the extracted hash
H(Tgss) or a portion thereof or value dependent thereon
is consistent with a stored hash-dependent value, the server
may proceed to use the association at 1322 to determine the
group shared secret gSS (or the index Ci of the group shared
secret gSS) that is associated with the consistent hash
dependent value.

In order to verify that the client device from which the
message is received actually possesses the identified group
shared secret gSs, the server may calculate at 1324 an
additional hash by applying the hash algorithm G to a
combination of at least the current time interval value T
(optionally), the group shared secret gSS identified at 1322.
and the value r that it extracted from the received message
at 1314. From this hash calculation, the server may obtain a
calculated hash value G(Tigss,r). The nature of the
combination and definition of the hash algorithm G are the
same as that used by the client device to obtain the hash
1208. At 1326, the server may compare the calculated hash
to the hash G(Tigss,r) that it extracted from the received
message at 1314. Alternatively, the server may only compare
corresponding portions of the calculated hash and the
received hash, or values dependent thereon. The server
checks at 1328 whether the hashes are consistent. If the
hashes are consistent, the server may determine at 1332 that
the client device possesses the group shared secret gss, that
it has identified. If the server determines at 1328 that the
hashes are not consistent, the server may determine at 1330
that the client device does not possess the group shared
secret gSS, that it has identified.
As described with respect to the technique and methods

illustrated in FIGS. 6-9, the technique and methods illus
trated in FIGS. 10-13 allow a client device to communicate
its choice of group shared secret in a way that cannot be
understood by eavesdroppers. For example, while an eaves
dropping device may overhear the hash H(TgSS) commu
nicated by a particular client device, the eavesdropping

US 9,473.474 B2
39

device cannot determine the identity of the group shared
secret from which the hash was obtained. Furthermore, since
the hash communicated by each client device changes with
each new time interval value T, it is not possible for a client
device to be tracked by the eavesdropper from one time
interval value T to the next.

FIG. 14 is a flowchart illustrating an example method to
be performed by a server for identification and authentica
tion of a client device.

At 1400, the server receives from a client device a
message purporting to identify a group shared secret and
purporting to prove the client device's possession of the
group shared secret that the message purports to identity.

At 1402, the server determines whether the message
identifies a group shared secret and whether the client device
from which the message was received possesses the identi
fied group shared secret. This determination may be made
according to the method illustrated in FIGS. 9-1 and 9-2, the
method illustrated in FIGS. 13-1 and 13-2, or any suitable
variations thereof.

If the server determines at 1402 that the message does not
identify a group shared secret or that the client device does
not possess the group shared secret that the message iden
tifies, the server may deny access to one or more services at
1404 and the method may end.

If the server determines at 1402 that the message does
identify a group shared secret and that the client device
possesses the identified group shared secret, the server may
proceed to 1406.

At 1406, the server receives from the client device a
purported identity of the client device. Then the server
proceeds to determine at 1408 whether the purported iden
tity of the client device is legitimate.
This determination may be made according to the method
illustrated in FIGS. 5-1 and 5-2 or any suitable variation
thereof.

The purported identity may be received in the same
message received from the client device at 1400, or in a
different message. For example, the client device may
communicate a message containing the M hashes H(TIk).
H(TIka). . . . , H(TIk) calculated at 504 or portions
thereof or values dependent thereon, the M hashes H(TIk),
H(TIka). . . . , H(TIk) calculated at 806 or portions
thereof or values dependent thereon, the value r, the current
time interval value T, and the hash G(TgSS|r) calculated
at 808 or a portion thereof or value dependent thereon.
Alternatively, in place of the M hashes H(TIk),
H(TIka). . . . , H(TIk), the client device may include in
the message the hash H(TgSS) calculated at 1206 or a
portion thereof or value dependent thereon.

If the server determines at 1408 that the purported identity
of the client device is not legitimate, the server may deny
access to one or more services at 1404 and the method may
end. If the server determines at 1408 that the purported
identity of the client device is legitimate, the server may
proceed to authenticate the client device at 1410. There are
numerous methods that may be used for authentication of
the client device.

In one example, the client device may possess a unique
key key that is known to the server. The client device
may perform a hash of the unique key ky, and the
current time interval value T and communicate the hash to
the server. The server may then verify that the received hash
is consistent with a corresponding hash of the server's copy
of the unique key kry. It should be noted, however, that

10

15

25

30

35

40

45

50

55

60

65

40
this method of authentication would be vulnerable to replay
attacks during the period that the time interval value T
remains unchanged.

In another example, the client device may use public key
cryptography to establish a secure link with the server. The
client device may communicate a session key to the server
using the server's public key signed by a private key of the
client device.

In yet another example, the server may use symmetric
cryptography to authenticate a client device. Once the server
determines the purported identity of a client device, the
server may locate a unique key key. The client may
communicate a session key encrypted with the unique key
kiv, and the server may use the copy of the unique key
k, that it has located in order to decrypt the session key.
The session key may be used to establish a secure tunnel.

In yet another example, the client device may communi
cate to the server a session key encrypted with the server's
public key, such that only the server is able to decrypt the
session key.

Further details of possible authentication methods are
beyond the scope of the present discussion.

It may be desirable to include one or more parameters
necessary for authentication in a previous message commu
nicated by the client device to the server. For example, an
encrypted version of the unique key key may be
included in the message that purports to include an identity
of a group shared secret or an identity of a client device or
both.

If the server determines at 1412 that the client device has
not been Successfully authenticated, the server may deny
access to one or more services at 1404 and the method may
end.

If the server determines at 1412 that the client device has
been Successfully authenticated, the server may provide to
the client device access to one or more services at 1414.

FIG. 15 is a block diagram of an example provisioning
server 1500, an example client device 1540, and an example
server 1580 configured to perform the example technique
illustrated in FIG. 2.
The provisioning server 1500 is an example of the server

200 when acting in a provisioning capacity. The provision
ing server 1500 comprises a processor 1502 which is
coupled to a memory 1504 and to a communication interface
1506 through which it is able to communicate with one or
more client devices, such as the client device 1540. The
provisioning server 1500 may contain other elements which,
for clarity, are not shown in FIG. 15.
The client device 1540 is an example of any one of the

client devices 100. The client device 1540 comprises a
processor 1542 which is coupled to a memory 1544 and to
a communication interface 1546. The client device 1540
may contain other elements which, for clarity, are not shown
in FIG. 15.
The server 1580 is an example of the server 200 when

acting in a receiving capacity. The server 1580 comprises a
processor 1582 which is coupled to a memory 1584 and to
a communication interface 1586. The server 1580 may
contain other elements which, for clarity, are not shown in
FIG. 15.
The communication interfaces 1506, 1546, and 1586 may

be wired communication interfaces or wireless communica
tion interfaces. For example, the communication interfaces
1506, 1546, and 1586 may comprise any of Universal Serial
Bus (USB) interfaces, Ethernet interfaces, Integrated Ser
vices Digital Network (ISDN) interfaces, Digital Subscriber
Line (DSL) interfaces, Local Area Network (LAN) inter

US 9,473.474 B2
41

faces, High-Definition Multimedia (HDMI) interfaces, Digi
tal Visual Interfaces (DVIs), or Institute of Electrical and
Electronics Engineers (IEEE) 1394 interfaces such as
i.LINKTM, Lynx or Firewire R. Alternatively, the commu
nication interfaces 1606, 1546, and 1586 may be Wireless
Local Area Network (WLAN) interfaces, short-range wire
less communication interfaces such as Wireless Personal
Area Network (WPAN) interfaces, Wireless Wide Area
Network (WWAN) interfaces, or Wireless Metropolitan
Area Network (WMAN) interfaces.

Each of the memories 1504, 1544, and 1584 is able to
store agreed-on parameters 1510. Any of the agreed-on
parameters 1510 may be agreed on by two or more of the
provisioning server 1500, the client device 1540 and the
server 1580, depending on the particular parameter. For
example, Such parameters may include any hash algorithms
to be used to for calculating hashes. Such as the hash
algorithms H and F, parameters indicative of the nature of
any combination to which a hash algorithm is to be applied,
parameters indicative of any additional operations to be
performed on calculated hashes to obtain hash-dependent
values, and parameters indicative of which portion of any
hash or hash-dependent value is to be stored, communicated
and/or compared. Although not explicitly shown, each of the
memories 1504, 1544, and 1584 may comprise multiple
memories or storage media. For example, cryptographic data
may be stored in a different memory or storage medium than
code.
The memory 1504 of the provisioning server 1500 is able

to store code 1508 that, when executed by processor 1502,
results in the example method illustrated in FIG. 3. Alter
natively, the code 1508 may be stored in a different memory
(not shown) than the memory 1504. In another example,
some portion of the example method illustrated in FIG. 3
may be performed by application-specific integrated circuits
(ASICs) or other dedicated hardware, without involving
execution of the code 1508 by the processor 1502. The
memory 1504 may also store applications (not shown)
installed in the provisioning server 1500 to be executed by
the processor 1502.

In addition to the agreed-on parameters 1510, the memory
1504 is also able to store a plurality of N client-identifying
keys (k,...,k) 1512. Alternatively, the memory 1504 may
store a record (not shown) of the conditions under which the
client-identifying keys (k, k) 1512 were generated.
Although not explicitly shown, the memory 1504 may
optionally store the N indices (1, . . . , N) by which the
client-identifying keys (k, k) 1512 are identified.
The provisioning server 1500, being responsible for

assigning to each client device to be provisioned a unique
subset of the N client-identifying keys 1512, may also store
in the memory 1504 information 1514 from which it is
determinable which of the N client-identifying keys 1512
were assigned to which client device. Alternatively, the
information 1514 may be stored on one or more databases
(not shown) that are accessible by the provisioning server
1SOO.
As denoted by arrow 1520, a subset of M client-identi

fying keys (k. . . . , k) 1516 that were assigned by the
provisioning server 1500 to the client device 1540 are able
to be communicated, optionally with the corresponding
indices (C1, CM) (not shown), by the provisioning
server 1500 to the client device 1540, where they may be
stored in the memory 1544. While not explicitly shown, the
client-identifying keys (k. k) 1516 may be
communicated by the provisioning server 1500 via the
communication interface 1506 and may be received by the

10

15

25

30

35

40

45

50

55

60

65

42
client device 1540 via the communication interface 1546,
and optionally via one or more intermediate devices.
The memory 1544 of the client device 1540 is able to

store code 1548 that, when executed by processor 1542,
results in the example method illustrated in FIG. 4. Alter
natively, the code 1548 may be stored in a different memory
(not shown) than the memory 1544. In another example,
some portion of the example method illustrated in FIG. 4
may be performed by ASICs or other dedicated hardware,
without involving execution of the code 1548 by the pro
cessor 1542. The memory 1544 may also store applications
(not shown) installed in the client device 1540 to be
executed by the processor 1542. Examples of such applica
tions include data communication applications, voice com
munication applications, messaging applications, games,
calculators, and the like.
The memory 1544 is able to store a current time interval

value T 1550, which may be used to calculate a hash of each
of the client-identifying keys (k, ...,k) 1516 received
from the server, thereby obtaining M hashes
H(TIk),..., H(TIk) 1552. The memory 1544 may store
each hash in its entirety, as shown in FIG. 15, or alternatively
may store only a portion of each hash or a value dependent
thereon.
AS denoted by arrow 1554, a message comprising the

hashes H(TIk), ..., H(TIk) 1552 or portions thereof or
values dependent thereon is able to be communicated by the
client device 1540 to the server 1580. The server 1580 may
extract the hashes 1552 or portions thereof or values depen
dent thereon from the message and store them in the memory
1584. While not explicitly shown, the message comprising
the hashes 1552 may be sent from the client device 1540 via
the communication interface 1546 and may be received by
the server 1580 via the communication interface 1586, and
optionally via one or more intermediate devices.
The memory 1584 of the server 1580 is able to store the

N client-identifying keys (k, ..., k) 1512, and optionally
the corresponding N indices (1, . . . , N) (not shown). The
memory 1584 is also able to store the information 1514 from
which it is determinable which of the N client-identifying
keys were assigned to which client device. The information
may comprise a relevant mapping function, a lookup table,
an algorithm or inverse thereof, or any other information by
which the server 1580 can determine which of the client
identifying keys 1512 were provisioned to which client
device. Alternatively, any of the client-identifying keys
(k, ...,k) 1512 and the information 1514 may be stored
on the one or more databases (not shown), which are
accessible to the server 1580.
The memory 1584 is able to store code 1588 that, when

executed by the processor 1582, results in the example
method illustrated in FIGS. 5-1 and 5-2. Alternatively, the
code 1588 may be stored in a different memory (not shown)
than the memory 1584. In another example, some portions
of the example methods illustrated in FIGS. 5-1 and 5-2 may
be performed by ASICs or other dedicated hardware, with
out involving execution of the code 1588 by the processor
1582. The memory 1584 may also store applications (not
shown) installed in the server 1580 to be executed by the
processor 1582.
The memory 1584 is able to store a current time interval

value T 1590. The memory 1584 may optionally store one
or more previous time interval values T or future time
interval values T or both (not shown). The memory 1584 is
able to store a table 1592 comprising hash-dependent values
obtained from hash calculations performed on the client
identifying keys 1512 using the current time interval value
T, as described previously. The memory 1584 is also able to

US 9,473.474 B2
43

store an association 1594 of each one of the hash-dependent
values in the table 1592 with the one of the client-identifying
keys 1512 from which it was calculated. The memory 1584
may optionally store one or more additional tables (not
shown) of hash-dependent values and associations (not
shown) determined from one or more previous time interval
values T or future time interval values T or both.

FIG. 16 is a block diagram of an example provisioning
server 1600, an example client device 1640, and an example
server 1680 configured to perform the example technique
illustrated in FIG. 6.
The provisioning server 1600 is an example of the server

600 when acting in a provisioning capacity. The provision
ing server 1600 comprises a processor 1602 which is
coupled to a memory 1604 and to a communication interface
1606 through which it is able to communicate with one or
more client devices, such as the client device 1640. The
provisioning server 1600 may contain other elements which,
for clarity, are not shown in FIG. 16.
The client device 1640 is an example of any one of the

client devices 100. The client device 1640 comprises a
processor 1642 which is coupled to a memory 1644 and to
a communication interface 1646. The client device 1640
may contain other elements which, for clarity, are not shown
in FIG. 16.
The server 1680 is an example of the server 600 when

acting in a receiving capacity. The server 1680 comprises a
processor 1682 which is coupled to a memory 1684 and to
a communication interface 1686. The server 1680 may
contain other elements which, for clarity, are not shown in
FIG. 16.
The communication interfaces 1606, 1646, and 1686 may

be wired communication interfaces or wireless communica
tion interfaces. For example, the communication interfaces
1606, 1646, and 1686 may comprise any of USB interfaces,
Ethernet interfaces, ISDN interfaces, DSL interfaces, LAN
interfaces, HDMI interfaces, DVIs, or IEEE 1394 interfaces
such as i.LINKTM, Lynx' or Firewire(R). Alternatively, the
communication interfaces 1606, 1646, and 1686 may be
WLAN interfaces, short-range wireless communication
interfaces such as WPAN interfaces, WWAN interfaces, or
WMAN interfaces.

Each of the memories 1604, 1644, and 1684 is able to
store agreed-on parameters 1610. Any of the agreed-on
parameters 1610 may be agreed on by two or more of the
provisioning server 1600, the client device 1640 and the
server 1680, depending on the particular parameter. For
example, Such parameters may include any hash algorithms
to be used for calculating hashes, such as the hash algo
rithms H, G and F, parameters indicative of the nature of any
combination to which a hash algorithm is to be applied,
parameters indicative of any additional operations to be
performed on calculated hashes to obtain hash-dependent
values, and parameters indicative of which portion of any
hash or hash-dependent value is to be stored, communicated
and/or compared. Although not explicitly shown, each of the
memories 1604, 1644, and 1684 may comprise multiple
memories or storage media. For example, cryptographic data
may be stored in a different memory or storage medium than
code.
The memory 1604 of the provisioning server 1600 is able

to store code 1608 that, when executed by processor 1602,
results in the example method illustrated in FIG. 7. Alter
natively, the code 1608 may be stored in a different memory
(not shown) than the memory 1604. In another example,
some portion of the example method illustrated in FIG. 7
may be performed by ASICs or other dedicated hardware,

10

15

25

30

35

40

45

50

55

60

65

44
without involving execution of the code 1608 by the pro
cessor 1602. The memory 1604 may also store applications
(not shown) installed in the provisioning server 1600 to be
executed by the processor 1602.

In addition to the agreed-on parameters 1610, the memory
1604 is also able to store a plurality of L. group shared secrets
(gSs, gss) 1612, as well as a plurality of N group
shared secret identifying keys (k, k) 1616. Alterna
tively, the memory 1604 may store records (not shown) of
the conditions under which the group shared secrets
(gSs, gSS) 1612 and/or the group shared secret
identifying keys (k. k) 1614 were generated.
Although not explicitly shown, the memory 1604 may
optionally store the L indices (1,..., L) by which the group
shared secrets 1612 are identified and/or the N indices
(1,...,N) by which the group shared secret identifying keys
(k. . . . , k) 1614 are identified.
The provisioning server 1600, being responsible for

assigning to each group shared secret a unique Subset of the
N group shared secret identifying keys, also stores in the
memory 1604 information 1616 from which it is determin
able which of the N group shared secret identifying keys
were assigned to which of the group shared secrets 1612.

Alternatively (not shown), any of the group shared secrets
(gSs, gSS) 1612, the group shared secret identifying
keys (k, . . . , k) 1614, and the information 1616 may be
stored on one or more databases (not shown) that are
accessible by the provisioning server 1600.
As denoted by arrow 1622, a subset of P group shared

secrets (gSs, gSS) 1618 that were assigned by the
provisioning server 1600 to the client device 1640 are able
to be communicated, optionally with the corresponding
indices (C1, CP) (not shown), by the provisioning
server 1600 to the client device 1640. For each of the P
group shared secrets 1618, the provisioning server 1600 is
also able to communicate the group shared secret identifying
keys (k1, ...,k) that were assigned to that group shared
secret. This is denoted in FIG. 16 as the group shared secret
identifying keys (k. k.)xP 1620. While not
explicitly shown, the group shared secrets (gss, 1.
gSS) 1618 and the group shared secret identifying keys
(k. k.)xP 1620 may be communicated by the
provisioning server 1600 via the communication interface
1606 and may be received by the client device 1640 via the
communication interface 1646, and optionally via one or
more intermediate devices. The client device 1640 may store
these received values in the memory 1644.
The memory 1644 of the client device 1640 is able to

store code 1648 that, when executed by processor 1642,
results in the example method illustrated in FIG. 8. Alter
natively, the code 1648 may be stored in a different memory
(not shown) than the memory 1644. In another example,
some portion of the example method illustrated in FIG. 8
may be performed by ASICs or other dedicated hardware,
without involving execution of the code 1648 by the pro
cessor 1642. The memory 1644 may also store applications
(not shown) installed in the client device 1640 to be
executed by the processor 1642.
The memory 1644 is able to store a current time interval

value T 1650, which it may use to calculate a hash of each
of the group shared secret identifying keys (k. k.)
1652 that correspond to a group shared secret gSS, that it has
selected from the received group shared secrets
(gSs, gSS) 1618 to communicate to the server 1680.
From these hash calculations, the client device 1640 is able
to obtain M hashes H(TIk). . . . , H(TIk) 1652. The
client device 1640 may store each hash in its entirety, as

US 9,473.474 B2
45

shown in FIG. 16, or alternatively may store only a portion
of each hash or a value dependent thereon.
The memory 1644 is also able to store a value r 1656. The

current time interval value T 1650 (optionally), the value r
1656 and the selected group shared secret gSs are used to
obtain the hash G(ITIrgss) 1654. The memory 1644 may
store the hash in its entirety, as shown in FIG. 16, or
alternatively may store only a portion of the hash or a value
dependent thereon.
AS denoted by arrow 1658, a message comprising the

hashes 1652 or portions thereof or values dependent thereon,
as well as the hash 1654 or portion thereof or value depen
dent thereon, and the value r 1656 and optionally the time
interval value T 1650 is able to be communicated by the
client device 1640 to the server 1680. The server 1680 may
extract the hashes 1652 or portions thereof or values depen
dent thereon, the hash 1654 or portion thereof or value
dependent thereon, the value r 1656 and optionally the time
interval value T 1650 from the message and store them in the
memory 1684. While not explicitly shown, the message may
be sent from the client device 1640 via the communication
interface 1646 and may be received by the server 1680 via
the communication interface 1686, and optionally via one or
more intermediate devices.
The memory 1684 of the server 1680 is able to store the

L group shared secrets (gSs, gSS) 1612 as well as the
N group shared secret identifying keys (k. k) 1616,
and optionally the indices (1, L) and/or the indices
(1, . . . , N). The memory 1684 is also able to store the
information 1620 from which it is determinable which of the
N group shared secret identifying keys were assigned to
which of the group shared secrets 1612. The information
may comprise a relevant mapping function, a lookup table,
an algorithm or inverse thereof, or any other information by
which the server 1680 can determine which of the group
shared secret identifying keys 1612 were assigned to which
group shared secret. Alternatively, any of the group shared
secrets (gSs, gSS) 1612, the group shared secret
identifying keys (k. . . . , k) 1614, and the information
1620 may be stored on the one or more databases (not
shown), which are accessible to the server 1680.
The memory 1684 is able to store code 1688 that, when

executed by the processor 1682, results in the example
method illustrated in FIGS. 9-1 and 9-2. Alternatively, the
code 1688 may be stored in a different memory (not shown)
than the memory 1684. In another example, some portions
of the example methods illustrated in FIGS. 9-1 and 9-2 may
be performed by ASICs or other dedicated hardware, with
out involving execution of the code 1688 by the processor
1682. The memory 1684 may also store applications (not
shown) installed in the server 1680 to be executed by the
processor 1682.
The memory 1684 is able to store a current time interval

value T 1690. The memory 1684 may optionally store one
or more previous time interval values T or future time
interval values T or both (not shown). The memory 1684 is
able to store a table 1692 comprising hash-dependent values
obtained from hash calculations performed on the group
shared secret identifying keys 1616 using the current time
interval value T, as described previously. The memory 1684
is also able to store an association 1694 of each one of the
hash-dependent values in the table 1692 with the one of the
group shared secret identifying keys 1614 from which it was
calculated. The memory 1684 may optionally store one or
more additional tables (not shown) of hash-dependent values

5

10

15

25

30

35

40

45

50

55

60

65

46
and associations (not shown) determined from one or more
previous time interval values T or future time interval values
T or both.

FIG. 17 is a block diagram of an example provisioning
server 1700, an example client device 1740, and an example
server 1780 configured to perform the example technique
illustrated in FIG. 10.
The provisioning server 1700 is an example of the server

1000 when acting in a provisioning capacity. The provision
ing server 1700 comprises a processor 1702 which is
coupled to a memory 1704 and to a communication interface
1706 through which it is able to communicate with one or
more client devices, such as the client device 1740. The
provisioning server 1700 may contain other elements which,
for clarity, are not shown in FIG. 17.
The client device 1740 is an example of any one of the

client devices 100. The client device 1740 comprises a
processor 1742 which is coupled to a memory 1744 and to
a communication interface 1746. The client device 1740
may contain other elements which, for clarity, are not shown
in FIG. 17.
The server 1780 is an example of the server 1000 when

acting in a receiving capacity. The server 1780 comprises a
processor 1782 which is coupled to a memory 1784 and to
a communication interface 1786. The server 1780 may
contain other elements which, for clarity, are not shown in
FIG. 17.
The communication interfaces 1706, 1746, and 1786 may

be wired communication interfaces or wireless communica
tion interfaces. For example, the communication interfaces
1706, 1746, and 1786 may comprise any of USB interfaces,
Ethernet interfaces, ISDN interfaces, DSL interfaces, LAN
interfaces, HDMI interfaces, DVIs, or IEEE 1394 interfaces
such as i.LINKTM, Lynx' or FirewireR). Alternatively, the
communication interfaces 1706, 1746, and 1786 may be
WLAN interfaces, short-range wireless communication
interfaces such as WPAN interfaces, WWAN interfaces, or
WMAN interfaces.

Each of the memories 1704, 1744, and 1784 is able to
store agreed-on parameters 1710. Any of the agreed-on
parameters 1710 may be agreed on by two or more of the
provisioning server 1700, the client device 1740 and the
server 1780, depending on the particular parameter. For
example Such parameters may include any hash algorithms
to be used for calculating hashes, such as the hash algo
rithms H, G and F, parameters indicative of the nature of any
combination to which a hash algorithm is to be applied,
parameters indicative of any additional operations to be
performed on calculated hashes to obtain hash-dependent
values, and parameters indicative of which portion of any
hash or hash-dependent value is to be stored, communicated
and/or compared. Although not explicitly shown, each of the
memories 1704, 1744, and 1784 may comprise multiple
memories or storage media. For example, cryptographic data
may be stored in a different memory or storage medium than
code.
The memory 1704 of the provisioning server 1700 is able

to store code 1708 that, when executed by processor 1702,
results in the example method illustrated in FIG. 11. Alter
natively, the code 1708 may be stored in a different memory
(not shown) than the memory 1704. In another example,
some portion of the example method illustrated in FIG. 11
may be performed by ASICs or other dedicated hardware,
without involving execution of the code 1708 by the pro
cessor 1702. The memory 1704 may also store applications
(not shown) installed in the provisioning server 1700 to be
executed by the processor 1702.

US 9,473.474 B2
47

In addition to the agreed-on parameters 1710, the memory
1704 is also able to store a plurality of L. group shared secrets
(gSs, gSS) 1712. Alternatively (not shown), any of the
group shared secrets (gSs, gSS) 1712 may be stored
on one or more databases (not shown) that are accessible by
the provisioning server 1700.

Alternatively, the memory 1704 may store records (not
shown) of the conditions under which the group shared
secrets (gSs, gSS) 1712 were generated. Although not
explicitly shown, the memory 1704 may optionally store the
L indices (1,..., L) by which the group shared secrets 1712
are identified.
As denoted by arrow 1716, a subset of P group shared

secrets (gSs, gSS) 1714 that were assigned by the
provisioning server 1700 to the client device 1740 are able
to communicated, optionally with the corresponding indices
(C1, ..., CP) (not shown), by the provisioning server 1700
to the client device 1740. While not explicitly shown, the
group shared secrets (gSs, gSS) 1714 may be
communicated by the provisioning server 1700 via the
communication interface 1706 and may be received by the
client device 1740 via the communication interface 1746,
and optionally via one or more intermediate devices. The
client device may store these received values in the memory
1744.
The memory 1744 of the client device 1740 is able to

store code 1748 that, when executed by processor 1742,
results in the example method illustrated in FIG. 12. Alter
natively, the code 1748 may be stored in a different memory
(not shown) than the memory 1744. In another example,
some portion of the example method illustrated in FIG. 12
may be performed by ASICs or other dedicated hardware,
without involving execution of the code 1748 by the pro
cessor 1742. The memory 1744 may also store applications
(not shown) installed in the client device 1740 to be
executed by the processor 1742. Examples of such applica
tions include data communication applications, voice com
munication applications, messaging applications, games,
calculators, and the like.
The memory 1744 is able to store a current time interval

value T 1750, which it may use to calculate a hash of a group
shared secret gSS that it has selected from the received
group shared secrets (gSs, gSS) 1714. From this
calculation, the client device 1740 is able to obtain a hash
H(Tgss) 1752. The client device 1740 may store the hash
in its entirety, as shown in FIG. 17, or alternatively may store
only a portion of the hash or a value dependent thereon.
The memory 1744 is also able to store a value r 1756. The

current time interval value T 1750 (optionally), the value r
1756 and the selected group shared secret gSS are used to
obtain the hash value H(Trigss) 1754. The memory 1744
may store the hash in its entirety, as shown in FIG. 17, or
alternatively may store only a portion of the hash or a value
dependent thereon.
As denoted by arrow 1758, a message comprising the

hash 1752 or a portion thereof or value dependent thereon,
as well as the hash 1754 or portion thereof or value depen
dent thereon, and the value r 1756 and optionally the time
interval value T 1750 is able to be communicated by the
client device 1740 to the server 1780. The server 1780 may
extract the hash 1752 or portion thereof or value dependent
thereon, the hash 1754 or portion thereof or value dependent
thereon, the value r 1756 and optionally the time interval
value T 1750 from the message and store them in the
memory 1784. While not explicitly shown, the message may
be sent from the client device 1740 via the communication

10

15

25

30

35

40

45

50

55

60

65

48
interface 1746 and may be received by the server 1780 via
the communication interface 1786, and optionally via one or
more intermediate devices.
The memory 1784 of the server 1780 is able to store the

L group shared secrets (gSs, ..., gSS) 1712, and optionally
the indices (1, L).
The memory 1784 is able to store code 1788 that, when

executed by the processor 1782, results in the example
method illustrated in FIGS. 13-1 and 13-2. Alternatively, the
code 1788 may be stored in a different memory (not shown)
than the memory 1784. In another example, some portions
of the example methods illustrated in FIGS. 13-1 and 13-2
may be performed by ASICs or other dedicated hardware,
without involving execution of the code 1788 by the pro
cessor 1782. The memory 1784 may also store applications
(not shown) installed in the server 1780 to be executed by
the processor 1782.
The memory 1784 is able to store a current time interval

value T 1790. The memory 1784 may optionally store one
or more previous time interval values T or future time
interval values T or both (not shown). The memory 1784 is
able to store a table 1792 comprising hash-dependent values
obtained from hash calculations performed on the group
shared secrets 1714 using the current time interval value T.
as described previously. The memory 1784 is also able to
store an association 1794 of each one of the hash-dependent
values in the table 1792 with the one of the group shared
secret 1712 from which it was calculated. The memory 1784
may optionally store one or more additional tables (not
shown) of hash-dependent values and associations (not
shown) determined from one or more previous time interval
values T or future time interval values T or both.

What is claimed is:
1. A method to be performed by a server, the method

comprising:
storing information from which it is determinable which

unique subset of M, of N group shared secret identi
fying keys was assigned to each of L. group shared
secrets {gss}. where L, N, and M are positive integers
and M is less than N:

when there is a change in a modulating value:
calculating for each of the N group shared secret

identifying keys a hash of a combination comprising
the group shared secret identifying key and the
modulating value;

determining a hash-dependent value for each hash; and
associating each hash-dependent value with the group

shared secret identifying key from which the corre
sponding hash was calculated or with an index of the
group shared secret identifying key from which the
corresponding hash was calculated;

receiving a message purporting to identify one of the L
group shared secrets {gss); and

determining whether the message identifies one of the L
group shared secrets {gss}.

2. The method as claimed in claim 1, wherein determining
whether the message identifies one of the group shared
secrets {gss comprises:

extracting from the message M. components, each of the
M. components purporting to be a hash-dependent
value determined from a hash of a combination com
prising one of the group shared secret identifying keys
and a current instance of the modulating value;

determining for each of the M components whether the
component is consistent with any of the hash-depen
dent values;

US 9,473.474 B2
49

where each of the M components is consistent with one
of the hash-dependent values, using the association to
determine the group shared secret identifying key that
is associated with the consistent hash-dependent value;

using the stored information to determine whether the
group shared secret identifying keys associated with the
consistent hash-dependent values correspond to any of
the unique Subsets of group shared secret identifying
keys that were assigned to the L. group shared secrets
{gss}; and

where the group shared secret identifying keys correspond
to one of the unique Subsets of client-identifying keys
that was assigned to a particular one of the group shared
secrets {gss }. determining that the message identifies
the particular one of the group shared secrets {gss}.

3. The method as claimed in claim 2, wherein determining
whether the component is consistent with any of the hash
dependent values comprises determining whether a portion
of the component is consistent with a corresponding portion
of any of the hash-dependent values.

4. The method as claimed in claim 1, further comprising:
determining whether the message was received from a

client device that possesses the particular one of the
group shared secrets {gSS}.

5. The method as claimed in claim 4, wherein determining
whether the message was received from a client device that
possesses the particular one of the group shared secrets
{gss) comprises:

extracting from the message a value purporting to be a
value r and a value purporting to be a hash of a
combination comprising the particular one of the group
shared secrets {gss} and the value r, wherein r is a
positive integer,

calculating a hash of a combination comprising the par
ticular one of the group shared secrets {gss} and the
extracted value purporting to be the value r,

comparing the calculated hash of the combination to the
extracted value purporting to be the hash of the com
bination; and

where the values are consistent with one another, deter
mining that the message was received from a client
device that possesses the particular one of the group
shared secrets {gss}.

6. A method to be performed by a server, the method
comprising:
when there is a change in a modulating value:

calculating for each of L group shared secrets {gss } a
hash of a combination comprising the group shared
secret gss, and the modulating value, wherein L is a
positive integer,

determining a hash-dependent value for each hash; and
associating each hash-dependent value with the group

shared secret from which the corresponding hash
was calculated or with an index of the group shared
secret from which the corresponding hash was cal
culated;

receiving a message purporting to identify a particular one
of the L group shared secrets {gss}; and

determining whether the message identifies the particular
one of the group shared secrets {gss}.

7. The method as claimed in claim 6, wherein determining
whether the message identifies the particular one of the
group shared secrets {gss} comprises:

extracting from the message a value purporting to be a
hash-dependent value determined from a hash of a

10

15

25

30

35

40

45

50

55

60

65

50
combination comprising the particular one of the group
shared secrets {gss} and a current instance of the
modulating value;

determining whether the extracted value is consistent with
any of the hash-dependent values;

where the extracted value is consistent with one of the
hash-dependent values, using the association to deter
mine the group shared secret that is associated with the
consistent hash-dependent value.

8. A server comprising:
a communication interface through which the server is

able to receive a message purporting to identify a
particular group shared secret from L. group shared
secrets {gss); and

a memory storing information from which it is determin
able which unique subset of M, of N group shared
Secret identifying keys was assigned to each of the L
group shared secrets {gss}, wherein the server, when
there is a change in a modulating value, is operative:
to calculate for each of the N group shared secret

identifying keys a hash of a combination comprising
the group shared secret identifying key and the
modulating value;

to determine a hash-dependent value for each hash; and
to associate each hash-dependent value with the group

shared secret identifying key from which the corre
sponding hash was calculated or an index of the
group shared secret identifying key from which the
corresponding hash was calculated;

wherein the server is further operative to determine
whether the message identifies one of the L. group
shared secrets {gss), and

wherein L, N, and M are positive integers and M is less
than N.

9. The server as claimed in claim 8, wherein determining
whether the message identifies the particular one of the
group shared secrets {gss} comprises:

extracting from the message M. components, each of the
M. components purporting to be a hash-dependent
value determined from a hash of a combination com
prising one of the group shared secret identifying keys
and a current instance of the modulating value;

determining for each of the M components whether the
component is consistent with any of the hash-depen
dent values;

where each of the M components is consistent with one
of the hash-dependent values, using the association to
determine the group shared secret identifying key that
is associated with the consistenthash-dependent value;

using the information to determine whether the group
shared secret identifying keys associated with the con
sistent hash-dependent values correspond to any of the
unique Subsets of group shared secret identifying keys
that were assigned to the L group shared secrets {gss}:
and

where the group shared secret identifying keys correspond
to one of the unique Subsets of client-identifying keys
that was assigned to a particular one of the group shared
secrets {gss}, determining that the message identifies
the particular one of the group shared secrets {gss}.

10. The server as claimed in claim 9, wherein determining
whether the component is consistent with any of the hash
dependent values comprises determining whether a portion
of the component is consistent with a corresponding portion
of any of the hash-dependent values.

11. The server as claimed in claim 8, wherein the server
is further operative to determine whether the message was

US 9,473.474 B2
51

received from a client device that possesses the particular
one of the group shared secrets {gss}.

12. The server as claimed in claim 11, wherein determin
ing whether the message was received from a client device
that possesses the particular one of the group shared secrets
{gss comprises:

extracting from the message a value purporting to be a
Value r and a value purporting to be a hash of a
combination comprising the one of the particular group
shared secrets {gss} and the value r, wherein r is a
positive integer;

calculating a hash of a combination comprising the par
ticular one of the group shared secrets {gss} and the
extracted value purporting to be the value r.

comparing the calculated hash of the combination to the
extracted value purporting to be the hash of the com
bination; and

where the values are consistent with one another, deter
mining that the message was received from a client
device that possesses the particular one of the group
shared secrets {gss}.

13. A server comprising:
a communication interface through which the server is

able to receive a message purporting to identify a
particular one of L. group shared secrets {gss}.
wherein L is a positive integer:

wherein the server, when there is a change in a modulating
value, is operative:
to calculate for each of the L group shared secrets

{gss, a hash of a combination comprising the group
shared secret gss, and the modulating value;

to determine a hash-dependent value for each hash; and
to associate each hash-dependent value with the group

shared secret from which the corresponding hash
was calculated or with an index of the group shared
Secret from which the corresponding hash was cal
culated;

wherein the server is further operative to determine
whether the message identifies the particular one of the
L group shared secrets {gss}.

14. The server as claimed in claim 13, wherein determin
ing whether the message identifies the particular one of the
group shared secrets {gss } comprises:

extracting from the message a value purporting to be a
hash-dependent value determined from a hash of a
combination comprising the particular one of the group
shared secrets and a current instance of the modulating
value;

determining whether the extracted value is consistent with
any of the hash-dependent values:

5

10

15

25

30

35

40

45

52
where the extracted value is consistent with one of the

hash-dependent values, using the association to deter
mine the group shared secret that is associated with the
consistent hash-dependent value.

15. A non-transitory computer-readable medium storing
information from which it is determinable which unique
subset of M, of N group shared secret identifying keys was
assigned to each of L. group shared secrets {gss}, the
computer-readable medium further storing code which,
when executed by a processor of a server, causes the server,
when there is a change in a modulating value:

to calculate for each of the N group shared secret iden
tifying keys a hash of a combination comprising the
group shared secret identifying key and the modulating
value;

to determine a hash-dependent value for each hash; and
to associate each hash-dependent value with the group

shared secret identifying key from which the corre
sponding hash was calculated or with an index of the
group shared secret identifying key from which the
corresponding hash was calculated,

wherein the code, when executed by the processor, further
results in the server determining whether a message
received through a communication interface of the
server and purporting to identify a particular group
shared secret from the L group shared secrets {gss}
identifies one of the L group shared secrets {gss}, and

wherein L, N, and M, are positive integers and M, is less
than N.

16. A non-transitory computer-readable medium storing
code which, when executed by a processor of a server,
causes the server, when there is a change in a modulating
value:

to calculate for each of L group shared secrets {gss} a
hash of a combination comprising the group shared
secret gss, and the modulating value, wherein L is a
positive integer:

to determine a hash-dependent value for each hash; and
to associate each hash-dependent value with the group

shared secret from which the corresponding hash was
calculated or with an index of the group shared secret
from which the corresponding hash was calculated,

wherein the code, when executed by the processor, further
results in the server determining whether a message
received through a communication interface of the
server and purporting to identify a particular one of the
L group shared secrets {gss} identifies the particular
one of the L group shared secrets {gss}.

ck ck ck ck ck

