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1. 

WAVELET DECOMPOSITION OF 
SOFTWARE ENTROPY TO IDENTIFY 

MALWARE 

TECHNICAL FIELD 

The subject matter described herein relates to the use of 
wavelet decomposition of software entropy to identify 
symptoms indicative of malware in the energy spectrum. 

BACKGROUND 

Sophisticated authors of malicious code (aka malware) 
often Sneak malicious and hidden commands into portable 
executable files. Such hidden commands can be hard to 
detect, especially if they are encrypted or compressed. 
Failure to detect malicious commands can allow the mali 
cious code to intrude into or otherwise infect the software 
and/or computing devices executing such code. 

SUMMARY 

In one aspect, a plurality of data files is received. There 
after, each file is represented as an entropy time series that 
reflects an amount of entropy across locations in code for 
such file. A wavelet transform is applied, for each file, to the 
corresponding entropy time series to generate an energy 
spectrum characterizing, for the file, an amount of entropic 
energy at multiple scales of code resolution. It can then be 
determined, for each file, whether or not the file is likely to 
be malicious based on the energy spectrum. 

The determination of whether nor not a file is likely to be 
malicious can be accomplished by generating, using at least 
one predictive model trained using data sets comprising files 
known to contain malware, a Suspiciously structured entropy 
score for each file Such that files having a score above a 
pre-defined threshold are determined to be likely malicious 
and files having a score below the pre-defined threshold are 
determined to be not likely malicious. Various types of 
predictive models can be utilized, including, but not limited 
to logistic regression models, neural network models and/or 
Support vector machines. 
At least one of the files determined to be likely malicious 

can include encrypted and/or compressed segments conceal 
ing malicious commands. 
The representing can include parsing each file into a 

plurality of chunks that each correspond to a different one of 
the locations. 

Various types of wavelet transforms can be used includ 
ing, for example, a Haar wavelet transform. 

In an interrelated aspect, a data file is received. This data 
file is then represented as an entropy time series that reflects 
an amount of entropy across locations in code for the file. It 
is later determined, by at least one predictive model using 
the entropy time series for the file, whether or not the file is 
likely to be malicious. 

Non-transitory computer program products (i.e., physi 
cally embodied computer program products) are also 
described that store instructions, which when executed by 
one or more data processors of one or more computing 
systems, causes at least one data processor to perform 
operations herein. Similarly, computer systems are also 
described that may include one or more data processors and 
memory coupled to the one or more data processors. The 
memory may temporarily or permanently store instructions 
that cause at least one processor to perform one or more of 
the operations described herein. In addition, methods can be 
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2 
implemented by one or more data processors either within a 
single computing system or distributed among two or more 
computing systems. Such computing systems can be con 
nected and can exchange data and/or commands or other 
instructions or the like via one or more connections, includ 
ing but not limited to a connection over a network (e.g. the 
Internet, a wireless wide area network, a local area network, 
a wide area network, a wired network, or the like), via a 
direct connection between one or more of the multiple 
computing systems, etc. 
The subject matter described herein provides many tech 

nical advantages. For example, the current Subject matter 
provides enhanced techniques for identifying malicious 
commands within code that are compressed and/or 
encrypted. 
The details of one or more variations of the subject matter 

described herein are set forth in the accompanying drawings 
and the description below. Other features and advantages of 
the subject matter described herein will be apparent from the 
description and drawings, and from the claims. 

DESCRIPTION OF DRAWINGS 

FIG. 1 is a diagram illustrating a process of wavelet 
decomposition of software entropy to identify files or por 
tion of files likely to comprise malware: 

FIG. 2 is a diagram illustrating entropy at different file 
locations across different resolutions levels; and 

FIG. 3 is a diagram illustrating a likelihood of a file being 
malware across various file size groupings, based on the 
energy spectrum formed through a wavelet decomposition 
of the file’s entropy. 

DETAILED DESCRIPTION 

The current Subject matter provides systems, methods, 
and computer program products that address the issue of 
detecting malicious commands within portable executable 
files that are encrypted or compressed. As will be described 
in further detail below, the current inventors discovered that 
when an executable file shifts between native code, 
encrypted or compressed code, and padding, there can be 
corresponding shifts in the file’s representation as an entropy 
time series. The current subject matter provides for auto 
matic quantification of the extent to which the patterned 
variations in a file’s entropy time series makes it Suspicious. 

In the development of the current Subject matter, a corpus 
of n=39,968 portable executable files was studied, 50% of 
which were malicious. Each file was represented as an 
entropy time series, reflecting the amount of entropy across 
locations in the file code, and wavelet transforms were 
applied to this entropy time series in order to extract the 
amount of entropic energy at multiple scales of code reso 
lution. Based on this entropic energy spectrum, a Suspi 
ciously structured entropy score (SSES) was derived, a 
single scalar feature which quantifies the extent to which a 
given file’s entropic energy spectrum makes the file Suspi 
cious as possible malware. The current inventors found that, 
based on SSES alone, it was possible to predict with 68.7% 
accuracy whether a file in this corpus was malicious or 
legitimate (an 18.7% gain over random guessing). More 
over, SSES can be combined with any number of additional 
features in a malware classifier of choice. To illustrate this 
possibility, the inventors formed a nine feature model 
including SSES and eight simple entropy Summary statistics 
that achieved 74.3% predictive accuracy. 
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The current subject matter is particularly useful for mal 
ware files that contain encrypted or compressed (“packed') 
segments which conceal malicious commands. Entropy 
analysis can be used in this regard because files with high 
entropy are relatively likely to have encrypted or com 
pressed sections inside them. The entropy of a random 
variable can generally reflect the amount of uncertainty 
about that variable that is, the lack of knowledge about 
what value the variable will take on. In the context of 
Software analysis, an executable file can be represented as a 
string of hexadecimals (OOhFFh), where each observed 
hexadecimal character is considered to be an instantiation of 
a random variable (for example, with 256 possible values). 
A string of these hexadecimal characters can be bundled up 
into a "chunk” of a file, and the statistical variation within 
that chunk can be estimated by computing the entropy 
within the chunk. Zero entropy means that the same char 
acter was repeated over and over (as might occur in a 
"padded chunk of code) and maximum entropy means that 
a chunk consisted of entirely distinct values. Chunks of code 
that have been compressed or encrypted tend to have higher 
entropy than native code. 

Sophisticated contemporary concealments of malicious 
code may not be detectable through simple entropy statis 
tics, such as mean file entropy. Relatively Sophisticated 
authors of malware try to conceal the existence of hidden 
encrypted or compressed commands, for instance by adding 
additional padding (Zero entropy chunks), so that the mean 
entropy of an executable file with hidden malicious code 
looks identical to that of a benign executable. 

In order to automatically identify the degree of entropic 
structure within a piece of software, each portable execut 
able file can be represented, either wholly, or partially, as an 
entropy time series (and as further described below). The 
entropy time series can characterize the amount of entropy 
over a small Snippet/chunk of code in a certain location of 
the file. The amount of entropic structure can then be 
quantified, with the goal of differentiating between, for 
example, a low-structured time series with a single local 
mean and variation around that mean, Versus a highly 
structured time series whose local mean changes many times 
over the course of the file. 
The suspiciously structured entropy score (SSES) can be 

used to quantify the Suspiciousness of the structured entropy 
within a piece of software. SSES can be calculated using, in 
part, a wavelet transform. The wavelet transform can be used 
extract the amount of detail exhibited within a signal at 
various locations over various levels of resolution. In 
essence, the wavelet transform as used herein can transform 
a one-dimensional function of location (e.g., file location, 
etc.) into a two-dimensional function of location and scale. 
By using the output of the wavelet transform (the so-called 
“wavelet coefficients'), a series of coarse-to-fine approxi 
mations of an original function can be obtained. These 
Successive approximations can be used to determine the 
multi-scale structure of the entropy signal, in particular the 
energy available at different levels of resolution. 

There are various types of wavelet transforms including 
Haar wavelets which form a particularly simple family of 
wavelets whose members are piecewise constant. The Haar 
wavelet transform can project an original entropy signal 
onto a collection of piecewise constant functions which 
oscillate as a square wave over bounded Support (i.e. assume 
nonzero values only on certain bounded intervals). As these 
piecewise constant functions have Supports which vary in 
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4 
their scale (width) and location, the resulting projections can 
describe the detail within the time series at various locations 
and resolutions. 
More specifically, the Haar wavelet transform is based 

upon a so called mother function, (t), defined by: 

1, t e O. 1 f2) 
-1, t e 1 f2, 1) 

0, otherwise 

a very simple step function. Given the Haar mother function 
p(t), a collection of dyadically scaled and translated wavelet 
functions up, (t) can be formed by: 

where the integers j, k are scaling parameters. The dilation 
parameter j indexes the level of detail or resolution at a 
particular stage of analysis, and the translation parameter k 
selects a certain location within the signal to be analyzed. 
Note that as the scaling parameter j increases, the function 
p(t) applies to (is non-zero over) successively finer inter 
vals of the signal. 

Given a time series x(t) where t-1 ... T, the time series 
can be first rescaled so that the final observation occurs at 
time t-1, and then the so-called “mother wavelet coefficient’ 
at Scale j and location k can be given by the inner product 
of the time series with the wavelet. As discrete signals are 
being utilized, the inner product takes the form: 

One interpretation of this coefficient is that it gives the 
(scaled) difference between local averages of time series 
across neighboring chunks or bins. The size of the neigh 
boring chunks is determined by the Scaling parameter j. 
The family of mother wavelet coefficients d can enable 

a multi-resolution analysis (MRA) of the time series x(t). In 
particular, the time series X(t) can be decomposed into a 
series of approximations x(t), whereby each Successive 
approximation x(t) is a more detailed refinement of the 
previous approximation, X(t). The functional approxima 
tions can be obtained through the wavelet coefficients by the 
formula: 

2.j-1 

where X(t), the coarsest-level functional approximation, is 
the mean of the full time series. Thus, the collection of 
mother wavelet coefficients distore the “details” that allow 
one to move from a coarser approximation to a finer approxi 
mation. Examples of Successive functional approximations, 
in the context of Software entropy signals, are provided 
below. 
The following describes the use of wavelet-based classi 

fiers. Using the wavelet transform, it can be possible to 
Summarize the overall amount of detail in a time series at 
various levels of resolution. The total amount of detail at a 
particular (th) level of resolution can be referred to as the 
energy at that level of resolution: 
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(1) 2.j-1 

E = X (d) 
k=1 

The distribution of energy across various levels of reso 
lution, as used herein, can be referred to as an energy 
spectrum. As used herein, the term wavelet based classifier 
strategy refers to the use of wavelet coefficients as features 
in a classifier. Such wavelet coefficients can be used as 
features within any machine learning or statistical classifier 
(logistic regression or lasso logistic regression, decision 
trees, Support vector machines, etc.) depending upon which 
classification method is maximally relevant to the problem 
at hand. For illustrative purposes, a logistic regression model 
can be used for modeling purposes because Such a model 
provides an atomic analysis of the relationship between the 
wavelet-based features and classification categories. In par 
ticular, logistic regression can be used to determine which 
levels of resolution (in the entropy time series representation 
of a piece of software) exert the strongest influences on the 
probability of a file being malware, and whether energy at 
those levels of resolution make the likelihood of such file 
being malicious larger or Smaller. 
One fundamental problem with applying wavelet-based 

classifiers to malware analysis is that executable files have 
different lengths. Controlled observational situations pro 
duce time series samples of fixed length that are held 
constant across the data set. In contrast, in uncontrolled 
observational contexts, time series lengths can differ wildly 
from sample to sample. Software samples, as one example, 
can exhibit huge variation in their length, from a handful of 
kilobytes to hundreds of megabytes. 
The following describes how to compare the Suspicious 

ness of a file's entropy patterns, even though executable files 
differ in length, and therefore have differently sized entropy 
time series, and resultantly differently sized energy spectra. 
With the current subject matter, each file's J-dimensional 
energy spectrum can be transformed into a single scalar 
feature, a 1-dimensional Suspiciously structured entropy 
score (SSES). The computation of SSES can comprises two 
operations: first, the wavelet-based energy spectrum of a 
file’s entropy time series can be computed, and second, the 
file’s malware propensity score can be computed from that 
energy spectrum. The latter operation can refer to a statis 
tical model that is trained/learned on a corpus of files. One 
type of model which can be used is logistic regression; 
however, other types of models, such as neural networks, 
Support vector machines, and other machine learning mod 
els, can be utilized. The dependence of the SSES feature on 
a statistical model can make it a meta-feature that differen 
tiates the feature from simpler features, such as mean 
entropy or maximum entropy, which can be calculated 
directly based on observation of a single file without refer 
ence to a model. Once computed, SSES can then be com 
bined with other features that are predictive of malware 
categorization in a second-level model. In some implemen 
tations, logistic regression can be utilized at the second level 
as well. Such an approach can be analogized to fitting a 
neural network model with a single hidden layer, where the 
input layer flexibly accommodates J features from the 
entropic energy spectrum, and where the hidden layer 
includes ESS as well as other features of the file relevant to 
malware detection. 

In an analysis performed by the inventors of the current 
subject matter, the data set comprised n=39,968 portable 
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6 
executable files from a data repository. 19,988 (50.01%) of 
these files were known to be malicious, and the remaining 
files were benign. 

With reference to diagram 100 of FIG. 1, initially, at 110, 
an entropy time series (ETS) was constructed for each file. 
To compute the entropy of an executable file, the original 
file, represented in hexadecimal (OOhFFh), can be split into 
non-overlapping chunks of fixed length, typically 256 bytes. 
For each chunk of code, the entropy can then be computed 
using the formula below: 

i (2) H(c) = -Xp; (c)log.p; (c), 
i=1 

where c represents a particular chunk of code, m repre 
sents the number of possible characters (here, n=256), and p, 
is the probability (observed frequency) of each character in 
the given chunk of code. The entropy for any given chunk 
can, for Such a chunk size, range from a minimum of 0 to a 
maximum of 8. Minimum entropy would occur if the chunk 
consisted of a single character repeated 256 times, and 
maximum entropy would occur if a chunk consisted of 256 
distinct hexadecimal characters. 

Next, a suspiciously structured entropy score (SSES) can 
be generated for each file. The procedure for computing the 
suspiciously structured entropy score (SSES) can include the 
following. Wavelet coefficients can be computed, at 120, for 
all files which fall into length group J- log T, where T is 
the length of the time series. The wavelet coefficients can be 
obtained through the Haar Discrete Wavelet Transform. The 
discrete wavelet transform takes as input a discrete time 
series of size T-2 observations, and outputs an equiva 
lently-sized vector of wavelet coefficients. Note that the 
transform requires the time series to have a dyadic length. 
However, if the number of observations in the executable 
file’s entropy time series is not an integer power of 2, the 
series can be right-truncated at value 2 's ''. 
The first wavelet coefficient, c, can be referred to as the 

coarsest-level “father wavelet coefficient. It is a scaled 
version of the overall sum (and therefore mean) of the time 
series. In particular, c can be derived as: 

(3) 

where the scaling factor is given by s =V2' and is necessary 
for the wavelet transform to preserve the size (norm) of the 
time series. The father wavelet coefficient can be used in 
building functional approximations in the plots of diagram 
200 of FIG. 2, but the coefficient can otherwise be discarded, 
as it is not part of energy spectrum from which SSES is 
derived. 
The remaining T-1 wavelet coefficients, d. can be 

referred to as the mother wavelet coefficients, which, in 
contrast, can be used in the computation of SSES. These 
mother wavelet coefficients can describe the detail at suc 
cessively fine-grained resolutions. The jindexes a particular 
level resolution (which is related to the number of data 
points pooled together into a “bin’), and k indexes a 
particular location or bin within that resolution. The number 
of bins increases as j increases to finer resolutions. 
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For a Haar Discrete Wavelet Transform, the mother 
wavelet coefficients can be interpreted in a particularly 
simple manner, as the (scaled) differences of the mean 
entropy levels between neighboring bins at a particular 
binning width; that is, a scaling of the differences mean 
mean, meanta-means, and So forth. In particular, the 
mother wavelet coefficients can be indexed such that 
je 1 . . . J} represents the resolution level, ordered from 
coarsegrained to finegrained, and ke{1 . . . 2''} represents 
the particular location (or bin) of the time series at that 
resolution level. At each resolution level j, the time series 
can be divided into N-2'- nonoverlapping, adjacent bins 
such that each bin includes B'-2'- observations, and then the 
mother wavelet coefficients can be given by: 

2kB 1 f (4) 
di = y; - 

where the Scaling factor is s=(V2)''' and is necessary for 
the wavelet transform to preserve the size (norm) of the time 
series. 

Overall, the algorithm can transform a time series, y, of 
length T-2' into a vector of wavelet coefficients, d=(c. 
d. . . . , diz), with number of data points equal to 
2,-"N+1=2'. Thus, the wavelet coefficient vector has the 
same dimensionality as the original time series. In fact, this 
mapping is invertible, so d can be considered as an alterna 
tive representation of the time series, one which reveals its 
multi-resolution structure. 

Thereafter, at 130, the wavelet energy spectrum can be 
computed. The wavelet energy spectrum can Summarize the 
detail or variation available at various resolution levels. The 
energy spectrum can be computed as a function of the 
mother wavelet coefficients, d. In particular, the "energy”. 
E of the time series at the jth resolution level can be defined by: 

(5) 2.j-1 

E = X (d) 
k=1 

Note that the energy at resolution level is just the squared 
Euclidean norm of the vector of mother wavelet coefficients 
from resolution level j. After this operations, the original 
time series of size T-2 (and resultant wavelet vector of size 
T-2) can be reduced to a vector of Jelements, where each 
element represents the amount of "energy at a single level 
of resolution. The distribution of entropic energy over 
different resolutions can be referred to as a particular execut 
able file's entropic energy spectrum. 

Subsequently, at 140, the wavelet energy Suspiciousness 
can be computed. The wavelet energy spectrum can be used 
to determine the propensity of each file to be malware (i.e., 
its suspiciousness). Computing this propensity can require 
training of at least one model (e.g., logistic regression). One 
variant for computing the propensity uses cross-validation. 
In particular, the current sample of files can then be parti 
tioned. Such partitioning can be effected, for example, by 
splitting the entire set of F, files which are of the appropriate 
size into 5 mutually exclusive subsets F, ..., F, each of 
which represents exactly 20% of the entire sample. 
An iterative process can then commence for each Subset 

F, where ie: 1. . . . , 5. First, a model (e.g., the logistic 
regression model, etc.) is fitted on the other four subsets 
{Ff:kzi} which fits the class variable (malware or not) as a 
function of the wavelet energy spectrum. The model can 
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8 
produce a set of coefficients to weigh the strength of each 
resolution energy on the probability of being malware. Next, 
the model can be used to then make a prediction about files 
in subset F. In particular, the model learned as part of the 
fitting can be used to calculate the predicted probability that 
each file in set F is malware, given its wavelet energy 
spectrum. This malware propensity (i.e., predicted malware 
probability) lies within the interval 0, 1], and is what is 
referred to herein as the Suspiciously structured entropy 
score (SSES). 
The following relates to experimental results that charac 

terize wavelet energy spectrum for two representative files 
and is made with reference to diagram 200 of FIG. 2. For 
illustrative purposes, two portable executable files which 
belong to the same file size category were analyzed (more 
precisely, the entropic time series from two files were 
analyzed). In the plots 210, 220, it can be seen that the 
wavelet transform produces successively detailed functional 
approximations to these time series. Such plots 210, 220 also 
provide some visual indications about how the energy spec 
tra can be derived from these successive functional approxi 
mations. 

With this example, “File A' defer to the file generating the 
time series along the left hand column in plots 210, and “File 
B” to refer to the file generating the time series along the 
right hand column in plots 220. Files A and B belong to the 
same file size category, as both have entropy time series 
consisting of T-32 chunks, and so both files have J-log 
(32)=5 levels of resolution available for a wavelet analysis. 
Reading these columns from top to bottom, the Successively 
detailed functional approximations formed through wavelet 
analysis become apparent (as described above). 

FIG. 2 also shows the wavelet-based entropic energy 
spectra for each file. Above each functional approximation 
is the energy of the time series existing at a particular level 
of resolution. Based on this energy spectra (or distribution of 
energy across various levels of resolution), the model as 
used herein (and as described further below) believes that 
File A is legitimate software, whereas File B is malware. 
Investigating this conclusion, it can be seen that these two 
files have radically different wavelet energy distributions 
across the 5 resolution levels. For the clean file (i.e., the file 
not comprising malware), the energy in the entropy time 
series is concentrated at the finest levels of resolution, levels 
j=4 andj=5 (where the energy is 34.5 and 23.84 squared bits, 
respectively). For the dirty file (i.e. the file comprising 
malware), the energy in the entropy time series is concen 
trated at coarser levels of analysis, peaking especially 
strongly at level j=2 (where the energy is 139.99 squared 
bits). As will be shown below, this result is representative of 
the general pattern for all n=1.599 files in the corpus whose 
length places them in file size group J-5. 
The wavelet energy spectra can then be standardized, 

because the logistic regression coefficients can have inter 
pretations which are sensitive to the scale of the features. To 
perform the standardization, the raw wavelet energy fea 
tures, E can be transformed into standardized wavelet 
energy features Z, by the formula: 

Efi - E. (6) 
Z.F. = SD(E) 

where f=1,. . . . , 1599 indexes a particular file and j= 
1,..., 5 indexes the resolution level. To illustrate the effects 
of normalization, consider for example that whereas File As 
raw energy at the coarsest resolution level is 4.35 squared 
scaled bits, its normalized energy is -0.394 squared scaled 
bits, meaning that the file’s energy or change at the coarsest 
resolution level, J-5, is less than the average file in the 
corpus (namely, -0.394 standard deviations below mean 
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value). Indeed, in the top left plot of FIG. 2, only a very 
small difference is seen between the mean entropy in the first 
and second halves of the file, and apparently that amount is 
below average for the corpus. In contrast, file A's energy at 
the finer levels of resolution (levels 4 and 5) is markedly 
above average, because Z 1.415 and Zas 1.773. 
The following relates how a model (e.g., a logistic regres 

sion model, etc.) can transform wavelet energy spectra into 
predictions about whether the file is malware (i.e., into an 
SSES). For illustration purposes, a subset of n=1.599 files in 
our corpus belonging to file size group J-5 can be consid 
ered. Because these files can be analyzed at J-5 different 
resolutions, 5 features can be extracted from each file, with 
each feature representing the energy at one level of resolu 
tion in the file's entropy time series. 

After normalizing the wavelet energy features (as 
described above), a logistic regression model can be fit to the 
binary classification response (malware or not) which uses 
these wavelet energy features as predictor variables. The 
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10 
the normalized features, whereas numbers inside the paren 
theses represent results for raw features. The two “Energy’ 
columns list the energy at all five levels of resolution for 
these two files. The “Value of B' column describes the 
estimated beta weight in a logistic regression fitting file 
maliciousness to the five wavelet energy values, based on a 
corpus of n=1.599 files. The “P-value” column describes the 
probability of getting the test statistic we observed (not 
shown, it is a function of the data) under the hypothesis that 
there is no relationship between energy at that level and file 
maliciousness. The codes are: S*=p<0.05, **p-0.01, 
***=p-0.001, ****=p-0.0001, ******=p-0.00001. The 
“Malware Sensitivity” represents the estimated change in 
the odds that a file is malware associated with an increase of 
one unit in the corresponding feature. It is calculated by 
(e)\times 100\%.S. For the normalized values (those out 
side the parenthesis), an increase of one unit refers to an 
increase of one standard deviation). 

TABLE 1. 

Resolution Energy Spectra Statistical Model For File Size J = 5 

Level i Bins Bin Size File A File B Value of B, P-value Malware Sensitivity 

1 2 16 -0.39 (4.35) -0.01 (14.44) 0.448 (0.017) ***** +56.5% (+1.7%) 
2 4 8 –0.79 (0.80) 6.27 (139.99) 0.174 (0.008) : +19.0% (+0.89%) 
3 8 4 -0.48 (5.29) 2.18 (53.83) 0.847 (0.046) ***** +133.2% (+4.74%) 
4 16 2 1.42 (34.50) -0.37 (9.75) -0..106 (-0.008) n.s. -10.0% (-0.75%) 
5 32 1 1.77 (23.84) 1.19 (19.22) -0.240 (-0.030) * * –21.4% (-2.99%) 

30 

logistic regression model can estimate P, the probability that 
file f is malware, by the formula 

1 

P 1 + exp-ZFi Bl 

where Z is the normalized energy of file fat resolution 
level j, and B is a model parameter, known as a logistic 
regression coefficient, which must be estimated from the 
data. Once the logistic regression algorithm has estimated 
the B values, the fitted model can be analytically investi 
gated. In particular, the relationship between the entropic 
energy spectrum and code maliciousness can be explored by 
computing how the probability of a file being malicious, P. 
is affected by adding and removing energy to various 
resolution levels in a file's entropy time series (i.e., by 
toggling Z, for some j, etc.) 

The fit of the logistic regression model (for both raw and 
normalized features) is summarized in Table 1 below. Based 
on those B values, it is seen that the two sample files above 
and illustrated in FIG. 2 are indeed representative of a larger 
trend: having high energy at resolution levels 1, 2 and 3 (the 
coarser levels) is associated with a higher probability of the 
file being malware (since those BS are positive), whereas 
having high energy at levels 4 and 5 (the finer levels) is 
associated with a lower probability of the file being mali 
cious (because those Bi's are negative). Moreover, these 
associations appears to be reflective of trends in the larger 
population of files, since the pvalues are largely strongly 
statistically significant. This finding makes sense if artificial 
encryption and compression tactics tend to elevate moderate 
to large sized chunks of malicious files into “high entropy 
States. 

Table 1, in particular, relates to investigating the relation 
ship between the entropy wavelet energy spectrum and 
maliciousness for files of size J=5. Note that for the entire 
table, numbers outside the parentheses represent results for 
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The magnitude of the B coefficients can be interpreted by 
exponentiating the coefficients and applying those values to 
the odds that a file is malware. For example, if the energy is 
raised at level 3 of an executable file's entropy time series 
by a single standard deviation, but the energy at all other 
levels is held constant, then the model estimates that the 
odds that a file is malicious increases by a factor of 
ef=e''7–2.33 (i.e. the odds would increase by 133%). This 
number (in percentage form) can be referred to as malware 
sensitivity and values for same can be provided for all 
resolution levels in Table 1. Conversely, reducing the energy 
at level 3 by a single standard deviation (and holding the 
energy at other levels constant) multiplies the estimated 
odds that a file is malicious by a factor of e-e'-'7–0.428 
(i.e. those odds would drop by 57.2%). 
By comparing the B values for the standardized features, 

or, alternatively, the malware sensitivity scores, it can be 
concluded that, out of all resolution levels, energy at reso 
lution level 3 is most strongly associated with file malicious 
ness. Perhaps more importantly, it can been seen that, at least 
for files in file size group J-5, malware tends to concentrate 
entropic energy at coarser rather than finer levels of reso 
lution. 

It can also be analyzed whether the trends found in the 
single level analysis of n=1,599 files hold up in the full 
corpus of n=39,968 files. Diagram 300 of FIG. 3, illustrates 
the results of logistic regression models fit to each file size 
grouping separately. The full analysis Supports a generality 
that, to a first approximation, coarse-energy-is-bad, fine 
energy-is-good. Indeed, across most files sizes, high ener 
gies at the finest-level of resolution appear to be indicative 
of file legitimacy, and high energies at coarse levels of 
resolution are often associated with Suspiciousness. How 
ever, this generalization does not appear to capture the full 
amount of information available about Suspicious patterns 
within a file's entropic energy spectrum. Indeed, if this 
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phrase provided a complete description of the results, then 
the matrix in diagram 300 should have rows whose colors 
monotonically transformed from a first color (e.g., blue) to 
a second color (e.g., red). However, FIG. 3 shows an 
arrangement similar to a damped sinusoidal pattern across 
the rows. Indeed, the appearance of the double diagonal 
bands in colored blue Suggest the existence of somewhat 
regular vacillations in terms of how "Suspicious' high 
entropic energy would look at a particular level of resolu 
tion. For example, if file size group J-10 is considered as an 
illustrative example of a “larger file size, then the fitted 
logistic regression model can conclude, based on analysis of 
n=4,801 files, that a particularly suspicious file would have 
high concentrations of energy at levels 15, a low concen 
tration of energy at level 6, high concentrations of energy at 
levels 78, and low concentrations of entropic energy at 
levels 910. A likelihood ratio test can reveal that the overall 
10-feature model provides a significantly better description 
of malware vs. Software than mere random guessing, 
X (10)=283.3, p<10'. Moreover, many of the beta weights 
for particular resolution energies are related to the response 
variable (malware vs. not) in statistically significant ways: 
the positive beta at resolution level 2 (Z=8.5, p<2e), the 
negative beta at resolution level 6 (Z-6.8, p<5e), the 
positive betas at resolution levels 7 and 8 (Z's=3.2.3.8; 
p's<0.001.0.0001), and the negative betas at resolution 
levels 9 and 10 (z’s=2.5.6.6, p’s<0.013.3.79e'). These 
statistical results can reinforce the broad conclusion that 
maximally suspicious files actually vacillate (in particular 
ways) between high and low energies across resolution 
levels. 

Moreover, the distribution of colors in the danger map 
diagram 300 of FIG. 3, while not sufficiently simplistic to be 
easily verbalizable, are far from obtainable by random 
chance. Likelihood ratio tests comparing the fit of the 
size-specific models (where the beta coefficients of each 
size-specific model are given by the specific colorings in the 
corresponding row of the danger map) versus the fit of 
models with no features (interpretable as a uniform color 
across rows, where the intensity of the color is determined 
by baseline malware rates, independent of the wavelet 
energy spectrum) Suggest that the particular patterning in the 
danger map provides a statistically significantly better 
description of malware than random (baseline-informed) 
guessing alone. Indeed, moving from bottom (J–3) to top 
(J=16) of the FIG. 4, one has: 

X(3)=198.36% (4)=563.51% (5)=257.52, 

(6)=235.09% (7)=150.11% (8)=585.57, 

X(9)=662.22% (10)=283.24% (11)=385.33, 

X (12)=305.04% (13)=233.39% (14)=116.17, 

X (15)=61.88% (16)=31.44 
all of which are statistically significant at the CL=0.05 level. 

Altogether, these results suggest that the somewhat com 
plicated patterns of Suspiciousness depicted in the danger 
map of FIG. 3 are useful for fitting the true relationship 
between energy spectra and malware probabilities. Below it 
is described how these patterns indeed actually useful for 
predicting malware. 
The diagram 300 of FIG. 3 (aka the danger map) is useful 

for malware prediction in that the information illustrated 
therein can be used to construct a single number which can 
score a piece of Software's Suspiciousness based on the 
wavelet decomposition of its entropy time series. Discussed 
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12 
above are techniques for reducing the entropic spectral 
energy, of dimensionality J, to a single malware Suspicious 
ness score, namely by fitting separate logistic regressions for 
each file size group, and applying these models to create 
predicted probabilities for new files. Those predicted prob 
abilities are a feature of interest, namely the SSES. 

Table 2 below reports results characterizing the extent to 
which SSES increases predictive power within various mod 
els of malware. In particular, there were three categories of 
examined models: the base rate model, the length baseline 
model, and the entropy statistics model. For each kind of 
model, the incremental contribution of SSES is examined. 
The intent of this analysis is to provide a stringent test of the 
null hypothesis that the wavelet-based features are not 
providing useful predictive information other than what 
could be derived through simpler features alone. 

Table 2 below illustrates the predictive benefits of incor 
porating the Suspiciously Structured Entropy Score (SSES) 
within models of malware. This table shows the effect of 
adding ESS to various statistical models of malware. The 
arrow reflects the change of adding ESS to the model. The 
number on the left side of the arrow reflects the result of the 
model without ESS; the number on the right side of the 
arrow reflects the result of the model with ESS. “AIC refers 
to Aikaike Information Criterion, and is a real-valued mea 
sure of model fit which limits overfitting the data by penal 
izing for model complexity. Lower numbers indicate better 
models “Model Fit” (%) refers to the percentage of the data 
which is correctly fit by the model, if the model is forced into 
making 0/1 (malware/not) predictions. “CV Accuracy” (%) 
refers to the percentage of files whose malware vs. not status 
was correctly predicted in a 5-fold cross-validation scheme 
in which the model was trained on 80% of the data, and then 
made predictions on the remaining 20% of the data. “Pre 
dictive Advantage” is the difference in the models CV 
Accuracy with and without ESS. The three “Model Catego 
ries' are further explained in the main text. 

TABLE 2 

Model Category 

1. Base Rate 2. Length Baseline 3. Entropy Statistics 

Parameters O -> 1 2 - 3 8 - 9 
AIC SS4O9 -e 460SS S2277 - 460SS 41869 - 4O134 
Model Fit (%) SO.O -s 68.9 61.9 -> 68.9 72.1 -e 74.6 
CV Accuracy (%) 50.0 -> 68.7 618 -> 68.7 71.5 - 74.3 
Predictive +18.7 +6.9 +2.8 
Advantage (%) 

The base rate model predicts malware based on base rates 
(percentage of files which are malicious) alone. Because 
50.01% of the current corpus of n=39,968 files are malware, 
the base rate model effectively flips a coin to guess whether 
a file is malicious or legitimate. This technique led to correct 
predictions 50.0% of the time. Adding ESS as a single 
predictor variable improved predictive accuracy to 68.7%, 
an impressive 18.7% gain for a single variable. 
The length baseline model predicts malware based on file 

length. In this corpus, the base rates are strongly quadratic 
in J. Now because SSESs are determined from J separate 
logistic regression models, these SSES’s automatically 
incorporate file-size-specific base rates. So in order to deter 
mine whether wavelet-based decompositions provide added 
value beyond mere file-size-specific base-rates, the length 
baseline model was constructed. The length baselines model 
is a logistic regression model that incorporates J and Jas 



US 9,465.940 B1 
13 

predictors of malware. This model made correct predictions 
61.8% of the time. Adding SSES as an additional predictor 
variable in a 3-variable model improved predictive accuracy 
to 68.7% (just as before), a gain of 6.9%. Thus, the wavelet 
based entropic energy information inherent to ESS is indeed 
providing useful information for malware detection that 
goes above and beyond mere information about file length. 
The entropy statistics model predicts malware based on 

summary statistics derived from the entropy time series. The 
entropy statistics model includes various statistical Summary 
features of the entropy time series. In this example, the 
entropy statistics model includes eight statistical Summary 
features of the entropy time series which may be relevant for 
malware detection: mean, standard deviation, signal-to 
noise ratio (mean divided by Standard deviation), maximum 
entropy, percentage of the signal with high entropy (where 
“high entropy” was defined through trial and error on an 
earlier dataset as being 6.5 bits), percentage of the signal 
with Zero entropy, length of time series, and squared length 
of the time series. This model made correct predictions 
71.5% of the time. Adding ESS as an additional predictor 
variable improved predictive accuracy to 74.3%, a gain of 
2.8%. 

All together, it was demonstrated that ESS has strong 
predictive value for malware detection. The single feature 
alone improved predictive accuracy, within a balanced 
sample of malware and legitimate software, from 50% to 
68.7%. Moreover, even in more complicated model with 8 
additional features related to the file's entropy time series 
representation, ESS improved predictive accuracy by 2.8%, 
which in this sample of n=39,968 meant that an additional 
1,119 files were accurately classified. 
One or more aspects or features of the subject matter 

described herein can be realized in digital electronic cir 
cuitry, integrated circuitry, specially designed application 
specific integrated circuits (ASICs), field programmable 
gate arrays (FPGAs) computer hardware, firmware, soft 
ware, and/or combinations thereof. These various aspects or 
features can include implementation in one or more com 
puter programs that are executable and/or interpretable on a 
programmable system including at least one programmable 
processor, which can be special or general purpose, coupled 
to receive data and instructions from, and to transmit data 
and instructions to, a storage system, at least one input 
device, and at least one output device. The programmable 
system or computing system may include clients and Serv 
ers. A client and server are generally remote from each other 
and typically interact through a communication network. 
The relationship of client and server arises by virtue of 
computer programs running on the respective computers and 
having a client-server relationship to each other. 

These computer programs, which can also be referred to 
as programs, Software, Software applications, applications, 
components, or code, include machine instructions for a 
programmable processor, and can be implemented in a 
high-level procedural language, an object-oriented program 
ming language, a functional programming language, a logi 
cal programming language, and/or in assembly/machine 
language. As used herein, the term “machine-readable 
medium” refers to any computer program product, apparatus 
and/or device, such as for example magnetic discs, optical 
disks, memory, and Programmable Logic Devices (PLDS), 
used to provide machine instructions and/or data to a pro 
grammable processor, including a machine-readable 
medium that receives machine instructions as a machine 
readable signal. The term “machine-readable signal” refers 
to any signal used to provide machine instructions and/or 
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data to a programmable processor. The machine-readable 
medium can store such machine instructions non-transito 
rily, such as for example as would a non-transient solid-state 
memory or a magnetic hard drive or any equivalent storage 
medium. The machine-readable medium can alternatively or 
additionally store Such machine instructions in a transient 
manner, Such as for example as would a processor cache or 
other random access memory associated with one or more 
physical processor cores. 
To provide for interaction with a user, one or more aspects 

or features of the subject matter described herein can be 
implemented on a computer having a display device. Such as 
for example a cathode ray tube (CRT) or a liquid crystal 
display (LCD) or a light emitting diode (LED) monitor for 
displaying information to the user and a keyboard and a 
pointing device, such as for example a mouse or a trackball, 
by which the user may provide input to the computer. Other 
kinds of devices can be used to provide for interaction with 
a user as well. For example, feedback provided to the user 
can be any form of sensory feedback, Such as for example 
visual feedback, auditory feedback, or tactile feedback; and 
input from the user may be received in any form, including, 
but not limited to, acoustic, speech, or tactile input. Other 
possible input devices include, but are not limited to, touch 
screens or other touch-sensitive devices such as single or 
multi-point resistive or capacitive trackpads, voice recogni 
tion hardware and Software, optical scanners, optical point 
ers, digital image capture devices and associated interpre 
tation software, and the like. 

In the descriptions above and in the claims, phrases such 
as “at least one of or “one or more of may occur followed 
by a conjunctive list of elements or features. The term 
“and/or may also occur in a list of two or more elements or 
features. Unless otherwise implicitly or explicitly contra 
dicted by the context in which it is used, such a phrase is 
intended to mean any of the listed elements or features 
individually or any of the recited elements or features in 
combination with any of the other recited elements or 
features. For example, the phrases “at least one of A and B:” 
“one or more of A and B:” and “A and/or B' are each 
intended to mean “A alone, B alone, or A and B together.” 
A similar interpretation is also intended for lists including 
three or more items. For example, the phrases “at least one 
of A, B, and C: "one or more of A, B, and C:” and "A, B, 
and/or C are each intended to mean "A alone, B alone, C 
alone, A and B together, A and C together, B and C together, 
or A and B and C together.” In addition, use of the term 
“based on, above and in the claims is intended to mean, 
“based at least in part on, such that an unrecited feature or 
element is also permissible. 
The subject matter described herein can be embodied in 

systems, apparatus, methods, and/or articles depending on 
the desired configuration. The implementations set forth in 
the foregoing description do not represent all implementa 
tions consistent with the subject matter described herein. 
Instead, they are merely some examples consistent with 
aspects related to the described Subject matter. Although a 
few variations have been described in detail above, other 
modifications or additions are possible. In particular, further 
features and/or variations can be provided in addition to 
those set forth herein. For example, the implementations 
described above can be directed to various combinations and 
subcombinations of the disclosed features and/or combina 
tions and subcombinations of several further features dis 
closed above. In addition, the logic flows depicted in the 
accompanying figures and/or described herein do not nec 
essarily require the particular order shown, or sequential 
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order, to achieve desirable results. Other implementations 
may be within the scope of the following claims. 
What is claimed is: 
1. A method implemented by at least one data processor 

forming at least part of a computing system, the method 
comprising: 

receiving, by the at least one data processor, a plurality of 
machine-readable data files; 

analyzing, by the at least one data processor, each data file 
to obtain characters contained in the plurality of data 
files, the characters split into a plurality of non-over 
lapping file chunks of fixed length; 

representing, by the at least one data processor, each file 
as an entropy time series that reflects an amount of 
entropy across the plurality of non-overlapping fixed 
length file chunks for each file; 

applying, by the at least one data processor, for each file, 
a wavelet transform to the corresponding entropy time 
series to generate an energy spectrum characterizing, 
for the file, an amount of entropic energy at multiple 
scales of code resolution, the wavelet transform is 
applied based on at least a coefficient representing a 
difference of mean entropy levels between the adjacent 
plurality of non-overlapping fixed-length file chunks in 
each of the plurality of data files; and 

determining, by the at least one data processor, for each 
file, whether or not the file is likely to be malicious 
based on the energy spectrum, wherein at least one of 
the files determined to be likely malicious comprises 
encrypted and/or compressed segments concealing 
malicious commands. 

2. The method of claim 1, wherein the determining 
comprises generating, using at least one predictive model 
trained using data sets comprising files known to contain 
malware, a suspiciously structured entropy score for each 
file such that files having a score above a pre-defined 
threshold are determined to be likely malicious and files 
having a score below the pre-defined threshold are deter 
mined to be not likely malicious. 

3. The method of claim 2, wherein the at least one 
predictive model comprises a logistic regression model. 

4. The method of claim 2, wherein the at least one 
predictive model comprises a neural network model and/or 
a Support vector machine. 

5. The method of claim 1, wherein the wavelet transform 
is a Haar wavelet transform. 

6. A system comprising: 
at least one data processor, and 
memory storing instructions which, when executed by the 

at least one data processor, implement operations com 
prising: 
receiving a plurality of machine-readable data files; 
analyzing each data file to obtain characters contained 

in the plurality of data files, the characters split into 
a plurality of non-overlapping file chunks of fixed 
length; 

representing, by the at least one data processor, each 
file as an entropy time series that reflects an amount 
of entropy across the plurality of non-overlapping 
fixed-length file chunks for each file; 

applying, by the at least one data processor, for each 
file, a wavelet transform to the corresponding 
entropy time series to generate an energy spectrum 
characterizing, for the file, an amount of entropic 
energy at multiple scales of code resolution, the 
wavelet transform is applied based on at least a 
coefficient representing a difference of mean entropy 
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levels between the adjacent plurality of non-overlap 
ping fixed-length file chunks in each of the plurality 
of data files; and 

determining, by the at least one data processor, for each 
file, whether or not the file is likely to be malicious 
based on the energy spectrum, wherein at least one of 
the files determined to be likely malicious comprises 
encrypted and/or compressed segments concealing 
malicious commands. 

7. The system of claim 6, wherein the determining com 
prises generating, using at least one predictive model trained 
using data sets comprising files known to contain malware, 
a suspiciously structured entropy score for each file Such that 
files having a score above a pre-defined threshold are 
determined to be likely malicious and files having a score 
below the pre-defined threshold are determined to be not 
likely malicious. 

8. The system of claim 7, wherein the at least one 
predictive model comprises a logistic regression model. 

9. The system of claim 7, wherein the at least one 
predictive model comprises a neural network model and/or 
a Support vector machine. 

10. The system of claim 6, wherein the wavelet transform 
is a Haar wavelet transform. 

11. A non-transitory computer program product storing 
instructions which, when executed by at least one data 
processor forming part of at least one computing system, 
result in operations comprising: 

receiving a plurality of machine-readable data files; 
analyzing, by the at least one data processor, each data file 

to obtain characters contained in the plurality of data 
files, the characters split into a plurality of non-over 
lapping file chunks of fixed length; 

representing, by the at least one data processor, each file 
as an entropy time series that reflects an amount of 
entropy across the plurality of non-overlapping fixed 
length file chunks for each file; 

applying, by the at least one data processor, for each file, 
a wavelet transform to the corresponding entropy time 
series to generate an energy spectrum characterizing, 
for the file, an amount of entropic energy at multiple 
scales of code resolution, the wavelet transform is 
applied based on at least a coefficient representing a 
difference of mean entropy levels between the adjacent 
plurality of non-overlapping fixed-length file chunks in 
each of the plurality of data files; and 

determining, by the at least one data processor, for each 
file, whether or not the file is likely to be malicious 
based on the energy spectrum, wherein at least one of 
the files determined to be likely malicious comprises 
encrypted and/or compressed segments concealing 
malicious commands. 

12. The computer program product of claim 11, wherein 
the determining comprises generating, using at least one 
predictive model trained using data sets comprising files 
known to contain malware, a Suspiciously structured entropy 
score for each file Such that files having a score above a 
pre-defined threshold are determined to be likely malicious 
and files having a score below the pre-defined threshold are 
determined to be not likely malicious. 

13. The computer program product of claim 12, wherein 
the at least one predictive model comprises a logistic regres 
sion model. 

14. The computer program product of claim 12, wherein 
the at least one predictive model comprises a neural network 
model and/or a Support vector machine. 
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15. The computer program product of claim 11, wherein 
the wavelet transform is a Haar wavelet transform. 

16. A method implemented by at least one data processor 
forming at least part of a computing system, the method 
comprising: 5 

receiving by the at least one data processor, a data file in 
a plurality of machine-readable data files; 

analyzing, by the at least one data processor, each data file 
to obtain characters contained in the plurality data files, 
the characters split into a plurality of non-overlapping 10 
file chunks of fixed length; 

representing, by the at least one data processor, each file 
as an entropy time series that reflects an amount of 
entropy across the plurality of non-overlapping fixed 
length file chunks for each file; and 15 

determining, using the at least one data processor by at 
least one predictive model using the entropy time series 
for the file, whether or not the file is likely to be 
malicious, wherein a wavelet transform is applied to 
the entropy time series based on at least one coefficient 20 
representing a difference of mean entropy levels 
between the adjacent plurality of non-overlapping 
fixed-length file chunks in each of the plurality of data 
files, wherein at least one of the files determined to be 
likely malicious comprises encrypted and/or com- 25 
pressed segments concealing malicious commands. 

k k k k k 


