
(12) United States Patent
Lasky et al.

USOO946O184B2

US 9,460,184 B2
*Oct. 4, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

(58)

APPLICATION OF A DIFFERENTIAL
DATASET TO ADATA STORE USING
SEQUENTIAL CHANGE SETS

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Michael Lasky, Highland, UT (US);
Matthew Ryan, Spanish Fork, UT (US)

Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 14/185,003

Filed: Feb. 20, 2014

Prior Publication Data

US 2014/0172791 A1 Jun. 19, 2014

Related U.S. Application Data
Continuation of application No. 13/275,957, filed on
Oct. 18, 2011, now Pat. No. 8,676,757.

Int. C.
G06F 7/30 (2006.01)
G06F II/4 (2006.01)
U.S. C.
CPC G06F 17/30581 (2013.01); G06F II/1451

(2013.01); G06F II/1471 (2013.01); G06F
17/30.174 (2013.01)

Field of Classification Search
CPC G06F 17/30286; G06F 17/30289;

G06F 17/30292; G06F 17/30581
USPC .. 707/624
See application file for complete search history.

APPLNESETTINGS

ODIFY WAIABLE X
DELETE: ARIABLE3
AD: ARIABLE E. "SOODBYE"

ROGRAM
(ATASTORE

18

L0ALBATASET
128

ANGESET1:

OPERATION NAME ALE
ADD ARIABLE1 3
AD) WARIABLE "HELLOOLD"
AD) ARIABLE3 A

PROGRA

AFTERAPPLYING NEWSETTINGS 12

(56) References Cited

U.S. PATENT DOCUMENTS

6,295,541 B1*
6,560,700 B1*

9, 2001
5/2003

Bodnar et al.
Birkler et al. T13/1

6,999,977 B1 2/2006 Norcott et al.
7,107,297 B2 9/2006 Yellepeddy et al.
7,756,833 B2 7/2010 Van Ingen et al.
8,676,757 B2 3/2014 Lasky et al.

2002/0194205 A1 12/2002 Brown et al. 707/2OO
2005. O193031 A1 9/2005 Midgley et al.

(Continued)
OTHER PUBLICATIONS

Tieleman, Sjoerd, "Formalisation of Version Control with an
Emphasis on Tee-Structured Data'. Aug. 5, 2006, 61 pages.
Auer et al., “A Versioning and Evolution Framework for RDF
Knowledge Bases”. PSI'06 Proceedings of the 6th International
Andrei Ershov Memorial Conference on Perspectives of Systems
Informatics, 2006, pp.55-69.

(Continued)

Primary Examiner — Cam-Y Truong
(74) Attorney, Agent, or Firm — Henry Gabryjelski; Micky
Minhas

(57) ABSTRACT

Systems and methods are described herein for creating,
maintaining and applying a dataset that can be used to
synchronize multiple instances of a data store. The dataset
includes a sequentially-ordered sequence of change sets
associated with the data store, wherein each change set
includes Zero or more entries that specify how the state of
certain entities in the data store have changed since state
changes represented by a previous change set in the
sequence were applied to the data store. When a new change
set is added to the dataset, any entries in any previously
added change sets dealing with the entities identified in the
new change set are removed. Consequently, the dataset
provides a concise and complete representation of all the
state changes that have occurred to the data store since a
known origin state.

18 Claims, 5 Drawing Sheets

DATASTORE

LOADATASET
28

ChANGESET;

OPERATION NAME WALUE
ADD WARIABLES HELLO WORLD"

HANGESET;

OPERATIONAE ALUE
ODIF ARIABLE 6

DELETE ARIABLE3
ADD ARIABLE: "GOODBYE"

US 9,460,184 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0246389 A1*
2006/0259.525 A1*
2007/0255763 A1*
2008. O140732 A1
2008/0228697 A1
2009, O144343 A1*

11/2005
11, 2006
11/2007
6, 2008
9, 2008
6, 2009

Shah et al. 707/2OO
Bae G06F 11 1658
Beyerle GO6F 17,30581
Wilson et al.
Adya et al.
Holt et al. 707/2O3

2010/0174690 A1* 7, 2010 Marcotte 707,695
2010/0235335 A1 9/2010 Heman et al.

OTHER PUBLICATIONS
Brown et al., "Large Scale Data Warehousing with the SAS(R)
System”. Paper 114. Online Available at <http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.136.18118&rep=rep1
&type=pdf>. Retrieved on Jul. 13, 2011, 10 pages.

* cited by examiner

US 9,460,184 B2 Sheet 1 of 5 Oct. 4, 2016 U.S. Patent

U.S. Patent Oct. 4, 2016 Sheet 2 of 5 US 9,460,184 B2

2OO

2O
IDENTIFY ONE OR MORE ENTITIES IN THE INSTANCE OF THE PROGRAM DATA
STORE THAT HAVE UNDERGONEA STATE CHANGESINCE STATE CHANGES
REPRESENTED BY ALAST CHANGE SET IN THE LOCALDATASET WERE

APPLIED TO THE INSTANCE OF THE PROGRAM DATA STORE

22O
ADD ONE OR MORE ENTRIES TO A NEW CHANGE SET THAT SPECIFY HOW THE
STATE OF EACH OF THE ONE OR MORE IDENTIFIEDENTITIES HAS CHANGED
SINCE THE STATE CHANGES REPRESENTED BY THE LAST CHANGE SET IN THE
LOCALDATASET WERE APPLIED TO THE INSTANCE OF THE PROGRAM DATA

STORE

ADD THE NEW CHANGE SET TO THE LOCALDATASETSUCH THAT THE NEW 230
CHANGE SET BECOMES THE LAST CHANGE SET IN THE LOCAL DATASET

REMOVE ANY ENTRIES FROM ANY CHANGE SET(S) PREVIOUSLY INCLUDED IN 240
THE LOCALDATASET THAT SPECIFY HOW THE STATE OF EACH OF THE ONE

ORMORE DENTIFIEDENTITIES WAS CHANGED DUE TO APREVIOUS
MODIFICATION OF AN INSTANCE OF THE PROGRAM DATA STORE

PROVIDEA COPY OF THE LOCAL DATASET THAT INCUDES THE NEW CHANGE 250
SET TO THE FILE SHARING SYSTEM SO THAT IT MAYBE APPLIED TO
SYNCHRONIZE OTHER INSTANCES OF THE PROGRAM DATA STORE

f/6.2

US 9,460,184 B2 Sheet 3 of 5 Oct. 4, 2016 U.S. Patent

U.S. Patent Oct. 4, 2016 Sheet 4 of 5 US 9,460,184 B2

400

410
OBTAIN SHARED WERSION OF DATASET FROM FILE SHARING SYSTEM

420
COMPARE LOCAL VERSION OF DATASET TO SHARED WERSION OF DATASET

TOIDENTIFY ONE OR MORE NEW CHANGE SETS IN A SEQUENTIALLY
ORDERED LIST OF CHANGE SETS ASSOCATED WITH THE PROGRAM DATA

STORE

APPLYNEW CHANGE SET(S) TO THE FIRST INSTANCE OF THE PROGRAM DATA 430
STORE IN THE ORDER IN WHICH THE NEW CHANGE SET(S) APPEAR IN THE

SEQUENTIALLY ORDERED LIST

OWERWRITE LOCAL VERSION OF DATASET WITH SHARED WERSION OF 440
DATASET

FIG 4

PERFORM ONE OR MORE OPERATIONS INCLUDED IN NEW CHANGE SET WITH 500
RESPECT TO ONE OR MORE CORRESPONDINGENTITIES IN THE FIRST

INSTANCE OF THE DATA STORE

F/65

US 9,460,184 B2
1.

APPLICATION OF A DIFFERENTIAL
DATASET TO A DATA STORE USING

SEQUENTIAL CHANGE SETS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 13/275,957, filed Oct. 18, 2011, the entirety of
which is incorporated by reference herein.

BACKGROUND

In certain computing environments, a first machine may
make changes to a first instance of a data store utilized by the
machine and then a second instance of the data store will be
brought into synchronization with the first instance of the
data store. For example, the second instance of the data store
may comprise a backup copy of the data store that is kept in
synchronization with the first instance of the data store so
that it can be accessed as part of a recovery operation in case
the first instance of the data store is lost. As another example,
the data store may comprise user settings that a user wishes
to apply to different instances of the same program running
on different virtual and/or physical machines, such that a
change to the user settings associated with one instance of
the program running on one virtual and/or physical machine
will be propagated to the user settings associated with other
instances of the program running on other virtual and/or
physical machines.

Synchronizing multiple instances of a data store typically
requires choosing between using a “full dataset' approach
and a “differential dataset' approach to perform the data
store updates. As used in this context, the term “full dataset'
refers to a dataset that provides a complete Snapshot of the
current state of each and every entity stored in a data store.
While the full dataset approach has the benefit of being able
to quickly update a new instance of a data store because all
required State information is present in the dataset, the full
dataset approach can be very inefficient when performing
incremental updates in which only a few entities in an
instance of a data store need to be modified. This is because,
for incremental updates, the state of each entity in the
instance of the data store must be compared to the state of
each entity recorded in the snapshot to determine which
entities actually require updating. As a result, Systems that
utilize the full dataset approach to perform frequent data
store updates may suffer from performance problems.
As also used in this context, the term “differential dataset'

refers to a dataset that includes only those state changes that
have occurred since a previous differential dataset was
generated for a data store. Using the differential dataset
approach to update an instance of a data store involves
applying in a defined order only those differential datasets
that have been generated since the instance of the data store
was last revised. Thus, the differential dataset approach can
achieve more efficient updating of an instance of a data store
than the full dataset approach. However, the differential
dataset approach requires more complexity and overhead
than the full dataset approach because it requires the man
agement and ordered application of multiple differential
datasets. For example, updating a new instance of a data
store using the differential dataset approach requires apply
ing all the differential datasets that have been created for the
data store in the exact order in which such differential
datasets were created to ensure synchronization.

10

15

25

30

35

40

45

50

55

60

65

2
Certain implementations that use either the full dataset

approach or differential dataset approach as discussed above
have required the use of a central server to host a version
control system or database to manage the versioning of the
data. Networked servers, Web services, cloud-based services
and other centralized services have also been used.

SUMMARY

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter. Moreover, it is noted
that the invention is not limited to the specific embodiments
described in the Detailed Description and/or other sections
of this document. Such embodiments are presented herein
for illustrative purposes only. Additional embodiments will
be apparent to persons skilled in the relevant art(s) based on
the teachings contained herein.

Systems and methods are described herein for creating,
maintaining and applying a dataset that can be used to
synchronize multiple instances of a data store. The dataset
includes a sequentially-ordered sequence of change sets
associated with the data store, wherein each change set
includes Zero or more entries that specify how the state of
certain entities in the data store have changed since state
changes represented by the previous change set in the
sequence were applied to the data store. When a new change
set is added to the dataset, any entries in any previously
added change sets dealing with the entities identified in the
new change set are removed. Consequently, the dataset
provides a concise and complete representation of all the
state changes that have occurred to the data store since a
known origin state. In particular, the dataset represents only
the most-recent changes that have occurred to each member
of the dataset. If an entity in the dataset has been change five
times, only the most-recent modification of the entity is
recorded.
By using a dataset including sequentially-ordered change

sets to synchronize multiple instances of a data store as
described herein, benefits associated with both the “full
dataset' and “differential dataset' approaches discussed in
the Background Section above can be achieved. For
example, because Such a dataset provides a concise and
complete representation of all the state changes that have
occurred to the data store since a known origin state, the
dataset can be used to quickly update a brand new instance
of a data store. Multiple differential datasets do not have to
be managed or applied to achieve this. Additionally, since
Such a dataset provides a complete representation of the
current state of the data store, multiple versions of the
dataset can be stored by any version control system and
selectively accessed and applied to rollback an instance of a
data store to a desired change state.

Furthermore, since Such a dataset includes sequentially
ordered change sets, it can be used to efficiently update a
data store that only needs a small number of incremental
changes applied (e.g., only the changes represented by the
last change set in the sequence). This can improve process
ing efficiency both in terms of the speed and scope of the
transaction. Such a dataset may also create a smaller
memory footprint as compared to the full dataset approach
since the dataset is concise and stores the most recent state
of only those entities that have undergone a state change
since a known origin state.

US 9,460,184 B2
3

Further features and advantages of the invention, as well
as the structure and operation of various embodiments of the
invention, are described in detail below with reference to the
accompanying drawings. It is noted that the invention is not
limited to the specific embodiments described herein. Such
embodiments are presented herein for illustrative purposes
only. Additional embodiments will be apparent to persons
skilled in the relevant art(s) based on the teachings contained
herein.

BRIEF DESCRIPTION OF THE
DRAWINGSFFIGURES

The accompanying drawings, which are incorporated
herein and form part of the specification, illustrate embodi
ments of the present invention and, together with the
description, further serve to explain the principles of the
invention and to enable a person skilled in the relevant art(s)
to make and use the invention.

FIG. 1 is a block diagram of a system in accordance with
an embodiment that may implement various methods for
creating, maintaining and applying a dataset that can be used
to synchronize multiple instances of a data store.

FIG. 2 depicts a flowchart of a method for maintaining a
dataset that can be used to synchronize multiple instances of
a data store in accordance with an embodiment.

FIG. 3 is a block diagram that illustrates the manner in
which a dataset may be updated in response to the applica
tion of changes to an instance of a data store in accordance
with an embodiment.

FIG. 4 depicts a flowchart of a method for applying a
dataset to synchronize a first instance of a data store with at
least one other instance of the data store in accordance with
an embodiment.

FIG. 5 depicts a step that is performed in applying a new
change set to a data store in accordance with an embodi
ment.

FIG. 6 is a block diagram of an example computer system
that may be used to implement various embodiments
described herein.
The features and advantages of the present invention will

become more apparent from the detailed description set
forth below when taken in conjunction with the drawings, in
which like reference characters identify corresponding ele
ments throughout. In the drawings, like reference numbers
generally indicate identical, functionally similar, and/or
structurally similar elements. The drawing in which an
element first appears is indicated by the leftmost digit(s) in
the corresponding reference number.

DETAILED DESCRIPTION

I. Introduction

The following detailed description refers to the accom
panying drawings that illustrate exemplary embodiments of
the present invention. However, the scope of the present
invention is not limited to these embodiments, but is instead
defined by the appended claims. Thus, embodiments beyond
those shown in the accompanying drawings, such as modi
fied versions of the illustrated embodiments, may neverthe
less be encompassed by the present invention.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” or the like, indi
cate that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment
may not necessarily include the particular feature, structure,

5

10

15

25

30

35

40

45

50

55

60

65

4
or characteristic. Moreover, such phrases are not necessarily
referring to the same embodiment. Furthermore, when a
particular feature, structure, or characteristic is described in
connection with an embodiment, it is submitted that it is
within the knowledge of one skilled in the relevant art(s) to
implement Such feature, structure, or characteristic in con
nection with other embodiments whether or not explicitly
described.

II. Example System Implementation

FIG. 1 is a block diagram of an example system 100 that
may implement various methods described herein for cre
ating, maintaining and applying a dataset that can be used to
synchronize multiple instances of a data store. System 100
of FIG. 1 is presented by way of example only and is not
intended to be limiting. Based on the teachings provided
herein, persons skilled in the relevant art(s) will appreciate
that systems other than system 100 may also implement the
inventive methods. For example, various alternative imple
mentations will be described below in Section IV.
As shown in FIG. 1, system 100 includes a plurality of

clients, denoted client 102, client 104 and client 106, each of
which is communicatively connected to a file sharing system
108. Although three clients are shown in FIG. 1, it is to be
understood that any number of clients may be included.
Each client is intended to represent a machine that is capable
of executing an instance of the same program. Thus, for
example, client 102 is capable of executing a program 122,
client 104 is capable of executing a program 142 and client
106 is capable of executing a program 152, wherein program
122, program 142 and program 152 are intended to represent
different instances of the same program. The program may
comprise an application (including but not limited to a Web
browser, a word processor, a spreadsheet application, an
e-mail application, a programming application, a video
game application, or the like), an operating system or
operating system component, or any other software pro
gram, module or entity.

FIG. 1 shows client 102 in more detail. As shown in FIG.
1, client 102 includes a processing unit 112 that is commu
nicatively connected to a system memory 114 and to local
storage 116. Processing unit 112 may comprise one or more
processors or processing cores. Processing unit 112 is con
figured to operate in a well-known manner to execute
instructions that are loaded into system memory 114. For
example, processing unit 112 is configured to execute
instructions associated with program 122, a program settings
manager 124, and other computer programs that are loaded
into system memory. Such instructions may be loaded into
system memory 114 from local storage 116 or from some
other source. In accordance with certain implementations,
system memory 114 may comprise Some type of volatile
memory, such as random access memory (RAM), although
this is only an example and other types of memories may be
used to implement system memory 114.

Processing unit 112 is also configured to read data from
and write data to local storage 116 in a well-known manner
Local storage 116 may comprise by way of example only
and without limitation, a hard disk, a CD-ROM, digital
versatile disk (DVD) or other optical disk storage, a mag
netic cassette, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store desired information and which can accessed by
a processing unit Such as processing unit 112.

Program 122 has associated therewith a program data
store 126 that includes data representative of various user

US 9,460,184 B2
5

settings associated with program 122. Such user settings
may comprise any of a wide variety of user settings that may
be made available by or are otherwise associated with a
computer program. In the embodiment shown in FIG. 1, the
data representative of Such user settings is stored as registry
entries 132 and in one or more configuration files 134 within
local storage 116. While program 122 is executing, a user
thereof may interact with a Suitable program interface to
modify any of the user settings made available by or
otherwise associated with program 122, thereby causing
modifications to occur to registry entries 132 and/or con
figuration files 134. It is noted that still other methods may
be used to modify the user settings and that data represen
tative of Such user settings may be stored in locations other
than a registry or a configuration file.
As previously noted, program 122, program 142 and

program 152 are instances of the same program that are
executed by different client machines. In order to ensure that
a user of the program has a similar user experience across all
Such client machines, it may be deemed desirable to propa
gate user settings changes made while interacting with one
instance of the program to all instances of the program. This
may be achieved, for example, by propagating changes
made to program data store 126 associated with program
122 to a program data store 146 associated with program 142
and to a program data store 156 associated with program
152. Additionally, changes made to program data stores 146
and 156 may be propagated between those data stores as
well as back to program data store 126.

To achieve Such synchronization between each of pro
gram data stores 126, 146 and 156, a program settings
manager is installed on each of clients 102, 104 and 106. In
particular, a program settings manager 124 is installed on
client 102, a program settings manager 144 is installed on
client 104 and a program settings manager 154 is installed
on client 106. The functions of the program settings manager
will now be described in reference to program settings
manager 124 which is executed by processing unit 112 on
client 102. However, it is to be understood that similar
functions are performed by program settings manager 144
on client 104 and program settings manager 154 on client
106.

Program settings manager 124 executes concurrently with
program 122 (although both may be launched at different
times) and operates to monitor the execution of program 122
to determine when program 122 is opened and closed by a
user and to determine when a user has caused user settings
associated with program 122 to be changed.
When program settings manager 124 detects that program

122 is being opened, it determines if the user settings stored
in program data store 126 are synchronized with an authori
tative version of the program data store. In one embodiment,
program settings manager 124 performs this function by
determining whether a shared dataset 110 made available by
file sharing system 108 was updated more recently than a
local dataset 128 stored by program settings manager 124 in
local storage 116. Program settings manager 124 may per
form this function, for example, by comparing a timestamp
associated with shared dataset 110 to a timestamp associated
with local dataset 128. If program settings manager 124
determines that shared dataset 110 was updated more
recently than local dataset 110, then it downloads shared
dataset 110, applies one or more new change sets included
therein to program data store 126, and then overwrites local
dataset 128 with shared dataset 110 or updates local dataset
128 based on shard dataset 110. The manner by which

10

15

25

30

35

40

45

50

55

60

65

6
program settings manager 124 applies the new change sets
to program data store 126 will be described in more detail
below.

Although the foregoing operations of program settings
manager 124 are described as being performed when pro
gram settings manager 124 detects that program 122 is being
opened, it is noted that in alternate embodiments program
settings manager 124 may perform Such operations at other
times or when other events are detected where it would be
appropriate to compare and possibly apply any updated user
settings. For example and without limitation, program set
tings manager 124 may perform such operations when a user
logs onto a system, when a screen is unlocked, when a
timeout expires, or the like.
When program settings manager 124 detects that program

122 is being closed, program settings manager 124 deter
mines whether any of the user settings stored in program
data store 126 have been changed. Program settings man
ager 124 may perform this function, for example, by logging
any changes made to registry entries 132 and configuration
files 134 during the program session and then inspecting the
log when program 122 is closed, although this is only an
example. If program settings manager 124 determines that
no user settings have been changed then it takes no action.
However, if program settings manager 124 determines that
one or more user settings have been changed, then program
settings manager 124 will add a new change set to local
dataset 128 and then provide the updated copy of local
dataset 128 to file sharing system 108. The manner in which
program settings manager 124 adds a new change set to local
dataset 128 will be described in more detail below.

Although the foregoing operations of program settings
manager 124 are described as being performed when pro
gram settings manager 124 detects that program 122 is being
closed, it is noted that in alternate embodiments program
settings manager 124 may perform Such operations at other
times or when other events are detected where it would be
appropriate to determine if user settings have changed and to
synchronize any changes to a shared dataset. For example
and without limitation, program settings manager 124 may
perform Such operations when a user logs off a system, when
a screen is locked, when a machine is powered down, when
a timeout expires, or the like.

Program settings manager 144 executed by client 104 and
program settings manager 154 executed by client 106 each
operate in a like manner to program settings manager 124 as
described above. Thus, each of client 104 and client 106 is
capable of downloading a copy of shared dataset 110 from
file sharing system 108 to synchronize its program data store
with an authoritative version of the data store and of
providing updated copies of a local dataset to file sharing
system 108. In the case of client 104, the local dataset is
local dataset 148 and in the case of client 106, the local
dataset is local dataset 158.

File sharing system 108 is intended to represent any
system capable of managing shared dataset 110, which
represents the authoritative state of the program data store,
and providing clients 102, 104 and 106 with access thereto.
Since file sharing system 108 can receive updated datasets
from each of clients 102, 104 and 106, it must determine
which updated dataset received from a client reflects the
authoritative state of the program data store. In one embodi
ment, file sharing system 108 performs this function by
implementing a “last writer wins' approach in which the
dataset that was most recently updated is deemed to reflect
the authoritative state of the program data store. In other
words, file sharing system 108 will operate to ensure that

US 9,460,184 B2
7

shared dataset 110 is consistent with the most recently
updated dataset received from any of clients 102, 104 and
106. Of course, other methods may be applied to determine
which dataset should be deemed to represent the authorita
tive state of the program data store. Furthermore, the file
sharing system need not be the entity that operates to
determine when a collision occurs. For example, this can
also be detected by each client.

III. Example Methods for Dataset Maintenance and
Application

Exemplary methods for maintaining a dataset that can be
used to synchronize multiple instances of a data store and for
applying a dataset to synchronize an instance of a data store
will now be described. These exemplary methods are pro
vided herein by way of example only and are not intended
to be limiting. Furthermore, although these exemplary meth
ods will be described with continued reference to system
100 of FIG. 1, the methods are not limited to that embodi
ment.

In particular, FIG. 2 depicts a flowchart 200 of a method
for maintaining a dataset that can be used to synchronize
multiple instances of a data store in accordance with an
embodiment. The method of flowchart 200 may be per
formed, for example, by any of program settings managers
124, 144 or 154 as described above in reference to system
100 of FIG. 1. For the purposes of illustration only, the steps
of the method will now be described as if they were being
performing by program settings manager 124. Program
settings manager 124 may perform the steps of flowchart
200, for example, when it determines that a user is closing
program 122 or when it determines that Some other event has
occurred.
As shown in FIG. 2, the method of flowchart 200 begins

at step 210, in which program settings manager 124 iden
tifies one or more entities in program data store 126 that
have undergone a state change since state changes repre
sented by a last change set in local dataset 128 were applied
to program data store 126. In one embodiment, program
settings manager 124 may perform this function by logging
any changes made to registry entries 132 and configuration
files 134 during a program session and then inspecting the
log when program 122 is closed, although this is only an
example. If program settings manager 124 does not identify
any entities that have undergone a state change since state
changes represented by the last change set in local dataset
128 were applied to program data store 126, then the process
ends.

However, if program settings manager 124 does identify
one or more entities that have undergone a state change since
state changes represented by the last change set in local
dataset 128 were applied to program data store 126, control
flows to step 220. During step 220, program settings man
ager 124 adds one or more entries to a new change set that
specify how the state of each of the one or more identified
entities has changed since the state changes represented by
the last change set in the local dataset were applied to
program data store 126.

At Step 230, program settings manager 124 adds the new
change set created during step 220 to local dataset 128 such
that the new change set becomes the last change set in a
sequentially-ordered list of change sets in local dataset 128.
It should be noted that, in certain embodiments, steps 220
and 230 may be performed simultaneously by creating a new
change set at the end of the sequentially-ordered list of

10

15

25

30

35

40

45

50

55

60

65

8
change sets in local dataset 128 and writing the entries
created during step 220 directly into the new change set.
At step 240, program settings manager 124 removes any

entries from any change set(s) previously included in local
dataset 128 that specify how the state of each of the one or
more identified entities was changed due to a previous
modification of an instance of the program data store. As
will be discussed below, such entries may be removed since
they are not necessary to reflect the current state of program
data store 126. This results in a concise representation of the
current state of program data store 126. Note that the
application of step 240 may result in one or more previously
included change sets having no entries associated therewith.
At step 250, program settings manager 124 provides a

copy of local dataset 128 that includes the new change set to
file sharing system 108 so that it may be applied to syn
chronize other instances of the program data store, such as
program data store 146 and program data store 156. As
discussed above, in one embodiment, file sharing system
108 will treat the copy of local dataset 128 as an authori
tative representation of the state of the program data store if
it was updated more recently than shared dataset 110. In this
case, file sharing system may use the copy of local dataset
128 provided during step 250 as the new shared dataset 110.
A particular example of the application of the method of

flowchart 200 will now be described with reference to block
diagram 300 of FIG. 3. The example of block diagram 300
is provided herein for illustrative purposes only and is not
intended to be limiting.
As shown in FIG. 3, prior to the application of any new

settings, the State of program data store 126 is represented by
local dataset 128. In particular, local dataset 128 represents
the current state of program data store 126 relative to a
known origin state as a series of operations associated with
a previously-recorded first change set, denoted “chang
eset1. These operations included adding an entity named
“variable1 having a value of 3, adding an entity named
“variable2 having a value of “hello world' and adding an
entity named “variable3” having a value of a.
As further shown in FIG. 3, a user interacts with program

122 to change various user settings associated therewith. As
a result of these changes, the state of program data store 126
is modified, producing an updated program data store 126."
In accordance with the changes, the value of the entity
named “variable1 is modified from 3 to 6, the entity named
“variable3” is deleted, and a new entity named “variable4
having a value of “goodbye' is added. In response to
detecting the user setting changes, program settings manager
124 performs the steps of flowchart 200. As noted above,
program settings manager 124 may perform these steps
when it determines both that the user is closing program 122
and that user settings were changed during the program
session.

In particular, in accordance with step 210, program set
tings manager 124 identifies that the entities named “vari
able1,” “variable3 and “variable4” have undergone a state
change since the state changes represented by the change set
named “changeset1' were applied to program data store 126.

In accordance with step 220, program settings manager
124 adds entries to a new change set named "changeset2”
that specify how the state of the entities named “variable1.
“variable3 and “variable4” have changed. In particular,
program settings manager 124 adds the following operations
to the change set named “changeset2': an operation that
modifies the entity named “variable1 to have a value of 6,

US 9,460,184 B2
9

an operation that deletes the entity named “variable3, and
an operation that adds an entity named “variable4” having a
value of “goodbye.”

In accordance with step 230, program settings manager
124 adds the change set named “changeset2” as the last
change set in the sequentially ordered list of change sets in
an updated version of local dataset 128." As noted above,
program settings manager 124 may perform steps 220 and
230 simultaneously by creating new change set “chang
eset2” at the end of the sequentially-ordered list of change
sets in local dataset 128 and writing the entries created
during step 220 directly into the new change set.

In accordance with step 240, program settings manager
124 removes any entries from any change sets previously
included in local dataset 128 that specify how the state of
each of the entities named “variable1”. “variable3’ and
“variable4 was changed due to a previous modification of
program data store 126, since Such entries are not necessary
to reflect the current state of those entities. In accordance
with the example of FIG. 3, this means that program settings
manager 124 will remove the following operations from the
change set named "changeset1: the operation that adds the
entity named “variable1 having a value 3 and the operation
that adds the entity named “variable3 having a value a.

In accordance with step 250, program settings manager
124 provides a copy of local dataset 128 that includes the
modified change set named "changeset1 and the new
change set named “changeset2” to file sharing system 108 so
that it may be applied to synchronize other instances of the
program data store, such as program data store 146 and
program data store 156. As discussed above, in one embodi
ment, file sharing system 108 will treat the copy of local
dataset 128 as an authoritative representation of the state of
the program data store if it was written or updated more
recently than shared dataset 110. In this case, file sharing
system 108 may use the copy of local dataset 128 provided
during step 250 as the new shared dataset 110.

In accordance with the example shown in FIG. 3, each
dataset is represented by a single file that includes a sequen
tially-ordered sequence of change sets. In further accordance
with this example, adding a new change set to the file
includes adding entries under a new change set marker or
label that is inserted at the end of the sequentially-ordered
list. This enables any program settings manager to determine
where one change set ends and a new change set begins and
the order in which Such change sets should be applied.
However, it is noted that a dataset need not comprise a file.
For example, in certain implementations, a dataset may
comprise a database that stores various change sets associ
ated with an program data store and that maintains some
notion of an ordering of Such change sets.

In further accordance with the example shown in FIG. 3,
a predefined set of operations are used to specify how the
state of an entity in an program data store has changed. In
particular, Such state changes are represented using 'add,
“modify” and “delete' operations. However, it is noted that
other operations or representations may be used to convey
how the state of an entity has changed depending upon the
implementation.

FIG. 4 depicts a flowchart of a method 400 for applying
a dataset to synchronize a first instance of a data store with
at least one other instance of the data store in accordance
with an embodiment. Like the method of flowchart 200, the
method of flowchart 400 may be performed by any of
program settings managers 124, 144 or 154 as described
above in reference to system 100 of FIG. 1. For the purposes
of illustration only, the steps of the method will now be

5

10

15

25

30

35

40

45

50

55

60

65

10
described as if they were being performing by program
settings manager 124. Program settings manager 124 may
perform the steps of flowchart 400, for example, when it
determines that a user is opening program 122 or when it
determines that some other event has occurred.
As shown in FIG. 4, the method of flowchart 400 begins

at step 410 in which program settings manager 124 obtains
a copy of shared dataset 110 from file sharing system 108.
As discussed above, program settings manager 124 may
perform this step in response to determining that a user is
opening program 122 and that shared dataset 110 was more
recently updated than local dataset 128.
At step 420, program settings manager compares local

dataset 128 to shared dataset 128 to identify one or more
new change sets in a sequentially-ordered list of change sets
associated with the program data store. For example, Such
new change sets may be present in shared dataset 110 but not
in local dataset 128.
At step 430, program settings manager 124 applies any

new change set(s) identified during step 420 to program data
store 126 in the order in which the new change set(s) appear
in the sequentially-ordered list. FIG. 5 illustrates a step 500
that may be performed in applying a new change set to
program data store 126. As shown in FIG. 5, step 500
includes performing one or more operations included in the
new change set with respect to one or more corresponding
entities in program data store 126. Each Such operation may
represent how the state of a corresponding entity was
changed due to a modification of an instance of the program
data store other than the instance represented by program
data store 126 (e.g., program data store 146 or program data
store 156). In one embodiment, all the operations associated
with a new change set are implemented as a single atomic
transaction to ensure that program data store 126 will end up
in a fully synchronized State if all operations are carried out
Successfully or remain in its pre-existing State should any of
the operations fail.
At step 440, after the new change set(s) identified during

step 420 have been applied to program data store 126,
program settings manager 124 overwrites local dataset 128
with shared dataset 110. Equivalently, program settings
manager 124 may modify the contents of local dataset 128
so that such contents are consistent with the contents of
shared dataset 110 (e.g., program settings manager 124 may
add the new change set(s) identified during step 420 to local
dataset 128).
As a result of performing the steps of flowchart 400,

program data store 126 can be brought into synchronization
with another instance of program data store (e.g., program
data store 146 or program data store 156), the state of which
is represented by shared dataset 110.
A particular example of the application of the method of

flowchart 400 will now be described for illustrative pur
poses. In accordance with this example, it is to be assumed
that shared dataset 110 includes the change sets shown in
local dataset 128 in FIG. 3 (i.e., the change sets named
“changeset1 and “changeset2). It is to be further assumed
that the state of program data store 126 is represented by
local dataset 128 and that local dataset 128 includes the
change sets shown in local dataset 128 shown in FIG. 3 (i.e.,
the change set named “changeset1' only).

In accordance with this example, at step 410 of flowchart
400, program settings manager 124 would obtain a copy of
shared dataset 110 from file sharing system 108 and, at step
420, program settings manager 124 would compare local
dataset 128 to shared dataset 110 to identify the change set
named “changeset2” as a new change set. In accordance

US 9,460,184 B2
11

with step 430, program settings manager 124 would apply
the change set named “changeset2” to program data store
126 by performing the operations included in the change set.
In particular, program settings manager 124 would modify
the value of the entity named “variable1 from 3 to 6, delete
the entity named “variable3, and add a new entity named
“variable4” having a value of “goodbye.” It is noted that if
shared dataset 110 included further new change sets, pro
gram settings manager 124 would apply such new change
sets to program data store 126 in the order in which such new
change set(s) appear in the sequentially-ordered list in
shared dataset 110. Program settings manager 124 would not
apply the change set named “changeset1' since that change
set is already present in local dataset 128 and thus was
already applied. Finally, in accordance with step 440, pro
gram settings manager 124 would overwrite local dataset
128 with shared dataset 110 or, equivalently, modify the
contents of local dataset 128 so that such contents are
consistent with the contents of shared dataset 110.
By using a dataset including sequentially-ordered change

sets to synchronize multiple instances of a data store as
described above, system 100 can achieve benefits associated
with both the “full dataset and “differential dataset
approaches discussed in the Background Section above. For
example, because Such a dataset provides a concise and
complete representation of all the state changes that have
occurred to the program data store since a known origin
state, the dataset can be used to quickly update a brand new
instance of an program data store. Multiple differential
datasets do not have to be managed or applied to achieve
this. Furthermore, since such a dataset includes sequentially
ordered change sets, it can be used to efficiently update an
program data store that only needs a small number of
incremental changes applied (e.g., only the changes repre
sented by the last change set in the sequence). This can
improve processing efficiency both in terms of the speed and
Scope of the transaction. Such a dataset also creates a
relatively small memory footprint as compared to the full
dataset approach since the dataset is concise and only stores
the most recent entity states.

IV. Alternate Implementations

Although the description of system 100 provided herein
refers to the synchronization of data stores associated with
instances of the same program, it is noted that a similar
approach can be used to synchronize data stores associated
with instance of different programs. For example, the
“homepage' setting for a first type of Internet browser (e.g.,
Windows(R Internet Explorer(R) implemented on a first
machine could be referenced to determine the “homepage'
setting for a second type of Internet browser (e.g., Mozilla(R)
FirefoxR) implemented on a second machine. As another
example, the “wallpaper setting for a first type of operating
system (e.g., Windows(R 7) implemented on a first machine
could be referenced to determine the “wallpapers' setting
for a second type of operating system (e.g., Mac OSR X)
implemented on a second machine.

Furthermore, although FIG. 1 shows program 122, pro
gram 142 and program 152 executing on different client
machines, such programs could also be executed on the
same machine. For example, multiple instances of a word
processing application could be executed on the same
machine. In this case, the same principles described herein
could be applied to synchronize data stores associated with
each program instance.

10

15

25

30

35

40

45

50

55

60

65

12
As noted above, the various methods described herein for

creating, maintaining and applying a dataset used to Syn
chronized multiple instances of a data store may be per
formed in other systems or environments than that described
above in reference to FIG. 1. To help illustrate this, some
alternative implementations will be described in this section.

For example, rather than utilizing a file sharing system
Such as file sharing system 108 to manage a single shared
dataset 110, an embodiment may utilize a server or other
machine to host a version control system that maintains
distinct versions of shared dataset 110 and makes such
versions available to clients. Networked servers, Web ser
vices, cloud-based services and other centralized services
may also be used. Thus, with continued reference to the
example of FIG. 3, the version control system may maintain
a first version of shared dataset 110 that includes only the
change set named “changeset1... a second version of shared
dataset 110 that include the change set named “changeset1.
and the change set named “changeset2, a third version of
shared dataset 110 that includes the change set named
“changeset1... the change set named “changeset2, and a
new change set named “changeset3.” and so on. In this way,
a client could selectively access a desired version of shared
dataset 110 to roll back the user settings associated with a
program to a desired change state. The roll back would
involve restoring the user settings to their original known
state and then applying the selected shared dataset thereto.
As also noted above, although there are benefits associ

ated with storing all the sequentially-ordered change sets of
a dataset in a single file, in an alternative embodiment, the
change sets could be stored in a database that maintains
some notion of an ordering of such change sets and a
database server could be used to access such change sets
when required. Furthermore, datasets and/or change sets
could be exposed and made accessible via Some other
custom implementation Such as a custom server or a set of
Web services that facilitates clients using this technology.

In certain embodiments, components shown as being
executed by or stored on a client in system 100 could
actually be executed by or stored on a remote component
that is communicatively connected to a client via a wired or
wireless connection, such as a wired or wireless network
connection. For example, instead of executing on client 102.
program 122 and program setting manager 124 may be
executed on a remote machine and client 102 may provide
an interface to such remote machine (e.g., Such programs
may comprise Web applications that a user accesses via a
browser executing on client 102). As another example,
program data store 126 and local dataset 128 which are
shown in FIG. 1 as being stored in local storage 116 of client
102 may be stored on a remote system or device. Such
implementations could be achieved without altering the
fundamental principles of the inventive methods for syn
chronizing multiple instances of a data store as described
herein.

In accordance with further embodiments, the different
program data store instances shown in FIG. 1 may be
associated with different virtual machines instead of differ
ent physical machines.

Furthermore, the foregoing methods may be utilized to
synchronize any of a variety of different data store types
other than program data stores. For example, in one embodi
ment the foregoing methods may be used to synchronize
local user profile data stores that are stored on multiple
computers. In another embodiment, the foregoing methods
may be used to synchronize a backup copy of a data store
used by a machine. Such that the backup copy can be used

US 9,460,184 B2
13

in a case where the original copy is corrupted or lost. Still
other applications of the foregoing methods are contem
plated.

V. Example Computer System Implementations

FIG. 6 depicts an example computer system 600 that may
be used to implement various embodiments described
herein. For example, computer system 600 may be used to
implement any of client 102, client 104, client 106, and file
sharing system 108 of FIG. 1, as well as any sub-compo
nents thereof. The description of computer system 600
provided herein is provided for purposes of illustration, and
is not intended to be limiting. Embodiments may be imple
mented in further types of computer systems, as would be
known to persons skilled in the relevant art(s).
As shown in FIG. 6, computer system 600 includes a

processing unit 602, a system memory 604, and a bus 606
that couples various system components including system
memory 604 to processing unit 602. Processing unit 602
may comprise one or more processors or processing cores.
Bus 606 represents one or more of any of several types of
bus structures, including a memory bus or memory control
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi
tectures. System memory 604 includes read only memory
(ROM) 608 and random access memory (RAM) 610. Abasic
input/output system 612 (BIOS) is stored in ROM 608.

Computer system 600 also has one or more of the fol
lowing drives: a hard disk drive 614 for reading from and
writing to a hard disk, a magnetic disk drive 616 for reading
from or writing to a removable magnetic disk 618, and an
optical disk drive 620 for reading from or writing to a
removable optical disk 622 such as a CD ROM, DVD ROM,
BLU-RAYTM disk or other optical media. Hard disk drive
614, magnetic disk drive 616, and optical disk drive 620 are
connected to bus 606 by a hard disk drive interface 624, a
magnetic disk drive interface 626, and an optical drive
interface 628, respectively. The drives and their associated
computer-readable media provide nonvolatile storage of
computer-readable instructions, data structures, program
modules and other data for the computer. Although a hard
disk, a removable magnetic disk and a removable optical
disk are described, other types of computer-readable media
can be used to store data, such as flash memory cards, digital
Video disks, random access memories (RAMs), read only
memories (ROM), and the like.
A number of program modules may be stored on the hard

disk, magnetic disk, optical disk, ROM, or RAM. These
program modules include an operating system 630, one or
more application programs 632, other program modules 634.
and program data 636. In accordance with various embodi
ments, the program modules may include computer program
logic that is executable by processing unit 602 to perform
any or all of the functions and features of client 102, client
104, client 106, and file sharing system 108 of FIG. 1, as
well as any sub-components thereof, as well as any Sub
components thereof, as described elsewhere herein. The
program modules may also include computer program logic
that, when executed by processing unit 602, performs any of
the steps or operations shown or described in reference to
FIGS. 2, 4 and 5. In one embodiment, application programs
632 and/or other program modules 634 include one of
programs 122, 142 and 152 and a corresponding one pro
gram settings manager 124, 144 and 154.
A user may enter commands and information into com

puter system 600 through input devices such as a keyboard

10

15

25

30

35

40

45

50

55

60

65

14
638 and a pointing device 640. Other input devices (not
shown) may include a microphone, joystick, game control
ler, Scanner, or the like. In one embodiment, a touch screen
is provided in conjunction with a display 644 to allow a user
to provide user input via the application of a touch (as by a
finger or stylus for example) to one or more points on the
touch screen. These and other input devices are often
connected to processing unit 602 through a serial port
interface 642 that is coupled to bus 606, but may be
connected by other interfaces, such as a parallel port, game
port, or a universal serial bus (USB).
A display 644 is also connected to bus 606 via an

interface, such as a video adapter 646. In addition to display
644, computer system 600 may include other peripheral
output devices (not shown) Such as microphones, speakers
and printers.
Computer system 600 is connected to a network 648 (e.g.,

a local area network or wide area network Such as the
Internet) through a network interface or adapter 650, a
modem 652, or other means for establishing communica
tions over the network. Modem 652, which may be internal
or external, is connected to bus 606 via serial port interface
642.
As used herein, the terms "computer program medium’

and “computer-readable medium' are used to generally refer
to non-transitory media such as ROM 608 and RAM 610
used to implement system memory 604, the hard disk
associated with hard disk drive 614, removable magnetic
disk 618, removable optical disk 622, as well as other media
Such as flash memory cards, digital video disks, and the like.
As noted above, computer programs and modules (includ

ing application programs 632 and other program modules
634) may be stored on ROM 608, RAM 610, the hard disk,
magnetic disk 618, or optical disk 622. Such computer
programs may also be received via network interface 650 or
serial port interface 642. Such computer programs, when
executed by processing unit 602, enable computer system
600 to implement features of embodiments discussed herein.
Accordingly, such computer programs represent controllers
of computer system 600.

Embodiments are also directed to computer program
products comprising software stored on any computer-read
able medium. Such software, when executed in one or more
data processing devices, causes a data processing device(s)
to operate as described herein. Embodiments may employ
any computer-useable or computer-readable medium,
known now or in the future. Examples of computer-readable
mediums include, but are not limited to storage devices Such
as ROM, RAM, hard drives, floppy disks, CD ROMs, DVD
ROMs, Zip disks, tapes, magnetic storage devices, optical
storage devices, MEMS-based storage devices, nanotech
nology-based storage devices, and the like.

In alternative implementations, any of client 102, client
104, client 106, and file sharing system 108 of FIG. 1, as
well as any Sub-components thereof, may be implemented as
hardware logic/electrical circuitry or firmware. In accor
dance with further embodiments, one or more of these
components may be implemented in a system-on-chip
(SoC). The SoC may include an integrated circuit chip that
includes one or more of a processor (e.g., a microcontroller,
microprocessor, digital signal processor (DSP), etc.),
memory, one or more communication interfaces, and/or
further circuits and/or embedded firmware to perform its
functions.

VI. Conclusion

While various embodiments have been described above,
it should be understood that they have been presented by

US 9,460,184 B2
15

way of example only, and not limitation. It will be apparent
to persons skilled in the relevant art(s) that various changes
in form and details can be made therein without departing
from the spirit and scope of the invention. Thus, the breadth
and scope of the present invention should not be limited by
any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.
What is claimed is:
1. A computer-implemented method for synchronizing a

local instance of a data store with at least one remote
instance of the data store, comprising:

comparing a local version of a dataset, that includes a first
sequentially-ordered list of change sets associated with
the local instance of the data store, to a shared version
of the dataset, that includes a second sequentially
ordered list of change sets associated with the at least
one remote instance of the data store, to identify one or
more new change sets that are included in the shared
version of the dataset and are not included in the local
version of the dataset, the one or more new change sets
comprising a set of operations that represent how a
state of a corresponding set of entities in the local
instance of the data store must be changed to bring the
local instance of the data store into synchronization
with the at least one remote instance of the data store,
and the one or more new change sets having been
automatically modified to ensure that only a single
operation is included in the set of operations for each
entity in the corresponding set of entities; and

applying the one or more new change sets to the local
instance of the data store in the order in which the one
or more new change sets appear in the second sequen
tially-ordered list, the applying the one or more new
change sets to the local instance of the data store
comprising:
performing, by using a computer system, one or more

add, modify or delete operations included in the one
or more new changes set with respect to one or more
corresponding entities in the local instance of the
data store.

2. The method of claim 1, wherein the method is per
formed upon determining that the shared version of the
dataset is a more recently-updated version of the dataset than
the local version of the dataset.

3. The method of claim 1, further comprising:
obtaining the shared version of the dataset from one of a

file sharing system, a networked server, a Web service,
or a cloud-based service.

4. The method of claim 1, further comprising:
overwriting the local version of the dataset with the

shared version of the dataset or updating the local
version of the dataset based on the shared version of the
dataset.

5. The method of claim 1, wherein the shared version of
the dataset comprises one of a plurality of shared versions of
the dataset that can each be accessed to synchronize an
instance of the data store to a desired change state.

6. The method of claim 1, wherein each version of the
dataset comprises a file that includes a sequentially-ordered
list of change sets associated with the data store.

7. The method of claim 1, wherein each version of the
dataset comprises a database that stores change sets associ
ated with the data store.

8. The method of claim 1, wherein the local instance of the
data store includes one or more entities that represent one or
more user settings associated with a program.

5

10

15

25

30

35

40

45

50

55

60

65

16
9. A system comprising:
a file sharing system that maintains a shared version of a

dataset; and
a client machine that maintains a local version of the

dataset and a local instance of a data store, the client
machine including at least one processor that is con
figured to:
obtain the shared version of the dataset from the file

sharing system;
compare the local version of the dataset, that includes

a first sequentially-ordered list of change sets asso
ciated with the local instance of the data store, to the
shared version of the dataset, that includes a second
sequentially-ordered list of change sets associated
with at least one remote instance of the data store, to
identify one or more new change sets that are
included in the shared version of the dataset and are
not included in the local version of the dataset, the
one or more new change sets comprising a set of
operations that represent how a state of a correspond
ing set of entities in the local instance of the data
store must be changed to bring the local instance of
the data store into synchronization with the at least
one remote instance of the data store, and the one or
more new change sets having been automatically
modified to ensure that only a single operation is
included in the set of operations for each entity in the
corresponding set of entities; and

apply the one or more new change sets to the local
instance of the data store in the order in which the
one or more new change sets appear in the second
sequentially-ordered list, the applying the one or
more new change sets to the local instance of the data
store including performing one or more add, modify
or delete operations included in the one or more new
change sets with respect to one or more correspond
ing entities in the local instance of the data store.

10. The system of claim 9, wherein the at least one
processor of the client machine is further configured to
overwrite the local version of the dataset with the shared
version of the dataset or update the local version of the
dataset based on the shared version of the dataset.

11. The system of claim 10, wherein the at least one
processor of the client machine is further configured to
perform the following in response to determining that the
local instance of the data store has been modified Subsequent
to the overwriting of the local version of the dataset with the
shared version of the dataset or the updating of the local
version of the dataset based on the shared version of the
dataset:

add a further new change set to the local version of the
dataset; and

provide the local version of the dataset that includes the
further new change set to the file sharing system.

12. The system of claim 9, wherein the at least one
processor of the client machine is configured to perform the
obtaining, comparing, and applying operations only upon
determining that the shared version of the dataset is a more
recently-updated version of the dataset than the local version
of the dataset.

13. The system of claim 9, wherein the shared version of
the dataset comprises one of a plurality of shared versions of
the dataset that can be accessed to synchronize an instance
of the data store to a desired change state.

14. The system of claim 9, wherein each version of the
dataset comprises a file that includes a sequentially-ordered
list of change sets associated with the data store.

US 9,460,184 B2
17

15. The system of claim 9, wherein each version of the
dataset comprises a database that stores change sets associ
ated with the data store.

16. The system of claim 9, wherein the local instance of
the data store includes one or more entities that represent one 5
or more user settings associated with a program.

17. A device comprising:
a processing unit;
a memory communicatively connected to the processing

unit, the memory storing instructions that are execut- 10
able by the processing unit to perform operations, the
operations including:
comparing a local version of a dataset, that includes a

first sequentially-ordered list of change sets associ
ated with a local instance of a data store, to a shared 15
Version of the dataset, that includes a second sequen
tially-ordered list of change sets associated with at
least one remote instance of the data store, to identify
one or more new change sets that are included in the
shared version of the dataset and are not included in 20
the local version of the dataset, the one or more new
change sets comprising a set of operations that
represent how a state of a corresponding set of
entities in the local instance of the data store must be

18
changed to bring the local instance of the data store
into synchronization with the at least one remote
instance of the data store, and the one or more new
change sets having been automatically modified to
ensure that only a single operation is included in the
set of operations for each entity in the corresponding
set of entities; and

applying the one or more new change sets to the local
instance of the data store in the order in which the
one or more new change sets appear in the second
sequentially-ordered list, the applying the one or
more new change sets to the local instance of the data
store comprising:
performing one or more add, modify or delete opera

tions included in the one or more new change sets
with respect to one or more corresponding entities
in the local instance of the data store.

18. The device of claim 17, wherein the operations further
include:

obtaining the shared version of the dataset from one of a
file sharing system, a networked server, a Web service,
or a cloud-based service.

ck ck ck ck *k

