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SUB-BLOCK TRANSFORM CODING OF 
PREDICTION RESIDUALS 

RELATED APPLICATION INFORMATION 

The present application is a continuation of U.S. patent 
application Ser. No. 1 1/890,059, entitled “Sub-Block Trans 
form Coding of Prediction Residuals.” filed Aug. 3, 2007, 
which is a divisional of U.S. patent application Ser. No. 
10/322,352, entitled, “Sub-Block Transform Coding of Pre 
diction Residuals, filed Dec. 17, 2002, now U.S. Pat. No. 
7.266,149, the disclosure of which is incorporated by ref 
erence, which claims the benefit of U.S. Provisional Patent 
Application Ser. No. 60/341,674, entitled “Techniques and 
Tools for Video Encoding and Decoding, filed Dec. 17. 
2001, the disclosure of which is incorporated by reference. 
The following U.S. patent applications relate to the present 
application: 1) U.S. patent application Ser. No. 10/322,171, 
entitled, “Spatial Extrapolation of Pixel Values in Intraframe 
Video Coding and Decoding, filed Dec. 17, 2002, now U.S. 
Pat. No. 7,116,830; 2) U.S. patent application Ser. No. 
10/322,351, entitled, “Multi-Resolution Motion Estimation 
and Compensation, filed Dec. 17, 2002; and 3) U.S. patent 
application Ser. No. 10/322.383, entitled, “Motion Compen 
sation Loop with Filtering, filed Dec. 17, 2002, now U.S. 
Pat. No. 7,120,197. 

TECHNICAL FIELD 

Techniques and tools for Sub-block transform coding are 
described. For example, a video encoder adaptively switches 
between 8x8, 8x4, and 4x8 DCTs when encoding 8x8 
prediction residual blocks. 

BACKGROUND 

Digital video consumes large amounts of storage and 
transmission capacity. A typical raw digital video sequence 
includes 15 or 30 frames per second. Each frame can include 
tens or hundreds of thousands of pixels (also called pels). 
Each pixel represents a tiny element of the picture. In raw 
form, a computer commonly represents a pixel with 24 bits. 
Thus, the number of bits per second, orbitrate, of a typical 
raw digital video sequence can be 5 million bits/second or 
O. 

Most computers and computer networks lack the 
resources to process raw digital video. For this reason, 
engineers use compression (also called coding or encoding) 
to reduce the bitrate of digital video. Compression can be 
lossless, in which quality of the video does not suffer but 
decreases in bitrate are limited by the complexity of the 
Video. Or, compression can be lossy, in which quality of the 
video suffers but decreases in bitrate are more dramatic. 
Decompression reverses compression. 

In general, video compression techniques include intra 
frame compression and interframe compression. Intraframe 
compression techniques compress individual frames, typi 
cally called I-frames, or key frames. Interframe compression 
techniques compress frames with reference to preceding 
and/or following frames, and are called typically called 
predicted frames, P-frames, or B-frames. 

Microsoft Corporation's Windows Media Video, Version 
7 “WMV7 includes a video encoder and a video decoder. 
The WMV7 encoder uses intraframe and interframe com 
pression, and the WMV7 decoder uses intraframe and inter 
frame decompression. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
A. Intraframe Compression in WMV7 
FIG. 1 illustrates block-based intraframe compression 

(100) of a block (105) of pixels in a key frame in the WMV7 
encoder. A block is a set of pixels, for example, an 8x8 
arrangement of pixels. The WMV7 encoder splits a key 
video frame into 8x8 blocks of pixels and applies an 8x8 
Discrete Cosine Transform “DCT (110) to individual 
blocks such as the block (105). A DCT is a type of frequency 
transform that converts the 8x8 block of pixels (spatial 
information) into an 8x8 block of DCT coefficients (115), 
which are frequency information. The DCT operation itself 
is lossless or nearly lossless. Compared to the original pixel 
values, however, the DCT coefficients are more efficient for 
the encoder to compress since most of the significant infor 
mation is concentrated in low frequency coefficients (con 
ventionally, the upper left of the block (115)) and many of 
the high frequency coefficients (conventionally, the lower 
right of the block (115)) have values of Zero or close to zero. 
The encoder then quantizes (120) the DCT coefficients, 

resulting in an 8x8 block of quantized DCT coefficients 
(125). For example, the encoder applies a uniform, scalar 
quantization step size to each coefficient, which is analogous 
to dividing each coefficient by the same value and rounding. 
For example, if a DCT coefficient value is 163 and the step 
size is 10, the quantized DCT coefficient value is 16. 
Quantization is lossy. The reconstructed DCT coefficient 
value will be 160, not 163. Since low frequency DCT 
coefficients tend to have higher values, quantization results 
in loss of precision but not complete loss of the information 
for the coefficients. On the other hand, since high frequency 
DCT coefficients tend to have values of Zero or close to Zero, 
quantization of the high frequency coefficients typically 
results in contiguous regions of Zero values. In addition, in 
Some cases high frequency DCT coefficients are quantized 
more coarsely than low frequency DCT coefficients, result 
ing in greater loss of precision/information for the high 
frequency DCT coefficients. 
The encoder then prepares the 8x8 block of quantized 

DCT coefficients (125) for entropy encoding, which is a 
form of lossless compression. The exact type of entropy 
encoding can vary depending on whether a coefficient is a 
DC coefficient (lowest frequency), an AC coefficient (other 
frequencies) in the top row or left column, or another AC 
coefficient. 
The encoder encodes the DC coefficient (126) as a dif 

ferential from the DC coefficient (136) of a neighboring 8x8 
block, which is a previously encoded neighbor (e.g., top or 
left) of the block being encoded. (FIG. 1 shows a neighbor 
block (135) that is situated to the left of the block being 
encoded in the frame.) The encoder entropy encodes (140) 
the differential. 
The entropy encoder can encode the left column or top 

row of AC coefficients as a differential from a corresponding 
column or row of the neighboring 8x8 block. FIG. 1 shows 
the left column (127) of AC coefficients encoded as a 
differential (147) from the left column (137) of the neigh 
boring (to the left) block (135). The differential coding 
increases the chance that the differential coefficients have 
Zero values. The remaining AC coefficients are from the 
block (125) of quantized DCT coefficients. 
The encoder scans (150) the 8x8 block (145) of predicted, 

quantized AC DCT coefficients into a one-dimensional array 
(155) and then entropy encodes the scanned AC coefficients 
using a variation of run length coding (160). The encoder 
selects an entropy code from one or more run/level/last 
tables (165) and outputs the entropy code. 
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A key frame contributes much more to bitrate than a 
predicted frame. In low or mid-bitrate applications, key 
frames are often critical bottlenecks for performance, so 
efficient compression of key frames is critical. 

FIG. 2 illustrates a disadvantage of intraframe compres- 5 
sion Such as shown in FIG. 1. In particular, exploitation of 
redundancy between blocks of the key frame is limited to 
prediction of a subset of frequency coefficients (e.g., the DC 
coefficient and the left column (or top row) of AC coeffi 
cients) from the left (220) or top (230) neighboring block of 10 
a block (210). The DC coefficient represents the average of 
the block, the left column of AC coefficients represents the 
averages of the rows of a block, and the top row represents 
the averages of the columns. In effect, prediction of DC and 
AC coefficients as in WMV7 limits extrapolation to the 15 
row-wise (or column-wise) average signals of the left (or 
top) neighboring block. For a particular row (221) in the left 
block (220), the AC coefficients in the left DCT coefficient 
column for the left block (220) are used to predict the entire 
corresponding row (211) of the block (210). The disadvan- 20 
tages of this prediction include: 
1) Since the prediction is based on averages, the far edge of 
the neighboring block has the same influence on the predic 
tor as the adjacent edge of the neighboring block, whereas 
intuitively the far edge should have a smaller influence. 25 
2) Only the average pixel value across the row (or column) 
is extrapolated. 
3) Diagonally oriented edges or lines that propagate from 
either predicting block (top or left) to the current block are 
not predicted adequately. 30 
4) When the predicting block is to the left, there is no 
enforcement of continuity between the last row of the top 
block and the first row of the extrapolated block. 

B. Interframe Compression in WMV7 
Interframe compression in the WMV7 encoder uses 35 

block-based motion compensated prediction coding fol 
lowed by transform coding of the residual error. FIGS. 3 and 
4 illustrate the block-based interframe compression for a 
predicted frame in the WMV7 encoder. In particular, FIG. 3 
illustrates motion estimation for a predicted frame (310) and 40 
FIG. 4 illustrates compression of a prediction residual for a 
motion-estimated block of a predicted frame. 

The WMV7 encoder splits a predicted frame into 8x8 
blocks of pixels. Groups of 48x8 blocks form macroblocks. 
For each macroblock, a motion estimation process is per- 45 
formed. The motion estimation approximates the motion of 
the macroblock of pixels relative to a reference frame, for 
example, a previously coded, preceding frame. In FIG. 3, the 
WMV7 encoder computes a motion vector for a macroblock 
(315) in the predicted frame (310). To compute the motion 50 
vector, the encoder searches in a search area (335) of a 
reference frame (330). Within the search area (335), the 
encoder compares the macroblock (315) from the predicted 
frame (310) to various candidate macroblocks in order to 
find a candidate macroblock that is a good match. The 55 
encoder can check candidate macroblocks every pixel or 
every /2 pixel in the search area (335), depending on the 
desired motion estimation resolution for the encoder. Other 
Video encoders check at other increments, for example, 
every /4 pixel. For a candidate macroblock, the encoder 60 
checks the difference between the macroblock (315) of the 
predicted frame (310) and the candidate macroblock and the 
cost of encoding the motion vector for that macroblock. 
After the encoder finds a good matching macroblock, the 
block matching process ends. The encoder outputs the 65 
motion vector (entropy coded) for the matching macroblock 
so the decoder can find the matching macroblock during 

4 
decoding. When decoding the predicted frame (310), a 
decoder uses the motion vector to compute a prediction 
macroblock for the macroblock (315) using information 
from the reference frame (330). The prediction for the 
macroblock (315) is rarely perfect, so the encoder usually 
encodes 8x8 blocks of pixel differences (also called the error 
or residual blocks) between the prediction macroblock and 
the macroblock (315) itself. 

Motion estimation and compensation are effective com 
pression techniques, but various previous motion estimation/ 
compensation techniques (as in WMV7 and elsewhere) have 
several disadvantages, including: 
1) The resolution of the motion estimation (i.e., pixel, /2 
pixel, 4 pixel increments) does not adapt to the video 
source. For example, for different qualities of video source 
(clean vs. noisy), the video encoder uses the same resolution 
of motion estimation, which can hurt compression effi 
ciency. 
2) For 4 pixel motion estimation, the search Strategy fails to 
adequately exploit previously completed computations to 
speed up searching. 
3) For 4 pixel motion estimation, the search range is too 
large and inefficient. In particular, the horizontal resolution 
is the same as the vertical resolution in the search range, 
which does not match the motion characteristics of many 
Video signals. 
4) For 4 pixel motion estimation, the representation of 
motion vectors is inefficient to the extent bit allocation for 
horizontal movement is the same as bit allocation for 
vertical resolution. 

FIG. 4 illustrates the computation and encoding of an 
error block (435) for a motion-estimated block in the WMV7 
encoder. The error block (435) is the difference between the 
predicted block (415) and the original current block (425). 
The encoder applies a DCT (440) to error block (435), 
resulting in 8x8 block (445) of coefficients. Even more than 
was the case with DCT coefficients for pixel values, the 
significant information for the error block (435) is concen 
trated in low frequency coefficients (conventionally, the 
upper left of the block (445)) and many of the high fre 
quency coefficients have values of Zero or close to Zero 
(conventionally, the lower right of the block (445)). 
The encoder then quantizes (450) the DCT coefficients, 

resulting in an 8x8 block of quantized DCT coefficients 
(455). The quantization step size is adjustable. Again, since 
low frequency DCT coefficients tend to have higher values, 
quantization results in loss of precision, but not complete 
loss of the information for the coefficients. On the other 
hand, since high frequency DCT coefficients tend to have 
values of Zero or close to Zero, quantization of the high 
frequency coefficients results in contiguous regions of Zero 
values. In addition, in some cases high frequency DCT 
coefficients are quantized more coarsely than low frequency 
DCT coefficients, resulting in greater loss of precision/ 
information for the high frequency DCT coefficients. 
The encoder then prepares the 8x8 block (455) of quan 

tized DCT coefficients for entropy encoding. The encoder 
scans (460) the 8x8 block (455) into a one dimensional array 
(465) with 64 elements, such that coefficients are generally 
ordered from lowest frequency to highest frequency, which 
typical creates long runs of Zero values. 
The encoder entropy encodes the Scanned coefficients 

using a variation of run length coding (470). The encoder 
selects an entropy code from one or more run/level/last 
tables (475) and outputs the entropy code. 

FIG. 5 shows the decoding process (500) for an inter 
coded block. Due to the quantization of the DCT coeffi 
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cients, the reconstructed block (575) is not identical to the 
corresponding original block. The compression is lossy. 

In summary of FIG. 5, a decoder decodes (510, 520) 
entropy-coded information representing a prediction 
residual using variable length decoding and one or more 
run/level/last tables (515). The decoder inverse scans (530) 
a one-dimensional array (525) storing the entropy-decoded 
information into a two-dimensional block (535). The 
decoder inverse quantizes and inverse discrete cosine trans 
forms (together, 540) the data, resulting in a reconstructed 
error block (545). In a separate path, the decoder computes 
a predicted block (565) using motion vector information 
(555) for displacement from a reference frame. The decoder 
combines (570) the predicted block (555) with the recon 
structed error block (545) to form the reconstructed block 
(575). 
The amount of change between the original and recon 

structed frame is termed the distortion and the number of bits 
required to code the frame is termed the rate. The amount of 
distortion is roughly inversely proportional to the rate. In 
other words, coding a frame with fewer bits (greater com 
pression) will result in greater distortion and vice versa. One 
of the goals of a video compression scheme is to try to 
improve the rate-distortion in other words to try to achieve 
the same distortion using fewer bits (or the same bits and 
lower distortion). 

Compression of prediction residuals as in WMV7 can 
dramatically reduce bitrate while slightly or moderately 
affecting quality, but the compression technique is less than 
optimal in Some circumstances. The size of the frequency 
transform is the size of the prediction residual block (e.g., an 
8x8 DCT for an 8x8 prediction residual). In some circum 
stances, this fails to exploit localization of error within the 
prediction residual block. 

C. Post-Processing with a Deblocking Filter in WMV7 
For block-based video compression and decompression, 

quantization and other lossy processing stages introduce 
distortion that commonly shows up as blocky artifacts— 
perceptible discontinuities between blocks. 

To reduce the perceptibility of blocky artifacts, the 
WMV7 decoder can process reconstructed frames with a 
deblocking filter. The deblocking filter smoothes the bound 
aries between blocks. 

While the deblocking filter in WMV7 improves perceived 
Video quality, it has several disadvantages. For example, the 
Smoothing occurs only on reconstructed output in the 
decoder. Therefore, prediction processes such as motion 
estimation cannot take advantage of the Smoothing. More 
over, the Smoothing by the post-processing filter can be too 
eXtreme. 

D. Standards for Video Compression and Decompression 
Aside from WMV7, several international standards relate 

to video compression and decompression. These standards 
include the Motion Picture Experts Group “MPEG 1, 2, 
and 4 standards and the H.261, H.262, and H.263 standards 
from the International Telecommunication Union “ITU’. 
Like WMV7, these standards use a combination of intra 
frame and interframe compression, although the standards 
typically differ from WMV7 in the details of the compres 
sion techniques used. For additional detail about the stan 
dards, see the standards specifications themselves. 

Given the critical importance of video compression and 
decompression to digital video, it is not surprising that video 
compression and decompression are richly developed fields. 
Whatever the benefits of previous video compression and 
decompression techniques, however, they do not have the 
advantages of the following techniques and tools. 
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6 
SUMMARY 

In Summary, the detailed description is directed to trans 
form coding and inverse transform coding of blocks of 
prediction residuals with sub-block transforms. With sub 
block transforms, the encoder can react to localization of 
error within prediction residual blocks. The various tech 
niques and tools can be used in combination or indepen 
dently. 

According to a first set of techniques and tools, a video 
encoder adaptively sets transform sizes for coding prediction 
residuals, switching between multiple available block and 
sub-block transform sizes. For example, for a 8x8 prediction 
residual block, the encoder switches between an 8x8, two 
8x4, or two 4x8 DCTs. A video decoder adaptively switches 
block transform sizes in decoding. 

According to a second set of techniques and tools, a video 
encoder makes a Switching decision for transform sizes in a 
closed loop (actual testing of the options). Alternatively, the 
encoder uses an open loop (estimation of Suitability of the 
options), which emphasizes computational simplicity over 
reliability. 

According to a third set of techniques and tools, a video 
encoder makes a Switching decision for transform sizes at 
the frame, macroblock, block, and/or other levels. For 
example, the encoder evaluates the efficiency of Switching at 
frame, macroblock, and block levels and embeds flags in the 
bitstream at the selected switching levels. This allows the 
encoder to find a solution that weighs distortion reduction/ 
bitrate gain against signaling overhead for different levels 
(e.g., frame, macroblock, block) of control. A video decoder 
reacts to the Switching at different levels during decoding. 

According to a fourth set of techniques and tools, for 
different transform sizes, a video encoder uses different scan 
patterns to order the elements of a two-dimensional block of 
coefficient data in a one-dimensional array. By using differ 
ent scan patterns, the encoder decreases the entropy of the 
values in the one-dimensional array, for example, by 
improving localization of groups of Zero values. A video 
decoder uses the different scan patterns during decoding for 
different transform sizes. 

According to a fifth set of techniques and tools, a video 
encoder uses a Sub-block pattern code to indicate the pres 
ence or absence of information for the sub-blocks of a 
prediction residual. For example, a Sub-block pattern code 
indicates which of two 4x8 sub-blocks has associated com 
pressed information in a bitstream and which has no Such 
information. A video decoder receives and reacts to Sub 
block pattern codes during decoding. 

Additional features and advantages will be made apparent 
from the following detailed description of different embodi 
ments that proceeds with reference to the accompanying 
drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagram showing block-based intraframe 
compression of an 8x8 block of pixels according to prior art. 

FIG. 2 is a diagram showing prediction of frequency 
coefficients according to the prior art. 

FIG. 3 is a diagram showing motion estimation in a video 
encoder according to the prior art. 

FIG. 4 is a diagram showing block-based interframe 
compression for an 8x8 block of prediction residuals in a 
Video encoder according to the prior art. 
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FIG. 5 is a diagram showing block-based interframe 
decompression for an 8x8 block of prediction residuals 
according to the prior art. 

FIG. 6 is a block diagram of a suitable computing 
environment in which several described embodiments may 
be implemented. 

FIG. 7 is a block diagram of a generalized video encoder 
system used in several described embodiments. 

FIG. 8 is a block diagram of a generalized video decoder 
system used in several described embodiments. 

FIG. 9 is a flowchart of a technique for encoding residual 
blocks with sub-block transforms selected at Switching 
levels in a video encoder. 

FIGS. 10a–10c are diagrams showing transform coding of 
a block of prediction residuals using one of several available 
transform sizes. 

FIGS. 11a-11d are code listings showing example pseudo 
code for 4-point and 8-point IDCT operations for rows and 
columns. 

FIG. 12 is a diagram showing decompression and inverse 
transform coding of a block of prediction residuals using 
inverse sub-block transforms. 

FIGS. 13a-13fare flowcharts of a closed loop technique 
for setting transform sizes for prediction residuals of a frame 
in a video encoder. 

FIG. 14 is a flowchart showing a technique for switching 
transform sizes in a video decoder. 

FIG. 15 is a flowchart showing a technique for selecting 
one of multiple available scan patterns for a prediction 
residual for a motion-compensated block. 

FIGS. 16a-16c are charts showing scan patterns in one 
implementation. 

FIG. 17 is a flowchart showing a technique for using 
sub-block pattern codes in a video decoder. 

DETAILED DESCRIPTION 

The present application relates to techniques and tools for 
Video encoding and decoding. In various described embodi 
ments, a video encoder incorporates techniques that improve 
the efficiency of interframe coding, a video decoder incor 
porates techniques that improve the efficiency of interframe 
decoding, and a bitstream format includes flags and other 
codes to incorporate the techniques. 
The various techniques and tools can be used in combi 

nation or independently. Different embodiments implement 
one or more of the described techniques and tools. 
I. Computing Environment 

FIG. 6 illustrates a generalized example of a suitable 
computing environment (600) in which several of the 
described embodiments may be implemented. The comput 
ing environment (600) is not intended to Suggest any limi 
tation as to scope of use or functionality, as the techniques 
and tools may be implemented in diverse general-purpose or 
special-purpose computing environments. 

With reference to FIG. 6, the computing environment 
(600) includes at least one processing unit (610) and 
memory (620). In FIG. 6, this most basic configuration (630) 
is included within a dashed line. The processing unit (610) 
executes computer-executable instructions and may be a real 
or a virtual processor. In a multi-processing system, multiple 
processing units execute computer-executable instructions 
to increase processing power. The memory (620) may be 
Volatile memory (e.g., registers, cache, RAM), non-volatile 
memory (e.g., ROM, EEPROM, flash memory, etc.), or 
some combination of the two. The memory (620) stores 
software (680) implementing a video encoder or decoder. 
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8 
A computing environment may have additional features. 

For example, the computing environment (600) includes 
storage (640), one or more input devices (650), one or more 
output devices (660), and one or more communication 
connections (670). An interconnection mechanism (not 
shown) such as a bus, controller, or network interconnects 
the components of the computing environment (600). Typi 
cally, operating system Software (not shown) provides an 
operating environment for other software executing in the 
computing environment (600), and coordinates activities of 
the components of the computing environment (600). 
The storage (640) may be removable or non-removable, 

and includes magnetic disks, magnetic tapes or cassettes, 
CD-ROMs, DVDs, or any other medium which can be used 
to store information and which can be accessed within the 
computing environment (600). The storage (640) stores 
instructions for the software (680) implementing the video 
encoder or decoder. 
The input device(s) (650) may be a touch input device 

Such as a keyboard, mouse, pen, or trackball, a voice input 
device, a scanning device, or another device that provides 
input to the computing environment (600). For audio or 
video encoding, the input device(s) (650) may be a sound 
card, video card, TV tuner card, or similar device that 
accepts audio or video input in analog or digital form, or a 
CD-ROM or CD-RW that reads audio or video samples into 
the computing environment (600). The output device(s) 
(660) may be a display, printer, speaker, CD-writer, or 
another device that provides output from the computing 
environment (600). 
The communication connection(s) (670) enable commu 

nication over a communication medium to another comput 
ing entity. The communication medium conveys information 
Such as computer-executable instructions, audio or video 
input or output, or other data in a modulated data signal. A 
modulated data signal is a signal that has one or more of its 
characteristics set or changed in Such a manner as to encode 
information in the signal. By way of example, and not 
limitation, communication media include wired or wireless 
techniques implemented with an electrical, optical, RF, 
infrared, acoustic, or other carrier. 
The techniques and tools can be described in the general 

context of computer-readable media. Computer-readable 
media are any available media that can be accessed within 
a computing environment. By way of example, and not 
limitation, with the computing environment (600), com 
puter-readable media include memory (620), storage (640), 
communication media, and combinations of any of the 
above. 
The techniques and tools can be described in the general 

context of computer-executable instructions, such as those 
included in program modules, being executed in a comput 
ing environment on a target real or virtual processor. Gen 
erally, program modules include routines, programs, librar 
ies, objects, classes, components, data structures, etc. that 
perform particular tasks or implement particular abstract 
data types. The functionality of the program modules may be 
combined or split between program modules as desired in 
various embodiments. Computer-executable instructions for 
program modules may be executed within a local or distrib 
uted computing environment. 

For the sake of presentation, the detailed description uses 
terms like “determine,” “select,” “adjust,” and “apply’ to 
describe computer operations in a computing environment. 
These terms are high-level abstractions for operations per 
formed by a computer, and should not be confused with acts 
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performed by a human being. The actual computer opera 
tions corresponding to these terms vary depending on imple 
mentation. 
II. Generalized Video Encoder and Decoder 

FIG. 7 is a block diagram of a generalized video encoder 
(700) and FIG. 8 is a block diagram of a generalized video 
decoder (800). 
The relationships shown between modules within the 

encoder and decoder indicate the main flow of information 
in the encoder and decoder; other relationships are not 
shown for the sake of simplicity. In particular, FIGS. 7 and 
8 usually do not show side information indicating the 
encoder settings, modes, tables, etc. used for a video 
sequence, frame, macroblock, block, etc. Such side infor 
mation is sent in the output bitstream, typically after entropy 
encoding of the side information. The format of the output 
bitstream can be Windows Media Video version 8 format or 
another format. 
The encoder (700) and decoder (800) are block-based and 

use a 4:2:0 macroblock format with each macroblock includ 
ing 4 luminance 8x8 luminance blocks (at times treated as 
one 16x16 macroblock) and two 8x8 chrominance blocks. 
Alternatively, the encoder (700) and decoder (800) are 
object-based, use a different macroblock or block format, or 
perform operations on sets of pixels of different size or 
configuration than 8x8 blocks and 16x16 macroblocks. 

Depending on implementation and the type of compres 
sion desired, modules of the encoder or decoder can be 
added, omitted, split into multiple modules, combined with 
other modules, and/or replaced with like modules. In alter 
native embodiments, encoder or decoders with different 
modules and/or other configurations of modules perform one 
or more of the described techniques. 

A. Video Encoder 
FIG. 7 is a block diagram of a general video encoder 

system (700). The encoder system (700) receives a sequence 
of video frames including a current frame (705), and pro 
duces compressed video information (795) as output. Par 
ticular embodiments of video encoders typically use a 
variation or Supplemented version of the generalized 
encoder (700). 
The encoder system (700) compresses predicted frames 

and key frames. For the sake of presentation, FIG. 7 shows 
a path for key frames through the encoder system (700) and 
a path for forward-predicted frames. Many of the compo 
nents of the encoder system (700) are used for compressing 
both key frames and predicted frames. The exact operations 
performed by those components can vary depending on the 
type of information being compressed. 
A predicted frame also called p-frame, b-frame for bi 

directional prediction, or inter-coded frame is represented 
in terms of prediction (or difference) from one or more other 
frames. A prediction residual is the difference between what 
was predicted and the original frame. In contrast, a key 
frame also called i-frame, intra-coded frame is compressed 
without reference to other frames. 

If the current frame (705) is a forward-predicted frame, a 
motion estimator (710) estimates motion of macroblocks or 
other sets of pixels of the current frame (705) with respect 
to a reference frame, which is the reconstructed previous 
frame (725) buffered in the frame store (720). In alternative 
embodiments, the reference frame is a later frame or the 
current frame is bi-directionally predicted. The motion esti 
mator (710) can estimate motion by pixel, /2 pixel, 4 pixel, 
or other increments, and can Switch the resolution of the 
motion estimation on a frame-by-frame basis or other basis. 
The resolution of the motion estimation can be the same or 
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10 
different horizontally and vertically. The motion estimator 
(710) outputs as side information motion information (715) 
Such as motion vectors. A motion compensator (730) applies 
the motion information (715) to the reconstructed previous 
frame (725) to form a motion-compensated current frame 
(735). The prediction is rarely perfect, however, and the 
difference between the motion-compensated current frame 
(735) and the original current frame (705) is the prediction 
residual (745). Alternatively, a motion estimator and motion 
compensator apply another type of motion estimation/com 
pensation. 
A frequency transformer (760) converts the spatial 

domain video information into frequency domain (i.e., spec 
tral) data. For block-based video frames, the frequency 
transformer (760) applies a discrete cosine transform 
“DCT" or variant of DCT to blocks of the pixel data or 
prediction residual data, producing blocks of DCT coeffi 
cients. Alternatively, the frequency transformer (760) 
applies another conventional frequency transform such as a 
Fourier transform or uses wavelet or subband analysis. In 
embodiments in which the encoder uses spatial extrapolation 
(not shown in FIG. 7) to encode blocks of key frames, the 
frequency transformer (760) can apply a re-oriented fre 
quency transform such as a skewed DCT to blocks of 
prediction residuals for the key frame. In other embodi 
ments, the frequency transformer (760) applies an 8x8, 8x4. 
4x8, or other size frequency transforms (e.g., DCT) to 
prediction residuals for predicted frames. 
A quantizer (770) then quantizes the blocks of spectral 

data coefficients. The quantizer applies uniform, scalar 
quantization to the spectral data with a step-size that varies 
on a frame-by-frame basis or other basis. Alternatively, the 
quantizer applies another type of quantization to the spectral 
data coefficients, for example, a non-uniform, vector, or 
non-adaptive quantization, or directly quantizes spatial 
domain data in an encoder system that does not use fre 
quency transformations. In addition to adaptive quantiza 
tion, the encoder (700) can use frame dropping, adaptive 
filtering, or other techniques for rate control. 
When a reconstructed current frame is needed for subse 

quent motion estimation/compensation, an inverse quantizer 
(776) performs inverse quantization on the quantized spec 
tral data coefficients. An inverse frequency transformer 
(766) then performs the inverse of the operations of the 
frequency transformer (760), producing a reconstructed pre 
diction residual (for a predicted frame) or a reconstructed 
key frame. If the current frame (705) was a key frame, the 
reconstructed key frame is taken as the reconstructed current 
frame (not shown). If the current frame (705) was a pre 
dicted frame, the reconstructed prediction residual is added 
to the motion-compensated current frame (735) to form the 
reconstructed current frame. The frame store (720) buffers 
the reconstructed current frame for use in predicting the next 
frame. In some embodiments, the encoder applies a deblock 
ing filter to the reconstructed frame to adaptively smooth 
discontinuities in the blocks of the frame. 
The entropy coder (780) compresses the output of the 

quantizer (770) as well as certain side information (e.g., 
motion information (715), spatial extrapolation modes, 
quantization step size). Typical entropy coding techniques 
include arithmetic coding, differential coding, Huffman cod 
ing, run length coding, LZ coding, dictionary coding, and 
combinations of the above. The entropy coder (780) typi 
cally uses different coding techniques for different kinds of 
information (e.g., DC coefficients, AC coefficients, different 
kinds of side information), and can choose from among 
multiple code tables within a particular coding technique. 



US 9,456,216 B2 
11 

The entropy coder (780) puts compressed video informa 
tion (795) in the buffer (790). A buffer level indicator is fed 
back to bitrate adaptive modules. 

The compressed video information (795) is depleted from 
the buffer (790) at a constant or relatively constant bitrate 
and stored for Subsequent streaming at that bitrate. There 
fore, the level of the buffer (790) is primarily a function of 
the entropy of the filtered, quantized video information, 
which affects the efficiency of the entropy coding. Alterna 
tively, the encoder system (700) streams compressed video 
information immediately following compression, and the 
level of the buffer (790) also depends on the rate at which 
information is depleted from the buffer (790) for transmis 
S1O. 

Before or after the buffer (790), the compressed video 
information (795) can be channel coded for transmission 
over the network. The channel coding can apply error 
detection and correction data to the compressed video infor 
mation (795). 

B. Video Decoder 
FIG. 8 is a block diagram of a general video decoder 

system (800). The decoder system (800) receives informa 
tion (895) for a compressed sequence of video frames and 
produces output including a reconstructed frame (805). 
Particular embodiments of video decoders typically use a 
variation or Supplemented version of the generalized 
decoder (800). 
The decoder system (800) decompresses predicted frames 

and key frames. For the sake of presentation, FIG. 8 shows 
a path for key frames through the decoder system (800) and 
a path for forward-predicted frames. Many of the compo 
nents of the decoder system (800) are used for compressing 
both key frames and predicted frames. The exact operations 
performed by those components can vary depending on the 
type of information being compressed. 
A buffer (890) receives the information (895) for the 

compressed video sequence and makes the received infor 
mation available to the entropy decoder (880). The buffer 
(890) typically receives the information at a rate that is fairly 
constant over time, and includes a jitter buffer to Smooth 
short-term variations in bandwidth or transmission. The 
buffer (890) can include a playback buffer and other buffers 
as well. Alternatively, the buffer (890) receives information 
at a varying rate. Before or after the buffer (890), the 
compressed video information can be channel decoded and 
processed for error detection and correction. 
The entropy decoder (880) entropy decodes entropy 

coded quantized data as well as entropy-coded side infor 
mation (e.g., motion information (815), spatial extrapolation 
modes, quantization step size), typically applying the 
inverse of the entropy encoding performed in the encoder. 
Entropy decoding techniques include arithmetic decoding, 
differential decoding, Huffman decoding, run length decod 
ing, LZ decoding, dictionary decoding, and combinations of 
the above. The entropy decoder (880) frequently uses dif 
ferent decoding techniques for different kinds of information 
(e.g., DC coefficients, AC coefficients, different kinds of side 
information), and can choose from among multiple code 
tables within a particular decoding technique. 

If the frame (805) to be reconstructed is a forward 
predicted frame, a motion compensator (830) applies motion 
information (815) to a reference frame (825) to form a 
prediction (835) of the frame (805) being reconstructed. For 
example, the motion compensator (830) uses a macroblock 
motion vector to find a macroblock in the reference frame 
(825). A frame buffer (820) stores previous reconstructed 
frames for use as reference frames. The motion compensator 
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(830) can compensate for motion at pixel, /2 pixel, 4 pixel, 
or other increments, and can Switch the resolution of the 
motion compensation on a frame-by-frame basis or other 
basis. The resolution of the motion compensation can be the 
same or different horizontally and vertically. Alternatively, a 
motion compensator applies another type of motion com 
pensation. The prediction by the motion compensator is 
rarely perfect, so the decoder (800) also reconstructs pre 
diction residuals. 
When the decoder needs a reconstructed frame for sub 

sequent motion compensation, the frame store (820) buffers 
the reconstructed frame for use in predicting the next frame. 
In some embodiments, the encoder applies a deblocking 
filter to the reconstructed frame to adaptively smooth dis 
continuities in the blocks of the frame. 
An inverse quantizer (870) inverse quantizes entropy 

decoded data. In general, the inverse quantizer applies 
uniform, Scalar inverse quantization to the entropy-decoded 
data with a step-size that varies on a frame-by-frame basis 
or other basis. Alternatively, the inverse quantizer applies 
another type of inverse quantization to the data, for example, 
a non-uniform, vector, or non-adaptive quantization, or 
directly inverse quantizes spatial domain data in a decoder 
system that does not use inverse frequency transformations. 
An inverse frequency transformer (860) converts the 

quantized, frequency domain data into spatial domain video 
information. For block-based video frames, the inverse 
frequency transformer (860) applies an inverse DCT 
“IDCT" or variant of IDCT to blocks of the DCT coeffi 
cients, producing pixel data or prediction residual data for 
key frames or predicted frames, respectively. Alternatively, 
the frequency transformer (860) applies another conven 
tional inverse frequency transform such as a Fourier trans 
form or uses wavelet or subband synthesis. In embodiments 
in which the decoder uses spatial extrapolation (not shown 
in FIG. 8) to decode blocks of key frames, the inverse 
frequency transformer (860) can apply a re-oriented inverse 
frequency transform such as a skewed IDCT to blocks of 
prediction residuals for the key frame. In other embodi 
ments, the inverse frequency transformer (860) applies an 
8x8, 8x4, 4x8, or other size inverse frequency transforms 
(e.g., IDCT) to prediction residuals for predicted frames. 
III. Intraframe Encoding and Decoding 

In one or more embodiments, a video encoder exploits 
redundancies in typical still images in order to code the 
I-frame information using a smaller number of bits. For 
additional detail about intraframe encoding and decoding in 
some embodiments, see U.S. patent application Ser. No. 
10/322,171, entitled “Spatial Extrapolation of Pixel Values 
in Intraframe Video Coding and Decoding, filed concur 
rently herewith. 
IV. Interframe Encoding and Decoding 

Inter-frame coding exploits temporal redundancy between 
frames to achieve compression. Temporal redundancy 
reduction uses previously coded frames as predictors when 
coding the current frame. 

A. Motion Estimation 
In one or more embodiments, a video encoder exploits 

temporal redundancies in typical video sequences in order to 
code the information using a smaller number of bits. The 
Video encoder uses motion estimation/compensation of a 
macroblock or other set of pixels of a current frame with 
respect to a reference frame. A video decoder uses corre 
sponding motion compensation. For additional detail about 
motion estimation and motion compensation in some 
embodiments, see U.S. patent application Ser. No. 10/322, 
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351, entitled "Multi-Resolution Motion Estimation and 
Compensation, filed concurrently herewith. 

B. Coding of Prediction Residuals 
Motion estimation is rarely perfect, and the video encoder 

uses prediction residuals to represent the differences 
between the original video information and the video infor 
mation predicted using motion estimation. 

In one or more embodiments, a video encoder exploits 
redundancies in prediction residuals in order to code the 
information using a smaller number of bits. The video 
encoder compresses prediction residuals for blocks or other 
sets of pixel domain information of a frame using Sub-block 
transforms. A video decoder uses corresponding decompres 
sion using Sub-block inverse transforms. By using Sub-block 
transforms, the encoder reacts to localization of error pat 
terns in the data, which improves the efficiency of compres 
Sion. Various features of the compression and decompres 
sion using Sub-block transforms can be used in combination 
or independently. These features include, but are not limited 
tO: 

1) Adaptively setting transform sizes for spatial domain 
data by switching between multiple available transform 
sizes. For example, when coding a prediction residual, a 
video encoder adaptively switches between multiple avail 
able transform sizes for a transform such as DCT. For an 8x8 
prediction residual block, the encoder can switch between an 
8x8 DCT, two 4x8 DCTs, or two 8x4 DCTs. A video decoder 
adaptively switches transform sizes during decoding. 

2a) Setting transform sizes for spatial domain data by 
making a Switching decision in a closed loop. The video 
encoder actually tests the different transform sizes and then 
selects one. 

2b) Setting transform sizes for spatial domain data by 
making a Switching decision in a open loop. The video 
encoder estimates the suitability of the different transform 
sizes and then selects one. 

3a) Switching transform sizes for spatial domain data for 
a frame at the frame level in a video encoder or decoder. 

3b) Switching transform sizes for spatial domain data for 
a frame at the macroblock level in a video encoder or 
decoder. 

3c) Switching transform sizes for spatial domain data for 
a frame at the block level in a video encoder or decoder. 

3d) Switching transform sizes for spatial domain data for 
a frame at the macroblock level or block level within the 
frame in a video encoder or decoder. 

4) Switching scan patterns for spatial domain data for a 
frame for different transform sizes in a video encoder or 
decoder. Switching scan patterns decreases the entropy of 
the one-dimensional data, which improves the efficiency of 
Subsequent entropy coding. 

5) Using a sub-block pattern code to indicate the presence 
or absence of information for sub-blocks of a block of spatial 
domain data. For example, for an 8x8 prediction residual 
block, the sub-block pattern code indicates the presence or 
absence of information for the sub-blocks associated with 
the sub-block transform for the block. Using the sub-block 
pattern codes reduces bitrate for Zero-value sub-block infor 
mation. A video encoder outputs Sub-block pattern codes; a 
video decoder receives them. 
To code prediction residuals, a video encoder uses a 

frequency transform with a transform size selected from 
multiple available transform sizes (alternatively called trans 
form types). In some embodiments, a video encoder applies 
a frequency transform to a prediction residual block follow 
ing motion compensation. The frequency transform is a 
DCT or other frequency transform. For an 8x8 block, the 
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encoder selects between an 8x8 transform, two 4x8 trans 
forms, or two 8x4 transforms. If two 8x4 DCTs are used, the 
8x8 residual block is divided horizontally into two 8x4 
sub-blocks, which are transformed into two 8x4 DCT arrays. 
Likewise, if two 4x8 DCTs are used, the 8x8 residual block 
is divided vertically into two 4x8 sub-blocks, which are 
transformed into two 4x8 DCT arrays. A video decoder uses 
an inverse frequency transform with a transform size 
selected from multiple available transform sizes. In alterna 
tive embodiments, the encoder and decoder work with sets 
of values other than 8x8 blocks, work with information other 
than prediction residuals following motion compensation 
(e.g., for intraframe coding), and/or use a different trans 
form. 
To determine which transform size to use, a video encoder 

evaluates the different transform sizes. In some embodi 
ments, the encoder evaluates the different transform sizes in 
a closed loop. The encoder tests a frequency transform at 
each of the transform sizes, and evaluates the results with a 
rate, distortion, or rate-distortion criterion. The encoder can 
test the transform at varying Switching levels (e.g., frame, 
macroblock, block) as well. In alternative embodiments, the 
encoder evaluates the different transform sizes in an open 
loop, estimating the suitability of the different transform 
sizes without actually applying the different transform sizes. 
A video encoder and decoder switch between transform 

sizes. In some embodiments, a video encoder sets Switching 
flags at varying levels (e.g., frame, macroblock, and/or 
block) from frame to frame. A decoder makes corresponding 
Switches during decoding. In alternative embodiments, the 
encoder always Switches on a per-frame basis, a per-mac 
roblock basis, a per-block basis, a mixed macroblock or 
block basis, or some other basis. 

Following the frequency transform, a video encoder con 
verts a two-dimensional array of frequency coefficients into 
a one-dimensional array for entropy encoding. Conversely, 
a decoder converts a one-dimensional array of frequency 
coefficients into a two-dimensional array following entropy 
decoding. In some embodiments, an encoder/decoder selects 
a scan pattern from among multiple available scan patterns 
based upon a transform size. 

Following the frequency transform, a video encoder 
entropy encodes the frequency-transformed data. In some 
embodiments, a video encoder determines whether data for 
a particular Sub-block is absent or insignificant. In a Sub 
block pattern code, the encoder indicates the presence or 
absence of information for sub-blocks of a frequency 
transformed block of data. A video decoder receives the 
sub-block pattern code and determines whether information 
is present or absent for particular sub-blocks of a block. In 
alternative embodiments, the encoder and decoder do not 
use Sub-block pattern codes. 

1. Sub-Block Transforms 
A video encoder and decoder use sub-block transforms to 

efficiently code prediction residuals following block-based 
motion compensation. The encoder/decoder Switches 
between different transform sizes to apply to the prediction 
residual blocks. 

FIG. 9 shows a technique for switching transform sizes 
during encoding of prediction residual blocks in a video 
encoder. A video encoder gets (910) a frame, for example, a 
predicted video frame. For the sake of simplicity, FIG. 9 
does not show the various ways in which the technique (900) 
can be used in conjunction with other techniques. 
The encoder selects (920) switching levels for the frame. 

For example, the encoder evaluates the performance of the 
sub-block transform sizes at different switching levels 
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within a closed loop by testing the rate-distortion perfor 
mance with different levels of switching (e.g., at the frame 
level only, at macroblock level only, at macroblock and 
block levels). The closed loop is described in detail below. 
Or, the encoder evaluates the performance of different 
Switching levels within an open loop. For example, the 
encoder computes the variance, energy, or some other mea 
sure for the prediction residual blocks as partitioned with the 
different sub-block sizes. The encoder can compute the 
measure in the spatial domain or frequency domain, on 
quantized or original data. 
The encoder transform codes (930) the prediction residual 

blocks for the frame using the sub-block transform sizes and 
Switching levels selected above. In one implementation, the 
encoder uses either an 8x8 DCT, two 4x8 DCTs, or two 8x4 
DCTs on an 8x8 prediction residual block, as described in 
more detail below. Alternatively, the encoder uses another 
frequency transform and/or has more or fewer transform 
sizes (e.g., 4x4 Sub-block transform). 
The encoder determines (950) whether there are any more 

frames. If not, the technique ends. If so, the encoder gets 
(960) the next frame and selects (920) switching levels for 
it. 

In one implementation, a video encoder/decoder Switches 
between different sizes of DCT/IDCT when processing 8x8 
blocks of prediction residuals. The encoder/decoder use of 
one of an 8x8 DCT/IDCT, two 4x8 DCT/IDCTs, or two 8x4 
DCT/IDCTs for a prediction residual block. For example, if 
a prediction residual includes many non-Zero values in the 
top half and mostly zero values in the bottom half, the 
encoder and decoder use the 8x4 transform size to isolate the 
energy of the block in one sub-block. The 4x8 transform size 
is similarly indicated when the distribution of values is 
different on left and right sides of the block. When values are 
evenly distributed throughout a block, the encoder and 
decoder use the 8x8 transform. The encoder and decoder can 
use other transform sizes as well (e.g., 4x4, 2x8, 8x2, 4x2, 
2x4, etc.). In general, the potential reduction in rate-distor 
tion for additional transform sizes is weighed against the 
increase in processing overhead for additional transform 
sizes, and against potential increases in relative cost of 
bitrate for signaling overhead for Smaller transform sizes. 

FIGS. 10a–10c show transform coding and compression 
of an 8x8 prediction error block (1010) using an 8x8 DCT 
(1020), two 8x4 DCTs (1040), or two 4x8 DCTs (1060) in 
this implementation. A video encoder computes (1008) an 
error block (1010) as the difference between a predicted 
block (1002) and the current 8x8 block (1004). The video 
encoder applies either an 8x8 DCT (1020), two 8x4 DCTs 
(1040), or two 4x8 DCTs (1060) to the error block. 

FIGS. 11a-11d show example pseudocode (1100) for 
4-point and 8-point IDCT operations for rows and columns. 
For an 8x8 block, an 8-point one-dimensional IDCT opera 
tion RowlDCT 8Point() is performed on each of the 8 rows 
of the block, then an 8-point one-dimensional IDCT opera 
tion Column IDCT 8Point() is performed on each of the 8 
resultant columns. For an 8x4 block, an 8-point one-dimen 
sional IDCT operation RowlDCT 8Point() is performed on 
each of the 4 rows of the block, then a 4-point one 
dimensional IDCT operation Column IDCT 4Point( ) is 
performed on each of the 8 resultant columns. For a 4x8 
block, a 4-point one-dimensional IDCT operation 
RowlDCT 4Point() is performed on each of the 8 rows of 
the block, then an 8-point one-dimensional IDCT operation 
Column IDCT 8Point( ) is performed on each of the 4 
resultant columns. 
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For the 8x8 DCT (1020), the error block (1010) becomes 

an 8x8 block of DCT coefficients (1022). The encoder 
quantizes (1026) the data. The encoder then scans (1030) the 
block of quantized DCT coefficients (1028) into a one 
dimensional array (1032) with 64 elements, such that coef 
ficients are generally ordered from lowest frequency to 
highest frequency. In the scanning, the encoder uses a scan 
pattern for the 8x8 DCT. The encoder then entropy codes the 
one-dimensional array (1032) using a combination of run 
length coding (1080) and variable length encoding (1090) 
with one or more run/level/last tables (1085). 

In the implementation of FIGS. 10a–10c, with each of the 
DCT modes, the encoder uses the same run length coding, 
variable length encoding, and set of one or more run/level/ 
last tables. In other implementations, the encoder uses 
different sets of run/level/last tables or different entropy 
encoding techniques for the different DCT modes (e.g., one 
set of tables for the 8x8 mode, another set for the 8x4 mode, 
a third set for the 4x8 mode). For example, the encoder 
selects and signals different entropy code tables for different 
transform sizes. 

For the 8x4 DCT (1040), the error block (1010) becomes 
two 8x4 blocks of DCT coefficients (1042, 1044), one for 
the top half of the error block (1010) and one for the bottom 
half. This can localize significant values in one or the other 
half. The encoder quantizes (1046) the data. The encoder 
then scans (1050) the blocks of quantized DCT coefficients 
(1047, 1048) into one-dimensional arrays (1052, 1054) with 
32 elements each, such that coefficients are generally 
ordered from lowest frequency to highest frequency in each 
array. In the scanning, the encoder uses a scan pattern for the 
8x4 DCT. The encoder then entropy codes the one-dimen 
sional arrays (1052, 1054) using a combination of run length 
coding (1080) and variable length encoding (1090) with one 
or more run/level/last tables (1085). 

For the 4x8 DCT (1060), the error block (1010) becomes 
two 4x8 blocks of DCT coefficients (1062, 1064), one for 
the left half of the error block (1010) and one for the right 
half. This can localize significant values in one or the other 
half. The encoder quantizes (1066) the data. The encoder 
then scans (1070) the blocks of quantized DCT coefficients 
(1067, 1068) into one-dimensional arrays (1072, 1074) with 
32 elements each, such that coefficients are generally 
ordered from lowest frequency to highest frequency in each 
array. In the scanning, the encoder uses a scan pattern for the 
4x8 DCT. The encoder then entropy codes the one-dimen 
sional arrays (1072, 1074) using a combination of run length 
coding (1080) and variable length encoding (1090) with one 
or more run/level/last tables (1085). 

FIG. 12 shows decompression and inverse transform 
coding of an 8x8 prediction error block (1210) using two 
8x4 IDCTs (1240) in this implementation. Decompression 
and inverse transform coding using the 4x8 IDCT use 
transposes at stages around the inverse frequency transform. 
Decompression and inverse transform coding using the 8x8 
IDCT are shown in FIG. 5. 
A video decoder entropy decodes one-dimensional arrays 

(1252, 1254) of quantized frequency coefficient values using 
a combination of run length decoding (1280) and variable 
length decoding (1290) with one or more run/level/last 
tables (1285). The decoder then scans (1250) the one 
dimensional arrays (1252, 1254) into blocks of quantized 
DCT coefficients (1247, 1248). In the scanning, the encoder 
uses the scan pattern for the 8x4 DCT. 
The decoder inverse quantizes (1246) the data and applies 

(1240) an 8x4 inverse DCT to the reconstructed frequency 
coefficients in each of the blocks, resulting in a reconstructed 
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8x4 error block (1212) for the top half of the error block 
(1210) and a reconstructed 8x4 error block (1214) for the 
bottom half of the error block (1210). The decoder then 
combines to top (1212) and bottom (1214) halves to form the 
reconstructed 8x8 error block (1210). 
The decoder combines the reconstructed error block 

(1210) with a predicted block (1202) from motion compen 
sation using motion information to form a reconstructed 8x8 
block (1204). For example, the reconstructed 8x8 block 
(1204) is a reconstructed version of the current 8x8 block 
(1004) of FIG. 10. 

2. Selection Using Closed Loop 
FIGS. 13a through 13f show a closed loop technique 

(1300) for setting transform size(s) for a frame. In the closed 
loop technique (1300), the encoder applies each of 8x8, 8x4, 
and 4x8 transform sizes to the 8x8 blocks of a frame, 
computes distortion measures for each block with each 
transform size, computes signaling overhead for Switching 
at different levels, and selects the transform size(s) and 
switching level(s) for the frame. In alternative embodiments, 
the encoder tests more or fewer transform sizes, tests dif 
ferent transform sizes, uses a closed loop technique on 
Something other than a per frame basis, and/or uses different 
criteria to select transform size(s) and/or Switching levels. In 
still other alternative embodiments, the encoder uses an 
open loop technique. 

In the implementation illustrated in FIGS. 13a-13f, a 
frame includes multiple 4:2:0 macroblocks, and each mac 
roblock is made up of six 8x8 blocks. Alternatively, another 
macroblock or block format is used. 
With reference to FIG. 13a, with the closed loop tech 

nique (1300), the encoder selects the transform size(s) used 
in the frame. The transform size can be specified at the 
frame, macroblock or block levels. At the frame level, one 
of four options is specified: 1) all blocks in the frame use 8x8 
DCT, 2) all blocks in the frame use 8x4 DCT, 3) all blocks 
in the frame use 4x8 DCT, or 4) the transform size is 
signaled at the macroblock level. If the transform type is 
signaled at the macroblock level, then at each macroblock 
one of four options is specified: 1) all blocks in the macro 
block use 8x8 DCT, 2) all blocks in the macroblock use 8x4 
DCT 3) all blocks in the macroblock use 4x8 DCT, or 4) the 
transform size is signaled at the block level. 

To start, the encoder initializes (1301) the variables cost 
Frm8x8, costFrm8x4, costFrmax8, and costFrmvar used to 
measure performance of the different transform sizes at the 
frame level, as described in Table 1. 

TABLE 1. 

Frane-level Variables for Measuring Transform Performance 

Variable Description 

indicates the adjusted bit count for coding 
all macroblocks of the frame with an 
8 x 8 DCT. 
indicates the adjusted bit count for coding 
all macroblocks of the frame with an 
8 x 4 DCT. 
indicates the adjusted bit count for coding 
all macroblocks of the frame with an 
4 x 8 DCT. 
indicates the adjusted bit count for coding 
all macroblocks of the frame with transform 
sizes specified at the macroblock level or 
below. 
indicates the best transform size for the 
86. 

costFrm8 x 8 

costFrm8 x 4 

costFrma. x 8 

costFrmVar 

FrameLevelTransformType 
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TABLE 1-continued 

Frane-level Variables for Measuring Transform Performance 

Variable Description 

SwitchAtMBLevel Indicates whether the transform type is 
signaled at the macroblock or frame level. 

costFirm Indicates the adjusted bit count for the best 
transform type(s) including the overhead to 
signal the transform type at the frame level. 

Table 1 also lists three other variables (FrameLevelTrans 
formType, SwitchAtMBLevel, and costFrm), which used in 
the closed loop evaluation as described below. 

In a top-down, recursive process, the encoder accumulates 
adjusted bit counts for these values. The encoder performs 
(1310) the transforms of different sizes for a first macroblock 
in the frame, as shown in FIGS. 13c and 13d, and repeats 
when there are more macroblocks (1390) in the frame. For 
each macroblock, the encoder initializes (1311) the variables 
costMB8x8, costMB8x4, costMB4x8, and costMBvar used 
to measure performance of the different transform sizes at 
the macroblock level, as described in Table 2. 

TABLE 2 

MB-level Variables for Measuring Transform Performance 

Variable Description 

costMB8 x 8 indicates the adjusted bit count for coding all 6 
blocks with an 8 x 8 DCT. 
indicates the adjusted bit count for coding all 6 
blocks with an 8 x 4 DCT. 
indicates the adjusted bit count for coding all 6 
blocks with an 4 x 8 DCT. 
indicates the adjusted bit count for coding all 6 
blocks with transform sizes specified for each 
block at the block level. 
indicates the best transform size for the 
macroblock. 
indicates whether the transform type is signaled 
at the block or macroblock level. 
indicates the adjusted bit count for the best 
transform type(s) including the overhead to 
signal the transform type at the macroblock 
evel. 

costMB8 x 4 

costMB4 x 8 

costMBWar 

MBLevelTransformType 

SwitchAtBlockLevel 

costMB 

Table 2 also lists three other variables (MBLevelTrans 
formType, SwitchAtBlockLevel, and costMB), which used 
in the closed loop evaluation as described below. 

For each of the 6 blocks in the macroblock, the encoder 
accumulates adjusted bit counts for these values. The 
encoder performs (1320) the transforms of different sizes for 
a first block in the macroblock, as shown in FIGS. 13e and 
13f, and repeats when there are more blocks (1391) in the 
macroblock. For each block, the encoder computes a rate 
distortion measure. 

a. Block Level 
The encoder performs (1321) the full coding and recon 

struction processes on the block using the 8x8 DCT. The 
encoder applies the 8x8 DCT, quantizes the DCT coeffi 
cients, entropy codes the coefficients (e.g., run level+Huff 
man), inverse quantizes the coefficients, and applies an 8x8 
inverse DCT. The quantization introduces distortion that is 
Subsequently measured for the block. The entropy coding 
results in output bits for the block that are subsequently 
counted. 
The encoder also performs (1331, 1341) the full coding 

and reconstruction processes on the block using two 8x4 
DCTs and two 4x8 DCTs, respectively. 
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The encoder measures (1322) the cost associated with the 
8x8 DCT as a function of the distortion of the block and the 
number of bits required to encode the block. The encoder 
also measures (1332, 1342) the cost associated with the two 
8x4 DCTs and two 4x8 DCTs, respectively. The encoder 
computes the distortion as the mean squared error “MSE 
between the 64 original DCT coefficients and the 64 inverse 
quantized coefficients. Alternatively, the encoder uses 
another distortion measure such as sum of absolute differ 
ences “SAD, a perceptual distortion measure, or another 
CO leaSU. 

After the encoder obtains the bit count and distortion for 
each transform size, the encoder needs to make a decision 
about which transform size results in the most efficient 
compression. The encoder accounts for both the number of 
bits and the distortion using cost function variables cost8x8, 
cost8x4, and cost4x8, which are described in Table 3. 

TABLE 3 

Block-level Variables for Measuring Transform Performance 

Variable Description 

cost8 x 8 Indicates the adjusted bit count for coding 
the block with an 8 x 8 DCT. 

cost8 x 4 Indicates the adjusted bit count for coding 
the block with an 8 x 4 DCT. 

costa x 8 Indicates the adjusted bit count for coding 
the block with an 4 x 8 DCT. 

Indicates the best transform type for the 
block. 

Indicates the adjusted bit count for the best 
transform type including the overhead to 
signal the transform type at the block level 

BlockLevelTransformType 

costBlock 

Table 3 also lists two other variables (BlockLevelTrans 
formType, costBlock), which are used in the closed loop 
evaluation as described below. 

The cost function may readjust the number of bits for a 
transform size depending on the distortion for that transform 
size. For example, Suppose transform coding a block with 
different transform sizes resulted in the following bit counts 
and distortions. 

TABLE 4 

Example Bit Counts and Distortions 

Transform Size Bit Count Distortion 

8 x 8 48 1OOO 
8 x 4 (aggregates 45 1100 
of sub-blocks) 
4 x 8 (aggregates 44 1200 
of sub-blocks) 

If the encoder considered only the bit counts, the encoder 
would choose the 4x8 transform since it was encoded in the 
fewest bits. However, the 4x8 transform also has the highest 
distortion. To more accurately determine which transform 
size is the best, the encoder also considers the distortion. In 
one implementation, the 8x8 bit count is taken as the 
baseline, and the bit counts for the 8x4 and 4x8 transforms 
are readjusted as shown in Table 5 and the following 
equations. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
TABLE 5 

Variables in Rate–Distortion Adiustments 

Variable Description 

D8 x 8 The 8 x 8 DCT distortion (MSE between the 64 original and 
inverse quantized 8 x 8 DCT coefficients). 

D8 x 4 The 8 x 4 DCT distortion (MSE between the 64 original and 
inverse quantized 8 x 4 DCT coefficients). 

D4 x 8 The 4 x 8 DCT distortion (MSE between the 64 original and 
inverse quantized 4 x 8 DCT coefficients). 

FScale 100 (quantizer step size) 

For the adjusted 8x4 bit count, the following equations are 
used. 

iVal8x4=Int(fVal8x4) (2), 

where Int() is a function that rounds the input to the nearest 
integer. For the adjusted 4x8 bit count, the following equa 
tions are used. 

iVal4x8=Int(fVal4x8); (5), 

costax8=cost4x8+iVal4x8 (6). 

Once the bit counts for each transform size have been 
readjusted, the one with the lowest bit count is assumed to 
be the best from a rate-distortion perspective. In an alterna 
tive embodiment, the encoder uses another cost function that 
relates cost and distortion as a single measure. In other 
alternative embodiments, the encoder uses a cost function 
that considers only rate or only distortion. 

For each block, the encoder computes five values for the 
variables shown in Table 3. (Some of the values are also 
used in the macroblock level as described in the next 
section.) As initially computed from bit counts and distor 
tion, the values cost8x8, cost8x4 and cost4x8 do not include 
the overhead required to signal the transform type at the 
block level. The encoder adds (1323, 1333, 1343) the bit 
overhead required to signal transform size at the block level 
for the different transform sizes. 

(7), 

(8), 

costax8=costax8+4x8overhead (9), 

where the overhead measures indicate the overhead for 
switching flags for the different transform types at the block 
level. 
The encoder computes the values for costBlock and 

BlockLevelTransformType as follows. The encoder (1350) 
compares cost8x8 to cost8x4' to find the best transform size 
between the two of them. The encoder sets (1351, 1352) 
costBlock and BlockLevelTransformType to either the 8x8 
size or the 8x4 size, respectively. The encoder then com 
pares (1354) the best transform size so far to cost4x8" to find 
the best transform size between the two of them. The 
encoder keeps (1355) the current values or sets (1356) 
costBlock and BlockLevelTransformType to the 4x8 size. 
Alternatively, the encoder uses other conditional logic to 
find values for costBlock and BlockLevelTransformType. 
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b. Macroblock Level 
Returning to FIGS. 13c and 13d, the encoder accumulates 

(1358) the block costs for the block with the four running 
totals for the macroblock: costMB8x8, costMB8x4, 
costMB4x8, and costMBvar. The encoder then performs 
(1320) the transforms of different sizes for the other blocks 
in the macroblock. Thus, the value of costBlock is accumu 
lated for the six blocks that make up the macroblock. 
Likewise, cost8x8, cost8x4 and cost4x8 are accumulated for 
the six blocks. 

For each macroblock, the encoder computes seven values 
for the variables shown in Table 2. (Some of the values are 
also used in the frame level as described in the next section.) 
As initially computed for the macroblock, the values cost 
MBvar, costMB8x8, costMB8x4, and costMB4x8 do not 
include the overhead required to signal the transform size at 
the macroblock level. The encoder adds (1358) the number 
of bits required to signal each possible choice to the bit 
COuntS. 

costMB8x8'=costMB8x8+8x8Overhead (10), 

costMB8x4'=costMB8x4+8x4overhead (11), 

costMB4x8'=costMB4x8+4x8overhead (12), 

costMBwar-costMBwar-Varoverhead (13), 

where the overhead measures indicate the overhead for 
switching flags for the different transform types at the 
macroblock level. For costMBvar, the overhead measure 
also indicates the overhead for switching flags at the block 
level. 
The encoder then computes values for costMB, MBLevel 

TransformType, and SwitchAtElockLevel as follows. Basi 
cally, the encoder decides whether to code the macroblock 
with a single transform size for all blocks in the macroblock 
or to allow each block in the macroblock to signal its own 
transform size. The encoder compares (1360) costMB8x8 to 
costMB8x4' to find the best transform size between the two 
of them. The encoder sets (1361, 1362) costMB and 
MBLevelTransformType to either the 8x8 size or the 8x4 
size, respectively. The encoder then compares (1363) the 
best transform size so far costMB to costMB4x8" to find the 
best transform size between the two of them. The encoder 
keeps (1364) the current values or sets (1365) costMB and 
MBLevelTransformType to the 4x8 size. The encoder then 
compares (1366) the best transform size so far costMB to 
costMBVar' to find the best transform size between the two 
of them. If costMB is less than costMBWar, the encoder 
keeps (1367) the current value for costMB and sets Swit 
chAtBlockLevel to FALSE, which mean that the switching 
level is macroblock level for the macroblock. Otherwise, the 
encoder sets (1368) costMB to costMBVar' and sets Swit 
chAtBlockLevel to TRUE, which means that the switching 
level is block level for the macroblock. Alternatively, the 
encoder uses other conditional logic to find values for 
costMB, MBLevelTransformType, and SwitchAt3lock 
Level. 

c. Frame Level 
Returning to FIGS. 13a and 13b, the encoder accumulates 

(1369) the macroblock costs for the macroblock with the 
four running totals for the frame: costFrm8x8, costFrm8x4, 
costFrmax8, and costFrmvar. The encoder then performs 
(1310) the transforms of different sizes for the other mac 
roblocks in the frame. Thus, the value of costMB is accu 
mulated for the macroblocks that make up the frame. Like 
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wise, costMB8x8, costMB8x4 and costMB4x8 are 
accumulated for the macroblocks that make up the frame. 

For each frame, the encoder computes seven values for 
the variables shown in Table 1. As initially computed for the 
frame, costFrm8x8, costFrm8x4, costFrmax8 and costFrm 
Var do not include the overhead required to signal the 
transform at the frame level. The encoder adds (1358) the 
number of bits required to signal each possible choice to the 
bit counts. 

costFrm8x8'=costFrm8x8+8x8overhead (14), 

costFrm8x4'=costFrm8x4+8x4overhead (15), 

costFrmax8'=costFrmax8+4x8overhead (16), 

costFirmwar-costFirmwar-Varoverhead (17), 

where the overhead measures indicate the overhead for 
switching flags for the different transform types at the frame 
level. For costFrmvar, the overhead measure also indicates 
the overhead for switching flags at the macroblock/block 
level. 
The encoder then computes values for costFrm, Fra 

meLevelTransformType, and SwitchAtMBLevel as follows. 
Basically, the encoder decides whether to code the frame 
with a single transform type for all blocks in the frame or to 
allow each macroblock to signal its own transform size. The 
encoder compares (1380) costFrm8x8 to costFrm8x4' to 
find the best transform size between the two of them. The 
encoder sets (1381, 1382) costFrm and FrameLevelTrans 
formType to either the 8x8 size or the 8x4 size, respectively. 
The encoder then compares (1383) the best transform size so 
far costFrm to costFrmax8" to find the best transform size 
between the two of them. The encoder keeps (1384) the 
current values or sets (1385) costFrm and FrameLevelTrans 
formType to the 4x8 size. The encoder then compares (1386) 
the best transform size so far costFrm to costFrmVar to find 
the best transform size between the two of them. If costFrm 
is less than costFrmVar, the encoder sets (1387) SwitchAt 
MBLevel to FALSE. Otherwise, the encoder sets (1388) 
SwitchAtMBLevel to TRUE. Alternatively, the encoderuses 
other conditional logic to find values for costFrm, Fra 
meLevelTransformType, and SwitchAtMBLevel. 

3. Signaling Switches 
Continuing the example of FIGS. 13a through 13f, if the 

value of SwitchAtMBLevel is TRUE, the transform type is 
signaled at the macroblock level. Another signal present at 
each macroblock indicates whether a single transform type 
is used for all blocks in the macroblock or whether each 
block signals its own transform type. This is determined by 
the value of SwitchAtBlockLevel, as previously described. 
If SwitchAtBlockLevel is TRUE, of transform type speci 
fied by BlockLevelTransformType as determined at the 
block level is used for that block. If SwitchAtBlockLevel is 
FALSE, the transform type specified by MBLevelTrans 
formType as determined at the macroblock level is used for 
all the blocks in the macroblock. 

If the value of SwitchAtMBLevel is FALSE, the trans 
form type used for all blocks in the frame is signaled at the 
frame level. The transform type is indicated by the value of 
FrameLevelTransformType. 

FIG. 14 shows a technique for switching transform sizes 
in a video decoder. For the sake of simplicity, FIG. 14 does 
not show the various ways in which the technique (1400) can 
be used in conjunction with other techniques. 
A decoder gets (1410) a video frame, for example, a 

predicted video frame. The decoder determines (1430) 
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whether frame-level switch information is used to indicate a 
transform size for the frame. If so, the decoder gets (1440) 
the transform type for the frame and processes (1450) the 
blocks of the frame. For example, the decoder determines 
whether the transform type is 8x8, 8x4, or 4x8, and then 
applies an 8x8, 8x4, or 4x8 inverse DCT to the blocks of the 
frame. The decoder determines (1460) whether there are any 
more frames. If not, the technique ends. If so, the decoder 
gets (1410) the next frame and determines (1430) whether 
frame-level switch information for the frame is used to 
indicate a transform size for the frame. 

If the frame-level switch information is not used to 
indicate a transform size for the frame, the decoder gets 
(1412) a macroblock for the frame. The decoder determines 
(1432) whether macroblock-level switch information is used 
to indicate a transform size for the macroblock. If so, the 
decoder gets (1442) the transform type for the macroblock 
and processes (1452) the blocks of the macroblock. The 
decoder determines (1462) whether there are any more 
macroblocks in the frame. If not, the decoder determines 
(1460) whether there are any more frames. If there are more 
macroblocks in the frame, the decoder gets (1412) the next 
macroblock and determines (1432) whether macroblock 
level switch information for the macroblock is used to 
indicate a transform size for the macroblock. 

If macroblock-level switch information is not used to 
indicate a transform size for the macroblock, the decoder 
gets (1414) a block for the macroblock. The decoder gets 
(1444) the transform type for the block and processes (1454) 
the block. The decoder determines (1464) whether there are 
any more blocks in the macroblock. If not, the decoder 
determines (1462) whether there are any more macroblocks 
in the frame. If there are more blocks in the macroblock, the 
decoder gets (1414) the next block and gets (1444) its 
transform type. 

In alternative embodiments, a video encoder and decoder 
use other Switching logic to Switch between transform sizes. 

Table 6 shows entropy codes for transform types in one 
implementation. 

TABLE 6 

Entropy Codes for Transform Types 

VLC Transform Type 

O 8 x 8 DCT 
10 8 x 4 DCT 
11 4 x 8 DCT 

Other implementations use different entropy codes and/or 
different code tables for different transform sizes. 

4. Scan Patterns 
Following transform coding and quantization in the video 

encoder, the encoder scans one or more two-dimensional 
blocks of quantized frequency coefficients into one or more 
one-dimensional arrays for entropy encoding. The video 
decoder scans one or more one-dimensional arrays into one 
or more two-dimensional blocks before inverse quantiza 
tion. A scan pattern indicates how elements of a two 
dimensional block are ordered in a corresponding one 
dimensional array. 

In some embodiments, the encoder and decoder select 
between multiple available scan patterns for a residual for a 
motion-compensated block. Both the encoder and the 
decoder use one or more scan patterns, and use different scan 
patterns for different transform sizes. FIG. 15 shows a 
technique (1500) for selecting one of multiple available scan 
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24 
patterns for frequency coefficients of a prediction residual 
for a motion-compensated block. For the sake of simplicity, 
FIG. 15 does not show the various ways in which the 
technique (1500) can be used in conjunction with other 
techniques. 

FIG. 15 shows three available scan patterns, which in this 
context are, for example, for 8x8, 8x4, and 4x8 DCTs, 
respectively. FIGS. 16a-16c show 8x8 (1601), 8x4 (1602), 
and 4x8 (1603) scan patterns, respectively, in one imple 
mentation. Other implementations use different scan pat 
terns. 

The encoder/decoder selects (1510) a scan pattern for 
scanning the residual block. For example, an encoder/ 
decoder selects a scan pattern based upon transform size for 
the block. The encoder/decoder then applies (1520, 1530, or 
1540) the selected scan pattern by reordering elements of a 
two-dimensional block into a one-dimensional array, or vice 
WSa. 

Alternatively, the encoder/decoder selects between more 
or fewer scan patterns and/or selects a scan pattern based 
upon other criteria. 

5. Sub-Block Pattern Codes 
In addition to selecting a transform size and applying the 

frequency transform to a prediction residual block, the 
encoder indicates in the output bitstream what the transform 
size is for the block. For example, the encoder indicates 
whether the DCT used on a block is an 8x8, 8x4, or 4x8 
DCT. 

In some embodiments, if the transform size is a sub-block 
transform size, the encoder also outputs a sub-block pattern 
code that indicates the presence or absence of information 
for the sub-blocks of a block. For example, for the 8x4 DCT, 
the sub-block transform code indicates the presence or 
absence of information for 1) only the bottom 8x4 sub 
block; 2) only the top 8x4 sub-block; or 3) both the top and 
the bottom sub-blocks. For the 4x8 DCT, the sub-block 
transform code indicates the presence or absence of infor 
mation for 1) only the left 4x8 sub-block; 2) only the right 
4x8 sub-block; or 3) both the left and the right sub-blocks. 
Table 7 shows entropy codes for sub-block pattern codes in 
one implementation. 

TABLE 7 

Entropy Codes for Sub-block Pattern Codes 

SUBBLK- 8 x 4 Sub-block Pattern 4 x 8 Sub-block Pattern 

PAT VLC Top Bottom Left Right 

O X X 
10 X X X X 
11 X X 

The sub-block pattern codes are used at the block level, 
and only when the block uses a sub-block transform size 
(e.g., not 8x8 DCT for an 8x8 block). Other implementa 
tions use other entropy codes and/or use Sub-block pattern 
codes differently. 

In the encoder, the condition for whether to output infor 
mation for a Sub-block is implementation-dependent. For 
example, with the sub-block pattern code, the encoder 
indicates which of the sub-blocks of the block have at least 
one non-zero coefficient. For a sub-block with only Zero 
value coefficients, the encoder sends only the sub-block 
pattern code, and not other information for the sub-block, 
which reduces bitrate. Alternatively, the encoder uses 
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another condition (e.g., mostly Zero-value coefficients) to set 
the values of sub-block pattern codes. 

FIG. 17 shows a technique for decoding of sub-blocks 
using pattern information. For the sake of simplicity, FIG. 17 
does not show the various ways in which the technique 
(1700) can be used in conjunction with other techniques. 
The decoder determines (1710) whether sub-block pattern 

information is present for a block. For example, in one 
implementation, if the transform size is full block (e.g., 
8x8), the bitstream does not include a sub-block pattern code 
for the block. 

If sub-block pattern information is present for the block, 
the decoder gets (1720) the sub-block pattern information 
(e.g., sub-block pattern code) for the block. The decoder 
then determines (1730) whether sub-block information is 
present for the sub-blocks of the block. For example, the 
decoder checks the sub-block pattern code. If information is 
present for at least one sub-block, the decoder gets (1740) 
the information for the sub-blocks that have information. 
For example, the decoder gets information for the top half, 
bottom half, or both top and bottom halves of a 8x8 block 
split into 8x4 sub-blocks. If the sub-block pattern indicates 
that no information is present for the sub-blocks of the 
block, the decoder goes to the next block, if present. 

If sub-block pattern information is not present for the 
block, the encoder skips the steps 1720 and 1730, and gets 
(1740) information for the block. 
The decoder then determines (1750) whether there are any 

more blocks to be decoded. If not, the technique ends. If so, 
the decoder gets (1760) the next block and determines 
(1710) whether sub-block pattern information is present for 
it. 

In alternative embodiments, the encoder and decoder use 
other techniques to signal the presence or absence of Sub 
block information with sub-block pattern codes. 

C. Loop Filtering 
Quantization and other lossy processing of prediction 

residuals can cause blocky artifacts in reference frames that 
are used for motion estimation/compensation for Subsequent 
predicted frames. In one or more embodiments, a video 
encoder processes a reconstructed frame to reduce blocky 
artifacts prior to motion estimation using the reference 
frame. A video decoder processes the reconstructed frame to 
reduce blocky artifacts prior to motion compensation using 
the reference frame. With deblocking, a reference frame 
becomes a better reference candidate to encode the follow 
ing frame. Thus, using the deblocking filter improves the 
quality of motion estimation/compensation, resulting in bet 
ter prediction and lower bitrate for prediction residuals. For 
additional detail about using a deblocking filter in motion 
estimation/compensation in Some embodiments, see U.S. 
patent application Ser. No. 10/322.383, entitled “Motion 
Compensation Loop With Filtering, filed concurrently 
herewith. 

Having described and illustrated the principles of our 
invention with reference to various embodiments, it will be 
recognized that the various embodiments can be modified in 
arrangement and detail without departing from Such prin 
ciples. It should be understood that the programs, processes, 
or methods described herein are not related or limited to any 
particular type of computing environment, unless indicated 
otherwise. Various types of general purpose or specialized 
computing environments may be used with or perform 
operations in accordance with the teachings described 
herein. Elements of embodiments shown in software may be 
implemented in hardware and vice versa. 
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In view of the many possible embodiments to which the 

principles of our invention may be applied, we claim as our 
invention all Such embodiments as may come within the 
Scope and spirit of the following claims and equivalents 
thereto. 

We claim: 
1. One or more computer-readable media storing com 

puter-executable instructions for causing a computer system 
programmed thereby to perform operations to encode one or 
more video frames, 

wherein the one or more computer-readable media are 
Selected from the group consisting of non-volatile 
memory, magnetic storage and optical storage, the 
operations comprising: 

encoding one or more video frames to produce encoded 
data using a variable-block-size frequency transform 
with Support for Switching of transform size at varying 
levels within the one or more video frames, 

wherein the one or more video frames include plural 
blocks, and wherein the encoding for one of the plural 
blocks includes: 

evaluating values of transform coefficients of prediction 
residual data for the block; and 

determining, based at least in part on the values of the 
transform coefficients, sub-block pattern information 
that indicates an information pattern for presence or 
absence in a bitstream of the prediction residual data 
for plural sub-blocks of the block; and 

outputting the encoded data in the bitstream, wherein the 
encoded data includes the sub-block pattern informa 
tion. 

2. One or more computer-readable media storing com 
puter-executable instructions for causing a computer system 
programmed thereby to perform operations to encode one or 
more motion-predicted video frames, 

wherein the one or more computer-readable media are 
Selected from the group consisting of non-volatile 
memory, magnetic storage and optical storage, and 

wherein the one or more motion-predicted video frames 
include plural blocks, the operations comprising: 

evaluating values of a condition for transform coefficients 
of motion prediction residual data for a given block of 
the plural blocks; and 

determining, based at least in part on the values of the 
transform coefficients, a Sub-block pattern code, 

wherein the sub-block pattern code indicates presence or 
absence in a bitstream of the motion prediction residual 
data for plural sub-blocks of the given block of the 
plural blocks; and 

outputting the Sub-block pattern code as part of encoded 
data in the bitstream. 

3. The one or more computer-readable media of claim 1 
wherein the block is an 8x8 block and the plural sub-blocks 
are 4x4 sub-blocks. 

4. The one or more computer-readable media of claim 1 
wherein the block is encoded using a transform size selected 
from among plural available transform sizes. 

5. The one or more computer-readable media of claim 4 
wherein the plural available transform sizes include 8x8 and 
4x4. 

6. The one or more computer-readable media of claim 4 
wherein the encoding the one or more video frames further 
includes: 

testing each of the plural available transform sizes, includ 
ing evaluating rate and/or distortion that results from 
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applying the transform size to blocks of prediction 
residual data for at least part of the one or more video 
frames: and 

Selecting the transform size to use during the encoding 
based on results of the evaluating. 

7. The one or more computer-readable media of claim 1 
wherein the varying levels include frame level and block 
level. 

8. The one or more computer-readable media of claim 1 
wherein, for each of the respective sub-blocks of the block, 
if the sub-block has at least one non-zero transform coeffi 
cient the Sub-block pattern information indicates presence in 
the bitstream of prediction residual data for that sub-block. 

9. The one or more computer-readable media of claim 1 
wherein, for each of the respective sub-blocks of the block, 
if the sub-block has mostly zero-value transform coeffi 
cients, the Sub-block pattern information indicates absence 
in the bitstream of prediction residual data for that sub 
block. 

10. The one or more computer-readable media of claim 2 
wherein the given block is an 8x8 block and the plural 
sub-blocks are 4x4 sub-blocks. 

11. The one or more computer-readable media of claim 2 
wherein the given block is encoded using a transform size 
selected from among plural available transform sizes. 

12. The one or more computer-readable media of claim 11 
wherein the plural available transform sizes include 8x8 and 
4x4. 

13. The one or more computer-readable media of claim 11 
wherein the operations further include: 

testing each of the plural available transform sizes, includ 
ing evaluating rate and/or distortion that results from 
applying the transform size to blocks of motion pre 
diction residual data for at least part of the one or more 
video frames: and 

Selecting the transform size to use based on results of the 
evaluating. 

14. The one or more computer-readable media of claim 2 
wherein, for each of the respective sub-blocks of the given 
block, if the sub-block has at least one non-zero transform 
coefficient the Sub-block pattern code indicates presence in 
the bitstream of motion prediction residual data for that 
sub-block. 

15. The one or more computer-readable media of claim 2 
wherein, for each of the respective sub-blocks of the given 
block- if the sub-block has mostly zero-value transform 
coefficients, the Sub-block pattern code indicates absence in 
the bitstream of motion prediction residual data for that 
sub-block. 

16. One or more computer-readable media storing com 
puter-executable instructions for causing a computer system 
programmed thereby to perform operations to decode one or 
more video frames, 
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wherein the one or more computer-readable media are 

Selected from the group consisting of non-volatile 
memory, magnetic storage and optical storage, the 
operations comprising: 

reading encoded data from a bitstream, wherein the 
encoded data includes Sub-block pattern information; 
and 

decoding the encoded data to reconstruct one or more 
video frames using a variable-block-size inverse fre 
quency transform with Support for Switching of trans 
form size at varying levels within the one or more video 
frames, 

wherein the one or more video frames include plural 
blocks, 

wherein the decoding for one of the plural blocks further 
includes using the Sub-block pattern information, and 

wherein the sub-block pattern information indicates an 
information pattern for presence or absence in the 
bitstream of prediction residual data for plural sub 
blocks of the block. 

17. The one or more computer-readable media of claim 16 
wherein the block is an 8x8 block and the plural sub-blocks 
are 4x4 sub-blocks. 

18. The one or more computer-readable media of claim 16 
wherein the varying levels include frame level and block 
level. 

19. The one or more computer-readable media of claim 16 
wherein the block is decoded using a transform size selected 
from among plural available transform sizes. 

20. The one or more computer-readable media of claim 19 
wherein the plural available transform sizes include 8x8 and 
4x4. 

21. One or more computer-readable media storing 
encoded data, wherein the one or more computer-readable 
media are selected from the group consisting of non-volatile 
memory, magnetic storage and optical storage, and 

wherein the encoded data is formatted to be decoded 
using operations comprising: 

reading the encoded data from a bitstream, wherein the 
encoded data includes Sub-block pattern information; 
and 

decoding the encoded data to reconstruct one or more 
video frames using a variable-block-size inverse fre 
quency transform with Support for Switching of trans 
form size at varying levels within the one or more video 
frames, 

wherein the one or more video frames include plural 
blocks, 

wherein the decoding for one of the plural blocks further 
includes using the Sub-block pattern information, and 

wherein the sub-block pattern information indicates an 
information pattern for presence or absence in the 
bitstream of prediction residual data for plural sub 
blocks of the block. 

k k k k k 


