a2 United States Patent

Holcomb et al.

US009456216B2

US 9,456,216 B2
*Sep. 27, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(60)

(1)

(52)

SUB-BLOCK TRANSFORM CODING OF

PREDICTION RESIDUALS

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Thomas W. Holcomb, Bothell, WA

(US); Chih-Lung Lin, Redmond, WA

Microsoft Technology Licensing, LLC,

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

This patent is subject to a terminal dis-

Inventors:
(US)
Assignee:
Redmond, WA (US)
Notice:
U.S.C. 154(b) by 0 days.
claimer.
Appl. No.: 14/337,578
Filed: Jul. 22, 2014

Prior Publication Data

US 2014/0334534 Al

Nov. 13, 2014

Related U.S. Application Data

Continuation of application No. 11/890,059, filed on
Aug. 3, 2007, now Pat. No. 8,817,868, which is a
division of application No. 10/322,352, filed on Dec.
17, 2002, now Pat. No. 7,266,149.

Provisional application No. 60/341,674, filed on Dec.

(58) Field of Classification Search

HO4N 19/00024
375/240.02
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,691,329 A 9/1987 Juri et al.
4,796,087 A 1/1989 Guichard et al.
(Continued)
FOREIGN PATENT DOCUMENTS

EP 0 279 053 8/1988
EP 1085763 3/2001

OTHER PUBLICATIONS

U.S. Appl. No. 60/341,674, filed Dec. 17, 2001, Lee et al.
(Continued)

Primary Examiner — William C Vaughn, Jr.

Assistant Examiner — Luis Perez Fuentes

(74) Attorney, Agent, or Firm — Sunah Lee; Dan Choi;
Micky Minhas

(57) ABSTRACT

Techniques and tools for sub-block transform coding are
described. For example, a video encoder adaptively switches
between 8x8, 8x4, and 4x8 DCTs when encoding 8x8
prediction residual blocks; a corresponding video decoder
switches between 8x8, 8x4, and 4x8 inverse DCTs during
decoding. The video encoder may determine the transform
sizes as well as switching levels (e.g., frame, macroblock, or
block) in a closed loop evaluation of the different transform
sizes and switching levels. The encoder and decoder may
use different scan patterns for different transform sizes when
scanning values from two-dimensional blocks into one-
dimensional arrays, or vice versa. The encoder and decoder
may use sub-block pattern codes to indicate the presence or
absence of information for the sub-blocks of particular
blocks.

21 Claims, 25 Drawing Sheets

1320

‘ Start)

17, 2001.

Int. CL.

HO4N 19/105 (2014.01)

HO4N 19/513 (2014.01)
(Continued)

U.S. CL

CPC ..o HO4N 19/513 (2014.11); GO6T 3/40
(2013.01); GO6T 7/0012 (2013.01);
(Continued)

1361 ‘

1331
[}

13“41 ‘

Perform 8x8 DCT, quantization,
entropy encoding, inverse
quantization and 8x8 inverse DCT

Perform 8x4 DCT, quantization,
entropy encoding, inverse
quantization and 8x4 inverse DCT

Perform 4x8 DCT, quantization,
entropy encoding, inverse
quantization and 4x8 inverse DCT

1322 l
[}

1332 l
[}

1342 l
§

Measure cost as & function of
distortion and number of bits:
cost8x8 = F(D,B)

Measure cost as a function of
distortion and number of bits:
costBx4 = F(D,B)

Measure cost as a function of
distortion and number of bits:
cost4x8 = F(D,B)

1323 l
§

13‘;33 l

1343 l
§

Add bit overhsad required to
signal 8x8 transform type
at block level to cost:
costBx8' = cost8xB + BxBoverhead

Add bit overhead required to
signal 8x4 transform type
at block level to cost:
cost8xd' = costx4 + Bxdoverhead

Add bit overhead required to
signal 4x8 transform type
at block level to cost:
©ostdx8’ = costdxB + 4xBoverhead

!

!

©

US 9,456,216 B2

Page 2
(51) Int.CL 553749
GosT 700 00501
: 5,598,483
HO4N 19/52 (2014.01) 5623313
HO4N 19/176 (2014.01) 5,748,789
HO4N 19/70 (2014.01) PEA
HO4N 19/119 (2014.01) 5793.897
HO4N 19/147 (2014.01) 5,799,113
HO4N 19/172 (2014.01) 5,802,213
HO4N 19/46 (2014.01) PRSI
HO4N 19/63 (2014.01) 5:828:413
HO4N 19/122 (2014.01) 5,844,613
HO4N 19/129 (2014.01) 5,850,294
HO4N 19/61 (2014.01) gggggﬁ
HO4N 19/593 (2014.01) 5/937,095
HO4N 19/117 (2014.01) 5,946,043
HO4N 19/132 (2014.01) 5,952,943
HO4N 19/146 (2014.01) 5,959,673
HO4N 19/80 (2014.01) 2o
HO4N 19/82 (2014.01) 6067322
HO4N 19/523 (2014.01) 6,104,754
HO4N 19/547 (2014.01)
HO4N 19/57 (2014.01) 6,125,143
HO4N 19/86 (2014.01) O AT
HO4N 19/895 (2014.01) 6215425
HO4N 19/50 (2014.01) 6,215,910
HO4N 19/527 (2014.01) 6,233,017
HO4N 19/533 (2014.01) g%gfgg‘z‘
HO4N 19/59 (2014.01) 620,588
HO4N 19/136 (2014.01) 6,300,888
HO4N 19/18 (2014.01) 6,337,881
(52) U.S.CL ggggﬁg
CPC ... HO4N 19/105 (2014.11); HO4N 19/117 =05,
(2014.11); HO4N 19/119 (2014.11); HO4N 6.449 382
19/122 (2014.11); HO4N 19/129 (2014.11); 6,480,544
HO4N 19/132 (2014.11); HO4N 19/136 6,501,798
(2014.11); HO4N 19/146 (2014.11); HOIN 651270
19/147 (2014.11); HO4N 19/172 (2014.11); 6371016
HO4N 19/176 (2014.11); HO4N 19/18 6.631.162
(2014.11); HO4N 19/46 (2014.11); HOIN
19/50 (2014.11); HO4N 19/52 (2014.11); 6,633,611
HO4N 19/523 (2014.11); HO4N 19/527 22‘5‘3233
(2014.11); HO4N 19/533 (2014.11); HOIN 6697433
19/547 (2014.11); HO4N 19/57 (2014.11); 6728414
HO4N 19/59 (2014.11); HO4N 19/593 6.765.964
(2014.11); HO4N 19/61 (2014.11); HO4N 6,795,584
19/63 (2014.11); HO4N 19/70 (2014.11); 6,870,963
HO4N 19/80 (2014.11); HO4N 19/82 6,907,142
(2014.11); HO4N 19/86 (2014.11); HO4N ggg?g
19/895 (2014.11) 7.162,001
7,263,232
(56) References Cited 7,266,149
U.S. PATENT DOCUMENTS 7.747.094
4,831,659 A 5/1989 Miyaoka et al.
5,068,724 A 11/1991 KrZuse et al. 7,830,963
5,107,345 A 4/1992 Lee et al.
5,117,287 A 5/1992 Koike et al. ;’g%’gég
5,144,426 A 9/1992 Tanaka et al. A
ey B Gued
5,422,676 A 6/1995 Herpel et al.
5,442,400 A 8/1995 Sun et al. 8,743,949
5,452,104 A 9/1995 Lee et al.
5,467,086 A 11/1995 Jeong 8,908,768
5,467,134 A 11/1995 Laney et al. 8,964,854
5477272 A 12/1995 Zhang et al.

B e e 0 3 B 2 e D B B 0 0 B B 0 D > D

B2 *

B2 *

B2
B2 *

B2 *

B2 *

B2
B2 *

7/1996
8/1996
11/1996
1/1997
4/1997
5/1998
6/1998
7/1998
8/1998
8/1998
9/1998
10/1998
10/1998
10/1998
12/1998
12/1998
5/1999
6/1999
8/1999
8/1999
9/1999
9/1999
10/1999
5/2000
5/2000
8/2000

9/2000
10/2000
11/2000

4/2001

4/2001

5/2001

5/2001

8/2001

9/2001
10/2001

1/2002

1/2002

3/2002

9/2002
11/2002
12/2002

1/2003
5/2003
10/2003

10/2003
11/2003
11/2003
2/2004
4/2004
7/2004
9/2004
3/2005
6/2005
1/2006
5/2006
1/2007
8/2007
9/2007

6/2010

11/2010

6/2011
10/2012

7/2013

6/2014

12/2014
2/2015

Wilkinson
Laney

Lee et al.
Purcell et al.
Naveen
Lee et al.
Chen et al.
Lee et al.
Jo et al.
Lee

Gardos
Jung

Chen et al.
Jayant et al.
Chaddha
Apostolopoulos et al.
Mack et al.
Yoshimoto
Machida
Lee et al.
Walsh et al.
Lee et al.
Lee et al.
Yokoyama

HO4N 19/52
341/59

Suzuki et al.

Krishnamurthy et al.

Boon et al.

Andrews et al.

Chaddha

Chaddha

Zhou

Wang

Shen et al.

Chen et al.

Chaddha

Marui

Oami HO04N 19/13
375/240.03

Cicolo et al.
Uehara et al.
Sivan HO4N 19/176

375/240.12

Naito

Mehrotra et al.

Lee i GO6T 5/002
348/606

Sekiguchi et al.

Au

Sriram et al.

Isu et al.

Chang et al.

Conklin

Karczewicz et al.

Govindaswamy et al.

Kalevo

Lin et al.

Chan

Wang et al.

Srinivasan

Holcomb HO4N 19/136
375/240.12

Sekiguchi HO4N 19/139

362/236

Holcomb HO04N 19/176
375/240.23

Toma et al.

Demos HO4N 19/00696
375/240.15

Changcccoeu. HO04N 19/192
375/240.16

Srinivasan HO4N 19/136

375/240

Hsu

TU et HO04N 19/30
375/240.13

US 9,456,216 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2001/0043792 Al* 11/2001 Mishima HO4N 19/59

386/329
2002/0027954 Al
2002/0097802 Al
2002/0154227 Al
2003/0012286 Al
2003/0099292 Al

3/2002 Singh et al.

7/2002 Lin et al.
10/2002 Lan et al.

1/2003 Ishtiaq et al.

5/2003 Wang et al.
2003/0108100 Al 6/2003 Sekiguchi et al.
2003/0156648 Al 8/2003 Holcomb et al.
2003/0185306 Al* 10/2003 Maclnnis GOGF 9/3861

375/240.25

2004/0005096 Al
2004/0062309 Al*

1/2004 Kim et al.
4/2004 Romanowski HO04N 19/176
375/240.16
2004/0252768 Al
2005/0025246 Al
2005/0036759 Al
2005/0084162 Al
2005/0135484 Al
2005/0254583 Al
2006/0209962 Al
2007/0098278 Al
2008/0049834 Al
2013/0301704 Al

12/2004 Suzuki et al.
2/2005 Holcomb
2/2005 Lin et al.
4/2005 Yamaguchi et al.
6/2005 Lee et al.

11/2005 Kim et al.
9/2006 Park et al.
5/2007 Sun et al.
2/2008 Holcomb et al.

11/2013 Srinivasan et al.

2013/0301732 Al 11/2013 Hsu et al.

2015/0195527 Al 7/2015 Zhou et al.

OTHER PUBLICATIONS

U.S. Appl. No. 60/488,710, filed Jul. 18, 2003, Srinivasan et al.
Bjontegaard, “Addition of 8x8 Transform to H.26L,” ITU-T VCEG
Q15-1-39, 2 pp. (Oct. 1999).

Bjontegaard,“H.26L Test Model Long Term No. 5 (TML-5) draft0,”
q15k59d1.doc, 35 pp. (document marked Oct. 2000).
Bjontegaard,“H.26L Test Model Long Term No. 8 (TML-8) draft0,”
MPEG2001/M7512, 46 pp. (document marked Jul. 2001).

Chen et al.,, “Variable Block-size Image Coding by Resource
Planning,” Proc. Int’l Conf. on Image Science, Systems, and Tech-
nology, Las Vegas, 10 pp. (1997).

Guenter et al., “Motion Compensated Compression of Computer
Animation Frames,” Proc. SIGGRAPH 93, 8 pp. (1993).
Hallapuro et al., “Performance Analysis of Low Bit Rate H.26L
Video Encoder,” Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing, vol. 2, pp. 1129-1132 (May
2001).

Horn et al, “Bit allocation methods for closed-loop coding of
oversampled pyramid decompositions,” Proc. of IEEE International
Conference on Image Processing, 4 pp. (1997).

ISO/IEC 11172-2, “Coding of Moving Picture and Associated
Audio for Digital Storage Media at Up to About 1.5 Mbit/s, Part 2:
Video,” 122 pp. (1993).

ISO/IEC 14496-2, “Coding of Audio-Visual Objects: Visual, ISO/
IEC 14496-2,” pp. i-v, 136-144, 229 (1998).

ISO/IEC 14496-2, “Coding of Audio-Visual Objects: Visual, ISO/
IEC 14496-2,” 326 pp. (1998).

ITU-T Recommendation H.261, “Line Transmission of Non-Tele-
phone Signals,” International Telecommunications Union, 29 pp.
(Mar. 1993).

ITU-T Recommendation H.262, “Transmission of Non-Telephone
Signals,” International Telecommunications Union, 216 pp. (Jul.
1995).

ITU-T Recommendation H.263, “Series H: Audiovisual and Mul-
timedia Systems, Infrastructure of Audiovisual Services—Coding
of Moving Video,” International Telecommunications Union, 167
pp. (Feb. 1998).

ITU-T Recommendation H.263, “Series H: Audiovisual and Mul-
timedia Systems, Infrastructure of Audiovisual Services—Coding
of Moving Video,” International Telecommunications Union, pp.
i-x, 4, 40-48, 73-80 (Feb. 1998).

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
“Joint Committee Draft (CD), JVI-C167,” 3rd Meeting: Fairfax,
Virginia, USA, 142 pp. (May 2002).

Lee et al., “Variable Block Size Techniques for Motion Sequence
Coding,” Proc. First Korea-Japan Joint Workshop on Multi-media
Communications, 12 pp. (1994).

Mehrotra et al., “Adaptive Coding Using Finite State Hierarchical
Table Lookup Vector Quantization with Variable Block Sizes,” 5 pp.
(1996).

Microsoft Corporation, “Microsoft Debuts New Windows Media
Player 9 Series, Redefining Digital Media on the PC,” 4 pp. (Sep.
4, 2002) [Downloaded from the World Wide Web on Jul. 16, 2004].
Mook, “Next-Gen Windows Media Player Leaks to the Web,”
BetaNews, 17 pp. (Jul. 2002).

Printouts of FTP directories from http:/ftp3.itu.ch, 8 pp. (down-
loaded from the World Wide Web on Sep. 20, 2005).

Reader, “History of MPEG Video Compression—Ver. 4.0,” 99 pp.
(document marked Dec. 16, 2003).

Ribas-Corbera et al., “On the Optimal Block Size for Block-based
Motion-Compensated Video Coders,” SPIE Proc. of Visual Com-
munications and Image Processing, vol. 3024, 12 pp. (1997).
Ribas-Corbera et al., “On the Optimal Motion Vector Accuracy for
Block-based Motion-Compensated Video Coders,” Proc. SPIE
Digital Video Compression, San Jose, CA, 13 pp. (1996).

Study Group 16—Contribution 999, “Draft Text of Recommenda-
tion H.263 Version 2 (‘H.263+’) for Decision,” International Tele-
communication Union, 17 pp. (1997).

Sullivan et al., “The H.264/AVC Advanced Video Coding Standard:
Overview and Introduction to the Fidelity Range Extensions,” 21
pp. (Aug. 2004).

Sullivan, “Low-rate Coding of Moving Images Using Motion
Compensation, Vector Quantization, and Quadtree Decomposition,”
University of California, Los Angeles, Ph.D. Thesis, 178 pp. (1991).
Tseng et al., “Compatible Video Coding of Stereoscopic Sequences
Using MPEG-2’s Scalability and Interlaced Structure,” Int’l Work-
shop on HDTV ’94, Torino, Italy, 10 pp. (1994).

Wiegand, “Joint Model No. 1, Revision 1 (JM1-r1),” JVT-A003rl,
80 pp. (document marked “Generated: Jan. 18, 2002”).

Wien et al., “16 Bit Adaptive Block size Transforms,” JVT-C107r1,
54 pp.

Wien et al., “ABT Coding Elements,” ITU-T VCEG-L15, 4 pp.
(Jan. 2001).

Wien, “H.26L. Core Experiment on Adaptive Block Transforms,”
International Telecommunications Union, 2 pp. [Downloaded from
the World Wide Web on Nov. 11, 2002].

Wien et al., “ICT Comparison for Adaptive Block Transforms,”
ITU-T VCEG-L12, 6 pp. (Jan. 2001).

Wien et al., “Integer Transforms for H.26L Using Adaptive Block
Transforms,” ITU-T VCEG Q15-K-24, 5 pp. (Aug. 2000).

Wien, “New ABT Results Using CABAC,” ITU-T VCEG-N49, 15
pp. (Sep. 2001).

Wien et al., “New Integer Transforms for H.26L,” ITU-T VCEG
Q15-J-41, 5 pp. (May 2000).

Wien et al., “Results of H.26L. Core Experiment on Adaptive Block
Transforms,” ITU-T VCEG Q15-K-25, 7 pp. (Aug. 2000).

Wien et al, “Simplified Adaptive Block Transforms,” ITU-T
VCEG-030, 15 pp. (Dec. 2001).

Wien, “Variable Block-Size Transforms for Hybrid Video Coding,”
Dissertation, 182 pp. (Feb. 2004).

U.S. Appl. No. 10/322,352.

U.S. Appl. No. 10/893,702.

U.S. Appl. No. 11/890,059.

U.S. Appl. No. 13/943,648.

U.S. Appl. No. 13/943,665.

U.S. Appl. No. 14/258,797.

U.S. Appl. No. 14/337,578.

U.S. Appl. No. 14/538,667.

* cited by examiner

U.S. Patent Sep. 27, 2016

Sheet 1 of 25 US 9,456,216 B2

Figure 1, VLE
140
; 136 —F o -0—
prior art e
135
1% 137 —F - =|+4+—147
126 -\
Quant- ,/ =]
ization [J
DCT 110 120
— > — > - e
127 —
8x8 block of - Quantized DCT S
pixels 105 DCT coefficients 115 coefficients 125 145
Zig-zag scan
150
Run Level Last
VLE RLE
170
YL DELIOY 10

165

Figure 2, prior art

155

Top
block
230 ~T

Row2
21

Left
block

Row?2
11

Current
block

220

210

U.S. Patent Sep. 27, 2016 Sheet 2 of 25 US 9,456,216 B2

Figure 3, prior art

330 310

~r
4~

335 315

Figure 6

| Computing environment 600 Communication
____________ connection(s) 670
I

4 \ |

l |
| | Input device(s) 650 |
l |
Processing Memory | |
unit 610 620 | | Output device(s) 660 | |
l |
l |

eeeee]
¢ Storage 640 | |
- I

—— —— e ——— —— — — —)

Software 680 implementing video
encoder or decoder

US 9,456,216 B2

Sheet 3 of 25

Sep. 27, 2016

U.S. Patent

A

SLy

f Sov

<« []1]]

0Ly
314

15€e7 [9A9] UNY

00t

ue Joud ‘¢ a1nbi4

QS SIUBNIYB0D Sty
12Q paznuenp S1U3131}}=200 103
[1]] — <+
09% ueds osv
dez-317 uone
-Z1ueny

0147

1o0da
SE¥ 29019 Jo413

(swely sousizpad

Ul 320|q pa1dipald

Jo juawadeldsip
salpads)

J0109A UOIOA

€ aingd4 aas
— < ‘uonnewnsy
w AN UOIoON
oty RAYA
SZv 20|19 ST 2019
8Xg 1UaJ4In) 8Xg pa12dIpaJd

US 9,456,216 B2

Sheet 4 of 25

Sep. 27, 2016

U.S. Patent

S£S30[9
pPa12NI1sU0daY
(CINEINERIEYCIEY]
ut ya0|q paioipadd
1O WBawWade|dsIp
0.6 solnads)
f J0129A UONION
I_I < qQ8s
AN XAIN
| 596 polq
172 8Xg po1dIpald
SvS GE£G SWUBIILR0D
%90][q 40119 8Xg 100 8xg paziluenyd GLG
S¢S $
<+ «— [JTT ™™ [[T] «— <+
(01729 0€s 0cs 01s
1odl ueds and aiA
8x8 gez-81z 1Se7[9A9T Uny
/iuenb 3SIDAU|
3s19AU|

e Joud ‘G aunbi{

US 9,456,216 B2

Sheet 5 of 25

Sep. 27, 2016

U.S. Patent

—~Gl. 0Z/ 21018 7 GCL duwel
awe.l | = [VETETEE |
9.2 99/ "ueJq 0g/ Jojes 0L
Joznuenb =] Aousnbaly -usdwod lagd JOJRWLINSS
9SJoAY| BSIBAU| UOIJON uoiow
Yy
09/ 18w
062 08/ 18p0o2 0.1
=] -JOiSUB]] |t
< m J9yng Adonug Jaznuenp
Aouanbai ¢ 502
G6/ 17 awe.
OJul 09pIA |ENPISeY JusuIN9
passald
-wog Uied
oWlellalu|
002
ujed
oWeljellu|
062 ogzsopoa | o | 0us 09 1o
Am ng Adonug Jaziuenp il >“Wwﬂmw_uu_ < n-
G6. ¢0.
OJUlI OBPIA swell
passaid U1
-Wwo9

J 2inbi4

US 9,456,216 B2

Sheet 6 of 25

Sep. 27, 2016

U.S. Patent

——G18
Gzg awely
ERIIEYETEN|
0¢g J0ies
-uadwod ALl 0¢8 21015
awelq
uonop
GEg swed
910I1pal
068 088 0.8 098 'uey PejoIpe.d
aun Jepoasp =l soznuenb el Aousnbaly -+ -
4ng Adojug BSJOAU| SSIOAU| w ¢
“ 98 enpisal G608 swell
568 pa1dNIISuUoIsy pPajoNIISU029Yy
OJUl 08pPIA
passaid
"o yled
aulelliaju|
008
yled
auweldjedju)
068 088 048 098 "ueq
oun Jopooop = Joznnuenb = Aousnba.y -
ﬂ wng Adojug 9SI9AU| 9SIBAU| w
GOg aweuy
o151Y]
oJU1 03PIA Pa1oNJISU029Y
passald
w0 Q 24nbi

U.S. Patent Sep. 27, 2016 Sheet 7 of 25 US 9,456,216 B2

Figure 9

(Start ,
900

910~ Get frame /

:

920~ Select switching
level(s) for frame

'

930~ Sub-block transform
code residual blocks

Get next
frame

)
960

More
frames?

950

US 9,456,216 B2

Sheet 8 of 25

Sep. 27, 2016

U.S. Patent

0901
50 @
8Xy
ov0T
50
X8
<30T 8CO0T SIUSP200 CC0T SiuadI}=00
f 124 paziueny 10Q 8x8
CeOT
-)
0601 Amﬂoa____ [TT] «— «—
TIA 0€0T 9707
el Sez-8 uone
15e7 [9A37 uny ueos Sez-817 n
-Zueny
0TOT >20|q Jodi3
CINEERIESEIEY
ul yoo|q pawipaJd
10 Juswade|dsip
salypads)
10199A UONOA
) uonewnsy
N ° UoRO
¢ ANIN
8001 XAW
00T 2019 ¢00T X20|q
8Xg 1alln) 8Xg8 pa1dIpald mO —\ @.h 3@_ H_

US 9,456,216 B2

Sheet 9 of 25

Sep. 27, 2016

U.S. Patent

0607
AIA

0601
ERTA

5801

1se7 [9A97 uny

5801

)

1Se7 [2A97 Uny

7S0T
<«— [T] ™ [[]] «—
0801 0S0T
ER ueds 3ez-3i7
¢S0T
<«— [J]] ™™ []] «—
080T 0SOT
ERL ueos gez-8i7

8YOT S1USID1}490D

12@ paziuenp

A|
9701

LYOT SIUDIR1}J90D

15a paziuend

uone
-zZ1uenp

A|
9%01

uone
-Z1ueny

1>Q yxg do|

40} A UCIRIITE R
100 vXg woilog

0v01
1od
X8

ZYOT S1USPIHS00

qo| a4nbi-

US 9,456,216 B2

Sheet 10 of 25

Sep. 27, 2016

U.S. Patent

0601
R

0601
ERT

5801

1se7 [oA97] Uny

5801

1se7 |9A97] uny

890T SIUBID1Y}20D

11 paziuenp

A|
9901
uone

-Z13Uueny

£90T SIUDI1}}302

120 paziuenp

vL0T
<«— 1] [T 1] «—
080T 00T
I1d ueds ez-3i17
cL0T
<«— [IJ]T ™ [T]] «
080T 00T
I1d ueds gez-317

A|
9901
uone

-ZIlUenY

#90T S1Ua1}4900
10a 8xv Y3y

Z90T S1U3ID1J4900
100 8xy 1o

001 9Jnbi4

0901
1o0d
8X¥

U.S. Patent Sep. 27, 2016 Sheet 11 of 25

Figure 11a

™ The following data types are defmed n the IDCT code:
116 = 16 bit sgned mteger

132 = 32 bit signed mteger *f

* The folowang nteger constants are used m the IDCT code *f
i =234

W2 =2676

W3 = 2408

W5 =1609

W6 = 1108

W7 = 56h

VYWHa=1392

W2a = 1443

Wia=7r34

RowlCT 8Point (116" mput, 116 oulput)
{
132 x0, x1, 2 x3, x4 x5, x6, x7, 8,

%0 = {{132) mput [0] << 11) + 128,
x1 =(132) mput [4] << 11;

2 = mput [B];

X3 = input [2,

X7 = nput [3];

I fmst stage *f

B =WW7 ™ (x4 + x5),

¥4 =x8 +(WH —Wr) ™~ x4,
%2 = X8 - (W1 + W/) * xi)
¥ =W3 * {xb + x7);

xb = x8 — (W3 — Wh) * x6,
x7 = xB — (W3 +Wh) *x7,

5 second stage

X3 =x0 +x1;

0 = x0 — x1;

x1 =W * {x3 + X7},

2 =x1 — (W2 +WG) * x2,
x3 = x1 + (W2 - W8) * x3,
x1 = x4 +x6

x4 = x4 —xh;

X6 =xh +xT,

xh=xh —xT,

US 9,456,216 B2

1100
/

U.S. Patent Sep. 27, 2016 Sheet 12 of 25 US 9,456,216 B2

Figure 11b o oo

7~ third stage ¥/
X7 =8 + X3,
x8=1x8_x3,
X3=x0 +x2.
x0 = x0 — x2,
x2 = (132) (181 * (x4 + x5) + 128) > @,
x4 = {132) (181 * (x4 - x5) + 128) >> §;

7~ fourth stage */
oulput [0] = (H6) {(x7 + x1) == 8),
output [1] = (H6) {(x3 + x2) >> 8);
output [2] = (H6) {(x0 + x4) >> 8],
oulput [3] = (H6) {(x8 + x6) >= 8);
output [4] = (HE) {(x8 — x&) == B,
oulput [5] = (H6) {(x0 —x4) >> 8],
oulput [6] = (H6) {(x3 —x2) > 8],
output [7] = (H6) {{x7 —x1) == 8],
}

CounniDCT_8Point {116* input, H6* oulput)
{
132 %0, x1, X2, x3, x4, x5, x6, X7, x8;
xﬂ {{132) mput [0] << 8) + 3192,

= (132) mput [4] << §,
= mput [6];

F&
1]

LEHEAD
IR

E

stage */
=Wrs{x4+xh)+4,
=3+ W xl)>> 13,
= (x8 - (W1 +W7) * xh) >> 3,
=W3i b +x7)+ 4,

= (x8 — (W3 — Wh) * xf) >> 3,
= {wa

U.S. Patent Sep. 27, 2016 Sheet 13 of 25 US 9,456,216 B2

Figure 11c ® oo

* secomd stage ™/

X8 =x0 + x1;

x0 = x0—x1;

X1 =W6*{x3 +x2)+ 4,

X2 = {x1 — (W2 + W) * x2) >> 3,
x3 = (x1 + (W2 -W6) ™ x3) >> 3,
X1 = x4 + x6;

¥4 = x4 — x6;

X6 = xh + X7,

xb=xh—xT,

#* third stage *f

X7 =B + x3;

8 =B x3;,

x3=x0 + x2,

X0 = x0 — x2.

X2 = (181 * (x4 + x5) + 128) >> &,
x4 = (181 * (x4 - x5) + 128) >> &

* fourth stage ¥/
oulput [0] = (116) {{x7 + x1) >> 14];
oulput [1] = {6) {{x3 + x2) >> 14);,
oulput [2] = (116) {{x0 + x4) >> 14);
output [3] = (16) {{x8 + xG) >> 14],
oulput [1] = (6] {{x8 — x6) == 14],
oulput [5] = (H6) {{x0 — x4) >> 14),
oulput [6] = {16) {{x3 — x2) == 14],
oulput [7] = (H6) {{x7 — x1) >> 14),

H

RowiDCT_4Poit {116* input, 116* output)

{
132 0, x1, 32, x3;

x0 =mput [0f,
x1 =input [1E
X2 =mput [2];
x3 = mput [3],

U.S. Patent Sep. 27, 2016 Sheet 14 of 25 US 9,456,216 B2

Figure 11d o 100

X0 = {x0 +x2) *W2a,
1 = (0 - x2) *Woa;

X2 =x1 *Wia +x3*W3a,
x3=x1 *W3a - x3*Wa

oulput [0] = {116) ({x0 + x2 +64) >> 7},

oulput [1] = (116) {{x1 + x3 + 64) >> 7,

oulput [2] = {116) {{x1 — x3 + 64) >> 7Y,

output [3] = (116) {{x0 — x2 + G4) >> 1),
}

CohrmIDCT_4Point §16* inpul, 116* oulput)

{
132 X0, x1, 2, x3;

x0 = nput [0},
x1 =nput [1}
2 =mput [2];
x3 = mput [3];

X0 = {x0 +x2) * W2
1 = {x0 - x2) *W2a

2 =x1 *Wia+x3 *W3a
B=x1 *W3a_x2 *Wa

output [0] = {116) {{x0 + x2 + 32768) >> 16,
oulput [1] = {116) {{x1 + x3 + 32768) >> 16);
output [2] = {(116) {{x1 — x3 + 32768) == 16},
output [3] = (116) {{x0 — x2 + 32768) >> 16];

US 9,456,216 B2

Sheet 15 of 25

Sep. 27, 2016

U.S. Patent

0ZT 20|19 8X8

Po12nJ1sU003Y
(pwely soua.ae.
ulPolq pawipald
JO Juswade|dsIp
salnads)
JO109A UOION
AN XAIN
OTZT Y90[q 40442 02T >20(9
§X8 pa1onJIsuoday 8Xg Pa10Ipald
YIZT ¥P0o[q 8PTT s1adIYYs0d
J0J4JD HX8 wol10g 100 ¥xg paziwueny A
m -G8
<« <« [[TT ™ [[T] «— -
ovel 0s¢1 oom._NmH ﬁm_m._m\/ﬁ
1odI #x8 uess jse7 |2Aa7 uny
/ 9¥2T "1uenb Sez-8i1z 2671
asJaAu| 3SJaAU| f ~GQZ1
<+ «— [ITJT ™ [[1] «— <+
08¢T 06¢CT
[A XA RS ele] ¢ LPTT SWUBPIHS0D atd aia

J0lJ2 pxg do|

1seq [aAs7 uny

1 @inbi4

104 ¥xg paziueny

US 9,456,216 B2

Sheet 16 of 25

Sep. 27, 2016

U.S. Patent

®©
f

PESUIBACIEA + JBALUIHISOO = JBAWIJISOD
pPEaUIaADgX Y + §XHWIJIS00 = ,gX{WI{1S00
PEBUIONDEXQ + HXQULIJISOD = ,HXQUI{1S0D
PESUJIBADGXY + GXQULIJISOD = ,GXQUII{IS0D
181509 0] |9A8] awed} 1e adA) wioisue;
[eubBis 0] palinbaJl peay.aA0 1Iq ppY

~0.€1

¢oWed) Ul sgiA 240N

GINISO0 + JBAULJISOD = JBA WIJISOD
QXFGNISO0 + 8X{ UL J1S00 = X4 LWIJ1SOD
PXGGINISOD + HXGUIIISOD = XgWI{ISOD
gX8gINIS0D + GXgUIISO0 = gXgWI41S00

'S]S00 }90]g0JOBW B]B|NWNIDY

L~69¢ |

i

oocl

(o¢ | 94nbig4 998) awel) Ul g 1X8uU
JO} SWIOJSUBL) 8X{ PUB “pXQ ‘@XQ WJouad

~0LE L

i

0 = JBAWIJISOD 189S ‘0 = gXHULJISOD 189S
‘0 = PXQULIJIS0D 189S ‘() = gXQUUIJIS00 188

L~L0E |

e¢| a.nbi4

US 9,456,216 B2

Sheet 17 of 25

Sep. 27, 2016

U.S. Patent

ANYL = [PASTIGINIVUIIMS

pu3

é

BAW.I{1S02 > W.I{1SQ

98¢l

ISV = BASTIAINIVUINIMS

)
L8€1

10d Xy =
adA] uuojsue.] jpAsTawel4
BXFWI41S00 = WI41S00

~G8E |

WIJ1S00 = WIH1S09

X7 WJ{1502 > WJI{1SQ,

)
¥8el

€8¢c1L

100 vXg =
adA] wJojsuel | [gAsaLIBI]
FXQUWILISO0 = WI4IS00

)
¢8el

100 8Xg =
adA] wiojsue. | joAsToWERI
£XQLIIS0D = WIJ1S00

¢ X8WI41502
> 8XgW.I4150D

)

18C1

A

00¢L

®
qgl @4nbi-

US 9,456,216 B2

Sheet 18 of 25

Sep. 27, 2016

U.S. Patent

®
}

PBSUISAOIEA + JEAGINISOO = JEAGNISOO
PRBLIBAOGXY + XPEINIS0D = .8XydINIS00
PEOUIBAOYXG + PXQEINISOO = ,#X8HINIS0D
PeBLIBAOGXE + GXQE NS00 = ,8X8gIANS00
:S1S00 01 |9A8] g 18 adAl wuojsue.
|eubis 0} palinbaJ PEayJsA0 1ig PPY

L~0GE L

CHIN Ul SYI0|q 340N

300|g1S00 + JIBAGIANSOD = JEAGINISOD
SXPISOO + GXFG\ISO0 = GXFdINISOO
PXQIS0D + FXQGINISO = $Xg8g INISO

gX81S00 + @XQgNIS00 = gXgg IS0
:S)S00 ¥20|g 3)1B|NWINJoY

-~8G¢E |

i

oL€l

(a¢ | 8inbBi4 99S) ¥20|qOIOB W Ul ¥O0|] 1XdU
JOl SWIOJSUB) @X{y pue ‘fXg ‘gxg wiouad

-~0CE 1

i

0 = JBAGINISOD 18S ' = §XpgINIS00 185
‘0 = PX@INS02 18s ‘(= gxggINIS00 188

-~ LEL

o¢ | aJnbi4

US 9,456,216 B2

Sheet 19 of 25

Sep. 27, 2016

U.S. Patent

STV = [PASTOO0|GIVYIIMS
IS0 = gIANIS0d

¢ ABAGINISOD

gdINIS00 = gNIs00

12495

oLEl

> gIAN1s0d

pud

ANYL = 19A8THO0|FIVYIIMS
ABAGINISOD = gIAIS0D

10a 8xy =
adA | wuojsued | |sAsTgn

BXFE NS00 = gINIs0oo

L~GOC |

¢ [8XPdINISOD
> gIN1s02

)
89€eL

100 X8 =
adA] Wiojsuel] jera gy

JFXQINIS0J = gINIS0d

10Qa 8x8 =
adA | wuojsuel] jpAs1gn

8X8g NS00 = gINIS0O

)

L9E)

)
29el

¢ TXBUINISOI
>, 8X8dINI1S0d

®
pgl ainbi-

US 9,456,216 B2

Sheet 20 of 25

Sep. 27, 2016

U.S. Patent

©
I

i

1

1

PROYIDAOGXY + GXHIS0D = QXS0
11802 0] [8A9)] Y20|] 1B
a8dA) wojsue.n gxy [eubis
0} paJlinbal PeaYIaA0 1 PPY

PEOUIBAOYXG + $XQISOD = HXQIS0D
11800 0] [9A9)] Y20|] 1B
adA) wuojsuen yxg |eubis
0} palinbaJ pEsayIaA0 U] PPV

PBBIDAOGXG + XQIS0I = ,gXGIS0I
11802 0] [9A3)] ¥20|] 1B
adAl wiojsue. gxg |eubis
0) paJlinba. peaytaro 1q ppy

)
EvEL

)
eeel

)
o)

(g'a)d = gxp1s00
“S1IQ 1O Jagquinu pue uoiLoIsIp
10 UoIoUN) B SB 1S00 SINSEIJ\

(8'a)4 = ¥xg1s00
:81IQ 1O Jaqwinu pue uoiuloIsIp
JO UOIDUN) B SB 1S02 3INSBa|\

(9'a)4 = gxg1s00
‘S]] JO Jagquinu pue uoILoIsIp
10 UonoUNy B SB 1S00 3INSEa\

)
erel

)
zeel

)
ceel

10Q 9sJ8AUl Xy PUE Uoleziuenb
asJaAul ‘Buipoous Adogua
‘uonezinuenb ‘]HQ gxy Wioad

19@ 9sJ4aAUl $Xg pue uonezipuenb
asJanul ‘Buipoous Adonus
‘uoneznuenb ‘10 ¥xg wuoued

19Q 9sJ9AuUI gxg pue uoleziuenb
asJaAuUl ‘Buipoous Adosius
‘uoneznuenb ‘]HQ gxg wuoled

» el

* Ry

* FNW_\

A

0cel

a¢| a.nbiH

US 9,456,216 B2

Sheet 21 of 25

Sep. 27, 2016

U.S. Patent

100a 8Xy =
adA] wlojsue.] |oA8TN00|g

8XP1S09 = %20|g1S0D

~9GE L

adA] wlojsuel | |oASTNO0|g
= odA] wiolsue. | [9A9TH00|g
%00|g1S00 = ¥00|gIS09

)
gGel

¢ 8X71500
> Y00]g1502

10d vX8 =
adAJ wiojsuel | [AST7Y00|g
PX81S09 = »00|g)S0D

¢atl

100 8xg =
adA] wiojsue. | joAsTy00lg
8X81S00 = ¥90|g1S09

¢ PXg1s00
> ,8X81S02

et

ocel

)

LGEL

®
Jg 1 84nbi

US 9,456,216 B2

Sheet 22 of 25

Sep. 27, 2016

ésawel) aJoN

U.S. Patent

¢S20|q JON ¢SAIN 340N
sah
300|q §S9201d |~#S¥ 1 $)20|g §$920.d $)00|q $58901d L~0StL
adA) wuoisuel) 199 L~y [2dA) wuoisuel) 195 adA] wlojsuel 199 L-~0vv L
A
EWUMs
— 20|q 19
300|0 199) A3 BN
)
14542
Zlil—] an 19 5ok oLvl
\ §
+ AUDUMS |[DA3|
ou sule.ld swel} 199

pLomby -

US 9,456,216 B2

Sheet 23 of 25

Sep. 27, 2016

U.S. Patent

D

A

¢ uJoned ueoss Addy

q)
0vSl

Z uianed ueos Addy

| uJaned ueos Addy

A)
0€s1

uiened ueas 1099

~01G1

j
D

q)
0ZS 1

4/82

Gl aInbi4

U.S. Patent

Figure 16a

Figure 16b

Figure 16¢C

Sep. 27, 2016

Sheet 24 of 25

10

23

24

38

11

22

25

37

39

12

21

26

36

40

51

13

20

27

35

41

50

52

14

19

28

34

42

49

53

60

15

18

33

43

48

54

59

61

16

29

32

44

a7

55

58

62

17

30

31

45

46

56

57

63

14

21

27

13

17

24

29

10

12

15

18

22

25

30

11

16

19

20

23

26

28

31

19

22

12

24

10

15

26

|luU]|lw]|k | O

14

18

28

17

23

29

13

20

25

30

16

21

27

31

1603

US 9,456,216 B2

1601

1602

U.S. Patent Sep. 27, 2016 Sheet 25 of 25 US 9,456,216 B2

Figure 17

1700

e

Sub-block
pattern information
present?

Get next block —

)
1760

1720~ Get sub-block pattern
information

17

ub-block informatio no

present?

174 Get infi tion f
et information for More blocks?
sub-blocks

US 9,456,216 B2

1
SUB-BLOCK TRANSFORM CODING OF
PREDICTION RESIDUALS

RELATED APPLICATION INFORMATION

The present application is a continuation of U.S. patent
application Ser. No. 11/890,059, entitled “Sub-Block Trans-
form Coding of Prediction Residuals,” filed Aug. 3, 2007,
which is a divisional of U.S. patent application Ser. No.
10/322,352, entitled, “Sub-Block Transform Coding of Pre-
diction Residuals,” filed Dec. 17, 2002, now U.S. Pat. No.
7,266,149, the disclosure of which is incorporated by ref-
erence, which claims the benefit of U.S. Provisional Patent
Application Ser. No. 60/341,674, entitled “Techniques and
Tools for Video Encoding and Decoding,” filed Dec. 17,
2001, the disclosure of which is incorporated by reference.
The following U.S. patent applications relate to the present
application: 1) U.S. patent application Ser. No. 10/322,171,
entitled, “Spatial Extrapolation of Pixel Values in Intraframe
Video Coding and Decoding,” filed Dec. 17, 2002, now U.S.
Pat. No. 7,116,830; 2) U.S. patent application Ser. No.
10/322,351, entitled, “Multi-Resolution Motion Estimation
and Compensation,” filed Dec. 17, 2002; and 3) U.S. patent
application Ser. No. 10/322,383, entitled, “Motion Compen-
sation Loop with Filtering,” filed Dec. 17, 2002, now U.S.
Pat. No. 7,120,197.

TECHNICAL FIELD

Techniques and tools for sub-block transform coding are
described. For example, a video encoder adaptively switches
between 8x8, 8x4, and 4x8 DCTs when encoding 8x8
prediction residual blocks.

BACKGROUND

Digital video consumes large amounts of storage and
transmission capacity. A typical raw digital video sequence
includes 15 or 30 frames per second. Each frame can include
tens or hundreds of thousands of pixels (also called pels).
Each pixel represents a tiny element of the picture. In raw
form, a computer commonly represents a pixel with 24 bits.
Thus, the number of bits per second, or bitrate, of a typical
raw digital video sequence can be 5 million bits/second or
more.

Most computers and computer networks lack the
resources to process raw digital video. For this reason,
engineers use compression (also called coding or encoding)
to reduce the bitrate of digital video. Compression can be
lossless, in which quality of the video does not suffer but
decreases in bitrate are limited by the complexity of the
video. Or, compression can be lossy, in which quality of the
video suffers but decreases in bitrate are more dramatic.
Decompression reverses compression.

In general, video compression techniques include intra-
frame compression and interframe compression. Intraframe
compression techniques compress individual frames, typi-
cally called I-frames, or key frames. Interframe compression
techniques compress frames with reference to preceding
and/or following frames, and are called typically called
predicted frames, P-frames, or B-frames.

Microsoft Corporation’s Windows Media Video, Version
7 [“WMV7”] includes a video encoder and a video decoder.
The WMV7 encoder uses intraframe and interframe com-
pression, and the WMV7 decoder uses intraframe and inter-
frame decompression.

20

25

30

35

40

45

50

55

60

65

2

A. Intraframe Compression in WMV7

FIG. 1 illustrates block-based intraframe compression
(100) of a block (105) of pixels in a key frame in the WMV7
encoder. A block is a set of pixels, for example, an 8x8
arrangement of pixels. The WMV7 encoder splits a key
video frame into 8x8 blocks of pixels and applies an 8x8
Discrete Cosine Transform [“DCT”] (110) to individual
blocks such as the block (105). A DCT is a type of frequency
transform that converts the 8x8 block of pixels (spatial
information) into an 8x8 block of DCT coefficients (115),
which are frequency information. The DCT operation itself
is lossless or nearly lossless. Compared to the original pixel
values, however, the DCT coefficients are more efficient for
the encoder to compress since most of the significant infor-
mation is concentrated in low frequency coefficients (con-
ventionally, the upper left of the block (115)) and many of
the high frequency coefficients (conventionally, the lower
right of the block (115)) have values of zero or close to zero.

The encoder then quantizes (120) the DCT coefficients,
resulting in an 8x8 block of quantized DCT coefficients
(125). For example, the encoder applies a uniform, scalar
quantization step size to each coefficient, which is analogous
to dividing each coefficient by the same value and rounding.
For example, if a DCT coefficient value is 163 and the step
size is 10, the quantized DCT coefficient value is 16.
Quantization is lossy. The reconstructed DCT coeflicient
value will be 160, not 163. Since low frequency DCT
coeflicients tend to have higher values, quantization results
in loss of precision but not complete loss of the information
for the coefficients. On the other hand, since high frequency
DCT coefficients tend to have values of zero or close to zero,
quantization of the high frequency coefficients typically
results in contiguous regions of zero values. In addition, in
some cases high frequency DCT coefficients are quantized
more coarsely than low frequency DCT coefficients, result-
ing in greater loss of precision/information for the high
frequency DCT coefficients.

The encoder then prepares the 8x8 block of quantized
DCT coefficients (125) for entropy encoding, which is a
form of lossless compression. The exact type of entropy
encoding can vary depending on whether a coefficient is a
DC coeflicient (lowest frequency), an AC coeflicient (other
frequencies) in the top row or left column, or another AC
coeflicient.

The encoder encodes the DC coeflicient (126) as a dif-
ferential from the DC coefficient (136) of a neighboring 8x8
block, which is a previously encoded neighbor (e.g., top or
left) of the block being encoded. (FIG. 1 shows a neighbor
block (135) that is situated to the left of the block being
encoded in the frame.) The encoder entropy encodes (140)
the differential.

The entropy encoder can encode the left column or top
row of AC coeflicients as a differential from a corresponding
column or row of the neighboring 8x8 block. FIG. 1 shows
the left column (127) of AC coefficients encoded as a
differential (147) from the left column (137) of the neigh-
boring (to the left) block (135). The differential coding
increases the chance that the differential coefficients have
zero values. The remaining AC coefficients are from the
block (125) of quantized DCT coefficients.

The encoder scans (150) the 8x8 block (145) of predicted,
quantized AC DCT coefficients into a one-dimensional array
(155) and then entropy encodes the scanned AC coefficients
using a variation of run length coding (160). The encoder
selects an entropy code from one or more run/level/last
tables (165) and outputs the entropy code.

US 9,456,216 B2

3

A key frame contributes much more to bitrate than a
predicted frame. In low or mid-bitrate applications, key
frames are often critical bottlenecks for performance, so
efficient compression of key frames is critical.

FIG. 2 illustrates a disadvantage of intraframe compres-
sion such as shown in FIG. 1. In particular, exploitation of
redundancy between blocks of the key frame is limited to
prediction of a subset of frequency coefficients (e.g., the DC
coeflicient and the left column (or top row) of AC coeffi-
cients) from the left (220) or top (230) neighboring block of
a block (210). The DC coefficient represents the average of
the block, the left column of AC coefficients represents the
averages of the rows of a block, and the top row represents
the averages of the columns. In effect, prediction of DC and
AC coeflicients as in WMV7 limits extrapolation to the
row-wise (or column-wise) average signals of the left (or
top) neighboring block. For a particular row (221) in the left
block (220), the AC coefficients in the left DCT coefficient
column for the left block (220) are used to predict the entire
corresponding row (211) of the block (210). The disadvan-
tages of this prediction include:

1) Since the prediction is based on averages, the far edge of
the neighboring block has the same influence on the predic-
tor as the adjacent edge of the neighboring block, whereas
intuitively the far edge should have a smaller influence.

2) Only the average pixel value across the row (or column)
is extrapolated.

3) Diagonally oriented edges or lines that propagate from
either predicting block (top or left) to the current block are
not predicted adequately.

4) When the predicting block is to the left, there is no
enforcement of continuity between the last row of the top
block and the first row of the extrapolated block.

B. Interframe Compression in WMV7

Interframe compression in the WMV7 encoder uses
block-based motion compensated prediction coding fol-
lowed by transform coding of the residual error. FIGS. 3 and
4 illustrate the block-based interframe compression for a
predicted frame in the WMV7 encoder. In particular, FIG. 3
illustrates motion estimation for a predicted frame (310) and
FIG. 4 illustrates compression of a prediction residual for a
motion-estimated block of a predicted frame.

The WMV7 encoder splits a predicted frame into 8x8
blocks of pixels. Groups of 4 8x8 blocks form macroblocks.
For each macroblock, a motion estimation process is per-
formed. The motion estimation approximates the motion of
the macroblock of pixels relative to a reference frame, for
example, a previously coded, preceding frame. In FIG. 3, the
WMV7 encoder computes a motion vector for a macroblock
(315) in the predicted frame (310). To compute the motion
vector, the encoder searches in a search area (335) of a
reference frame (330). Within the search area (335), the
encoder compares the macroblock (315) from the predicted
frame (310) to various candidate macroblocks in order to
find a candidate macroblock that is a good match. The
encoder can check candidate macroblocks every pixel or
every Y2 pixel in the search area (335), depending on the
desired motion estimation resolution for the encoder. Other
video encoders check at other increments, for example,
every Y pixel. For a candidate macroblock, the encoder
checks the difference between the macroblock (315) of the
predicted frame (310) and the candidate macroblock and the
cost of encoding the motion vector for that macroblock.
After the encoder finds a good matching macroblock, the
block matching process ends. The encoder outputs the
motion vector (entropy coded) for the matching macroblock
so the decoder can find the matching macroblock during

5

20

25

30

35

40

45

50

55

60

65

4

decoding. When decoding the predicted frame (310), a
decoder uses the motion vector to compute a prediction
macroblock for the macroblock (315) using information
from the reference frame (330). The prediction for the
macroblock (315) is rarely perfect, so the encoder usually
encodes 8x8 blocks of pixel differences (also called the error
or residual blocks) between the prediction macroblock and
the macroblock (315) itself.

Motion estimation and compensation are effective com-
pression techniques, but various previous motion estimation/
compensation techniques (as in WMV7 and elsewhere) have
several disadvantages, including:

1) The resolution of the motion estimation (i.e., pixel, %2
pixel, Y4 pixel increments) does not adapt to the video
source. For example, for different qualities of video source
(clean vs. noisy), the video encoder uses the same resolution
of motion estimation, which can hurt compression effi-
ciency.

2) For /4 pixel motion estimation, the search strategy fails to
adequately exploit previously completed computations to
speed up searching.

3) For Y4 pixel motion estimation, the search range is too
large and inefficient. In particular, the horizontal resolution
is the same as the vertical resolution in the search range,
which does not match the motion characteristics of many
video signals.

4) For Y4 pixel motion estimation, the representation of
motion vectors is inefficient to the extent bit allocation for
horizontal movement is the same as bit allocation for
vertical resolution.

FIG. 4 illustrates the computation and encoding of an
error block (435) for a motion-estimated block in the WMV7
encoder. The error block (435) is the difference between the
predicted block (415) and the original current block (425).
The encoder applies a DCT (440) to error block (435),
resulting in 8x8 block (445) of coeflicients. Even more than
was the case with DCT coefficients for pixel values, the
significant information for the error block (435) is concen-
trated in low frequency coefficients (conventionally, the
upper left of the block (445)) and many of the high fre-
quency coeflicients have values of zero or close to zero
(conventionally, the lower right of the block (445)).

The encoder then quantizes (450) the DCT coefficients,
resulting in an 8x8 block of quantized DCT coefficients
(455). The quantization step size is adjustable. Again, since
low frequency DCT coefficients tend to have higher values,
quantization results in loss of precision, but not complete
loss of the information for the coefficients. On the other
hand, since high frequency DCT coefficients tend to have
values of zero or close to zero, quantization of the high
frequency coeflicients results in contiguous regions of zero
values. In addition, in some cases high frequency DCT
coeflicients are quantized more coarsely than low frequency
DCT coefficients, resulting in greater loss of precision/
information for the high frequency DCT coefficients.

The encoder then prepares the 8x8 block (455) of quan-
tized DCT coefficients for entropy encoding. The encoder
scans (460) the 8x8 block (455) into a one dimensional array
(465) with 64 elements, such that coefficients are generally
ordered from lowest frequency to highest frequency, which
typical creates long runs of zero values.

The encoder entropy encodes the scanned coefficients
using a variation of run length coding (470). The encoder
selects an entropy code from one or more run/level/last
tables (475) and outputs the entropy code.

FIG. 5 shows the decoding process (500) for an inter-
coded block. Due to the quantization of the DCT coeffi-

US 9,456,216 B2

5

cients, the reconstructed block (575) is not identical to the
corresponding original block. The compression is lossy.

In summary of FIG. 5, a decoder decodes (510, 520)
entropy-coded information representing a prediction
residual using variable length decoding and one or more
run/level/last tables (515). The decoder inverse scans (530)
a one-dimensional array (525) storing the entropy-decoded
information into a two-dimensional block (535). The
decoder inverse quantizes and inverse discrete cosine trans-
forms (together, 540) the data, resulting in a reconstructed
error block (545). In a separate path, the decoder computes
a predicted block (565) using motion vector information
(555) for displacement from a reference frame. The decoder
combines (570) the predicted block (555) with the recon-
structed error block (545) to form the reconstructed block
(575).

The amount of change between the original and recon-
structed frame is termed the distortion and the number of bits
required to code the frame is termed the rate. The amount of
distortion is roughly inversely proportional to the rate. In
other words, coding a frame with fewer bits (greater com-
pression) will result in greater distortion and vice versa. One
of the goals of a video compression scheme is to try to
improve the rate-distortion—in other words to try to achieve
the same distortion using fewer bits (or the same bits and
lower distortion).

Compression of prediction residuals as in WMV7 can
dramatically reduce bitrate while slightly or moderately
affecting quality, but the compression technique is less than
optimal in some circumstances. The size of the frequency
transform is the size of the prediction residual block (e.g., an
8x8 DCT for an 8x8 prediction residual). In some circum-
stances, this fails to exploit localization of error within the
prediction residual block.

C. Post-Processing with a Deblocking Filter in WMV7

For block-based video compression and decompression,
quantization and other lossy processing stages introduce
distortion that commonly shows up as blocky artifacts—
perceptible discontinuities between blocks.

To reduce the perceptibility of blocky artifacts, the
WMV7 decoder can process reconstructed frames with a
deblocking filter. The deblocking filter smoothes the bound-
aries between blocks.

While the deblocking filter in WMV7 improves perceived
video quality, it has several disadvantages. For example, the
smoothing occurs only on reconstructed output in the
decoder. Therefore, prediction processes such as motion
estimation cannot take advantage of the smoothing. More-
over, the smoothing by the post-processing filter can be too
extreme.

D. Standards for Video Compression and Decompression

Aside from WMV7, several international standards relate
to video compression and decompression. These standards
include the Motion Picture Experts Group [“MPEG™] 1, 2,
and 4 standards and the H.261, H.262, and H.263 standards
from the International Telecommunication Union [“ITU”].
Like WMV7, these standards use a combination of intra-
frame and interframe compression, although the standards
typically differ from WMV7 in the details of the compres-
sion techniques used. For additional detail about the stan-
dards, see the standards’ specifications themselves.

Given the critical importance of video compression and
decompression to digital video, it is not surprising that video
compression and decompression are richly developed fields.
Whatever the benefits of previous video compression and
decompression techniques, however, they do not have the
advantages of the following techniques and tools.

20

25

30

35

40

45

50

55

60

65

6
SUMMARY

In summary, the detailed description is directed to trans-
form coding and inverse transform coding of blocks of
prediction residuals with sub-block transforms. With sub-
block transforms, the encoder can react to localization of
error within prediction residual blocks. The various tech-
niques and tools can be used in combination or indepen-
dently.

According to a first set of techniques and tools, a video
encoder adaptively sets transform sizes for coding prediction
residuals, switching between multiple available block and
sub-block transform sizes. For example, for a 8x8 prediction
residual block, the encoder switches between an 8x8, two
8x4, or two 4x8 DCTs. A video decoder adaptively switches
block transform sizes in decoding.

According to a second set of techniques and tools, a video
encoder makes a switching decision for transform sizes in a
closed loop (actual testing of the options). Alternatively, the
encoder uses an open loop (estimation of suitability of the
options), which emphasizes computational simplicity over
reliability.

According to a third set of techniques and tools, a video
encoder makes a switching decision for transform sizes at
the frame, macroblock, block, and/or other levels. For
example, the encoder evaluates the efficiency of switching at
frame, macroblock, and block levels and embeds flags in the
bitstream at the selected switching levels. This allows the
encoder to find a solution that weighs distortion reduction/
bitrate gain against signaling overhead for different levels
(e.g., frame, macroblock, block) of control. A video decoder
reacts to the switching at different levels during decoding.

According to a fourth set of techniques and tools, for
different transform sizes, a video encoder uses different scan
patterns to order the elements of a two-dimensional block of
coeflicient data in a one-dimensional array. By using differ-
ent scan patterns, the encoder decreases the entropy of the
values in the one-dimensional array, for example, by
improving localization of groups of zero values. A video
decoder uses the different scan patterns during decoding for
different transform sizes.

According to a fifth set of techniques and tools, a video
encoder uses a sub-block pattern code to indicate the pres-
ence or absence of information for the sub-blocks of a
prediction residual. For example, a sub-block pattern code
indicates which of two 4x8 sub-blocks has associated com-
pressed information in a bitstream and which has no such
information. A video decoder receives and reacts to sub-
block pattern codes during decoding.

Additional features and advantages will be made apparent
from the following detailed description of different embodi-
ments that proceeds with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram showing block-based intraframe
compression of an 8x8 block of pixels according to prior art.

FIG. 2 is a diagram showing prediction of frequency
coeflicients according to the prior art.

FIG. 3 is a diagram showing motion estimation in a video
encoder according to the prior art.

FIG. 4 is a diagram showing block-based interframe
compression for an 8x8 block of prediction residuals in a
video encoder according to the prior art.

US 9,456,216 B2

7

FIG. 5 is a diagram showing block-based interframe
decompression for an 8x8 block of prediction residuals
according to the prior art.

FIG. 6 is a block diagram of a suitable computing
environment in which several described embodiments may
be implemented.

FIG. 7 is a block diagram of a generalized video encoder
system used in several described embodiments.

FIG. 8 is a block diagram of a generalized video decoder
system used in several described embodiments.

FIG. 9 is a flowchart of a technique for encoding residual
blocks with sub-block transforms selected at switching
levels in a video encoder.

FIGS. 10a-10c are diagrams showing transform coding of
a block of prediction residuals using one of several available
transform sizes.

FIGS. 11a-11d are code listings showing example pseudo-
code for 4-point and 8-point IDCT operations for rows and
columns.

FIG. 12 is a diagram showing decompression and inverse
transform coding of a block of prediction residuals using
inverse sub-block transforms.

FIGS. 13a-13f are flowcharts of a closed loop technique
for setting transform sizes for prediction residuals of a frame
in a video encoder.

FIG. 14 is a flowchart showing a technique for switching
transform sizes in a video decoder.

FIG. 15 is a flowchart showing a technique for selecting
one of multiple available scan patterns for a prediction
residual for a motion-compensated block.

FIGS. 16a-16¢ are charts showing scan patterns in one
implementation.

FIG. 17 is a flowchart showing a technique for using
sub-block pattern codes in a video decoder.

DETAILED DESCRIPTION

The present application relates to techniques and tools for
video encoding and decoding. In various described embodi-
ments, a video encoder incorporates techniques that improve
the efficiency of interframe coding, a video decoder incor-
porates techniques that improve the efficiency of interframe
decoding, and a bitstream format includes flags and other
codes to incorporate the techniques.

The various techniques and tools can be used in combi-
nation or independently. Different embodiments implement
one or more of the described techniques and tools.

1. Computing Environment

FIG. 6 illustrates a generalized example of a suitable
computing environment (600) in which several of the
described embodiments may be implemented. The comput-
ing environment (600) is not intended to suggest any limi-
tation as to scope of use or functionality, as the techniques
and tools may be implemented in diverse general-purpose or
special-purpose computing environments.

With reference to FIG. 6, the computing environment
(600) includes at least one processing unit (610) and
memory (620). In FIG. 6, this most basic configuration (630)
is included within a dashed line. The processing unit (610)
executes computer-executable instructions and may be a real
or a virtual processor. In a multi-processing system, multiple
processing units execute computer-executable instructions
to increase processing power. The memory (620) may be
volatile memory (e.g., registers, cache, RAM), non-volatile
memory (e.g., ROM, EEPROM, flash memory, etc.), or
some combination of the two. The memory (620) stores
software (680) implementing a video encoder or decoder.

20

25

30

35

40

45

50

55

60

65

8

A computing environment may have additional features.
For example, the computing environment (600) includes
storage (640), one or more input devices (650), one or more
output devices (660), and one or more communication
connections (670). An interconnection mechanism (not
shown) such as a bus, controller, or network interconnects
the components of the computing environment (600). Typi-
cally, operating system software (not shown) provides an
operating environment for other software executing in the
computing environment (600), and coordinates activities of
the components of the computing environment (600).

The storage (640) may be removable or non-removable,
and includes magnetic disks, magnetic tapes or cassettes,
CD-ROMs, DVDs, or any other medium which can be used
to store information and which can be accessed within the
computing environment (600). The storage (640) stores
instructions for the software (680) implementing the video
encoder or decoder.

The input device(s) (650) may be a touch input device
such as a keyboard, mouse, pen, or trackball, a voice input
device, a scanning device, or another device that provides
input to the computing environment (600). For audio or
video encoding, the input device(s) (650) may be a sound
card, video card, TV tuner card, or similar device that
accepts audio or video input in analog or digital form, or a
CD-ROM or CD-RW that reads audio or video samples into
the computing environment (600). The output device(s)
(660) may be a display, printer, speaker, CD-writer, or
another device that provides output from the computing
environment (600).

The communication connection(s) (670) enable commu-
nication over a communication medium to another comput-
ing entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media include wired or wireless
techniques implemented with an electrical, optical, RF,
infrared, acoustic, or other carrier.

The techniques and tools can be described in the general
context of computer-readable media. Computer-readable
media are any available media that can be accessed within
a computing environment. By way of example, and not
limitation, with the computing environment (600), com-
puter-readable media include memory (620), storage (640),
communication media, and combinations of any of the
above.

The techniques and tools can be described in the general
context of computer-executable instructions, such as those
included in program modules, being executed in a comput-
ing environment on a target real or virtual processor. Gen-
erally, program modules include routines, programs, librar-
ies, objects, classes, components, data structures, etc. that
perform particular tasks or implement particular abstract
data types. The functionality of the program modules may be
combined or split between program modules as desired in
various embodiments. Computer-executable instructions for
program modules may be executed within a local or distrib-
uted computing environment.

For the sake of presentation, the detailed description uses
terms like “determine,” “select,” “adjust,” and “apply” to
describe computer operations in a computing environment.
These terms are high-level abstractions for operations per-
formed by a computer, and should not be confused with acts

2 <

US 9,456,216 B2

9

performed by a human being. The actual computer opera-
tions corresponding to these terms vary depending on imple-
mentation.

II. Generalized Video Encoder and Decoder

FIG. 7 is a block diagram of a generalized video encoder
(700) and FIG. 8 is a block diagram of a generalized video
decoder (800).

The relationships shown between modules within the
encoder and decoder indicate the main flow of information
in the encoder and decoder; other relationships are not
shown for the sake of simplicity. In particular, FIGS. 7 and
8 usually do not show side information indicating the
encoder settings, modes, tables, etc. used for a video
sequence, frame, macroblock, block, etc. Such side infor-
mation is sent in the output bitstream, typically after entropy
encoding of the side information. The format of the output
bitstream can be Windows Media Video version 8 format or
another format.

The encoder (700) and decoder (800) are block-based and
use a 4:2:0 macroblock format with each macroblock includ-
ing 4 luminance 8x8 luminance blocks (at times treated as
one 16x16 macroblock) and two 8x8 chrominance blocks.
Alternatively, the encoder (700) and decoder (800) are
object-based, use a different macroblock or block format, or
perform operations on sets of pixels of different size or
configuration than 8x8 blocks and 16x16 macroblocks.

Depending on implementation and the type of compres-
sion desired, modules of the encoder or decoder can be
added, omitted, split into multiple modules, combined with
other modules, and/or replaced with like modules. In alter-
native embodiments, encoder or decoders with different
modules and/or other configurations of modules perform one
or more of the described techniques.

A. Video Encoder

FIG. 7 is a block diagram of a general video encoder
system (700). The encoder system (700) receives a sequence
of video frames including a current frame (705), and pro-
duces compressed video information (795) as output. Par-
ticular embodiments of video encoders typically use a
variation or supplemented version of the generalized
encoder (700).

The encoder system (700) compresses predicted frames
and key frames. For the sake of presentation, FIG. 7 shows
a path for key frames through the encoder system (700) and
a path for forward-predicted frames. Many of the compo-
nents of the encoder system (700) are used for compressing
both key frames and predicted frames. The exact operations
performed by those components can vary depending on the
type of information being compressed.

A predicted frame [also called p-frame, b-frame for bi-
directional prediction, or inter-coded frame] is represented
in terms of prediction (or difference) from one or more other
frames. A prediction residual is the difference between what
was predicted and the original frame. In contrast, a key
frame [also called i-frame, intra-coded frame] is compressed
without reference to other frames.

If the current frame (705) is a forward-predicted frame, a
motion estimator (710) estimates motion of macroblocks or
other sets of pixels of the current frame (705) with respect
to a reference frame, which is the reconstructed previous
frame (725) buffered in the frame store (720). In alternative
embodiments, the reference frame is a later frame or the
current frame is bi-directionally predicted. The motion esti-
mator (710) can estimate motion by pixel, 2 pixel, %4 pixel,
or other increments, and can switch the resolution of the
motion estimation on a frame-by-frame basis or other basis.
The resolution of the motion estimation can be the same or

20

25

30

35

40

45

50

55

60

65

10

different horizontally and vertically. The motion estimator
(710) outputs as side information motion information (715)
such as motion vectors. A motion compensator (730) applies
the motion information (715) to the reconstructed previous
frame (725) to form a motion-compensated current frame
(735). The prediction is rarely perfect, however, and the
difference between the motion-compensated current frame
(735) and the original current frame (705) is the prediction
residual (745). Alternatively, a motion estimator and motion
compensator apply another type of motion estimation/com-
pensation.

A frequency transformer (760) converts the spatial
domain video information into frequency domain (i.e., spec-
tral) data. For block-based video frames, the frequency
transformer (760) applies a discrete cosine transform
[“DCT”] or variant of DCT to blocks of the pixel data or
prediction residual data, producing blocks of DCT coeffi-
cients. Alternatively, the frequency transformer (760)
applies another conventional frequency transform such as a
Fourier transform or uses wavelet or subband analysis. In
embodiments in which the encoder uses spatial extrapolation
(not shown in FIG. 7) to encode blocks of key frames, the
frequency transformer (760) can apply a re-oriented fre-
quency transform such as a skewed DCT to blocks of
prediction residuals for the key frame. In other embodi-
ments, the frequency transformer (760) applies an 8x8, 8x4,
4x8, or other size frequency transforms (e.g., DCT) to
prediction residuals for predicted frames.

A quantizer (770) then quantizes the blocks of spectral
data coeflicients. The quantizer applies uniform, scalar
quantization to the spectral data with a step-size that varies
on a frame-by-frame basis or other basis. Alternatively, the
quantizer applies another type of quantization to the spectral
data coefficients, for example, a non-uniform, vector, or
non-adaptive quantization, or directly quantizes spatial
domain data in an encoder system that does not use fre-
quency transformations. In addition to adaptive quantiza-
tion, the encoder (700) can use frame dropping, adaptive
filtering, or other techniques for rate control.

When a reconstructed current frame is needed for subse-
quent motion estimation/compensation, an inverse quantizer
(776) performs inverse quantization on the quantized spec-
tral data coefficients. An inverse frequency transformer
(766) then performs the inverse of the operations of the
frequency transformer (760), producing a reconstructed pre-
diction residual (for a predicted frame) or a reconstructed
key frame. If the current frame (705) was a key frame, the
reconstructed key frame is taken as the reconstructed current
frame (not shown). If the current frame (705) was a pre-
dicted frame, the reconstructed prediction residual is added
to the motion-compensated current frame (735) to form the
reconstructed current frame. The frame store (720) buffers
the reconstructed current frame for use in predicting the next
frame. In some embodiments, the encoder applies a deblock-
ing filter to the reconstructed frame to adaptively smooth
discontinuities in the blocks of the frame.

The entropy coder (780) compresses the output of the
quantizer (770) as well as certain side information (e.g.,
motion information (715), spatial extrapolation modes,
quantization step size). Typical entropy coding techniques
include arithmetic coding, differential coding, Huffman cod-
ing, run length coding, L.Z coding, dictionary coding, and
combinations of the above. The entropy coder (780) typi-
cally uses different coding techniques for different kinds of
information (e.g., DC coefficients, AC coefficients, different
kinds of side information), and can choose from among
multiple code tables within a particular coding technique.

US 9,456,216 B2

11

The entropy coder (780) puts compressed video informa-
tion (795) in the buffer (790). A buffer level indicator is fed
back to bitrate adaptive modules.

The compressed video information (795) is depleted from
the buffer (790) at a constant or relatively constant bitrate
and stored for subsequent streaming at that bitrate. There-
fore, the level of the buffer (790) is primarily a function of
the entropy of the filtered, quantized video information,
which affects the efficiency of the entropy coding. Alterna-
tively, the encoder system (700) streams compressed video
information immediately following compression, and the
level of the buffer (790) also depends on the rate at which
information is depleted from the buffer (790) for transmis-
sion.

Before or after the buffer (790), the compressed video
information (795) can be channel coded for transmission
over the network. The channel coding can apply error
detection and correction data to the compressed video infor-
mation (795).

B. Video Decoder

FIG. 8 is a block diagram of a general video decoder
system (800). The decoder system (800) receives informa-
tion (895) for a compressed sequence of video frames and
produces output including a reconstructed frame (805).
Particular embodiments of video decoders typically use a
variation or supplemented version of the generalized
decoder (800).

The decoder system (800) decompresses predicted frames
and key frames. For the sake of presentation, FIG. 8 shows
a path for key frames through the decoder system (800) and
a path for forward-predicted frames. Many of the compo-
nents of the decoder system (800) are used for compressing
both key frames and predicted frames. The exact operations
performed by those components can vary depending on the
type of information being compressed.

A buffer (890) receives the information (895) for the
compressed video sequence and makes the received infor-
mation available to the entropy decoder (880). The buffer
(890) typically receives the information at a rate that is fairly
constant over time, and includes a jitter buffer to smooth
short-term variations in bandwidth or transmission. The
buffer (890) can include a playback buffer and other buffers
as well. Alternatively, the buffer (890) receives information
at a varying rate. Before or after the buffer (890), the
compressed video information can be channel decoded and
processed for error detection and correction.

The entropy decoder (880) entropy decodes entropy-
coded quantized data as well as entropy-coded side infor-
mation (e.g., motion information (815), spatial extrapolation
modes, quantization step size), typically applying the
inverse of the entropy encoding performed in the encoder.
Entropy decoding techniques include arithmetic decoding,
differential decoding, Huffman decoding, run length decod-
ing, [.Z decoding, dictionary decoding, and combinations of
the above. The entropy decoder (880) frequently uses dif-
ferent decoding techniques for different kinds of information
(e.g., DC coefficients, AC coefficients, different kinds of side
information), and can choose from among multiple code
tables within a particular decoding technique.

If the frame (805) to be reconstructed is a forward-
predicted frame, a motion compensator (830) applies motion
information (815) to a reference frame (825) to form a
prediction (835) of the frame (805) being reconstructed. For
example, the motion compensator (830) uses a macroblock
motion vector to find a macroblock in the reference frame
(825). A frame buffer (820) stores previous reconstructed
frames for use as reference frames. The motion compensator

20

25

30

35

40

45

50

55

60

65

12

(830) can compensate for motion at pixel, V2 pixel, V4 pixel,
or other increments, and can switch the resolution of the
motion compensation on a frame-by-frame basis or other
basis. The resolution of the motion compensation can be the
same or different horizontally and vertically. Alternatively, a
motion compensator applies another type of motion com-
pensation. The prediction by the motion compensator is
rarely perfect, so the decoder (800) also reconstructs pre-
diction residuals.

When the decoder needs a reconstructed frame for sub-
sequent motion compensation, the frame store (820) buffers
the reconstructed frame for use in predicting the next frame.
In some embodiments, the encoder applies a deblocking
filter to the reconstructed frame to adaptively smooth dis-
continuities in the blocks of the frame.

An inverse quantizer (870) inverse quantizes entropy-
decoded data. In general, the inverse quantizer applies
uniform, scalar inverse quantization to the entropy-decoded
data with a step-size that varies on a frame-by-frame basis
or other basis. Alternatively, the inverse quantizer applies
another type of inverse quantization to the data, for example,
a non-uniform, vector, or non-adaptive quantization, or
directly inverse quantizes spatial domain data in a decoder
system that does not use inverse frequency transformations.

An inverse frequency transformer (860) converts the
quantized, frequency domain data into spatial domain video
information. For block-based video frames, the inverse
frequency transformer (860) applies an inverse DCT
[“IDCT”] or variant of IDCT to blocks of the DCT coeffi-
cients, producing pixel data or prediction residual data for
key frames or predicted frames, respectively. Alternatively,
the frequency transformer (860) applies another conven-
tional inverse frequency transform such as a Fourier trans-
form or uses wavelet or subband synthesis. In embodiments
in which the decoder uses spatial extrapolation (not shown
in FIG. 8) to decode blocks of key frames, the inverse
frequency transformer (860) can apply a re-oriented inverse
frequency transform such as a skewed IDCT to blocks of
prediction residuals for the key frame. In other embodi-
ments, the inverse frequency transformer (860) applies an
8x8, 8x4, 4x8, or other size inverse frequency transforms
(e.g., IDCT) to prediction residuals for predicted frames.
II1. Intraframe Encoding and Decoding

In one or more embodiments, a video encoder exploits
redundancies in typical still images in order to code the
I-frame information using a smaller number of bits. For
additional detail about intraframe encoding and decoding in
some embodiments, see U.S. patent application Ser. No.
10/322,171, entitled “Spatial Extrapolation of Pixel Values
in Intraframe Video Coding and Decoding,” filed concur-
rently herewith.

IV. Interframe Encoding and Decoding

Inter-frame coding exploits temporal redundancy between
frames to achieve compression. Temporal redundancy
reduction uses previously coded frames as predictors when
coding the current frame.

A. Motion Estimation

In one or more embodiments, a video encoder exploits
temporal redundancies in typical video sequences in order to
code the information using a smaller number of bits. The
video encoder uses motion estimation/compensation of a
macroblock or other set of pixels of a current frame with
respect to a reference frame. A video decoder uses corre-
sponding motion compensation. For additional detail about
motion estimation and motion compensation in some
embodiments, see U.S. patent application Ser. No. 10/322,

US 9,456,216 B2

13

351, entitled “Multi-Resolution Motion Estimation and
Compensation,” filed concurrently herewith.

B. Coding of Prediction Residuals

Motion estimation is rarely perfect, and the video encoder
uses prediction residuals to represent the differences
between the original video information and the video infor-
mation predicted using motion estimation.

In one or more embodiments, a video encoder exploits
redundancies in prediction residuals in order to code the
information using a smaller number of bits. The video
encoder compresses prediction residuals for blocks or other
sets of pixel domain information of a frame using sub-block
transforms. A video decoder uses corresponding decompres-
sion using sub-block inverse transforms. By using sub-block
transforms, the encoder reacts to localization of error pat-
terns in the data, which improves the efficiency of compres-
sion. Various features of the compression and decompres-
sion using sub-block transforms can be used in combination
or independently. These features include, but are not limited
to:

1) Adaptively setting transform sizes for spatial domain
data by switching between multiple available transform
sizes. For example, when coding a prediction residual, a
video encoder adaptively switches between multiple avail-
able transform sizes for a transform such as DCT. For an 8x8
prediction residual block, the encoder can switch between an
8x8 DCT, two 4x8 DCTs, or two 8x4 DCTs. A video decoder
adaptively switches transform sizes during decoding.

2a) Setting transform sizes for spatial domain data by
making a switching decision in a closed loop. The video
encoder actually tests the different transform sizes and then
selects one.

2b) Setting transform sizes for spatial domain data by
making a switching decision in a open loop. The video
encoder estimates the suitability of the different transform
sizes and then selects one.

3a) Switching transform sizes for spatial domain data for
a frame at the frame level in a video encoder or decoder.

3b) Switching transform sizes for spatial domain data for
a frame at the macroblock level in a video encoder or
decoder.

3c) Switching transform sizes for spatial domain data for
a frame at the block level in a video encoder or decoder.

3d) Switching transform sizes for spatial domain data for
a frame at the macroblock level or block level within the
frame in a video encoder or decoder.

4) Switching scan patterns for spatial domain data for a
frame for different transform sizes in a video encoder or
decoder. Switching scan patterns decreases the entropy of
the one-dimensional data, which improves the efficiency of
subsequent entropy coding.

5) Using a sub-block pattern code to indicate the presence
or absence of information for sub-blocks of a block of spatial
domain data. For example, for an 8x8 prediction residual
block, the sub-block pattern code indicates the presence or
absence of information for the sub-blocks associated with
the sub-block transform for the block. Using the sub-block
pattern codes reduces bitrate for zero-value sub-block infor-
mation. A video encoder outputs sub-block pattern codes; a
video decoder receives them.

To code prediction residuals, a video encoder uses a
frequency transform with a transform size selected from
multiple available transform sizes (alternatively called trans-
form types). In some embodiments, a video encoder applies
a frequency transform to a prediction residual block follow-
ing motion compensation. The frequency transform is a
DCT or other frequency transform. For an 8x8 block, the

20

25

30

35

40

45

50

55

60

65

14

encoder selects between an 8x8 transform, two 4x8 trans-
forms, or two 8x4 transforms. If two 84 DCTs are used, the
8x8 residual block is divided horizontally into two 8x4
sub-blocks, which are transformed into two 8x4 DCT arrays.
Likewise, if two 4x8 DCTs are used, the 8x8 residual block
is divided vertically into two 4x8 sub-blocks, which are
transformed into two 4x8 DCT arrays. A video decoder uses
an inverse frequency transform with a transform size
selected from multiple available transform sizes. In alterna-
tive embodiments, the encoder and decoder work with sets
of values other than 8x8 blocks, work with information other
than prediction residuals following motion compensation
(e.g., for intraframe coding), and/or use a different trans-
form.

To determine which transform size to use, a video encoder
evaluates the different transform sizes. In some embodi-
ments, the encoder evaluates the different transform sizes in
a closed loop. The encoder tests a frequency transform at
each of the transform sizes, and evaluates the results with a
rate, distortion, or rate-distortion criterion. The encoder can
test the transform at varying switching levels (e.g., frame,
macroblock, block) as well. In alternative embodiments, the
encoder evaluates the different transform sizes in an open
loop, estimating the suitability of the different transform
sizes without actually applying the different transform sizes.

A video encoder and decoder switch between transform
sizes. In some embodiments, a video encoder sets switching
flags at varying levels (e.g., frame, macroblock, and/or
block) from frame to frame. A decoder makes corresponding
switches during decoding. In alternative embodiments, the
encoder always switches on a per-frame basis, a per-mac-
roblock basis, a per-block basis, a mixed macroblock or
block basis, or some other basis.

Following the frequency transform, a video encoder con-
verts a two-dimensional array of frequency coefficients into
a one-dimensional array for entropy encoding. Conversely,
a decoder converts a one-dimensional array of frequency
coeflicients into a two-dimensional array following entropy
decoding. In some embodiments, an encoder/decoder selects
a scan pattern from among multiple available scan patterns
based upon a transform size.

Following the frequency transform, a video encoder
entropy encodes the frequency-transformed data. In some
embodiments, a video encoder determines whether data for
a particular sub-block is absent or insignificant. In a sub-
block pattern code, the encoder indicates the presence or
absence of information for sub-blocks of a frequency-
transformed block of data. A video decoder receives the
sub-block pattern code and determines whether information
is present or absent for particular sub-blocks of a block. In
alternative embodiments, the encoder and decoder do not
use sub-block pattern codes.

1. Sub-Block Transforms

A video encoder and decoder use sub-block transforms to
efficiently code prediction residuals following block-based
motion compensation. The encoder/decoder switches
between different transform sizes to apply to the prediction
residual blocks.

FIG. 9 shows a technique for switching transform sizes
during encoding of prediction residual blocks in a video
encoder. A video encoder gets (910) a frame, for example, a
predicted video frame. For the sake of simplicity, FIG. 9
does not show the various ways in which the technique (900)
can be used in conjunction with other techniques.

The encoder selects (920) switching levels for the frame.
For example, the encoder evaluates the performance of the
sub-block transform sizes at different switching levels

US 9,456,216 B2

15

within a closed loop by testing the rate-distortion perfor-
mance with different levels of switching (e.g., at the frame
level only, at macroblock level only, at macroblock and
block levels). The closed loop is described in detail below.
Or, the encoder evaluates the performance of different
switching levels within an open loop. For example, the
encoder computes the variance, energy, or some other mea-
sure for the prediction residual blocks as partitioned with the
different sub-block sizes. The encoder can compute the
measure in the spatial domain or frequency domain, on
quantized or original data.

The encoder transform codes (930) the prediction residual
blocks for the frame using the sub-block transform sizes and
switching levels selected above. In one implementation, the
encoder uses either an 8x8 DCT, two 4x8 DCTs, or two 8x4
DCTs on an 8x8 prediction residual block, as described in
more detail below. Alternatively, the encoder uses another
frequency transform and/or has more or fewer transform
sizes (e.g., 4x4 sub-block transform).

The encoder determines (950) whether there are any more
frames. If not, the technique ends. If so, the encoder gets
(960) the next frame and selects (920) switching levels for
it.

In one implementation, a video encoder/decoder switches
between different sizes of DCT/IDCT when processing 8x8
blocks of prediction residuals. The encoder/decoder use of
one of an 8x8 DCT/IDCT, two 4x8 DCT/IDCTs, or two 8x4
DCT/IDCTs for a prediction residual block. For example, if
a prediction residual includes many non-zero values in the
top half and mostly zero values in the bottom half, the
encoder and decoder use the 8x4 transform size to isolate the
energy of the block in one sub-block. The 4x8 transform size
is similarly indicated when the distribution of values is
different on left and right sides of the block. When values are
evenly distributed throughout a block, the encoder and
decoder use the 8x8 transform. The encoder and decoder can
use other transform sizes as well (e.g., 4x4, 2x8, 8x2, 4x2,
2x4, etc.). In general, the potential reduction in rate-distor-
tion for additional transform sizes is weighed against the
increase in processing overhead for additional transform
sizes, and against potential increases in relative cost of
bitrate for signaling overhead for smaller transform sizes.

FIGS. 10a-10¢ show transform coding and compression
of an 8x8 prediction error block (1010) using an 8x8 DCT
(1020), two 8x4 DCTs (1040), or two 4x8 DCTs (1060) in
this implementation. A video encoder computes (1008) an
error block (1010) as the difference between a predicted
block (1002) and the current 8x8 block (1004). The video
encoder applies either an 8x8 DCT (1020), two 8x4 DCTs
(1040), or two 4x8 DCTs (1060) to the error block.

FIGS. 11a-11d show example pseudocode (1100) for
4-point and 8-point IDCT operations for rows and columns.
For an 8x8 block, an 8-point one-dimensional IDCT opera-
tion RowIDCT_8Point() is performed on each of the 8 rows
of the block, then an 8-point one-dimensional IDCT opera-
tion ColumnIDCT_8Point() is performed on each of the 8
resultant columns. For an 8x4 block, an 8-point one-dimen-
sional IDCT operation RowIDCT_8Point() is performed on
each of the 4 rows of the block, then a 4-point one-
dimensional IDCT operation ColumnIDCT_4Point() is
performed on each of the 8 resultant columns. For a 4x8
block, a 4-point one-dimensional IDCT operation
RowIDCT_4Point() is performed on each of the 8 rows of
the block, then an 8-point one-dimensional IDCT operation
ColumnIDCT_8Point() is performed on each of the 4
resultant columns.

20

25

30

35

40

45

50

55

60

65

16

For the 8x8 DCT (1020), the error block (1010) becomes
an 8x8 block of DCT coefficients (1022). The encoder
quantizes (1026) the data. The encoder then scans (1030) the
block of quantized DCT coefficients (1028) into a one-
dimensional array (1032) with 64 elements, such that coef-
ficients are generally ordered from lowest frequency to
highest frequency. In the scanning, the encoder uses a scan
pattern for the 8x8 DCT. The encoder then entropy codes the
one-dimensional array (1032) using a combination of run
length coding (1080) and variable length encoding (1090)
with one or more run/level/last tables (1085).

In the implementation of FIGS. 10a-10¢, with each of the
DCT modes, the encoder uses the same run length coding,
variable length encoding, and set of one or more run/level/
last tables. In other implementations, the encoder uses
different sets of run/level/last tables or different entropy
encoding techniques for the different DCT modes (e.g., one
set of tables for the 8x8 mode, another set for the 8x4 mode,
a third set for the 4x8 mode). For example, the encoder
selects and signals different entropy code tables for different
transform sizes.

For the 8x4 DCT (1040), the error block (1010) becomes
two 8x4 blocks of DCT coefficients (1042, 1044), one for
the top half of the error block (1010) and one for the bottom
half. This can localize significant values in one or the other
half. The encoder quantizes (1046) the data. The encoder
then scans (1050) the blocks of quantized DCT coefficients
(1047, 1048) into one-dimensional arrays (1052, 1054) with
32 clements each, such that coefficients are generally
ordered from lowest frequency to highest frequency in each
array. In the scanning, the encoder uses a scan pattern for the
8x4 DCT. The encoder then entropy codes the one-dimen-
sional arrays (1052, 1054) using a combination of run length
coding (1080) and variable length encoding (1090) with one
or more run/level/last tables (1085).

For the 4x8 DCT (1060), the error block (1010) becomes
two 4x8 blocks of DCT coefficients (1062, 1064), one for
the left half of the error block (1010) and one for the right
half. This can localize significant values in one or the other
half. The encoder quantizes (1066) the data. The encoder
then scans (1070) the blocks of quantized DCT coefficients
(1067, 1068) into one-dimensional arrays (1072, 1074) with
32 clements each, such that coefficients are generally
ordered from lowest frequency to highest frequency in each
array. In the scanning, the encoder uses a scan pattern for the
4x8 DCT. The encoder then entropy codes the one-dimen-
sional arrays (1072, 1074) using a combination of run length
coding (1080) and variable length encoding (1090) with one
or more run/level/last tables (1085).

FIG. 12 shows decompression and inverse transform
coding of an 8x8 prediction error block (1210) using two
8x4 IDCTs (1240) in this implementation. Decompression
and inverse transform coding using the 4x8 IDCT use
transposes at stages around the inverse frequency transform.
Decompression and inverse transform coding using the 8x8
IDCT are shown in FIG. 5.

A video decoder entropy decodes one-dimensional arrays
(1252, 1254) of quantized frequency coeflicient values using
a combination of run length decoding (1280) and variable
length decoding (1290) with one or more run/level/last
tables (1285). The decoder then scans (1250) the one-
dimensional arrays (1252, 1254) into blocks of quantized
DCT coefficients (1247, 1248). In the scanning, the encoder
uses the scan pattern for the 8x4 DCT.

The decoder inverse quantizes (1246) the data and applies
(1240) an 8x4 inverse DCT to the reconstructed frequency
coeflicients in each of the blocks, resulting in a reconstructed

US 9,456,216 B2

17
8x4 error block (1212) for the top half of the error block
(1210) and a reconstructed 8x4 error block (1214) for the
bottom half of the error block (1210). The decoder then
combines to top (1212) and bottom (1214) halves to form the
reconstructed 8x8 error block (1210).

The decoder combines the reconstructed error block
(1210) with a predicted block (1202) from motion compen-
sation using motion information to form a reconstructed 8x8
block (1204). For example, the reconstructed 8x8 block
(1204) is a reconstructed version of the current 8x8 block
(1004) of FIG. 10.

2. Selection Using Closed Loop

FIGS. 13a through 13f show a closed loop technique
(1300) for setting transform size(s) for a frame. In the closed
loop technique (1300), the encoder applies each of 8x8, 8x4,
and 4x8 transform sizes to the 8x8 blocks of a frame,
computes distortion measures for each block with each
transform size, computes signaling overhead for switching
at different levels, and selects the transform size(s) and
switching level(s) for the frame. In alternative embodiments,
the encoder tests more or fewer transform sizes, tests dif-
ferent transform sizes, uses a closed loop technique on
something other than a per frame basis, and/or uses different
criteria to select transform size(s) and/or switching levels. In
still other alternative embodiments, the encoder uses an
open loop technique.

In the implementation illustrated in FIGS. 13a-13f, a
frame includes multiple 4:2:0 macroblocks, and each mac-
roblock is made up of six 8x8 blocks. Alternatively, another
macroblock or block format is used.

With reference to FIG. 13a, with the closed loop tech-
nique (1300), the encoder selects the transform size(s) used
in the frame. The transform size can be specified at the
frame, macroblock or block levels. At the frame level, one
of four options is specified: 1) all blocks in the frame use 8x8
DCT, 2) all blocks in the frame use 8x4 DCT, 3) all blocks
in the frame use 4x8 DCT, or 4) the transform size is
signaled at the macroblock level. If the transform type is
signaled at the macroblock level, then at each macroblock
one of four options is specified: 1) all blocks in the macro-
block use 8x8 DCT, 2) all blocks in the macroblock use 8x4
DCT, 3) all blocks in the macroblock use 4x8 DCT, or 4) the
transform size is signaled at the block level.

To start, the encoder initializes (1301) the variables cost-
Frm8x8, costFrm8x4, costFrm4x8, and costFrmvar used to
measure performance of the different transform sizes at the
frame level, as described in Table 1.

TABLE 1

Frame-level Variables for Measuring Transform Performance

Variable Description

costFrm8 x 8 Indicates the adjusted bit count for coding
all macroblocks of the frame with an

8 x 8 DCT.

Indicates the adjusted bit count for coding
all macroblocks of the frame with an

8 x 4 DCT.

Indicates the adjusted bit count for coding
all macroblocks of the frame with an

4 x 8 DCT.

Indicates the adjusted bit count for coding
all macroblocks of the frame with transform
sizes specified at the macroblock level or
below.

Indicates the best transform size for the
frame.

costFrm8 x 4

costFrm4 x 8

costFrmVar

FrameLevelTransformType

20

25

30

35

40

45

50

55

60

18
TABLE 1-continued

Frame-level Variables for Measuring Transform Performance

Variable Description

SwitchAtMBLevel Indicates whether the transform type is
signaled at the macroblock or frame level.

costFrm Indicates the adjusted bit count for the best

transform type(s) including the overhead to
signal the transform type at the frame level.

Table 1 also lists three other variables (Framelevel Trans-
formType, SwitchAtMBLevel, and costFrm), which used in
the closed loop evaluation as described below.

In a top-down, recursive process, the encoder accumulates
adjusted bit counts for these values. The encoder performs
(1310) the transforms of different sizes for a first macroblock
in the frame, as shown in FIGS. 13¢ and 134, and repeats
when there are more macroblocks (1390) in the frame. For
each macroblock, the encoder initializes (1311) the variables
costMB8x8, costMB8x4, costMB4x8, and costMBvar used
to measure performance of the different transform sizes at
the macroblock level, as described in Table 2.

TABLE 2

MB-level Variables for Measuring Transform Performance

Variable Description

costMB8 x 8 Indicates the adjusted bit count for coding all 6
blocks with an 8 x 8 DCT.

costMB8 x 4 Indicates the adjusted bit count for coding all 6
blocks with an 8 x 4 DCT.

costMB4 x 8 Indicates the adjusted bit count for coding all 6
blocks with an 4 x 8 DCT.

costMBVar Indicates the adjusted bit count for coding all 6
blocks with transform sizes specified for each
block at the block level.

MBLevelTransformType Indicates the best transform size for the
macroblock.

SwitchAtBlockLevel Indicates whether the transform type is signaled
at the block or macroblock level.

costMB Indicates the adjusted bit count for the best

transform type(s) including the overhead to
signal the transform type at the macroblock
level.

Table 2 also lists three other variables (MBLevelTrans-
formType, SwitchAtBlockLevel, and costMB), which used
in the closed loop evaluation as described below.

For each of the 6 blocks in the macroblock, the encoder
accumulates adjusted bit counts for these values. The
encoder performs (1320) the transforms of different sizes for
a first block in the macroblock, as shown in FIGS. 13e and
13f, and repeats when there are more blocks (1391) in the
macroblock. For each block, the encoder computes a rate-
distortion measure.

a. Block Level

The encoder performs (1321) the full coding and recon-
struction processes on the block using the 8x8 DCT. The
encoder applies the 8x8 DCT, quantizes the DCT coeffi-
cients, entropy codes the coefficients (e.g., run level+Huft-
man), inverse quantizes the coefficients, and applies an 8x8
inverse DCT. The quantization introduces distortion that is
subsequently measured for the block. The entropy coding
results in output bits for the block that are subsequently
counted.

The encoder also performs (1331, 1341) the full coding
and reconstruction processes on the block using two 8x4
DCTs and two 4x8 DCTs, respectively.

US 9,456,216 B2

19

The encoder measures (1322) the cost associated with the
8x8 DCT as a function of the distortion of the block and the
number of bits required to encode the block. The encoder
also measures (1332, 1342) the cost associated with the two
8x4 DCTs and two 4x8 DCTs, respectively. The encoder
computes the distortion as the mean squared error [“MSE”]
between the 64 original DCT coefficients and the 64 inverse
quantized coefficients. Alternatively, the encoder uses
another distortion measure such as sum of absolute differ-
ences [“SAD”], a perceptual distortion measure, or another
error measure.

After the encoder obtains the bit count and distortion for
each transform size, the encoder needs to make a decision
about which transform size results in the most efficient
compression. The encoder accounts for both the number of
bits and the distortion using cost function variables cost8x8,
cost8x4, and costdx8, which are described in Table 3.

TABLE 3

Block-level Variables for Measuring Transform Performance

Variable Description

cost8 x 8 Indicates the adjusted bit count for coding
the block with an 8 x 8 DCT.

cost8 x 4 Indicates the adjusted bit count for coding
the block with an 8 x 4 DCT.

costd x 8 Indicates the adjusted bit count for coding

the block with an 4 x 8 DCT.

Indicates the best transform type for the
block.

Indicates the adjusted bit count for the best
transform type including the overhead to
signal the transform type at the block level

BlockLevel Transform Type

costBlock

Table 3 also lists two other variables (BlocklevelTrans-
formType, costBlock), which are used in the closed loop
evaluation as described below.

The cost function may readjust the number of bits for a
transform size depending on the distortion for that transform
size. For example, suppose transform coding a block with
different transform sizes resulted in the following bit counts
and distortions.

TABLE 4
Example Bit Counts and Distortions
Transform Size Bit Count Distortion
8 x 8 48 1000
8 x 4 (aggregates 45 1100
of sub-blocks)
4 x 8 (aggregates 44 1200

of sub-blocks)

If the encoder considered only the bit counts, the encoder
would choose the 4x8 transform since it was encoded in the
fewest bits. However, the 4x8 transform also has the highest
distortion. To more accurately determine which transform
size is the best, the encoder also considers the distortion. In
one implementation, the 8x8 bit count is taken as the
baseline, and the bit counts for the 8x4 and 4x8 transforms
are readjusted as shown in Table 5 and the following
equations.

20

25

30

35

40

45

50

55

60

65

20
TABLE 5

Variables in Rate-Distortion Adjustments

Variable Description

D8 x 8 The 8 x 8 DCT distortion (MSE between the 64 original and
inverse quantized 8 x 8 DCT coefficients).

D8 x 4 The 8 x 4 DCT distortion (MSE between the 64 original and
inverse quantized 8 x 4 DCT coefficients).

D4 x 8 The 4 x 8 DCT distortion (MSE between the 64 original and
inverse quantized 4 x 8 DCT coefficients).

FScale 100/(quantizer step size)

For the adjusted 8x4 bit count, the following equations are
used.

SfVal8x4=(sqrt(D8x4)—sqrt(D8x8))*fScale (1),

iVal8x4=Int(fVal8x4)),

cost8x4=cost8x4+iVal8x4 3),

where Int() is a function that rounds the input to the nearest
integer. For the adjusted 4x8 bit count, the following equa-
tions are used.

SfValdx8=(sqrt(D4x8)—sqrt(D8x8))*fScale 4),

iValdx8=Int(fVal4x8); ®),

costdx8=cost4x8+iVal4x8 (6).

Once the bit counts for each transform size have been
readjusted, the one with the lowest bit count is assumed to
be the best from a rate-distortion perspective. In an alterna-
tive embodiment, the encoder uses another cost function that
relates cost and distortion as a single measure. In other
alternative embodiments, the encoder uses a cost function
that considers only rate or only distortion.

For each block, the encoder computes five values for the
variables shown in Table 3. (Some of the values are also
used in the macroblock level as described in the next
section.) As initially computed from bit counts and distor-
tion, the values cost8x8, cost8x4 and cost4x8 do not include
the overhead required to signal the transform type at the
block level. The encoder adds (1323, 1333, 1343) the bit
overhead required to signal transform size at the block level
for the different transform sizes.

cost8x8'=cost8x8+8x8overhead

™,

cost8x4'=cost8x4+8x4overhead

®),

costdx8'=cost4x8+4x8overhead

©),

where the overhead measures indicate the overhead for
switching flags for the different transform types at the block
level.

The encoder computes the values for costBlock and
BlockLevelTransformType as follows. The encoder (1350)
compares cost8x8' to cost8x4' to find the best transform size
between the two of them. The encoder sets (1351, 1352)
costBlock and BlockLevelTransformType to either the 8x8
size or the 8x4 size, respectively. The encoder then com-
pares (1354) the best transform size so far to cost4x8' to find
the best transform size between the two of them. The
encoder keeps (1355) the current values or sets (1356)
costBlock and BlockLevelTransformType to the 4x8 size.
Alternatively, the encoder uses other conditional logic to
find values for costBlock and BlockLevelTransformType.

US 9,456,216 B2

21

b. Macroblock Level

Returning to FIGS. 13¢ and 134, the encoder accumulates
(1358) the block costs for the block with the four running
totals for the macroblock: costMB8x8, costMB8x4,
costMB4x8, and costMBvar. The encoder then performs
(1320) the transforms of different sizes for the other blocks
in the macroblock. Thus, the value of costBlock is accumu-
lated for the six blocks that make up the macroblock.
Likewise, cost8x8, cost8x4 and cost4x8 are accumulated for
the six blocks.

For each macroblock, the encoder computes seven values
for the variables shown in Table 2. (Some of the values are
also used in the frame level as described in the next section.)
As initially computed for the macroblock, the values cost-
MBvar, costMB8x8, costMB8x4, and costMB4x8 do not
include the overhead required to signal the transform size at
the macroblock level. The encoder adds (1358) the number
of bits required to signal each possible choice to the bit
counts.

costMB8x8'=costMB8x8+8x8overhead (10),

costMB8x4'=costMB8x4+8x4overhead (11),

costMB4x8'=costMB4x8+4x8overhead (12),

costMBvar'=costMBvar+Varoverhead (13),

where the overhead measures indicate the overhead for
switching flags for the different transform types at the
macroblock level. For costMBvar', the overhead measure
also indicates the overhead for switching flags at the block
level.

The encoder then computes values for costMB, MBLevel-
TransformType, and SwitchAtBlockLevel as follows. Basi-
cally, the encoder decides whether to code the macroblock
with a single transform size for all blocks in the macroblock
or to allow each block in the macroblock to signal its own
transform size. The encoder compares (1360) costMB8x8' to
costMB8x4' to find the best transform size between the two
of them. The encoder sets (1361, 1362) costMB and
MBLevelTransformType to either the 8x8 size or the 8x4
size, respectively. The encoder then compares (1363) the
best transform size so far costMB to costMB4x8' to find the
best transform size between the two of them. The encoder
keeps (1364) the current values or sets (1365) costMB and
MBLevelTransformType to the 4x8 size. The encoder then
compares (1366) the best transform size so far costMB to
costMBVar' to find the best transform size between the two
of them. If costMB is less than costMBVar', the encoder
keeps (1367) the current value for costMB and sets Swit-
chAtBlocklevel to FALSE, which mean that the switching
level is macroblock level for the macroblock. Otherwise, the
encoder sets (1368) costMB to costMBVar' and sets Swit-
chAtBlocklevel to TRUE, which means that the switching
level is block level for the macroblock. Alternatively, the
encoder uses other conditional logic to find values for
costMB, MBLevelTransformType, and SwitchAtBlock-
Level.

c. Frame Level

Returning to FIGS. 134 and 134, the encoder accumulates
(1369) the macroblock costs for the macroblock with the
four running totals for the frame: costFrm8x8, costFrm8x4,
costFrm4x8, and costFrmvar. The encoder then performs
(1310) the transforms of different sizes for the other mac-
roblocks in the frame. Thus, the value of costMB is accu-
mulated for the macroblocks that make up the frame. Like-

20

25

30

35

40

45

50

55

60

65

22

wise, costMB8x8, costMB8x4 and costMB4x8 are
accumulated for the macroblocks that make up the frame.

For each frame, the encoder computes seven values for
the variables shown in Table 1. As initially computed for the
frame, costFrm8x8, costFrm8x4, costFrm4x8 and costFrm-
Var do not include the overhead required to signal the
transform at the frame level. The encoder adds (1358) the
number of bits required to signal each possible choice to the
bit counts.

costFrm8x8'=costFrm8&x8+8xoverhead (14),

costFrm8x4'=costFrm8x4+8x4overhead (15),

costFrm4x8'=costFrm4x8+4x8overhead (16),

costFrmvar'=costFrmvar+Varoverhead (17),

where the overhead measures indicate the overhead for
switching flags for the different transform types at the frame
level. For costFrmvar', the overhead measure also indicates
the overhead for switching flags at the macroblock/block
level.

The encoder then computes values for costFrm, Fra-
meLevel TransformType, and SwitchAtMBLevel as follows.
Basically, the encoder decides whether to code the frame
with a single transform type for all blocks in the frame or to
allow each macroblock to signal its own transform size. The
encoder compares (1380) costFrm8x8' to costFrm8x4' to
find the best transform size between the two of them. The
encoder sets (1381, 1382) costFrm and FramelevelTrans-
formType to either the 8x8 size or the 8x4 size, respectively.
The encoder then compares (1383) the best transform size so
far costFrm to costFrm4x8' to find the best transform size
between the two of them. The encoder keeps (1384) the
current values or sets (1385) costFrm and FrameLevel Trans-
formType to the 4x8 size. The encoder then compares (1386)
the best transform size so far costFrm to costFrmVar' to find
the best transform size between the two of them. If costFrm
is less than costFrmVar', the encoder sets (1387) SwitchAt-
MBLevel to FALSE. Otherwise, the encoder sets (1388)
SwitchAtMBLevel to TRUE. Alternatively, the encoder uses
other conditional logic to find values for costFrm, Fra-
meLevel TransformType, and SwitchAtMBLevel.

3. Signaling Switches

Continuing the example of FIGS. 134 through 13/, if the
value of SwitchAtMBLevel is TRUE, the transform type is
signaled at the macroblock level. Another signal present at
each macroblock indicates whether a single transform type
is used for all blocks in the macroblock or whether each
block signals its own transform type. This is determined by
the value of SwitchAtBlockLevel, as previously described.
It SwitchAtBlockLevel is TRUE, of transform type speci-
fied by BlockLevelTransformType as determined at the
block level is used for that block. If SwitchAtBlockLevel is
FALSE, the transform type specified by MBLevelTrans-
formType as determined at the macroblock level is used for
all the blocks in the macroblock.

If the value of SwitchAtMBLevel is FALSE, the trans-
form type used for all blocks in the frame is signaled at the
frame level. The transform type is indicated by the value of
Framelevel TransformType.

FIG. 14 shows a technique for switching transform sizes
in a video decoder. For the sake of simplicity, FIG. 14 does
not show the various ways in which the technique (1400) can
be used in conjunction with other techniques.

A decoder gets (1410) a video frame, for example, a
predicted video frame. The decoder determines (1430)

US 9,456,216 B2

23

whether frame-level switch information is used to indicate a
transform size for the frame. If so, the decoder gets (1440)
the transform type for the frame and processes (1450) the
blocks of the frame. For example, the decoder determines
whether the transform type is 8x8, 8x4, or 4x8, and then
applies an 8x8, 8x4, or 4x8 inverse DCT to the blocks of the
frame. The decoder determines (1460) whether there are any
more frames. If not, the technique ends. If so, the decoder
gets (1410) the next frame and determines (1430) whether
frame-level switch information for the frame is used to
indicate a transform size for the frame.

If the frame-level switch information is not used to
indicate a transform size for the frame, the decoder gets
(1412) a macroblock for the frame. The decoder determines
(1432) whether macroblock-level switch information is used
to indicate a transform size for the macroblock. If so, the
decoder gets (1442) the transform type for the macroblock
and processes (1452) the blocks of the macroblock. The
decoder determines (1462) whether there are any more
macroblocks in the frame. If not, the decoder determines
(1460) whether there are any more frames. If there are more
macroblocks in the frame, the decoder gets (1412) the next
macroblock and determines (1432) whether macroblock-
level switch information for the macroblock is used to
indicate a transform size for the macroblock.

If macroblock-level switch information is not used to
indicate a transform size for the macroblock, the decoder
gets (1414) a block for the macroblock. The decoder gets
(1444) the transform type for the block and processes (1454)
the block. The decoder determines (1464) whether there are
any more blocks in the macroblock. If not, the decoder
determines (1462) whether there are any more macroblocks
in the frame. If there are more blocks in the macroblock, the
decoder gets (1414) the next block and gets (1444) its
transform type.

In alternative embodiments, a video encoder and decoder
use other switching logic to switch between transform sizes.

Table 6 shows entropy codes for transform types in one
implementation.

TABLE 6

Entropy Codes for Transform Types

VLC Transform Type
0 8 x 8 DCT
10 8 x 4 DCT
11 4 x 8 DCT

Other implementations use different entropy codes and/or
different code tables for different transform sizes.

4. Scan Patterns

Following transform coding and quantization in the video
encoder, the encoder scans one or more two-dimensional
blocks of quantized frequency coefficients into one or more
one-dimensional arrays for entropy encoding. The video
decoder scans one or more one-dimensional arrays into one
or more two-dimensional blocks before inverse quantiza-
tion. A scan pattern indicates how elements of a two-
dimensional block are ordered in a corresponding one-
dimensional array.

In some embodiments, the encoder and decoder select
between multiple available scan patterns for a residual for a
motion-compensated block. Both the encoder and the
decoder use one or more scan patterns, and use different scan
patterns for different transform sizes. FIG. 15 shows a
technique (1500) for selecting one of multiple available scan

20

25

30

35

40

45

50

55

60

65

24

patterns for frequency coefficients of a prediction residual
for a motion-compensated block. For the sake of simplicity,
FIG. 15 does not show the various ways in which the
technique (1500) can be used in conjunction with other
techniques.

FIG. 15 shows three available scan patterns, which in this
context are, for example, for 8x8, 8x4, and 4x8 DCTs,
respectively. FIGS. 16a-16¢ show 8x8 (1601), 8x4 (1602),
and 4x8 (1603) scan patterns, respectively, in one imple-
mentation. Other implementations use different scan pat-
terns.

The encoder/decoder selects (1510) a scan pattern for
scanning the residual block. For example, an encoder/
decoder selects a scan pattern based upon transform size for
the block. The encoder/decoder then applies (1520, 1530, or
1540) the selected scan pattern by reordering elements of a
two-dimensional block into a one-dimensional array, or vice
versa.

Alternatively, the encoder/decoder selects between more
or fewer scan patterns and/or selects a scan pattern based
upon other criteria.

5. Sub-Block Pattern Codes

In addition to selecting a transform size and applying the
frequency transform to a prediction residual block, the
encoder indicates in the output bitstream what the transform
size is for the block. For example, the encoder indicates
whether the DCT used on a block is an 8x8, 8x4, or 4x8
DCT.

In some embodiments, if the transform size is a sub-block
transform size, the encoder also outputs a sub-block pattern
code that indicates the presence or absence of information
for the sub-blocks of a block. For example, for the 8x4 DCT,
the sub-block transform code indicates the presence or
absence of information for 1) only the bottom 8x4 sub-
block; 2) only the top 8x4 sub-block; or 3) both the top and
the bottom sub-blocks. For the 4x8 DCT, the sub-block
transform code indicates the presence or absence of infor-
mation for 1) only the left 4x8 sub-block; 2) only the right
4x8 sub-block; or 3) both the left and the right sub-blocks.
Table 7 shows entropy codes for sub-block pattern codes in
one implementation.

TABLE 7

Entropy Codes for Sub-block Pattern Codes

SUBBLK- 8 x 4 Sub-block Pattern 4 x 8 Sub-block Pattern
PAT VLC Top Bottom Left Right

0 X X

10 X X X X

11 X X

The sub-block pattern codes are used at the block level,
and only when the block uses a sub-block transform size
(e.g., not 8x8 DCT for an 8x8 block). Other implementa-
tions use other entropy codes and/or use sub-block pattern
codes differently.

In the encoder, the condition for whether to output infor-
mation for a sub-block is implementation-dependent. For
example, with the sub-block pattern code, the encoder
indicates which of the sub-blocks of the block have at least
one non-zero coefficient. For a sub-block with only zero-
value coefficients, the encoder sends only the sub-block
pattern code, and not other information for the sub-block,
which reduces bitrate. Alternatively, the encoder uses

US 9,456,216 B2

25

another condition (e.g., mostly zero-value coefficients) to set
the values of sub-block pattern codes.

FIG. 17 shows a technique for decoding of sub-blocks
using pattern information. For the sake of simplicity, FIG. 17
does not show the various ways in which the technique
(1700) can be used in conjunction with other techniques.

The decoder determines (1710) whether sub-block pattern
information is present for a block. For example, in one
implementation, if the transform size is full block (e.g.,
8x8), the bitstream does not include a sub-block pattern code
for the block.

If sub-block pattern information is present for the block,
the decoder gets (1720) the sub-block pattern information
(e.g., sub-block pattern code) for the block. The decoder
then determines (1730) whether sub-block information is
present for the sub-blocks of the block. For example, the
decoder checks the sub-block pattern code. If information is
present for at least one sub-block, the decoder gets (1740)
the information for the sub-blocks that have information.
For example, the decoder gets information for the top half,
bottom half, or both top and bottom halves of a 8x8 block
split into 8x4 sub-blocks. If the sub-block pattern indicates
that no information is present for the sub-blocks of the
block, the decoder goes to the next block, if present.

If sub-block pattern information is not present for the
block, the encoder skips the steps 1720 and 1730, and gets
(1740) information for the block.

The decoder then determines (1750) whether there are any
more blocks to be decoded. If not, the technique ends. If so,
the decoder gets (1760) the next block and determines
(1710) whether sub-block pattern information is present for
it.

In alternative embodiments, the encoder and decoder use
other techniques to signal the presence or absence of sub-
block information with sub-block pattern codes.

C. Loop Filtering

Quantization and other lossy processing of prediction
residuals can cause blocky artifacts in reference frames that
are used for motion estimation/compensation for subsequent
predicted frames. In one or more embodiments, a video
encoder processes a reconstructed frame to reduce blocky
artifacts prior to motion estimation using the reference
frame. A video decoder processes the reconstructed frame to
reduce blocky artifacts prior to motion compensation using
the reference frame. With deblocking, a reference frame
becomes a better reference candidate to encode the follow-
ing frame. Thus, using the deblocking filter improves the
quality of motion estimation/compensation, resulting in bet-
ter prediction and lower bitrate for prediction residuals. For
additional detail about using a deblocking filter in motion
estimation/compensation in some embodiments, see U.S.
patent application Ser. No. 10/322,383, entitled “Motion
Compensation Loop With Filtering,” filed concurrently
herewith.

Having described and illustrated the principles of our
invention with reference to various embodiments, it will be
recognized that the various embodiments can be modified in
arrangement and detail without departing from such prin-
ciples. It should be understood that the programs, processes,
or methods described herein are not related or limited to any
particular type of computing environment, unless indicated
otherwise. Various types of general purpose or specialized
computing environments may be used with or perform
operations in accordance with the teachings described
herein. Elements of embodiments shown in software may be
implemented in hardware and vice versa.

20

25

30

35

40

45

50

55

60

65

26

In view of the many possible embodiments to which the
principles of our invention may be applied, we claim as our
invention all such embodiments as may come within the
scope and spirit of the following claims and equivalents
thereto.

We claim:

1. One or more computer-readable media storing com-
puter-executable instructions for causing a computer system
programmed thereby to perform operations to encode one or
more video frames,

wherein the one or more computer-readable media are

selected from the group consisting of non-volatile
memory, magnetic storage and optical storage, the
operations comprising:

encoding one or more video frames to produce encoded

data using a variable-block-size frequency transform
with support for switching of transform size at varying
levels within the one or more video frames,

wherein the one or more video frames include plural

blocks, and wherein the encoding for one of the plural
blocks includes:

evaluating values of transform coefficients of prediction

residual data for the block; and

determining, based at least in part on the values of the

transform coefficients, sub-block pattern information
that indicates an information pattern for presence or
absence in a bitstream of the prediction residual data
for plural sub-blocks of the block; and

outputting the encoded data in the bitstream, wherein the

encoded data includes the sub-block pattern informa-
tion.

2. One or more computer-readable media storing com-
puter-executable instructions for causing a computer system
programmed thereby to perform operations to encode one or
more motion-predicted video frames,

wherein the one or more computer-readable media are

selected from the group consisting of non-volatile
memory, magnetic storage and optical storage, and
wherein the one or more motion-predicted video frames
include plural blocks, the operations comprising:
evaluating values of a condition for transform coefficients
of motion prediction residual data for a given block of
the plural blocks; and
determining, based at least in part on the values of the
transform coefficients, a sub-block pattern code,

wherein the sub-block pattern code indicates presence or
absence in a bitstream of the motion prediction residual
data for plural sub-blocks of the given block of the
plural blocks; and

outputting the sub-block pattern code as part of encoded

data in the bitstream.

3. The one or more computer-readable media of claim 1
wherein the block is an 8x8 block and the plural sub-blocks
are 4x4 sub-blocks.

4. The one or more computer-readable media of claim 1
wherein the block is encoded using a transform size selected
from among plural available transform sizes.

5. The one or more computer-readable media of claim 4
wherein the plural available transform sizes include 8x8 and
4x4.

6. The one or more computer-readable media of claim 4
wherein the encoding the one or more video frames further
includes:

testing each of the plural available transform sizes, includ-

ing evaluating rate and/or distortion that results from

US 9,456,216 B2

27

applying the transform size to blocks of prediction
residual data for at least part of the one or more video
frames: and

selecting the transform size to use during the encoding

based on results of the evaluating.

7. The one or more computer-readable media of claim 1
wherein the varying levels include frame level and block
level.

8. The one or more computer-readable media of claim 1
wherein, for each of the respective sub-blocks of the block,
if the sub-block has at least one non-zero transform coeffi-
cient the sub-block pattern information indicates presence in
the bitstream of prediction residual data for that sub-block.

9. The one or more computer-readable media of claim 1
wherein, for each of the respective sub-blocks of the block,
if the sub-block has mostly zero-value transform coeffi-
cients, the sub-block pattern information indicates absence
in the bitstream of prediction residual data for that sub-
block.

10. The one or more computer-readable media of claim 2
wherein the given block is an 8x8 block and the plural
sub-blocks are 4x4 sub-blocks.

11. The one or more computer-readable media of claim 2
wherein the given block is encoded using a transform size
selected from among plural available transform sizes.

12. The one or more computer-readable media of claim 11
wherein the plural available transform sizes include 8x8 and
4x4.

13. The one or more computer-readable media of claim 11
wherein the operations further include:

testing each of the plural available transform sizes, includ-

ing evaluating rate and/or distortion that results from
applying the transform size to blocks of motion pre-
diction residual data for at least part of the one or more
video frames: and

selecting the transform size to use based on results of the

evaluating.

14. The one or more computer-readable media of claim 2
wherein, for each of the respective sub-blocks of the given
block, if the sub-block has at least one non-zero transform
coeflicient the sub-block pattern code indicates presence in
the bitstream of motion prediction residual data for that
sub-block.

15. The one or more computer-readable media of claim 2
wherein, for each of the respective sub-blocks of the given
block~ if the sub-block has mostly zero-value transform
coeflicients, the sub-block pattern code indicates absence in
the bitstream of motion prediction residual data for that
sub-block.

16. One or more computer-readable media storing com-
puter-executable instructions for causing a computer system
programmed thereby to perform operations to decode one or
more video frames,

20

25

30

35

40

45

50

28

wherein the one or more computer-readable media are
selected from the group consisting of non-volatile
memory, magnetic storage and optical storage, the
operations comprising:

reading encoded data from a bitstream, wherein the

encoded data includes sub-block pattern information;
and

decoding the encoded data to reconstruct one or more

video frames using a variable-block-size inverse fre-
quency transform with support for switching of trans-
form size at varying levels within the one or more video
frames,

wherein the one or more video frames include plural

blocks,
wherein the decoding for one of the plural blocks further
includes using the sub-block pattern information, and

wherein the sub-block pattern information indicates an
information pattern for presence or absence in the
bitstream of prediction residual data for plural sub-
blocks of the block.

17. The one or more computer-readable media of claim 16
wherein the block is an 8x8 block and the plural sub-blocks
are 4x4 sub-blocks.

18. The one or more computer-readable media of claim 16
wherein the varying levels include frame level and block
level.

19. The one or more computer-readable media of claim 16
wherein the block is decoded using a transform size selected
from among plural available transform sizes.

20. The one or more computer-readable media of claim 19
wherein the plural available transform sizes include 8x8 and
4x4.

21. One or more computer-readable media storing
encoded data, wherein the one or more computer-readable
media are selected from the group consisting of non-volatile
memory, magnetic storage and optical storage, and

wherein the encoded data is formatted to be decoded

using operations comprising:

reading the encoded data from a bitstream, wherein the

encoded data includes sub-block pattern information;
and

decoding the encoded data to reconstruct one or more

video frames using a variable-block-size inverse fre-
quency transform with support for switching of trans-
form size at varying levels within the one or more video
frames,

wherein the one or more video frames include plural

blocks,
wherein the decoding for one of the plural blocks further
includes using the sub-block pattern information, and

wherein the sub-block pattern information indicates an
information pattern for presence or absence in the
bitstream of prediction residual data for plural sub-
blocks of the block.

#* #* #* #* #*

