
(12) United States Patent
Vilayannur et al.

USOO9454488B2

US 9.454.488 B2
Sep. 27, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS TO MANAGE
CACHE DATA STORAGE

(71) Applicant: PernixData, Inc., San Jose, CA (US)

(72) Inventors: Murali Natarajan Vilayannur, San
Jose, CA (US); Woon Ho Jung,
Cupertino, CA (US); Kaustubh
Sambhaji Patil, Sunnyvale, CA (US);
Satyam B. Vaghani, San Jose, CA
(US); Michal Ostrowski, Cedar Park,
TX (US); Poojan Kumar, San Jose,
CA (US)

(73) Assignee: PernixData, Inc., San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 83 days.

(21) Appl. No.: 14/455,090

(22) Filed: Aug. 8, 2014

(65) Prior Publication Data

US 2016/0041916 A1 Feb. 11, 2016

(51) Int. Cl.
G06F 2/08
G06F 2/2

(52) U.S. Cl.
CPC G06F 12/087.1 (2013.01); G06F 12/0877

(2013.01); G06F 12/0897 (2013.01); G06F
12/0802 (2013.01); G06F 22 12/151 (2013.01);

G06F 2212/604 (2013.01)
(58) Field of Classification Search

CPC ... GO6F 12/08O2
See application file for complete search history.

(2016.01)
(2016.01)

(56) References Cited

U.S. PATENT DOCUMENTS

7,281,087 B2 * 10/2007 Kuwata GO6F 12,0873
T11 113

2002/0053006 A1* 5/2002 Kawamoto G06F 12/128
T11/128

2004/O186958 A1* 9, 2004 Percival G06F 12/0813
T11 129

2007/0220201 A1* 9, 2007 G11 G06F 12,123
T11 113

2014/01 15228 A1* 4/2014 Zhou G06F 12fO246
T11 102

2014/0310499 A1 * 10/2014 Sundararaman G06F 12/10
T11 203

2015, OO67.264 A1* 3, 2015 Eckert G06F 12/126
T11 133

2015/0074350 A1* 3/2015 Chiang G06F 12/0808
T11 118

* cited by examiner
Primary Examiner — Charles Rones
Assistant Examiner — Tian-Pong Chang
(74) Attorney, Agent, or Firm — Gard & Kaslow LLP
(57) ABSTRACT
Systems and methods for managing records stored in a
storage cache are provided. A cache index is created and
maintained to track where records are stored in buckets in
the storage cache. The cache index maps the memory
locations of the cached records to the buckets in the cache
storage and can be quickly traversed by a metadata manager
to determine whether a requested record can be retrieved
from the cache storage. Bucket addresses stored in the cache
index include a generation number of the bucket that is used
to determine whether the cached record is stale. The gen
eration number allows a bucket manager to evict buckets in
the cache without having to update the bucket addresses
stored in the cache index. Further, the cache index can be
expanded to accommodate very Small records, such as those
generated by legacy systems.

15 Claims, 10 Drawing Sheets

K. w

BCSES NSTRASE CACE 28

US 9,454.488 B2 Sheet 1 of 10 Sep. 27, 2016 U.S. Patent

US 9,454.488 B2 Sheet 2 of 10 Sep. 27, 2016 U.S. Patent

US 9,454.488 B2 Sheet 3 of 10 Sep. 27, 2016 U.S. Patent

US 9,454.488 B2 Sheet 4 of 10 Sep. 27, 2016 U.S. Patent

US 9,454.488 B2 Sheet S of 10 Sep. 27, 2016 U.S. Patent

| | | | | | | | | | | | " |

U.S. Patent Sep. 27, 2016 Sheet 6 of 10 US 9,454.488 B2

RECEWE READ COMAN

O.CAON
N BREE

READ 2
CORRES ONNGO

EVORY O{CAON

3CKE
GENERAON
Nf3RS
WAC

O REA RECOR FROM
SORAGE CACHE

RERN CACE WESS

FGURE 6

U.S. Patent Sep. 27, 2016 Sheet 7 of 10

IDENTIFY LOENTRY 72
RCW WWORY
O CAON

O
WA

REA} .
CORRESONNG

O MEMORY
O CAON

WA

FGURE 7

US 9,454.488 B2

U.S. Patent Sep. 27, 2016 Sheet 8 of 10 US 9,454.488 B2

3O.
RECEWE RE COMAND -"

82.
OBAM. 3 CKE A DRESS

FGURE 8

88
. 88

YES

8.
8.

AOCAE? A.O. CAE
NO

YES

81.

2 Y?

NEC

COMPETE
CWERFRET

816

CUAEA 2

PCNER C 3?

YES
2.

A.C. CAE 3 . EVICTED2ANDUPDATE 2

MERGE WR AND
EXSNG BUCKE 1.

3 WCEO ARESS NC 3

U.S. Patent Sep. 27, 2016 Sheet 9 of 10 US 9,454.488 B2

90 Na
RECEWE 92
NWA At
COVVAN

{
ACCAE

c 98
A. O.AE?

{CEAR WAAON
BA. A 2

NRY

SEND EWCON
N. O. ECKE
WANAGER

FGURE 9

U.S. Patent Sep. 27, 2016 Sheet 10 of 10 US 9,454.488 B2

AWAASE BCKE?
YES

NO AR RECOR. O.

1 OS
3Ck AND RERN
BCKE ARESS

Ef CON N.
O4.

NY WRA AEN ACCAC ARGES
NBER (). SCKS

DENY BCKES WERC. N. CCN

NY R 8CKE

NCRVN SCK GENERAON NABER IN 4.
BCKE VANAGER

OS
A CCA B CKE O SECON WA MACN

AR RECOR O SORED ki

RERN SCKE ARESS - NCREVENE) 12
3CKE GENERAON. NBER

FGURE O

8

US 9,454,488 B2
1.

SYSTEMS AND METHODS TO MANAGE
CACHE DATA STORAGE

BACKGROUND

1. Field
This patent application relates generally to data caching

and more specifically to managing cache data storage.
2. Description of Related Art
In computing systems, a cache is a memory system or

Subsystem which transparently stores data so that future
requests for that data can be served faster. As an example,
many modem microprocessors incorporate an instruction
cache holding a number of instructions; when the micro
processor executes a program loop where the same set of
instructions are executed repeatedly, these instructions are
fetched from the instruction cache, rather than from an
external memory device at a performance penalty of an
order of magnitude or more.

In other environments, such as where a computing system
hosts multiple virtual machines under the control of a
hypervisor, with each virtual machine running one or more
applications, caching of objects stored on a network attached
storage system can provide significant performance
improvements. In some instances, records are cached and
then written to the network attached storage system accord
ing to a “write back’ algorithm. In the “write back’ algo
rithm, the received record is written to the cache before
being written to the network attached storage system. The
cache system can then direct the writing of the record to the
network attached storage system.
When read commands are sent from the virtual machine

to the network attached storage, it may be more efficient to
read the records from the cache rather than from the network
attached storage. While other write-through and write-back
caching algorithms exist, caching and retrieving data
quickly and accurately remains a challenge.
One common challenge in caching systems is that the read

and write operations to the cache system are not optimized
for the operational characteristics of the media used to store
the contents of the cache system. Some examples of media
used to store the contents of a cache System are random
access memory (RAM), solid state disk (SSD), PCIe Flash,
Non-volatile dual in-line memory module (NVDIMM), etc.
Organizing data on a cache device for a plurality of cache
media types remains a challenge.

Finally, storing data to, and removing data from, a cache
system requires vigorous updates of metadata records of the
cache system (e.g., indeX entries that reference the data
stored in the cache system at any given point in time). These
updates impose a significant performance overhead to Stor
ing, retrieving, and removing data from the cache system. As
cache system media becomes faster, the overhead becomes
a significant portion of the overall cache operation time and
hampers efficient performance. More efficient metadata
records for the cache system are required.

SUMMARY

According to some embodiments, a method comprises:
receiving a first write command sent from a first virtual
machine to a host operating system running on a computing
system, the first write command instructing a storage system
to store a first record at a first memory location; storing the
first record with an indication of the first memory location at
a first location in a storage cache, the first location in a first
bucket and specified by a first bucket address, the first

10

15

25

30

35

40

45

50

55

60

65

2
bucket comprising a predefined contiguous set of locations
in the storage cache; Storing, in a cache index, an indication
that contents of the first memory location are stored in the
storage cache along with the first bucket address; receiving
a first read command sent from the first virtual machine to
the host operating system, the first read command instruct
ing the storage system to read the first memory location;
determining from the indication stored in the cache index
that the contents of the first memory location are stored in
the storage cache at the first bucket address; determining the
first location in the storage cache from the first bucket
address in the cache index; and reading the first record from
the determined first location in the storage cache.

According to Some embodiments, a system comprises: a
bucket manager configured to receive a first write command
sent from a first virtual machine to a host operating system
running on a computing system, the first write command
instructing a storage system to store a first record at a first
memory location, to store the first record with an indication
of the first memory location at a first location in a storage
cache, the first location in a first bucket and specified by a
first bucket address, the first bucket comprising a predefined
contiguous set of locations in the storage cache; a metadata
manager configured to store, in a cache index, an indication
that contents of the first memory location are stored in the
storage cache along with the first bucket address; wherein
the bucket manager is further configured to receive a first
read command sent from the first virtual machine to the host
operating system, the first read command instructing the
storage system to read the first memory location; wherein
the metadata manager is further configured to determine
from the indication stored in the cache index that the
contents of the first memory location are stored in the
storage cache at the first bucket address; and wherein the
bucket manager is further configured to determine the first
location in the storage cache from the first bucket address in
the cache index, and to read the first record from the
determined first location in the storage cache.

According to some embodiments, a non-transitory com
puter readable medium having instructions embodied
thereon, the instructions executable by one or more proces
sors to perform operation comprising: receiving a first write
command sent from a first virtual machine to a host oper
ating system running on a computing system, the first write
command instructing a storage system to store a first record
at a first memory location; storing the first record with an
indication of the first memory location at a first location in
a storage cache, the first location in a first bucket and
specified by a first bucket address, the first bucket compris
ing a predefined contiguous set of locations in the storage
cache; storing, in a cache index, an indication that contents
of the first memory location are stored in the storage cache
along with the first bucket address; receiving a first read
command sent from the first virtual machine to the host
operating system, the first read command instructing the
storage system to read the first memory location; determin
ing from the indication stored in the cache index that the
contents of the first memory location are stored in the
storage cache at the first bucket address; determining the
first location in the storage cache from the first bucket
address in the cache index; and reading the first record from
the determined first location in the storage cache.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a portion of an environment
in which various embodiments can be practiced.

US 9,454,488 B2
3

FIG. 2 is a block diagram of a caching system, according
to various embodiments.

FIG. 3 is a diagram of a cache index in the form of a
BTree, according to various embodiments.

FIG. 4 is a diagram of a third level of the BTree, according
to various embodiments.

FIG. 5 is a diagram of the BTree having a further level,
according to various embodiments.

FIG. 6 is a flowchart of a method of executing a read
command, according to various embodiments.

FIG. 7 is a flowchart of a method of traversing the BTree,
according to various embodiments.

FIG. 8 is a flowchart of a method of executing a write
command, according to various embodiments.

FIG. 9 is a flowchart of a method of executing an
invalidate command, according to various embodiments.

FIG. 10 is a flowchart of a method of evicting a bucket
and returning a bucket address according to various embodi
mentS.

DETAILED DESCRIPTION

Write-back and write-through caching techniques are
used to reduce the amount of time required by a computing
system to process read and write commands (also referred to
as “IO commands) by storing those commands in a faster,
short-term memory, such as a storage cache, instead of
relying solely on a slower, long-term memory, Such as a
storage system. Records can be written to or read from the
storage cache during operation.
A typical IO command identifies a record using a memory

location of the storage system. However, the caching system
does not store the record at an address in the storage cache
that is immediately recognizable from the memory location
of the storage system. To read from the storage cache, it is
necessary to have a way to determine where the record is
stored in the storage cache from the memory location of the
storage system. According to various embodiments
described herein, a cache index is used to map a memory
location of the storage system to a location in the storage
cache when a record is written to the storage cache. The
cache index may be extended to accommodate IO com
mands Smaller than a predefined size. As described in the
illustrative examples included herein, the cache index can be
in the form of a BTree (also known as a Bayer Tree, Bushy
Tree, or Boeing Tree).
The records are stored in buckets within the storage cache.

A bucket is a predefined contiguous set of locations in the
storage cache. Each bucket is allocated to one virtual
machine at a time. The bucket has a bucket address that
includes a bucket identifier, a bucket index, and a generation
number. From the bucket identifier and the bucket index, a
location in the storage cache can be identified. From the
generation number, a determination can be made as to
whether the record stored in the bucket is stale.

FIG. 1 is a block diagram of a portion of an environment
100 in which various embodiments can be practiced. The
environment 100 comprises one or more virtual machines
102 executed by a hypervisor 104. The hypervisor 104 is
executed by a host operating system 106 (which may itself
include the hypervisor 104). The host operating system 106
resides on a physical computing system 108 having a
caching system 110. The caching system 110 caches data
within a local memory (e.g., a storage cache 208, discussed
herein). The local memory is a faster, more expensive
memory Such as flash memory. The computing system 108
is configured to communicate with a storage system 112 to

5

10

15

25

30

35

40

45

50

55

60

65

4
store data. The storage system 112 is a slower memory, Such
as a hard disk. The environment 100 can include multiple
computing systems 108 and/or storage systems 112.
Examples of storage system 112 include, but are not limited
to, a storage area network (SAN), a local disk, a shared serial
attached “small computer system interface (SCSI)” (SAS)
box, a network file system (NFS), a network attached
storage (NAS), and an object store.
When a virtual machine 102 generates a read command or

a write command, the application sends the generated com
mand to the host operating system 106. The virtual machine
102 includes, in the generated command, an instruction to
read or write a record at a specified location in the storage
system 112. The caching system 110 receives the sent
command and caches the record and the specified Storage
system memory location. In a write-back system, the gen
erated write commands are Subsequently sent to the storage
system 112.

In some embodiments of the present approach, and as is
apparent to those skilled in the art in light of the teachings
herein, the environment 100 of FIG. 1 can be further
simplified to being a computing system running an operating
system running one or more applications that communicate
directly or indirectly with the storage system 212.

FIG. 2 is a block diagram of the caching system 110,
according to various embodiments. The caching system 110
comprises a cache index 202, a bucket manager 204, a
metadata manager 206, and a storage cache 208. The cach
ing system 110 can be implemented in a variety of ways
known to those skilled in the art including, but not limited
to, as a computing device having a processor with access to
a memory capable of storing executable instructions for
performing the functions of the described modules. The
computing device can include one or more input and output
components, including components for communicating with
other computing devices via a network (e.g., the Internet) or
other form of communication. The caching system 110
comprises one or more modules embodied in computing
logic or executable code such as Software.
A cache index 202 is a logical data structure stored by the

caching system 110. The cache index 202 is configured to
store, for each memory location in the storage system 112
that has a record written thereto, a bucket address of a bucket
in which a cached copy of the record is stored. In some
embodiments, the cache index 202 is a BTree, as discussed
in greater detail in connection with FIGS. 3-5.
When an IO command (e.g., a read command or a write

command) is received, the bucket manager 204 is configured
to determine the location in the storage cache 208 containing
the desired record from the bucket address 404 in the cache
index 202. The bucket manager 204 then executes the
command or causes the command to be executed by another
component of the caching system 110. The functionalities of
the bucket manager 204 are explained in greater detail in
connection with FIGS. 6-10.
The metadata manager 206 allocates those portions of the

cache index 202 that correspond to memory locations in the
storage system 112 (e.g., SAN memory locations) where
records that have been cached in the cache storage 208 are
stored or will be stored. The metadata manager 206 further
traverses the cache index 202 to determine whether a record
is stored in the storage cache 208. The metadata manager
206 can allocate or de-allocate levels, nodes, or entries in the
cache index 202 depending on where records in the cache
are stored in the storage system 112. As such, the size of the
cache index 202 can be increased or decreased depending on
the amount of records presently cached in the storage cache

US 9,454,488 B2
5

208. The metadata manager 206 can expand the cache index
202 to include additional entries or levels. The functional
ities of the metadata manager 206 are explained in greater
detail in connection with FIGS. 6-10.

In an embodiment, the cache index 202 is organized into
three levels and can be expanded to four levels, as discussed
elsewhere herein. Each level of the cache index 202 contains
one or more entries that are representative of a continuous
range of memory locations in the storage system 112. For
example, in embodiments where the storage system 112 is a
SAN, SAN memory locations, expressed as SAN offset
addresses, are divided within the cache index 202 so as to be
contiguous with one another.

To illustrate, FIG. 3 is a diagram of a cache index 202 in
the form of a BTree 300, according to various embodiments.
The BTree 300 has three levels, depicted as levels zero 302,
one 304, and two 306. Due to space limitations of the
figures, all of the entries and nodes in the BTree 300 are not
depicted. As explained in greater detail elsewhere herein,
level two 306 includes bucket addresses that specify cache
locations organized in terms of buckets in the storage cache
208. In the example embodiment of FIG. 3, the storage
system 112 is a SAN and memory locations in the storage
system 112 are referred to as "SAN memory locations'.

Level Zero 302 comprises a single level Zero node 316
having a series of entries that, in turn, correspond to a range
of SAN memory locations of the SAN. The entries within
the level Zero node 316 at the level Zero 302 collectively
correspond to all of the SAN memory locations. To illus
trate, level Zero 302 can contain 16 entries each correspond
ing to one sixteenth of the available SAN memory locations.
The level Zero entry 308 can correspond to a first sixteenth
of the SAN memory locations, the adjacent entry can
correspond to a second sixteenth of the SAN memory
locations, and so on for the third and fourth entries. In an
embodiment, the individual entries within the level Zero 302
comprise 16 bytes. The 16 bytes include a validity indicator
and a pointer to a level one node 318 of a plurality of level
one nodes in a level one 304.
As is known in the art, a SAN memory location can be

expressed as an offset from SAN memory location Zero (0).
Using the BTree 300, and with the SAN having approxi
mately 64 terabytes (TB) of storage, the level Zero entry 308
corresponds to SAN memory locations at offsets of Zero to
four TB (one sixteenth of 64TB). The next entry of the level
Zero 302 corresponds to SAN memory locations at offset of
four TB to eight TB; the third entry of the level Zero 302
corresponds to SAN memory locations at offset of eight TB
to twelve TB; and the fourth entry of the level Zero 302
corresponds to SAN memory locations at offset of twelve
TB to sixteen TB, and so on (additional entries not depicted).
Thus, the entirety of the memory locations in SAN (or other
storage system 112) can be represented within the level Zero
3O2.

Below the level Zero 302 in the BTree 300, the level one
304 comprises a series of entries that each correspond to a
narrower range of SAN memory locations than the entries at
the level Zero 302. Each entry within the level Zero 302 has
a corresponding node at the level one 304 (e.g., level Zero
entry 308 is the parent of level one node 318; not all nodes
and entries are shown). The individual entries within the
level one 304 include a validity indicator and a pointer to
another entry in a level two 306. In some embodiments, each
entry (e.g., level one entry 310) comprises sixteen bytes. The
depicted node within the level one 304 comprises entries
that collectively correspond to all of the SAN memory
locations within level Zero entry 308. Continuing the

5

10

15

25

30

35

40

45

50

55

60

65

6
example above, the level Zero entry 308 corresponds to SAN
memory locations at offsets of Zero to four TB. In one
embodiment, to represent the entirety of this portion in the
SAN (or other storage system 112), each entry in the nodes
of level one 304 corresponds to 128 megabytes (MB)
(one-thirty-two thousandth of 4 TB) and the level one 304
comprises four nodes, each potentially having 32,768
entries. Thus, the level one entry 310 corresponds to SAN
offsets from Zero to 128 MB, the next, offsets of 128 MB to
256 MB, the next, 256 MB to 384 MB, and so on until the
entirety of the four TB is represented in a node within level
one 304.
Below the level one 304 in the BTree 300, the level two

306 comprises a series of entries that each correspond to a
narrower range of SAN memory locations than the entries at
the level one 304. The entries within the shown level two
node 320 collectively correspond to all of the SAN memory
locations within level one entry 310. Each entry within level
one 304 has a corresponding node at the level two 306 (not
all nodes and entries are shown). Continuing the example
above, the level one entry 310 can correspond to SAN
memory locations at offsets of Zero to 128 MB. In one
embodiment, to represent the entirety of this portion in the
SAN 112, each entry in the nodes of level two 306 corre
sponds to four kilobytes (kB) (one-thirty-two thousandth of
128 MB) of SAN memory. Thus the level two entry 312
corresponds to SAN offsets from Zero to four kB, the next,
offsets of 4 kB to 8 kB, the next, 8 kB to 12 kB, and so on
until the entirety of the 128 MB is represented in a node
within level two 306.
The storage cache 208 is organized in terms of buckets

each representing, for example, 512 KB of cache memory.
The exact size of the bucket can be chosen to be a value at
which the underlying cache memory medium performs most
efficiently. For example, an embodiment that operates on
NAND flash devices as the cache memory medium uses the
erase block size of the underlying flash device as the bucket
size. Each entry in the level two 306 (e.g., level two entry
312) includes a bucket address that specifies a bucket 314 of
the plurality of buckets in the storage cache 308 where the
record stored at a SAN memory location is stored. Records
stored at different SAN offsets can be stored in the same
bucket 314. However, each entry in the level two 306 only
includes one bucket address.

FIG. 4 is a diagram of the level two 306 of the BTree 300,
according to various embodiments. In some embodiments,
each entry (e.g., level two entry 312) comprises sixteen
bytes. A first portion of each level two entry 312 comprises
a validity bitmap 402. The validity bitmap 402 indicates, for
each further narrowed range of SAN memory locations of
the level two entry 312, whether the whole record corre
sponding to that SAN memory location is stored in the cache
memory 308 or only a part of the record is stored. Continu
ing the above example, where each level two entry corre
sponds to 4 kB of SAN address space, and where the validity
bitmap 402 comprises 8 bits (as shown in FIG. 4), the further
narrowed range comprises 512 bytes (i.e., 0.5 kB). Thus, in
the entry 312 as shown in the figure, the storage cache 208
presently stores records corresponding to SAN offset
addresses Zero to two kB (the first four bits times 512 B per
bit) and does not store records corresponding to SAN offset
addresses from 2 kB up to 4 kB.
The second portion of the level two entry 312 of the BTree

300 comprises a bucket address 404. In the depicted embodi
ment, the level two entry 312 comprises only one bucket
address. The bucket address is eight bytes and contains a
bucket number, a bucket index, and a bucket generation

US 9,454,488 B2
7

number. The bucket number identifies a bucket 314 of the
buckets 314 constructed within the storage cache 208 where
the record having that SAN memory address is stored. The
bucket index identifies a location within the bucket 314
where the record is stored. Because the buckets 314 can be
significantly larger than individual records, multiple records
at separate SAN offsets can be stored in the same bucket
314. In some instances, a bucket is 512 KB of cache
memory. A generation number included in the bucket
address indicates the generation number of the bucket 314 at
the time the record was stored in the bucket 314. As will be
discussed in connection with the bucket manager 204, the
bucket generation number is used when determining if the
contents of bucket 314 have been invalidated since the
record was stored in the bucket 314.

FIG. 5 is a diagram of a BTree 300 having a further level,
according to various embodiments. In some instances, IO
commands can include records that are Smaller than a level
two entry 312 can address (in our example above, 4 kB). As
would be understood by one of skill in the art, these records
are referred to as unaligned IO commands because they may
not align with 4 kB address boundaries. When two records
are within the offsets specified by the same four kB level two
entry 312, and are stored in separate buckets 314, the level
two entry 312 cannot accommodate both bucket addresses
404. As such, a further level three entry 502 is added to the
BTree 300. The level three entry 502 corresponds to four kB
of space in the storage system 112 (e.g., a SAN) like the
level two entry 312. However, a level three entry 502 is
much larger than a level two entry 312 because it can address
parts of the four kB address space as independent segments,
as described below. In one embodiment, the level three entry
502 can contain up to eight bucket addresses 404. The level
three entry 502 further comprises a level three entry gen
eration number that is used when determining if the bucket
314 has been evicted since the record included in the
unaligned IO command was stored in the bucket 314 and a
pin count, which is described elsewhere herein.
When a read command is received, the BTree 300 is used

to determine if the record of the read command specified by
a SAN memory location is stored in the storage cache 208.
If the record is stored in the storage cache 208, the BTree
300 identifies a bucket 314 in the cache storage 208 where
the record is stored. FIG. 6 is a flowchart of a method 600
of executing a read command, according to various embodi
ments. The method 600 can be performed by the bucket
manager 204 in connection with the BTree 300 and the
storage cache 208. As will be explained, the metadata
manager 206 is configured to traverse the BTree 300.

In an operation 602, a read command sent from the virtual
machine 102 to the host operating system 106 is received by
the caching system 110. In embodiments where the storage
system 112 comprises a SAN, the read command specifies
the record to be read by a SAN memory location (e.g., a
SAN offset address), and a length of data to be read. The
read command also indicates a buffer where the record is to
be written to.

In an operation 604, a determination is made by, for
example, the metadata manager 206, whether the record has
been cached for the SAN memory location. To determine
whether the record stored at the SAN memory location is
cached, the cache index 202 (e.g., BTree 300) is traversed by
the metadata manager 206. The traversal of the cache index
202 returns a cache miss or a bucket address of the cached
record. FIG. 7 is a flowchart of a method 604 of traversing
a BTree 300, according to various embodiments.

10

15

25

30

35

40

45

50

55

60

65

8
In an operation 702, the SAN offset address (or memory

address of the storage system 112) included in the read
command is used to identify a corresponding entry (e.g.,
level Zero entry 308) in the level Zero (LO)302 of the BTree
300. The metadata manager 206, in an operation 704,
determines whether the level Zero entry 308 is valid. The
level Zero entry 308 is valid if at least one record has been
stored in the range of SAN memory locations covered by the
level Zero entry 308. If no records have been stored in that
range of SAN memory locations, the offset is not cached in
the BTree 300 and the level Zero entry is not valid.

If the level Zero entry 308 is valid, the method 604
continues to operation 706. In the operation 706, the meta
data manager reads the level one (L1) entry (e.g., the level
one entry 310) corresponding to the received SAN offset
address. The metadata manager 206 then determines, in an
operation 708, whether the level one entry 310 is valid. Like
the determination in the operation 704, the level one entry is
valid if records have been stored in the corresponding
portion of the SAN. If no records have been stored in that
portion of the SAN, the offset is not cached in the BTree 300
and the level one entry 310 is not valid. If the level one entry
310 is valid, the method 604 returns a “yes”, indicating that
the SAN offset is cached in the BTree 300.

Returning to FIG. 6, if the outcome of the determination
in operation 604 is that the SAN offset is not cached in the
cache index 202, a cache miss is returned in an operation
606. If, however, the outcome of the determination in the
operation 604 is that the offset is cached in the cache index
202, the bucket manager 204 reads the level two entry 312
of the cache index 202 corresponding to the SAN memory
address, in the operation 608. As part of the operation 608,
the bucket manager 204 further determines the location in
the storage cache 208 where the record is stored from the
bucket address 404. While not shown, at the operation 608,
the method 600 can return a cache miss (operation 606) if,
for example, the validity bitmap 402 indicates that the
contents at the SAN memory location are not stored in the
storage cache 208 or if the level two entry 312 does not
contain a bucket address 404.

In an operation 610, bucket generation numbers are
compared to determine if there is a match. As explained with
respect to FIG. 4, the bucket address 404 included in the
cache index 202 includes a bucket generation number indi
cating the generation of the bucket 314 at the time the record
was stored in the bucket 314. The bucket manager 204 stores
a current bucket generation number as part of the eviction
process described elsewhere herein. If the bucket generation
number stored in the cache index 202 does not match the
current bucket generation number stored by the bucket
manager 204, a cache miss is returned in operation 606. If
the generation numbers do match, in an operation 612, the
bucket manager 204 reads the record identified in the read
command from the storage cache 208.

FIG. 8 is a flowchart of a method 800 of executing a write
command, according to various embodiments. The method
800 is performed by the caching system 110, and, more
specifically by the bucket manager 204 and the metadata
manager 206.

In an operation 802, a write command is received from the
virtual machine 102 by the caching system 110. In embodi
ments where the storage system 112 comprises a SAN, the
write command comprises a SAN memory location where a
record is to be stored, a length of the record, and the record
to be stored.

In an operation 804, a bucket address 404 where the
record is stored in the storage cache 208 is obtained from the

US 9,454,488 B2

bucket manager 204. The operation 804 is described in
greater detail in connection with FIG. 10.

In an operation 806, the metadata manager 206 deter
mines whether the level Zero entry (e.g., level Zero entry
308) corresponding to the SAN memory location is allocated
(i.e., valid) in the cache index 202. If the L0 entry 308 is not
allocated, the metadata manager 208 allocates the L0 entry
308 in an operation 808.
Once the L0 entry 308 is allocated or validated, the

metadata manager 206 determines whether the level one
entry (e.g., level one entry 310) corresponding to the SAN
memory location is allocated in the cache index 202, in an
operation 810. If the level one entry 310 is not allocated, the
metadata manager 206 allocates the level one entry 310 in an
operation 812.

In an operation 814, the metadata manager 814 deter
mines whether the level two entry (e.g., level two entry 312)
corresponding to the SAN memory location included in the
write command is empty, and thus available. If the level two
entry 312 is empty, the metadata manager 206, in an
operation 816, populates the obtained bucket address 404 of
the operation 804 at the level two entry 312. In this operation
816, the metadata manager 206 further updates the validity
bitmap 402 of the level two entry 312 to indicate the SAN
memory location of the record.

If the outcome of the determination operation 814 is that
the level two entry 312 is not empty, in an operation 818, the
metadata manager 206 determines whether the record
included in the write command of the operation 802 has
completely overwritten the existing level two entry 312. If
so, the obtained bucket address 404 is populated at the level
two entry 312 and the validity bitmap 402 is updated in the
operation 816.

If the outcome of the determination operation 818 is that
the record included in the write command of the operation
802 did not completely overwrite the existing level two
entry 312, the received record can be an unaligned IO
command having a size of less than four kB. In this case, the
metadata manager 206 determines whether the level two
entry 312 contains a pointer to a level three entry 502 in an
operation 820.

If the outcome of the determination operation 820 is that
there is no pointer to a level three entry 502, the metadata
manager 206 determines whether the level two entry 312 is
evicted in an operation 822. Eviction is discussed below, at
least in connection with FIG. 10. Similar to the operation
610, the metadata manager 206 determines whether the
generation number in the bucket address 404 obtained in the
operation 804 from the bucket manager 204 matches a
generation number in the bucket address 404 stored in the
cache index 202. If the generation numbers do not match, the
level two entry 312 is evicted. The metadata manager 206
populates the obtained bucket address 404 of the operation
804 at the level two entry 312 and updates the validity
bitmap 402 in the operation 816.

In an operation 824, if the outcome of the determination
operation 822 is that the level two entry 312 is not evicted,
the metadata manager 206 allocates a level three entry 502
to accommodate the unaligned TO command in an operation
824. In this operation 824, the metadata manager 206
updates the level two entry 312 to include a pointer to the
level three entry 502.

In an operation 826, the metadata manager 206 merges the
bucket address obtained in the operation 804 and the exist
ing bucket address in the level two entry 312 to the allocated
level three entry 502. Thus, the level three entry 502 can

10

15

25

30

35

40

45

50

55

60

65

10
store two or more bucket addresses 404 indicating where
each unaligned IO command is stored.

Returning to the operation 820, if the determination made
is that there is an existing pointer to the level three entry 502
in the level two entry 312, in an operation 828, the metadata
manager 206 determines if the level three entry 502 has been
evicted by comparing the generation numbers in the bucket
addresses 404 stored in the level three entry 502 to the
generation numbers in the bucket addresses 404 maintained
by the bucket manager 204. If the generation numbers do not
match, the buckets in the level three entry 502 have been
evicted and the operation 816 is performed.

If, however, the determination made in the operation 828
is that the level three entry 312 has not been evicted, the
metadata manager 206 performs operation 826 where the
bucket address 404 obtained in the operation 804 is merged
with the existing bucket address 404 into the level three
entry 502.

FIG. 9 is a flowchart of a method 900 of executing an
invalidate command, according to various embodiments. An
invalidate command is a command like the read command
and the write command. The invalidate command tells the
caching system 110 to no longer read a record stored in the
storage cache and includes a memory address of the storage
system 112 (e.g., a SAN memory location) and length of the
record to be invalidated. The discussion of FIG.9 describes
an embodiment where the storage system 112 comprises a
SAN.

In an operation 902, the metadata manager 206 receives
an invalidate command from the virtual machine 102 iden
tifying a SAN memory location (e.g., SAN offset address) to
be invalidated.

If the higher level entries are not allocated in the BTree
300 for the SAN memory address included in the invalidate
command, the BTree 300 does not store a bucket address for
the SAN memory location. In an operation 904, the metadata
manager 206 determines whether the level Zero entry 308
corresponding to the SAN memory address included in the
invalidate command is allocated. If not, the process 900 ends
in an operation 906. Otherwise, in an operation 908, the
metadata manager 206 determines whether the level one
entry 310 corresponding to the SAN memory address
included in the invalidate command is allocated. If not, the
process 900 ends in an operation 906.

Otherwise, in an operation 910, the metadata manager 206
identifies the level two entry 312 corresponding to the SAN
memory location included in the invalidate command of the
operation 902 and clears the validation bitmap 402 of the
level two entry 312 by setting all of the values to zero.

In an operation 912, the metadata manager 906 sends an
eviction hint to the bucket manager 204. The eviction hint
identifies the bucket address 404 included in the level two
entry 312 and indicates to the bucket manager 204 that the
bucket manager 204 can evict the bucket 314.

Eviction is the process by which buckets in the storage
cache 908 can be marked as free for subsequent reuse. FIG.
10 is a flowchart of a method 804 of evicting a bucket 314
and returning a bucket address 404 according to various
embodiments. The method 804 can be performed by the
bucket manager 204 and, in an embodiment, is initiated
when a write command is received from the virtual machine
102.

In an operation 1002, the bucket manager 204 determines
whether there is a bucket 314 allocated to the virtual
machine 102 from which the write command was received
and having available space to store the record included in the
received write command. If there is a bucket 314 available,

US 9,454,488 B2
11

in an operation 1004, the bucket manager 204 writes the
record included in the write command to the available
bucket 314 and returns the bucket address 404 where the
record was written to the metadata manager 206.

In an operation 1006, if there is no available bucket 314,
the bucket manager 204 determines if an eviction hint has
been received from the metadata manager 206 as described
in connection with FIG. 9. If an eviction hint has been
received, the method 804 skips ahead to the operation 1014,
discussed below.

In an operation 1008, if no eviction hint has been
received, the bucket manager 204 identifies which virtual
machine has the largest number of buckets 314 allocated to
it. The bucket manager 204 determines a number of buckets
314 allocated to each virtual machine 102 in the environ
ment 100. As discussed above, by being allocated to a virtual
machine 102, the individual buckets 314 contain records
sent by only one virtual machine 102. A bucket descriptor
array of the bucket identifies the virtual machine to which
the bucket is allocated.

In an operation 1010, the buckets 314 allocated to the
identified virtual machine 102 are evaluated so as to identify
buckets 314 having all of their stored records sent to the
storage system 112. This is accomplished by the bucket
manager 204 checking a pin count of the bucket 314. The pin
count is a value stored in a bucket descriptor array that
indicates how many records stored in the bucket 314 have
not yet been written to the storage system 112. When a
record is written to the bucket 314, and before it is included
in a write command sent to the storage system 112, the pin
count is incremented by the bucket manager 204. After the
record in the bucket 314 is retrieved and included in a write
command sent to the storage system 112, thus writing back
the record, the pin count is decremented by the bucket
manager 204. When a bucket 314 includes multiple records
(which can be at distinct memory locations in the storage
system 112), the pin count can be of a value up to the number
of records in the bucket 314. As the records in the bucket 314
are written back to the storage system 112, the pin count is
decremented by the bucket manager 204. A Zero pin count
indicates that the records stored in the bucket 314 are stored
in the storage system 112.

In an operation 1012, if more than one bucket 314
allocated to the identified virtual machine 102 has a Zero pin
count, a least recently used (LRU) bucket is identified. An
LRU bucket is a bucket 314 that has been not been written
to or read from more recently than other buckets 314
allocated to the virtual machine 102. In an embodiment, the
LRU bucket is selected for eviction.

It is to be understood that, by identifying a bucket to be
evicted based on the determinations 1008 and 1012, buckets
314 can be more evenly balanced among the virtual
machines 102.

In an operation 1014, based on the eviction hint of the
operation 1006 or the LRU bucket identified in the operation
1012, the bucket manager 204 evicts the bucket 314. To
evict the bucket 314, the bucket manager 204 increments a
bucket generation number included in the bucket address
404 maintained by the bucket manager 204. The bucket
manager 204 does not update or increment any bucket
generation numbers in the bucket addresses 404 stored in the
cache index 202. In this way, eviction is handled indepen
dently of the cache index 202. Thus, when reading from, or
writing to, the storage cache 208, the bucket generation
number in the bucket address 404 stored in the cache index
202 is compared to the bucket generation number stored by
the bucket manager 204 (see, e.g., operation 610, operation

10

15

25

30

35

40

45

50

55

60

65

12
822, and operation 828) to ensure that the record is not stale
and can be retrieved from the cache storage 208 rather than
the storage system 112.

In an operation 1016, the evicted bucket 314 is allocated
to the virtual machine 102 that sent the write command by
the bucket manager 204 by writing a virtual machine iden
tifier to the bucket descriptor array. In an operation 1018, the
record is stored in the evicted bucket 314 by the bucket
manager 204. In an operation 1020, the bucket address 404,
with the incremented bucket generation number, is returned
by the bucket manager 204 to the metadata manager 206.

Using the described systems and methods, records sent
from a virtual machine 102 to a host operating system 106
are cached. A cache index 202 is used to determine a bucket
314 in the storage cache 208 where the record is cached
based on a memory location of the storage system included
in a read command. To write records to the storage cache
208, the record is stored in a bucket 314 and the cache index
202 is updated to include the bucket address 404. Unaligned
TO commands can be accommodated in the cache index 202
by expanding the cache index to include a further level.
Buckets 314 can be evicted by the bucket manager 204
independently of the cache index 202 or the metadata
manager 206, resulting in more efficient eviction.
The disclosed method and apparatus has been explained

above with reference to several embodiments. Other
embodiments will be apparent to those skilled in the art in
light of this disclosure. Certain aspects of the described
method and apparatus may readily be implemented using
configurations other than those described in the embodi
ments above, or in conjunction with elements other than
those described above. For example, different algorithms
and/or logic circuits, perhaps more complex than those
described herein, may be used.

Further, it should also be appreciated that the described
method and apparatus can be implemented in numerous
ways, including as a process, an apparatus, or a system. The
methods described herein may be implemented by program
instructions for instructing a processor to perform Such
methods, and Such instructions recorded on a non-transitory
computer readable storage medium Such as a hard disk drive,
floppy disk, optical disc Such as a compact disc (CD) or
digital versatile disc (DVD), flash memory, etc., or commu
nicated over a computer network wherein the program
instructions are sent over optical or electronic communica
tion links. It should be noted that the order of the steps of the
methods described herein may be altered and still be within
the scope of the disclosure.

It is to be understood that the examples given are for
illustrative purposes only and may be extended to other
implementations and embodiments with different conven
tions and techniques. For example, cache indices other than
BTrees and storage systems other than SANs can be used.
While a number of embodiments are described, there is no
intent to limit the disclosure to the embodiment(s) disclosed
herein. On the contrary, the intent is to cover all alternatives,
modifications, and equivalents apparent to those familiar
with the art.

In the foregoing specification, the invention is described
with reference to specific embodiments thereof, but those
skilled in the art will recognize that the invention is not
limited thereto. Various features and aspects of the above
described invention may be used individually or jointly.
Further, the invention can be utilized in any number of
environments and applications beyond those described
herein without departing from the broader spirit and scope of
the specification. The specification and drawings are,

US 9,454,488 B2
13

accordingly, to be regarded as illustrative rather than restric
tive. It will be recognized that the terms “comprising.”
“including.” and "having, as used herein, are specifically
intended to be read as open-ended terms of art.

What is claimed is:
1. A method comprising:
receiving a first write command sent from a first virtual

machine to a host operating system running on a
computing system, the first write command instructing
a storage system to store a first record at a first memory
location;

storing the first record with an indication of the first
memory location at a first location in a storage cache,
the first location in a first bucket and specified by a first
bucket address, the first bucket comprising a predefined
contiguous set of locations in the storage cache;

storing, in a cache index, an indication that contents of the
first memory location are stored in the storage cache
along with the first bucket address;

receiving a first read command sent from the first virtual
machine to the host operating system, the first read
command instructing the storage system to read the first
memory location;

determining from the indication stored in the cache index
that the contents of the first memory location are stored
in the storage cache at the first bucket address;

determining that a first bucket generation number in the
first bucket address stored in the cache index matches
a second bucket generation number in the first bucket
address stored in a bucket manager;

determining the first location in the storage cache from the
first bucket address in the cache index; and

reading the first record from the determined first location
in the storage cache.

2. The method of claim 1, further comprising writing a
first virtual machine identifier to a first bucket descriptor
array thereby allocating the first bucket to the first virtual
machine.

3. The method of claim 1, wherein storing the first record
at the first location in the storage cache further comprises
incrementing a pin count included in a first bucket descriptor
array; and further comprising:

retrieving the first record from the first location in the
storage cache;

sending the first write command to the storage system;
and then

decrementing the pin count in the first bucket descriptor
array.

4. The method of claim 3, further comprising, after
decrementing the pin count:

determining that the first record as well as any other
records stored in the first bucket has been sent to the
storage system by confirming that the pin count in the
bucket descriptor array is Zero; and

evicting the first bucket by incrementing the second
generation number in the first bucket address stored in
a bucket manager.

5. The method of claim 4, further comprising, before
evicting the first bucket, determining that the first virtual
machine is allocated a larger number of buckets than other
virtual machines running on the computing system.

6. The method of claim 4, further comprising, before
evicting the first bucket, determining that the first bucket is
a least recently used (LRU) bucket of any buckets allocated
to the first virtual machine.

10

15

25

30

35

40

45

50

55

60

65

14
7. The method of claim 4, further comprising writing a

second virtual machine identifier to the first bucket descrip
tor array thereby allocating the first bucket to the second
virtual machine.

8. The method of claim 4, further comprising, after
evicting the first bucket:

receiving a second read command sent from the first
virtual machine to the host operating system, the sec
ond read command instructing the storage system to
read the first memory location;

determining that a first bucket generation number in the
first bucket address stored in the cache index is different
from the incremented bucket generation number
included in the first bucket address stored in the bucket
manager; and

returning a cache miss to the first virtual machine.
9. The method of claim 1, wherein the cache index

comprises a BTree having multiple levels, each BTree level
corresponding to a range of memory locations with upper
BTree levels subdivided into entries having a broader range
of memory locations and lower BTree levels subdivided into
further entries having a narrower range of memory locations.

10. The method of claim 9, further comprising:
receiving a second write command sent from the first

virtual machine to the host operating system running on
the computing system, the second write command
instructing the storage system to store a second record
at a second memory location,

determining that the second record is Smaller than a range
of a further entry in a lowest level of the BTree;

storing the second record with an indication of the second
memory location at a second location in the storage
cache, the second location in a second bucket and
specified by a second bucket address;

storing, in the lowest level of the BTree, an indication that
contents of the second memory location are being
stored in a further level of the BTree that is lower than
the lowest level of the BTree; and

adding the further level to the BTree, the further level of
the BTree storing an indication that the contents of the
second memory location are in the storage cache along
with the second bucket address.

11. The method of claim 1, further comprising, in
response to receiving the first write command, tagging
portions of the cache index that are traversed when deter
mining the first memory location.

12. The method of claim 1, further comprising, as part of
determining from the cache index that the contents of the
first memory location are stored in the storage cache at the
first bucket address, confirming that traversed portions of the
cache index are tagged portions of the cache index.

13. A system comprising:
a bucket manager configured to:

receive a first write command sent from a first virtual
machine to a host operating system running on a
computing system, the first write command instruct
ing a storage system to store a first record at a first
memory location, and

store the first record with an indication of the first
memory location at a first location in a storage cache,
the first location in a first bucket and specified by a
first bucket address, the first bucket comprising a
predefined contiguous set of locations in the storage
cache;

US 9,454,488 B2
15

a metadata manager configured to store, in a cache index,
an indication that contents of the first memory location
are stored in the storage cache along with the first
bucket address;

wherein the bucket manager is further configured to
receive a first read command sent from the first virtual
machine to the host operating system, the first read
command instructing the storage system to read the first
memory location;

wherein the metadata manager is further configured to
determine from the indication stored in the cache index
that the contents of the first memory location are stored
in the storage cache at the first bucket address:

wherein the metadata manager is further configured to
determine that a first bucket generation number in the
first bucket address stored in the cache index matches
a second bucket generation number in the first bucket
address stored in the bucket manager; and

wherein the bucket manager is further configured to
determine the first location in the storage cache from
the first bucket address in the cache index, and to read
the first record from the determined first location in the
storage cache.

14. The system of claim 13, wherein the bucket manager
configured to store the first record at the first location in the
Storage cache further comprises the bucket manager config
ured to:

increment a pin count included in a first bucket descriptor
array;

retrieve the first record from the first location in the
storage cache;

send the first write command to the storage system; and
then

decrement the pin count in the first bucket descriptor
array:

determine that the first record as well as any other records
stored in the first bucket has been sent to the storage

10

15

25

30

35

16
system by confirming that the pin count in the bucket
descriptor array is zero; and

evict the first bucket by incrementing the second genera
tion number in the first bucket address stored in the
bucket manager.

15. A non-transitory computer readable medium having
instructions embodied thereon, the instructions executable
by one or more processors to perform operation comprising:

receiving a first write command sent from a first virtual
machine to a host operating system running on a
computing system, the first write command instructing
a storage system to store a first record at a first memory
location;

storing the first record with an indication of the first
memory location at a first location in a storage cache,
the first location in a first bucket and specified by a first
bucket address, the first bucket comprising a predefined
contiguous set of locations in the storage cache;

storing, in a cache index, an indication that contents of the
first memory location are stored in the storage cache
along with the first bucket address;

receiving a first read command sent from the first virtual
machine to the host operating system, the first read
command instructing the storage system to read the first
memory location;

determining from the indication stored in the cache index
that the contents of the first memory location are stored
in the storage cache at the first bucket address;

determining that a first bucket generation number in the
first bucket address stored in the cache index matches
a second bucket generation number in the first bucket
address stored in a bucket manager;

determining the first location in the storage cache from the
first bucket address in the cache index; and

reading the first record from the determined first location
in the storage cache.

