
(12) United States Patent

USOO9456216B2

(10) Patent No.: US 9.456,216 B2
Holcomb et al. (45) Date of Patent: *Sep. 27, 2016

(54) SUB-BLOCK TRANSFORM CODING OF (58) Field of Classification Search
PREDCTION RESIDUALS CPC .. HO4N 197OOO24

USPC ... 375/24O.O2
(71) Applicant: Microsoft Technology Licensing, LLC, See application file for complete search history.

Redmond, WA (US)
(56) References Cited

(72) Inventors: Thomas W. Holcomb, Bothell, WA
(US); Chih-Lung Lin, Redmond, WA U.S. PATENT DOCUMENTS

(US) 4,691329 A 9/1987 Juri et al.
(73) Assi Mi ft Technol Li LLC 4,796,087 A 1/1989 Guichard et al. SS1gnee: IVIIcrosoft 1ecnnology Licensing, s

Redmond, WA (US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 EP O 279 O53 8, 1988
U.S.C. 154(b) by 0 days. EP 1085763 3, 2001

This patent is Subject to a terminal dis- OTHER PUBLICATIONS
claimer.

U.S. Appl. No. 60/341,674, filed Dec. 17, 2001, Lee et al.
(21) Appl. No.: 14/337,578 (Continued)

(22) Filed: Jul. 22, 2014 Primary Examiner — William C Vaughn, Jr.
O O Assistant Examiner — Luis Perez Fuentes

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Sunah Lee; Dan Choi;
US 2014/0334534 A1 Nov. 13, 2014 Micky Minhas

Related U.S. Application Data (57) ABSTRACT
(60) Continuation of application No. 11/890,059, filed on Techniques and tools for sub-block transform coding are

Aug. 3, 2007, now Pat. No. 8,817,868, which is a described. For example, a video encoder adaptively switches
division of application No. 10/322,352, filed on Dec. between 8x8, 8x4, and 4x8 DCTs when encoding 8x8
17, 2002, now Pat. No. 7,266,149. prediction residual blocks; a corresponding video decoder

switches between 8x8, 8x4, and 4x8 inverse DCTs during
(60) Provisional application No. 60/341,674, filed on Dec. decoding. The video encoder may determine the transform

17, 2001. sizes as well as Switching levels (e.g., frame, macroblock, or
block) in a closed loop evaluation of the different transform

(51) Int. Cl. - sizes and Switching levels. The encoder and decoder may H04N 9/05 (2014.01)
H04N 9/53 2014.O1 use different scan patterns for different transform sizes when

(.01) scanning values from two-dimensional blocks into one
(Continued) dimensional arrays, or vice versa. The encoder and decoder

(52) U.S. Cl. may use Sub-block pattern codes to indicate the presence or
CPC H04N 19/513 (2014.11); G06T 3/40 absence of information for the sub-blocks of particular

(2013.01); G06T 7/0012 (2013.01); blocks.
(Continued) 21 Claims, 25 Drawing Sheets

320

Perform 8x8 DCT, quantization,
entropy encoding, inverse

quantization and 8x8 inverse DCT

Measure costas a function of
distortion and number of bits:

cost8x8 = F(D,B)

Add bit overhead required to
signal 8x8 transform type

at blocklewel to cost:
cost8x8' = xost8x8 + 8x8owerhead

Perform 8x4DCT, quantization,
entropy encoding, inverse

quantization and 8x4 inverse DCT

Measure costas a function of
distortion and number of bits:

cost8x4 = F(D,B)

Add bit overhead required to
signal 8x4 transform type

at blocklewel to cost:
cost8x4' = cost8x4 + 8x40werhead

Perform 4x8 DCT, quantization,
entropy encoding, inverse

quantization and 4x8 inverse DCT

Measure costas a function of
distortion and number of bits:

cost4x8 = F(D,B}

Add bit overheadrequired to
signal 4x8 transform type

at block levelt cost:
costax8' = costax8 + 4x88werhead

US 9,456,216 B2
Page 2

(51) Int. Cl. 5,537,493 A 7/1996 Wilkinson
G06T 3/40 (2006.01) 3.75% A. E. Ea a
G06T 700 (2006.01) 5,598.483. A 1/1997 Purcell et al.
H04N 9/52 (2014.01) 5,623,313 A 4/1997 Naveen
H04N 9/76 (2014.01) 5,748,789 A 5/1998 Lee et al.

5,764,814 A 6/1998 Chen et al.
HO)4N 19/70 (2014.01) 5,778,098 A 7/1998 Lee et al.
H04N 9/19 (2014.01) 5,793,897 A 8, 1998 Jo et al.
H04N 9/47 (2014.01) 5,799,113 A 8, 1998 Lee
HO)4N 19/172 (2014.01) 5,802.213 A 9, 1998 Gardos

5,825.423 A 10/1998 Jung
H04N 9/46 (2014.01) 5,825,929 A 10/1998 Chen et al.
H04N 9/63 (2014.01) 5,828.413 A 10/1998 Jayant et al.
H04N 9/22 (2014.01) 5,844,613 A 12/1998 Chaddha
H04N 9/29 (2014.01) 5,850,294 A 12/1998 Apostolopoulos et al.
H04N 9/6 (2014.01) 2. A &E Most et al OSOO
HO)4N 19/593 (2014.01) 5.937,095 A 8/1999 Machida
HO)4N 19/11 7 (2014.01) 5,946,043 A 8, 1999 Lee et al.
H04N 9/32 (2014.01) 5,952,943 A 9, 1999 Walsh et al.
H04N 9/46 (2014.01) 5,959,673 A 9, 1999 Lee et al.

H04N 9/80 (2014.01) 38. A '38 it,
H04N 9/82 (2014.01) 606732 A 5/2000 Wang
H04N 9/523 (2014.01) 6,104,754 A * 8/2000 Chujoh HO4N 19, 52
HO)4N 19/547 (2014.01) 341.59
HO)4N 19/57 (2014.01) 6,125,143 A 9, 2000 Suzuki et al.
H04N 19/86 (2014.01) ... A 1939 Shaythy et al.
HO)4N 19/895 (2014.01) 6,215,425 B1 4/2001 Andrews et al.
H04N 9/50 (2014.01) 6,215,910 B1 4/2001 Chaddha
HO)4N 19/527 (2014.01) 6,233,017 B1 5/2001 Chaddha
H04N 9/533 (2014.01) E.R. 388 (S.

4 wi. ang
HO)4N 19/59 (2014.01) 6,292,588 B1 9/2001 Shen et al.
HO)4N 19/136 (2014.01) 6,300,888 B1 10/2001 Chen et al.
H04N 9/18 (2014.01) 6,337,881 B1 1/2002 Chaddha

(52) U.S. Cl. 6,339,656 B1 1, 2002 Marui
CPC H04N 19/105 (2014.11); H04N 19/117 6,363,119 B1* 3/2002 Oami 19.2.

(2014.11); H04N 19/119 (2014.11); H04N 6,449,382 B1 9/2002 Cicolo et al.
19/122 (2014.11); H04N 19/129 (2014.11); 6,480,544 B1 1 1/2002 Uehara et al.

H04N 19/132 (2014.11); H04N 19/136 6,501,798 B1* 12/2002 Sivan HO4N 19, 176
(2014.11); H04N 19/146 (2014.11); H04N 6.512.792 B1 1/2003 Nai 375,240.12
19/147 (2014.11); H04N 19/172 (2014.11); 6571.016 B1 5/2003 Nota et al.

H04N 19/176 (2014.11); H04N 19/18 6,631, 162 B1 * 10/2003 Lee GO6T 5,002
(2014.11); H04N 19/46 (2014.11); H04N 348,606
19/50 (2014.11); H04N 19/52 (2014.11); 6,633,611 B2 10/2003 Sekiguchi et al.
H04N 19/523 (2014.11); H04N 19/527 8.338E. H.S Same a

(2014.11); H04N 19/533 (2014.11); H04N 6,697.433 B. 32004 St.
19/547 (2014.11); H04N 19/57 (2014.11); 6.728414 B1 4/2004 Chang et al.

H04N 19/59 (2014.11); H04N 19/593 6,765,964 B1 7/2004 Conklin
(2014.11); H04N 19/61 (2014.11); H04N 6,795,584 B2 9/2004 Karczewicz et al.
19/63 (2014.11); H04N 19/70 (2014.11); 6,870,963 B2 3/2005 Govindaswamy et al.

H04N 19/80 (2014.11); H04N 19/82 6,907,142 B2 6/2005 Kalevo
(2014.11); H04N 19/86 (2014.11); H04N $2.9B 3 at al. al

19/895 (2014.11) 7,162,091 B2 1/2007 Wang et al.
7,263,232 B2 8, 2007 Srinivasan

(56) References Cited 7,266,149 B2* 9/2007 Holcomb HO4N 19,136

U.S. PATENT DOCUMENTS 7,747,094 B2 * 6/2010 Sekiguchi HIS 3.6
362,236

4,831,659 A 5/1989 Miyaoka et al.
5,068,724. A 1 1/1991 Krause et al. 7,830,963 B2 * 1 1/2010 Holcomb H9Ns.
5,107,345 A 4, 1992 Lee et al. T.957.610 B2 6, 2011 T
5,117.287 A 5, 1992 Koike et al. - - oma et al.
5,144.426 A 9/1992 Tanaka et al. 8,279,929 B2 * 10/2012 Demos HO4N 19 OO696
5,241,395 A 8/1993 Chen et al. ck 375,240.15
5,260,783. A 11/1993 Dixit 8.494,052 B2 * 7/2013 Chang HO4N 19,192
5,422,676 A 6/1995 Herpel et al. 375,240.16
5,442,400 A 8, 1995 Sun et al. 8,743,949 B2 * 6/2014 Srinivasan HO4N 19,136
5,452,104 A 9, 1995 Lee et al. 375,240
5,467,086 A 11/1995 Jeon 8,908,768 B2 12/2014 Hsu 9.
5,467,134. A 1 1/1995 Laney et al. 8,964,854 B2 * 2/2015 Tu HO4N 19,30
5,477,272 A 12/1995 Zhang et al. 375,240.13

US 9,456,216 B2
Page 3

(56) References Cited

U.S. PATENT DOCUMENTS

2001/0043792 A1* 11/2001 Mishima HO4N 19,59
386.329

2002fOO27954 A1
2002fOO978O2 A1
2002fO154227 A1
2003, OO12286 A1
2003/0099292 A1
2003/0108100 A1
2003. O156648 A1

3/2002 Singh et al.
7/2002 Lin et al.

10, 2002 Lan et al.
1/2003 Ishtiaq et al.
5/2003 Wang et al.
6/2003 Sekiguchi et al.
8, 2003 Holcomb et al.

2003/018530.6 A1* 10, 2003 MacInnis G06F 9/3861
375,240.25

2004.0005096 A1 1/2004 Kim et al.
2004/0062309 A1 4/2004 Romanowski HO4N 19, 176

375,24O16
2004/0252768 A1
2005.0025246 A1
2005.0036759 A1
2005, OO84162 A1
2005. O135484 A1
2005/0254583 A1
2006/0209962 A1
2007/0098.278 A1
2008.0049834 A1
2013/0301704 A1

12/2004 Suzuki et al.
2/2005 Holcomb
2/2005 Lin et al.
4/2005 Yamaguchi et al.
6, 2005 Lee et al.
11/2005 Kim et al.
9, 2006 Park et al.
5, 2007 Sun et al.
2/2008 Holcomb et al.

1 1/2013 Srinivasan et al.
2013/0301732 A1 11, 2013 HSu et al.
2015,0195527 A1 7, 2015 Zhou et al.

OTHER PUBLICATIONS

U.S. Appl. No. 60/488,710, filed Jul. 18, 2003, Srinivasan et al.
Bontegaard, “Addition of 8x8 Transform to H.26L.” ITU-T VCEG
Q15-I-39, 2 pp. (Oct. 1999).
Bontegaard."H.26L Test Model Long Term No. 5 (TML-5) draft0.”
q15k59d 1.doc, 35 pp. (document marked Oct. 2000).
Bontegaard."H.26L Test Model Long Term No. 8 (TML-8) draft0.”
MPEG2001/M7512, 46 pp. (document marked Jul. 2001).
Chen et al., “Variable Block-size Image Coding by Resource
Planning.” Proc. Int'l Conf. On Image Science, Systems, and Tech
nology, Las Vegas, 10 pp. (1997).
Guenter et al., “Motion Compensated Compression of Computer
Animation Frames.” Proc. SIGGRAPH '93, 8 pp. (1993).
Hallapuro et al., “Performance Analysis of Low Bit Rate H.26L
Video Encoder.” Proc. IEEE International Conference on Acous
tics, Speech and Signal Processing, vol. 2, pp. 1129-1132 (May
2001).
Horn et al., “Bit allocation methods for closed-loop coding of
oversampled pyramid decompositions.” Proc. of IEEE International
Conference on Image Processing, 4 pp. (1997).
ISO/IEC 11172-2, “Coding of Moving Picture and Associated
Audio for Digital Storage Media at Up to About 1.5 Mbit/s, Part 2:
Video,” 122 pp. (1993).
ISO/IEC 14496-2, “Coding of Audio-Visual Objects: Visual, ISO/
IEC 14496-2,” pp. i-V, 136-144, 229 (1998).
ISO/IEC 14496-2, “Coding of Audio-Visual Objects: Visual, ISO/
IEC 14496-2, 326 pp. (1998).
ITU-T Recommendation H.261, "Line Transmission of Non-Tele
phone Signals.” International Telecommunications Union, 29 pp.
(Mar. 1993).
ITU-T Recommendation H.262, “Transmission of Non-Telephone
Signals.” International Telecommunications Union, 216 pp. (Jul.
1995).
ITU-T Recommendation H.263, “Series H. Audiovisual and Mul
timedia Systems, Infrastructure of Audiovisual Services Coding
of Moving Video.” International Telecommunications Union, 167
pp. (Feb. 1998).
ITU-T Recommendation H.263, “Series H. Audiovisual and Mul
timedia Systems, Infrastructure of Audiovisual Services Coding
of Moving Video.” International Telecommunications Union, pp.
i-x, 4, 40-48, 73-80 (Feb. 1998).

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
“Joint Committee Draft (CD), JVT-C167.” 3rd Meeting: Fairfax,
Virginia, USA, 142 pp. (May 2002).
Lee et al., “Variable Block Size Techniques for Motion Sequence
Coding.” Proc. First Korea-Japan Joint Workshop on Multi-media
Communications, 12 pp. (1994).
Mehrotra et al., “Adaptive Coding Using Finite State Hierarchical
Table Lookup Vector Quantization with Variable Block Sizes,” 5 pp.
(1996).
Microsoft Corporation, “Microsoft Debuts New Windows Media
Player 9 Series, Redefining Digital Media on the PC,” 4 pp. (Sep.
4, 2002) Downloaded from the World WideWeb on Jul 16, 2004).
Mook, “Next-Gen Windows Media Player Leaks to the Web.”
BetaNews, 17 pp. (Jul. 2002).
Printouts of FTP directories from http://ftp3.itu.ch, 8 pp. (down
loaded from the World Wide Web on Sep. 20, 2005).
Reader, “History of MPEG Video Compression Ver, 4.0, 99 pp.
(document marked Dec. 16, 2003).
Ribas-Corbera et al., “On the Optimal Block Size for Block-based
Motion-Compensated Video Coders.” SPIE Proc. of Visual Com
munications and Image Processing, vol. 3024, 12 pp. (1997).
Ribas-Corbera et al., “On the Optimal Motion Vector Accuracy for
Block-based Motion-Compensated Video Coders.” Proc. SPIE
Digital Video Compression, San Jose, CA, 13 pp. (1996).
Study Group 16–Contribution 999. “Draft Text of Recommenda
tion H.263 Version 2 (H.263+) for Decision.” International Tele
communication Union, 17 pp. (1997).
Sullivan et al., “The H.264/AVC Advanced Video Coding Standard:
Overview and Introduction to the Fidelity Range Extensions,” 21
pp. (Aug. 2004).
Sullivan, “Low-rate Coding of Moving Images. Using Motion
Compensation, Vector Quantization, and Quadtree Decomposition.”
University of California, Los Angeles, Ph.D. Thesis, 178 pp. (1991).
Tseng et al., "Compatible Video Coding of Stereoscopic Sequences
Using MPEG-2's Scalability and Interlaced Structure.” Int'l Work
shop on HDTV '94, Torino, Italy, 10 pp. (1994).
Wiegand, “Joint Model No. 1, Revision 1 (JM1-r1),” JVT-AO03r1,
80 pp. (document marked “Generated: Jan. 18, 2002).
Wien et al., “16 Bit Adaptive Block size Transforms,” JVT-C107r1,
54 pp.
Wien et al., “ABT Coding Elements.” ITU-T VCEG-L15, 4 pp.
(Jan. 2001).
Wien, “H.26L Core Experiment on Adaptive Block Transforms.”
International Telecommunications Union, 2 pp. Downloaded from
the World Wide Web on Nov. 11, 2002.
Wien et al., “ICT Comparison for Adaptive Block Transforms.”
ITU-T VCEG-L12, 6 pp. (Jan. 2001).
Wien et al., “Integer Transforms for H.26L Using Adaptive Block
Transforms.” ITU-T VCEG Q15-K-24, 5 pp. (Aug. 2000).
Wien, “New ABT Results. Using CABAC,” ITU-T VCEG-N49, 15
pp. (Sep. 2001).
Wien et al., “New Integer Transforms for H.26L.” ITU-T VCEG
Q15-J-41, 5 pp. (May 2000).
Wien et al., “Results of H.26L Core Experiment on Adaptive Block
Transforms.” ITU-T VCEG Q15-K-25, 7 pp. (Aug. 2000).
Wien et al., “Simplified Adaptive Block Transforms.” ITU-T
VCEG-O30, 15 pp. (Dec. 2001).
Wien, "Variable Block-Size Transforms for Hybrid Video Coding.”
Dissertation, 182 pp. (Feb. 2004).
U.S. Appl. No. 10/322,352.
U.S. Appl. No. 10/893,702.
U.S. Appl. No. 1 1/890,059.
U.S. Appl. No. 13/943,648.
U.S. Appl. No. 13/943,665.
U.S. Appl. No. 14/258,797.
U.S. Appl. No. 14/337,578.
U.S. Appl. No. 14/538,667.

* cited by examiner

U.S. Patent Sep. 27, 2016 Sheet 1 of 25 US 9,456,216 B2

Figure 1,
prior art

Ouant
ization
12O
->

127

8x8 block of DCT COefficients 115 Ouantized DCT
pixels 105 Coefficients 125 145

Zig-Zag Scan
15O

Run Level Last
WLE RLE

17O 160 III, III
155

1.65

Figure 2, prior art
Top
block
23O

U.S. Patent Sep. 27, 2016 Sheet 2 of 25 US 9,456,216 B2

Figure 3, prior art
330 310

< 5. /
29 O. 2. 2.

335 315

630

Unit 610
| | | Processing

Software 680 implementing video
enCOcer Or deCOcer

US 9,456,216 B2 U.S. Patent

?ue JO?d ‘G ?un61–

US 9,456,216 B2

/ ?un61–

U.S. Patent

US 9,456,216 B2 Sheet 6 of 25 Sep. 27, 2016 U.S. Patent

pesseud

-ULIO O9 ?un61–

U.S. Patent Sep. 27, 2016 Sheet 7 Of 25 US 9,456,216 B2

Figure 9

900
910

Select switching
level(s) for frame

920

Sub-block transform
COce residual blockS

930

Get next
950 frame

960

US 9,456,216 B2

G)

U.S. Patent

US 9,456,216 B2 Sheet 9 Of 25 Sep. 27, 2016 U.S. Patent

080T090T ETHueos 8ez-81Z
H

qOL ?un61–

US 9,456,216 B2 Sheet 10 of 25 Sep. 27, 2016 U.S. Patent

?seT|ÐAÐI un}}

ETHueOS 8ez-81Z

OOL ?un61–

U.S. Patent Sep. 27, 2016 Sheet 11 of 25

Figure 11a
The following data types are defined in the DGT Code
16= 16 bit signed intege
32=32bit signed integei
The following intege constats are used in the IDCT codei
W = 24

-
W = 248

9
8

c

RovdDCT 8Point (16' input, 16 output)

32x0, x1, x2, x, x4, x, xi, x, x

448
4

xO = (32) input O<< 11) + 128,
xi = (32) input 4311,
x2=rput,
x3F input 2.
x4 = input
x5F input
xi = input
X = put

US 9,456,216 B2

11 OO A1

US 9,456,216 B2 Sheet 15 Of 25 Sep. 27, 2016 U.S. Patent

Z|. ?un61–

US 9,456,216 B2 Sheet 16 of 25 Sep. 27, 2016 U.S. Patent

eº | eun6|-

US 9,456,216 B2 U.S. Patent

G)

q€L ?un61–

US 9,456,216 B2 Sheet 18 of 25 Sep. 27, 2016 U.S. Patent

0 | 9 ||

O9|| ?un61–

US 9,456,216 B2

0 || 9 ||

U.S. Patent

099 ||

G)

p9 | ?un61–

US 9,456,216 B2 Sheet 20 of 25 Sep. 27, 2016 U.S. Patent

US 9,456,216 B2 Sheet 21 of 25 Sep. 27, 2016 U.S. Patent

G)

?9 | eun61–

US 9,456,216 B2 Sheet 22 of 25 Sep. 27, 2016 U.S. Patent

OU

US 9,456,216 B2 Sheet 23 Of 25 Sep. 27, 2016 U.S. Patent

`Soos.
G? ?un6|-

US 9,456,216 B2 Sheet 24 of 25 Sep. 27, 2016 U.S. Patent

1601 Figure 16a

1602 Figure 16b

1603 O CO <= CD S)) .CD LL

U.S. Patent Sep. 27, 2016 Sheet 25 Of 25 US 9,456,216 B2

Figure 17

1700

Sub-block
pattern information

present?
Get next block

ub-block informatio
present?

Get information for More blocks?
Sub-blockS

O

US 9,456,216 B2
1.

SUB-BLOCK TRANSFORM CODING OF
PREDICTION RESIDUALS

RELATED APPLICATION INFORMATION

The present application is a continuation of U.S. patent
application Ser. No. 1 1/890,059, entitled “Sub-Block Trans
form Coding of Prediction Residuals.” filed Aug. 3, 2007,
which is a divisional of U.S. patent application Ser. No.
10/322,352, entitled, “Sub-Block Transform Coding of Pre
diction Residuals, filed Dec. 17, 2002, now U.S. Pat. No.
7.266,149, the disclosure of which is incorporated by ref
erence, which claims the benefit of U.S. Provisional Patent
Application Ser. No. 60/341,674, entitled “Techniques and
Tools for Video Encoding and Decoding, filed Dec. 17.
2001, the disclosure of which is incorporated by reference.
The following U.S. patent applications relate to the present
application: 1) U.S. patent application Ser. No. 10/322,171,
entitled, “Spatial Extrapolation of Pixel Values in Intraframe
Video Coding and Decoding, filed Dec. 17, 2002, now U.S.
Pat. No. 7,116,830; 2) U.S. patent application Ser. No.
10/322,351, entitled, “Multi-Resolution Motion Estimation
and Compensation, filed Dec. 17, 2002; and 3) U.S. patent
application Ser. No. 10/322.383, entitled, “Motion Compen
sation Loop with Filtering, filed Dec. 17, 2002, now U.S.
Pat. No. 7,120,197.

TECHNICAL FIELD

Techniques and tools for Sub-block transform coding are
described. For example, a video encoder adaptively switches
between 8x8, 8x4, and 4x8 DCTs when encoding 8x8
prediction residual blocks.

BACKGROUND

Digital video consumes large amounts of storage and
transmission capacity. A typical raw digital video sequence
includes 15 or 30 frames per second. Each frame can include
tens or hundreds of thousands of pixels (also called pels).
Each pixel represents a tiny element of the picture. In raw
form, a computer commonly represents a pixel with 24 bits.
Thus, the number of bits per second, orbitrate, of a typical
raw digital video sequence can be 5 million bits/second or
O.

Most computers and computer networks lack the
resources to process raw digital video. For this reason,
engineers use compression (also called coding or encoding)
to reduce the bitrate of digital video. Compression can be
lossless, in which quality of the video does not suffer but
decreases in bitrate are limited by the complexity of the
Video. Or, compression can be lossy, in which quality of the
video suffers but decreases in bitrate are more dramatic.
Decompression reverses compression.

In general, video compression techniques include intra
frame compression and interframe compression. Intraframe
compression techniques compress individual frames, typi
cally called I-frames, or key frames. Interframe compression
techniques compress frames with reference to preceding
and/or following frames, and are called typically called
predicted frames, P-frames, or B-frames.

Microsoft Corporation's Windows Media Video, Version
7 “WMV7 includes a video encoder and a video decoder.
The WMV7 encoder uses intraframe and interframe com
pression, and the WMV7 decoder uses intraframe and inter
frame decompression.

10

15

25

30

35

40

45

50

55

60

65

2
A. Intraframe Compression in WMV7
FIG. 1 illustrates block-based intraframe compression

(100) of a block (105) of pixels in a key frame in the WMV7
encoder. A block is a set of pixels, for example, an 8x8
arrangement of pixels. The WMV7 encoder splits a key
video frame into 8x8 blocks of pixels and applies an 8x8
Discrete Cosine Transform “DCT (110) to individual
blocks such as the block (105). A DCT is a type of frequency
transform that converts the 8x8 block of pixels (spatial
information) into an 8x8 block of DCT coefficients (115),
which are frequency information. The DCT operation itself
is lossless or nearly lossless. Compared to the original pixel
values, however, the DCT coefficients are more efficient for
the encoder to compress since most of the significant infor
mation is concentrated in low frequency coefficients (con
ventionally, the upper left of the block (115)) and many of
the high frequency coefficients (conventionally, the lower
right of the block (115)) have values of Zero or close to zero.
The encoder then quantizes (120) the DCT coefficients,

resulting in an 8x8 block of quantized DCT coefficients
(125). For example, the encoder applies a uniform, scalar
quantization step size to each coefficient, which is analogous
to dividing each coefficient by the same value and rounding.
For example, if a DCT coefficient value is 163 and the step
size is 10, the quantized DCT coefficient value is 16.
Quantization is lossy. The reconstructed DCT coefficient
value will be 160, not 163. Since low frequency DCT
coefficients tend to have higher values, quantization results
in loss of precision but not complete loss of the information
for the coefficients. On the other hand, since high frequency
DCT coefficients tend to have values of Zero or close to Zero,
quantization of the high frequency coefficients typically
results in contiguous regions of Zero values. In addition, in
Some cases high frequency DCT coefficients are quantized
more coarsely than low frequency DCT coefficients, result
ing in greater loss of precision/information for the high
frequency DCT coefficients.
The encoder then prepares the 8x8 block of quantized

DCT coefficients (125) for entropy encoding, which is a
form of lossless compression. The exact type of entropy
encoding can vary depending on whether a coefficient is a
DC coefficient (lowest frequency), an AC coefficient (other
frequencies) in the top row or left column, or another AC
coefficient.
The encoder encodes the DC coefficient (126) as a dif

ferential from the DC coefficient (136) of a neighboring 8x8
block, which is a previously encoded neighbor (e.g., top or
left) of the block being encoded. (FIG. 1 shows a neighbor
block (135) that is situated to the left of the block being
encoded in the frame.) The encoder entropy encodes (140)
the differential.
The entropy encoder can encode the left column or top

row of AC coefficients as a differential from a corresponding
column or row of the neighboring 8x8 block. FIG. 1 shows
the left column (127) of AC coefficients encoded as a
differential (147) from the left column (137) of the neigh
boring (to the left) block (135). The differential coding
increases the chance that the differential coefficients have
Zero values. The remaining AC coefficients are from the
block (125) of quantized DCT coefficients.
The encoder scans (150) the 8x8 block (145) of predicted,

quantized AC DCT coefficients into a one-dimensional array
(155) and then entropy encodes the scanned AC coefficients
using a variation of run length coding (160). The encoder
selects an entropy code from one or more run/level/last
tables (165) and outputs the entropy code.

US 9,456,216 B2
3

A key frame contributes much more to bitrate than a
predicted frame. In low or mid-bitrate applications, key
frames are often critical bottlenecks for performance, so
efficient compression of key frames is critical.

FIG. 2 illustrates a disadvantage of intraframe compres- 5
sion Such as shown in FIG. 1. In particular, exploitation of
redundancy between blocks of the key frame is limited to
prediction of a subset of frequency coefficients (e.g., the DC
coefficient and the left column (or top row) of AC coeffi
cients) from the left (220) or top (230) neighboring block of 10
a block (210). The DC coefficient represents the average of
the block, the left column of AC coefficients represents the
averages of the rows of a block, and the top row represents
the averages of the columns. In effect, prediction of DC and
AC coefficients as in WMV7 limits extrapolation to the 15
row-wise (or column-wise) average signals of the left (or
top) neighboring block. For a particular row (221) in the left
block (220), the AC coefficients in the left DCT coefficient
column for the left block (220) are used to predict the entire
corresponding row (211) of the block (210). The disadvan- 20
tages of this prediction include:
1) Since the prediction is based on averages, the far edge of
the neighboring block has the same influence on the predic
tor as the adjacent edge of the neighboring block, whereas
intuitively the far edge should have a smaller influence. 25
2) Only the average pixel value across the row (or column)
is extrapolated.
3) Diagonally oriented edges or lines that propagate from
either predicting block (top or left) to the current block are
not predicted adequately. 30
4) When the predicting block is to the left, there is no
enforcement of continuity between the last row of the top
block and the first row of the extrapolated block.

B. Interframe Compression in WMV7
Interframe compression in the WMV7 encoder uses 35

block-based motion compensated prediction coding fol
lowed by transform coding of the residual error. FIGS. 3 and
4 illustrate the block-based interframe compression for a
predicted frame in the WMV7 encoder. In particular, FIG. 3
illustrates motion estimation for a predicted frame (310) and 40
FIG. 4 illustrates compression of a prediction residual for a
motion-estimated block of a predicted frame.

The WMV7 encoder splits a predicted frame into 8x8
blocks of pixels. Groups of 48x8 blocks form macroblocks.
For each macroblock, a motion estimation process is per- 45
formed. The motion estimation approximates the motion of
the macroblock of pixels relative to a reference frame, for
example, a previously coded, preceding frame. In FIG. 3, the
WMV7 encoder computes a motion vector for a macroblock
(315) in the predicted frame (310). To compute the motion 50
vector, the encoder searches in a search area (335) of a
reference frame (330). Within the search area (335), the
encoder compares the macroblock (315) from the predicted
frame (310) to various candidate macroblocks in order to
find a candidate macroblock that is a good match. The 55
encoder can check candidate macroblocks every pixel or
every /2 pixel in the search area (335), depending on the
desired motion estimation resolution for the encoder. Other
Video encoders check at other increments, for example,
every /4 pixel. For a candidate macroblock, the encoder 60
checks the difference between the macroblock (315) of the
predicted frame (310) and the candidate macroblock and the
cost of encoding the motion vector for that macroblock.
After the encoder finds a good matching macroblock, the
block matching process ends. The encoder outputs the 65
motion vector (entropy coded) for the matching macroblock
so the decoder can find the matching macroblock during

4
decoding. When decoding the predicted frame (310), a
decoder uses the motion vector to compute a prediction
macroblock for the macroblock (315) using information
from the reference frame (330). The prediction for the
macroblock (315) is rarely perfect, so the encoder usually
encodes 8x8 blocks of pixel differences (also called the error
or residual blocks) between the prediction macroblock and
the macroblock (315) itself.

Motion estimation and compensation are effective com
pression techniques, but various previous motion estimation/
compensation techniques (as in WMV7 and elsewhere) have
several disadvantages, including:
1) The resolution of the motion estimation (i.e., pixel, /2
pixel, 4 pixel increments) does not adapt to the video
source. For example, for different qualities of video source
(clean vs. noisy), the video encoder uses the same resolution
of motion estimation, which can hurt compression effi
ciency.
2) For 4 pixel motion estimation, the search Strategy fails to
adequately exploit previously completed computations to
speed up searching.
3) For 4 pixel motion estimation, the search range is too
large and inefficient. In particular, the horizontal resolution
is the same as the vertical resolution in the search range,
which does not match the motion characteristics of many
Video signals.
4) For 4 pixel motion estimation, the representation of
motion vectors is inefficient to the extent bit allocation for
horizontal movement is the same as bit allocation for
vertical resolution.

FIG. 4 illustrates the computation and encoding of an
error block (435) for a motion-estimated block in the WMV7
encoder. The error block (435) is the difference between the
predicted block (415) and the original current block (425).
The encoder applies a DCT (440) to error block (435),
resulting in 8x8 block (445) of coefficients. Even more than
was the case with DCT coefficients for pixel values, the
significant information for the error block (435) is concen
trated in low frequency coefficients (conventionally, the
upper left of the block (445)) and many of the high fre
quency coefficients have values of Zero or close to Zero
(conventionally, the lower right of the block (445)).
The encoder then quantizes (450) the DCT coefficients,

resulting in an 8x8 block of quantized DCT coefficients
(455). The quantization step size is adjustable. Again, since
low frequency DCT coefficients tend to have higher values,
quantization results in loss of precision, but not complete
loss of the information for the coefficients. On the other
hand, since high frequency DCT coefficients tend to have
values of Zero or close to Zero, quantization of the high
frequency coefficients results in contiguous regions of Zero
values. In addition, in some cases high frequency DCT
coefficients are quantized more coarsely than low frequency
DCT coefficients, resulting in greater loss of precision/
information for the high frequency DCT coefficients.
The encoder then prepares the 8x8 block (455) of quan

tized DCT coefficients for entropy encoding. The encoder
scans (460) the 8x8 block (455) into a one dimensional array
(465) with 64 elements, such that coefficients are generally
ordered from lowest frequency to highest frequency, which
typical creates long runs of Zero values.
The encoder entropy encodes the Scanned coefficients

using a variation of run length coding (470). The encoder
selects an entropy code from one or more run/level/last
tables (475) and outputs the entropy code.

FIG. 5 shows the decoding process (500) for an inter
coded block. Due to the quantization of the DCT coeffi

US 9,456,216 B2
5

cients, the reconstructed block (575) is not identical to the
corresponding original block. The compression is lossy.

In summary of FIG. 5, a decoder decodes (510, 520)
entropy-coded information representing a prediction
residual using variable length decoding and one or more
run/level/last tables (515). The decoder inverse scans (530)
a one-dimensional array (525) storing the entropy-decoded
information into a two-dimensional block (535). The
decoder inverse quantizes and inverse discrete cosine trans
forms (together, 540) the data, resulting in a reconstructed
error block (545). In a separate path, the decoder computes
a predicted block (565) using motion vector information
(555) for displacement from a reference frame. The decoder
combines (570) the predicted block (555) with the recon
structed error block (545) to form the reconstructed block
(575).
The amount of change between the original and recon

structed frame is termed the distortion and the number of bits
required to code the frame is termed the rate. The amount of
distortion is roughly inversely proportional to the rate. In
other words, coding a frame with fewer bits (greater com
pression) will result in greater distortion and vice versa. One
of the goals of a video compression scheme is to try to
improve the rate-distortion in other words to try to achieve
the same distortion using fewer bits (or the same bits and
lower distortion).

Compression of prediction residuals as in WMV7 can
dramatically reduce bitrate while slightly or moderately
affecting quality, but the compression technique is less than
optimal in Some circumstances. The size of the frequency
transform is the size of the prediction residual block (e.g., an
8x8 DCT for an 8x8 prediction residual). In some circum
stances, this fails to exploit localization of error within the
prediction residual block.

C. Post-Processing with a Deblocking Filter in WMV7
For block-based video compression and decompression,

quantization and other lossy processing stages introduce
distortion that commonly shows up as blocky artifacts—
perceptible discontinuities between blocks.

To reduce the perceptibility of blocky artifacts, the
WMV7 decoder can process reconstructed frames with a
deblocking filter. The deblocking filter smoothes the bound
aries between blocks.

While the deblocking filter in WMV7 improves perceived
Video quality, it has several disadvantages. For example, the
Smoothing occurs only on reconstructed output in the
decoder. Therefore, prediction processes such as motion
estimation cannot take advantage of the Smoothing. More
over, the Smoothing by the post-processing filter can be too
eXtreme.

D. Standards for Video Compression and Decompression
Aside from WMV7, several international standards relate

to video compression and decompression. These standards
include the Motion Picture Experts Group “MPEG 1, 2,
and 4 standards and the H.261, H.262, and H.263 standards
from the International Telecommunication Union “ITU’.
Like WMV7, these standards use a combination of intra
frame and interframe compression, although the standards
typically differ from WMV7 in the details of the compres
sion techniques used. For additional detail about the stan
dards, see the standards specifications themselves.

Given the critical importance of video compression and
decompression to digital video, it is not surprising that video
compression and decompression are richly developed fields.
Whatever the benefits of previous video compression and
decompression techniques, however, they do not have the
advantages of the following techniques and tools.

10

15

25

30

35

40

45

50

55

60

65

6
SUMMARY

In Summary, the detailed description is directed to trans
form coding and inverse transform coding of blocks of
prediction residuals with sub-block transforms. With sub
block transforms, the encoder can react to localization of
error within prediction residual blocks. The various tech
niques and tools can be used in combination or indepen
dently.

According to a first set of techniques and tools, a video
encoder adaptively sets transform sizes for coding prediction
residuals, switching between multiple available block and
sub-block transform sizes. For example, for a 8x8 prediction
residual block, the encoder switches between an 8x8, two
8x4, or two 4x8 DCTs. A video decoder adaptively switches
block transform sizes in decoding.

According to a second set of techniques and tools, a video
encoder makes a Switching decision for transform sizes in a
closed loop (actual testing of the options). Alternatively, the
encoder uses an open loop (estimation of Suitability of the
options), which emphasizes computational simplicity over
reliability.

According to a third set of techniques and tools, a video
encoder makes a Switching decision for transform sizes at
the frame, macroblock, block, and/or other levels. For
example, the encoder evaluates the efficiency of Switching at
frame, macroblock, and block levels and embeds flags in the
bitstream at the selected switching levels. This allows the
encoder to find a solution that weighs distortion reduction/
bitrate gain against signaling overhead for different levels
(e.g., frame, macroblock, block) of control. A video decoder
reacts to the Switching at different levels during decoding.

According to a fourth set of techniques and tools, for
different transform sizes, a video encoder uses different scan
patterns to order the elements of a two-dimensional block of
coefficient data in a one-dimensional array. By using differ
ent scan patterns, the encoder decreases the entropy of the
values in the one-dimensional array, for example, by
improving localization of groups of Zero values. A video
decoder uses the different scan patterns during decoding for
different transform sizes.

According to a fifth set of techniques and tools, a video
encoder uses a Sub-block pattern code to indicate the pres
ence or absence of information for the sub-blocks of a
prediction residual. For example, a Sub-block pattern code
indicates which of two 4x8 sub-blocks has associated com
pressed information in a bitstream and which has no Such
information. A video decoder receives and reacts to Sub
block pattern codes during decoding.

Additional features and advantages will be made apparent
from the following detailed description of different embodi
ments that proceeds with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram showing block-based intraframe
compression of an 8x8 block of pixels according to prior art.

FIG. 2 is a diagram showing prediction of frequency
coefficients according to the prior art.

FIG. 3 is a diagram showing motion estimation in a video
encoder according to the prior art.

FIG. 4 is a diagram showing block-based interframe
compression for an 8x8 block of prediction residuals in a
Video encoder according to the prior art.

US 9,456,216 B2
7

FIG. 5 is a diagram showing block-based interframe
decompression for an 8x8 block of prediction residuals
according to the prior art.

FIG. 6 is a block diagram of a suitable computing
environment in which several described embodiments may
be implemented.

FIG. 7 is a block diagram of a generalized video encoder
system used in several described embodiments.

FIG. 8 is a block diagram of a generalized video decoder
system used in several described embodiments.

FIG. 9 is a flowchart of a technique for encoding residual
blocks with sub-block transforms selected at Switching
levels in a video encoder.

FIGS. 10a–10c are diagrams showing transform coding of
a block of prediction residuals using one of several available
transform sizes.

FIGS. 11a-11d are code listings showing example pseudo
code for 4-point and 8-point IDCT operations for rows and
columns.

FIG. 12 is a diagram showing decompression and inverse
transform coding of a block of prediction residuals using
inverse sub-block transforms.

FIGS. 13a-13fare flowcharts of a closed loop technique
for setting transform sizes for prediction residuals of a frame
in a video encoder.

FIG. 14 is a flowchart showing a technique for switching
transform sizes in a video decoder.

FIG. 15 is a flowchart showing a technique for selecting
one of multiple available scan patterns for a prediction
residual for a motion-compensated block.

FIGS. 16a-16c are charts showing scan patterns in one
implementation.

FIG. 17 is a flowchart showing a technique for using
sub-block pattern codes in a video decoder.

DETAILED DESCRIPTION

The present application relates to techniques and tools for
Video encoding and decoding. In various described embodi
ments, a video encoder incorporates techniques that improve
the efficiency of interframe coding, a video decoder incor
porates techniques that improve the efficiency of interframe
decoding, and a bitstream format includes flags and other
codes to incorporate the techniques.
The various techniques and tools can be used in combi

nation or independently. Different embodiments implement
one or more of the described techniques and tools.
I. Computing Environment

FIG. 6 illustrates a generalized example of a suitable
computing environment (600) in which several of the
described embodiments may be implemented. The comput
ing environment (600) is not intended to Suggest any limi
tation as to scope of use or functionality, as the techniques
and tools may be implemented in diverse general-purpose or
special-purpose computing environments.

With reference to FIG. 6, the computing environment
(600) includes at least one processing unit (610) and
memory (620). In FIG. 6, this most basic configuration (630)
is included within a dashed line. The processing unit (610)
executes computer-executable instructions and may be a real
or a virtual processor. In a multi-processing system, multiple
processing units execute computer-executable instructions
to increase processing power. The memory (620) may be
Volatile memory (e.g., registers, cache, RAM), non-volatile
memory (e.g., ROM, EEPROM, flash memory, etc.), or
some combination of the two. The memory (620) stores
software (680) implementing a video encoder or decoder.

10

15

25

30

35

40

45

50

55

60

65

8
A computing environment may have additional features.

For example, the computing environment (600) includes
storage (640), one or more input devices (650), one or more
output devices (660), and one or more communication
connections (670). An interconnection mechanism (not
shown) such as a bus, controller, or network interconnects
the components of the computing environment (600). Typi
cally, operating system Software (not shown) provides an
operating environment for other software executing in the
computing environment (600), and coordinates activities of
the components of the computing environment (600).
The storage (640) may be removable or non-removable,

and includes magnetic disks, magnetic tapes or cassettes,
CD-ROMs, DVDs, or any other medium which can be used
to store information and which can be accessed within the
computing environment (600). The storage (640) stores
instructions for the software (680) implementing the video
encoder or decoder.
The input device(s) (650) may be a touch input device

Such as a keyboard, mouse, pen, or trackball, a voice input
device, a scanning device, or another device that provides
input to the computing environment (600). For audio or
video encoding, the input device(s) (650) may be a sound
card, video card, TV tuner card, or similar device that
accepts audio or video input in analog or digital form, or a
CD-ROM or CD-RW that reads audio or video samples into
the computing environment (600). The output device(s)
(660) may be a display, printer, speaker, CD-writer, or
another device that provides output from the computing
environment (600).
The communication connection(s) (670) enable commu

nication over a communication medium to another comput
ing entity. The communication medium conveys information
Such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in Such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media include wired or wireless
techniques implemented with an electrical, optical, RF,
infrared, acoustic, or other carrier.
The techniques and tools can be described in the general

context of computer-readable media. Computer-readable
media are any available media that can be accessed within
a computing environment. By way of example, and not
limitation, with the computing environment (600), com
puter-readable media include memory (620), storage (640),
communication media, and combinations of any of the
above.
The techniques and tools can be described in the general

context of computer-executable instructions, such as those
included in program modules, being executed in a comput
ing environment on a target real or virtual processor. Gen
erally, program modules include routines, programs, librar
ies, objects, classes, components, data structures, etc. that
perform particular tasks or implement particular abstract
data types. The functionality of the program modules may be
combined or split between program modules as desired in
various embodiments. Computer-executable instructions for
program modules may be executed within a local or distrib
uted computing environment.

For the sake of presentation, the detailed description uses
terms like “determine,” “select,” “adjust,” and “apply’ to
describe computer operations in a computing environment.
These terms are high-level abstractions for operations per
formed by a computer, and should not be confused with acts

US 9,456,216 B2
9

performed by a human being. The actual computer opera
tions corresponding to these terms vary depending on imple
mentation.
II. Generalized Video Encoder and Decoder

FIG. 7 is a block diagram of a generalized video encoder
(700) and FIG. 8 is a block diagram of a generalized video
decoder (800).
The relationships shown between modules within the

encoder and decoder indicate the main flow of information
in the encoder and decoder; other relationships are not
shown for the sake of simplicity. In particular, FIGS. 7 and
8 usually do not show side information indicating the
encoder settings, modes, tables, etc. used for a video
sequence, frame, macroblock, block, etc. Such side infor
mation is sent in the output bitstream, typically after entropy
encoding of the side information. The format of the output
bitstream can be Windows Media Video version 8 format or
another format.
The encoder (700) and decoder (800) are block-based and

use a 4:2:0 macroblock format with each macroblock includ
ing 4 luminance 8x8 luminance blocks (at times treated as
one 16x16 macroblock) and two 8x8 chrominance blocks.
Alternatively, the encoder (700) and decoder (800) are
object-based, use a different macroblock or block format, or
perform operations on sets of pixels of different size or
configuration than 8x8 blocks and 16x16 macroblocks.

Depending on implementation and the type of compres
sion desired, modules of the encoder or decoder can be
added, omitted, split into multiple modules, combined with
other modules, and/or replaced with like modules. In alter
native embodiments, encoder or decoders with different
modules and/or other configurations of modules perform one
or more of the described techniques.

A. Video Encoder
FIG. 7 is a block diagram of a general video encoder

system (700). The encoder system (700) receives a sequence
of video frames including a current frame (705), and pro
duces compressed video information (795) as output. Par
ticular embodiments of video encoders typically use a
variation or Supplemented version of the generalized
encoder (700).
The encoder system (700) compresses predicted frames

and key frames. For the sake of presentation, FIG. 7 shows
a path for key frames through the encoder system (700) and
a path for forward-predicted frames. Many of the compo
nents of the encoder system (700) are used for compressing
both key frames and predicted frames. The exact operations
performed by those components can vary depending on the
type of information being compressed.
A predicted frame also called p-frame, b-frame for bi

directional prediction, or inter-coded frame is represented
in terms of prediction (or difference) from one or more other
frames. A prediction residual is the difference between what
was predicted and the original frame. In contrast, a key
frame also called i-frame, intra-coded frame is compressed
without reference to other frames.

If the current frame (705) is a forward-predicted frame, a
motion estimator (710) estimates motion of macroblocks or
other sets of pixels of the current frame (705) with respect
to a reference frame, which is the reconstructed previous
frame (725) buffered in the frame store (720). In alternative
embodiments, the reference frame is a later frame or the
current frame is bi-directionally predicted. The motion esti
mator (710) can estimate motion by pixel, /2 pixel, 4 pixel,
or other increments, and can Switch the resolution of the
motion estimation on a frame-by-frame basis or other basis.
The resolution of the motion estimation can be the same or

10

15

25

30

35

40

45

50

55

60

65

10
different horizontally and vertically. The motion estimator
(710) outputs as side information motion information (715)
Such as motion vectors. A motion compensator (730) applies
the motion information (715) to the reconstructed previous
frame (725) to form a motion-compensated current frame
(735). The prediction is rarely perfect, however, and the
difference between the motion-compensated current frame
(735) and the original current frame (705) is the prediction
residual (745). Alternatively, a motion estimator and motion
compensator apply another type of motion estimation/com
pensation.
A frequency transformer (760) converts the spatial

domain video information into frequency domain (i.e., spec
tral) data. For block-based video frames, the frequency
transformer (760) applies a discrete cosine transform
“DCT" or variant of DCT to blocks of the pixel data or
prediction residual data, producing blocks of DCT coeffi
cients. Alternatively, the frequency transformer (760)
applies another conventional frequency transform such as a
Fourier transform or uses wavelet or subband analysis. In
embodiments in which the encoder uses spatial extrapolation
(not shown in FIG. 7) to encode blocks of key frames, the
frequency transformer (760) can apply a re-oriented fre
quency transform such as a skewed DCT to blocks of
prediction residuals for the key frame. In other embodi
ments, the frequency transformer (760) applies an 8x8, 8x4.
4x8, or other size frequency transforms (e.g., DCT) to
prediction residuals for predicted frames.
A quantizer (770) then quantizes the blocks of spectral

data coefficients. The quantizer applies uniform, scalar
quantization to the spectral data with a step-size that varies
on a frame-by-frame basis or other basis. Alternatively, the
quantizer applies another type of quantization to the spectral
data coefficients, for example, a non-uniform, vector, or
non-adaptive quantization, or directly quantizes spatial
domain data in an encoder system that does not use fre
quency transformations. In addition to adaptive quantiza
tion, the encoder (700) can use frame dropping, adaptive
filtering, or other techniques for rate control.
When a reconstructed current frame is needed for subse

quent motion estimation/compensation, an inverse quantizer
(776) performs inverse quantization on the quantized spec
tral data coefficients. An inverse frequency transformer
(766) then performs the inverse of the operations of the
frequency transformer (760), producing a reconstructed pre
diction residual (for a predicted frame) or a reconstructed
key frame. If the current frame (705) was a key frame, the
reconstructed key frame is taken as the reconstructed current
frame (not shown). If the current frame (705) was a pre
dicted frame, the reconstructed prediction residual is added
to the motion-compensated current frame (735) to form the
reconstructed current frame. The frame store (720) buffers
the reconstructed current frame for use in predicting the next
frame. In some embodiments, the encoder applies a deblock
ing filter to the reconstructed frame to adaptively smooth
discontinuities in the blocks of the frame.
The entropy coder (780) compresses the output of the

quantizer (770) as well as certain side information (e.g.,
motion information (715), spatial extrapolation modes,
quantization step size). Typical entropy coding techniques
include arithmetic coding, differential coding, Huffman cod
ing, run length coding, LZ coding, dictionary coding, and
combinations of the above. The entropy coder (780) typi
cally uses different coding techniques for different kinds of
information (e.g., DC coefficients, AC coefficients, different
kinds of side information), and can choose from among
multiple code tables within a particular coding technique.

US 9,456,216 B2
11

The entropy coder (780) puts compressed video informa
tion (795) in the buffer (790). A buffer level indicator is fed
back to bitrate adaptive modules.

The compressed video information (795) is depleted from
the buffer (790) at a constant or relatively constant bitrate
and stored for Subsequent streaming at that bitrate. There
fore, the level of the buffer (790) is primarily a function of
the entropy of the filtered, quantized video information,
which affects the efficiency of the entropy coding. Alterna
tively, the encoder system (700) streams compressed video
information immediately following compression, and the
level of the buffer (790) also depends on the rate at which
information is depleted from the buffer (790) for transmis
S1O.

Before or after the buffer (790), the compressed video
information (795) can be channel coded for transmission
over the network. The channel coding can apply error
detection and correction data to the compressed video infor
mation (795).

B. Video Decoder
FIG. 8 is a block diagram of a general video decoder

system (800). The decoder system (800) receives informa
tion (895) for a compressed sequence of video frames and
produces output including a reconstructed frame (805).
Particular embodiments of video decoders typically use a
variation or Supplemented version of the generalized
decoder (800).
The decoder system (800) decompresses predicted frames

and key frames. For the sake of presentation, FIG. 8 shows
a path for key frames through the decoder system (800) and
a path for forward-predicted frames. Many of the compo
nents of the decoder system (800) are used for compressing
both key frames and predicted frames. The exact operations
performed by those components can vary depending on the
type of information being compressed.
A buffer (890) receives the information (895) for the

compressed video sequence and makes the received infor
mation available to the entropy decoder (880). The buffer
(890) typically receives the information at a rate that is fairly
constant over time, and includes a jitter buffer to Smooth
short-term variations in bandwidth or transmission. The
buffer (890) can include a playback buffer and other buffers
as well. Alternatively, the buffer (890) receives information
at a varying rate. Before or after the buffer (890), the
compressed video information can be channel decoded and
processed for error detection and correction.
The entropy decoder (880) entropy decodes entropy

coded quantized data as well as entropy-coded side infor
mation (e.g., motion information (815), spatial extrapolation
modes, quantization step size), typically applying the
inverse of the entropy encoding performed in the encoder.
Entropy decoding techniques include arithmetic decoding,
differential decoding, Huffman decoding, run length decod
ing, LZ decoding, dictionary decoding, and combinations of
the above. The entropy decoder (880) frequently uses dif
ferent decoding techniques for different kinds of information
(e.g., DC coefficients, AC coefficients, different kinds of side
information), and can choose from among multiple code
tables within a particular decoding technique.

If the frame (805) to be reconstructed is a forward
predicted frame, a motion compensator (830) applies motion
information (815) to a reference frame (825) to form a
prediction (835) of the frame (805) being reconstructed. For
example, the motion compensator (830) uses a macroblock
motion vector to find a macroblock in the reference frame
(825). A frame buffer (820) stores previous reconstructed
frames for use as reference frames. The motion compensator

10

15

25

30

35

40

45

50

55

60

65

12
(830) can compensate for motion at pixel, /2 pixel, 4 pixel,
or other increments, and can Switch the resolution of the
motion compensation on a frame-by-frame basis or other
basis. The resolution of the motion compensation can be the
same or different horizontally and vertically. Alternatively, a
motion compensator applies another type of motion com
pensation. The prediction by the motion compensator is
rarely perfect, so the decoder (800) also reconstructs pre
diction residuals.
When the decoder needs a reconstructed frame for sub

sequent motion compensation, the frame store (820) buffers
the reconstructed frame for use in predicting the next frame.
In some embodiments, the encoder applies a deblocking
filter to the reconstructed frame to adaptively smooth dis
continuities in the blocks of the frame.
An inverse quantizer (870) inverse quantizes entropy

decoded data. In general, the inverse quantizer applies
uniform, Scalar inverse quantization to the entropy-decoded
data with a step-size that varies on a frame-by-frame basis
or other basis. Alternatively, the inverse quantizer applies
another type of inverse quantization to the data, for example,
a non-uniform, vector, or non-adaptive quantization, or
directly inverse quantizes spatial domain data in a decoder
system that does not use inverse frequency transformations.
An inverse frequency transformer (860) converts the

quantized, frequency domain data into spatial domain video
information. For block-based video frames, the inverse
frequency transformer (860) applies an inverse DCT
“IDCT" or variant of IDCT to blocks of the DCT coeffi
cients, producing pixel data or prediction residual data for
key frames or predicted frames, respectively. Alternatively,
the frequency transformer (860) applies another conven
tional inverse frequency transform such as a Fourier trans
form or uses wavelet or subband synthesis. In embodiments
in which the decoder uses spatial extrapolation (not shown
in FIG. 8) to decode blocks of key frames, the inverse
frequency transformer (860) can apply a re-oriented inverse
frequency transform such as a skewed IDCT to blocks of
prediction residuals for the key frame. In other embodi
ments, the inverse frequency transformer (860) applies an
8x8, 8x4, 4x8, or other size inverse frequency transforms
(e.g., IDCT) to prediction residuals for predicted frames.
III. Intraframe Encoding and Decoding

In one or more embodiments, a video encoder exploits
redundancies in typical still images in order to code the
I-frame information using a smaller number of bits. For
additional detail about intraframe encoding and decoding in
some embodiments, see U.S. patent application Ser. No.
10/322,171, entitled “Spatial Extrapolation of Pixel Values
in Intraframe Video Coding and Decoding, filed concur
rently herewith.
IV. Interframe Encoding and Decoding

Inter-frame coding exploits temporal redundancy between
frames to achieve compression. Temporal redundancy
reduction uses previously coded frames as predictors when
coding the current frame.

A. Motion Estimation
In one or more embodiments, a video encoder exploits

temporal redundancies in typical video sequences in order to
code the information using a smaller number of bits. The
Video encoder uses motion estimation/compensation of a
macroblock or other set of pixels of a current frame with
respect to a reference frame. A video decoder uses corre
sponding motion compensation. For additional detail about
motion estimation and motion compensation in some
embodiments, see U.S. patent application Ser. No. 10/322,

US 9,456,216 B2
13

351, entitled "Multi-Resolution Motion Estimation and
Compensation, filed concurrently herewith.

B. Coding of Prediction Residuals
Motion estimation is rarely perfect, and the video encoder

uses prediction residuals to represent the differences
between the original video information and the video infor
mation predicted using motion estimation.

In one or more embodiments, a video encoder exploits
redundancies in prediction residuals in order to code the
information using a smaller number of bits. The video
encoder compresses prediction residuals for blocks or other
sets of pixel domain information of a frame using Sub-block
transforms. A video decoder uses corresponding decompres
sion using Sub-block inverse transforms. By using Sub-block
transforms, the encoder reacts to localization of error pat
terns in the data, which improves the efficiency of compres
Sion. Various features of the compression and decompres
sion using Sub-block transforms can be used in combination
or independently. These features include, but are not limited
tO:

1) Adaptively setting transform sizes for spatial domain
data by switching between multiple available transform
sizes. For example, when coding a prediction residual, a
video encoder adaptively switches between multiple avail
able transform sizes for a transform such as DCT. For an 8x8
prediction residual block, the encoder can switch between an
8x8 DCT, two 4x8 DCTs, or two 8x4 DCTs. A video decoder
adaptively switches transform sizes during decoding.

2a) Setting transform sizes for spatial domain data by
making a Switching decision in a closed loop. The video
encoder actually tests the different transform sizes and then
selects one.

2b) Setting transform sizes for spatial domain data by
making a Switching decision in a open loop. The video
encoder estimates the suitability of the different transform
sizes and then selects one.

3a) Switching transform sizes for spatial domain data for
a frame at the frame level in a video encoder or decoder.

3b) Switching transform sizes for spatial domain data for
a frame at the macroblock level in a video encoder or
decoder.

3c) Switching transform sizes for spatial domain data for
a frame at the block level in a video encoder or decoder.

3d) Switching transform sizes for spatial domain data for
a frame at the macroblock level or block level within the
frame in a video encoder or decoder.

4) Switching scan patterns for spatial domain data for a
frame for different transform sizes in a video encoder or
decoder. Switching scan patterns decreases the entropy of
the one-dimensional data, which improves the efficiency of
Subsequent entropy coding.

5) Using a sub-block pattern code to indicate the presence
or absence of information for sub-blocks of a block of spatial
domain data. For example, for an 8x8 prediction residual
block, the sub-block pattern code indicates the presence or
absence of information for the sub-blocks associated with
the sub-block transform for the block. Using the sub-block
pattern codes reduces bitrate for Zero-value sub-block infor
mation. A video encoder outputs Sub-block pattern codes; a
video decoder receives them.
To code prediction residuals, a video encoder uses a

frequency transform with a transform size selected from
multiple available transform sizes (alternatively called trans
form types). In some embodiments, a video encoder applies
a frequency transform to a prediction residual block follow
ing motion compensation. The frequency transform is a
DCT or other frequency transform. For an 8x8 block, the

5

10

15

25

30

35

40

45

50

55

60

65

14
encoder selects between an 8x8 transform, two 4x8 trans
forms, or two 8x4 transforms. If two 8x4 DCTs are used, the
8x8 residual block is divided horizontally into two 8x4
sub-blocks, which are transformed into two 8x4 DCT arrays.
Likewise, if two 4x8 DCTs are used, the 8x8 residual block
is divided vertically into two 4x8 sub-blocks, which are
transformed into two 4x8 DCT arrays. A video decoder uses
an inverse frequency transform with a transform size
selected from multiple available transform sizes. In alterna
tive embodiments, the encoder and decoder work with sets
of values other than 8x8 blocks, work with information other
than prediction residuals following motion compensation
(e.g., for intraframe coding), and/or use a different trans
form.
To determine which transform size to use, a video encoder

evaluates the different transform sizes. In some embodi
ments, the encoder evaluates the different transform sizes in
a closed loop. The encoder tests a frequency transform at
each of the transform sizes, and evaluates the results with a
rate, distortion, or rate-distortion criterion. The encoder can
test the transform at varying Switching levels (e.g., frame,
macroblock, block) as well. In alternative embodiments, the
encoder evaluates the different transform sizes in an open
loop, estimating the suitability of the different transform
sizes without actually applying the different transform sizes.
A video encoder and decoder switch between transform

sizes. In some embodiments, a video encoder sets Switching
flags at varying levels (e.g., frame, macroblock, and/or
block) from frame to frame. A decoder makes corresponding
Switches during decoding. In alternative embodiments, the
encoder always Switches on a per-frame basis, a per-mac
roblock basis, a per-block basis, a mixed macroblock or
block basis, or some other basis.

Following the frequency transform, a video encoder con
verts a two-dimensional array of frequency coefficients into
a one-dimensional array for entropy encoding. Conversely,
a decoder converts a one-dimensional array of frequency
coefficients into a two-dimensional array following entropy
decoding. In some embodiments, an encoder/decoder selects
a scan pattern from among multiple available scan patterns
based upon a transform size.

Following the frequency transform, a video encoder
entropy encodes the frequency-transformed data. In some
embodiments, a video encoder determines whether data for
a particular Sub-block is absent or insignificant. In a Sub
block pattern code, the encoder indicates the presence or
absence of information for sub-blocks of a frequency
transformed block of data. A video decoder receives the
sub-block pattern code and determines whether information
is present or absent for particular sub-blocks of a block. In
alternative embodiments, the encoder and decoder do not
use Sub-block pattern codes.

1. Sub-Block Transforms
A video encoder and decoder use sub-block transforms to

efficiently code prediction residuals following block-based
motion compensation. The encoder/decoder Switches
between different transform sizes to apply to the prediction
residual blocks.

FIG. 9 shows a technique for switching transform sizes
during encoding of prediction residual blocks in a video
encoder. A video encoder gets (910) a frame, for example, a
predicted video frame. For the sake of simplicity, FIG. 9
does not show the various ways in which the technique (900)
can be used in conjunction with other techniques.
The encoder selects (920) switching levels for the frame.

For example, the encoder evaluates the performance of the
sub-block transform sizes at different switching levels

US 9,456,216 B2
15

within a closed loop by testing the rate-distortion perfor
mance with different levels of switching (e.g., at the frame
level only, at macroblock level only, at macroblock and
block levels). The closed loop is described in detail below.
Or, the encoder evaluates the performance of different
Switching levels within an open loop. For example, the
encoder computes the variance, energy, or some other mea
sure for the prediction residual blocks as partitioned with the
different sub-block sizes. The encoder can compute the
measure in the spatial domain or frequency domain, on
quantized or original data.
The encoder transform codes (930) the prediction residual

blocks for the frame using the sub-block transform sizes and
Switching levels selected above. In one implementation, the
encoder uses either an 8x8 DCT, two 4x8 DCTs, or two 8x4
DCTs on an 8x8 prediction residual block, as described in
more detail below. Alternatively, the encoder uses another
frequency transform and/or has more or fewer transform
sizes (e.g., 4x4 Sub-block transform).
The encoder determines (950) whether there are any more

frames. If not, the technique ends. If so, the encoder gets
(960) the next frame and selects (920) switching levels for
it.

In one implementation, a video encoder/decoder Switches
between different sizes of DCT/IDCT when processing 8x8
blocks of prediction residuals. The encoder/decoder use of
one of an 8x8 DCT/IDCT, two 4x8 DCT/IDCTs, or two 8x4
DCT/IDCTs for a prediction residual block. For example, if
a prediction residual includes many non-Zero values in the
top half and mostly zero values in the bottom half, the
encoder and decoder use the 8x4 transform size to isolate the
energy of the block in one sub-block. The 4x8 transform size
is similarly indicated when the distribution of values is
different on left and right sides of the block. When values are
evenly distributed throughout a block, the encoder and
decoder use the 8x8 transform. The encoder and decoder can
use other transform sizes as well (e.g., 4x4, 2x8, 8x2, 4x2,
2x4, etc.). In general, the potential reduction in rate-distor
tion for additional transform sizes is weighed against the
increase in processing overhead for additional transform
sizes, and against potential increases in relative cost of
bitrate for signaling overhead for Smaller transform sizes.

FIGS. 10a–10c show transform coding and compression
of an 8x8 prediction error block (1010) using an 8x8 DCT
(1020), two 8x4 DCTs (1040), or two 4x8 DCTs (1060) in
this implementation. A video encoder computes (1008) an
error block (1010) as the difference between a predicted
block (1002) and the current 8x8 block (1004). The video
encoder applies either an 8x8 DCT (1020), two 8x4 DCTs
(1040), or two 4x8 DCTs (1060) to the error block.

FIGS. 11a-11d show example pseudocode (1100) for
4-point and 8-point IDCT operations for rows and columns.
For an 8x8 block, an 8-point one-dimensional IDCT opera
tion RowlDCT 8Point() is performed on each of the 8 rows
of the block, then an 8-point one-dimensional IDCT opera
tion Column IDCT 8Point() is performed on each of the 8
resultant columns. For an 8x4 block, an 8-point one-dimen
sional IDCT operation RowlDCT 8Point() is performed on
each of the 4 rows of the block, then a 4-point one
dimensional IDCT operation Column IDCT 4Point() is
performed on each of the 8 resultant columns. For a 4x8
block, a 4-point one-dimensional IDCT operation
RowlDCT 4Point() is performed on each of the 8 rows of
the block, then an 8-point one-dimensional IDCT operation
Column IDCT 8Point() is performed on each of the 4
resultant columns.

10

15

25

30

35

40

45

50

55

60

65

16
For the 8x8 DCT (1020), the error block (1010) becomes

an 8x8 block of DCT coefficients (1022). The encoder
quantizes (1026) the data. The encoder then scans (1030) the
block of quantized DCT coefficients (1028) into a one
dimensional array (1032) with 64 elements, such that coef
ficients are generally ordered from lowest frequency to
highest frequency. In the scanning, the encoder uses a scan
pattern for the 8x8 DCT. The encoder then entropy codes the
one-dimensional array (1032) using a combination of run
length coding (1080) and variable length encoding (1090)
with one or more run/level/last tables (1085).

In the implementation of FIGS. 10a–10c, with each of the
DCT modes, the encoder uses the same run length coding,
variable length encoding, and set of one or more run/level/
last tables. In other implementations, the encoder uses
different sets of run/level/last tables or different entropy
encoding techniques for the different DCT modes (e.g., one
set of tables for the 8x8 mode, another set for the 8x4 mode,
a third set for the 4x8 mode). For example, the encoder
selects and signals different entropy code tables for different
transform sizes.

For the 8x4 DCT (1040), the error block (1010) becomes
two 8x4 blocks of DCT coefficients (1042, 1044), one for
the top half of the error block (1010) and one for the bottom
half. This can localize significant values in one or the other
half. The encoder quantizes (1046) the data. The encoder
then scans (1050) the blocks of quantized DCT coefficients
(1047, 1048) into one-dimensional arrays (1052, 1054) with
32 elements each, such that coefficients are generally
ordered from lowest frequency to highest frequency in each
array. In the scanning, the encoder uses a scan pattern for the
8x4 DCT. The encoder then entropy codes the one-dimen
sional arrays (1052, 1054) using a combination of run length
coding (1080) and variable length encoding (1090) with one
or more run/level/last tables (1085).

For the 4x8 DCT (1060), the error block (1010) becomes
two 4x8 blocks of DCT coefficients (1062, 1064), one for
the left half of the error block (1010) and one for the right
half. This can localize significant values in one or the other
half. The encoder quantizes (1066) the data. The encoder
then scans (1070) the blocks of quantized DCT coefficients
(1067, 1068) into one-dimensional arrays (1072, 1074) with
32 elements each, such that coefficients are generally
ordered from lowest frequency to highest frequency in each
array. In the scanning, the encoder uses a scan pattern for the
4x8 DCT. The encoder then entropy codes the one-dimen
sional arrays (1072, 1074) using a combination of run length
coding (1080) and variable length encoding (1090) with one
or more run/level/last tables (1085).

FIG. 12 shows decompression and inverse transform
coding of an 8x8 prediction error block (1210) using two
8x4 IDCTs (1240) in this implementation. Decompression
and inverse transform coding using the 4x8 IDCT use
transposes at stages around the inverse frequency transform.
Decompression and inverse transform coding using the 8x8
IDCT are shown in FIG. 5.
A video decoder entropy decodes one-dimensional arrays

(1252, 1254) of quantized frequency coefficient values using
a combination of run length decoding (1280) and variable
length decoding (1290) with one or more run/level/last
tables (1285). The decoder then scans (1250) the one
dimensional arrays (1252, 1254) into blocks of quantized
DCT coefficients (1247, 1248). In the scanning, the encoder
uses the scan pattern for the 8x4 DCT.
The decoder inverse quantizes (1246) the data and applies

(1240) an 8x4 inverse DCT to the reconstructed frequency
coefficients in each of the blocks, resulting in a reconstructed

US 9,456,216 B2
17

8x4 error block (1212) for the top half of the error block
(1210) and a reconstructed 8x4 error block (1214) for the
bottom half of the error block (1210). The decoder then
combines to top (1212) and bottom (1214) halves to form the
reconstructed 8x8 error block (1210).
The decoder combines the reconstructed error block

(1210) with a predicted block (1202) from motion compen
sation using motion information to form a reconstructed 8x8
block (1204). For example, the reconstructed 8x8 block
(1204) is a reconstructed version of the current 8x8 block
(1004) of FIG. 10.

2. Selection Using Closed Loop
FIGS. 13a through 13f show a closed loop technique

(1300) for setting transform size(s) for a frame. In the closed
loop technique (1300), the encoder applies each of 8x8, 8x4,
and 4x8 transform sizes to the 8x8 blocks of a frame,
computes distortion measures for each block with each
transform size, computes signaling overhead for Switching
at different levels, and selects the transform size(s) and
switching level(s) for the frame. In alternative embodiments,
the encoder tests more or fewer transform sizes, tests dif
ferent transform sizes, uses a closed loop technique on
Something other than a per frame basis, and/or uses different
criteria to select transform size(s) and/or Switching levels. In
still other alternative embodiments, the encoder uses an
open loop technique.

In the implementation illustrated in FIGS. 13a-13f, a
frame includes multiple 4:2:0 macroblocks, and each mac
roblock is made up of six 8x8 blocks. Alternatively, another
macroblock or block format is used.
With reference to FIG. 13a, with the closed loop tech

nique (1300), the encoder selects the transform size(s) used
in the frame. The transform size can be specified at the
frame, macroblock or block levels. At the frame level, one
of four options is specified: 1) all blocks in the frame use 8x8
DCT, 2) all blocks in the frame use 8x4 DCT, 3) all blocks
in the frame use 4x8 DCT, or 4) the transform size is
signaled at the macroblock level. If the transform type is
signaled at the macroblock level, then at each macroblock
one of four options is specified: 1) all blocks in the macro
block use 8x8 DCT, 2) all blocks in the macroblock use 8x4
DCT 3) all blocks in the macroblock use 4x8 DCT, or 4) the
transform size is signaled at the block level.

To start, the encoder initializes (1301) the variables cost
Frm8x8, costFrm8x4, costFrmax8, and costFrmvar used to
measure performance of the different transform sizes at the
frame level, as described in Table 1.

TABLE 1.

Frane-level Variables for Measuring Transform Performance

Variable Description

indicates the adjusted bit count for coding
all macroblocks of the frame with an
8 x 8 DCT.
indicates the adjusted bit count for coding
all macroblocks of the frame with an
8 x 4 DCT.
indicates the adjusted bit count for coding
all macroblocks of the frame with an
4 x 8 DCT.
indicates the adjusted bit count for coding
all macroblocks of the frame with transform
sizes specified at the macroblock level or
below.
indicates the best transform size for the
86.

costFrm8 x 8

costFrm8 x 4

costFrma. x 8

costFrmVar

FrameLevelTransformType

10

15

25

30

35

40

45

50

55

60

65

18
TABLE 1-continued

Frane-level Variables for Measuring Transform Performance

Variable Description

SwitchAtMBLevel Indicates whether the transform type is
signaled at the macroblock or frame level.

costFirm Indicates the adjusted bit count for the best
transform type(s) including the overhead to
signal the transform type at the frame level.

Table 1 also lists three other variables (FrameLevelTrans
formType, SwitchAtMBLevel, and costFrm), which used in
the closed loop evaluation as described below.

In a top-down, recursive process, the encoder accumulates
adjusted bit counts for these values. The encoder performs
(1310) the transforms of different sizes for a first macroblock
in the frame, as shown in FIGS. 13c and 13d, and repeats
when there are more macroblocks (1390) in the frame. For
each macroblock, the encoder initializes (1311) the variables
costMB8x8, costMB8x4, costMB4x8, and costMBvar used
to measure performance of the different transform sizes at
the macroblock level, as described in Table 2.

TABLE 2

MB-level Variables for Measuring Transform Performance

Variable Description

costMB8 x 8 indicates the adjusted bit count for coding all 6
blocks with an 8 x 8 DCT.
indicates the adjusted bit count for coding all 6
blocks with an 8 x 4 DCT.
indicates the adjusted bit count for coding all 6
blocks with an 4 x 8 DCT.
indicates the adjusted bit count for coding all 6
blocks with transform sizes specified for each
block at the block level.
indicates the best transform size for the
macroblock.
indicates whether the transform type is signaled
at the block or macroblock level.
indicates the adjusted bit count for the best
transform type(s) including the overhead to
signal the transform type at the macroblock
evel.

costMB8 x 4

costMB4 x 8

costMBWar

MBLevelTransformType

SwitchAtBlockLevel

costMB

Table 2 also lists three other variables (MBLevelTrans
formType, SwitchAtBlockLevel, and costMB), which used
in the closed loop evaluation as described below.

For each of the 6 blocks in the macroblock, the encoder
accumulates adjusted bit counts for these values. The
encoder performs (1320) the transforms of different sizes for
a first block in the macroblock, as shown in FIGS. 13e and
13f, and repeats when there are more blocks (1391) in the
macroblock. For each block, the encoder computes a rate
distortion measure.

a. Block Level
The encoder performs (1321) the full coding and recon

struction processes on the block using the 8x8 DCT. The
encoder applies the 8x8 DCT, quantizes the DCT coeffi
cients, entropy codes the coefficients (e.g., run level+Huff
man), inverse quantizes the coefficients, and applies an 8x8
inverse DCT. The quantization introduces distortion that is
Subsequently measured for the block. The entropy coding
results in output bits for the block that are subsequently
counted.
The encoder also performs (1331, 1341) the full coding

and reconstruction processes on the block using two 8x4
DCTs and two 4x8 DCTs, respectively.

US 9,456,216 B2
19

The encoder measures (1322) the cost associated with the
8x8 DCT as a function of the distortion of the block and the
number of bits required to encode the block. The encoder
also measures (1332, 1342) the cost associated with the two
8x4 DCTs and two 4x8 DCTs, respectively. The encoder
computes the distortion as the mean squared error “MSE
between the 64 original DCT coefficients and the 64 inverse
quantized coefficients. Alternatively, the encoder uses
another distortion measure such as sum of absolute differ
ences “SAD, a perceptual distortion measure, or another
CO leaSU.

After the encoder obtains the bit count and distortion for
each transform size, the encoder needs to make a decision
about which transform size results in the most efficient
compression. The encoder accounts for both the number of
bits and the distortion using cost function variables cost8x8,
cost8x4, and cost4x8, which are described in Table 3.

TABLE 3

Block-level Variables for Measuring Transform Performance

Variable Description

cost8 x 8 Indicates the adjusted bit count for coding
the block with an 8 x 8 DCT.

cost8 x 4 Indicates the adjusted bit count for coding
the block with an 8 x 4 DCT.

costa x 8 Indicates the adjusted bit count for coding
the block with an 4 x 8 DCT.

Indicates the best transform type for the
block.

Indicates the adjusted bit count for the best
transform type including the overhead to
signal the transform type at the block level

BlockLevelTransformType

costBlock

Table 3 also lists two other variables (BlockLevelTrans
formType, costBlock), which are used in the closed loop
evaluation as described below.

The cost function may readjust the number of bits for a
transform size depending on the distortion for that transform
size. For example, Suppose transform coding a block with
different transform sizes resulted in the following bit counts
and distortions.

TABLE 4

Example Bit Counts and Distortions

Transform Size Bit Count Distortion

8 x 8 48 1OOO
8 x 4 (aggregates 45 1100
of sub-blocks)
4 x 8 (aggregates 44 1200
of sub-blocks)

If the encoder considered only the bit counts, the encoder
would choose the 4x8 transform since it was encoded in the
fewest bits. However, the 4x8 transform also has the highest
distortion. To more accurately determine which transform
size is the best, the encoder also considers the distortion. In
one implementation, the 8x8 bit count is taken as the
baseline, and the bit counts for the 8x4 and 4x8 transforms
are readjusted as shown in Table 5 and the following
equations.

10

15

25

30

35

40

45

50

55

60

65

20
TABLE 5

Variables in Rate–Distortion Adiustments

Variable Description

D8 x 8 The 8 x 8 DCT distortion (MSE between the 64 original and
inverse quantized 8 x 8 DCT coefficients).

D8 x 4 The 8 x 4 DCT distortion (MSE between the 64 original and
inverse quantized 8 x 4 DCT coefficients).

D4 x 8 The 4 x 8 DCT distortion (MSE between the 64 original and
inverse quantized 4 x 8 DCT coefficients).

FScale 100 (quantizer step size)

For the adjusted 8x4 bit count, the following equations are
used.

iVal8x4=Int(fVal8x4) (2),

where Int() is a function that rounds the input to the nearest
integer. For the adjusted 4x8 bit count, the following equa
tions are used.

iVal4x8=Int(fVal4x8); (5),

costax8=cost4x8+iVal4x8 (6).

Once the bit counts for each transform size have been
readjusted, the one with the lowest bit count is assumed to
be the best from a rate-distortion perspective. In an alterna
tive embodiment, the encoder uses another cost function that
relates cost and distortion as a single measure. In other
alternative embodiments, the encoder uses a cost function
that considers only rate or only distortion.

For each block, the encoder computes five values for the
variables shown in Table 3. (Some of the values are also
used in the macroblock level as described in the next
section.) As initially computed from bit counts and distor
tion, the values cost8x8, cost8x4 and cost4x8 do not include
the overhead required to signal the transform type at the
block level. The encoder adds (1323, 1333, 1343) the bit
overhead required to signal transform size at the block level
for the different transform sizes.

(7),

(8),

costax8=costax8+4x8overhead (9),

where the overhead measures indicate the overhead for
switching flags for the different transform types at the block
level.
The encoder computes the values for costBlock and

BlockLevelTransformType as follows. The encoder (1350)
compares cost8x8 to cost8x4' to find the best transform size
between the two of them. The encoder sets (1351, 1352)
costBlock and BlockLevelTransformType to either the 8x8
size or the 8x4 size, respectively. The encoder then com
pares (1354) the best transform size so far to cost4x8" to find
the best transform size between the two of them. The
encoder keeps (1355) the current values or sets (1356)
costBlock and BlockLevelTransformType to the 4x8 size.
Alternatively, the encoder uses other conditional logic to
find values for costBlock and BlockLevelTransformType.

US 9,456,216 B2
21

b. Macroblock Level
Returning to FIGS. 13c and 13d, the encoder accumulates

(1358) the block costs for the block with the four running
totals for the macroblock: costMB8x8, costMB8x4,
costMB4x8, and costMBvar. The encoder then performs
(1320) the transforms of different sizes for the other blocks
in the macroblock. Thus, the value of costBlock is accumu
lated for the six blocks that make up the macroblock.
Likewise, cost8x8, cost8x4 and cost4x8 are accumulated for
the six blocks.

For each macroblock, the encoder computes seven values
for the variables shown in Table 2. (Some of the values are
also used in the frame level as described in the next section.)
As initially computed for the macroblock, the values cost
MBvar, costMB8x8, costMB8x4, and costMB4x8 do not
include the overhead required to signal the transform size at
the macroblock level. The encoder adds (1358) the number
of bits required to signal each possible choice to the bit
COuntS.

costMB8x8'=costMB8x8+8x8Overhead (10),

costMB8x4'=costMB8x4+8x4overhead (11),

costMB4x8'=costMB4x8+4x8overhead (12),

costMBwar-costMBwar-Varoverhead (13),

where the overhead measures indicate the overhead for
switching flags for the different transform types at the
macroblock level. For costMBvar, the overhead measure
also indicates the overhead for switching flags at the block
level.
The encoder then computes values for costMB, MBLevel

TransformType, and SwitchAtElockLevel as follows. Basi
cally, the encoder decides whether to code the macroblock
with a single transform size for all blocks in the macroblock
or to allow each block in the macroblock to signal its own
transform size. The encoder compares (1360) costMB8x8 to
costMB8x4' to find the best transform size between the two
of them. The encoder sets (1361, 1362) costMB and
MBLevelTransformType to either the 8x8 size or the 8x4
size, respectively. The encoder then compares (1363) the
best transform size so far costMB to costMB4x8" to find the
best transform size between the two of them. The encoder
keeps (1364) the current values or sets (1365) costMB and
MBLevelTransformType to the 4x8 size. The encoder then
compares (1366) the best transform size so far costMB to
costMBVar' to find the best transform size between the two
of them. If costMB is less than costMBWar, the encoder
keeps (1367) the current value for costMB and sets Swit
chAtBlockLevel to FALSE, which mean that the switching
level is macroblock level for the macroblock. Otherwise, the
encoder sets (1368) costMB to costMBVar' and sets Swit
chAtBlockLevel to TRUE, which means that the switching
level is block level for the macroblock. Alternatively, the
encoder uses other conditional logic to find values for
costMB, MBLevelTransformType, and SwitchAt3lock
Level.

c. Frame Level
Returning to FIGS. 13a and 13b, the encoder accumulates

(1369) the macroblock costs for the macroblock with the
four running totals for the frame: costFrm8x8, costFrm8x4,
costFrmax8, and costFrmvar. The encoder then performs
(1310) the transforms of different sizes for the other mac
roblocks in the frame. Thus, the value of costMB is accu
mulated for the macroblocks that make up the frame. Like

10

15

25

30

35

40

45

50

55

60

65

22
wise, costMB8x8, costMB8x4 and costMB4x8 are
accumulated for the macroblocks that make up the frame.

For each frame, the encoder computes seven values for
the variables shown in Table 1. As initially computed for the
frame, costFrm8x8, costFrm8x4, costFrmax8 and costFrm
Var do not include the overhead required to signal the
transform at the frame level. The encoder adds (1358) the
number of bits required to signal each possible choice to the
bit counts.

costFrm8x8'=costFrm8x8+8x8overhead (14),

costFrm8x4'=costFrm8x4+8x4overhead (15),

costFrmax8'=costFrmax8+4x8overhead (16),

costFirmwar-costFirmwar-Varoverhead (17),

where the overhead measures indicate the overhead for
switching flags for the different transform types at the frame
level. For costFrmvar, the overhead measure also indicates
the overhead for switching flags at the macroblock/block
level.
The encoder then computes values for costFrm, Fra

meLevelTransformType, and SwitchAtMBLevel as follows.
Basically, the encoder decides whether to code the frame
with a single transform type for all blocks in the frame or to
allow each macroblock to signal its own transform size. The
encoder compares (1380) costFrm8x8 to costFrm8x4' to
find the best transform size between the two of them. The
encoder sets (1381, 1382) costFrm and FrameLevelTrans
formType to either the 8x8 size or the 8x4 size, respectively.
The encoder then compares (1383) the best transform size so
far costFrm to costFrmax8" to find the best transform size
between the two of them. The encoder keeps (1384) the
current values or sets (1385) costFrm and FrameLevelTrans
formType to the 4x8 size. The encoder then compares (1386)
the best transform size so far costFrm to costFrmVar to find
the best transform size between the two of them. If costFrm
is less than costFrmVar, the encoder sets (1387) SwitchAt
MBLevel to FALSE. Otherwise, the encoder sets (1388)
SwitchAtMBLevel to TRUE. Alternatively, the encoderuses
other conditional logic to find values for costFrm, Fra
meLevelTransformType, and SwitchAtMBLevel.

3. Signaling Switches
Continuing the example of FIGS. 13a through 13f, if the

value of SwitchAtMBLevel is TRUE, the transform type is
signaled at the macroblock level. Another signal present at
each macroblock indicates whether a single transform type
is used for all blocks in the macroblock or whether each
block signals its own transform type. This is determined by
the value of SwitchAtBlockLevel, as previously described.
If SwitchAtBlockLevel is TRUE, of transform type speci
fied by BlockLevelTransformType as determined at the
block level is used for that block. If SwitchAtBlockLevel is
FALSE, the transform type specified by MBLevelTrans
formType as determined at the macroblock level is used for
all the blocks in the macroblock.

If the value of SwitchAtMBLevel is FALSE, the trans
form type used for all blocks in the frame is signaled at the
frame level. The transform type is indicated by the value of
FrameLevelTransformType.

FIG. 14 shows a technique for switching transform sizes
in a video decoder. For the sake of simplicity, FIG. 14 does
not show the various ways in which the technique (1400) can
be used in conjunction with other techniques.
A decoder gets (1410) a video frame, for example, a

predicted video frame. The decoder determines (1430)

US 9,456,216 B2
23

whether frame-level switch information is used to indicate a
transform size for the frame. If so, the decoder gets (1440)
the transform type for the frame and processes (1450) the
blocks of the frame. For example, the decoder determines
whether the transform type is 8x8, 8x4, or 4x8, and then
applies an 8x8, 8x4, or 4x8 inverse DCT to the blocks of the
frame. The decoder determines (1460) whether there are any
more frames. If not, the technique ends. If so, the decoder
gets (1410) the next frame and determines (1430) whether
frame-level switch information for the frame is used to
indicate a transform size for the frame.

If the frame-level switch information is not used to
indicate a transform size for the frame, the decoder gets
(1412) a macroblock for the frame. The decoder determines
(1432) whether macroblock-level switch information is used
to indicate a transform size for the macroblock. If so, the
decoder gets (1442) the transform type for the macroblock
and processes (1452) the blocks of the macroblock. The
decoder determines (1462) whether there are any more
macroblocks in the frame. If not, the decoder determines
(1460) whether there are any more frames. If there are more
macroblocks in the frame, the decoder gets (1412) the next
macroblock and determines (1432) whether macroblock
level switch information for the macroblock is used to
indicate a transform size for the macroblock.

If macroblock-level switch information is not used to
indicate a transform size for the macroblock, the decoder
gets (1414) a block for the macroblock. The decoder gets
(1444) the transform type for the block and processes (1454)
the block. The decoder determines (1464) whether there are
any more blocks in the macroblock. If not, the decoder
determines (1462) whether there are any more macroblocks
in the frame. If there are more blocks in the macroblock, the
decoder gets (1414) the next block and gets (1444) its
transform type.

In alternative embodiments, a video encoder and decoder
use other Switching logic to Switch between transform sizes.

Table 6 shows entropy codes for transform types in one
implementation.

TABLE 6

Entropy Codes for Transform Types

VLC Transform Type

O 8 x 8 DCT
10 8 x 4 DCT
11 4 x 8 DCT

Other implementations use different entropy codes and/or
different code tables for different transform sizes.

4. Scan Patterns
Following transform coding and quantization in the video

encoder, the encoder scans one or more two-dimensional
blocks of quantized frequency coefficients into one or more
one-dimensional arrays for entropy encoding. The video
decoder scans one or more one-dimensional arrays into one
or more two-dimensional blocks before inverse quantiza
tion. A scan pattern indicates how elements of a two
dimensional block are ordered in a corresponding one
dimensional array.

In some embodiments, the encoder and decoder select
between multiple available scan patterns for a residual for a
motion-compensated block. Both the encoder and the
decoder use one or more scan patterns, and use different scan
patterns for different transform sizes. FIG. 15 shows a
technique (1500) for selecting one of multiple available scan

10

15

25

30

35

40

45

50

55

60

65

24
patterns for frequency coefficients of a prediction residual
for a motion-compensated block. For the sake of simplicity,
FIG. 15 does not show the various ways in which the
technique (1500) can be used in conjunction with other
techniques.

FIG. 15 shows three available scan patterns, which in this
context are, for example, for 8x8, 8x4, and 4x8 DCTs,
respectively. FIGS. 16a-16c show 8x8 (1601), 8x4 (1602),
and 4x8 (1603) scan patterns, respectively, in one imple
mentation. Other implementations use different scan pat
terns.

The encoder/decoder selects (1510) a scan pattern for
scanning the residual block. For example, an encoder/
decoder selects a scan pattern based upon transform size for
the block. The encoder/decoder then applies (1520, 1530, or
1540) the selected scan pattern by reordering elements of a
two-dimensional block into a one-dimensional array, or vice
WSa.

Alternatively, the encoder/decoder selects between more
or fewer scan patterns and/or selects a scan pattern based
upon other criteria.

5. Sub-Block Pattern Codes
In addition to selecting a transform size and applying the

frequency transform to a prediction residual block, the
encoder indicates in the output bitstream what the transform
size is for the block. For example, the encoder indicates
whether the DCT used on a block is an 8x8, 8x4, or 4x8
DCT.

In some embodiments, if the transform size is a sub-block
transform size, the encoder also outputs a sub-block pattern
code that indicates the presence or absence of information
for the sub-blocks of a block. For example, for the 8x4 DCT,
the sub-block transform code indicates the presence or
absence of information for 1) only the bottom 8x4 sub
block; 2) only the top 8x4 sub-block; or 3) both the top and
the bottom sub-blocks. For the 4x8 DCT, the sub-block
transform code indicates the presence or absence of infor
mation for 1) only the left 4x8 sub-block; 2) only the right
4x8 sub-block; or 3) both the left and the right sub-blocks.
Table 7 shows entropy codes for sub-block pattern codes in
one implementation.

TABLE 7

Entropy Codes for Sub-block Pattern Codes

SUBBLK- 8 x 4 Sub-block Pattern 4 x 8 Sub-block Pattern

PAT VLC Top Bottom Left Right

O X X
10 X X X X
11 X X

The sub-block pattern codes are used at the block level,
and only when the block uses a sub-block transform size
(e.g., not 8x8 DCT for an 8x8 block). Other implementa
tions use other entropy codes and/or use Sub-block pattern
codes differently.

In the encoder, the condition for whether to output infor
mation for a Sub-block is implementation-dependent. For
example, with the sub-block pattern code, the encoder
indicates which of the sub-blocks of the block have at least
one non-zero coefficient. For a sub-block with only Zero
value coefficients, the encoder sends only the sub-block
pattern code, and not other information for the sub-block,
which reduces bitrate. Alternatively, the encoder uses

US 9,456,216 B2
25

another condition (e.g., mostly Zero-value coefficients) to set
the values of sub-block pattern codes.

FIG. 17 shows a technique for decoding of sub-blocks
using pattern information. For the sake of simplicity, FIG. 17
does not show the various ways in which the technique
(1700) can be used in conjunction with other techniques.
The decoder determines (1710) whether sub-block pattern

information is present for a block. For example, in one
implementation, if the transform size is full block (e.g.,
8x8), the bitstream does not include a sub-block pattern code
for the block.

If sub-block pattern information is present for the block,
the decoder gets (1720) the sub-block pattern information
(e.g., sub-block pattern code) for the block. The decoder
then determines (1730) whether sub-block information is
present for the sub-blocks of the block. For example, the
decoder checks the sub-block pattern code. If information is
present for at least one sub-block, the decoder gets (1740)
the information for the sub-blocks that have information.
For example, the decoder gets information for the top half,
bottom half, or both top and bottom halves of a 8x8 block
split into 8x4 sub-blocks. If the sub-block pattern indicates
that no information is present for the sub-blocks of the
block, the decoder goes to the next block, if present.

If sub-block pattern information is not present for the
block, the encoder skips the steps 1720 and 1730, and gets
(1740) information for the block.
The decoder then determines (1750) whether there are any

more blocks to be decoded. If not, the technique ends. If so,
the decoder gets (1760) the next block and determines
(1710) whether sub-block pattern information is present for
it.

In alternative embodiments, the encoder and decoder use
other techniques to signal the presence or absence of Sub
block information with sub-block pattern codes.

C. Loop Filtering
Quantization and other lossy processing of prediction

residuals can cause blocky artifacts in reference frames that
are used for motion estimation/compensation for Subsequent
predicted frames. In one or more embodiments, a video
encoder processes a reconstructed frame to reduce blocky
artifacts prior to motion estimation using the reference
frame. A video decoder processes the reconstructed frame to
reduce blocky artifacts prior to motion compensation using
the reference frame. With deblocking, a reference frame
becomes a better reference candidate to encode the follow
ing frame. Thus, using the deblocking filter improves the
quality of motion estimation/compensation, resulting in bet
ter prediction and lower bitrate for prediction residuals. For
additional detail about using a deblocking filter in motion
estimation/compensation in Some embodiments, see U.S.
patent application Ser. No. 10/322.383, entitled “Motion
Compensation Loop With Filtering, filed concurrently
herewith.

Having described and illustrated the principles of our
invention with reference to various embodiments, it will be
recognized that the various embodiments can be modified in
arrangement and detail without departing from Such prin
ciples. It should be understood that the programs, processes,
or methods described herein are not related or limited to any
particular type of computing environment, unless indicated
otherwise. Various types of general purpose or specialized
computing environments may be used with or perform
operations in accordance with the teachings described
herein. Elements of embodiments shown in software may be
implemented in hardware and vice versa.

10

15

25

30

35

40

45

50

55

60

65

26
In view of the many possible embodiments to which the

principles of our invention may be applied, we claim as our
invention all Such embodiments as may come within the
Scope and spirit of the following claims and equivalents
thereto.

We claim:
1. One or more computer-readable media storing com

puter-executable instructions for causing a computer system
programmed thereby to perform operations to encode one or
more video frames,

wherein the one or more computer-readable media are
Selected from the group consisting of non-volatile
memory, magnetic storage and optical storage, the
operations comprising:

encoding one or more video frames to produce encoded
data using a variable-block-size frequency transform
with Support for Switching of transform size at varying
levels within the one or more video frames,

wherein the one or more video frames include plural
blocks, and wherein the encoding for one of the plural
blocks includes:

evaluating values of transform coefficients of prediction
residual data for the block; and

determining, based at least in part on the values of the
transform coefficients, sub-block pattern information
that indicates an information pattern for presence or
absence in a bitstream of the prediction residual data
for plural sub-blocks of the block; and

outputting the encoded data in the bitstream, wherein the
encoded data includes the sub-block pattern informa
tion.

2. One or more computer-readable media storing com
puter-executable instructions for causing a computer system
programmed thereby to perform operations to encode one or
more motion-predicted video frames,

wherein the one or more computer-readable media are
Selected from the group consisting of non-volatile
memory, magnetic storage and optical storage, and

wherein the one or more motion-predicted video frames
include plural blocks, the operations comprising:

evaluating values of a condition for transform coefficients
of motion prediction residual data for a given block of
the plural blocks; and

determining, based at least in part on the values of the
transform coefficients, a Sub-block pattern code,

wherein the sub-block pattern code indicates presence or
absence in a bitstream of the motion prediction residual
data for plural sub-blocks of the given block of the
plural blocks; and

outputting the Sub-block pattern code as part of encoded
data in the bitstream.

3. The one or more computer-readable media of claim 1
wherein the block is an 8x8 block and the plural sub-blocks
are 4x4 sub-blocks.

4. The one or more computer-readable media of claim 1
wherein the block is encoded using a transform size selected
from among plural available transform sizes.

5. The one or more computer-readable media of claim 4
wherein the plural available transform sizes include 8x8 and
4x4.

6. The one or more computer-readable media of claim 4
wherein the encoding the one or more video frames further
includes:

testing each of the plural available transform sizes, includ
ing evaluating rate and/or distortion that results from

US 9,456,216 B2
27

applying the transform size to blocks of prediction
residual data for at least part of the one or more video
frames: and

Selecting the transform size to use during the encoding
based on results of the evaluating.

7. The one or more computer-readable media of claim 1
wherein the varying levels include frame level and block
level.

8. The one or more computer-readable media of claim 1
wherein, for each of the respective sub-blocks of the block,
if the sub-block has at least one non-zero transform coeffi
cient the Sub-block pattern information indicates presence in
the bitstream of prediction residual data for that sub-block.

9. The one or more computer-readable media of claim 1
wherein, for each of the respective sub-blocks of the block,
if the sub-block has mostly zero-value transform coeffi
cients, the Sub-block pattern information indicates absence
in the bitstream of prediction residual data for that sub
block.

10. The one or more computer-readable media of claim 2
wherein the given block is an 8x8 block and the plural
sub-blocks are 4x4 sub-blocks.

11. The one or more computer-readable media of claim 2
wherein the given block is encoded using a transform size
selected from among plural available transform sizes.

12. The one or more computer-readable media of claim 11
wherein the plural available transform sizes include 8x8 and
4x4.

13. The one or more computer-readable media of claim 11
wherein the operations further include:

testing each of the plural available transform sizes, includ
ing evaluating rate and/or distortion that results from
applying the transform size to blocks of motion pre
diction residual data for at least part of the one or more
video frames: and

Selecting the transform size to use based on results of the
evaluating.

14. The one or more computer-readable media of claim 2
wherein, for each of the respective sub-blocks of the given
block, if the sub-block has at least one non-zero transform
coefficient the Sub-block pattern code indicates presence in
the bitstream of motion prediction residual data for that
sub-block.

15. The one or more computer-readable media of claim 2
wherein, for each of the respective sub-blocks of the given
block- if the sub-block has mostly zero-value transform
coefficients, the Sub-block pattern code indicates absence in
the bitstream of motion prediction residual data for that
sub-block.

16. One or more computer-readable media storing com
puter-executable instructions for causing a computer system
programmed thereby to perform operations to decode one or
more video frames,

10

15

25

30

35

40

45

50

28
wherein the one or more computer-readable media are

Selected from the group consisting of non-volatile
memory, magnetic storage and optical storage, the
operations comprising:

reading encoded data from a bitstream, wherein the
encoded data includes Sub-block pattern information;
and

decoding the encoded data to reconstruct one or more
video frames using a variable-block-size inverse fre
quency transform with Support for Switching of trans
form size at varying levels within the one or more video
frames,

wherein the one or more video frames include plural
blocks,

wherein the decoding for one of the plural blocks further
includes using the Sub-block pattern information, and

wherein the sub-block pattern information indicates an
information pattern for presence or absence in the
bitstream of prediction residual data for plural sub
blocks of the block.

17. The one or more computer-readable media of claim 16
wherein the block is an 8x8 block and the plural sub-blocks
are 4x4 sub-blocks.

18. The one or more computer-readable media of claim 16
wherein the varying levels include frame level and block
level.

19. The one or more computer-readable media of claim 16
wherein the block is decoded using a transform size selected
from among plural available transform sizes.

20. The one or more computer-readable media of claim 19
wherein the plural available transform sizes include 8x8 and
4x4.

21. One or more computer-readable media storing
encoded data, wherein the one or more computer-readable
media are selected from the group consisting of non-volatile
memory, magnetic storage and optical storage, and

wherein the encoded data is formatted to be decoded
using operations comprising:

reading the encoded data from a bitstream, wherein the
encoded data includes Sub-block pattern information;
and

decoding the encoded data to reconstruct one or more
video frames using a variable-block-size inverse fre
quency transform with Support for Switching of trans
form size at varying levels within the one or more video
frames,

wherein the one or more video frames include plural
blocks,

wherein the decoding for one of the plural blocks further
includes using the Sub-block pattern information, and

wherein the sub-block pattern information indicates an
information pattern for presence or absence in the
bitstream of prediction residual data for plural sub
blocks of the block.

k k k k k

