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HERARCHICAL EVENT DETECTION IN A 
COMPUTER NETWORK 

RELATED APPLICATIONS 

This application claims priority to U.S. Provisional Appli 
cation No. 61/923,847, filed Jan. 6, 2014, entitled: COM 
PUTER NETWORK ANOMALY TRAINING AND 
DETECTION USING ARTIFICIAL NEURAL NET 

WORKS, by Vasseur, et al., the contents of which are herein 
incorporated by reference. 

TECHNICAL FIELD 

The present disclosure relates generally to computer net 
works, and, more particularly, to the use of learning 
machines within computer networks. 

BACKGROUND 

Low power and Lossy Networks (LLNs), e.g., Internet of 
Things (IoT) networks, have a myriad of applications. Such 
as sensor networks, Smart Grids, and Smart Cities. Various 
challenges are presented with LLNs. Such as lossy links, low 
bandwidth, low quality transceivers, battery operation, low 
memory and/or processing capability, etc. The challenging 
nature of these networks is exacerbated by the large number 
of nodes (an order of magnitude larger than a “classic IP 
network), thus making the routing, Quality of Service 
(QoS), security, network management, and traffic engineer 
ing extremely challenging, to mention a few. 

Machine learning (ML) is concerned with the design and 
the development of algorithms that take as input empirical 
data (such as network Statistics and performance indicators), 
and recognize complex patterns in these data. In general, 
these patterns are then used to make decisions automatically 
(i.e., close-loop control) or to help make decisions. ML is a 
very broad discipline used to tackle very different problems 
(e.g., computer vision, robotics, data mining, search engines, 
etc.), but the most common tasks are the following: linear 
and non-linear regression, classification, clustering, dimen 
sionality reduction, anomaly detection, optimization, and 
association rule learning. 
One very common pattern among ML algorithms is the 

use of an underlying model M, whose parameters are 
optimized for minimizing the cost function associated to M, 
given the input data. For instance, in the context of classi 
fication, the model M may be a straight line that separates 
the data into two classes such that Max--by--c and the 
cost function would be the number of misclassified points. 
The ML algorithm then consists in adjusting the parameters 
a,b,c Such that the number of misclassified points is minimal. 
After this optimization phase (or learning phase), the model 
M can be used very easily to classify new data points. Often, 
M is a statistical model, and the cost function is inversely 
proportional to the likelihood of M, given the input data. 

Learning Machines (LMS) are computational entities that 
rely on one or more ML techniques for performing a task for 
which they have not been explicitly programmed to perform. 
In particular, LMs are capable of adjusting their behavior to 
their environment. In the context of LLNs, and more gen 
erally in the context of the IoT (or Internet of Everything, 
IoE), this ability will be very important, as the network will 
face changing conditions and requirements, and the network 
will become too large for efficiently management by a 
network operator. 
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2 
Thus far, LMs have not generally been used in LLNs, 

despite the overall level of complexity of LLNs, where 
“classic' approaches (based on known algorithms) are inef 
ficient or when the amount of data cannot be processed by 
a human to predict network behavior considering the num 
ber of parameters to be taken into account. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The embodiments herein may be better understood by 
referring to the following description in conjunction with the 
accompanying drawings in which like reference numerals 
indicate identically or functionally similar elements, of 
which: 

FIG. 1 illustrates an example communication network; 
FIG. 2 illustrates an example network device/node: 
FIG. 3 illustrates an example directed acyclic graph 

(DAG) in the communication network of FIG. 1; 
FIG. 4 illustrates an example of cascaded ANN classifiers: 
FIGS. 5A-5F illustrate an example of different learning 

machines being used to detect a network attack; 
FIG. 6 illustrates an example simplified procedure for 

using a low precision learning model to detect a network 
event; and 

FIG. 7 illustrates an example simplified procedure for 
validating a detected network event using a high precision 
learning model. 

DESCRIPTION OF EXAMPLE EMBODIMENTS 

Overview 

According to one or more embodiments of the disclosure, 
network data is received at a first node in a computer 
network. A low precision machine learning model is used on 
the network data to detect a network event. A notification is 
then sent to a second node in the computer network that the 
network event was detected, to cause the second node to use 
a high precision machine learning model to validate the 
detected network event. 

In various embodiments, a notification is received at a 
node in a computer network that a network event was 
detected by another node in the computer network using a 
low precision machine learning model. Network data used 
by the other node to detect the network event is also 
received. The detected network event is then validated using 
the network data with a high precision machine learning 
model. 

Description 

A computer network is a geographically distributed col 
lection of nodes interconnected by communication links and 
segments for transporting data between end nodes, such as 
personal computers and workstations, or other devices, such 
as sensors, etc. Many types of networks are available, 
ranging from local area networks (LANs) to wide area 
networks (WANs). LANs typically connect the nodes over 
dedicated private communications links located in the same 
general physical location, such as a building or campus. 
WANs, on the other hand, typically connect geographically 
dispersed nodes over long-distance communications links, 
Such as common carrier telephone lines, optical lightpaths, 
synchronous optical networks (SONET), synchronous digi 
tal hierarchy (SDH) links, or Powerline Communications 
(PLC) such as IEEE 61334, IEEE P1901.2, and others. In 
addition, a Mobile Ad-Hoc Network (MANET) is a kind of 
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wireless ad-hoc network, which is generally considered a 
self-configuring network of mobile routers (and associated 
hosts) connected by wireless links, the union of which forms 
an arbitrary topology. 

Smart object networks, such as sensor networks, in par 
ticular, are a specific type of network having spatially 
distributed autonomous devices such as sensors, actuators, 
etc., that cooperatively monitor physical or environmental 
conditions at different locations, such as, e.g., energy/power 
consumption, resource consumption (e.g., water/gas/etc. for 
advanced metering infrastructure or “AMI applications), 
temperature, pressure, vibration, Sound, radiation, motion, 
pollutants, etc. Other types of Smart objects include actua 
tors, e.g., responsible for turning on/off an engine or perform 
any other actions. Sensor networks, a type of Smart object 
network, are typically shared-media networks, such as wire 
less or PLC networks. That is, in addition to one or more 
sensors, each sensor device (node) in a sensor network may 
generally be equipped with a radio transceiver or other 
communication port Such as PLC, a microcontroller, and an 
energy source, such as a battery. Often, Smart object net 
works are considered field area networks (FANs), neighbor 
hood area networks (NANs), personal area networks 
(PANs), etc. Generally, size and cost constraints on Smart 
object nodes (e.g., sensors) result in corresponding con 
straints on resources such as energy, memory, computational 
speed and bandwidth. 

FIG. 1 is a schematic block diagram of an example 
computer network 100 illustratively comprising nodes/de 
vices 110 (e.g., labeled as shown, “root,” “11”. “12.” . . . 
“45,” and described in FIG. 2 below) interconnected by 
various methods of communication. For instance, the links 
105 may be wired links or shared media (e.g., wireless links, 
PLC links, etc.) where certain nodes 110. Such as, e.g., 
routers, sensors, computers, etc., may be in communication 
with other nodes 110, e.g., based on distance, signal 
strength, current operational status, location, etc. The illus 
trative root node, such as a field area router (FAR) of a FAN, 
may interconnect the local network with a WAN 130, which 
may house one or more other relevant devices such as 
management devices or servers 150, e.g., a network man 
agement server (NMS), a dynamic host configuration pro 
tocol (DHCP) server, a constrained application protocol 
(CoAP) server, etc. Those skilled in the art will understand 
that any number of nodes, devices, links, etc. may be used 
in the computer network, and that the view shown herein is 
for simplicity. Also, those skilled in the art will further 
understand that while the network is shown in a certain 
orientation, particularly with a “root” node, the network 100 
is merely an example illustration that is not meant to limit 
the disclosure. 

Data packets 140 (e.g., traffic and/or messages) may be 
exchanged among the nodes/devices of the computer net 
work 100 using predefined network communication proto 
cols such as certain known wired protocols, wireless proto 
cols (e.g., IEEE Std. 802.15.4, WiFi, Bluetooth R, etc.), PLC 
protocols, or other shared-media protocols where appropri 
ate. In this context, a protocol consists of a set of rules 
defining how the nodes interact with each other. 

FIG. 2 is a schematic block diagram of an example 
node/device 200 that may be used with one or more embodi 
ments described herein, e.g., as any of the nodes or devices 
shown in FIG. 1 above. The device may comprise one or 
more network interfaces 210 (e.g., wired, wireless, PLC, 
etc.), at least one processor 220, and a memory 240 inter 
connected by a system bus 250, as well as a power supply 
260 (e.g., battery, plug-in, etc.). 
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4 
The network interface(s) 210 contain the mechanical, 

electrical, and signaling circuitry for communicating data 
over links 105 coupled to the network 100. The network 
interfaces may be configured to transmit and/or receive data 
using a variety of different communication protocols. Note, 
further, that the nodes may have two different types of 
network connections 210, e.g., wireless and wired/physical 
connections, and that the view herein is merely for illustra 
tion. Also, while the network interface 210 is shown sepa 
rately from power supply 260, for PLC (where the PLC 
signal may be coupled to the power line feeding into the 
power Supply) the network interface 210 may communicate 
through the power Supply 260, or may be an integral 
component of the power Supply. 
The memory 240 comprises a plurality of storage loca 

tions that are addressable by the processor 220 and the 
network interfaces 210 for storing Software programs and 
data structures associated with the embodiments described 
herein. Note that certain devices may have limited memory 
or no memory (e.g., no memory for storage other than for 
programs/processes operating on the device and associated 
caches). The processor 220 may comprise hardware ele 
ments or hardware logic adapted to execute the software 
programs and manipulate the data structures 245. Operating 
systems 242, portions of which are typically resident in 
memory 240 and executed by the processor, functionally 
organizes the device by, inter alia, invoking operations in 
Support of software processes and/or services executing on 
the device. These software processes and/or services may 
comprise routing process/services 244 and an illustrative 
“learning machine' process 248, which may be configured 
depending upon the particular node/device within the net 
work 100 with functionality ranging from intelligent learn 
ing machine algorithms to merely communicating with 
intelligent learning machines, as described herein. Note also 
that while the learning machine process 248 is shown in 
centralized memory 240, alternative embodiments provide 
for the process to be specifically operated within the network 
interfaces 210. 

It will be apparent to those skilled in the art that other 
processor and memory types, including various computer 
readable media, may be used to store and execute program 
instructions pertaining to the techniques described herein. 
Also, while the description illustrates various processes, it is 
expressly contemplated that various processes may be 
embodied as modules configured to operate in accordance 
with the techniques herein (e.g., according to the function 
ality of a similar process). Further, while the processes have 
been shown separately, those skilled in the art will appre 
ciate that processes may be routines or modules within other 
processes. 

Routing process (services) 244 contains computer execut 
able instructions executed by the processor 220 to perform 
functions provided by one or more routing protocols, such as 
proactive or reactive routing protocols, as will be understood 
by those skilled in the art. These functions may, on capable 
devices, be configured to manage a routing/forwarding table 
(a data structure 245) containing, e.g., data used to make 
routing/forwarding decisions. In particular, in proactive 
routing, connectivity is discovered and known prior to 
computing routes to any destination in the network, e.g., link 
state routing such as Open Shortest Path First (OSPF), or 
Intermediate-System-to-Intermediate-System (ISIS), or 
Optimized Link State Routing (OLSR). Reactive routing, on 
the other hand, discovers neighbors (i.e., does not have an a 
priori knowledge of network topology), and in response to 
a needed route to a destination, sends a route request into the 
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network to determine which neighboring node may be used 
to reach the desired destination. Example reactive routing 
protocols may comprise Ad-hoc On-demand Distance Vec 
tor (AODV), Dynamic Source Routing (DSR), DYnamic 
MANET On-demand Routing (DYMO), etc. Notably, on 
devices not capable or configured to store routing entries, 
routing process 244 may consist solely of providing mecha 
nisms necessary for source routing techniques. That is, for 
Source routing, other devices in the network can tell the less 
capable devices exactly where to send the packets, and the 
less capable devices simply forward the packets as directed. 

Notably, mesh networks have become increasingly popu 
lar and practical in recent years. In particular, shared-media 
mesh networks, such as wireless or PLC networks, etc., are 
often on what is referred to as Low-Power and Lossy 
Networks (LLNs), which are a class of network in which 
both the routers and their interconnects are constrained: 
LLN routers typically operate with constraints, e.g., pro 
cessing power, memory, and/or energy (battery), and their 
interconnects are characterized by, illustratively, high loss 
rates, low data rates, and/or instability. LLNs are comprised 
of anything from a few dozen and up to thousands or even 
millions of LLN routers, and support point-to-point traffic 
(between devices inside the LLN), point-to-multipoint traffic 
(from a central control point Such at the root node to a Subset 
of devices inside the LLN) and multipoint-to-point traffic 
(from devices inside the LLN towards a central control 
point). 
An example implementation of LLNs is an “Internet of 

Things' network. Loosely, the term “Internet of Things” or 
“IoT (or “Internet of Everything” or “IoE’) may be used by 
those in the art to refer to uniquely identifiable objects 
(things) and their virtual representations in a network-based 
architecture. In particular, the next frontier in the evolution 
of the Internet is the ability to connect more than just 
computers and communications devices, but rather the abil 
ity to connect “objects in general. Such as lights, appli 
ances, vehicles, HVAC (heating, ventilating, and air-condi 
tioning), windows and window shades and blinds, doors, 
locks, etc. The “Internet of Things” thus generally refers to 
the interconnection of objects (e.g., Smart objects). Such as 
sensors and actuators, over a computer network (e.g., IP), 
which may be the Public Internet or a private network. Such 
devices have been used in the industry for decades, usually 
in the form of non-IP or proprietary protocols that are 
connected to IP networks by way of protocol translation 
gateways. With the emergence of a myriad of applications, 
Such as the Smart grid, Smart cities, and building and 
industrial automation, and cars (e.g., that can interconnect 
millions of objects for sensing things like power quality, tire 
pressure, and temperature and that can actuate engines and 
lights), it has been of the utmost importance to extend the IP 
protocol suite for these networks. 
An example protocol specified in an Internet Engineering 

Task Force (IETF) Proposed Standard, Request for Com 
ment (RFC) 6550, entitled “RPL: IPv6 Routing Protocol for 
Low Power and Lossy Networks” by Winter, et al. (March 
2012), provides a mechanism that Supports multipoint-to 
point (MP2P) traffic from devices inside the LLN towards a 
central control point (e.g., LLN Border Routers (LBRs), 
FARs, or “root nodes/devices' generally), as well as point 
to-multipoint (P2MP) traffic from the central control point to 
the devices inside the LLN (and also point-to-point, or 
“P2P traffic). RPL (pronounced “ripple') may generally be 
described as a distance vector routing protocol that builds a 
Directed Acyclic Graph (DAG) for use in routing traffic/ 
packets 140, in addition to defining a set of features to bound 
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6 
the control traffic, support repair, etc. Notably, as may be 
appreciated by those skilled in the art, RPL also supports the 
concept of Multi-Topology-Routing (MTR), whereby mul 
tiple DAGs can be built to carry traffic according to indi 
vidual requirements. 

Also, a directed acyclic graph (DAG) is a directed graph 
having the property that all edges are oriented in Such a way 
that no cycles (loops) are Supposed to exist. All edges are 
contained in paths oriented toward, and terminating at, one 
or more root nodes (e.g., “clusterheads or "sinks”), often to 
interconnect the devices of the DAG with a larger infra 
structure, Such as the Internet, a wide area network, or other 
domain. In addition, a Destination Oriented DAG (DODAG) 
is a DAG rooted at a single destination, i.e., at a single DAG 
root with no outgoing edges. A "parent of a particular node 
within a DAG is an immediate successor of the particular 
node on a path towards the DAG root, such that the parent 
has a lower “rank' than the particular node itself, where the 
rank of a node identifies the node's position with respect to 
a DAG root (e.g., the farther away a node is from a root, the 
higher is the rank of that node). Note also that a tree is a kind 
of DAG, where each device/node in the DAG generally has 
one parent or one preferred parent. DAGs may generally be 
built (e.g., by a DAG process and/or routing process 244) 
based on an Objective Function (OF). The role of the 
Objective Function is generally to specify rules on how to 
build the DAG (e.g. number of parents, backup parents, 
etc.). 

FIG. 3 illustrates an example simplified DAG that may be 
created, e.g., through the techniques described above, within 
network 100 of FIG. 1. For instance, certain links 105 may 
be selected for each node to communicate with a particular 
parent (and thus, in the reverse, to communicate with a child, 
if one exists). These selected links form the DAG 310 
(shown as bolded lines), which extends from the root node 
toward one or more leaf nodes (nodes without children). 
Traffic/packets 140 (shown in FIG. 1) may then traverse the 
DAG310 in either the upward direction toward the root or 
downward toward the leaf nodes, particularly as described 
herein. 
RPL Supports two modes of operation for maintaining and 

using Downward routes: 
1) Storing Mode: RPL routers unicast DAO messages 

directly to their DAG Parents. In turn, RPL routers maintain 
reachable IPv6 addresses for each of their DAG Children in 
their routing table. Because intermediate RPL routers store 
Downward routing state, this mode is called Storing mode. 

2) Non-Storing Mode: RPL routers unicast DAO mes 
sages directly to the DAG Root. The DAO message also 
includes the IPv6 addresses for the source’s DAG Parents. 
By receiving DAO messages from each RPL router in the 
network, the DAG Root obtains information about the DAG 
topology and can use source routing to deliver datagrams. 
Unlike Storing mode, intermediate RPL routers in Non 
Storing mode do not maintain any Downward routes. 

Learning Machine Technique(s) 
As noted above, machine learning (ML) is concerned with 

the design and the development of algorithms that take as 
input empirical data (such as network Statistics and perfor 
mance indicators), and recognize complex patterns in these 
data. One very common pattern among ML algorithms is the 
use of an underlying model M, whose parameters are 
optimized for minimizing the cost function associated to M, 
given the input data. For instance, in the context of classi 
fication, the model M may be a straight line that separates 
the data into two classes such that Max--by--c and the 
cost function would be the number of misclassified points. 
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The ML algorithm then consists in adjusting the parameters 
a,b,c Such that the number of misclassified points is minimal. 
After this optimization phase (or learning phase), the model 
M can be used very easily to classify new data points. Often, 
M is a statistical model, and the cost function is inversely 
proportional to the likelihood of M, given the input data. 
As also noted above, learning machines (LMS) are com 

putational entities that rely on one or more ML algorithms 
for performing a task for which they have not been explicitly 
programmed to perform. In particular, LMS are capable of 
adjusting their behavior to their environment. In the context 
of LLNs, and more generally in the context of the IoT (or 
Internet of Everything, IoE), this ability will be very impor 
tant, as the network will face changing conditions and 
requirements, and the network will become too large for 
efficient management by a network operator. Thus far, LMS 
have not generally been used in LLNs, despite the overall 
level of complexity of LLNs, where “classic' approaches 
(based on known algorithms) are inefficient or when the 
amount of data cannot be processed by a human to predict 
network behavior considering the number of parameters to 
be taken into account. 

Artificial Neural Networks (ANNs) are a type of machine 
learning technique whose underlying mathematical models 
were inspired by the hypothesis that mental activity consists 
primarily of electrochemical activity between intercon 
nected neurons. ANNs are sets of computational units (neu 
rons) connected by directed weighted links. By combining 
the operations performed by neurons and the weights 
applied by their links, ANNs are able to perform highly 
non-linear operations on their input data. 
The interesting aspect of ANNs, though, is not that they 

can produce highly non-linear outputs of the input. The truly 
interesting aspect is that ANNs can “learn' to reproduce a 
predefined behavior through a training process. This capac 
ity of learning has allow the successful application of ANNs 
to a wide variety of learning problems, such as medical 
diagnostics, character recognition, data compression, object 
tracking, autonomous driving of vehicles, biometrics, etc. 

Learning in ANNs is treated as an optimization problem 
where the weights of the links are optimized for minimizing 
a predefined cost function. This optimization problem is 
computationally very expensive, due to the high number of 
parameters to be optimized, but thanks to the backpropaga 
tion algorithm, the optimization problem can be performed 
very efficiently. Indeed, the backpropagation algorithm com 
putes the gradient of the cost function with respect to the 
weights of the links in only one forward and backward pass 
throw the ANN. With this gradient, the weights of the ANN 
that minimize the cost function can be computed. 

Denial of service (DoS) is a broad term for any kind of 
attack aiming at, by any means, making a particular service 
unavailable (be it a certain application running on a server 
or network connectivity itself). This is usually performed by 
bringing the target's resources to exhaustion (again, target 
resources may range from bandwidth to memory and CPU). 

In greater detail, a DoS attack may consist in flooding a 
target network with hundreds of megabits of traffic (volume 
based DoS), exhausting a server State by opening a large 
number of TCP connections (SYN flooding), or by making 
an HTTP server unavailable by sending it an overwhelming 
number of requests. An attack may be more subtle and 
exploit well-known Vulnerabilities in the target system (e.g. 
a large number of fragmented IP packets may exhaust the 
resources of a router). 

Nowadays, DoS attacks are mostly distributed, i.e., they 
are carried out by multiple sources at the same time, thus 
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8 
making it more difficult to track. In many cases, botnets (i.e. 
armies or infected hosts spread across the network and under 
the control of a single master) are used for mounting DoS 
attacks. In addition, Source addresses used for attacks can be 
spoofed, so that blocking an offending address is potentially 
useless. 

In general, DoS attacks are easy to detect when they are 
brute-force, but, especially when highly distributed, they 
may be difficult to distinguish from a flash-crowd (i.e. an 
overload of the system due to many legitimate users access 
ing it at the same time). 

Statistics and machine learning techniques have been 
proposed for detecting attacks at the server or network level. 
Some approaches try to analyze changes in the overall 
statistical behavior of the network traffic (e.g. the traffic 
distribution among flow flattens when a DDoS attack based 
on a number of microflows happens). Other approaches aim 
at statistically characterizing the normal behaviors of net 
work flows or TCP connections, in order to detect significant 
deviations. 

However, the Internet of Things (IoT) represents a com 
pletely different scenario and requires novel detection and 
reaction strategies. Its highly distributed nature implies that 
there is no central vantage point from which an attack can be 
observed. In addition, the scarce resources of the IoT force 
reporting from the nodes to a central location to be reduced 
to a minimum. 
On top of the lack of global information, detecting DoS in 

the IoT is made harder by the fact that a much more subtle 
interference of the network's operations may be enough to 
bring the network down. For example, a jamming node can 
prevent a node from decoding traffic by just emitting short 
bursts when activity on the channel is detected. This can 
isolate a large portion of the network which uses that node 
as a parent and cut off a large portion of the network. In 
addition, in the case of battery operated nodes, a slow but 
steady flow of malicious traffic can exhaust a node's battery, 
thus making the node useless in a matter of days. 
Due to the high variability of this kind of network, the 

symptoms of those attacks are not easy to detect and can be 
lost in the normal noise of the network behavior (traffic 
peaks and topology changes are quite normal in LLN). 
Therefore, an intelligent approach is needed that is able to 
reveal Subtle changes in the measured data that are typical of 
a known anomalous behavior. 
—Possible Attacks Against IoT - 
Even though the existing literature regarding possible 

attack types against the IoT is limited, a number of attacks 
against sensor network technologies may apply with a few 
minor modifications. Such attacks can be roughly classified 
into two classes: 1.) insider attacks (i.e., where the malicious 
node needs to be authenticated and be in possession of the 
network encryption keys), and 2.) outsider attacks (i.e., 
where the attacker just needs to be within the radio range of 
the victims). 

In particular, a number of attacks against routing per 
formed by a malicious node in the DAG can be imagined. A 
node can, for example, perform selective forwarding. In 
other words, the node could just discard some of the traffic 
messages that it is asked to forward, while still participating 
correctly within the routing protocol. Although this can 
potentially be revealed by end-to-end mechanisms, detection 
of this type of attack can be difficult and slow due to the low 
traffic rate and lossiness of IoT networks. Other example 
attacks include a malicious node impersonating multiple 
identities or advertising forged routing information, so as to 
gain a central role in the routing topology. 
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While attacks belonging to the former class can be 
prevented through well-designed cryptography and authen 
tication, in the latter case they have to be detected by 
monitoring the network environment. 
The simplest form of attack that can be performed against 

an RF network is jamming. This consists in artificially 
creating an interference, so as to prevent message decoding. 
There are several variations of a jamming attack, with 
different degrees of complexity and subtlety. The attacker 
can continuously emit power on the spectrum (continuous 
jamming), create a collision when it detects activity on the 
channel (reactive jamming), or attack only a particular type 
of traffic (selective jamming). The damage from a jamming 
attack can be maximized if the attacker is able to estimate 
the centrality of a node in the routing topology. This can be 
obtained by accounting for the amount of traffic transmitted 
and received by each node, by leveraging the fact that the 
link layer addresses are in clear. Once the jammer has 
detected the most central node, it can try to make this node 
unreachable for its descendants, which will in turn be forced 
to select another parent. This can potentially create continu 
ous route oscillations and convergences. 

Other kinds of external DoS attacks can be performed by 
exploiting the fact that a number of messages in the WPAN 
do not need authentication, Such as discovery beacons and 
Some of the EAPoll messages used for authentication. In 
particular, discovery beacons can be used for injecting false 
synchronization information into the network, so as to 
prevent two nodes from meeting on the right unicast com 
munication frequency. EAPoL authentication messages, 
instead, have to be relayed by the WPAN nodes up to the 
FAR, and from there until the AAA server. This mechanism 
allows an attacker to generate routable traffic, thus flooding 
the network and wasting bandwidth and processing power. 
A mitigation strategy may to have authentication requests be 
rate-limited. However this may result in legitimate nodes 
being prevented from authenticating when an attack is in 
progress. 

Other attacks can be performed against networks that use 
the 802.11i protocol, which is used for exchanging key 
information between the authenticating node and the FAR 
(and therefore, cannot be protected by link layer encryption). 
Such attacks are documented in the scientific literature and 
aim at blocking the handshake between the client and the 
access point. This can be achieved by an attacker by inter 
leaving a forged message between two messages in the 
handshake. This implicitly resets the handshake state, so that 
Subsequent messages from the authenticating node are dis 
carded. 

—Frequency-hopping and synchronization in 802.15.4— 
In a channel-hopping mesh network, devices communi 

cate using different channels at different times. To commu 
nicate a packet, a transmitter-receiver pair must be config 
ured to the same channel during packet transmission. For a 
transmitter to communicate with a receiver at an arbitrary 
time in the future, the transmitter and receiver must syn 
chronize to a channel Schedule that specifies what channel to 
communicate on and at what time. Channel Schedules may 
be assigned to each transmitter-receiver pair independently 
so that neighboring transmitter-receiver pairs can commu 
nicate simultaneously on different channels. Such a strategy 
increases aggregate network capacity for unicast communi 
cation but is inefficient for broadcast communication. Alter 
natively, all devices in a network may synchronize with a 
single channel schedule such that all devices transmit and 
receive on the same channel at any time. Such a strategy 
increases efficiency for broadcast communication since a 
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10 
single transmission can reach an arbitrary number of neigh 
bors, but decreases aggregate network capacity for unicast 
communication since neighboring individual transmitter 
receiver pairs cannot communicate simultaneously without 
interfering. Mesh networks typically utilize both unicast and 
broadcast communication. Applications use unicast commu 
nication to communicate data to a central server (e.g. AMI 
meter reads) or configure individual devices from a central 
server (e.g. AMI meter read schedules). Network control 
protocols use unicast communication to estimate the quality 
of a link (e.g. RSSI and ETX), request configuration infor 
mation (e.g. DHCPv6), and propagate routing information 
(e.g. RPL DAO messages). Applications use multicast com 
munication for configuring entire groups efficiently (e.g. 
AMI meter configurations based on meter type), download 
ing firmware upgrades (e.g. to upgrade AMI meter software 
to a newer version), and for power outage notification. 
Network control protocols use multicast communication to 
discover neighbors (e.g. RPL DIO messages, DHCPv6 
advertisements, and IPv6 Neighbor Solicitations) and dis 
seminate routing information (e.g. RPL DIO messages). 
Existing systems optimize for both unicast and broadcast 
communication by Synchronizing the entire network to the 
same channel-switching schedule and using a central coor 
dinator to compute and configure channel schedules for each 
individual device, or else more efficiently optimizing for 
both unicast and broadcast communication in a channel 
hopping network without need for centrally computing 
schedules for individual nodes. 

In order to join the WPAN enabled with frequency 
hopping (e.g., an 802.15.4 WPAN), a node needs to syn 
chronize on the frequency hopping schedule of its neigh 
bors. Therefore, each node in the WPAN broadcasts its 
unicast reception schedule via a discovery beacon, which is 
not encrypted and sent on every frequency: this allows nodes 
joining the PAN to join. In greater detail, the discovery 
beacon message is sent a broadcast destination WPAN and 
includes several information elements, most notably: 
The WPAN SSID String 
The unicast scheduling information. In one implementa 

tion, this is made up of a slot number and an offset 
value. This allows the receiving node to compute the 
slot number the sending node is currently is, and thus, 
by applying a hash function, to know its current receiv 
ing frequency. Note that this algorithm does not require 
the clocks of the two nodes to be synchronized. 

The transmission of a discovery beacon is triggered by an 
associated trickle timer. However, the information about the 
scheduling of the broadcast slot is not included in Such a 
beacon, but only in the synchronous and unicast beacons, 
which are encrypted with the network key. In particular, the 
synchronous beacon is triggered by a trickle timer and it is 
sent on every frequency (just as the discovery beacon). The 
unicast beacon, on the contrary, is sent upon request by 
another node by using a standard unicast transmission. In 
both cases, the beacon includes a broadcast scheduling 
information element, which has the same format of the 
unicast scheduling IE (Information Element). As a conse 
quence, an attacker can interfere with its target during its 
unicast slot, but ignores the broadcast frequency schedule: 
the broadcast schedule is therefore much better protected 
against DoS attacks. 
–802.15.4 Security— 
Currently, IoT architecture comes with several embedded 

security mechanisms. The cornerstone of IoT Security is 
indeed link layer encryption, which is mandatory for most 
frames (including routing messages and application traffic). 
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Besides pure encryption, link layer security ensures message 
integrity (through an encrypted MAC code) and message 
non-replication (through an encrypted sequence number 
included in the encrypted message payload). 

In order to install the necessary link layer keys on every 
node, an authentication procedure is carried out when the 
node joins the network. Such a procedure is based on the 
EAPOL protocol, which is carried directly over layer 2 
messages and is used for transporting authentication data 
from the node to the FAR (notice that such messages are not 
encrypted). On top of EAPOL, two main protocols are 
carried: EAP messages, which the FAR tunnels to an AAA 
server through the RADIUS and 802.11 i messages, which 
are used for exchanging cryptographic material between the 
FAR and the node. 

In greater detail, EAP messages are used by the node for 
mutual authentication with the AAA server and securely 
agree on a shared secret; to this end, a complete TLS 
handshake is, in turn, tunneled over EAP messages and a 
public key mechanism based on X.509 certificates is used for 
identity validation. Once such shared secret has been estab 
lished, the AAA server transmits it to the FAR, which, in 
turn, uses it for exchanging the link layer keys with the node 
through the 802.11 i protocol. 

Notice that the shared secret negotiated through EAP is 
stored by the node in persistent memory and can be reused 
for Subsequent authentication (in this case, EAP is skipped 
and the link layer key is directly exchanged through 
802.11i). 

Hierarchical Event Detection in a Computer Network 
A common use of ANNs is as classifiers. Generally, a 

classifier is a learning machine (LM) that takes a sample as 
input data and computes a label as output. Abinary classifier, 
which is the most common use case, takes the input and 
labels it as either belonging to the class of interest or not. 
Thus, multiclass classifiers can also be constructed by com 
bining binary classifiers. Good quality classifiers computed 
using ANNs, or any other machine learning model, can have 
very high recall values and a low ratio of False Positives 
(FP). However, when the amount of samples to classify is 
huge, even a low ratio of FP can be a problem in a network. 
In the particular case of using a classifier for monitoring 
Some network parameters. Such as attacks against nodes, this 
problem can be present due to the potentially high number 
of evaluations of the classifier (e.g., caused by a high 
number of nodes and a high frequency of arrival of new 
samples that need to be classified). Thus, strategies may be 
adopted that allows obtaining good classifiers in terms of 
precision and recall, even under this context of high number 
of evaluations. 

Furthermore, if one considers the case of highly con 
strained networks such as LLNs, bandwidth limitations 
make unfeasible the use of a centralized single classifier for 
monitoring purposes. Indeed, constantly reporting features 
to the monitoring point can easily collapse the network. This 
aspect is fundamental in networks where the bandwidth is 
non homogenous and where nodes at the very edge of the 
network are highly constrained. As will be appreciated, a 
“feature' in the machine learning context generally refers to 
any observable property, attribute, etc. of an observed phe 
nomenon. Thus, when machine learning is used in a net 
work, a feature may correspond to network data that 
describes a particular property, attribute, etc. regarding the 
network. 

According to the techniques herein, a distributed and 
hierarchical classifier approach combining classifiers exhib 
iting characteristics of different natures is disclosed for 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
monitoring a certain aspect of the network (e.g., detecting 
the presence of attacks, detecting other network events, etc.). 
By appropriately distributing classification steps, the tech 
niques herein permit improving the global classification 
precision while at the same time reducing traffic on the 
network for monitoring purposes. The techniques herein 
also consider all the mechanisms for pushing classifiers 
down to the nodes and pulling advanced features from nodes 
that launch an alarm up to the router, in order to continue the 
classification. While the techniques herein are described 
primarily in the context of the IoT, the techniques herein are 
also applicable to non-IoT cases (e.g., access links in a 
remote branch where the router is connected to the central 
site using low-speed links), since the problems due to the 
high number of evaluations still apply in many types of 
networks. Also, while the techniques herein are described 
primarily with respect to ANN classifiers, it is to be appre 
ciated that the techniques can easily be adapted to classifiers 
using any other machine learning technique. 

Said differently, the techniques herein determine the opti 
mal architecture to distributed classifiers in a network, 
according to various network parameters (e.g., Such as the 
node attributes, the network characteristics, the overall 
objectives to detect an event using classifiers such as a 
DDoS attack, etc.). In particular, the techniques dynamically 
upload classifiers in nodes according to their computational 
capabilities (i.e., classifiers are weaker on nodes that are less 
capable), using a hierarchy whereby weaker/less demanding 
classifiers are distributed according to nodes attributes and 
network bandwidth available. Once a positive value is 
returned by a classifier to a node hosting a stronger and/or 
more demanding classifier, that node may request additional 
information in order to draw a conclusion thanks to a 
dynamic exchange of information between nodes taking into 
account the number of positives from weaker classifiers and 
network States. 

Notably, classifiers are LMs that take a sample as input 
data and compute a label for this sample as output. An 
example of a classifier can be a LM that takes certain 
features about a node as input and outputs 1 if these features 
correspond to a node that is being attacked, and 0 otherwise. 
As shown in the example of FIG. 4, to improve the com 
putational requirements and precision of the classifier, cas 
cades of classifiers may be used. In general, a cascade of 
classifiers is a hierarchical classifier structure where only the 
last stage can assign a positive label (i.e., the sample belongs 
to the class of interest), but any stage can assign a negative 
label (i.e., the sample does not belong to the class of 
interest). For example, as shown in FIG. 4, a hierarchy of 
classifiers comprising classifiers 404–408 (e.g., a first 
through nth classifier) may sequentially evaluate a sample 
input 402. During the evaluations, any of classifiers 404–408 
may generate an output 412 that signifies that input 402 does 
not belong to a class A. If a particular classifier does not 
reach this conclusion, processing proceeds to the next clas 
sifier to perform its own evaluation. This continues on until 
the last classifier (e.g., an nth classifier), at which point the 
classifier may generate an output 410 signifying that input 
402 belongs to the class or output 412 signifying that input 
402 does not belong to the class. Thus, an input sample that 
goes into a particular classifier (e.g., the first stage of the 
classifier) only progresses to the next stage if it has been 
labeled as positive (i.e., as belonging to the class of interest), 
by the classifier in the current stage. This way, a positively 
labeled sample has been labeled as belonging to the class of 
interest in all the stages of the cascade, while a sample 
negatively labeled has been labeled as such in only one stage 
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and then its propagation to the following stages (and there 
fore the computation) has been stopped there. This kind of 
cascade may be implemented using classifiers with a very 
high recall value (i.e., having few False Negatives) and with 
precision values that increase from one stage to the next. 
High recall values are usually easier to achieve than high 
precision values (i.e., few False Positives), and high values 
of recall and precision simultaneously are very related to the 
complexity and computational requirements of a classifier. 
Then, by combining classifiers with these characteristics in 
a cascade structure, a global classifier computationally more 
efficient and with better precision and recall scores than any 
of the classifiers in the stages is obtained. 
The techniques described below use cascades of classifi 

ers in a physically distributed way on a LLN. This approach 
presents two main advantages with respect to the use of a 
standard, centralized cascade of classifiers. First, by physi 
cally distributing the stages of the classifier, the computa 
tional requirements are also distributed on the network. In 
particular, nodes with limited computational resources can 
perform the first stages of the cascade of classifiers, thereby 
reducing the computational requirements of the entity that 
will perform the last stage(s) of the whole classifier. Second, 
by computing the first stages of the classifier directly on the 
network nodes, a high number of samples are already 
discarded and therefore not further propagated on the cas 
cade. This means that a high number of samples do not need 
further classification and therefore their features do not need 
to be propagated to the next stages, which reduces the 
amount of traffic required for the classification of a sample. 

Operationally, as noted above, the techniques herein intro 
duce a hierarchical classifier technique for distributed net 
works using cascades of classifiers. The considered cascade 
generally includes at least two stages: a first stage that is in 
a node or directly on the Router and a second evaluated on 
the Router. The objective of this hierarchical application of 
classifiers is double. On the one hand, the sequential appli 
cation of classifiers, if designed correctly, reduces the num 
ber of FPs. On the other hand, pushing the first step to the 
node reduces the amount of information that has to be 
reported to the Router, since some samples can already be 
discarded locally on the node. It is worth reminding that in 
many circumstances, such as the use of classifiers computed 
by ANNs to detect DoS attacks, feeding an ANN hosted on 
a router (e.g., a FAR) with a massive amount of information 
makes such an approach ill-suited to LLN applications. 
Indeed, in a highly multi-dimensional space, the ANN may 
require a number of data points as input that would simply 
congest the network if communicated between devices. 
Note, however, that if the node cannot perform the first step 
of classification locally due to a lack of computational 
resources (e.g., temporary CPU congestion on the node) or 
another reason, the techniques herein also consider the 
possibility of computing everything on the Router itself. 

Specifically, according to various embodiments, network 
data is received at a first node in a computer network. A low 
precision machine learning model is used on the network 
data to detect a network event. A notification is then sent to 
a second node in the computer network that the network 
event was detected, to cause the second node to use a high 
precision machine learning model to validate the detected 
network event. 

According to Some embodiments herein, a low precision 
machine learning model may be characterized as being less 
computationally demanding (i.e., allowing the model to be 
run on a low-end device), with a higher performance detec 
tion rate and potentially a high rate of false positive. In 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
contrast, a high precision model may be characterized as 
being more computationally demanding (e.g., requiring the 
model to be run on a higher-end device), with a high 
performance detection rate and a low rate of false positive. 
As used herein, the term “router is used in a generic 

fashion and can be a ruggedized router also known as a Field 
Area Router (FAR) or a non-ruggedized router or a switch 
(i.e., that performs bridging as opposed to routing at layer 
3). Note also that although the techniques herein are 
described primarily in the context of ANN classifiers, the 
techniques apply to any kind of classifier that can be 
constructed following the precision and recall requirements 
for cascades of classifiers. For instance, Support Vector 
Machines (SVMs) are also very well suited for cascades of 
classifiers and may be used, in further embodiments. 

In some embodiments, a first component of the techniques 
herein defines a classification in two steps using a distributed 
classifier. Illustratively, a classifier called the Weak Classi 
fier (WC) performs the first step, and a classifier called the 
Strong Classifier (SC) performs the second step. 
The WC may be implemented using an ANN or other 

learning machine that has to satisfy the following require 
ments: 

High recall score, in order not to discard samples that 
should be forwarded to the SC for further inspection. In 
other words, the WC should have a low False Negative 
rate (e.g., the WC should not classify as negative what 
is indeed a DDoS attack). 

Low computational requirements, for being Suitable for 
highly constrained devices. 

In general, False Positives (FPs) are acceptable when 
using the cascading classifiers herein, whereas False Nega 
tive (FNs) are generally not acceptable. 
The SC is also implemented using an ANN or other 

learning machine. However, in this case the classifier can be 
computationally more expensive, given that it is expected to 
have high recall and precision scores. 
The input features for the WC and the SC are also not 

necessarily the same. Indeed, the WC being a low perfor 
mance classifier (e.g., in terms of precision) can have less 
elaborated features as input. The SC, in contrast, being a 
high performance classifier in terms of precision and recall, 
can have more complex input features than the WC. For 
instance, a SC classifier can consider some principal com 
ponents of a subset of features as input, while the WC may 
consider feature values directly as input. 
The design of the weak and strong classifiers herein may 

take into account the characteristics of the device where they 
will be used. In other words, the classifier may be adapted 
to the computational resources of the device. For instance, in 
the case of ANNs, the activation functions and the number 
of neurons should be adapted to these computational con 
straints in the sense that both the evaluation of the activation 
function and the number of these evaluations have to be 
feasible under the specified constraints. Furthermore, these 
characteristics can be considered also as input features for 
the classifier, since they can provide important information 
for the classification. For example, the power of emission of 
a device can have a main role on the achieved transmission 
Success rate, and this information can be useful when trying 
to distinguish between normal physical conditions and 
physical conditions disturbed by an attacker. 

Although the techniques herein describe the use of two 
types of classifiers (i.e., strong and weak classifiers), the 
techniques may be generalized to the case of n number of 
classifiers, in various embodiments. Indeed, in a multi-layer 
network, with m layers (e.g., very edge, Field Area Network, 
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Core network, Data center), the techniques herein may be 
implemented by using nam classifiers with different level of 
performance according to the computing resources, avail 
able bandwidth in the network. 

In the general case, the following terms are specified: 
A Classifier CL(n) is a classifier computed by a Learning 
Machine that will be used at layer n in the network. 

P(CL(n)) is the performance of the classifier used at 
layer n. 

C(CL(n)) is the complexity of CL(n) (e.g., the amount of 
CPU resources required). 

B(CL(n)) is the amount of bandwidth or network 
resources required by CL(n) to perform. 

FP(CL(n)) False Positive Rate. 
FN(CL(n)) False Negative Rate. 
Properties of the classifiers: 
If n<m, then 
P(CL(n))<P(CL(m)). In other words, a classifier at layer 

1 (i.e., the very edge) is less efficient than a classifier at 
layer-1. 

FP(CL(n))>FP(CL(m)). 
C(CL(n))<C(CL(m)). 
B(CL(n))<B(CL(m)). 
The second component of the techniques herein intro 

duces a mechanism for selecting and pushing a classifier 
from a node at layer n to a node at Layer m where nom. 

In the context of ANN classifiers, the elements that may 
be pushed to the node in order to perform the required 
classification are: 
The Activation Function evaluated by neurons. 
The weights of all the links in the ANN. 
The threshold applied to the output for positively labeling 

a sample. Indeed, classification is usually performed by 
providing a binary 0 or 1 label, but the output of a 
classifier is typically continuous between the values of 
0-1. Therefore, a threshold for considering an output as 
either a 0 or a 1 may be used. Notably, the precision and 
recall of a classifier can be modified by modifying this 
threshold. 

In the rest of this illustrative description, the case of N=2 
layers is described in the context of an LLN where, at the 
lowest layer, nodes are highly constrained (e.g., at Smart 
Meters) and the next layer is the Field Area Router. In such 
a case, CL(1) is the WC and CL(2) is the SC. For pushing 
these elements to a node, the FAR must first perform a 
selection of the node capable of using a WC. In one 
embodiment, such a selection is performed by the FAR 
thanks to the discovery of the node attributes, such as 
reported via a routing extension included within the SNA 
object and carried itself in the DAG Metric container object. 
In another embodiment, the FAR may send a newly defined 
unicast IP message such as a CoAP message to query to the 
node for either obtaining its computational characteristics 
(e.g., and to locally determine whether the node is capable 
of making use of the WC) or request the node to make use 
of a WC (e.g., in which case this is the remote node itself that 
determines whether or not it can host the WC). In yet another 
embodiment, other network parameters may be taken into 
account Such as the occurrence of a DDoS attack in the past, 
the level of congestion in the network in the area where the 
node lies, and any other policy related parameters. 

If the Router considers that the node can perform the first 
step of the classification or if the node provides a positive 
reply, the WC may be downloaded on the node using a 
newly defined Classifier Push (CP) message. Indeed the 
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information about the ANN commented above (e.g., activa 
tion function, weights, and threshold) is pushed to the node 
using this CP message. 

If the node cannot perform the required classification, a 
Features Request (FR) message is sent from the Router to 
the node for retrieving the features that are not available 
directly on the Router but that are required for computing the 
SC. In this case, the node answers with a Features Message 
(FM) where the values of the requested features are reported. 

In another embodiment, a Feature Export Request (FER) 
message is sent by the router. Such message configures the 
node so that it will automatically export a FM containing the 
requested features. A FER message will specify how the 
export of the requested features will be triggered: an export 
period can be configured (so that features can be batched 
together for efficiency reasons) or data can be exported as 
Soon as it is available (in case detection delay is critical). 

In a third component of the techniques herein, a mecha 
nism is introduced for establishing a communication 
between the node and the Router when a sample is positively 
labeled in the node, as illustrated in the example of FIGS. 
5A-5F. During this communication, the node has to notify to 
the Router that a sample has been positively labeled and, 
therefore, that further inspection should be performed. Once 
this is acknowledged by the Router, the Router has to 
communicate to the node which features should be reported 
in order to continue with the inspection. Note that the 
notification step is not necessary when the WC has been 
evaluated by the Router. For example, assume that a network 
includes a number of nodes 506 that have weak LMs 
installed, as shown in FIG. 5A. In FIG. 5B, a malicious 
attack is detected from an attack node 508 at one of the 
nodes executing a weak classifier. 
The working flow of the third component of the tech 

niques herein is as follows: 
Step 1: 
After positively labeling a sample, the node sends a novel 

IP unicast message called Sample Labeled (SL) message 
with the features F that were positively labeled. For 
example, as shown in FIG. 5C, the node that detected an 
attack via a weak classifier may send an event detected 
message 510 to its FAR 502. 

Step 2: 
The router SC may simply to ignore the notification 

according to policy, or wait to receive N number of notifi 
cations from nodes hosting WCs during a period of time T. 
before proceeding to step 3. Conversely, the node can be 
configured in order to export only one in N positive-label 
features. 

Step-3: 
the Router performs an advanced inspection of features 

using the SC. If extra features from the node are required for 
evaluating the SC, the Router sends a FR message to the 
node, with the information about the features that the node 
has to communicate to the Router. For example, as shown in 
FIG. 5D, FAR 502 may send a request 512 to the detecting 
node 506 for more information. Note that the router may, in 
one embodiment, decide to request Such additional features 
after the expiration of a timer T1 configured according to a 
policy or the network state. For example, if the DDoS attack 
detected using that classifier is critical, the router may 
request the additional information immediately while, on the 
other hand, the router may delay the request for additional 
features if the DDoS attack is not so likely and/or not too 
critical and the network is currently congested. As shown in 
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FIG. 5E, the node 506 provides the features used to detect 
the attack with the weak classifier to the FAR 502 via a 
message 514. 

Step 4: 
Once the required additional features/information have 

been received by the Router, it performs the second step of 
the classification (i.e., the second stage of the cascade). For 
example, as shown in FIG. 5F, the FAR 502 may use the 
additional feature data and its own strong classifier to 
validate whether a network attack actually exists. As the 
final classifier in the cascade, FAR 502 may determine that 
the attack is actually present and raise an alarm or may 
determine that the detected attack is a false positive. 

FIG. 6 illustrates an example simplified procedure for 
using a low precision learning model to detect a network 
event. Procedure 600 starts at step 605 and continues on to 
step 610 where, as highlighted above, network data is 
received by a node/device. In general, the received network 
data may be any information regarding the state or condition 
of the network or a portion thereof. In step 615, a low 
precision learning model. Such as an ANN classifier, is used 
with the network data to detect the presence of a network 
event. For example, a node/device in the network may use 
a low precision classifier to determine that a possible net 
work attack is present in the network. At step 620, a 
notification is sent to another node/device having a higher 
precision learning model (e.g., ANN classifier) to validate 
the detected event, and procedure 600 ends at step 625. 

FIG. 7 illustrates an example simplified procedure for 
validating a detected network event using a high precision 
learning model. Procedure 700 begins at step 705 and 
continues on to step 710 where, as detailed above, an event 
detection notification is received. For example, an event 
detection notification may be received from a lower preci 
sion classifier. In step 715, the network data used to detect 
the event is received. As highlighted above, for example, the 
evaluating node/device may request the network data from 
the detecting device or at least a portion of the network data 
may be included in the event detection notification. In step 
720, as detailed above, the device may validate the detected 
event by applying a high precision learning model to the 
received network data, and process 700 ends at step 725. 

It should be noted that while certain steps within proce 
dures 600-700 may be optional as described above, the steps 
shown in FIGS. 6-7 are merely examples for illustration, and 
certain other steps may be included or excluded as desired. 
Further, while a particular order of the steps is shown, this 
ordering is merely illustrative, and any suitable arrangement 
of the steps may be utilized without departing from the scope 
of the embodiments herein. Moreover, while procedures 
600-700 are described separately, certain steps from each 
procedure may be incorporated into each other procedure, 
and the procedures are not meant to be mutually exclusive. 
The techniques described herein, therefore, provide for 

use of a hierarchical classifier, Such as those computed by 
ANNs, in highly constrained networks. In particular, without 
these techniques, it may be nearly impossible to host clas 
sifiers in a network. In particular, some classifiers are too 
CPU intensive for use in a highly constrained network, 
leading to unacceptable processing time or even impacting 
the ability for a node/router to perform other task. Thanks to 
these described techniques, however, classifiers of various 
performances are distributed in the network according to the 
network characteristics and node attributes in a distributed 
fashion, thus providing a very effective cascade of classifiers 
adapted to the network characteristics. 
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Illustratively, each of the techniques described herein may 

be performed by hardware, software, and/or firmware, such 
as in accordance with the learning machine process 248, 
which may contain computer executable instructions 
executed by the processor 220 (or independent processor of 
interfaces 210) to perform functions relating to the tech 
niques described herein, e.g., optionally in conjunction with 
other processes. For example, certain aspects of the tech 
niques herein may be treated as extensions to conventional 
protocols, such as the various communication protocols 
(e.g., routing process 244), and as such, may be processed by 
similar components understood in the art that execute those 
protocols, accordingly. Also, while certain aspects of the 
techniques herein may be described from the perspective of 
a single node/device, embodiments described herein may be 
performed as distributed intelligence, also referred to as 
edge/distributed computing, Such as hosting intelligence 
within nodes 110 of a Field Area Network in addition to or 
as an alternative to hosting intelligence within servers 150. 

While there have been shown and described illustrative 
embodiments that provide for computer network anomaly 
training and detection using artificial neural networks, gen 
erally, it is to be understood that various other adaptations 
and modifications may be made within the spirit and scope 
of the embodiments herein. For example, the embodiments 
have been shown and described herein with relation to LLNs 
and related protocols. However, the embodiments in their 
broader sense are not as limited, and may, in fact, be used 
with other types of communication networks and/or proto 
cols. In addition, while the embodiments have been shown 
and described with relation to learning machines in the 
specific context of communication networks, certain tech 
niques and/or certain aspects of the techniques may apply to 
learning machines in general without the need for relation to 
communication networks, as will be understood by those 
skilled in the art. 
The foregoing description has been directed to specific 

embodiments. It will be apparent, however, that other varia 
tions and modifications may be made to the described 
embodiments, with the attainment of some or all of their 
advantages. For instance, it is expressly contemplated that 
the components and/or elements described herein can be 
implemented as Software being stored on a tangible (non 
transitory) computer-readable medium (e.g., diskS/CDS/ 
RAM/EEPROM/etc.) having program instructions execut 
ing on a computer, hardware, firmware, or a combination 
thereof. Accordingly this description is to be taken only by 
way of example and not to otherwise limit the scope of the 
embodiments herein. Therefore, it is the object of the 
appended claims to cover all such variations and modifica 
tions as come within the true spirit and scope of the 
embodiments herein. 

What is claimed is: 
1. A method, comprising: 
receiving network data at a first node in a computer 

network; 
using a low precision machine learning model on the 

network data to detect a network event; and 
sending a notification to a second node in the computer 

network that the network event was detected, the noti 
fication to cause the second node to use a high precision 
machine learning model to validate the detected net 
work event, wherein the second node is a field area 
router (FAR). 

2. The method as in claim 1, wherein the first node has 
lower computing resources than the second node. 
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3. The method as in claim 1, wherein the machine learning 
models are artificial neural network (ANNs). 

4. The method as in claim 1, further comprising: 
receiving, from the second node, a request for information 

regarding the detected network event; and 
sending the requested information regarding the detected 

network event to the second node. 
5. The method as in claim 1, wherein the notification sent 

to the second node comprises the network data used to detect 
the network event. 

6. The method as in claim 1, further comprising: 
receiving a request for computational resources available 

at the first node from the second node: 
providing the available computational resources to the 

second node; and 
receiving the low precision machine learning model from 

the second node based on the computational resources 
available at the first node. 

7. The method as in claim 1, further comprising: 
receiving an eligibility request from the second node: 

determining whether the first node is eligible to execute the 
low precision machine learning model based on computa 
tional resources available at the first node: 

notifying the second node that the first node is eligible to 
execute the low precision machine learning model; and 

receiving, from the second node, the low precision 
machine learning model. 

8. The method as in claim 1, wherein the second node 
determines the network event detected by the first node to be 
a false positive using the high precision machine learning 
model. 

9. An apparatus, comprising: 
one or more network interfaces to communicate in a 

computer network; 
a processor coupled to the network interfaces and con 

figured to execute one or more processes; and 
a memory configured to store a process executable by the 

processor, the process when executed operable to: 
receive network data in the computer network; 
use a low precision machine learning model on the 

network data to detect a network event; and 
send a notification to another node in the computer 

network that the network event was detected, the noti 
fication to cause the other node to use a high precision 
machine learning model to validate the detected net 
work event, wherein the other node is a field area router 
(FAR). 

10. The apparatus as in claim 9, wherein the machine 
learning models are artificial neural network (ANNs). 

11. The apparatus as in claim 9, wherein the process when 
executed is further operable to: 

receive, from the other node, a request for information 
regarding the detected network event; and 

send the requested information regarding the detected 
network event to the other node. 

12. The apparatus as in claim 9, wherein the process when 
executed is further operable to: 

receive a request for computational resources available at 
the apparatus from the other node: provide the available 
computational resources to the other node; and 
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receive the low precision machine learning model from 

the other node based on the available computational 
SOUCS. 

13. The apparatus as in claim 9, wherein the process when 
executed is further operable to: 

receive an eligibility request from the second node: 
determine whether the first node is eligible to execute the 

low precision machine learning model based on com 
putational resources available at the first node: 

notify the second node that the first node is eligible to 
execute the low precision machine learning model; and 

receive, from the second node, the low precision machine 
learning model. 

14. A method, comprising: 
receiving, at a node in a computer network, a notification 

that a network event was detected by another node in 
the computer network using a low precision machine 
learning model; 

receiving network data used by the other node to detect 
the network event; 

validating the detected network event using the network 
data with a high precision machine learning model; and 

determining that the network event detected by the other 
node using the low precision machine learning model 
was a false positive. 

15. The method as in claim 14, further comprising: 
requesting, from the other node, data regarding computing 

resources available at the other node: 
determining that the other node is eligible to execute the 

low precision machine learning model; and 
sending the low precision machine learning model to the 

other node. 
16. The method as in claim 14, further comprising: 
determining that a particular node cannot execute the low 

precision machine learning model; 
requesting network data from the particular node; 
receiving the requested network data from the particular 

node: 
using the network data received from the particular node 

to detect the network event. 
17. The method as in claim 14, wherein the network event 

is validated in response to receiving notifications that the 
network event was detected by a plurality of network nodes 
using low precision machine learning models. 

18. An apparatus, comprising: 
one or more network interfaces to communicate in a 

computer network; 
a processor coupled to the network interfaces and adapted 

to execute one or more processes; and 
a memory configured to store a process executable by the 

processor, the process when executed operable to: 
receive a notification that a network event was detected by 

another node in the computer network using a low 
precision machine learning model; 

receive network data used by the other node to detect the 
network event; and 

validate the detected network event using the network 
data with a high precision machine learning model; and 

determine that the network event detected by the other 
node using the low precision machine learning model 
was a false positive. 
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