
US00945.0978B2

(12) United States Patent (10) Patent No.: US 9.450,978 B2
Vasseur et al. (45) Date of Patent: Sep. 20, 2016

(54) HIERARCHICAL EVENT DETECTION IN A (2013.01); G06N 99/005 (2013.01); H04L
COMPUTER NETWORK 41/16 (2013.01); H04L 43/0876 (2013.01);

H04L 47/127 (2013.01); H04L 47/2466
(71) Applicant: Cisco Technology, Inc., San Jose, CA (2013.01); H04L 47/41 (2013.01); G06N 3/08

(US) (2013.01); H04L 45/48 (2013.01)
(58) Field of Classification Search

(72) Inventors: Jean-Philippe Vasseur, Saint Martin None
d'Uriage (DE); Javier Cruz Mota, See application file for complete search history.
Assens (CH); Andrea Di Pietro,
Lausanne (CH) (56) References Cited

(73) Assignee: Cisco Technology, Inc., San Jose, CA U.S. PATENT DOCUMENTS

(US) 6,324,532 B1 * 1 1/2001 Spence GO6K 9,3241
TO6, 19

(*) Notice: Subject to any disclaimer, the term of this 7,526,806 B2 4/2009 Wiley et al.
patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 224 days.

(21) Appl. No.: 14/164,460 FOREIGN PATENT DOCUMENTS
y x- - - 9

EP 24.42525 A1 4/2012
(22) Filed: Jan. 27, 2014 WO WO-O2/48959 A2 6, 2002

(65) Prior Publication Data OTHER PUBLICATIONS

US 2015/O193696A1 Jul. 9, 2015 Sahbi, et al., A Hierarchy of Support Vector Machines for Pattern
Detection, Journal of Machine Learning Research, vol. 7, 2006, pp.

Related U.S. Application Data 2087-2123

(60) Provisional application No. 61/923,847, filed on Jan. (Continued)
6, 2014.

Primary Examiner – Wilbert L Starks
(51) Int. Cl. (74) Attorney, Agent, or Firm — Parker Ibrahim & Berg

G06N, 3/02 (2006.01) LLC; James M. Behmke; Stephen D. LeBarron
H04L 29/06 (2006.01)
G06N 99/00 (2010.01) (57) ABSTRACT
H04L 2/26 (2006.01) In one embodiment, network data is received at a first node
H04L 12/24 (2006.01) in a computer network. A low precision machine learning
H04L 12/80 (2013.01) model is used on the network data to detect a network event.
H04L 12/855 (2013.01) A notification is then sent to a second node in the computer
H04L 2/89 (2013.01) network that the network event was detected, to cause the
GO6N 3/08 (2006.01) second node to use a high precision machine learning model
HO4L 12/753 (2013.01) to validate the detected network event.

(52) U.S. Cl.
CPC H04L 63/1425 (2013.01); G06N 3/02 18 Claims, 11 Drawing Sheets

LINKS 105 SERVERS)
150

St) DEVICE 110
DAG310

US 9,450,978 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,603,709 B2 10/2009 Lewis et al.
7,657,940 B2 2/2010 Portolani et al.
7,675,926 B2 3/2010 Olsen et al.
7,694,335 B1 4/2010 Turner et al.
7,733,798 B2 6, 2010 White et al.
7,779,471 B2 8/2010 Balasubramaniyan et al.
7,793,138 B2 9/2010 Rastogi et al.
7,854,000 B2 12/2010 Venkat et al.
7.971,256 B2 6/2011 Bhikkaji et al.
8,032,779 B2 10/2011 Clemm et al.
8,121,024 B1 2/2012 Natarajan et al.
8,161,554 B2 4/2012 Sadhasivam et al.
8,230,498 B2 7, 2012 Shaffer et al.
8,261,355 B2 9/2012 Rayes et al.
8.312,541 B2 11/2012 Levy-Abegnoli et al.
8,619,576 B2 12/2013 Vasseur et al.
8,634.316 B2 1/2014 Rosenberg et al.

2008, 0083029 A1
2008. O148342 A1
2011/02587O2 A1
2012fOO23572 A1
2012/0026938 A1
2012. O155475 A1
2012fO230204 A1
2012/0320923 A1
2013, OO 10610 A1
2013, OO24560 A1
2013/O1594.79 A1
2013, O159548 A1
2013/0179538 A1
2013/0219046 A1
2013/0276114 A1
2013,02981.84 A1
2014/0022906 A1
2014/OO25945 A1
2014/02227 27 A1*

4/2008 Yeh et al.
6/2008 Aiyagari et al.
10/2011 Olney et al.
1/2012 Williams, Jr. et al.
2/2012 Pandey et al.
6/2012 Vasseur et al.
9, 2012 Vasseur et al.
12/2012 Vasseur et al.
1/2013 Karthikeyan et al.
1/2013 Vasseur et al.
6, 2013 Vasseur
6/2013 Vasseur et al.
7, 2013 Dutta et al.
8, 2013 Wetterwald et al.
10/2013 Friedrichs et al.
11/2013 Ermagan et al.
1/2014 Vasseur et al.
1/2014 McGrew et al.
8/2014 Vasseur GO6N 99,005

TO6/12

OTHER PUBLICATIONS

Cai, et al., “Distributed Aggregation Algorithms with Load-Balanc
ing for Scalable Grid Resource Monitoring”. Parallel and Distrib
uted Processing Symposium, Mar. 2007, 10 pages, Institute of
Electical and Electronics Engineers.

Hwang, et al., “DHT-Based Security Infrastructure for Trusted
Internet and Grid Computing”, International Journal of Critical
Infrastructures, vol. 2, No. 4, Nov. 2009, pp. 412-433, linderscience
Publishers.
Jover, R.P. "Security Attacks Against the Availability of LTE
Mobility Networks: Overview and Research Directions”, 16th Inter
national Symposium on Wireless Personal Multimedia Communi
cations (WPMC), Jun. 2013, 9 pages, Atlantic City, NJ.
Lippmann, et al., “Analysis and Results of the 1999 DARPA
Off-Line Intrusion Detection Evaluation'. Proceedings of the Third
International Workshop on Recent Advances in Intrusion Detection,
RAID, (2000), pp. 162-182, Springer-Verlag, London, UK.
Oh, et al., “Distributed Learning in Mobile Sensor Networks. Using
Cross Validation' 49th IEEEE Conference on Decision and Control,
Dec. 2010, 6 pages, Institute of Electrical and Electronics Engi
neers, Atlanta, GA.
Ryan, et al., “Intrusion Detection with Neural Networks”, Technical
Report WS-97-07. (1997), pp. 72-77, Association for the Advance
ment of Artificial Intelligence.
Sommer, R., "Outside the Closed World: On Using Machine Learn
ing for Network Intrusion Detection', IEEE Symposium on Secu
rity and Privacy, May 2010, pp. 305-316, Intitute of Electrical and
Electronics Engineers, Oakland, CA.
Vasseur et al., “Computer Network Anomaly Training and Detection
Using Artificial Neural Networks'. U.S. Appl. No. 61/923,847, filed
Jan. 6, 2014, 166 pgs. U.S. Patent and Trademark Office, Alexan
dria, Virginia.
Vasseur, et al., “Routing Metrics Used for Path Calculation in
Low-Power and Lossy Networks'. Request for Comments 6551,
Mar. 2012, 30 pages, Internet Engineering Task Force Trust.
Viola, et al. “Rapid Object Detection Using a Boosted Cascade of
Simple Features'. Proceedings of the 2001 IEEE Computer Vision
and Pattern Recognition, vol. 1, (2001), 8 pages, Institute of
Electical and Electronics Engineers.
Winter, et al., “RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks'. Request for Comments 6550, Mar. 2012, 157
pages, Internet Engineering Task Force Trust.
Zinkevic, et al., “Parallelized Stochastic Gradient Descent', Pro
ceedings of the Advances in Neural Information Processing Systems
23 (2010), 37 pages.

* cited by examiner

US 9,450,978 B2 Sheet 1 of 11 Sep. 20, 2016 U.S. Patent

ÇOI SXINIT

US 9,450,978 B2 Sheet 2 of 11 Sep. 20, 2016 U.S. Patent

8f7Z SSHOORHdH FINIHOVW [ONLINTRIVEITI SETRIOJLOCTRIJLS
Z 'OIH

FFZ SSHOORIA {ONIJL[]ORI ZFZ WEILSÅS {DNIJLVRIFICIO 077. ÅRHOVNÍHWN

XIRIOAAL™HN WORIH/OL OTZ (S),HOVHHALNI XIRIOAALEIN ?ZZ (S) NOSSROONI

US 9,450,978 B2 Sheet 3 of 11 Sep. 20, 2016 U.S. Patent

() I Ø OVCI

0I I CHOIATHCIeÐ

U.S. Patent Sep. 20, 2016 Sheet 4 of 11 US 9,450,978 B2

400
V

INPUT
402

CLASSIFIER 1
404

CLASSIFIER2
406

CLASSIFIERN
408

CLASSA
410

FIG. 4

US 9,450,978 B2 Sheet 6 of 11 Sep. 20, 2016 U.S. Patent

() ()
()

() ŒN pos: SÐ WIT ONORILS Z-YHVH

() FINIONGH

{{CION S[\OIOITIVW
WIT ONORILS I-YHVH

()

0I I GIOIA?HOI© ÇOI SSINIT. —

US 9,450,978 B2 Sheet 7 of 11 Sep. 20, 2016 U.S. Patent

() ()
()

() ŒN pos: SÐ WIT ONORILS Z-YHVH

() HNIONGH

{{CION S[\OIOITIVNI
WTI ONORIJLS |-YHVH

()

CIRILOR LEICT JLNÍHACH
ÇOI SYINIT —

US 9,450,978 B2 Sheet 9 of 11 Sep. 20, 2016 U.S. Patent

() ()
()

() ŒN pos: SÐ WIT ONORILS Z-YHVH

() EINIONGH XOITORI/SWIN
{{CION S[\OIOITWW

WITI ONORILS |-YHVH

()

NOI LVWTRIOHNI TVNOILICICIV
ÇOI SXINIT. —

U.S. Patent Sep. 20, 2016 Sheet 11 of 11 US 9,450,978 B2

/ 600
605

6

RECEIVE NETWORK DATA

6

6

HIGH PRECISION LEARNING MODEL

625

10

15

20

00
705 / 7

7

RECEIVE EVENT DETECTION NOTIFICATION

7

7

HIGH PRECISION LEARNING MODEL

725

10

15

20

FIG. 7

US 9,450,978 B2
1.

HERARCHICAL EVENT DETECTION IN A
COMPUTER NETWORK

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Appli
cation No. 61/923,847, filed Jan. 6, 2014, entitled: COM
PUTER NETWORK ANOMALY TRAINING AND
DETECTION USING ARTIFICIAL NEURAL NET

WORKS, by Vasseur, et al., the contents of which are herein
incorporated by reference.

TECHNICAL FIELD

The present disclosure relates generally to computer net
works, and, more particularly, to the use of learning
machines within computer networks.

BACKGROUND

Low power and Lossy Networks (LLNs), e.g., Internet of
Things (IoT) networks, have a myriad of applications. Such
as sensor networks, Smart Grids, and Smart Cities. Various
challenges are presented with LLNs. Such as lossy links, low
bandwidth, low quality transceivers, battery operation, low
memory and/or processing capability, etc. The challenging
nature of these networks is exacerbated by the large number
of nodes (an order of magnitude larger than a “classic IP
network), thus making the routing, Quality of Service
(QoS), security, network management, and traffic engineer
ing extremely challenging, to mention a few.

Machine learning (ML) is concerned with the design and
the development of algorithms that take as input empirical
data (such as network Statistics and performance indicators),
and recognize complex patterns in these data. In general,
these patterns are then used to make decisions automatically
(i.e., close-loop control) or to help make decisions. ML is a
very broad discipline used to tackle very different problems
(e.g., computer vision, robotics, data mining, search engines,
etc.), but the most common tasks are the following: linear
and non-linear regression, classification, clustering, dimen
sionality reduction, anomaly detection, optimization, and
association rule learning.
One very common pattern among ML algorithms is the

use of an underlying model M, whose parameters are
optimized for minimizing the cost function associated to M,
given the input data. For instance, in the context of classi
fication, the model M may be a straight line that separates
the data into two classes such that Max--by--c and the
cost function would be the number of misclassified points.
The ML algorithm then consists in adjusting the parameters
a,b,c Such that the number of misclassified points is minimal.
After this optimization phase (or learning phase), the model
M can be used very easily to classify new data points. Often,
M is a statistical model, and the cost function is inversely
proportional to the likelihood of M, given the input data.

Learning Machines (LMS) are computational entities that
rely on one or more ML techniques for performing a task for
which they have not been explicitly programmed to perform.
In particular, LMs are capable of adjusting their behavior to
their environment. In the context of LLNs, and more gen
erally in the context of the IoT (or Internet of Everything,
IoE), this ability will be very important, as the network will
face changing conditions and requirements, and the network
will become too large for efficiently management by a
network operator.

10

15

25

30

35

40

45

50

55

60

65

2
Thus far, LMs have not generally been used in LLNs,

despite the overall level of complexity of LLNs, where
“classic' approaches (based on known algorithms) are inef
ficient or when the amount of data cannot be processed by
a human to predict network behavior considering the num
ber of parameters to be taken into account.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals
indicate identically or functionally similar elements, of
which:

FIG. 1 illustrates an example communication network;
FIG. 2 illustrates an example network device/node:
FIG. 3 illustrates an example directed acyclic graph

(DAG) in the communication network of FIG. 1;
FIG. 4 illustrates an example of cascaded ANN classifiers:
FIGS. 5A-5F illustrate an example of different learning

machines being used to detect a network attack;
FIG. 6 illustrates an example simplified procedure for

using a low precision learning model to detect a network
event; and

FIG. 7 illustrates an example simplified procedure for
validating a detected network event using a high precision
learning model.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

According to one or more embodiments of the disclosure,
network data is received at a first node in a computer
network. A low precision machine learning model is used on
the network data to detect a network event. A notification is
then sent to a second node in the computer network that the
network event was detected, to cause the second node to use
a high precision machine learning model to validate the
detected network event.

In various embodiments, a notification is received at a
node in a computer network that a network event was
detected by another node in the computer network using a
low precision machine learning model. Network data used
by the other node to detect the network event is also
received. The detected network event is then validated using
the network data with a high precision machine learning
model.

Description

A computer network is a geographically distributed col
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types of networks are available,
ranging from local area networks (LANs) to wide area
networks (WANs). LANs typically connect the nodes over
dedicated private communications links located in the same
general physical location, such as a building or campus.
WANs, on the other hand, typically connect geographically
dispersed nodes over long-distance communications links,
Such as common carrier telephone lines, optical lightpaths,
synchronous optical networks (SONET), synchronous digi
tal hierarchy (SDH) links, or Powerline Communications
(PLC) such as IEEE 61334, IEEE P1901.2, and others. In
addition, a Mobile Ad-Hoc Network (MANET) is a kind of

US 9,450,978 B2
3

wireless ad-hoc network, which is generally considered a
self-configuring network of mobile routers (and associated
hosts) connected by wireless links, the union of which forms
an arbitrary topology.

Smart object networks, such as sensor networks, in par
ticular, are a specific type of network having spatially
distributed autonomous devices such as sensors, actuators,
etc., that cooperatively monitor physical or environmental
conditions at different locations, such as, e.g., energy/power
consumption, resource consumption (e.g., water/gas/etc. for
advanced metering infrastructure or “AMI applications),
temperature, pressure, vibration, Sound, radiation, motion,
pollutants, etc. Other types of Smart objects include actua
tors, e.g., responsible for turning on/off an engine or perform
any other actions. Sensor networks, a type of Smart object
network, are typically shared-media networks, such as wire
less or PLC networks. That is, in addition to one or more
sensors, each sensor device (node) in a sensor network may
generally be equipped with a radio transceiver or other
communication port Such as PLC, a microcontroller, and an
energy source, such as a battery. Often, Smart object net
works are considered field area networks (FANs), neighbor
hood area networks (NANs), personal area networks
(PANs), etc. Generally, size and cost constraints on Smart
object nodes (e.g., sensors) result in corresponding con
straints on resources such as energy, memory, computational
speed and bandwidth.

FIG. 1 is a schematic block diagram of an example
computer network 100 illustratively comprising nodes/de
vices 110 (e.g., labeled as shown, “root,” “11”. “12.” . . .
“45,” and described in FIG. 2 below) interconnected by
various methods of communication. For instance, the links
105 may be wired links or shared media (e.g., wireless links,
PLC links, etc.) where certain nodes 110. Such as, e.g.,
routers, sensors, computers, etc., may be in communication
with other nodes 110, e.g., based on distance, signal
strength, current operational status, location, etc. The illus
trative root node, such as a field area router (FAR) of a FAN,
may interconnect the local network with a WAN 130, which
may house one or more other relevant devices such as
management devices or servers 150, e.g., a network man
agement server (NMS), a dynamic host configuration pro
tocol (DHCP) server, a constrained application protocol
(CoAP) server, etc. Those skilled in the art will understand
that any number of nodes, devices, links, etc. may be used
in the computer network, and that the view shown herein is
for simplicity. Also, those skilled in the art will further
understand that while the network is shown in a certain
orientation, particularly with a “root” node, the network 100
is merely an example illustration that is not meant to limit
the disclosure.

Data packets 140 (e.g., traffic and/or messages) may be
exchanged among the nodes/devices of the computer net
work 100 using predefined network communication proto
cols such as certain known wired protocols, wireless proto
cols (e.g., IEEE Std. 802.15.4, WiFi, Bluetooth R, etc.), PLC
protocols, or other shared-media protocols where appropri
ate. In this context, a protocol consists of a set of rules
defining how the nodes interact with each other.

FIG. 2 is a schematic block diagram of an example
node/device 200 that may be used with one or more embodi
ments described herein, e.g., as any of the nodes or devices
shown in FIG. 1 above. The device may comprise one or
more network interfaces 210 (e.g., wired, wireless, PLC,
etc.), at least one processor 220, and a memory 240 inter
connected by a system bus 250, as well as a power supply
260 (e.g., battery, plug-in, etc.).

10

15

25

30

35

40

45

50

55

60

65

4
The network interface(s) 210 contain the mechanical,

electrical, and signaling circuitry for communicating data
over links 105 coupled to the network 100. The network
interfaces may be configured to transmit and/or receive data
using a variety of different communication protocols. Note,
further, that the nodes may have two different types of
network connections 210, e.g., wireless and wired/physical
connections, and that the view herein is merely for illustra
tion. Also, while the network interface 210 is shown sepa
rately from power supply 260, for PLC (where the PLC
signal may be coupled to the power line feeding into the
power Supply) the network interface 210 may communicate
through the power Supply 260, or may be an integral
component of the power Supply.
The memory 240 comprises a plurality of storage loca

tions that are addressable by the processor 220 and the
network interfaces 210 for storing Software programs and
data structures associated with the embodiments described
herein. Note that certain devices may have limited memory
or no memory (e.g., no memory for storage other than for
programs/processes operating on the device and associated
caches). The processor 220 may comprise hardware ele
ments or hardware logic adapted to execute the software
programs and manipulate the data structures 245. Operating
systems 242, portions of which are typically resident in
memory 240 and executed by the processor, functionally
organizes the device by, inter alia, invoking operations in
Support of software processes and/or services executing on
the device. These software processes and/or services may
comprise routing process/services 244 and an illustrative
“learning machine' process 248, which may be configured
depending upon the particular node/device within the net
work 100 with functionality ranging from intelligent learn
ing machine algorithms to merely communicating with
intelligent learning machines, as described herein. Note also
that while the learning machine process 248 is shown in
centralized memory 240, alternative embodiments provide
for the process to be specifically operated within the network
interfaces 210.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer
readable media, may be used to store and execute program
instructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, it is
expressly contemplated that various processes may be
embodied as modules configured to operate in accordance
with the techniques herein (e.g., according to the function
ality of a similar process). Further, while the processes have
been shown separately, those skilled in the art will appre
ciate that processes may be routines or modules within other
processes.

Routing process (services) 244 contains computer execut
able instructions executed by the processor 220 to perform
functions provided by one or more routing protocols, such as
proactive or reactive routing protocols, as will be understood
by those skilled in the art. These functions may, on capable
devices, be configured to manage a routing/forwarding table
(a data structure 245) containing, e.g., data used to make
routing/forwarding decisions. In particular, in proactive
routing, connectivity is discovered and known prior to
computing routes to any destination in the network, e.g., link
state routing such as Open Shortest Path First (OSPF), or
Intermediate-System-to-Intermediate-System (ISIS), or
Optimized Link State Routing (OLSR). Reactive routing, on
the other hand, discovers neighbors (i.e., does not have an a
priori knowledge of network topology), and in response to
a needed route to a destination, sends a route request into the

US 9,450,978 B2
5

network to determine which neighboring node may be used
to reach the desired destination. Example reactive routing
protocols may comprise Ad-hoc On-demand Distance Vec
tor (AODV), Dynamic Source Routing (DSR), DYnamic
MANET On-demand Routing (DYMO), etc. Notably, on
devices not capable or configured to store routing entries,
routing process 244 may consist solely of providing mecha
nisms necessary for source routing techniques. That is, for
Source routing, other devices in the network can tell the less
capable devices exactly where to send the packets, and the
less capable devices simply forward the packets as directed.

Notably, mesh networks have become increasingly popu
lar and practical in recent years. In particular, shared-media
mesh networks, such as wireless or PLC networks, etc., are
often on what is referred to as Low-Power and Lossy
Networks (LLNs), which are a class of network in which
both the routers and their interconnects are constrained:
LLN routers typically operate with constraints, e.g., pro
cessing power, memory, and/or energy (battery), and their
interconnects are characterized by, illustratively, high loss
rates, low data rates, and/or instability. LLNs are comprised
of anything from a few dozen and up to thousands or even
millions of LLN routers, and support point-to-point traffic
(between devices inside the LLN), point-to-multipoint traffic
(from a central control point Such at the root node to a Subset
of devices inside the LLN) and multipoint-to-point traffic
(from devices inside the LLN towards a central control
point).
An example implementation of LLNs is an “Internet of

Things' network. Loosely, the term “Internet of Things” or
“IoT (or “Internet of Everything” or “IoE’) may be used by
those in the art to refer to uniquely identifiable objects
(things) and their virtual representations in a network-based
architecture. In particular, the next frontier in the evolution
of the Internet is the ability to connect more than just
computers and communications devices, but rather the abil
ity to connect “objects in general. Such as lights, appli
ances, vehicles, HVAC (heating, ventilating, and air-condi
tioning), windows and window shades and blinds, doors,
locks, etc. The “Internet of Things” thus generally refers to
the interconnection of objects (e.g., Smart objects). Such as
sensors and actuators, over a computer network (e.g., IP),
which may be the Public Internet or a private network. Such
devices have been used in the industry for decades, usually
in the form of non-IP or proprietary protocols that are
connected to IP networks by way of protocol translation
gateways. With the emergence of a myriad of applications,
Such as the Smart grid, Smart cities, and building and
industrial automation, and cars (e.g., that can interconnect
millions of objects for sensing things like power quality, tire
pressure, and temperature and that can actuate engines and
lights), it has been of the utmost importance to extend the IP
protocol suite for these networks.
An example protocol specified in an Internet Engineering

Task Force (IETF) Proposed Standard, Request for Com
ment (RFC) 6550, entitled “RPL: IPv6 Routing Protocol for
Low Power and Lossy Networks” by Winter, et al. (March
2012), provides a mechanism that Supports multipoint-to
point (MP2P) traffic from devices inside the LLN towards a
central control point (e.g., LLN Border Routers (LBRs),
FARs, or “root nodes/devices' generally), as well as point
to-multipoint (P2MP) traffic from the central control point to
the devices inside the LLN (and also point-to-point, or
“P2P traffic). RPL (pronounced “ripple') may generally be
described as a distance vector routing protocol that builds a
Directed Acyclic Graph (DAG) for use in routing traffic/
packets 140, in addition to defining a set of features to bound

10

15

25

30

35

40

45

50

55

60

65

6
the control traffic, support repair, etc. Notably, as may be
appreciated by those skilled in the art, RPL also supports the
concept of Multi-Topology-Routing (MTR), whereby mul
tiple DAGs can be built to carry traffic according to indi
vidual requirements.

Also, a directed acyclic graph (DAG) is a directed graph
having the property that all edges are oriented in Such a way
that no cycles (loops) are Supposed to exist. All edges are
contained in paths oriented toward, and terminating at, one
or more root nodes (e.g., “clusterheads or "sinks”), often to
interconnect the devices of the DAG with a larger infra
structure, Such as the Internet, a wide area network, or other
domain. In addition, a Destination Oriented DAG (DODAG)
is a DAG rooted at a single destination, i.e., at a single DAG
root with no outgoing edges. A "parent of a particular node
within a DAG is an immediate successor of the particular
node on a path towards the DAG root, such that the parent
has a lower “rank' than the particular node itself, where the
rank of a node identifies the node's position with respect to
a DAG root (e.g., the farther away a node is from a root, the
higher is the rank of that node). Note also that a tree is a kind
of DAG, where each device/node in the DAG generally has
one parent or one preferred parent. DAGs may generally be
built (e.g., by a DAG process and/or routing process 244)
based on an Objective Function (OF). The role of the
Objective Function is generally to specify rules on how to
build the DAG (e.g. number of parents, backup parents,
etc.).

FIG. 3 illustrates an example simplified DAG that may be
created, e.g., through the techniques described above, within
network 100 of FIG. 1. For instance, certain links 105 may
be selected for each node to communicate with a particular
parent (and thus, in the reverse, to communicate with a child,
if one exists). These selected links form the DAG 310
(shown as bolded lines), which extends from the root node
toward one or more leaf nodes (nodes without children).
Traffic/packets 140 (shown in FIG. 1) may then traverse the
DAG310 in either the upward direction toward the root or
downward toward the leaf nodes, particularly as described
herein.
RPL Supports two modes of operation for maintaining and

using Downward routes:
1) Storing Mode: RPL routers unicast DAO messages

directly to their DAG Parents. In turn, RPL routers maintain
reachable IPv6 addresses for each of their DAG Children in
their routing table. Because intermediate RPL routers store
Downward routing state, this mode is called Storing mode.

2) Non-Storing Mode: RPL routers unicast DAO mes
sages directly to the DAG Root. The DAO message also
includes the IPv6 addresses for the source’s DAG Parents.
By receiving DAO messages from each RPL router in the
network, the DAG Root obtains information about the DAG
topology and can use source routing to deliver datagrams.
Unlike Storing mode, intermediate RPL routers in Non
Storing mode do not maintain any Downward routes.

Learning Machine Technique(s)
As noted above, machine learning (ML) is concerned with

the design and the development of algorithms that take as
input empirical data (such as network Statistics and perfor
mance indicators), and recognize complex patterns in these
data. One very common pattern among ML algorithms is the
use of an underlying model M, whose parameters are
optimized for minimizing the cost function associated to M,
given the input data. For instance, in the context of classi
fication, the model M may be a straight line that separates
the data into two classes such that Max--by--c and the
cost function would be the number of misclassified points.

US 9,450,978 B2
7

The ML algorithm then consists in adjusting the parameters
a,b,c Such that the number of misclassified points is minimal.
After this optimization phase (or learning phase), the model
M can be used very easily to classify new data points. Often,
M is a statistical model, and the cost function is inversely
proportional to the likelihood of M, given the input data.
As also noted above, learning machines (LMS) are com

putational entities that rely on one or more ML algorithms
for performing a task for which they have not been explicitly
programmed to perform. In particular, LMS are capable of
adjusting their behavior to their environment. In the context
of LLNs, and more generally in the context of the IoT (or
Internet of Everything, IoE), this ability will be very impor
tant, as the network will face changing conditions and
requirements, and the network will become too large for
efficient management by a network operator. Thus far, LMS
have not generally been used in LLNs, despite the overall
level of complexity of LLNs, where “classic' approaches
(based on known algorithms) are inefficient or when the
amount of data cannot be processed by a human to predict
network behavior considering the number of parameters to
be taken into account.

Artificial Neural Networks (ANNs) are a type of machine
learning technique whose underlying mathematical models
were inspired by the hypothesis that mental activity consists
primarily of electrochemical activity between intercon
nected neurons. ANNs are sets of computational units (neu
rons) connected by directed weighted links. By combining
the operations performed by neurons and the weights
applied by their links, ANNs are able to perform highly
non-linear operations on their input data.
The interesting aspect of ANNs, though, is not that they

can produce highly non-linear outputs of the input. The truly
interesting aspect is that ANNs can “learn' to reproduce a
predefined behavior through a training process. This capac
ity of learning has allow the successful application of ANNs
to a wide variety of learning problems, such as medical
diagnostics, character recognition, data compression, object
tracking, autonomous driving of vehicles, biometrics, etc.

Learning in ANNs is treated as an optimization problem
where the weights of the links are optimized for minimizing
a predefined cost function. This optimization problem is
computationally very expensive, due to the high number of
parameters to be optimized, but thanks to the backpropaga
tion algorithm, the optimization problem can be performed
very efficiently. Indeed, the backpropagation algorithm com
putes the gradient of the cost function with respect to the
weights of the links in only one forward and backward pass
throw the ANN. With this gradient, the weights of the ANN
that minimize the cost function can be computed.

Denial of service (DoS) is a broad term for any kind of
attack aiming at, by any means, making a particular service
unavailable (be it a certain application running on a server
or network connectivity itself). This is usually performed by
bringing the target's resources to exhaustion (again, target
resources may range from bandwidth to memory and CPU).

In greater detail, a DoS attack may consist in flooding a
target network with hundreds of megabits of traffic (volume
based DoS), exhausting a server State by opening a large
number of TCP connections (SYN flooding), or by making
an HTTP server unavailable by sending it an overwhelming
number of requests. An attack may be more subtle and
exploit well-known Vulnerabilities in the target system (e.g.
a large number of fragmented IP packets may exhaust the
resources of a router).

Nowadays, DoS attacks are mostly distributed, i.e., they
are carried out by multiple sources at the same time, thus

10

15

25

30

35

40

45

50

55

60

65

8
making it more difficult to track. In many cases, botnets (i.e.
armies or infected hosts spread across the network and under
the control of a single master) are used for mounting DoS
attacks. In addition, Source addresses used for attacks can be
spoofed, so that blocking an offending address is potentially
useless.

In general, DoS attacks are easy to detect when they are
brute-force, but, especially when highly distributed, they
may be difficult to distinguish from a flash-crowd (i.e. an
overload of the system due to many legitimate users access
ing it at the same time).

Statistics and machine learning techniques have been
proposed for detecting attacks at the server or network level.
Some approaches try to analyze changes in the overall
statistical behavior of the network traffic (e.g. the traffic
distribution among flow flattens when a DDoS attack based
on a number of microflows happens). Other approaches aim
at statistically characterizing the normal behaviors of net
work flows or TCP connections, in order to detect significant
deviations.

However, the Internet of Things (IoT) represents a com
pletely different scenario and requires novel detection and
reaction strategies. Its highly distributed nature implies that
there is no central vantage point from which an attack can be
observed. In addition, the scarce resources of the IoT force
reporting from the nodes to a central location to be reduced
to a minimum.
On top of the lack of global information, detecting DoS in

the IoT is made harder by the fact that a much more subtle
interference of the network's operations may be enough to
bring the network down. For example, a jamming node can
prevent a node from decoding traffic by just emitting short
bursts when activity on the channel is detected. This can
isolate a large portion of the network which uses that node
as a parent and cut off a large portion of the network. In
addition, in the case of battery operated nodes, a slow but
steady flow of malicious traffic can exhaust a node's battery,
thus making the node useless in a matter of days.
Due to the high variability of this kind of network, the

symptoms of those attacks are not easy to detect and can be
lost in the normal noise of the network behavior (traffic
peaks and topology changes are quite normal in LLN).
Therefore, an intelligent approach is needed that is able to
reveal Subtle changes in the measured data that are typical of
a known anomalous behavior.
—Possible Attacks Against IoT -
Even though the existing literature regarding possible

attack types against the IoT is limited, a number of attacks
against sensor network technologies may apply with a few
minor modifications. Such attacks can be roughly classified
into two classes: 1.) insider attacks (i.e., where the malicious
node needs to be authenticated and be in possession of the
network encryption keys), and 2.) outsider attacks (i.e.,
where the attacker just needs to be within the radio range of
the victims).

In particular, a number of attacks against routing per
formed by a malicious node in the DAG can be imagined. A
node can, for example, perform selective forwarding. In
other words, the node could just discard some of the traffic
messages that it is asked to forward, while still participating
correctly within the routing protocol. Although this can
potentially be revealed by end-to-end mechanisms, detection
of this type of attack can be difficult and slow due to the low
traffic rate and lossiness of IoT networks. Other example
attacks include a malicious node impersonating multiple
identities or advertising forged routing information, so as to
gain a central role in the routing topology.

US 9,450,978 B2
9

While attacks belonging to the former class can be
prevented through well-designed cryptography and authen
tication, in the latter case they have to be detected by
monitoring the network environment.
The simplest form of attack that can be performed against

an RF network is jamming. This consists in artificially
creating an interference, so as to prevent message decoding.
There are several variations of a jamming attack, with
different degrees of complexity and subtlety. The attacker
can continuously emit power on the spectrum (continuous
jamming), create a collision when it detects activity on the
channel (reactive jamming), or attack only a particular type
of traffic (selective jamming). The damage from a jamming
attack can be maximized if the attacker is able to estimate
the centrality of a node in the routing topology. This can be
obtained by accounting for the amount of traffic transmitted
and received by each node, by leveraging the fact that the
link layer addresses are in clear. Once the jammer has
detected the most central node, it can try to make this node
unreachable for its descendants, which will in turn be forced
to select another parent. This can potentially create continu
ous route oscillations and convergences.

Other kinds of external DoS attacks can be performed by
exploiting the fact that a number of messages in the WPAN
do not need authentication, Such as discovery beacons and
Some of the EAPoll messages used for authentication. In
particular, discovery beacons can be used for injecting false
synchronization information into the network, so as to
prevent two nodes from meeting on the right unicast com
munication frequency. EAPoL authentication messages,
instead, have to be relayed by the WPAN nodes up to the
FAR, and from there until the AAA server. This mechanism
allows an attacker to generate routable traffic, thus flooding
the network and wasting bandwidth and processing power.
A mitigation strategy may to have authentication requests be
rate-limited. However this may result in legitimate nodes
being prevented from authenticating when an attack is in
progress.

Other attacks can be performed against networks that use
the 802.11i protocol, which is used for exchanging key
information between the authenticating node and the FAR
(and therefore, cannot be protected by link layer encryption).
Such attacks are documented in the scientific literature and
aim at blocking the handshake between the client and the
access point. This can be achieved by an attacker by inter
leaving a forged message between two messages in the
handshake. This implicitly resets the handshake state, so that
Subsequent messages from the authenticating node are dis
carded.

—Frequency-hopping and synchronization in 802.15.4—
In a channel-hopping mesh network, devices communi

cate using different channels at different times. To commu
nicate a packet, a transmitter-receiver pair must be config
ured to the same channel during packet transmission. For a
transmitter to communicate with a receiver at an arbitrary
time in the future, the transmitter and receiver must syn
chronize to a channel Schedule that specifies what channel to
communicate on and at what time. Channel Schedules may
be assigned to each transmitter-receiver pair independently
so that neighboring transmitter-receiver pairs can commu
nicate simultaneously on different channels. Such a strategy
increases aggregate network capacity for unicast communi
cation but is inefficient for broadcast communication. Alter
natively, all devices in a network may synchronize with a
single channel schedule such that all devices transmit and
receive on the same channel at any time. Such a strategy
increases efficiency for broadcast communication since a

10

15

25

30

35

40

45

50

55

60

65

10
single transmission can reach an arbitrary number of neigh
bors, but decreases aggregate network capacity for unicast
communication since neighboring individual transmitter
receiver pairs cannot communicate simultaneously without
interfering. Mesh networks typically utilize both unicast and
broadcast communication. Applications use unicast commu
nication to communicate data to a central server (e.g. AMI
meter reads) or configure individual devices from a central
server (e.g. AMI meter read schedules). Network control
protocols use unicast communication to estimate the quality
of a link (e.g. RSSI and ETX), request configuration infor
mation (e.g. DHCPv6), and propagate routing information
(e.g. RPL DAO messages). Applications use multicast com
munication for configuring entire groups efficiently (e.g.
AMI meter configurations based on meter type), download
ing firmware upgrades (e.g. to upgrade AMI meter software
to a newer version), and for power outage notification.
Network control protocols use multicast communication to
discover neighbors (e.g. RPL DIO messages, DHCPv6
advertisements, and IPv6 Neighbor Solicitations) and dis
seminate routing information (e.g. RPL DIO messages).
Existing systems optimize for both unicast and broadcast
communication by Synchronizing the entire network to the
same channel-switching schedule and using a central coor
dinator to compute and configure channel schedules for each
individual device, or else more efficiently optimizing for
both unicast and broadcast communication in a channel
hopping network without need for centrally computing
schedules for individual nodes.

In order to join the WPAN enabled with frequency
hopping (e.g., an 802.15.4 WPAN), a node needs to syn
chronize on the frequency hopping schedule of its neigh
bors. Therefore, each node in the WPAN broadcasts its
unicast reception schedule via a discovery beacon, which is
not encrypted and sent on every frequency: this allows nodes
joining the PAN to join. In greater detail, the discovery
beacon message is sent a broadcast destination WPAN and
includes several information elements, most notably:
The WPAN SSID String
The unicast scheduling information. In one implementa

tion, this is made up of a slot number and an offset
value. This allows the receiving node to compute the
slot number the sending node is currently is, and thus,
by applying a hash function, to know its current receiv
ing frequency. Note that this algorithm does not require
the clocks of the two nodes to be synchronized.

The transmission of a discovery beacon is triggered by an
associated trickle timer. However, the information about the
scheduling of the broadcast slot is not included in Such a
beacon, but only in the synchronous and unicast beacons,
which are encrypted with the network key. In particular, the
synchronous beacon is triggered by a trickle timer and it is
sent on every frequency (just as the discovery beacon). The
unicast beacon, on the contrary, is sent upon request by
another node by using a standard unicast transmission. In
both cases, the beacon includes a broadcast scheduling
information element, which has the same format of the
unicast scheduling IE (Information Element). As a conse
quence, an attacker can interfere with its target during its
unicast slot, but ignores the broadcast frequency schedule:
the broadcast schedule is therefore much better protected
against DoS attacks.
–802.15.4 Security—
Currently, IoT architecture comes with several embedded

security mechanisms. The cornerstone of IoT Security is
indeed link layer encryption, which is mandatory for most
frames (including routing messages and application traffic).

US 9,450,978 B2
11

Besides pure encryption, link layer security ensures message
integrity (through an encrypted MAC code) and message
non-replication (through an encrypted sequence number
included in the encrypted message payload).

In order to install the necessary link layer keys on every
node, an authentication procedure is carried out when the
node joins the network. Such a procedure is based on the
EAPOL protocol, which is carried directly over layer 2
messages and is used for transporting authentication data
from the node to the FAR (notice that such messages are not
encrypted). On top of EAPOL, two main protocols are
carried: EAP messages, which the FAR tunnels to an AAA
server through the RADIUS and 802.11 i messages, which
are used for exchanging cryptographic material between the
FAR and the node.

In greater detail, EAP messages are used by the node for
mutual authentication with the AAA server and securely
agree on a shared secret; to this end, a complete TLS
handshake is, in turn, tunneled over EAP messages and a
public key mechanism based on X.509 certificates is used for
identity validation. Once such shared secret has been estab
lished, the AAA server transmits it to the FAR, which, in
turn, uses it for exchanging the link layer keys with the node
through the 802.11 i protocol.

Notice that the shared secret negotiated through EAP is
stored by the node in persistent memory and can be reused
for Subsequent authentication (in this case, EAP is skipped
and the link layer key is directly exchanged through
802.11i).

Hierarchical Event Detection in a Computer Network
A common use of ANNs is as classifiers. Generally, a

classifier is a learning machine (LM) that takes a sample as
input data and computes a label as output. Abinary classifier,
which is the most common use case, takes the input and
labels it as either belonging to the class of interest or not.
Thus, multiclass classifiers can also be constructed by com
bining binary classifiers. Good quality classifiers computed
using ANNs, or any other machine learning model, can have
very high recall values and a low ratio of False Positives
(FP). However, when the amount of samples to classify is
huge, even a low ratio of FP can be a problem in a network.
In the particular case of using a classifier for monitoring
Some network parameters. Such as attacks against nodes, this
problem can be present due to the potentially high number
of evaluations of the classifier (e.g., caused by a high
number of nodes and a high frequency of arrival of new
samples that need to be classified). Thus, strategies may be
adopted that allows obtaining good classifiers in terms of
precision and recall, even under this context of high number
of evaluations.

Furthermore, if one considers the case of highly con
strained networks such as LLNs, bandwidth limitations
make unfeasible the use of a centralized single classifier for
monitoring purposes. Indeed, constantly reporting features
to the monitoring point can easily collapse the network. This
aspect is fundamental in networks where the bandwidth is
non homogenous and where nodes at the very edge of the
network are highly constrained. As will be appreciated, a
“feature' in the machine learning context generally refers to
any observable property, attribute, etc. of an observed phe
nomenon. Thus, when machine learning is used in a net
work, a feature may correspond to network data that
describes a particular property, attribute, etc. regarding the
network.

According to the techniques herein, a distributed and
hierarchical classifier approach combining classifiers exhib
iting characteristics of different natures is disclosed for

10

15

25

30

35

40

45

50

55

60

65

12
monitoring a certain aspect of the network (e.g., detecting
the presence of attacks, detecting other network events, etc.).
By appropriately distributing classification steps, the tech
niques herein permit improving the global classification
precision while at the same time reducing traffic on the
network for monitoring purposes. The techniques herein
also consider all the mechanisms for pushing classifiers
down to the nodes and pulling advanced features from nodes
that launch an alarm up to the router, in order to continue the
classification. While the techniques herein are described
primarily in the context of the IoT, the techniques herein are
also applicable to non-IoT cases (e.g., access links in a
remote branch where the router is connected to the central
site using low-speed links), since the problems due to the
high number of evaluations still apply in many types of
networks. Also, while the techniques herein are described
primarily with respect to ANN classifiers, it is to be appre
ciated that the techniques can easily be adapted to classifiers
using any other machine learning technique.

Said differently, the techniques herein determine the opti
mal architecture to distributed classifiers in a network,
according to various network parameters (e.g., Such as the
node attributes, the network characteristics, the overall
objectives to detect an event using classifiers such as a
DDoS attack, etc.). In particular, the techniques dynamically
upload classifiers in nodes according to their computational
capabilities (i.e., classifiers are weaker on nodes that are less
capable), using a hierarchy whereby weaker/less demanding
classifiers are distributed according to nodes attributes and
network bandwidth available. Once a positive value is
returned by a classifier to a node hosting a stronger and/or
more demanding classifier, that node may request additional
information in order to draw a conclusion thanks to a
dynamic exchange of information between nodes taking into
account the number of positives from weaker classifiers and
network States.

Notably, classifiers are LMs that take a sample as input
data and compute a label for this sample as output. An
example of a classifier can be a LM that takes certain
features about a node as input and outputs 1 if these features
correspond to a node that is being attacked, and 0 otherwise.
As shown in the example of FIG. 4, to improve the com
putational requirements and precision of the classifier, cas
cades of classifiers may be used. In general, a cascade of
classifiers is a hierarchical classifier structure where only the
last stage can assign a positive label (i.e., the sample belongs
to the class of interest), but any stage can assign a negative
label (i.e., the sample does not belong to the class of
interest). For example, as shown in FIG. 4, a hierarchy of
classifiers comprising classifiers 404–408 (e.g., a first
through nth classifier) may sequentially evaluate a sample
input 402. During the evaluations, any of classifiers 404–408
may generate an output 412 that signifies that input 402 does
not belong to a class A. If a particular classifier does not
reach this conclusion, processing proceeds to the next clas
sifier to perform its own evaluation. This continues on until
the last classifier (e.g., an nth classifier), at which point the
classifier may generate an output 410 signifying that input
402 belongs to the class or output 412 signifying that input
402 does not belong to the class. Thus, an input sample that
goes into a particular classifier (e.g., the first stage of the
classifier) only progresses to the next stage if it has been
labeled as positive (i.e., as belonging to the class of interest),
by the classifier in the current stage. This way, a positively
labeled sample has been labeled as belonging to the class of
interest in all the stages of the cascade, while a sample
negatively labeled has been labeled as such in only one stage

US 9,450,978 B2
13

and then its propagation to the following stages (and there
fore the computation) has been stopped there. This kind of
cascade may be implemented using classifiers with a very
high recall value (i.e., having few False Negatives) and with
precision values that increase from one stage to the next.
High recall values are usually easier to achieve than high
precision values (i.e., few False Positives), and high values
of recall and precision simultaneously are very related to the
complexity and computational requirements of a classifier.
Then, by combining classifiers with these characteristics in
a cascade structure, a global classifier computationally more
efficient and with better precision and recall scores than any
of the classifiers in the stages is obtained.
The techniques described below use cascades of classifi

ers in a physically distributed way on a LLN. This approach
presents two main advantages with respect to the use of a
standard, centralized cascade of classifiers. First, by physi
cally distributing the stages of the classifier, the computa
tional requirements are also distributed on the network. In
particular, nodes with limited computational resources can
perform the first stages of the cascade of classifiers, thereby
reducing the computational requirements of the entity that
will perform the last stage(s) of the whole classifier. Second,
by computing the first stages of the classifier directly on the
network nodes, a high number of samples are already
discarded and therefore not further propagated on the cas
cade. This means that a high number of samples do not need
further classification and therefore their features do not need
to be propagated to the next stages, which reduces the
amount of traffic required for the classification of a sample.

Operationally, as noted above, the techniques herein intro
duce a hierarchical classifier technique for distributed net
works using cascades of classifiers. The considered cascade
generally includes at least two stages: a first stage that is in
a node or directly on the Router and a second evaluated on
the Router. The objective of this hierarchical application of
classifiers is double. On the one hand, the sequential appli
cation of classifiers, if designed correctly, reduces the num
ber of FPs. On the other hand, pushing the first step to the
node reduces the amount of information that has to be
reported to the Router, since some samples can already be
discarded locally on the node. It is worth reminding that in
many circumstances, such as the use of classifiers computed
by ANNs to detect DoS attacks, feeding an ANN hosted on
a router (e.g., a FAR) with a massive amount of information
makes such an approach ill-suited to LLN applications.
Indeed, in a highly multi-dimensional space, the ANN may
require a number of data points as input that would simply
congest the network if communicated between devices.
Note, however, that if the node cannot perform the first step
of classification locally due to a lack of computational
resources (e.g., temporary CPU congestion on the node) or
another reason, the techniques herein also consider the
possibility of computing everything on the Router itself.

Specifically, according to various embodiments, network
data is received at a first node in a computer network. A low
precision machine learning model is used on the network
data to detect a network event. A notification is then sent to
a second node in the computer network that the network
event was detected, to cause the second node to use a high
precision machine learning model to validate the detected
network event.

According to Some embodiments herein, a low precision
machine learning model may be characterized as being less
computationally demanding (i.e., allowing the model to be
run on a low-end device), with a higher performance detec
tion rate and potentially a high rate of false positive. In

10

15

25

30

35

40

45

50

55

60

65

14
contrast, a high precision model may be characterized as
being more computationally demanding (e.g., requiring the
model to be run on a higher-end device), with a high
performance detection rate and a low rate of false positive.
As used herein, the term “router is used in a generic

fashion and can be a ruggedized router also known as a Field
Area Router (FAR) or a non-ruggedized router or a switch
(i.e., that performs bridging as opposed to routing at layer
3). Note also that although the techniques herein are
described primarily in the context of ANN classifiers, the
techniques apply to any kind of classifier that can be
constructed following the precision and recall requirements
for cascades of classifiers. For instance, Support Vector
Machines (SVMs) are also very well suited for cascades of
classifiers and may be used, in further embodiments.

In some embodiments, a first component of the techniques
herein defines a classification in two steps using a distributed
classifier. Illustratively, a classifier called the Weak Classi
fier (WC) performs the first step, and a classifier called the
Strong Classifier (SC) performs the second step.
The WC may be implemented using an ANN or other

learning machine that has to satisfy the following require
ments:

High recall score, in order not to discard samples that
should be forwarded to the SC for further inspection. In
other words, the WC should have a low False Negative
rate (e.g., the WC should not classify as negative what
is indeed a DDoS attack).

Low computational requirements, for being Suitable for
highly constrained devices.

In general, False Positives (FPs) are acceptable when
using the cascading classifiers herein, whereas False Nega
tive (FNs) are generally not acceptable.
The SC is also implemented using an ANN or other

learning machine. However, in this case the classifier can be
computationally more expensive, given that it is expected to
have high recall and precision scores.
The input features for the WC and the SC are also not

necessarily the same. Indeed, the WC being a low perfor
mance classifier (e.g., in terms of precision) can have less
elaborated features as input. The SC, in contrast, being a
high performance classifier in terms of precision and recall,
can have more complex input features than the WC. For
instance, a SC classifier can consider some principal com
ponents of a subset of features as input, while the WC may
consider feature values directly as input.
The design of the weak and strong classifiers herein may

take into account the characteristics of the device where they
will be used. In other words, the classifier may be adapted
to the computational resources of the device. For instance, in
the case of ANNs, the activation functions and the number
of neurons should be adapted to these computational con
straints in the sense that both the evaluation of the activation
function and the number of these evaluations have to be
feasible under the specified constraints. Furthermore, these
characteristics can be considered also as input features for
the classifier, since they can provide important information
for the classification. For example, the power of emission of
a device can have a main role on the achieved transmission
Success rate, and this information can be useful when trying
to distinguish between normal physical conditions and
physical conditions disturbed by an attacker.

Although the techniques herein describe the use of two
types of classifiers (i.e., strong and weak classifiers), the
techniques may be generalized to the case of n number of
classifiers, in various embodiments. Indeed, in a multi-layer
network, with m layers (e.g., very edge, Field Area Network,

US 9,450,978 B2
15

Core network, Data center), the techniques herein may be
implemented by using nam classifiers with different level of
performance according to the computing resources, avail
able bandwidth in the network.

In the general case, the following terms are specified:
A Classifier CL(n) is a classifier computed by a Learning
Machine that will be used at layer n in the network.

P(CL(n)) is the performance of the classifier used at
layer n.

C(CL(n)) is the complexity of CL(n) (e.g., the amount of
CPU resources required).

B(CL(n)) is the amount of bandwidth or network
resources required by CL(n) to perform.

FP(CL(n)) False Positive Rate.
FN(CL(n)) False Negative Rate.
Properties of the classifiers:
If n<m, then
P(CL(n))<P(CL(m)). In other words, a classifier at layer

1 (i.e., the very edge) is less efficient than a classifier at
layer-1.

FP(CL(n))>FP(CL(m)).
C(CL(n))<C(CL(m)).
B(CL(n))<B(CL(m)).
The second component of the techniques herein intro

duces a mechanism for selecting and pushing a classifier
from a node at layer n to a node at Layer m where nom.

In the context of ANN classifiers, the elements that may
be pushed to the node in order to perform the required
classification are:
The Activation Function evaluated by neurons.
The weights of all the links in the ANN.
The threshold applied to the output for positively labeling

a sample. Indeed, classification is usually performed by
providing a binary 0 or 1 label, but the output of a
classifier is typically continuous between the values of
0-1. Therefore, a threshold for considering an output as
either a 0 or a 1 may be used. Notably, the precision and
recall of a classifier can be modified by modifying this
threshold.

In the rest of this illustrative description, the case of N=2
layers is described in the context of an LLN where, at the
lowest layer, nodes are highly constrained (e.g., at Smart
Meters) and the next layer is the Field Area Router. In such
a case, CL(1) is the WC and CL(2) is the SC. For pushing
these elements to a node, the FAR must first perform a
selection of the node capable of using a WC. In one
embodiment, such a selection is performed by the FAR
thanks to the discovery of the node attributes, such as
reported via a routing extension included within the SNA
object and carried itself in the DAG Metric container object.
In another embodiment, the FAR may send a newly defined
unicast IP message such as a CoAP message to query to the
node for either obtaining its computational characteristics
(e.g., and to locally determine whether the node is capable
of making use of the WC) or request the node to make use
of a WC (e.g., in which case this is the remote node itself that
determines whether or not it can host the WC). In yet another
embodiment, other network parameters may be taken into
account Such as the occurrence of a DDoS attack in the past,
the level of congestion in the network in the area where the
node lies, and any other policy related parameters.

If the Router considers that the node can perform the first
step of the classification or if the node provides a positive
reply, the WC may be downloaded on the node using a
newly defined Classifier Push (CP) message. Indeed the

5

10

15

25

30

35

40

45

50

55

60

65

16
information about the ANN commented above (e.g., activa
tion function, weights, and threshold) is pushed to the node
using this CP message.

If the node cannot perform the required classification, a
Features Request (FR) message is sent from the Router to
the node for retrieving the features that are not available
directly on the Router but that are required for computing the
SC. In this case, the node answers with a Features Message
(FM) where the values of the requested features are reported.

In another embodiment, a Feature Export Request (FER)
message is sent by the router. Such message configures the
node so that it will automatically export a FM containing the
requested features. A FER message will specify how the
export of the requested features will be triggered: an export
period can be configured (so that features can be batched
together for efficiency reasons) or data can be exported as
Soon as it is available (in case detection delay is critical).

In a third component of the techniques herein, a mecha
nism is introduced for establishing a communication
between the node and the Router when a sample is positively
labeled in the node, as illustrated in the example of FIGS.
5A-5F. During this communication, the node has to notify to
the Router that a sample has been positively labeled and,
therefore, that further inspection should be performed. Once
this is acknowledged by the Router, the Router has to
communicate to the node which features should be reported
in order to continue with the inspection. Note that the
notification step is not necessary when the WC has been
evaluated by the Router. For example, assume that a network
includes a number of nodes 506 that have weak LMs
installed, as shown in FIG. 5A. In FIG. 5B, a malicious
attack is detected from an attack node 508 at one of the
nodes executing a weak classifier.
The working flow of the third component of the tech

niques herein is as follows:
Step 1:
After positively labeling a sample, the node sends a novel

IP unicast message called Sample Labeled (SL) message
with the features F that were positively labeled. For
example, as shown in FIG. 5C, the node that detected an
attack via a weak classifier may send an event detected
message 510 to its FAR 502.

Step 2:
The router SC may simply to ignore the notification

according to policy, or wait to receive N number of notifi
cations from nodes hosting WCs during a period of time T.
before proceeding to step 3. Conversely, the node can be
configured in order to export only one in N positive-label
features.

Step-3:
the Router performs an advanced inspection of features

using the SC. If extra features from the node are required for
evaluating the SC, the Router sends a FR message to the
node, with the information about the features that the node
has to communicate to the Router. For example, as shown in
FIG. 5D, FAR 502 may send a request 512 to the detecting
node 506 for more information. Note that the router may, in
one embodiment, decide to request Such additional features
after the expiration of a timer T1 configured according to a
policy or the network state. For example, if the DDoS attack
detected using that classifier is critical, the router may
request the additional information immediately while, on the
other hand, the router may delay the request for additional
features if the DDoS attack is not so likely and/or not too
critical and the network is currently congested. As shown in

US 9,450,978 B2
17

FIG. 5E, the node 506 provides the features used to detect
the attack with the weak classifier to the FAR 502 via a
message 514.

Step 4:
Once the required additional features/information have

been received by the Router, it performs the second step of
the classification (i.e., the second stage of the cascade). For
example, as shown in FIG. 5F, the FAR 502 may use the
additional feature data and its own strong classifier to
validate whether a network attack actually exists. As the
final classifier in the cascade, FAR 502 may determine that
the attack is actually present and raise an alarm or may
determine that the detected attack is a false positive.

FIG. 6 illustrates an example simplified procedure for
using a low precision learning model to detect a network
event. Procedure 600 starts at step 605 and continues on to
step 610 where, as highlighted above, network data is
received by a node/device. In general, the received network
data may be any information regarding the state or condition
of the network or a portion thereof. In step 615, a low
precision learning model. Such as an ANN classifier, is used
with the network data to detect the presence of a network
event. For example, a node/device in the network may use
a low precision classifier to determine that a possible net
work attack is present in the network. At step 620, a
notification is sent to another node/device having a higher
precision learning model (e.g., ANN classifier) to validate
the detected event, and procedure 600 ends at step 625.

FIG. 7 illustrates an example simplified procedure for
validating a detected network event using a high precision
learning model. Procedure 700 begins at step 705 and
continues on to step 710 where, as detailed above, an event
detection notification is received. For example, an event
detection notification may be received from a lower preci
sion classifier. In step 715, the network data used to detect
the event is received. As highlighted above, for example, the
evaluating node/device may request the network data from
the detecting device or at least a portion of the network data
may be included in the event detection notification. In step
720, as detailed above, the device may validate the detected
event by applying a high precision learning model to the
received network data, and process 700 ends at step 725.

It should be noted that while certain steps within proce
dures 600-700 may be optional as described above, the steps
shown in FIGS. 6-7 are merely examples for illustration, and
certain other steps may be included or excluded as desired.
Further, while a particular order of the steps is shown, this
ordering is merely illustrative, and any suitable arrangement
of the steps may be utilized without departing from the scope
of the embodiments herein. Moreover, while procedures
600-700 are described separately, certain steps from each
procedure may be incorporated into each other procedure,
and the procedures are not meant to be mutually exclusive.
The techniques described herein, therefore, provide for

use of a hierarchical classifier, Such as those computed by
ANNs, in highly constrained networks. In particular, without
these techniques, it may be nearly impossible to host clas
sifiers in a network. In particular, some classifiers are too
CPU intensive for use in a highly constrained network,
leading to unacceptable processing time or even impacting
the ability for a node/router to perform other task. Thanks to
these described techniques, however, classifiers of various
performances are distributed in the network according to the
network characteristics and node attributes in a distributed
fashion, thus providing a very effective cascade of classifiers
adapted to the network characteristics.

5

10

15

25

30

35

40

45

50

55

60

65

18
Illustratively, each of the techniques described herein may

be performed by hardware, software, and/or firmware, such
as in accordance with the learning machine process 248,
which may contain computer executable instructions
executed by the processor 220 (or independent processor of
interfaces 210) to perform functions relating to the tech
niques described herein, e.g., optionally in conjunction with
other processes. For example, certain aspects of the tech
niques herein may be treated as extensions to conventional
protocols, such as the various communication protocols
(e.g., routing process 244), and as such, may be processed by
similar components understood in the art that execute those
protocols, accordingly. Also, while certain aspects of the
techniques herein may be described from the perspective of
a single node/device, embodiments described herein may be
performed as distributed intelligence, also referred to as
edge/distributed computing, Such as hosting intelligence
within nodes 110 of a Field Area Network in addition to or
as an alternative to hosting intelligence within servers 150.

While there have been shown and described illustrative
embodiments that provide for computer network anomaly
training and detection using artificial neural networks, gen
erally, it is to be understood that various other adaptations
and modifications may be made within the spirit and scope
of the embodiments herein. For example, the embodiments
have been shown and described herein with relation to LLNs
and related protocols. However, the embodiments in their
broader sense are not as limited, and may, in fact, be used
with other types of communication networks and/or proto
cols. In addition, while the embodiments have been shown
and described with relation to learning machines in the
specific context of communication networks, certain tech
niques and/or certain aspects of the techniques may apply to
learning machines in general without the need for relation to
communication networks, as will be understood by those
skilled in the art.
The foregoing description has been directed to specific

embodiments. It will be apparent, however, that other varia
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that
the components and/or elements described herein can be
implemented as Software being stored on a tangible (non
transitory) computer-readable medium (e.g., diskS/CDS/
RAM/EEPROM/etc.) having program instructions execut
ing on a computer, hardware, firmware, or a combination
thereof. Accordingly this description is to be taken only by
way of example and not to otherwise limit the scope of the
embodiments herein. Therefore, it is the object of the
appended claims to cover all such variations and modifica
tions as come within the true spirit and scope of the
embodiments herein.

What is claimed is:
1. A method, comprising:
receiving network data at a first node in a computer

network;
using a low precision machine learning model on the

network data to detect a network event; and
sending a notification to a second node in the computer

network that the network event was detected, the noti
fication to cause the second node to use a high precision
machine learning model to validate the detected net
work event, wherein the second node is a field area
router (FAR).

2. The method as in claim 1, wherein the first node has
lower computing resources than the second node.

US 9,450,978 B2
19

3. The method as in claim 1, wherein the machine learning
models are artificial neural network (ANNs).

4. The method as in claim 1, further comprising:
receiving, from the second node, a request for information

regarding the detected network event; and
sending the requested information regarding the detected

network event to the second node.
5. The method as in claim 1, wherein the notification sent

to the second node comprises the network data used to detect
the network event.

6. The method as in claim 1, further comprising:
receiving a request for computational resources available

at the first node from the second node:
providing the available computational resources to the

second node; and
receiving the low precision machine learning model from

the second node based on the computational resources
available at the first node.

7. The method as in claim 1, further comprising:
receiving an eligibility request from the second node:

determining whether the first node is eligible to execute the
low precision machine learning model based on computa
tional resources available at the first node:

notifying the second node that the first node is eligible to
execute the low precision machine learning model; and

receiving, from the second node, the low precision
machine learning model.

8. The method as in claim 1, wherein the second node
determines the network event detected by the first node to be
a false positive using the high precision machine learning
model.

9. An apparatus, comprising:
one or more network interfaces to communicate in a

computer network;
a processor coupled to the network interfaces and con

figured to execute one or more processes; and
a memory configured to store a process executable by the

processor, the process when executed operable to:
receive network data in the computer network;
use a low precision machine learning model on the

network data to detect a network event; and
send a notification to another node in the computer

network that the network event was detected, the noti
fication to cause the other node to use a high precision
machine learning model to validate the detected net
work event, wherein the other node is a field area router
(FAR).

10. The apparatus as in claim 9, wherein the machine
learning models are artificial neural network (ANNs).

11. The apparatus as in claim 9, wherein the process when
executed is further operable to:

receive, from the other node, a request for information
regarding the detected network event; and

send the requested information regarding the detected
network event to the other node.

12. The apparatus as in claim 9, wherein the process when
executed is further operable to:

receive a request for computational resources available at
the apparatus from the other node: provide the available
computational resources to the other node; and

5

10

15

25

30

35

40

45

50

55

60

20
receive the low precision machine learning model from

the other node based on the available computational
SOUCS.

13. The apparatus as in claim 9, wherein the process when
executed is further operable to:

receive an eligibility request from the second node:
determine whether the first node is eligible to execute the

low precision machine learning model based on com
putational resources available at the first node:

notify the second node that the first node is eligible to
execute the low precision machine learning model; and

receive, from the second node, the low precision machine
learning model.

14. A method, comprising:
receiving, at a node in a computer network, a notification

that a network event was detected by another node in
the computer network using a low precision machine
learning model;

receiving network data used by the other node to detect
the network event;

validating the detected network event using the network
data with a high precision machine learning model; and

determining that the network event detected by the other
node using the low precision machine learning model
was a false positive.

15. The method as in claim 14, further comprising:
requesting, from the other node, data regarding computing

resources available at the other node:
determining that the other node is eligible to execute the

low precision machine learning model; and
sending the low precision machine learning model to the

other node.
16. The method as in claim 14, further comprising:
determining that a particular node cannot execute the low

precision machine learning model;
requesting network data from the particular node;
receiving the requested network data from the particular

node:
using the network data received from the particular node

to detect the network event.
17. The method as in claim 14, wherein the network event

is validated in response to receiving notifications that the
network event was detected by a plurality of network nodes
using low precision machine learning models.

18. An apparatus, comprising:
one or more network interfaces to communicate in a

computer network;
a processor coupled to the network interfaces and adapted

to execute one or more processes; and
a memory configured to store a process executable by the

processor, the process when executed operable to:
receive a notification that a network event was detected by

another node in the computer network using a low
precision machine learning model;

receive network data used by the other node to detect the
network event; and

validate the detected network event using the network
data with a high precision machine learning model; and

determine that the network event detected by the other
node using the low precision machine learning model
was a false positive.

k k k k k

