
USOO946OO74B2

(12) United States Patent (10) Patent No.: US 9,460,074 B2
Huang et al. (45) Date of Patent: Oct. 4, 2016

(54) EFFICIENT DATA PATTERN MATCHING 2004/0117765 A1 6, 2004 Chan
2005/0055357 A1 3/2005 Campbell
2006/005.9154 A1 3/2006 Raab

(71) Applicant: VMware, Inc., Palo Alto, CA (US) 2006/0074671 A1 4/2006 Farmaner et al.
2006, O1361.94 A1 6/2006 Armstrong et al.

(72) Inventors: Chengdu Huang, Sunnyvale, CA (US); 2006/0179013 A1* 8, 2006 Beliveau et al. TO6/6
Zhenmin Li, Mountain View, CA (US); 2007/0079379 A1 * 4/2007 Sprosts et al. T26/24
Spiros Xanthos, Menlo Park, CA (US) 2007. O16831.0 A1 7/2007 Kaminsky et al.

2008/O126400 A1 5/2008 Mitsuishi
2008/02O1772 A1 8, 2008 Mondaeev et al.

(73) Assignee: VMware, Inc., Palo Alto, CA (US) 2008/0256013 A1 10, 2008 Loveless
2008/027O399 A1 10, 2008 F tal.

(*) Notice: Subject to any disclaimer, the term of this 2008/03.01175 A1 12/2008 Siavn et al.
patent is extended or adjusted under 35 2009,0187964 A1* 7/2009 Kao et al. T26.1
U.S.C. 154(b) by 434 days. 2009, 0216746 A1 8, 2009 Aubin et al.

2009/0262659 A1 * 10/2009 Sturges HO4L 63.1416
370,253

(21) Appl. No.: 13/863,223 2010, 0070460 A1 3, 2010 Furst
2010/0076919 A1 3/2010 Chen

(22) Filed: Apr. 15, 2013 2010/0278420 A1 11, 2010 Shet et al.
2011/O119282 A1 5/2011 Gorman et al.

(65) Prior Publication Data (Continued)

US 2014/0310291 A1 Oct. 16, 2014 OTHER PUBLICATIONS

(51) Int. Cl. Non-Final Office Action for U.S. Appl. No. 13/863,233, mailed Jun.
G06F 7/00 (2006.01) 22, 2015, 23 pages.
G06F 7/30 (2006.01) inued
G06F 7/27 (2006.01) (Continued)

(52) U.S. Cl.
CPC G06F 17/2705 (2013.01) Primary Examiner — Azam Cheema

(58) Field of Classification Search
CPC G06F 17/30; G06F 17/30908; G06F (57) ABSTRACT

11/0706; G06F 17/30943; G06F 11/0751: Exemplary methods, apparatuses, and systems receive data
G06F 11/3086: G06F 11/3072 as input to be parsed. The data is parsed using a plurality of

See application file for complete search history. pattern matching rules, the plurality of pattern matching
(56) References Cited rules organized according to a hierarchy including a parent

U.S. PATENT DOCUMENTS

5,819,255 A 10, 1998 Celis et al.
6,438,741 B1 8/2002 Al-omari et al.
6,910,003 B1 6, 2005 Arnold et al.
7,577,633 B2 8, 2009 Shankar et al.
8, 165,987 B2 4/2012 Luk
8,374,986 B2 2/2013 Indeck et al.
8,868,535 B1 10/2014 Paiz

rule and one or more child rules of the parent rule. Parsing
includes applying the parent rule to the unstructured data,
determining the parent rule is unable to find a pattern match
in the unstructured data, and bypassing the application of
each child rule to the unstructured data in response to the
determination that the parent rule is unable to find a pattern
match.

18 Claims, 7 Drawing Sheets

RECEIVE UNSTRUCTUREDDATA
600 y

CREATECPTIMIZEDPATTERNMATCHING
RULE
61

APPLYOPTIMIZEDPATTERNMATCHING
RULE
6.

ARRANGE RULES INAHIERARCHY
620

ORDERRULES ACCORDINGSTOPROR
MATCHINGRESULTS

625

APPLY ORDEREDRULESTODATASOURCE
63

OUTPUTPATTERNMATCHRESULT8
S35

US 9,460,074 B2
Page 2

(56)

2011/O178971
2011/O295779
2012,0005144
2012/0110003
2012/O124064
2012/0179646

2012fO246696
2012/0311529
2013,004 1921
2013,006O785
2013/0066818

2013, O138425

References Cited

U.S. PATENT DOCUMENTS

A1
A1
A1
A1
A1
A1*

A1

T 2011
12/2011
1, 2012
5, 2012
5, 2012
T/2012

9, 2012
12, 2012
2, 2013
3/2013
3/2013

5, 2013

Meeks et al.
Chen
Cutler et al.
Brewer
Syrowitz
Hinton GO6F 17,30557

707/6O7
Boukobza
Beveridge
Cooper et al.
Sweeney et al.
Assadollahi GO6N 99,005

TO6/12
Luke

2013,0166292 A1 6, 2013 Van Seiver et al.
2013,0212060 A1 8, 2013 Crouse et al.
2014/0237345 A1* 8, 2014 Di Blas GO6F 17,2725

T15,234

OTHER PUBLICATIONS

Non-Final Office Action for U.S. Appl. No. 13/863,196, mailed Dec.
19, 2014, 15 pages.
Final Office Action for U.S. Appl. No. 13/863,196, mailed May 12,
2015, 26 pages.
Notice of Allowance for U.S. Appl. No. 13/863,233, mailed Sep. 25.
2015, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/863,196, mailed Mar.
29, 2016, 19 pages.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 7 US 9,460,074 B2

100 1.

/- /-
/ x / \ / \ Web Server \ NetWOrk / Database \

Error R1 Error R2 | Error R3

105 N 110 115

/ Disk Read / " /File Check
Error R4 Response Sequence

120 Error R5 Error R6
14 / 125 / \ 130 /
-- N - N -

/ HTTP
Response
404 R7 /

N 135 /

FIG. 1

U.S. Patent Oct. 4, 2016 Sheet 2 of 7 US 9,460,074 B2

ASSIGNOR RECEIVE PARENT
AND CHILD ASSIGNMENTS

203

RECEIVE UNSTRUCTURED
DATA
205

PARSE WITH PARENT RULE
210

YES PARSE WITH CHILD RULE(S)
220

NO

RETURN NOMATCH
225 NO

YES

RETURN MATCH
227

FIG. 2

U.S. Patent Oct. 4, 2016 Sheet 3 of 7 US 9,460,074 B2

300 1.

PARSE PATTERN MATCHINGRULES FOR
TEXT CONSTANT

305

EXTRACT DETECTED TEXT CONSTANT
310

ASSOCATE TEXT CONSTANT WITH RULE
315

FIG. 3

U.S. Patent Oct. 4, 2016 Sheet 4 of 7 US 9,460,074 B2

RECEIVE UNSTRUCTURED
DATA
405

OPTIMIZED
PATTERN

APPLY OPTIMIZED PATTERN MATCHING RULE
420

BYPASS APPLICATION OF ORIGINAL PATTERN
MATCHINGRULE

430

RULE MATCH?
425

DETERMINE MATCHLOCATION
435

- - - - -

PARSE DATA WITH THE ORIGINAL PATTERN
MATCHINGRULE

440

FIG. 4

U.S. Patent Oct. 4, 2016 Sheet S of 7 US 9,460,074 B2

500
1.

RECEIVE UNSTRUCTURED
DATA
505

APPLY FIRST RULE TODATA
510

No TTEMOTERETT

YES

PROMOTE MATCHINGRULE
530

MATCH NEXT RULE IN
SEOUENCE

525

BYPASS REMAININGRULES
535

SAVE UPDATED ORDER OF
RULES
540

FIG. 5

U.S. Patent Oct. 4, 2016 Sheet 6 of 7 US 9,460,074 B2

600
RECEIVE UNSTRUCTURED DATA 1.

605

CREATE OPTIMIZED PATTERN MATCHING
RULE
610

APPLY OPTIMIZED PATTERNMATCHING
RULE
615

ARRANGE RULES INA HERARCHY
620

ORDER RULES ACCORDING TO PRIOR
MATCHING RESULTS

625

APPLY ORDEREDRULES TODATASOURCE
630

OUTPUT PATTERN MATCH RESULTS
635

FIG. 6

U.S. Patent Oct. 4, 2016 Sheet 7 Of 7 US 9,460,074 B2

700 1.

Memory
(e.g., ROM, RAM,
mass storage, etc.)

710

Display
Audio I/O Microprocessor(s) Controller(s) &

715 705 Device(s)
720

I/O Devices &
Interfaces

(e.g., touch input,
network interface,
Camera, etc.)

725

FIG. 7

US 9,460,074 B2
1.

EFFICIENT DATA PATTERN MATCHING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. application Ser. No.
13/863,196, filed Apr. 15, 2013, and U.S. application Ser.
No. 13/863,233, filed Apr. 15, 2013.

FIELD OF THE INVENTION

The various embodiments described herein relate to effi
cient data pattern matching. More specifically, embodiments
described herein relate to managing an order in which data
pattern matching rules are applied and selectively bypassing
one or more rules.

BACKGROUND OF THE INVENTION

Storage and networking systems can process and transfer
large amounts of data. The data may be accumulated from
various sources (e.g., error files, log files, transaction logs, or
other data sources) and combined into an unstructured data
format. For example, a central server may receive log
information from multiple different types of clients, each
with a unique error reporting format and each having
different reporting content.
A technique to efficiently manage unstructured data

includes extracting and creating structured or semi-struc
tured data with pattern matching rules. Pattern matching
rules, such as regular expressions, identify specific informa
tion in or extract specific information from unstructured
data. In some cases, a large number of pattern matching rules
may be applied to the unstructured data. Each pattern
matching rule may be applied to the unstructured data source
sequentially, significantly increasing processing time for a
large number of pattern matching rules. The parallel pro
cessing of the rules results in a decrease in processing time,
but consumes processing resources. Applying a large num
ber of pattern matching rules to a large amount of data,
therefore, consumes a significant amount of processing
resources and/or processing time. Additionally, when pattern
matching rules are used to detect system errors, delays in
being able to repair the errors resulting from the increased
processing time may be costly.

SUMMARY OF THE INVENTION

Exemplary methods, apparatuses, and systems parse
unstructured data with a plurality of pattern matching rules.
The plurality of pattern matching rules are organized accord
ing to a hierarchy including a parent rule and one or more
child rules of the parent rule. The parent rule is applied to the
unstructured data, and if the parent rule is unable to find a
pattern match in the unstructured data, the application of
each child rule to the unstructured data is bypassed.

Other features and advantages will be apparent from the
accompanying drawings and from the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements,
and in which:

FIG. 1 illustrates, in block diagram form, an exemplary
hierarchical organization of a set of pattern matching rules;

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 2 is a flow chart illustrating an exemplary method of

applying the rules according to a hierarchical organization of
the rules;

FIG. 3 is a flow chart illustrating an exemplary method of
creating an optimized version of a pattern matching rule;

FIG. 4 is a flow chart illustrating an exemplary method of
efficient pattern matching using an optimized version of a
pattern matching rule;

FIG. 5 is a flow chart illustrating an exemplary method of
applying pattern matching rules in an order that is updated
dynamically according to matches found in parsed data;

FIG. 6 is a flow chart illustrating an exemplary method of
efficiently applying pattern matching rules using optimized
versions of pattern matching rules, applying the rules
according to a hierarchical organization of the rules, and
applying the rules in an order that is updated dynamically
according to matches found in parsed data; and

FIG. 7 illustrates, in block diagram form, an exemplary
processing system to provide efficient pattern matching.

DETAILED DESCRIPTION

Embodiments described herein relate generally to Effi
cient Pattern Matching (EPM). In general, pattern matching
may be implemented by applying one or more pattern
matching rules (Rules), grouped into a Rule Set, to a data
Source. As used herein, applying “pattern matching rules'
may include using a regular expression to identify specific
information in or extract specific information from a data
Source. The data source may include data combined from a
number of different or independent data sources. In one
embodiment, EPM determines the order in which the Rules
are applied. By determining the order of the application of
the Rules, EPM optimizes the pattern matching process. In
one embodiment, EPM organizes Rules into clusters and/or
hierarchies to prioritize the application of selected Rules
before other Rules. In another embodiment, EPM creates
and applies optimized versions of one or more Rules (e.g.,
a less complex version of a Rule). In one embodiment, EPM
bypasses the application of Rules with a low probability of
matching the data source based upon the prior application of
a corresponding rule in a hierarchy, cluster, or a correspond
ing optimized version of the Rule. By optimizing the order
in which Rules are applied and bypassing the application of
certain Rules, embodiments described herein reduce pro
cessing time and demand upon processing resources.
Data Sources
A data source as used herein may refer to structured data

or unstructured data. The data source can be a single data
source or a combined data source of one or more different or
independent data sources. Example data sources include:
files, logs, error reports, status updates, or other repository/
association of data, just to name a few. A data processing
system (e.g., a client or server) may receive the data source
from one or more data connections or connected systems.
Data may be written to, associated with, or stored in the data
Source incrementally in Staggered chunks or instantaneously
as new data is created. New data may be combined into or
appended to the end of a data repository as the data arrives
at the data source. Additionally, data can be associated or
grouped together to form the data source. For example, a
data source may be a group of files, directory, or other
organizational structure.
A structured data source can contain descriptive tags or

fields to identify or classify each piece of data. For example,
a structured data source can contain descriptors to identify
where the data originates from, type of data, or other

US 9,460,074 B2
3

characteristics of the data. Structured data sources can be
comma delimited, tab delimited, or created with a standard
ized format such as Extensible Markup Language (XML).
However, the data source as used herein may not always
contain these aforementioned identifiers or be efficiently
organized. Furthermore, if data from the data source is
tagged, identified, or classified, the syntax or formatting may
not be consistent across multiple data sources. Each Source
may have a different reporting style or format. A data source
that can contain inconsistent or unstandardized formatting
can be considered an unstructured data source.
An unstructured data Source may contain data from a

variety of ancillary data sources such as multiple structured
data Sources of different structure types, multiple unstruc
tured data sources, or a combination of structured and
unstructured data sources. For example, the unstructured
data source may consist of networking data information
from one source, hard disk information from another source,
and/or user information from another source. Each ancillary
data source may contain multiple types of information of the
unstructured data source. Additionally, the unstructured data
may be physically or logically divided and stored across
multiple locations or originate from different data processing
systems and storage types. Because of the potentially unor
ganized or unstructured format of the data source. EPM can
create Rules to parse a variety of possible data sources. As
discussed in greater detail below, Rules can be highly
beneficial for accurately and consistently extracting struc
tured data from a variety of data sources. Extracted struc
tured data can be useful for quality assurance, statistical
purposes, and debugging, just to name a few.
A data processing system implementing EPM may oper

ate on a live (e.g., continuously updating) data source.
Alternatively, EPM may operate on a snapshot of a live data
source taken at a point in time. EPM may iteratively or
continuously apply the Rule Set to a live stream or chunks/
sections of a data source, such that the Rule Set is applied
to the new/recently added data during each Subsequent Rule
Set application to the data source (e.g., applied at a later
point in time to a different portion of the data source). EPM
may save a record (e.g., bookmark) of when and where in the
data source the Rule Set was last applied.
EPM may apply the Rule Set automatically at set time

periods, in response to a trigger or, upon request from a
separate module or process. For example, EPM may apply
the Rule Set at a specified time interval (e.g., 12 PM daily),
or based on an attribute of the data source. Example attri
butes include: a data source reaching a specific file size, or
receiving a number of new updates. Additionally, EPM may
apply the Rule Set via manual trigger or scheduled initial
ization (e.g., setup by a user or administrator). A Software or
hardware interrupt due to a system condition (e.g., hard disk
space at the server reaches a threshold value or a system
error or warning is detected) may also trigger application of
the Rule Set.
Pattern Matching

System administrators and users may want to use or
analyze data from the data source in efficient and powerful
ways. One method to extract data from a data source is
regular expressions. In other embodiments, EPM can use
other forms of pattern matching.

Regular expressions (regexs) are specific patterns or rules
to provide a concise and flexible way to match (e.g., specify
and recognize) strings of text (e.g., characters, words, or
patterns of characters). RegeXS may be written in a formal
language interpreted by a regex processor (i.e., a program
that either serves as a parser generator or examines text and

10

15

25

30

35

40

45

50

55

60

65

4
identifies parts that match the provided pattern matching
rule). For example, regex "/admin(a-Z0-9 \.---)(a)(\da
Z\.---)\.(a-z\{2,6})S/ matches the text string "admin'
when it is followed by a pattern of one or more lowercase
letters, numbers, underscores, dots, or hyphens (e.g., admin
istrator(a) server.com would match the previous regular
expression). Another regex, “\bemployee\W+(2:\w+AW+){1,
3?identification\b” matches when the text “employee'
occurs within 1 to 6 words from the text “identification' in
the data source. EPM can use many other different types of
pattern matches of varying complexity and length con
structed using regeXS and pattern matching rules generally.
Rule Management and Organization
EPM may apply each regex (e.g., Rule) to the data source

in a managed order or sequence Such that certain Rules may
be applied before other rules. For example, EPM can order
application of Rules according to each Rule creation time
stamp, a manual priority setting, or using one or more of the
optimization features described in greater detail below. EPM
may sequentially apply each Rule in a Rule Set. Alterna
tively, EPM can apply Rules in multi-threaded operation
Such that two or more Rules may be applied at approxi
mately the same time. In either case of sequential or parallel
processing of Rules, EPM may nonetheless prioritize the
application of certain Rules.

In Some embodiments, upon achieving a first pattern
match with the data source. EPM exits and provides an
output result. For example, EPM can apply a first Rule Set
to determine whether one or more components in a system
have an error status. Upon matching an error to a respective
system component, EPM can apply a second Rule Set
directed to the respective system component. For example,
EPM may parse web server and database logs, and upon
determining a web server specific error, can apply a Rule Set
directed to matching one or more specific web server errors
(e.g., 404 errors).

In some embodiments, EPM applies all Rules in the Rule
Set regardless of whether a preceding Rule matches the data
source. For example, when EPM determines a Rule matches
the data source EPM continues to apply each of the remain
ing Rules in the Rule Set. Upon EPM determining a match
to a Rule, the match and match location within the data
source can be recorded before continuing to a next Rule. For
example, a system administrator may create a Rule Set to
detect various types of system messages (e.g., status mes
sages relating to hard disk, memory, network or other
component) within a data source. One or more Rules in the
Rule Set may be directed to a different message type than
other Rules in the set. In Such an example, the system
administrator may want to collect all relevant messages in a
structured format so that the health of the entire system
including every component can be understood.
Hierarchy

In one embodiment, EPM Schedules, organizes, or man
ages the Rule Set according to a hierarchical Rule structure.
EPM can apply Rules in the order defined by the hierarchical
structure. For example, EPM may arrange Rules into a tree,
parent/child, node/Subnode, or dependency relationship. As
referred to herein, child Rules are defined as refinements of
a respective parent Rule such that when EPM is unable to
match the respective parent Rule to the data source, the child
Rules are also unlikely to match the data source. Parent
Rules may be defined as encompassing at least a matching
scope of each respective child Rule. Therefore, when a
parent Rule is unable to match a data source. EPM can skip

US 9,460,074 B2
5

or bypass child Rules related to the parent Rule. Skipping or
bypassing certain Rules can allow EPM to quickly prune and
parse the data source.
EPM can determine the parent Rule and child Rule

relationships during the process of creating the Rule Set. For
example, a system administrator may deliberately structure
a Rule Set in a hierarchy such that a first Rule (i.e. parent)
has related (i.e. child) Rules to refine the first Rule. For
example, the parent Rule may match the text, "sales,” while
child Rules may match text containing “April 2013 sales
figures.” When EPM reads a predetermined structured Rule
Set, the predetermined parent and child relationships can be
followed during Rule Set application to a data source.

FIG. 1 illustrates, in block diagram form, an exemplary
hierarchical organization 100 of a set of pattern matching
rules. Rules R1 105, R2110, R5125 are illustrated with one
or more related sub-rules (i.e., child Rules). Rule R1 105 has
three child Rules: R4 120, R5 125, and R7 135. Therefore,
if Rule R1 105 does not match a data source. EPM may
bypass (i.e., not apply against the data source) child Rules
R4 120, R5 125, and R7 135. Similarly, Rule R2 110 has a
child Rule R6 130 that EPM can bypass if R2 110 does not
provide a match to a data source.

Certain Rules (e.g., R5 125) may be both a parent and a
child. As discussed above, when EPM does not match a
parent Rule, the child Rule can be bypassed. For example,
Rule R5125 is a child Rule of Rule R1 and also has a child
Rule R7. Continuing the example illustrated in FIG. 1, if
Rule R5125 fails to match, child Rule R7 135 may also be
bypassed even though R1 105 was able to match the data
source. Rule R5 may be a Rule to match a text string for
“HTTP Response Error” within an error log file, while the
child Rule R7 135 may be a match for “HTTP Response
404” or other subset of all possible network status messages.
In this simplified example, if EPM fails to match “HTTP
Response Error,” the refined match for a “HTTP Response
Error 404' within the superset of “HTTP Response Error”
will also fail to match. In one embodiment, the parent and
child Rules do not include overlapping text strings. For
example, Rule R2 110 may be a Rule to match a text string
for “Network Error” within an error log file, while the child
Rule R6 130 may be a match for “File Check Sequence
Error” or another specific type of web server error.

Rules may also be neither a parent nor a child (e.g., R3
115). For example, Rule R3 115 is independent from all
other Rules.
As described above. EPM may determine parent Rule and

child Rule relationships based on a structure predetermined
by a user or system administrator. In other embodiments,
EPM may automatically determine parent and child rela
tionships or recommend candidate parent and child relation
ships. EPM can automatically determine relationships by
pre-processing each Rule in a training data set. Based on the
result of matches from the training data set, EPM can
determine which Rules (parents) are likely to predict when
other Rules (children) will also fail to match. The training
data may include at least one representation of every type of
data to be matched in a Rule Set. EPM can use the appli
cation of the Rule Set on the training data to infer whether
any dependencies or correlations exist between Rules. For
example, upon iterating through a Rule Set against a repre
sentative training data set, EPM may assign/recommend
Rules meeting a threshold correlation as child or parents.
Whether the EPM assigns a Rule as a parent or a child can
depend on their correlation determined from the results from
matching with the training data set. For example, if Rule “X”
always fails to match (or fails to match a threshold percent

10

15

25

30

35

40

45

50

55

60

65

6
age of times) when Rule “Y” fails to match, “Y” may be
assigned with a sub-rule dependency (i.e., as a child Rule to
“X”).

FIG. 2 is a flow chart illustrating an exemplary method
200 of applying Rules according to the hierarchical organi
zation of the Rule Set described above. At block 201, an
embodiment (e.g., EPM) optionally (e.g., as indicated by the
use of broken lines) parses training data to attempt a match
for each of the Rules in the Rule Set. The embodiment
assigns or associates Rules to parent, child, and/or indepen
dent (i.e., neither a parent nor child) classifications. At block
203, the embodiment reads a predetermined parent, child, or
independent relationship. For example. EPM can read the
parent, child, or independent relationship as determined
from the training data, or from another source. EPM may
read embedded Parent/child/independent relationship iden
tifiers added during the creation of the Rule Set. EPM may
also read Rule Sets with a predefined hierarchical structure
as described above. EPM can read the hierarchy imple
mented with identifiers or as a defined structure as input.
At block 205, the embodiment reads, receives, or other

wise prepares the data source for Rule application to the data
Source. The embodiment may access the data source on a
local file system or receive the data across a network
connection.
At block 210, the embodiment parses the data source

using a parent Rule (e.g., one of the Rules from the Rule Set
organized according to a hierarchy of parents and children).
EPM may also apply independent Rules before, after, or
in-between matching parent Rules. For example, EPM may
order independent Rules to be applied after all parent Rules
are applied. EPM may also select a first parent Rule to apply
based on the number of children associated with the respec
tive parent Rule. For example, a parent Rule with twenty
child Rules may be applied to the data source before a parent
Rule with one child Rule. EPM may also select a first parent
Rule to apply based on a predicted pattern matching com
plexity or execution time. For example, a first parent Rule
and associated child Rules may be highly complex and result
in longer processing times compared to an average com
plexity parent Rule. EPM may apply Rules with greater than
average complexity can after lower complexity (i.e. fast
execution) Rules. In one embodiment, the parent and/or
independent Rules are arranged according to a dynamic
ordering, as described herein with reference to FIG. 5. In one
embodiment, EPM uses a combination of one or more of the
above described organization or management techniques to
determine the ultimate application order of the Rule Set.
At block 215, the embodiment determines whether the

parent Rule is able to find a pattern match in the data source.
If the embodiment determines the parent Rule is unable to
find a pattern match in the data source, at block 225, no
match is returned, the child Rules are bypassed, and unstruc
tured data is received at block 205 for processing a next
Rule. For example, EPM may not apply, or can remove one
or more child Rules associated with the parent Rule from the
set of remaining Rules to apply. If the embodiment deter
mines the parent Rule is able to find a pattern match in the
data source, at block 220, the embodiment parses the data
source with one or more child Rules.
At block 222, the embodiment determines if a child Rule

matches the data source. If the child Rule matches the data
Source, the embodiment provides (e.g., returns a result or
records to memory) an indication of match Success at block
227. Optionally, the embodiment can provide a position or
location of the match within the data source. Therefore, the
embodiment can bypass one or more child Rules as a result

US 9,460,074 B2
7

of being unable to match their respective parent Rule.
Bypassing Rules can reduce overall processing time and
save resources in a data processing system. In some embodi
ments, parent Rules may be a speed optimized version of
their respective child Rule(s) as described in greater detail
below.
Pattern Matching Optimization

In another embodiment, EPM creates and applies opti
mized versions of one or more Rules (e.g., a less complex
version of a Rule). EPM can use the optimized version to
pre-search or filter a data source with a speed optimized
match of generally lower complexity than the original
associated Rule. If the optimized version fails to match the
data source. EPM can bypass the one or more Rules related
to the optimized version. Pre-searching with an optimized
Rule can significantly reduce overall processing time and
demand on processing resources for a complex or lengthy
Rule Set.

In one embodiment, EPM optimizes rules by converting
target Rules into an alternative Rules of lower complexity.
For example, EPM may reduce or eliminate a number of
operations within a target Rule. EPM reduction of target
Rule operations can result in an optimized version of the
target Rule with less complexity. The optimized version of
the target Rule is deterministic such that when the optimized
version of the target Rule fails to match the data source, the
target Rule will also fail to match. However, the optimized
version of the target Rule may not be an entirely equivalent
Substitute for the target Rule in providing an exact or equal
match to the data source. Therefore, upon determining a
match with an optimized version of the target Rule. EPM
may also apply the target Rule (i.e. original regex) to the data
SOUC.

One method for generating a less complex rule may be to
split a rule that contains text and operators into two rules: 1)
a simple text search; and 2) a text search with the operators.
A text search can be a fast, low overhead operation to
determine whether the text constant(s) or text string(s) are
present in the data Source. The text search may be one of any
known implementations for quickly finding an exact text
match within a data source. A simple text search on the data
Source is faster or, at worst, equal in speed as matching the
target Rule upon which the text search was based.
A simple text search of the data source can be fast to

execute and effective for pruning out pattern matching rules.
For example, regex "/admin(a-Z0-9 \.---)(a)(\da-Z\.---)\.
(a-Z\{2.6})S/ matches the text string "admin' when it is
followed by a specific pattern including one or more low
ercase letters, numbers, underscores, dots, or hyphens (e.g.,
administrator(a) server.com). EPM may extract the text
“admin' and perform a simple text match for “admin'
within the data source. Upon determining a match, EPM can
optionally save the location within the data source for
Subsequent use in applying the target Rule (i.e., original
regex "/admin(a-Z0-9 \,-]+)(a)(\da-Z\.-))\,(a-Z\,{2,6})
S/). In some embodiments, the optimized version of the
target Rule may return the position or location within the
data source when a match is found. In this previous example,
a determination by the EPM that no match for “admin'
exists within the data source would result in the target Rule
being skipped or bypassed from application to the data
Source. In one embodiment, when an optimized pattern
matching rule is unable to match or provide search results on
a data source. EPM marks or flags the respective target Rule
for later exclusion. During application of the Rule Set in the

5

10

15

25

35

40

45

50

55

60

65

8
specified order, the EPM can remove or ignore application
of Rules marked or flagged for exclusion against the data
SOUC.

FIG. 3 is a flow chart illustrating an exemplary method
300 of creating an optimized version of a pattern matching
rule. At block 305, an embodiment (e.g., EPM) parses one
or more target Rules to detect text constants (e.g., characters,
numbers, keywords, etc.). For example. EPM may detect
text constants by ignoring or removing regex operators to
isolate text constants. In one embodiment, EPM detection of
text constants further includes detecting that a respective
Rule includes both a text constant and regex operators able
to be reduced in complexity such that the respective Rule is
a candidate for optimization.
At block 310, the embodiment extracts the text constant

(s) from each target Rule having a text constant. The
embodiment can use the extracted text constant(s) to create
an optimized version of the target Rule. For example, in the
regex expression “windows’0-9, which matches phrases
like “windows1' or “windows2', the embodiment would
extract the text constant “windows’. If the embodiment is
unable to extract a text constant, creation of an optimized
version may be skipped and the target Rule can be applied.
At block 315, the embodiment associates the optimized

version of the target Rule with the respective target Rule
originally containing the extracted text. An exemplary Rule
association between the optimized version of the target Rule
and the target Rule is the parent and child relationship
described herein. Continuing from the previous example, the
parent rule would be “windows’ while the associated child
rule would be “windows'0-9.
A target Rule for optimization may have two or more text

constant groups or blocks (e.g., each text constant group is
separated by operators within the target Rule). As a result,
EPM may create separate optimized Rules for each text
constant group or block. EPM can determine whether the
optimized pattern matching rule associated with each text
group or block independently matches the data source. For
example, before bypassing the target Rule associated with
the two or more text constant groups the optimized pattern
matching rules associated with each text constant group can
be applied to the data source. For example, regex,
“\bemployee\W+(?:\w+\W+){1,3}?identification\b”
matches when the text “employee' occurs within one to
three words from the text “identification' in the data source.
In this example, ignoring the regex operators and extracting
only the text constants, two text blocks are extracted:
“employee' and “identification, and EPM can create two
separate pattern matching rules. EPM can search or match
for “employee separately from “identification.” Alterna
tively, EPM extracts only one of the plurality of text constant
groups and determine a match before determining whether
to search or match a Subsequent group. For example, EPM
may search for the first group "employee' and continue to
search or match for “identification’ if “employee' provided
a match. In some embodiments, EPM may search for a first
text constant group and determine to skip attempting to
match further text constant groups. For example, after a first
match to a text group constant EPM may proceed with
applying the target Rule immediately without progressing
through additional optimized Rules (e.g., one or more addi
tional pattern matching rules for text constant groups asso
ciated with the target Rule). However, in one embodiment if
a first text constant group fails to match, EPM may not
bypass applying the target Rule unless all text constant
groups associated with the target Rule also fail to match.

US 9,460,074 B2

FIG. 4 is a flow chart illustrating an exemplary method
400 of efficient pattern matching using an optimized version
of a target Rule. At block 405, an embodiment (e.g., EPM)
receives data from the data source for application of the Rule
Set (i.e., pattern matching). The embodiment also optionally
divides the Rule Set into subgroups. For example, EPM may
separate Rules having an associated optimized version into
a prioritized group. EPM can apply the prioritized group to
the data source before a group of Rules without any asso
ciated optimized versions. EPM may further organize the
order of application of the Rules within each group based on
any of the organization techniques described herein.

Alternatively, if the Rules are not presorted into groups, at
block 415, the embodiment determines whether an opti
mized version of each target Rule exists or can be deter
mined. If an optimized version of a target Rule exists, the
embodiment can apply the optimized version at block 420.
Otherwise, the embodiment can create the optimized version
of the target Rule as discussed above, and then applied at
block 420. If an optimized version of a target Rule does not
exist and is unable to be created, the embodiment can bypass
the optimized pattern matching rule for the target Rule and
the target Rule is applied at block 440.
Upon applying the optimized version of a target Rule at

block 420, the embodiment determines, at block 425,
whether the optimized version results in a data match within
the data source. At block 430, if the optimized version of the
target Rule is unable to provide a match to the data, the
respective target Rule (e.g., the Rule from which the opti
mized pattern matching rule was derived) is bypassed and
not applied to the data. If the optimized version matches the
data source, the embodiment optionally determines and
stores the data source location(s) of the match at block 435.
Upon determining a match using the optimized version of
the target Rule, at block 440, the embodiment parses the data
with the respective Rule (e.g., applies the target Rule). If a
match location was stored at block 435, the embodiment
may direct the application of the target Rule to the prede
termined match location.

Using the predetermined match location can reduce the
amount of data that the Rules parse. For example, if an
optimized version of the target Rule found a match at line
2,020 of a data source, the embodiment may attempt to
match the target Rule of the data source from line 2,020
instead of applying the target Rule to the entire data source.
Therefore in this previous example, EPM can bypass the first
2,019 lines of the data source.

In other embodiments, instead of or in addition to saving
a match location, EPM stores the entire line containing the
match as a result snippet. EPM can alternatively store any
predetermined amount of Surrounding data in addition to the
data matched by the optimized pattern matching rule (e.g.,
5 lines, 10 lines, a portion of a line, or other amount). EPM
can parse the result Snippet with the original pattern match
ing rule instead of the optimized pattern matching rule to
obtain an accurate match result.
Dynamic Ordering
As discussed above, upon determining a first match in a

data source. EPM may in Some embodiments, bypass some
or all of the remaining Rules in the Rule Set instead of
continuing to attempt to match every Rule. Therefore, order
ing Rules such that a most likely match will occur as early
in the matching process as possible is beneficial.

Although the data source may often contain unstructured
data, certain structural features may be inherent in the data
Source. For example, individual clients or data sources may
write or send data to the combined data source in bursts or

10

15

25

30

35

40

45

50

55

60

65

10
streams. At any point in time it may be likely that only one
client is updating or adding data to the data source. There
fore the unstructured data may have clumps or groups of
data added by a single data source, and all the data in the
clump or group of data may have similar properties. For
example, a web server may flush server logs at a predeter
mined time period such that a data source contains a group
of web server messages in a sequence. Rules related to a
recently matched data source may have a high probability of
matching when EPM next applies the Rule Set to the data
source. When EPM orders Rules in the Rule Set, Rules
associated with particular types of data within the unstruc
tured data may be ordered together in a cluster. For example,
a group of web server related Rules may be grouped
together. When EPM can predetermine Rule relationships or
clusters, the predetermined Rule clusters may be applied in
the predetermined order. However predetermined Rule rela
tionships may not always be available. Therefore, EPM may
adaptively adjust the ordering or sorting of Rules each time
a match is determined.
EPM may process Rules in a sequential order such that

each Rule is processed one after another. Upon determining
a match, EPM may exit the Rule Set and return the match.
In a subsequent iteration or application of a Rule Set to the
data source or new section of the data source, EPM can order
the Rule Set such that the Rule resulting in the previous
match is prioritized (e.g., scheduled for application to the
data source) over the other Rules in the Rule Set.
To illustrate, a first set of Rules to apply to a data source

“A” may be: R1, R2, R3, and R4. In one embodiment, EPM
applies each Rule in sequence until a match is discovered
and then bypasses the remaining Rules in the Rule Set. For
example, upon failing to match Rule R1 in data source “A.”
the next Rule, R2 is applied to data source “A.” If Rule R2
provides a match in data source “A.” EPM exits and outputs
the match. When EPM is next called or initiated to apply the
Rule Set to a data source (e.g., data source “B” or a
new/recently added section to data source “A”), EPM
applies the set of Rules with R2 prioritized for application
ahead of the other Rules in the Rule Set (e.g., Rules will be
applied in the order: R2, R1, R3, then R4). Additionally,
EPM may further lower the priority of R1 due to a prior
failure to match the Rule in the prior dataset (e.g., R2, R3,
R4, then R1). When each Rule Set is applied to new a new
data source, Rules recently resulting in a match to a data
source are prioritized for application before other Rules.
Adaptively over a number of Rule Set iterations, Rule
clusters will form based on the Rules in the cluster matching
similar data sources.

Additionally, or alternatively, EPM may apply a cluster of
Rules prior to another cluster of Rules. Continuing with the
example above, a second Rule Set may include Rules R5,
R6, R7, and R8. EPM may form additional clusters or sets
of Rules. As EPM finds matches by a Rule of a particular
Rule Set, the entire Rule Set including the matching Rule
may be applied prior to other Rule Sets, or otherwise
increase in application priority of Rule Sets to Subsequent
data. For example, Subsequent to the match in the applica
tion of R2 above, if a match is found in the application of R6,
the second Rule Set is applied prior to the Rule Set discussed
above (R1-R4). Additionally, within the second Rule Set, R6
may be applied first, such that the Subsequent exemplary
Rule order would apply the Rules in the following order: R6,
R5, R7, R8, R2, R1, R3, R4. In an embodiment that further
includes lowering the priority of individual Rules in

US 9,460,074 B2
11

response to failing to find a match, the exemplary Rule
ordering would apply the Rules in the following order: R6,
R7, R8, R5, R2, R3, R4, R1.

FIG. 5 is a flow chart illustrating an exemplary method
500 of applying pattern matching rules in a dynamically
adjusted order according to matches found in parsed data. At
block 505, an embodiment (e.g., EPM) receives a data
Source for pattern matching (e.g., the unstructured data as
disclosed above).

At block 510, the embodiment parses a data source with
the Rule Set. The embodiment applies Rules in the Rule Set
to the data in an ordered sequence Such that a first Rule is
applied before a second Rule.

At block 515, the embodiment determines whether a Rule
matches the data source. If the Rule is unable to match the
data source, the Rule is optionally demoted at block 520. For
example, EPM can lower application priority for the Rule in
the Rule Set. If a first Rule is unable to match the data
Source, while a second Rule matches the data source, when
parsing/matching a data Source in a Subsequent application
of the Rule Set, the second Rule may be ordered for
application after the first Rule. Upon determining a Rule is
unable to match the data source, a next Rule in the sequence
of Rules is applied to the data source at block 525 and a new
determination is made for whether a next Rule (e.g., the next
Rule in the ordered sequence of Rules) matches the data.
At block 530, when the embodiment determines a Rule

matches the data source, the Rule can be promoted for
application ahead of non-matching Rules. The promotion
can occur in the next sequence of Rules applied to the new
or Subsequent portion of a data source. EPM may promote
the recently matching Rule to be the first Rule ordered for
application to the data source. For example, if Rule “X” is
unable to match the data, and Rule “Y” is able to match the
data, in the next iteration of applying the Rule Set, EPM can
apply Rule “Y” before Rule “X.” In one embodiment, EPM
may promote the recently matching Rule to any position
before the previous non-matching Rule (e.g., a position two
or more Rules before the previous non-matching Rule). In
other embodiments, EPM may promote the recently match
ing Rule to be the new first Rule in the entire Rule Set to be
applied.

At block 535, the embodiment bypasses the remaining
Rules in the Rule Set upon determining a Rule matches the
data source. In alternative embodiments, upon matching a
Rule, the remaining Rules in the Rule Set are also applied to
the same data source.

At block 540, the embodiment saves the updated order of
Rules for subsequent Rule applications. For example, the
embodiment can save the new position of Rules based on the
promoted or demoted Rule position from blocks 530 or 520.
EPM can save the ordered Rule Set to memory to be used as
input for a Subsequent application to the data source. In one
embodiment, EPM can dynamically adjust the order of
Rules while Rules are promoted or demoted.

FIG. 6 is a flow chart illustrating an exemplary method
600 of efficiently applying pattern matching rules using
optimized versions of pattern matching rules, applying the
Rules according to a hierarchical organization of the Rules,
and applying the Rules in an order that is updated dynami
cally according to matches found in parsed data. At block
605, an embodiment (e.g., EPM) receives a data source for
the application of Rules. For example, a data processing
system may read a log file or receive network data feed for
use as the data source.

At block 610, the embodiment creates an optimized
pattern matching rule. For example, the optimized pattern

5

10

15

25

30

35

40

45

50

55

60

65

12
matching rule may be a simple text search of the unstruc
tured data. The optimized pattern matching rule may be
based on an extracted text string or other simplified version
of a Rule, as described herein with reference to FIG. 3.
At block 615, the embodiment applies the optimized

pattern matching rule. In one embodiment, after matching an
optimized pattern matching rule, the embodiment can apply
the target Rule (i.e., the optimized pattern matching rule was
based on). EPM may bypass Rules related to the optimized
pattern matching rule when the optimized pattern matching
rule does not result in a match, as described herein with
reference to FIG. 4.
At block 620, the embodiment arranges pattern matching

rules in a hierarchy, as described herein with reference to
FIG 2.

At block 625, the embodiment orders Rules in an opti
mized order determined according to matches previously
found in parsed data, as described herein with reference to
FIG. 5. In one embodiment, Rules with a recent prior match
to the data source are ordered ahead of Rules without a
recent prior match. EPM may order pattern matching rules
such that parent Rules are applied before related child Rules.
At block 630, the embodiment applies the optimized order

of Rules to the data source. In one embodiment, EPM
applies Rules in the Rule Set to the data source until either
a first Rule matches or no further Rules can be applied.
Alternatively, EPM can apply each Rule regardless of
whether a prior Rule determines a match and all matches
may be output. EPM may apply Rules to the data source in
a structured order. The order of Rule application can be
based on EPM's determination that when one Rule (e.g., a
parent Rule) is unable to match, related Rules (e.g., child
Rules) are also unable to match. Upon determining a match
with a parent Rule, the embodiment may bypass application
of related child Rules. For example, EPM can exit and
output a message detailing a position in the data source
where the match was found.
At block 635, the embodiment outputs Rule matching

results. The embodiment may output to a display or to
separate applications for further parsing or analysis of the
results. For example. EPM may be the first step in a quality
assurance system where results from EPM are further orga
nized and displayed in an administrator or user tool to
monitor or track statistics relating to one or more data
SOUCS.

The embodiment of FIG. 6 described above may be
performed by EPM in a different order than described. For
example, dynamic ordering before hierarchy or optimiza
tion, hierarchy before optimization, optimization after
dynamic ordering or hierarchy, or other combinations. In
some embodiments, EPM can apply Rules to a data source
without one of hierarchy, optimization, or dynamic ordering.
Data Processing System Overview

FIG. 7 illustrates, in block diagram form, an exemplary
processing system 700 to perform Efficient Pattern Match
ing. Data processing system 700 includes one or more
microprocessors 705 and connected system components
(e.g., multiple connected chips). Alternatively, the data pro
cessing system 700 is a system on a chip.
The data processing system 700 includes memory 710,

which is coupled to the microprocessor(s) 705. The memory
710 may be used for storing data, metadata, and programs
for execution by the microprocessor(s) 705. The memory
710 may include one or more of volatile and non-volatile
memories, such as Random Access Memory (“RAM), Read
Only Memory (“ROM'), a solid state disk (“SSD), Flash,

US 9,460,074 B2
13

Phase Change Memory (PCM), or other types of data
storage. The memory 710 may be internal or distributed
memory.
The data processing system 700 also includes an audio

input/output subsystem 715 which may include a micro
phone and/or a speaker for, for example, playing back music
or other audio, receiving voice instructions to be executed by
the microprocessor(s) 705, playing audio notifications, etc.
A display controller and display device 720 provides a visual
user interface for the user.

The data processing system 700 also includes one or more
input or output (“I/O”) devices and interfaces 725, which are
provided to allow a user to provide input to, receive output
from, and otherwise transfer data to and from the system.
These I/O devices 725 may include a mouse, keypad or a
keyboard, a touch panel or a multi-touch input panel,
camera, optical scanner, network interface, modem, other
known I/O devices or a combination of such I/O devices.
The I/O devices and interfaces 725 may also include a

port, connector for a dock, or a connector for a USB
interface, FireWire, Thunderbolt, Ethernet, Fibre Channel,
etc. to connect the system 700 with another device, external
component, or a network. Exemplary I/O devices and inter
faces 725 also include wireless transceivers, such as an I3
802.11 transceiver, an infrared transceiver, a Bluetooth
transceiver, a wireless cellular telephony transceiver (e.g.,
2G, 3G, 4G, etc.), or another wireless protocol to connect the
data processing system 700 with another device, external
component, or a network and receive stored instructions,
data, tokens, etc.
One or more buses, may be used to interconnect the

various components shown in FIG. 7.
The data processing system 700 may be a personal

computer, tablet-style device, a personal digital assistant
(PDA), a cellular telephone with PDA-like functionality, a
Wi-Fi based telephone, a handheld computer which includes
a cellular telephone, a media player, an entertainment sys
tem, or devices which combine aspects or functions of these
devices, such as a media player combined with a PDA and
a cellular telephone in one device. In other embodiments, the
data processing system 700 may be a network computer,
server, or an embedded processing device within another
device or consumer electronic product. As used herein, the
terms computer, device, system, processing system, process
ing device, and "apparatus comprising a processing device'
may be used interchangeably with the data processing
system 700 and include the above-listed exemplary embodi
mentS.

Additional components, not shown, may also be part of
the system 700, and, in certain embodiments, fewer com
ponents than that shown in FIG.7 may also be used in a data
processing system 700. It will be apparent from this descrip
tion that aspects of the inventions may be embodied, at least
in part, in Software. That is, the computer-implemented
methods 200, 300, 400, 500, and 600 may be carried out in
a computer system or other data processing system 700 in
response to its processor or processing system 705 executing
sequences of instructions contained in a memory. Such as
memory 710 or other non-transitory machine-readable stor
age medium. The software may further be transmitted or
received over a network (not shown) via a network interface
device 725. In various embodiments, hardwired circuitry
may be used in combination with the software instructions
to implement the present embodiments. Thus, the techniques
are not limited to any specific combination of hardware
circuitry and Software, or to any particular source for the
instructions executed by the data processing system 700.

10

15

25

30

35

40

45

50

55

60

65

14
An article of manufacture may be used to store program

code providing at least Some of the functionality of the
embodiments described above. Additionally, an article of
manufacture may be used to store program code created
using at least Some of the functionality of the embodiments
described above. An article of manufacture that stores pro
gram code may be embodied as, but is not limited to, one or
more memories (e.g., one or more flash memories, random
access memories—static, dynamic, or other), optical disks,
CD-ROMs, DVD-ROMs, EPROMs, EEPROMs, magnetic
or optical cards or other type of non-transitory machine
readable media Suitable for storing electronic instructions.
Additionally, embodiments of the invention may be imple
mented in, but not limited to, hardware or firmware utilizing
an FPGA, ASIC, a processor, a computer, or a computer
system including a network. Modules and components of
hardware or software implementations can be divided or
combined without significantly altering embodiments of the
invention.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. Various embodiments and aspects of the invention
(s) are described with reference to details discussed herein,
and the accompanying drawings illustrate the various
embodiments. The description above and drawings are illus
trative of the invention and are not to be construed as
limiting the invention. Numerous specific details are
described to provide a thorough understanding of various
embodiments of the present invention. However, in certain
instances, well-known or conventional details are not
described in order to provide a concise discussion of
embodiments of the present inventions.

It will be evident that various modifications may be made
thereto without departing from the broader spirit and scope
of the invention as set forth in the following claims. For
example, the methods described herein may be performed
with fewer or more features/blocks or the features/blocks
may be performed in differing orders. Additionally, the
methods described herein may be repeated or performed in
parallel with one another or in parallel with different
instances of the same or similar methods.
What is claimed is:
1. A computer-implemented method of parsing data using

a plurality of pattern matching rules, the method comprising:
parsing training data using a plurality of pattern matching

rules;
assigning a pattern matching rule as a parent rule of one

or more child rules upon determining that failure of the
parent rule to match the training data is a predictor of
the one or more child rules failure to match the training
data;

receiving data as input to be parsed; and
parsing the data using the plurality of pattern matching

rules, the plurality of pattern matching rules organized
according to a hierarchy including the parent rule and
the one or more child rules of the parent rule, and
wherein the parsing comprises:
applying the parent rule to the data,
determining the parent rule is unable to find a pattern

match in the data, and
bypassing application of each child rule to the data in

response to the determination that the parent rule is
unable to find a pattern match.

2. The method of claim 1, wherein the parent rule encom
passes at least a matching scope of each respective child
rule. Such that a failure to match the parent rule indicates a
failure to match the data for each of the respective children.

US 9,460,074 B2
15

3. The method of claim 1, further comprising:
processing, before applying a second parent rule, an

optimized search related to the second parent rule,
wherein the optimized search is one of: a search for a
text string extracted from a respective pattern matching
rule; and

bypassing the processing of the second parent rule and
one or more child rules of the second parent rule upon
determining the optimized search is unable to match the
data.

4. The method of claim 1, further comprising:
determining a pattern matching rule is a child rule of the

parent rule based on a predetermined hierarchy of
pattern matching rules.

5. The method of claim 1, wherein parsing the data using
a plurality of pattern matching rules further comprises:

ordering parent rules for application ahead of independent
rules, wherein independent rules are neither a parent
rule nor a child rule.

6. The method of claim 1, wherein the data is unstructured
data combined from a plurality of different data sources.

7. A non-transitory computer-readable medium storing
instructions, which when executed by a processing device,
cause the processing device to perform method comprising:

parsing training data using a plurality of pattern matching
rules;

assigning a pattern matching rule as a parent rule of one
or more child rules upon determining that failure of the
parent rule to match the training data is a predictor of
the one or more child rules failure to match the training
data;

receiving data as input to be parsed; and
parsing the data using the plurality of pattern matching

rules, the plurality of pattern matching rules organized
according to a hierarchy including the parent rule and
the one or more child rules of the parent rule, and
wherein the parsing comprises:
applying the parent rule to the data,
determining the parent rule is unable to find a pattern

match in the data, and
bypassing application of each child rule to the data in

response to the determination that the parent rule is
unable to find a pattern match.

8. The medium of claim 7, wherein the parent rule
encompasses at least a matching scope of each respective
child rule, such that a failure to match the parent rule
indicates a failure to match the data for each of the respec
tive children.

9. The medium of claim 7, further comprising:
processing, before applying a second parent rule, an

optimized search related to the second parent rule,
wherein the optimized search is one of: a search for a
text string extracted from a respective pattern matching
rule; and

bypassing the processing of the second parent rule and
one or more child rules of the second parent rule upon
determining the optimized search is unable to match the
data.

10. The medium of claim 7, further comprising:
determining a pattern matching rule is a child rule of the

parent rule based on a predetermined hierarchy of
pattern matching rules.

5

10

15

25

30

35

40

45

50

55

60

16
11. The medium of claim 7, wherein parsing the data

using a plurality of pattern matching rules further comprises:
ordering parent rules for application ahead of independent

rules, wherein independent rules are neither a parent
rule nor a child rule.

12. The medium of claim 7, wherein the data is unstruc
tured data combined from a plurality of different data
SOUCS.

13. An apparatus comprising:
a processing device, wherein the processing device

executes instructions that cause the apparatus to:
parse training data using a plurality of pattern matching

rules;
assign a pattern matching rule as a parent rule of one or
more child rules upon determining that failure of the
parent rule to match the training data is a predictor of
the one or more child rules failure to match the training
data;

receive data as input to be parsed; and
parse the data using the plurality of pattern matching

rules, the plurality of pattern matching rules organized
according to a hierarchy including the parent rule and
the one or more child rules of the parent rule, and
wherein the parsing comprises:
applying the parent rule to the data,
determining the parent rule is unable to find a pattern

match in the data, and
bypassing application of each child rule to the data in

response to the determination that the parent rule is
unable to find a pattern match.

14. The apparatus of claim 13, wherein the parent rule
encompasses at least a matching scope of each respective
child rule, such that a failure to match the parent rule
indicates a failure to match the data for each of the respec
tive children.

15. The apparatus of claim 13, further comprising instruc
tions to cause the processor to:

process, before applying a second parent rule, an opti
mized search related to the second parent rule, wherein
the optimized search is one of a search for a text string
extracted from a respective pattern matching rule; and

bypass the processing of the second parent rule and one or
more child rules of the second parent rule upon deter
mining the optimized search is unable to match the
data.

16. The apparatus of claim 13, further comprising instruc
tions to cause the processor to:

determine a pattern matching rule is a child rule of the
parent rule based on a predetermined hierarchy of
pattern matching rules.

17. The apparatus of claim 13, wherein parsing the data
using a plurality of pattern matching rules further comprises
instructions to cause the processor to:

order parent rules for application ahead of independent
rules, wherein independent rules are neither a parent
rule nor a child rule.

18. The apparatus of claim 13, wherein the data is
unstructured data combined from a plurality of different data
SOUCS.

