
USOO9473468B2

(12) United States Patent
Gupta

(10) Patent No.:
(45) Date of Patent:

US 9.473.468 B2
*Oct. 18, 2016

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(60)

(51)

(52)

METHODS AND SYSTEMS OF DATA
SECURITY IN BROWSER STORAGE

Applicant: salesforce.com, inc., San Francisco, CA
(US)

Inventor: Akhilesh Gupta, Mountain View, CA
(US)

Assignee: salesforce.com, inc., San Francisco, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 14/856,371

Filed: Sep. 16, 2015

Prior Publication Data

US 2016/OOO6705 A1 Jan. 7, 2016

Related U.S. Application Data
Continuation of application No. 14/622,812, filed on
Feb. 13, 2015, now Pat. No. 9,231,764, which is a
continuation of application No. 13/433,067, filed on
Mar. 28, 2012, now Pat. No. 8,959,347.
Provisional application No. 61/528,462, filed on Aug.
29, 2011.

Int. C.
H04L 29/06 (2006.01)
G06F2L/4I (2013.01)
H04L 9/32 (2006.01)
H04L 29/08 (2006.01)
U.S. C.
CPC H04L 63/0428 (2013.01); H04L 9/3213

32

iPad
s

is&
ri

initiate Authenication

Retirect t date so:e A3th gif

iggia: Approve

ebag
p
er

3.

(2013.01); H04L 63/08 (2013.01); H04L
63/0807 (2013.01); H04L 67/2814 (2013.01)

(58) Field of Classification Search
CPC ... H04L 9/3213; H04L 63/0807; H04L 9/32:

HO4L 63/0428
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,577,188 A 11, 1996 Zhu
5,608,872 A 3, 1997 Schwartz et al.
5,649,104 A 7/1997 Carleton et al.
5,715.450 A 2f1998 Ambrose et al.
5,761419 A 6/1998 Schwartz et al.
5,819,038 A 10, 1998 Carleton et al.
5,821,937 A 10, 1998 Tonelli et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO 2012/048092 A2 4/2012
WO WO, 2012/O54309 A1 4/2012

OTHER PUBLICATIONS

Notice of Allowance for U.S. Appl. No. 13/433,067, mailed Oct. 2,
2014, 7 pages.

(Continued)

Primary Examiner — Izunna Okeke
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor
& Zafiman

(57) ABSTRACT

Mechanisms and methods are provided for managing OAuth
access in a database network system, and extending the
OAuth flow of authentication to securely store the OAuth
encrypted refresh token in the storage available with current
browsers or any other non-secure storage on user system.

Auth. Access

9 Claims, 16 Drawing Sheets

36

data Stics
testinatic

Post at (::cis--
to aktising:

:
38

38
RetiriShi esponse with encrypted

irefreshtické i passexie

for sii)Seuent secuke::ts
Store the encrypted tokee is
calcwys: 08 for its uss

3.24.

Redirect user to webap with Auth coie

3tars
it +
sissis

fics

US 9,473.468 B2
Page 2

(56) References Cited 8,301,612 B2 10/2012 Barker et al.
8,312,047 B2 11/2012 Barker et al.

U.S. PATENT DOCUMENTS 8,407.338 B2 3/2013 Brady
8,412,820 B2 4/2013 Newton

5.831,610 A 11/1998 Tonelli et al. 8443,085 B2 5/2013 Jensen-Horne et al.
5873.096 A 2f1999 Lim et al. 8.484, 111 B2 7/2013 Frankland et al.
5918,159 A 6/1999 Fomukong et al. 2001/0044791 A1 11/2001 Richter et al.
5.963,953. A 10, 1999 Cram et al. 2002/0022986 A1 2/2002 Coker et al.
6,092,083 A 7/2000 Brodersen et al. 2002fOO29161 A1 3/2002 Brodersen et al.
6.161.149 A 122000 Achacosoet al. 2002/002937.6 A1 3/2002 Ambrose et al.
6,169,534 B1 1/2001 Raffel et al. 2002.0035577 A1 3/2002 Brodersen et al.
6,178.425 B1 1/2001 Brodersen et al. 2002fOO42264 A1 4, 2002 Kim
6,189,011 B1 2/2001 Lim et al. 2002fOO42843 A1 4/2002 Diec
6,216,135 B1 4/2001 Brodersen et al. 2002fOO72951 A1 6, 2002 Lee et al.
6,233.617 B1 5, 2001 Rothwein et al. 2002fOO82892 A1 6/2002 Raffel et al.
6,266,669 B1 7/2001 Brodersen et al. 2002/0129352 A1 9, 2002 Brodersen et al.
6 295.530 B1 9, 2001 Ritchie et al. 2002fO140731 A1 10, 2002 Subramaniam et al.
6,324,568 B 11/2001 Diec 2002/0143997 A1 10/2002 Huang et al.
6,324.693 B1 11/2001 Brodersen et al. 2002/0152102 A1 10, 2002 Brodersen et al.
6,336.137 B1 1/2002 Lee et al. 2002fO161734 A1 10, 2002 Stauber et al.
D454,139 S 3/2002 Feldcamp 2002/0162090 A1 10, 2002 Parnell et al.
6,367,077 B1 4/2002 Brodersen et al. 2002fO165742 A1 11, 2002 Robins
6,393,605 B1 5/2002 Loomans 2003,0004971 A1 1/2003 Gong et al.
6.405,220 B1 6/2002 Brodersen et al. 2003, OO18705 A1 1/2003 Chen et al.
6,434,550 B1 8/2002 Warneret al. 2003/0018830 A1 1/2003 Chen et al.
6,446,089 B1 9/2002 Brodersen et al. 2003/0066031 A1 4/2003 Laane
6.535.909 B1 3, 2003 Rust 2003/0066032 A1 4/2003 Ramachadran et al.
6,549.908 B1 4/2003 foomans 2003, OO69936 A1 4, 2003 Warner et al.
6,553,563 B2 4/2003 Ambrose et al. 2003/0070000 A1 4, 2003 Coker et al.
6,560,461 B1 5/2003 Fomukong et al. 2003/0070004 A1 4/2003 Mukundan et al.
6,574,635 B2 6, 2003 Stauber et al. 2003/0070005 A1 4/2003 Mukundan et al.
6,577.726 Bf 6/2003 Huangeal 2003, OO74418 A1 4, 2003 Coker
6,601,087 B1 7/2003 Zhu et al. 2003, OO88545 A1 5/2003 Subramaniam et al.
6,604.117 B2 8, 2003 Lim et al. 2003/O120675 A1 6/2003 Stauber et al.
6,604.12s B2 & 2003 Diec 2003/0151633 A1 8/2003 George et al.
6,609,150 B2 & 2003 Lee et al. 2003/015913.6 A1 8/2003 Huang et al.
6,621,834 B1 9/2003 Scherpbier et al. 2003. O187921 A1 10, 2003 Diec
6,654,032 B1 11/2003 Zhu et al. 2003/0189600 A1 10, 2003 Guine et al.
6665,648 B2 12/2003 Brodersen et al. 2003/0191743 A1 10, 2003 Brodersen et al.
6,665.655 Bf 12/2003 Warneret al. 2003/0204427 A1 10, 2003 Guine et al.
6,684,438 B3 2.2004 Brodersenet al. 2003/0206192 A1 11/2003 Chen et al.
671565 B1 3/2004 Subramaniamet al. 2003,0225,730 A1 12/2003 Warner et al.
6,724,399 B1 42004 Katchour et al. 2004/0001092 A1 1/2004 Rothwein et al.
6,728,702 B1 4/2004 Subramaniam et al. 2004/0010489 A1 1/2004 Rio
6,728,960 B1 4/2004 Loomans 2004, OO15981 A1 1/2004 Coker et al.
6,732,095 B1 5/2004 Warshavsky et al. 2004/0027388 A1 22004 Berg et al.
6,732,100 B1 5, 2004 Brodersen et al. 2004.0128001 A1 7/2004 Levin et al.
6,732,111 B2 5, 2004 Brodersen et al. 2004O168083 A1 8/2004 Gasparini G06F 21/31
6,754,681 B2 6/2004 Brodersen et al. T26, 10
6.763,351 B1 7/2004 Subramaniam et al. 2004/O186860 A1 9, 2004 Lee et al.
6,763.50 B1 7/2004 Zhu'etal. 2004/01935 10 Al 9/2004 Catahan, Jr. et al.
6,768,904 B2 7/2004 Kim 2004/0199489 A1 10, 2004 Barnes-Leon et al.
6 77.556 B1 8/2004 Achacoso et al. 2004/0199536 A1 10, 2004 Barnes Leon et al.
6,782.383 B2 & 2004 Subramaniam et al. 2004/0199.543 A1 10, 2004 Braud et al.
6,804.330 Bf 10/2004 Jones et al. 2004/0249854 A1 12/2004 Barnes-Leon et al.
6.826,565 B2 1/2004 Ritchie et al. 2004/0260534 A1 12, 2004 Pak et al.
6.826,582 B1 11/2004 Chatterjee et al. 2004/0260659 Al 12/2004 Chan et al.
6.826,745 B2 11/2004 Coker et al. 2004/0268299 A1 12/2004 Lei et al.
6.829,655 Bf 12/2004 Huanget al. 2005/0050555 A1 3/2005 Exley et al.
6.842,748 B1 1/2005 Warner et al. 2005/009 1098 A1 4/2005 Brodersen et al.
6.850,895 B3 2.2005 Brodersenet al. 2009/0024609 A1 1/2009 Barker et al.
6,850,949 B2 2/2005 Warner et al. 2009 OO44020 A1 2/2009 Laidlaw HO4L 63.08
7,289.976 B2 10/2007 Kihneman et al. 713, 176
7.340,411 B2 3/2008 Cook 2009.0049053 A1 2/2009 Barker et al.
7.356,482 B2 4/2008 Frankland et al. 2009/0177744 A1 7/2009 Marlow et al.
7,590,685 B2 9, 2009 Palmeri et al. 2010.0017596 A1 1/2010 Schertzinger G06F 21.33
7.620,655 B2 11/2009 Larsson et al. 713,155
7.991,790 B2 8, 2011 Barker 2010.0088.636 A1 4/2010 Yerkes et al.
8,015,495 B2 9/2011 Achacoso et al. 2010/0205243 A1 8/2010 Brady
8,078,620 B2 12/2011 Dayon 2010/0223467 A1 9/2010 Dismore et al.
8,078,621 B2 12/2011 Dayon 2010, O250565 A1 9, 2010 Tobin et al.
8,082.249 B2 12/2011 Dayon 2010/0281039 A1 1 1/2010 Dayon
8,082,250 B2 12/2011 Dayon 2010/0287503 A1 1 1/2010 Dayon
8,082.251 B2 12/2011 Dayon 2011 013794.0 A1 6, 2011 Gradin et al.
8,082,252 B2 12/2011 Dayon 2011/O1971.86 Al 8, 2011 Barker et al.
8,082,253 B2 12/2011 Dayon 2011/0214064 A1 9, 2011 Schneider et al.
8,082.254 B2 12/2011 Dayon 2011/0225.119 A1 9/2011 Wong et al.
8, 131,821 B2 3/2012 Dayon 2011/0225232 A1 9, 2011 Casalaina et al.
8,230,062 B2 7/2012 Newton 2011/0225233 A1 9, 2011 Casalaina et al.

US 9,473.468 B2
Page 3

(56) References Cited 2012/0144024 A1 6, 2012 Lee
2012/0144340 A1 6/2012 Knight

U.S. PATENT DOCUMENTS 2012/0144501 A1 6/2012 Vangpat et al.
2012/0173485 A1 7, 2012 Kothule et al.

2011/0225495 A1 9, 2011 Casalaina et al. 2012fO197916 A1 8, 2012 Tobin et al.
2011/0225500 A1 9, 2011 Casalaina et al. 2012fO198279 A1 8, 2012 Schroeder
2011/0225506 A1 9, 2011 Casalaina et al. 2012/0209947 A1 8/2012 Glaser et al.
2011/0225.525 A1 9/2011 Chasman et al. 2012fO214597 A1 8/2012 Newman et al.
2011 O231919 A1 9/2011 Vangpat et al. 2012fO214598 A1 8/2012 Newman et al.
2011/0238622 A1 9, 2011 Walters et al. 2012, 0215705 A1 8, 2012 Porro et al.
2011/O246520 A1 10/2011 Koister et al. 2012, 0215706 A1 8, 2012 Porro et al.
2011/0246772 A1 10/2011 O'Connor et al. 2012/0215707 A1 8/2012 Kwong et al.
2011/0247051 A1 10/2011 Bulumulla et al. 2012/0216130 A1 8/2012 Porro et al.
2011/0252314 A1 10/2011 Barker et al. 2012,0223951 Al 9, 2012 Dunn et al.
2011/0258225 A1 10/2011 Taylor et al. 2012/0233.191 A1 9/2012 Ramanujam
2011/0258242 A1 10/2011 Eidson et al. 2012fO253885 A1 10, 2012 Newton
2011/0258628 A1 10/2011 Devadhar 2012/0259894 A1 10/2012 Varley et al.
2011/0264.650 A1 10/2011 Tobin et al. 2012fO266229 A1 * 10/2012 Simone G06F 21? 41
2011/0265066 A1 10/2011 Fee et al. 726/9
2011/0274258 A1 11/2011 Casalaina et al. 2012,0317238 A1 12/2012 Beard
2011/0274261 A1 11/2011 Casalaina et al. 2012/0330710 A1 12/2012 Hauser et al.
2011/0276580 A1 11/2011 Press et al. 2012/0331016 A1 12/2012 Janson et al.
2011/0276674 A1 11/2011 Jensen-Horne et al. 2012/0331053 A1 12/2012 Dunn
2011/0276693 A1 11/2011 Jensen-Horne et al. 2012/0331518 A1 12/2012 Lee
2011/0276890 A1 11/2011 Jensen-Horne et al. 2012/0331536 Al 12/2012 Chabbewal et al.
2011/0276892 A1 11/2011 Jensen-Horne et al. 2013/0002676 A 1 1/2013 Ziemann
2011/0276945 A1 11/2011 Chasman et al. 2013,0007029 A1 1/2013 Ziemann
2011/0276946 A1 11, 2011 Pletter 2013/0007049 A1 1/2013 Ziemann
2011/0282908 A1 11/2011 Fly et al. 2013,0007126 A1 1/2013 Ziemann
2011/0283110 Al 11/2011 Dapkus et al. 2013,0007148 A1 1/2013 Olsen
2011/0283181 A1 11/2011 Waite et al. 2013/0018869 A1 1/2013 Hanson et al.
2011 (0283267 A1 11/2011 Waite et al. 2013, OO18955 A1 1/2013 Thaxton et al.
2011 (0283356 A1 11/2011 Fly et al. 2013, OO19106 A1 1/2013 Fischer
2011/028914.0 A1 11/2011 Pletter et al. 2013, OO19235 A1 1/2013 Tamm
2011/0289141 A1 11/2011 Pletter et al. 2013/0021370 A1 1/2013 Dunn et al.
2011/02894.25 A1 11/2011 Pletter et al. 2013, OO24454 A1 1/2013 Dunn
2011/0289476 A1 11 2011 Pletter et al. 2013,0024511 A1 1/2013 Dunn et al.
2011 (0289479 A1 11, 2011 Pletter et al. 2013/0O24788 A1 1/2013 Olsen et al.
2011/0289509 A1 11/2011 Kothari et al. 2013,0024843 A1 1/2013 Kutlu.

2011/0296375 A1 12/2011 Mooney 2013,0031144 A1 1/2013 Elango et al.
2011/0296381 Al 12/2011 Mooney 2013,0031172 A1 1/2013 Olsen et al.
2011/0302221 A1 12/2011 Tobin et al. 2013/0031487 A1 1/2013 Olsen et al.

2011/0302631 A1 12/2011 Sureshchandra et al. 2013/0036142 A1 2/2013 Barker et al.
2011/0307695 A1 12/2011 Slater 2013,0054517 A1 2/2013 Beechuk et al.
2011/0320879 A1 12/2011 Singh et al. 2013,0054714 A1 2/2013 Bedi
2011/0320955 A1 12/2011 O'Connor 2013/0054968 A1 2/2013 Gupta
2012,0005537 A1 1/2012 Chen et al. 2013,0055113 A1 2/2013 Chazin et al.
2012/0042218 A1 2/2012 Cinarkaya et al. 2013,0060859 A1 3, 2013 Olsen et al.
2012/005421.0 A1 3/2012 Dayon 2013 (OO61156 A1 3/2013 Olsen et al.
2012/0054629 A1 3/2012 Dayon 2013,0086670 A1 4/2013 Vangpat et al.
2012/00599.19 A1 3/2012 Glaser et al. 2013/009 1149 A1 4/2013 Dunn et al.
2012/0066672 A1 3, 2012 Smith et al. 2013/0091171 Al 4, 2013 Lee
2012fOO78917 A1 3/2012 Gradin et al. 2013,009 1217 A1 4/2013 Schneider
2012/0078981 A1 3/2012 Gradin et al. 2013/009 1229 A1 4/2013 Dunn et al.
2012, 0079004 A1 3, 2012 Herman 2013,0097253 A1 4, 2013 Mencke
2012fOO79038 A1 3/2012 Hersh 2013,0103701 A1 4/2013 Vishnubhatta et al.
2012fOO79392 A1 3/2012 Dayon 2013/O117353 A1 5/2013 Wong et al.
2012fOO86544 A1 4/2012 Kemp 2013,0132861 A1 5, 2013 Kienzle et al.
2012.008961.0 A1 4/2012 Agrawal et al. 2013,0132870 A1 5, 2013 Vishnubhatta et al.
2012/0096.046 A1 4/2012 Kucera 2013,0145445 A1 6, 2013 Lee
2012/0096.049 A1 4/2012 Reinke
2012/0101985 A1 4/2012 Kemp et al.
2012/0102063 A1 4/2012 Kemp et al. OTHER PUBLICATIONS
2012/0102114 A1 4, 2012 Dunn et al.
2012/0102153 A1 4/2012 Kemp et al. Non-final Office Action for U.S. Appl. No. 13/433,067, mailed May
2012/0102402 A1 4/2012 Kwong 16, 2014, 10 pages.
2012/0102420 A1 4/2012 Fukahori Non-final Office Action for U.S. Appl. No. 13/433,067, mailed Nov.
2012/0102429 A1 4, 2012 Naderi et al. 26, 2013, 10 pageS.
2012/013O973 A1 5, 2012 Tamm et al.
2012fO140923 A1 6, 2012 Lee et al. Notice of Allowance for U.S. Appl. No. 14/622,812 mailed Sep. 11,
2012/0143817 A1 6, 2012 Prabaker et al. 2015, 11 pages.
2012/0143917 A1 6, 2012 Prabaker et al.
2012/0144023 A1 6, 2012 Guest et al. * cited by examiner

US 9,473.468 B2 Sheet 1 of 16 Oct. 18, 2016 U.S. Patent

US 9,473.468 B2 Sheet 2 of 16 Oct. 18, 2016 U.S. Patent

US 9,473.468 B2 Sheet 3 of 16 Oct. 18, 2016 U.S. Patent

§§§

**~~~~……………--~~~~^

$3 ÅNJ

US 9,473.468 B2 U.S. Patent

5

US 9,473.468 B2

} :

Sheet S of 16

$
s
S
s
.
.

8

Oct. 18, 2016

) s
&

U.S. Patent

US 9,473.468 B2

&

i

S.

Sheet 6 of 16

saxxxxxxxxxxxxxxxxxxxx

xi.

? gºzzzzzzzzzzzzzzzzzzzz«.

Oct. 18, 2016

%

U.S. Patent

US 9,473.468 B2

N:
k

Sheet 7 of 16 Oct. 18, 2016

&&zzzzzzºzzzzzzzzzzzz. **************************

U.S. Patent

US 9,473.468 B2 Sheet 8 of 16 Oct. 18, 2016 U.S. Patent

?

s

£; zzzzzzzzzzzzzzzzzzzzzzz. *.

¿??¿39 uonebuddu „v

*;- ***zzzzzzzzzzzzzzzzzzzzzz-*

US 9,473.468 B2 Sheet 9 of 16 Oct. 18, 2016 U.S. Patent

excessess

&XXXXXXXXXX

&assass&ass

U.S. Patent Oct. 18, 2016 Sheet 10 of 16 US 9,473.468 B2

F.G. 5A

5O2 508

Carrier 2.

w €6).
51O

User Name
admin(GDakhilesh.com
Password
k k ke k

O Remember User Name

512

504

506

U.S. Patent Oct. 18, 2016 Sheet 11 of 16 US 9,473.468 B2

FIG. 5B

552 556 554

Carrier 2 \, \ 5:54 PM

550

558

U.S. Patent Oct. 18, 2016 Sheet 12 of 16 US 9,473.468 B2

FIG. 5C

572 576 574

carrier 2 \, \

\sup Passcode

57O | 1 || 2 || 3
| 4 || 5 || 6

9

578

US 9,473.468 B2 Sheet 13 of 16 Oct. 18, 2016 U.S. Patent

US 9,473.468 B2 Sheet 14 of 16

$ $ $

Oct. 18, 2016 U.S. Patent

US 9,473.468 B2 Sheet 15 of 16 Oct. 18, 2016 U.S. Patent

US 9,473.468 B2 Oct. 18, 2016 Sheet 16 of 16

-

U.S. Patent

US 9,473,468 B2
1.

METHODS AND SYSTEMS OF DATA
SECURITY IN BROWSER STORAGE

CLAIM OF PRIORITY

This continuation application is related to, and claims
priority to, U.S. patent application Ser. No. 14/622.812, filed
on Feb. 13, 2015, the entire contents of which are incorpo
rated herein by reference; and is further related to, and
claims priority to U.S. patent application Ser. No. 13/433,
067, filed on Mar. 28, 2012, now U.S. Pat. No. 8,959,347,
issued on Feb. 17, 2015, the entire contents of which are
incorporated herein by reference; and is further related to,
and claims priority to U.S. Provisional Patent Application
No. 61/528,462, filed on Aug. 29, 2011, the entire contents
of which are incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever

TECHNICAL FIELD

Embodiments of the invention relate generally to the field
of computing, and more particularly, to computer security.

BACKGROUND

The Subject matter discussed in the background section
should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The Subject matter in the background section merely repre
sents different approaches, which in and of themselves may
also be inventions.
Open Authorization (OAuth) is an open standard for

providing third party access to a resource. OAuth provides
a method for clients to access server resources on behalf of
a resource owner (such as a different client or an end-user).
OAuth provides a process for end-users to authorize third
party access to the end-user's server resources, without
sharing the end-user's credentials (typically, a username and
password pair), by using user-agent redirections. OAuth
allows users to hand out tokens instead of credentials to their
data hosted by a given service provider. Each token may
grant access to a specific site for specific resources and for
a defined duration, which allows a user to grant a third party
site access to their information stored with another service
provider, without sharing their access permissions or the full
extent of their data.
The widespread use of the Internet, as well as the glo

balization of business opportunities has presented the need
to provide information sharing and controlled access
between network resources. Accordingly, the present appli
cation recognizes that it may be desirable to provide tech
niques for extending the flow of authentication to the storage
available with current browsers, in order to better secure
information used for accessing and sharing network
SOUCS.

10

15

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

In the following drawings like reference numbers are used
to refer to like elements. Although the following figures
depict various examples, the one or more implementations
are not limited to the examples depicted in the figures.

FIG. 1 shows a block diagram of an embodiment of a
network based system demonstrating the interaction
between a user system, an application server, and a third
party data server,

FIG. 2A shows a flowchart of an embodiment of a user
system method for initiating an OAuth session and obtaining
and storing an encrypted token in the user system browser;

FIG. 2B shows a flowchart of an embodiment of an
application provider side method for conducting an OAuth
session;

FIG. 2C shows a flowchart of an embodiment of a data
Source side method for conducting an OAuth session;

FIG. 3 is an embodiment of a graphical flow representa
tion of the interaction between the user system, application
provider, and data source of the flowcharts of FIGS. 2A-2C:

FIG. 4A is an embodiment of a graphical flow represen
tation between a user system browser and an application
provider/server illustrating local data storage on the user
system browser;

FIG. 4B is an embodiment of a graphical flow represen
tation between the user system browser of FIG. 4A and the
application provider/server illustrating the use of the
encrypted data stored on the user system browser,

FIG. 4C is an embodiment of a graphical flow represen
tation between the user system browser and the application
provider/server, similar to FIG. 4A, but illustrating the
secure storage of an OAuth refresh token on the user system
browser;

FIG. 4D is an embodiment of a graphical flow represen
tation between the user system browser of FIG. 4C and the
application provider/server illustrating obtaining the refresh
token in response to receiving the encrypted data stored on
the user system browser, similar to FIG. 4B, but using
OAuth;

FIGS. 5A-5C are screenshots of an embodiment of a user
system display illustrating settings and using a passcode to
decrypt a locally stored OAuth refresh token;

FIG. 6 shows a block diagram of an embodiment of an
environment where an on-demand database service might be
used for methods and systems for managing OAuth access
between user systems, application provider servers, and
third party data stored in a multi-tenant database system;

FIG. 7 shows a block diagram of an embodiment of
elements of FIG. 6 and various possible interconnections
between elements in an embodiment for methods and sys
tems for managing OAuth access between user systems,
application provider servers, and third party data stored in a
multi-tenant database system;

FIG. 8 shows a flowchart of an example of an embodi
ment of a method for using the environment of FIG. 6; and

FIG. 9 shows a flowchart of an example of an embodi
ment of a method of making the environment of FIG. 6.

DETAILED DESCRIPTION

General Overview
Systems and methods are provided for managing OAuth

access in a database network system, and extending the
OAuth flow of authentication to securely store the OAuth
refresh token in the storage available with browsers. Note
that although various implementations are described in the

US 9,473,468 B2
3

context of a multi-tenant database network system (or multi
tenant database system), these and other implementations
may also be utilized in other environments as well, for
example, on-demand service environments, LAN systems,
WAN systems, database systems, etc.

Although various embodiments of the invention may have
been motivated by various deficiencies with the prior art,
which may be discussed or alluded to in one or more places
in the specification, the embodiments of the invention do not
necessarily address any of these deficiencies. In other words,
different embodiments of the invention may address differ
ent deficiencies that may be discussed in the specification.
Some embodiments may only partially address some defi
ciencies or just one deficiency that may be discussed in the
specification, and some embodiments may not address any
of these deficiencies.
As used herein, the term multi-tenant database system

refers to a database system that has multiple tenants that
each has a degree of access to at least a portion of the
database system that may or may not be the same as the
degree of access as other tenants. Each tenant may be an
individual or an organization that may have representatives,
members, employees, customers and/or other entities asso
ciated with the tenant, which in turn, as a result of the
tenancy of the tenant in the multitenant database, may also
have different degrees of access to the database. The degree
of access granted to those associated with the tenant and/or
which entities (e.g., representatives, members, employees,
customers and/or other entities) are associated with the
tenant may be determined by the tenant. The database
system may include multiple databases, and each database
may be partitioned and/or otherwise shared amongst mul
tiple tenants. The multitenant database may be provided on
demand, that is as a service to the tenants, so that the tenants
have use of the multitenant database for their own purposes
that determined by the tenants, but the tenants do not need
to worry about the maintaining the database, the operations
of the database, or how the database works.

Embodiments provide a modification of the OAuth flow
of authentication to securely store the OAuth refresh token
designated for a user in the storage available with browsers
on a user device. OAuth based authentication flows return a
refresh token in response to a user initiated access session.
The refresh token may be securely stored by a client site and
by the user to easily and quickly access the third party
services. However, storage features available with browsers
on user systems lack encryption features or access to a
device key-chain. The device key-chain refers to the chain of
keys used for authentication. The absence or lack of security
encryption features, for encrypting access tokens in device
browsers, makes it easier for an undesired party to read use
the data stored on browser devices. Such as the access
refresh tokens.

Embodiments may securely store the OAuth refresh token
designated for a user in the storage available with browsers
on a user access device that may be implemented within a
system environment. The system environment may include
a communication and/or computing device client browser, a
service provider (SP)/Web application (app) host, and an
identity provider/data source identity provider (the SP's host
system may be referred to as the SP). Throughout this
specification the term “host,” “server,” and “provider” may
be substituted one for another to obtain different embodi
ments. Throughout this specification the terms “web appli
cation host,” “application host,” and “application server'
may be substituted one for another to obtain different
embodiments. Throughout this specification the terms “iden

10

15

25

30

35

40

45

50

55

60

65

99 & tity provider,” “third party server,” “information provider.”
and “data source' may be substituted one for another to
obtain different embodiments. The SP may contact the
identity provider in response to a user (client) initiated
session to obtain data or content.

In at least one embodiment, when a user authenticates, via
an identity provider, and grants permission for an SP to
access the data and services of the identity provider, the
identity provider redirects the user/client browser to an
endpoint provided by the SP. During this redirect, the
identity provider sends the authorization code, which can be
exchanged by the SP for access and refresh tokens. When the
client browser establishes communications with the SP
endpoint, the SP prompts the user to set-up a passcode
before obtaining the tokens. Once the user provides the
passcode, and after the SP obtains the tokens from the
identity provider, the SP encrypts the refresh token by using
the user provided passcodes and/or by a private key gener
ated by the SP. The encrypted result may also include a
unique identifier that tracks future authentication requests,
and acts to prevent brute force hacks characterized by
repeated login attempts by an unauthorized party. The
encrypted token is then returned to the client browser to be
saved locally in the local storage of the browser. During
future access attempts, the client browser may send this
encrypted token along with the passcode to the SP to access
the data and services of the identity provider.

Advantages provided by at least one embodiment of the
modified OAuth are that the encryption and storage of the
refresh token on the user device obviates the need for the
user to authenticate via an identity provider every time the
user employs the application. The browser storage may be
used to store some or all the sensitive information on the
client side, and hence reduce the risks on the SP side from
the impact of having to store any sensitive user information.
In general, throughout this specification, the browser local
storage area may be a database and the Service Provider (SP)
database may be replaced with another storage area at the
SP. The modified OAuth may provide enhanced data secu
rity, because, in an instance of a lost user device, the token
cannot be decrypted without manually inputting the user's
passcode whenever a request for access is initiated, and the
SP can prevent brute force attacks to guess the user's
passcode. An instance of unauthorized access to an
encrypted token at the user device would not be a cause of
concern, since decryption of the token occurs on the SP side
and the decryption key is stored as the SP.

FIG. 1 shows an embodiment of a network based system
100 demonstrating the interaction between an service pro
vider server, an identity provider server, and a user system.
Network based system 100 may include network 102, ser
vice provider server 104, key creation 106, application 108,
identity provider server 110, OAuth software 112, token
creation module 114, database 116, user system 118, input
device/interface 120, browser 122, user interface 124, token
storage 126, token management code 128, and network
interface 130. In other embodiments network based system
100 may not have all of the elements or features listed and/or
may have other elements or features instead of or in addition
to those listed.
Application Server I User System

In network based system 100, the user system may allow
the application provider server to access information stored
at an identity provider server. The identity provider server
may store information on behalf of the end user. Network

US 9,473,468 B2
5

102 is any network, such as a Wide Area Network (WAN)
or Local Area Network (LAN), such as Internet or an
intranet.

In an embodiment, service provider server 104 provides a
service or information to a user. Some non-limiting
examples of a service provided by service provider server
104 may be photo printing of online digital photos or
delivery of parcels. As another example, the host of service
provider server 104 may provide a service to the user. For
example, on behalf of the user, the host of the service
provider server 104 may process the orders for products
from customers for the users. The printing service (service
provider 104) may access the photos (at identity provider
server 110) in order to print the photos, and the delivery
service (service provider 104) may access the server that
stores the addresses (identity provider server 110).

Encryption/decryption algorithm 106 decrypts encrypted
tokens, and encrypts tokens that have not yet been
encrypted. Encryption/decryption algorithm 106 encrypts
tokens prior to storing the encrypted token at the user
machine and decrypts encrypted tokens prior to using the
token to gain access to the identity provider server, allowing
service provider server 104 to gain access to data on the
identity provider server 110 on behalf of the user. Applica
tions 108 may be the services provided by service provider
server 104. Service provider server 104 may host encryption
algorithm 106 and application 108. Both service provider
server 104 and the user system have a client server relation
ship with identity provider service 110 in which identity
provider service 110 is the server and service provider server
104 and the user system are the clients.

In an embodiment identity provider server 110 may
provide content or data to be used by service provider server
104 on behalf of the user. Identity provider server 110
provides a service, and the user allows service provider
server 104 to have access to identity provider server 110.
Using photo-printing as an example again, identity provider
server 110 may provide the photos or images to be printed
by a printing application, which may be application 108 of
the service provider server 104. OAuth software 112 is a
module that runs the open authorization software, but could
be replaced with another authorization software. Alterna
tively, identity provider server 110 may provide a service
ordered by service provider server 104 to the user and/or to
application provider 104 on behalf of the user. The OAuth
Software 112 manages the authentication process, which will
be described further below. Token creation module 114
creates refresh tokens, which may be necessary to access
identity provider server 110. Database 116 may be a data
base that tracks the accounts of users of identity provider
server 110 and may be used by identity provider server for
other purposes as well. Identity provider server 110 may host
OAuth software 112, token creation module 114, and data
base 116. Database 116 may store the information, such as
for example the photos that the service provider server 104
is requesting. In an embodiment, identity provider server
110 and/or database 116 may be part of an on-demand
multi-tenant database system. Database 116 may be a multi
tenant relational database having different portions dedi
cated to different tenants. The identity provider server 110
may be considered an organization (org) or tenant in a
multi-tenant database system to be described in greater
detail below in conjunction with FIGS. 6 and 7.

In an embodiment user system 118 may be a computing
device such as a desktop computer, laptop, tablet, or portable
computing device. User system 118 may also be a mobile
communication device Such as a cellular phone or Smart

10

15

25

30

35

40

45

50

55

60

65

6
phone. Anywhere in this specification where the word “sys
tem' appears, the word “device' may be substituted to
obtain a more specific embodiment. User system 118 may be
the system of an end user that uses the services of service
provider server 104 and identity provider server 110. User
system 118 may desire to have service provider server 104
perform a function for which service server provider 104
needs to access the user's account at identity provider server
110. Input device 120 may be a keyboard, virtual keyboard,
or a pointing device, such as a tack ball, touch pad, touch
screen, or a mouse. Browser 122 may be an application for
interacting with network resources over network 102.
Browser 122 may be any markup language client or any
client capable of rendering elements based on a markup
language. Such as an http client. In an embodiment browser
122 may include a database. In an embodiment, tokens may
be stored in the local storage of the browser, in nonvolatile
memory. User interface (UI) 124 may be a visual interactive
webpage for inputting and receiving information over the
network 102. User interface 124 may be a user interface that
was downloaded from service provider server 104. Token
storage 126 may be a storage area at the user System that
stores tokens that were created by identity provider server
110. Token storage 126 may be nonvolatile memory and
may be part of the local storage of the browser. Token
storage 126 may store encrypted tokens, which may be
created by identity provider server 126 and may be
encrypted by service provider server 110. Token manage
ment code 128 controls the receipt, storage, and release of
tokens within user system 118. Token management code 128
stores and manages tokens on user system 118. Token
management code 128 may be included within browser 122.
Network interface 130 is an interface to a network that
allows user system 118 to interface with a network, such as
the Internet. User system 118 may include input system 120,
browser 122, user interface 124, token storage 126, token
management code 128, and network interface 130.
User System Side Method Initiating OAuth Session and
Securing Encrypted Token on the user System Browser

FIG. 2A shows a flowchart of an embodiment of a user
system method 200 tier initiating an OAuth session and
obtaining and storing an encrypted token in the user system
browser. In step 202, the user system sends an authentication
request to a service provider (SP), initiating authentication.
In step 204, the user system receives an OAuth login page
for a required data source/information provider (identity
provider) from the service provider redirecting the user to
the identity provider that has the data source. By sending the
OAuth login page of the identity provider from the service
provider server, the application provider redirects the user
from the service provider to the identity provider. In step
206, the user system sends login information to the identity
provider, and approves OAuth access of the identity pro
vider by the service provider. In step 208, the user system
receives an OAuth authorization code from the identity
provider (which may be a data source), and an instruction to
contact the SP redirecting the user back to the SP. In step
210, the user system sends the OAuth authorization code and
user passcode to obtain the access token and the refresh
token from the SP, which the SP uses to gain access to the
identity provider (the access token is used to obtain an initial
access and the renew token is used to refresh the session for
Subsequent requests for information). In step 212, the user
system receives an encrypted refresh token based on the
passcode from the SP (the refresh token may be originally
generated by the identity provider and sent to the service
provider). In step 214, the SP sets the session cookies on the

US 9,473,468 B2
7

user system with OAuth tokens for subsequent requests. The
user System can also store the OAuth tokens in other ways
too and send the OAuth tokens back to SP in form of HTTP
request headers or in the message body. In step 216, the user
system stores the encrypted token in the local storage of the
browser.

In an embodiment, each of the steps of method 200 may
be a distinct step. In other embodiments, method 200 may
not have all of the above steps and/or may have other steps
in addition to or instead of those listed above. The steps of
method 200 may be performed in another order. Subsets of
the steps listed above as part of method 200 may be used to
form their own method. In an embodiment, there could be
multiple instances of method 200.
Application Provider (SP) Side Method for Conducting an
OAuth Session

FIG. 2B shows a flowchart of an embodiment of an
application provider side method 230 for conducting an
OAuth session. In step 232, the service provider (SP)
receives an authentication request from the user system. In
step 234, the SP sends an OAuth login page for a data source
(identity provider) to the user system, redirecting the user to
the identity provider. In step 236, the SP receives a post
OAuth access code and a user passcode from the user for
obtaining a refresh token from the identity provider (which
may be a data source) (identity provider). In step 238, the SP
sends the OAuth access code and user passcode to obtain the
access token and refresh tokens from the identity provider.
In step 240, the SP receives the access and refresh tokens
from the identity provider. In step 242, the SP sends a
Javascript object notation (JSON) response with an
encrypted token (based on refresh token-passcode). For
example, the token and passcode may be placed into a
structured text BLOB, which may then be encrypted. Alter
natively, the passcode and token may be concatenated
together. Alternatively, the passcode and refresh token may
be encrypted separately and then sent within a structured
text BLOB or sent separately. JSON is a lightweight text
based open standard designed for human-readable data
interchange. JSON is derived from the JavaScript scripting
language for representing simple data structures and asso
ciative arrays, called objects. Despite JSONs relationship to
JavaScript, it is language-independent, are parsers available
for most languages. Alternatively, another format may be
used for transmitting the access and refress tokens instead of
JSON. For example, XML, text, and comma separated
values may be used instead of JSON.

In an embodiment, each of the steps of method 230 may
be a distinct step. In other embodiments, method 230 may
not have all of the above steps and/or may have other steps
in addition to or instead of those listed above. The steps of
method 230 may be performed in another order. Subsets of
the steps listed above as part of method 230 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 230.
Identity Provider Side Method for Conducting an OAuth
Session

FIG. 2C shows a flowchart of an embodiment of a data
source (which is identity provider) side method 250 for
conducting an OAuth session. In step 252, the data source?
information provider (which is identity provider) receives a
user login request with an authorization (Auth) access code.
In decision step 254, if the access based on the supplied.
Auth code is denied method 250 follows the NO branch, and
the process ends in step 256. In decision step 254, if the
access based on the Supplied. Auth code is approved, method
250 follows the YES branch, and process 250 continues to

5

10

15

25

30

35

40

45

50

55

60

65

8
step 258. In step 258, the identity provider sends the user
system redirection instructions to go to the application
provider (SP) with the supplied authorization code. In step
260, the identity provider receives the authorization code
from the service provider. In decision step 262, if the access
based on the supplied auth code is denied method 250
follows the NO branch, and the process ends in step 264. In
decision step 262, if the access based on the Supplied
authorization code is approved, method 250 follows the YES
branch, and process 250 continues to step 266. In step 266,
the identity provider sends the access and refresh token to
service provider and the process steps of method 250
concluder 268.

In an embodiment, each of the steps of method 250 may
be a distinct step. In other embodiments, method 250 may
not have all of the above steps and/or may have other steps
in addition to or instead of those listed above. The steps of
method 250 may be performed in another order. Subsets of
the steps listed above as part of method 250 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 250.

FIG. 3 is a graphical flow representation 300 of an
embodiment illustrating the interaction between the user
system 302, application provider (SP) 304, and data source
(identity provider) 306 that combines the steps of process
200, 230, and 250, which were described in the flowcharts
of FIGS. 2A-2C (in FIGS. 2A-5C “IP” stands for identity
provider, whereas elsewhere in the specification, such as in
the discussion of FIGS. 6 and 7, “IP” stands for internet
protocol). User system 302 may be an embodiment of user
system 118. Service provider 304 may be an embodiment of
service provider server 104. Identity provider 306 may bean
embodiment of identity provider server 110. The user system
302 may be running a browser utilizing hypertext markup
language (HTML), such as but not limited to HTML5, and
may include a browser that has a database. The flow
representation 300 begins with step 308 in which the user
system 302 initiates authentication when contacting a
Webapp (herein referred to as an application provider/
service provider (SP) 304. In step 310, in response to the
user system 302, the SP304 redirects the user system 302 to
the data source (identity provider) 306 for OAuth login.
During the OAuth login, the user initiates a session at
identity provider 306. In step 312, in response to the SP 304,
the user system 302 logs into the identity provider 306 and
provides an authorization (auth) code. In an embodiment,
the authorization code may be a token. In step 314, in
response to the user system 302 Successfully logging into the
identity provider 306 with an accepted auth code, the
identity provider 306 redirects the user system 302 to
contact the SP 304 with the auth code. In step 316, in
response to the SP 304, the user system 302 posts the auth
code and a user passcode made up of alphanumeric charac
ters to obtain a refresh token. Subsequently, in step 318, the
SP 304 exchanges the supplied authorization code to obtain
access and refresh tokens from the identity provider 306,
which in an embodiment, may be for the same session
opened by the end user in step 310. SP 304 interacts as client
with identity provider 306 as a client of identity provider
306. In step 320, the identity provider 306, in response to the
SP304, returns access and refresh tokens to the SP 304. As
part of step 320 or step 322, SP 304, encrypts the combi
nation of the refresh token and passcode. For example, the
refresh token and passcode may be placed into structured
text BLOB, which is then encrypted. In step 322, the SP304
then returns a JSON response with an encrypted token based
on the user supplied passcode combined with the refresh

US 9,473,468 B2

token. In step 324, the browser of user system sets session
cookies with OAuth values for subsequent retrieval, and
stores the encrypted token in a browser.

In an embodiment, each of the steps of method 300 may
be a distinct step. In other embodiments, method 300 may
not have all of the above steps and/or may have other steps
in addition to or instead of those listed above. The steps of
method 300 may be performed in another order. Subsets of
the steps listed above as part of method 300 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 300.

FIGS. 4A and 4B show an example of a method for
storing encrypted data on a browser, which may be used with
HTML5 or other browsers. FIG. 4A is an embodiment of a
graphical flow representation 400 between a user system 402
browser and an application provider/server 404 illustrating
the storage of encrypted data on the user system 402
browser. FIG. 4A is a method of storing encrypted data at a
browser in a user system. User system 402 may be an
embodiment of user system 118 and/or 302. Service pro
vider server 404 may be an embodiment of service provider
server 104 and/or 304. Identity provider 406 may be an
embodiment of identity provider server 110 and/or 306.
The flow representation 400 begins with step 406, in

which the user receives data that needs to be stored in the
browser of the user system, such as an encrypted refresh
token for accessing data on another server, Such as the
identity server. In other embodiments, another authorization
code or other information may be stored at the browser
instead. Step 406 has no exact analogue in FIG. 3. However,
the encrypted data of the method of FIG. 3, which is the
authorization code, is received as part of step 314.

In step 408, the user system 402 receives data (D) (e.g.,
the refresh token) that is to be stored securely in the user
system browser storage. As part of step 408, in order to
securely store the data (D), the user is requested to setup a
passcode (P) for secure storage.

In step 410, in response to the request, the user enters the
passcode (P) into the user system 402. Subsequently, in step
412, the data (D) (e.g., the refresh token) and passcode (P)
are posted or sent to the service provider server (SP) for
encryption.

In step 414, upon receiving the data (D) and passcode (P),
the service provider server 404 may perform the following
sub-steps. In sub-step (1), service provider server 404 cre
ates a structured text Binary Large Object (BLOB) (e.g.,
places the data and the user passcode into to the structured
text BLOB, thereby creating a structured text BLOB) con
taining the data (D) (e.g., the refresh token) and the user
provided passcode (P). In sub-step (2), service provider
server 404 generates a unique encryption key (K), and stores
the key in a local SP database with a unique identifier (Kid)
assigned to the key assuming that the encryption and decryp
tion key are the same (if the encryption and decryption key
are different, then the decryption key is stored at the SP
database- or other storage area in association with key
identifier Kid).

In sub-step (3), service provider server 404 encrypts the
text blob, which may be referred to as ED (Encrypted Data)
from Sub-step (1) using the encryption key generated in step
(2).

In an embodiment, a one-way hash is performed on only
the passcode before encrypting the passcode along with the
content or token (which may be plain text). So next time user
provides the passcode, the stored hash of the passcode is
compared with the new one-way hash of the provided
passcode (instead of comparing the plain-text passcodes). In

10

15

25

30

35

40

45

50

55

60

65

10
an embodiment, the server only stores the encryption keys
but not the encrypted content. So the user sends the unen
crypted passcode and the encrypted object, to allow server
to match the passcodes, and if Successful, the server returns
the unencrypted content using the key stored at server. In an
embodiment, the passcode is not part of “content” but
instead stored along with content in the resulting encrypted
object.

In step 416, the service provider server 404 subsequently
returns a structured response, such as JSON, XML etc., with
a) encrypted text blob (ED) generated in sub-step (3) of step
414 to the user system 402, and (b) returns the unique
identifier for the private key (which may be referred to as the
Key identifier (Kid)) stored in the SP to the user system 402.

In step 418, the received encrypted text blob (ED) and the
private key identifier (Kid) are stored in local storage of the
user system 402 browser. Steps 408, 410, 412, and 418 of
FIG. 4A correspond to steps 310, 312, 314, 316, 322, and
324, respectively, of FIG. 3. Step 414 corresponds to steps
318 and 320. The method of FIGS. 3 and 4A differ in that
in FIG. 3, the encrypted data is received as part of the step
314, when the user system is redirected to the webpage of
the SP, which occurs after being asked to set up a passcode
in step 312, whereas in the method of FIG. 4A, the user is
asked to set the passcode in step 410, which occurs after
receiving the encrypted data(D)/authorization code in step
406.

In an embodiment, each of the steps of method 400 may
be a distinct step. In other embodiments, method 400 may
not have all of the above steps and/or may have other steps
in addition to or instead of those listed above. The steps of
method 400 may be performed in another order. Subsets of
the steps listed above as part of method 400 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 400.

FIG. 4B is an embodiment of a graphical flow represen
tation 420 between the user system 402 of FIG. 4A and the
service provide server 404. FIG. 4A is method of using of
the encrypted data stored on the browser of the user system
(which may have been stored using the method 400 of FIG.
4A).

In step 422, the graphical flow representation 420 begins
with the user being prompted to enter the passcode (P),
which may have been created in FIG. 4A. The passcode may
ultimately be used by the service provider server 404 for
decrypting encrypted content that is in the browser storage.
In an embodiment, the encrypted content may be a refresh
token. However, in other embodiments, the encrypted con
tent may be other encrypted content that service provider
server 404 needs from user system 402 that is stored in the
user system. In an embodiment, the passcode is requested
from the user upon launching an application running on or
provided by service provider server 404. In other embodi
ments, the secure content may not be needed immediately,
and the passcode may be requested at a later time.

In response, in step 424, the user enters the passcode (P)
on the user system 402. Subsequently, in step 426, the
following are posted or sent by the user system 402 to the
service provider server 404 for performing the decryption: a)
the user provided passcode (P); b) encrypted data (ED)
stored in FIG. 4A (e.g., the encrypted refresh token); and c)
the encryption key unique identifier (Kid).

In step 428, upon receiving the ED and Kid from the user
system 402, the service provider server 404 performs the
following sub-steps. In sub-step (1) the service provider
server 404 queries the encryption key (K) from the local
storage based on the key identifier (Kid) sent by the user (the

US 9,473,468 B2
11

client). In other words, service provider server 404 performs
a search (e.g., via a query statement) in the local storage of
the browser of the user system for the encryption key, and
the Kid is used as the lookup value (e.g., database key) to
locate the encryption key. In Sub-step (2) the service pro
vider server 404 decrypts the encrypted data (ED) using the
key found in step 1. In sub-step (3) the service provider
server 404 validates that the passcode (P) stored in the
decrypted text blob (ED), and the user provided passcode (P)
are the same. In Sub-step (4) if the passcodes match in
sub-step 3, the decrypted data (D) is returned back to the
user system 402 by the service provider server 404, and if
the passcodes do not match, a failure is logged in local
storage of the service provider server 404 to prevent brute
force attacks. For example, the SP may only allow a prede
termined particular number of failed attempts to gain access,
and if the log indicates that the predetermined particular
number of failed attempts is exceeded, the SP may block
access from that user whether or not the user later provides
the correct passcode. In other words, the logging of failure
attempts can limit how many failures are allowed before the
decryption of that token is disabled and the system deter
mines to no longer accept the encryption keys. After the
system determines to no longer accept the encryption keys
the user would then have to re-authenticate and store new
data that’s encrypted with new private key.

In step 430, optionally, after the service provider server
404 may receive updated data (e.g., an updated refresh token
that was obtained using the original refresh token), the
updated data is encrypted and is sent back to the user system
402 by the service provider server 404 if the passcodes
verification is successful. As part of step 430, optionally,
service provider server 404 may make use of the encrypted
data to provide a service to the user system.

In an embodiment, each of the steps of method 420 may
be a distinct step. In other embodiments, method 420 may
not have all of the above steps and/or may have other steps
in addition to or instead of those listed above. The steps of
method 420 may be performed in another order. Subsets of
the steps listed above as part of method 420 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 420.

FIG. 4C is an embodiment of a graphical flow represen
tation 440 between the browser of user system 402 and the
application provider/service provider server 404, similar to
FIG. 4A, but illustrating the secure storage of an OAuth
refresh token on the user device browser. The graphical flow
representation 440 begins with the user system 402 receiv
ing an OAuth refresh token (D) that requires secure storage
on the user systems 402 browser (step 442), and the user
being prompted or asked to setup a passcode for secure
storage (step 444). Subsequently, the user enters the pass
code (P) (step 446) and posts or sends the refresh token (D)
and the passcode (P) to the application server (SP) for
encryption (step 448). Upon receiving the refresh token (D)
and the passcode (P) from the user system 402, the service
provider server 404: 1) creates a structured text blob con
taining the refresh token (D) and the user provided passcode
(P); 2) generates a unique encryption key (K) and stores the
key in a SP local database with a unique identifier (Kid)
assigned to the key; and 4) encrypts the text blob from step
(1) using the encryption key generated in step (2) (Step 450).
The service provider server 404 subsequently returns a
JSON response with a) encrypted text blob (ED) generated
in step (3) of step 450 to the user system 402, and (b) returns
the unique identifier (Kid) for the private key stored in the
service provider server 404 to the user system 402 (step

10

15

25

30

35

40

45

50

55

60

65

12
452). The received encrypted text blob (ED) and the private
key identifier (Kid) are stored in local storage of the user
system 402 browser (step 454).

In an embodiment, each of the steps of method 440 may
be a distinct step. In other embodiments, method 440 may
not have all of the above steps and/or may have other steps
in addition to or instead of those listed above. The steps of
method 440 may be performed in another order. Subsets of
the steps listed above as part of method 440 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 440.

FIG. 4D is an embodiment of a graphical flow represen
tation 460 between the user system 402 browser of FIG. 4C
and the service provider server 404 illustrating obtaining the
refresh token in response to the encrypted data stored on the
user system 402 browser, similar to FIG. 4B, but using
OAuth. Flow representation begins 460 when the applica
tion on service provider server 404 is started or requested by
the user, and the user is prompted to enter the passcode (P)
to decrypt the encrypted refresh token (ED) that has been
already stored in storage belonging to the browser (step
462). In response, the user enters the passcode (P) (step
464), and posts or sends the following to the SP for decryp
tion: a) user provided passcode (P); b) encrypted data (ED)
stored earlier as in FIG. 4C, and c) the encryption key unique
identifier (Kid) (step 466). Upon receiving the ED and Kid
from the user device 402, the service provider server 404: 1)
queries the encryption key (K) from the local storage based
on the key identifier (Kid) sent by the user (client); 2)
decrypts the encrypted data (ED) using the key found in step
1; 3) validates that the passcode (P) stored in the decrypted
text blob (ED), and the user provided passcode (P) are the
same; and 4) if the passcodes match in step 3, the decrypted
data (D) is returned back to the user system 402, if the
passcodes do not match, a failure is logged in local storage
of the service provider server 404 to prevent brute force
attacks (step 448). Subsequently, the SP returns the refresh
token (D) back to user system 402 client if the passcode
verification was successful. The client or user can use the
OAuth refresh token to obtain a new refresh token (step
470).

In an embodiment, each of the steps of method 460 may
be a distinct step. In other embodiments, method 460 may
not have all of the above steps and/or may have other steps
in addition to or instead of those listed above. The steps of
method 460 may be performed in another order. Subsets of
the steps listed above as part of method 460 may be used to
form their own method. In an embodiment, there may be
multiple instances of method 460.

In the embodiment of FIGS. 4A-D the token is decrypted
and the decrypted token is returned to the user, whereas in
the embodiment of FIG. 3, the token is used by the SP to
access information at the IP. In other embodiments, the
decrypted token may be sent elsewhere. In the embodiment
of FIG. 4, the encrypted tokens are decrypted on the appli
cation server side.

In the embodiment of FIG.3, after logging into the SP, the
user is redirected to provide the authorization code directly
to the IP, but in the embodiment of FIGS. 4A-D, after
logging in, the user is asked to provide a passcode without
necessarily being redirected to the IP. The embodiment of
FIG. 3 may include two parts: a) Standard OAuth, b)
Standard OAuth+Passcode flow. The embodiments of FIGS.
4A and C represents the part (b) of the embodiment of FIG.
3. Whereas, the embodiment of FIGS. 4B and D show how
the encrypted tokens are decrypted later.

US 9,473,468 B2
13

The user system uses the decrypted refresh token for
subsequent data requests via API from the identity provider
system. The user system may use the decrypted data in any
way the user wants. In an embodiment, the user does not
store the decrypted data locally for security reasons, only the
encrypted data is stored locally by the user system to prevent
the loss of data due to theft.

The embodiment of FIGS. 4A and B is a way to store the
data securely on the browser of the user system. The use of
OAuth is optional, but just a use case which may benefit
from the process of how the encrypted tokens are decrypted
on the application server side.

FIG. 5A is screen shot 500 of an embodiment of a
webpage for an initial login. Webpage 502 may include
virtual keyboard 506, username field 508, password field
510, and login button 512. In other embodiments, webpage
502 may not have all of the elements listed and/or may have
other elements instead of or in addition to those listed.
Webpage 502 may used by the user for initially logging

into service provider's website. Virtual keyboard 506 may
be used for entering the password and username in the
appropriate fields. Alternatively, the user may use a physical
keyboard, if one is available. Username field 508 is the field
into which the user enters the username, which identifies the
user to the service provider. Password field 510 is a field for
entering a password for gaining access to the user's account
at the service provider's server. Login button 512 may be
depressed to send the password and user name for authen
tication. In the embodiment, after the service provider
authenticates the username and password, the user is asked
to provide a passcode for decrypting stored content. In
another embodiment, the user may be redirected to the
identity provider's server for logging in and approving
aCCCSS,

FIG. SB is a screenshot 550 of an embodiment of a
webpage 552 for setting a passcode or for re-entering a
passcode. Webpage 552 may include action identifier 554,
passcode field 556, and virtual keyboard 558. In other
embodiments, webpage 552 may not have all of the elements
listed and/or may have other elements instead of or in
addition to those listed.

After login, a user or client receives an OAuth refresh
token that may require storage locally on the user device for
future use. The passcode which may be entered through the
interface webpage 552 is used, at least in part, to encrypt the
refresh token. The passcode may be setup once and reused
in future logins and authentication as will be shown in FIG.
5C, below. Webpage 552 may include, action identifier 554
identifies the action that is being performed, which, in
screenshot 550 of FIG. 5B, is setting up a passcode. Pass
code field 556 is for entering the passcode, which will be
used encrypting the refresh token and/or authentication.
Virtual keyboard 558 is an interactive portion of the display
that has icons for buttons, which may be used for entering
the passcode. The portion of the display having Virtual
keyboard 558 may also display information to a user for
informing the user of which values are acceptable values for
use as characters of the passcode. Although virtual keyboard
558 only includes the digits 1-9, in other embodiments other
symbols may be used instead and/or in addition to the digits
1-9.
Webpage 552 may be used by the user for setting up a

passcode, which may be used for encrypting the stored
refresh token and for logging into service providers web
site. Action identifier 554 informs the user of which infor
mation is to be inputted, which in FIG. 5B is the passcode.
Passcode field 556 provides the user with a visual cue during

10

15

25

30

35

40

45

50

55

60

65

14
entry of the passcode. Virtual keyboard 558 may be used for
entering the passcode in the appropriate fields. Alternatively,
the user may use a physical keyboard, if one is available/
desired.

FIG. SC is a screen shot 570 of an embodiment of a
webpage 572 for entering a passcode. Webpage 572 may
include, action identifier 574, passcode field 576, and virtual
keyboard 578. In other embodiments, webpage 552 may not
have all of the elements listed and/or may have other
elements instead of or in addition to those listed.
Webpage 572 may be used by the user for entering a

passcode, which may be used for decrypting the stored
refresh token and for logging into service providers web
site. Whenever the user re-launches the application, the user
is prompted for the passcode (P) that was initially entered (as
shown in FIG. 5B) to decrypt the locally stored OAuth
Refresh token. Passcode field 576 and virtual keyboard 578
of FIG. 5C may be the same as Passcode field 556 and
virtual keyboard 558, respectively. Action identifier 576 is
similar to action identifier 556, except that the action iden
tified by action identifier 576 is entering a passcode
(whereas the action identified for action identifier 558 was
setting up the passcode). In other words, action identifier
574 informs the user of which information is to be inputted,
which in FIG. 5C is the passcode (as set up in FIG. 5B).
System Overview

FIG. 6 illustrates a block diagram of an environment 610
wherein an on-demand database service might be used.
Environment 610 may include user systems 612, network
614, system 616, processor system 617, application platform
66, network interface 620, tenant data storage 622, system
data storage 624, program code 626, and process space 628.
In other embodiments, environment 610 may not have all of
the components listed and/or may have other elements
instead of, or in addition to, those listed above.

Environment 610 is an environment in which an on
demand database service exists. User system 612 may be
any machine or system that is used by a user to access a
database user system. For example, any of user systems 612
may be a handheld computing device, a mobile phone, a
laptop computer, a work Station, and/or a network of com
puting devices. As illustrated in FIG. 6 (and in more detail
in FIG. 7) user systems 612 might interact via a network 614
with an on-demand database service, which is system 616.
An on-demand database service, such as system 616, is a

database system that is made available to outside users that
do not need to necessarily be concerned with building and/or
maintaining the database system, but instead may be avail
able for their use when the users need the database system
(e.g., on the demand of the users). Some on-demand data
base services may store information from one or more
tenants stored into tables of a common database image to
form a multi-tenant database system (MTS). Accordingly,
“on-demand database service 616 and “system 616' will be
used interchangeably herein. A database image may include
one or more database objects. A relational database man
agement system (RDMS) or the equivalent may execute
storage and retrieval of information against the database
object(s). Application platform 66 may be a framework that
allows the applications of system 616 to run, Such as the
hardware and/or Software, e.g., the operating system. In an
embodiment, on-demand database service 616 may include
an application platform 66 that enables creation, managing
and executing one or more applications developed by the
provider of the on-demand database service, users accessing
the on-demand database service via user systems 612, or

US 9,473,468 B2
15

third party application developers accessing the on-demand
database service via user systems 612.
The users of user systems 612 may differ in their respec

tive capacities, and the capacity of a particular user system
612 might be entirely determined by permissions (permis
sion levels) for the current user. For example, where a
salesperson is using a particular user system 612 to interact
with system 616 that user system has the capacities allotted
to that salesperson. However, while an administrator is using
that user system to interact with system 616, that user system
has the capacities allotted to that administrator. In systems
with a hierarchical role model, users at one permission level
may have access to applications, data, and database infor
mation accessible by a lower permission level user, but may
not have access to certain applications, database informa
tion, and data accessible by a user at a higher permission
level. Thus, different users will have different capabilities
with regard to accessing and modifying application and
database information, depending on a user's security or
permission level.

Network 614 is any network or combination of networks
of devices that communicate with one another. For example,
network 614 may be anyone or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, Star net
work, token ring network, hub network, or other appropriate
configuration. As the most common type of computer net
work in current use is a TCP/IP (Transfer Control Protocol
and Internet Protocol) network, such as the global internet
work of networks often referred to as the “Internet” with a
capital “I,” that network will be used in many of the
examples herein. However, it should be understood that the
networks that the one or more implementations might use
are not so limited, although TCP/IP is a frequently imple
mented protocol.

User systems 612 might communicate with system 616
using TCP/IP and, at a higher network level, use other
common Internet protocols to communicate. Such as HTTP,
HTTPS, FTP, AFS, WAP, etc. In an example where HTTP is
used, user system 612 might include an HTTP client com
monly referred to as a “browser' for sending and receiving
HTTP messages to and from an HTTP server at system 616.
Such an HTTP server might be implemented as the sole
network interface between system 616 and network 614, but
other techniques might be used as well or instead. In some
implementations, the interface between system 616 and
network 614 includes load sharing functionality, such as
round-robin HTTP request distributors to balance loads and
distribute incoming HTTP requests evenly over a plurality of
servers. At least as for the users that are accessing that
server, each of the plurality of servers has access to the
MTS data; however, other alternative configurations may
be used instead.

In one embodiment, system 616, shown in FIG. 6, imple
ments a web-based customer relationship management
(CRM) system. For example, in one embodiment, system
616 includes application servers configured to implement
and execute CRM software applications as well as provide
related data, code, forms, webpages and other information to
and from user systems 612 and to store to, and retrieve from,
a database system related data, objects, and Webpage con
tent. With a multi-tenant system, data for multiple tenants
may be stored in the same physical database object, how
ever, tenant data typically is arranged so that data of one
tenant is kept logically separate from that of other tenants so
that one tenant does not have access to another tenant's data,
unless such data is expressly shared. In certain embodi

10

15

25

30

35

40

45

50

55

60

65

16
ments, system 616 implements applications other than, or in
addition to, a CRM application. For example, system 616
may provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which mayor may not
include CRM, may be supported by the application platform
66, which manages creation, storage of the applications into
one or more database objects and executing of the applica
tions in a virtual machine in the process space of the system
616.
One arrangement for elements of system 616 is shown in

FIG. 6, including a network interface 620, application plat
form 66, tenant data storage 622 for tenant data 1923, system
data storage 624 for system data 625 accessible to system
616 and possibly multiple tenants, program code 626 for
implementing various functions of system 616, and a pro
cess space 628 for executing MTS system processes and
tenant-specific processes, such as running applications as
part of an application hosting service. Additional processes
that may execute on system 616 include database indexing
processes.

Several elements in the system shown in FIG. 6 include
conventional, well known elements that are explained only
briefly here. For example, each user system 612 could
include a desktop personal computer, workstation, laptop,
PDA, cell phone, or any wireless access protocol (WAP)
enabled device or any other computing device capable of
interfacing directly or indirectly to the Internet or other
network connection. User system 612 typically runs an
HTTP client, e.g., a browsing program, Such as Microsoft’s
Internet Explorer browser, Netscape's Navigator browser,
Opera's browser, or a WAP-enabled browser in the case of
a cell phone, PDA or other wireless device, or the like,
allowing a user (e.g., Subscriber of the multi-tenant database
system) of user system 612 to access, process and view
information, pages and applications available to it from
system 616 over network 614. Each user system 612 also
typically includes one or more user interface devices, such
as a keyboard, a mouse, trackball, touch pad, touch screen,
pen or the like, for interacting with a graphical user interface
(GUI) provided by the browser on a display (e.g., a monitor
screen, LCD display, etc.) in conjunction with pages, forms,
applications and other information provided by system 616
or other systems or servers. For example, the user interface
device may be used to access data and applications hosted by
system 616, and to perform searches on stored data, and
otherwise allow a user to interact with various GUI pages
that may be presented to a user. As discussed above, embodi
ments are suitable for use with the Internet, which refers to
a specific global internetwork of networks. However, it
should be understood that other networks may be used
instead of the Internet, such as an intranet, an extranet, a
virtual private network (VPN), a non-TCP/IP based net
work, any LAN or WAN or the like.

According to one embodiment, each user System 612 and
all of its components are operator configurable using appli
cations, such as a browser, including computer code run
using a central processing unit such as an Intel Pentium R
processor or the like. Similarly, system 616 (and additional
instances of an MTS, where more than one is present) and
all of their components might be operator configurable using
application(s) including computer code to run using a central
processing unit such as processor System 617, which may
include an Intel Pentium(R) processor or the like, and/or
multiple processor units. A computer program product
embodiment includes a machine-readable storage medium
(media) having instructions stored thereon/in which may be

US 9,473,468 B2
17

used to program a computer to perform any of the processes
of the embodiments described herein. Computer code for
operating and configuring system 616 to intercommunicate
and to process webpages, applications and other data and
media content as described herein are preferably down
loaded and stored on a hard disk, but the entire program
code, or portions thereof, may also be stored in any other
volatile or non-volatile memory medium or device as is well
known, such as a ROM or RAM, or provided on any media
capable of storing program code, such as any type of rotating
media including floppy disks, optical discs, digital versatile
disk (DVD), compact disk (CD), microdrive, and magneto
optical disks, and magnetic or optical cards, nanosystems
(including molecular memory ICs), or any type of media or
device Suitable for storing instructions and/or data. Addi
tionally, the entire program code, or portions thereof, may be
transmitted and downloaded from a Software source over a
transmission medium, e.g., over the Internet, or from
another server, as is well known, or transmitted over any
other conventional network connection as is well known
(e.g., extranet, VPN, LAN, etc.) using any communication
medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ether
net, etc.) as are well known. It will also be appreciated that
computer code for implementing embodiments may be
implemented in any programming language that may be
executed on a client system and/or server or server system
Such as, for example, C, C++, HTML, any other markup
language, JavaM, JavaScript, ActiveX, any other scripting
language. Such as VBScript, and many other programming
languages as are well known may be used. (JavaTM is a
trademark of Sun Microsystems, Inc.).

According to one embodiment, each system 616 is con
figured to provide webpages, forms, applications, data and
media content to user (client) systems 612 to support the
access by user systems 612 as tenants of system 616. As
Such, system 616 provides security mechanisms to keep
each tenant's data separate unless the data is shared. If more
than one MTS is used, they may be located in close
proximity to one another (e.g., in a server farm located in a
single building or campus), or they may be distributed at
locations remote from one another (e.g., one or more servers
located in city A and one or more servers located in city B).
As used herein, each MTS could include one or more
logically and/or physically connected servers distributed
locally or across one or more geographic locations. Addi
tionally, the term "server' is meant to include a computer
system, including processing hardware and process space(s),
and an associated storage system and database application
(e.g., OODBMS or RDBMS) as is well known in the art. It
should also be understood that “server system’’ and “server'
are often used interchangeably herein. Similarly, the data
base object described herein may be implemented as single
databases, a distributed database, a collection of distributed
databases, a database with redundant online or offline back
ups or other redundancies, etc., and might include a distrib
uted database or storage network and associated processing
intelligence.

FIG. 7 also illustrates environment 610. However, in FIG.
7 elements of system 616 and various interconnections in an
embodiment are further illustrated. FIG. 7 shows that user
system 612 may include processor System 612A, memory
system 612B, input system 612C, and output system 612D.
FIG. 6 shows network 614 and system 616. FIG. 7 also
shows that system 616 may include tenant data storage 622,
tenant data 623, system data storage 624, system data 625,
User Interface (UI) 730, Application Program Interface
(API) 732, PL/SOQL 734, save routines 736, application

10

15

25

30

35

40

45

50

55

60

65

18
setup mechanism 738, applications servers 7001-700N, sys
tem process space 702, tenant process spaces 704, tenant
management process space 710, tenant storage area 712,
user storage 714, and application metadata 716. In other
embodiments, environment 610 may not have the same
elements as those listed above and/or may have other
elements instead of, or in addition to, those listed above.

User system 612, network 614, system 616, tenant data
storage 622, and system data storage 624 were discussed
above in FIG. 6. Regarding user system 612, processor
system 612A may be any combination of one or more
processors. Memory system 612B may be any combination
of one or more memory devices, short term, and/or long term
memory. Input system 612C may be any combination of
input devices, such as one or more keyboards, mice, track
balls, Scanners, cameras, and/or interfaces to networks.
Output system 612D may be any combination of output
devices, such as one or more monitors, printers, and/or
interfaces to networks. As shown by FIG. 6, system 616 may
include a network interface 620 (of FIG. 6) implemented as
a set of HTTP application servers 700, an application
platform 618, tenant data storage 622, and system data
storage 624. Also shown is system process space 702,
including individual tenant process spaces 704 and a tenant
management process space 710. Each application server 700
may be configured to tenant data storage 622 and the tenant
data 623 therein, and system data storage 624 and the system
data 625 therein to serve requests of user systems 612. The
tenant data 623 might be divided into individual tenant
storage areas 712, which may be either a physical arrange
ment and/or a logical arrangement of data. Within each
tenant storage area 712, user storage 714 and application
metadata 716 might be similarly allocated for each user. For
example, a copy of a user's most recently used (MRU) items
might be stored to user storage 714. Similarly, a copy of
MRU items for an entire organization that is a tenant might
be stored to tenant storage area 712. A UI 730 provides a
user interface and an API 732 provides an application
programmer interface to system 616 resident processes to
users and/or developers at user systems 612. The tenant data
and the system data may be stored in various databases, such
as one or more OracleTM databases.

Application platform 618 includes an application setup
mechanism 738 that supports application developers cre
ation and management of applications, which may be saved
as metadata into tenant data storage 622 by save routines 736
for execution by Subscribers as one or more tenant process
spaces 704 managed by tenant management process 710 for
example. Invocations to such applications may be coded
using PL/SOOL 734 that provides a programming language
style interface extension to API 732. A detailed description
of some PL/SOOL language embodiments is discussed in
commonly owned co-pending U.S. Provisional Patent
Application 60/828,192 entitled, PROGRAMMING LAN
GUAGE METHOD AND SYSTEM FOR EXTENDING
APIS TO EXECUTE IN CONJUNCTION WITH DATA
BASE APIS, by Craig Weissman, filed Oct. 4, 2006, which
is incorporated in its entirety herein for all purposes. Invo
cations to applications may be detected by one or more
system processes, which manage retrieving application
metadata 716 for the subscriber making the invocation and
executing the metadata as an application in a virtual
machine.

Each application server 700 may be communicably
coupled to database systems, e.g., having access to system
data 625 and tenant data 623, via a different network
connection. For example, one application server 7001 might

US 9,473,468 B2
19

be coupled via the network 614 (e.g., the Internet), another
application server 700N-1 might be coupled via a direct
network link, and another application server 700N might be
coupled by yet a different network connection. Transfer
Control Protocol and Internet Protocol (TCP/IP) are typical
protocols for communicating between application servers
1900 and the database system. However, it will be apparent
to one skilled in the art that other transport protocols may be
used to optimize the system depending on the network
interconnect used.

In certain embodiments, each application server 700 is
configured to handle requests for any user associated with
any organization that is a tenant. Because it is desirable to be
able to add and remove application servers from the server
pool at any time for any reason, there is preferably no server
affinity for a user and/or organization to a specific applica
tion server 700. In one embodiment, therefore, an interface
system implementing a load balancing function (e.g., an F5
Big-IP load balancer) is communicably coupled between the
application servers 700 and the user systems 612 to distrib
ute requests to the application servers 700. In one embodi
ment, the load balancer uses a least connections algorithm to
route user requests to the application servers 700. Other
examples of load balancing algorithms, such as round robin
and observed response time, also may be used. For example,
in certain embodiments, three consecutive requests from the
same user could hit three different application servers 700,
and three requests from different users could hit the same
application server 700. In this manner, system 616 is multi
tenant, wherein system 616 handles storage of, and access
to, different objects, data and applications across disparate
users and organizations.
As an example of storage, one tenant might be a company

that employs a sales force where each salesperson uses
system 616 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all appli
cable to that user's personal sales process (e.g., in tenant
data storage 622). In an example of a MTS arrangement,
since all of the data and the applications to access, view,
modify, report, transmit, calculate, etc., may be maintained
and accessed by a user system having nothing more than
network access, the user may manage his or her sales efforts
and cycles from any of many different user systems. For
example, if a salesperson is visiting a customer and the
customer has Internet access in their lobby, the salesperson
may obtain critical updates as to that customer while waiting
for the customer to arrive in the lobby.

While each user's data might be separate from other
users’ data regardless of the employers of each user, some
data might be organization-wide data shared or accessible by
a plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 616 that are allocated at the tenant level
while other data structures might be managed at the user
level. Because an MTS might support multiple tenants
including possible competitors, the MTS should have secu
rity protocols that keep data, applications, and application
use separate. Also, because many tenants may opt for access
to an MTS rather than maintain their own system, redun
dancy, up-time, and backup are additional functions that
may be implemented in the MTS. In addition to user-specific
data and tenant specific data, System 616 might also main
tain system level data usable by multiple tenants or other
data. Such system level data might include industry reports,
news, postings, and the like that are sharable among tenants.

10

15

25

30

35

40

45

50

55

60

65

20
In certain embodiments, user systems 612 (which may be

client systems) communicate with application servers 700 to
request and update system-level and tenant-level data from
system 616 that may require sending one or more queries to
tenant data storage 622 and/or system data storage 624.
System 616 (e.g., an application server 700 in system 616)
automatically generates one or more SQL statements (e.g.,
one or more SQL queries) that are designed to access the
desired information. System data storage 624 may generate
query plans to access the requested data from the database.

Each database may generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table' is one representation of
a data object, and may be used herein to simplify the
conceptual description of objects and custom objects. It
should be understood that “table' and “object may be used
interchangeably herein. Each table generally contains one or
more data categories logically arranged as columns or fields
in a viewable schema. Each row or record of a table contains
an instance of data for each category defined by the fields.
For example, a CRM database may include a table that
describes a customer with fields for basic contact informa
tion Such as name, address, phone number, fax number, etc.
Another table might describe a purchase order, including
fields for information Such as customer, product, sale price,
date, etc. In some multi-tenant database systems, standard
entity tables might be provided for use by all tenants. For
CRM database applications, such standard entities might
include tables for Account, Contact, Lead, and Opportunity
data, each containing pre-defined fields. It should be under
stood that the word “entity” may also be used interchange
ably herein with "object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for
example by creating custom fields for standard objects,
including custom index fields. U.S. patent application Ser.
No. 10/8128,161, filed Apr. 2, 2004, entitled “Custom Enti
ties and Fields in a Multi-Tenant Database System’, and
which is hereby incorporated herein by reference, teaches
systems and methods for creating custom objects as well as
customizing standard objects in a multi-tenant database
system. In certain embodiments, for example, all custom
entity data rows are stored in a single multi-tenant physical
table, which may contain multiple logical tables per orga
nization. It is transparent to customers that their multiple
“tables' are in fact stored in one large table or that their data
may be stored in the same table as the data of other
CuStOmerS.

Method for Using the Environment (FIGS. 6 and 7)
FIG. 8 shows a flowchart of an example of a method 800

of using environment 610. In step 810, user system 612
(FIGS. 6 and 7) establishes an account. In step 812, one or
more tenant process space 704 (FIG. 7) are initiated on
behalf of user system 612, which may also involve setting
aside space in tenant space 712 (FIG. 7) and tenant data 714
(FIG. 7) for user system 612. Step 812 may also involve
modifying application metadata to accommodate user sys
tem 612. In step 814, user system 612 uploads data. In step
816, one or more data objects are added to tenant data 714
where the data uploaded is stored. In step 818, the methods
associated with FIGS. 6-7 may be implemented. In another
embodiment, although depicted as distinct steps in FIG. 8,
steps 810-818 may not be distinct steps. In other embodi
ments, method 800 may not have all of the above steps
and/or may have other steps in addition to, or instead of
those listed above. The steps of method 800 may be per

US 9,473,468 B2
21

formed in another order. Subsets of the steps listed above as
part of method 800 may be used to form their own method.
Method for Creating the Environment (FIGS. 6 and 7)

FIG. 9 is a method of making environment 610, in step
902, user system 612 (FIGS. 6 and 7) is assembled, which
may include communicatively coupling one or more pro
cessors, one or more memory devices, one or more input
devices (e.g., one or more mice, keyboards, and/or scan
ners), one or more output devices (e.g., one more printers,
one or more interfaces to networks, and/or one or more
monitors) to one another.

In step 904, system 616 (FIGS. 6 and 7) is assembled,
which may include communicatively coupling one or more
processors, one or more memory devices, one or more input
devices (e.g., one or more mice, keyboards, and/or scan
ners), one or more output devices (e.g., one more printers,
one or more interfaces to networks, and/or one or more
monitors) to one another. Additionally assembling system
616 may include installing application platform 618, net
work interface 620, tenant data storage 622, System data
storage 624. System data 625, program code 626, process
space 628, UI 730, API 732, PL/SOQL 734, save routine
736, application setup mechanism 738, applications servers
7001-700N. system process space 702, tenant process spaces
704, tenant management process space 710, tenant space
712, tenant data 714, and application metadata 716 (FIG. 7).

In step 906, user system 612 is communicatively coupled
to network 614. In Step 908, system 616 is communicatively
coupled to network 614 allowing user system 612 and
system 616 to communicate with one another (FIG. 7). In
step 910, one or more instructions may be installed in system
616 (e.g., the instructions may be installed on one or more
machine readable media, Such as computer readable media,
therein) and/or system 616 is otherwise configured for
performing the steps of methods associated with FIGS. 2-5.
In an embodiment, each of the steps of method 900 is a
distinct step. In another embodiment, although depicted as
distinct steps in FIG. 9, steps 902-910 may not be distinct
steps. In other embodiments, method 900 may not have all
of the above steps and/or may have other steps in addition
to, or instead of, those listed above. The steps of method 900
may be performed in another order. Subsets of the steps
listed above as part of method 900 may be used to form their
own method.

While one or more implementations have been described
by way of example and in terms of the specific embodi
ments, it is to be understood that one or more implementa
tions are not limited to the disclosed embodiments. To the
contrary, it is intended to cover various modifications and
similar arrangements as would be apparent to those skilled
in the art. Therefore, the scope of the appended claims
should be accorded the broadest interpretation so as to
encompass all such modifications and similar arrangements.
Extensions and Alternatives

In this specification anywhere a JSON is mentioned,
XML, a comma separated value file, text, or another format
may be used for storing the same data. Any place the
structured text BLOB is mentioned another data structure
may be used instead. Alternatively, instead of placing the
passcode and token into the structured text BLOB and then
encrypting the structured text BLOB, the passcode and
token may be concatenated together and then encrypted,
may be encrypted and then placed into a structured text
BLOB (or other data structure), or sent separately.

10

15

25

30

35

40

45

50

55

60

65

22
Each embodiment disclosed herein may be used or oth

erwise combined with any of the other embodiments dis
closed. Any element of any embodiment may be used in any
embodiment.

Although the invention has been described with reference
to specific embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the true spirit and scope of the invention. In
addition, modifications may be made without departing from
the essential teachings of the invention.
What is claimed is:
1. A non-transitory computer-readable medium having

stored thereon instructions that, when executed by one or
more processors, are configurable to cause the one or more
processors to:

authenticate a client browser via an identity provider;
grant permission for a service to access data and/or

services of the identity provider;
redirect, with the identity provider, the client browser to

an endpoint provided by service provider, wherein the
service provider provides an on-demand service envi
ronment comprising at least a multitenant database
system;

send an authorization code, with the identity provider,
during the redirect, the authorization code to be
exchanged, by the service provider, for one or more
refresh tokens and access to the data and/or services;

wherein the client browser establishes communications
with the service provider, the service provider prompts
the user to set-up a passcode before obtaining the
tokens and once the passcode is provided, and after the
service provider obtains the tokens from the identity
provider, the service provider encrypts the refresh
token(s) by using the passcode and/or by a private key
generated by the service provider; and

wherein the encrypted token is returned to the client
browser to be saved locally in local storage of the client
browser.

2. The non-transitory computer-readable medium of claim
1 wherein the encrypted result further comprises a unique
identifier to track future authentication requests.

3. The non transitory computer-readable medium of claim
1 further comprising instructions that, when executed by the
one or more processors, cause the one or more processors to,
during future access attempts, cause the client browser to
send the encrypted token along with the passcode to the
service provider to access the data and/or services of the
identity provider.

4. A method comprising:
authenticating a client browser via an identity provider;
granting permission for an service to access data and/or

services of the identity provider;
redirecting, with the identity provider, the client browser

to an endpoint provided by a service provider, wherein
the service provider provides an on-demand service
environment comprising at least a multitenant database
system;

sending an authorization code, with the identity provider,
during the redirect, the authorization code to be
exchanged, by the service provider, for one or more
refresh tokens and access to the data and/or services;

wherein the client browser establishes communications
with the service provider, the service provider prompts
the user to set-up a passcode before obtaining the
tokens and once the passcode is provided, and after the
service provider obtains the tokens from the identity

US 9,473,468 B2
23

provider, the service provider encrypts the refresh
token(s) by using the passcode and/or by a private key
generated by the service provider, and

wherein the encrypted token is returned to the client
browser to be saved locally in local storage of the client
browser.

5. The method of claim 4 wherein the encrypted result
further comprises a unique identifier to track future authen
tication requests.

6. The method of claim 4 further comprising during future
access attempts, causing the client browser to send the
encrypted token along with the passcode to the service
provider to access the data and/or services of the identity
provider.

7. A computer system comprising:
one or more processors communicatively coupled to each

other to authenticate a client browser via an identity
provider, to grant permission for an service to access
data and/or services of the identity provider, to redirect,
with the identity provider, the client browser to an
endpoint provided by a service provider, wherein the
service provider provides an on-demand service envi
ronment comprising at leas a multitenant database
system, and to send an authorization code, with the

10

15

24
identity provider, during the redirect, the authorization
code to be exchanged, by the service provider, for one
or more refresh tokens and access to the data and/or
services, wherein the client browser establishes com
munications with the service provider, the service pro
vider prompts the user to set-up a passcode before
obtaining the tokens and once the passcode is provided,
and after the service provider obtains the tokens from
the identity provider, the service provider encrypts the
refresh token(s) by using the passcode and/or by a
private key generated by the service provider, wherein
the encrypted token is returned to the client browser to
be saved locally in local storage of the client browser.

8. The system of claim 7 wherein the encrypted result
further comprises a unique identifier to track future authen
tication requests.

9. The system of claim 7, wherein the one or more
processors are further configured to cause the one or more
processors to, during future access attempts, cause the client
browser to send the encrypted token along with the passcode
to the service provider to access the data and/or services of
the identity provider.

