
(12) United States Patent 

USOO9448766B2 

(10) Patent No.: US 9,448,766 B2 
Bergland et al. (45) Date of Patent: *Sep. 20, 2016 

(54) INTERCONNECTED ARITHMETIC LOGIC (58) Field of Classification Search 
UNITS CPC .................................... G06F 7/57; G06F 7/38 

USPC .................................................. 708/523 524 
(71) Applicant: NVIDIA CORPORATION, Santa See application file for complete search history. 

Clara, CA (US) 
(56) References Cited 

(72) Inventors: Tyson Bergland, Palo Alto, CA (US); 
Michael J. M. Toksvig, Palo Alto, CA U.S. PATENT DOCUMENTS 
(US); Justin Michael Mahan, Fremont, 4,620,217 A 10/1986 Songer 
CA (US) 4,648,045. A 3/1987 Demetrescu 

4,700,319 A 10, 1987 Steiner 
(73) Assignee: NVIDIA Corporation, Santa Clara, CA 4,862,392 A 8, 1989 Steiner 

(US) 4,901.224 A 2, 1990 Ewert 
5,185,856 A 2f1993 Alcornet al. 

(*) Notice: Subject to any disclaimer, the term of this ES A 1918: is in1. 
patent is extended or adjusted under 35 - - 4 
U.S.C. 154(b) by 348 days. (Continued) 
This patent is Subject to a terminal dis- FOREIGN PATENT DOCUMENTS 
claimer. 

JP 62080785 4f1987 
(21) Appl. No.: 14/011,631 JP O5150979 6, 1993 

(Continued) 
(22) Filed: Aug. 27, 2013 OTHER PUBLICATIONS 

(65) Prior Publication Data The Free Online Dictionary, Thesaurus and Encyclopedia, definition 
US 2013/034.6462 A1 Dec. 26, 2013 for cache; http://www.thefreedictionary.com/cache; retrieved Aug. 

17, 2012. 

Related U.S. Application Data (Continued) 

(63) Continuation of application No. 1 1/893,498, filed on Primary Examiner — Tan V. Mai 
Aug. 15, 2007, now Pat. No. 8,521,800. 

51) Int. C (57) ABSTRACT 
(51) o 7/38 (2006.01) An arithmetic logic stage in a graphics pipeline includes a 

G06F 7/57 (2006.015 number of arithmetic logic units (ALUs). The ALUs each 
G06F 9/30 (200 6,015 include, for example, a multiplier and an adder. The ALUs 
GO6F 7/544 (200 6,015 are interconnected by circuitry that, for example, routes the 

52) U.S. C output from the multiplier in one ALU to both the adder in 
(52) U.S. Cl. that ALU and an adder in another ALU. 

CPC. G06F 7/57 (2013.01); G06F 9/30 (2013.01); 
G06F 7/5443 (2013.01) 20 Claims, 4 Drawing Sheets 

MUL 

3. 312 313 

343 341 be Go 
NCal RECy S-RECW 345- REC 

SEND 3A4 SEN) 

M M 
AD) A}} 

  



US 9,448,766 B2 
Page 2 

(56) 

5.491496 
5,577,213 
5,581,721 
5,600,584 
5,655,132 
5,850,572 
5,941,940 
5,977,977 
6,118,452 
6,173,366 
6,333,744 
6,351,806 
6,353,439 
6,466.222 
6496,537 
6,526,430 
6,557,022 
6,624,818 
6,636,221 
6,636,223 
6,778, 181 
6,806,886 
6,839,828 
6,924,808 
6,947,053 
6,980,209 
6,999,100 
7,280, 112 
7,293,375 
7,298,375 
7,477,260 
7,659,909 
7,710427 
7,928,990 
7,941,645 
8,521,800 

2002/0129223 
2002fO169942 
2003/O115233 
2004/0114813 
2004/O117422 

2004/O130552 
2005/007 1413 

2005/O122330 

References Cited 

U.S. PATENT DOCUMENTS 

2, 1996 
11, 1996 
12, 1996 
2, 1997 
8, 1997 

12, 1998 
8, 1999 

11, 1999 
9, 2000 
1, 2001 

12, 2001 
2, 2002 
3, 2002 

10, 2002 
12, 2002 
2, 2003 
4, 2003 
9, 2003 

10, 2003 
10, 2003 
8, 2004 

10, 2004 
1/2005 
8, 2005 
9, 2005 

12, 2005 
2, 2006 

10, 2007 
11/2007 
11/2007 
1/2009 
2, 2010 
5, 2010 
4/2011 
5, 2011 
8, 2013 
9, 2002 

11, 2002 
6, 2003 
6, 2004 
6, 2004 

T/2004 
3, 2005 

6, 2005 

Tomiyasu 
Avery et al. 
Wada et al. 
Schlafly 
Watson 
Dierke 
Prasad et al. 
Kajiya et al. 
Gannett 
Thayer et al. 
Kirk et al. 
Wyland 
Lindholm et al. 
Kao et al. 
Kranawetter et al. 
Hung et al. 
Sih et al. 
Mantor et al. 
Morein 
Morein 
Kilgariff et al. 
Zatz 
Gschwind et al. 
Kurihara et al. 
Malka et al. 
Donham et al. 
Leather et al. 
Hutchins 
Fukushima et al. 
Hutchins 
Nordquist 
Hutchins 
Hutchins et al. 
Jiao et al. 
Riach et al. 
Bergland et al. 
Takayama et al. 
Sugimoto 
Hou et al. 
Boliek et al. 
Debes ................... GO6F 7/4812 

Duluk, Jr. et al. 
708/523 

Schulte ................. GO6F 7,5443 

Boyd et al. 
708/523 

2005. O135433 A1 6/2005 Chang et al. 
2005/0223.195 A1 10/2005 Kawaguchi 
2006/0028469 A1 2/2006 Engel 
2006/0152519 A1 7/2006 Hutchins et al. 
2006, O155964 A1 7/2006 Totsuka 
2006/0177122 A1 8, 2006 Yasue 
2006/0288.195 A1 12/2006 Ma et al. 
2007. O1988.15 A1* 8, 2007 Liu ....................... GO6F 7/4812 

T12/221 
2007/0279408 Al 12/2007 Zheng et al. 
2007/0285.427 A1 12/2007 Morein et al. 
2008/01 14826 A1* 5/2008 Medrich ................ GO6F 17, 16 

708/523 
2008/0140994 A1* 6/2008 Khailany ............ G06F 9/30014 

712/205 
2010, 0121899 A1* 5, 2010 Pechanek .............. GO6F 7/4812 

708/521 

FOREIGN PATENT DOCUMENTS 

JP O7084965 3, 1995 
JP O8161169 6, 1996 
JP 110531.87 2, 1999 
JP 2000047872 2, 2000 
JP 2002073330 3, 2002 
JP 2002171401 6, 2002 
JP 2004.199222 T 2004 
JP 20043O3O26 10, 2004 
JP 2006196004 T 2006 
WO 2005.114646 12/2005 

OTHER PUBLICATIONS 

Moller, et al.; Real-Time Rendering, 2nd ed., 2002, AK Peters Ltd., 
pp. 92-99, 2002. 
Hennessy, et al., Computer Organization and Design: The Hard 
ware/Software Interface, 1997, Section 6.5. 
Hollasch; IEEE Standard 754 Floating Point Numbers; http://steve. 
hollasch.net/cgindex codingfieeefloat.html; dated Feb. 24, 2005; 
retrieved Oct. 21, 2010. 
Microsoft; (Complete) Tutorial to Understand IEEE Floating-Point 
Errors; http://support microsoft.com/kb/42980; dated Aug. 16. 
2005; retrieved Oct. 21, 2010. 
“Intervealed Memory” http://www.webopedia.com/TERM1/ 
intervealed. Sub.--memory.html. 
Pirazzi, Chris. “Fields, F1/F2, Interleave, Field Dominance and 
More.” http://www.lurkertech.com/lg? domincance.html. 

* cited by examiner 



U.S. Patent Sep. 20, 2016 Sheet 1 of 4 US 9,448,766 B2 

LOCa 
Graphics 
Memory 

114 

F.G. 1 

  

    

    

  

  



U.S. Patent Sep. 20, 2016 Sheet 2 of 4 US 9,448,766 B2 

Program 
Sequence? 

220 

Graphics 
Fragment 

11 

Data Write 

240 

FG, 2 

  



U.S. Patent Sep. 20, 2016 Sheet 3 of 4 US 9,448,766 B2 

s 

Eo sr 
9 -99. < c, 

  



US 9,448,766 B2 Sheet 4 of 4 Sep. 20, 2016 U.S. Patent 

S 

    

    

  



US 9,448,766 B2 
1. 

INTERCONNECTED ARTHMIETC LOGIC 
UNITS 

This application is a continuation application of and 
claims priority to the copending patent application entitled 
“Interconnected Arithmetic Logic Units.” by Bergland et al., 
with Ser. No. 1 1/893,498, filed Aug. 15, 2007, now U.S. Pat. 
No. 8,521,800, hereby incorporated by reference in its 
entirety. 

FIELD 

The present invention generally relates to computer 
graphics. 

BACKGROUND 

Recent advances in computer performance have enabled 
graphics systems to provide more realistic graphical images 
using personal computers, home video game computers, 
handheld devices, and the like. In such graphics systems, a 
number of procedures are executed to render or draw graph 
ics primitives to the screen of the system. A graphics 
primitive is a basic component of a graphic, such as a point, 
line, polygon, or the like. Rendered images are formed with 
combinations of these graphics primitives. Many procedures 
may be utilized to perform three-dimensional (3-D) graphics 
rendering. 

Specialized graphics processing units (GPUs) have been 
developed to increase the speed at which graphics rendering 
procedures are executed. The GPUs typically incorporate 
one or more rendering pipelines. Each pipeline includes a 
number of hardware-based functional units that are designed 
for high-speed execution of graphics instructions/data. Gen 
erally, the instructions/data are fed into the front end of a 
pipeline and the computed results emerge at the back end of 
a pipeline. The hardware-based functional units, cache 
memories, firmware, and the like, of the GPUs are designed 
to operate on the basic graphics primitives and produce 
real-time rendered 3-D images. 

There is increasing interest in rendering 3-D graphical 
images in portable or handheld devices Such as cell phones, 
personal digital assistants (PDAs), and other devices where 
power consumption is an important design consideration. 
However, portable or handheld devices generally have 
reduced capabilities relative to more full-sized devices such 
as desktop computers. The desire is to quickly perform 
realistic 3-D graphics rendering in a handheld device, within 
the capabilities of such devices. 

SUMMARY 

Embodiments of the present invention provide methods 
and systems for performing 3-D graphics rendering in an 
electronic device such as a portable or handheld device. In 
one embodiment, an arithmetic logic stage in a graphics 
pipeline includes a number of arithmetic logic units (ALUs). 
The ALUs each include, for example, a multiplier and an 
adder. The ALUs are interconnected by circuitry that is 
Software-programmable and can be configured on-the-fly. 
Thus, for example, output from the multiplier in one ALU 
can be routed to both the adder in that ALU and an adder in 
another ALU, and an adder can receive data from more than 
one multiplier. 

Because the interconnecting circuitry is programmable, 
the ALUs are reusable—that is, the same adders and mul 
tipliers can be used to perform one type of operation in one 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
pass and another type of operation in another pass. Thus, for 
example, the ALUs can be programmed to implement a 
multiply–add operation in one pass and a multidimensional 
dot product computation in a second pass. 

In one embodiment, the ALUs are analogous to one 
another but the interconnecting circuitry is asymmetrical. In 
this embodiment, the programming of each ALU is never 
theless symmetrical for ease of programming. 

In general, according to embodiments of the present 
invention, multipliers and adders can be shared between 
ALUs. As a result, relatively complex, multidimensional 
operations can be performed in a single pass through the 
arithmetic logic stage of a graphics pipeline. Accordingly, 
graphics operations can be efficiently performed without a 
commensurate increase in the amount of hardware. As such, 
the ALUs are well-suited for use in a portable or handheld 
device where space is at a premium and where power 
consumption is a key consideration. 

These and other objects and advantages of the various 
embodiments of the present invention will be recognized by 
those of ordinary skill in the art after reading the following 
detailed description of the embodiments that are illustrated 
in the various drawing figures. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is illustrated by way of example, 
and not by way of limitation, in the figures of the accom 
panying drawings and in which like reference numerals refer 
to similar elements. 

FIG. 1 is a block diagram showing components of a 
computer system in accordance with one embodiment of the 
present invention. 

FIG. 2 is a block diagram showing components of a 
graphics processing unit (GPU) in accordance with one 
embodiment of the present invention. 

FIG. 3 is a block diagram of an arithmetic logic stage in 
a GPU according to one embodiment of the present inven 
tion. 

FIG. 4 is a table Summarizing programming instructions 
for an arithmetic logic stage according to one embodiment 
of the present invention. 

DETAILED DESCRIPTION 

Reference will now be made in detail to embodiments of 
the present invention, examples of which are illustrated in 
the accompanying drawings. While the invention will be 
described in conjunction with these embodiments, it will be 
understood that they are not intended to limit the invention 
to these embodiments. On the contrary, the invention is 
intended to cover alternatives, modifications and equiva 
lents, which may be included within the spirit and scope of 
the invention as defined by the appended claims. Further 
more, in the following detailed description of embodiments 
of the present invention, numerous specific details are set 
forth in order to provide a thorough understanding of the 
present invention. However, it will be recognized by one of 
ordinary skill in the art that the present invention may be 
practiced without these specific details. In other instances, 
well-known methods, procedures, components, and circuits 
have not been described in detail as not to unnecessarily 
obscure aspects of the embodiments of the present inven 
tion. 
Some portions of the detailed descriptions, which follow, 

are presented in terms of procedures, steps, logic blocks, 
processing, and other symbolic representations of operations 



US 9,448,766 B2 
3 

on data bits within a computer memory. These descriptions 
and representations are the means used by those skilled in 
the data processing arts to most effectively convey the 
substance of their work to others skilled in the art. A 
procedure, computer executed step, logic block, process, 
etc., is here, and generally, conceived to be a self-consistent 
sequence of steps or instructions leading to a desired result. 
The steps are those requiring physical manipulations of 
physical quantities. Usually, though not necessarily, these 
quantities take the form of electrical or magnetic signals 
capable of being stored, transferred, combined, compared, 
and otherwise manipulated in a computer system. It has 
proven convenient at times, principally for reasons of com 
mon usage, to refer to these signals as bits, values, elements, 
symbols, characters, terms, numbers, or the like. 

It should be borne in mind, however, that all of these and 
similar terms are to be associated with the appropriate 
physical quantities and are merely convenient labels applied 
to these quantities. Unless specifically stated otherwise as 
apparent from the following discussions, it is appreciated 
that throughout the present invention, discussions utilizing 
terms such as “sending or “receiving or “performing or 
“routing or “programming” or “configuring or “selecting 
or the like, refer to the actions and processes of a computer 
system (e.g., computer system 100 of FIG. 1), or similar 
electronic computing device, that manipulates and trans 
forms data represented as physical (electronic) quantities 
within the computer system's registers and memories into 
other data similarly represented as physical quantities within 
the computer system memories or registers or other Such 
information storage, transmission or display devices. 

FIG. 1 shows a computer system 100 in accordance with 
one embodiment of the present invention. The computer 
system includes the components of a basic computer system 
in accordance with embodiments of the present invention 
providing the execution platform for certain hardware-based 
and Software-based functionality. In general, the computer 
system comprises at least one central processing unit (CPU) 
101, a system memory 115, and at least one graphics 
processor unit (GPU) 110. The CPU can be coupled to the 
system memory via a bridge component/memory controller 
(not shown) or can be directly coupled to the system 
memory via a memory controller (not shown) internal to the 
CPU. The GPU is coupled to a display 112. One or more 
additional GPUs can optionally be coupled to system 100 to 
further increase its computational power. The GPU(s) is/are 
coupled to the CPU and the system memory. The computer 
system can be implemented as, for example, a desktop 
computer system or server computer system, having a pow 
erful general-purpose CPU coupled to a dedicated graphics 
rendering GPU. In Such an embodiment, components can be 
included that add peripheral buses, specialized graphics 
memory, input/output (I/O) devices, and the like. Similarly, 
computer system can be implemented as a handheld device 
(e.g., a cell phone, etc.) or a set-top video game console 
device. 
The GPU can be implemented as a discrete component, a 

discrete graphics card designed to couple to the computer 
system via a connector (e.g., an Accelerated Graphics Port 
slot, a Peripheral Component Interconnect-Express slot, 
etc.), a discrete integrated circuit die (e.g., mounted directly 
on a motherboard), or an integrated GPU included within the 
integrated circuit die of a computer system chipset compo 
nent (not shown) or within the integrated circuit die of a 
PSOC (programmable system-on-a-chip). Additionally, a 
local graphics memory 114 can be included for the GPU for 
high bandwidth graphics data storage. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
FIG. 2 shows a diagram 200 illustrating internal compo 

nents of the GPU 110 and the graphics memory 114 in 
accordance with one embodiment of the present invention. 
As depicted in FIG. 2, the GPU includes a graphics pipeline 
210 and a fragment data cache 250 which couples to the 
graphics memory as shown. 

In the example of FIG. 2, a graphics pipeline 210 includes 
a number of functional modules. Three such functional 
modules of the graphics pipeline—for example, the program 
sequencer 220, the arithmetic logic stage (ALU) 230, and 
the data write component 240—function by rendering 
graphics primitives that are received from a graphics appli 
cation (e.g., from a graphics driver, etc.). The functional 
modules 220-240 access information for rendering the pixels 
related to the graphics primitives via the fragment data cache 
250. The fragment data cache functions as a high-speed 
cache for the information stored in the graphics memory 
(e.g., frame buffer memory). 
The program sequencer functions by controlling the 

operation of the functional modules of the graphics pipeline. 
The program sequencer can interact with the graphics driver 
(e.g., a graphics driver executing on the CPU 101 of FIG. 1) 
to control the manner in which the functional modules of the 
graphics pipeline receive information, configure themselves 
for operation, and process graphics primitives. For example, 
in the FIG. 2 embodiment, graphics rendering data (e.g., 
primitives, triangle strips, etc.), pipeline configuration infor 
mation (e.g., mode settings, rendering profiles, etc.), and 
rendering programs (e.g., pixel shader programs, vertex 
shader programs, etc.) are received by the graphics pipeline 
over a common input 260 from an upstream functional 
module (e.g., from an upstream raster module, from a setup 
module, or from the graphics driver). The input 260 func 
tions as the main fragment data pathway, or pipeline, 
between the functional modules of the graphics pipeline. 
Primitives are generally received at the front end of the 
pipeline and are progressively rendered into resulting ren 
dered pixel data as they proceed from one module to the next 
along the pipeline. 

In one embodiment, data proceeds between the functional 
modules 220-240 in a packet-based format. For example, the 
graphics driver transmits data to the GPU in the form of data 
packets, or pixel packets, that are specifically configured to 
interface with and be transmitted along the fragment pipe 
communications pathways of the pipeline. A pixel packet 
generally includes information regarding a group or tile of 
pixels (e.g., four pixels, eight pixels, 16 pixels, etc.) and 
coverage information for one or more primitives that relate 
to the pixels. A pixel packet can also include sideband 
information that enables the functional modules of the 
pipeline to configure themselves for rendering operations. 
For example, a pixel packet can include configuration bits, 
instructions, functional module addresses, etc., that can be 
used by one or more of the functional modules of the 
pipeline to configure itself for the current rendering mode, or 
the like. In addition to pixel rendering information and 
functional module configuration information, pixel packets 
can include shader program instructions that program the 
functional modules of the pipeline to execute shader pro 
cessing on the pixels. For example, the instructions com 
prising a shader program can be transmitted down the 
graphics pipeline and be loaded by one or more designated 
functional modules. Once loaded, during rendering opera 
tions, the functional module can execute the shader program 
on the pixel data to achieve the desired rendering effect. 

In this manner, the highly optimized and efficient frag 
ment pipe communications pathway implemented by the 



US 9,448,766 B2 
5 

functional modules of the graphics pipeline can be used not 
only to transmit pixel data between the functional modules 
(e.g., modules 220-240), but to also transmit configuration 
information and shader program instructions between the 
functional modules. 

FIG. 3 is a block diagram of an arithmetic logic stage 230 
according to one embodiment of the present invention. In the 
example of FIG. 3, the ALU stage 230 includes an ALU 301, 
an ALU 302, an ALU 303, and an ALU 304. Each of the 
ALUs 301-304 includes a first digital circuit for performing 
a first type of mathematical operation and a second type of 
digital circuit for performing a second type of mathematical 
operation. More specifically, in one embodiment, the ALU 
301 includes a multiplier 311 and an adder 321, the ALU 302 
includes a multiplier 312 and an adder 322, the ALU 303 
includes a multiplier 313 and an adder 323, and the ALU 304 
includes a multiplier 314 and an adder 324. 
As will be seen, the ALUs 301-304 are interconnected 

Such that, for example, an adder in the arithmetic logic stage 
230 can receive data from more than one multiplier in the 
stage, and a multiplier in the arithmetic logic stage can send 
data to more than one adder in the stage. Therefore, gener 
ally speaking, arithmetic logic stage 230 includes a number 
of multipliers, a number of adders, and circuitry that inter 
connects the multipliers and adders. However, the adders 
and multipliers in the ALU stage 230 can be conveniently 
abstracted into separate ALUs. 

Within each of the ALUs 301-304, the multiplier and the 
adder are coupled in series. That is, for example, the 
multiplier 311 and adder 321 of the ALU 301 are coupled in 
series, such that an output of the multiplier 311 can be 
received by the adder 321. The other ALUs 302-304 are 
similarly arranged. 

In the embodiment of FIG. 3, each of the ALUs 301-304 
receives three inputs or operands A, B and C. The ALU 301, 
for example, receives operands A1, B1 and C1. The operand 
A1 and the operand B1 are input to the multiplier 301. The 
operand C1 bypasses the multiplier 301 and is optionally 
input to the adder 321, as described in more detail below. 
The inputs/operands for the other ALUs 302-304 are simi 
larly distributed. 
As mentioned above, the ALU stage 230 includes cir 

cuitry that interconnects the various multipliers and adders 
in the ALUs 301-304. In the example of FIG. 3, each of the 
ALUs 301-304 includes two multiplexers (collectively, mul 
tiplexers 341-348). 

Thus, in many respects—for example, the number and 
arrangement of adders, multipliers and multiplexers, and the 
number of inputs—the ALUs 301-304 are analogous. The 
analogous nature of the ALUs means less wiring and better 
timing, while still providing desired flexibility and function 
ality (as will be seen). 

In the embodiment of FIG. 3, one of the inputs to 
multiplexer 341 and the output of multiplexer 341 are “tied 
off that is, they are not connected to another component 
in the ALU stage 230. Thus, in the example of FIG. 3, 
multiplexer 341 is not used for routing data or interconnect 
ing the ALUs. However, by including multiplexer 341 as 
depicted, the hardware within each of the ALUs is sym 
metrically (analogously) arranged (with the exception of 
some of the wiring within each ALU). As alternatives to the 
example depicted in FIG. 3, multiplexer 341 can be 
removed, or it can be connected to one of the adders like its 
counterparts in ALUs 302-304. 

In the embodiment of FIG. 3, the multiplexers 343, 345 
and 347 are each controlled separately using programming 
code (e.g., a one-bit select or control signal). These control 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
signals are labeled “SEND in FIG. 3, and the multiplexers 
343, 345 and 347 may be referred to herein as the “send” 
multiplexers. Depending on the values of the control signals, 
the outputs of the multipliers 312-314 may or may not be 
sent to multiple adders. More specifically, the output of the 
multiplier 312 is sent to the adder 322 and may or may not 
be sent to the adder 321, depending on how the multiplexer 
343 is programmed. Similarly, the output of the multiplier 
313 is sent to the adder 323 and may or may not be sent to 
the adder 321 (depending on the programming of the mul 
tiplexer 345), and the output of the multiplier 314 is sent to 
the adder 324 and may or may not be sent to the adder 323 
(depending on the programming of the multiplexer 347). In 
the example of FIG. 3, one of the inputs of each of the 
multiplexers 343, 345 and 347 is tied off because those 
inputs are not needed to perform the functionality just 
described. 
The multiplexers 343, 345 and 347 select between the 

output of their respective multiplier and Zero (the tied off 
input). Thus, an enable signal need not be sent to or received 
by the adders 321 and 323—they simply use the values 
presented to them by the send multiplexers, either a multi 
plier output or a value of Zero. The send multiplexers could 
be implemented within the ALUs 301 and 303 (which 
include the adders 321 and 323), but then the analogous 
nature of the ALUs and the benefits provided (e.g., less 
wiring, better timing) would not be preserved. 

Also, in the example of FIG.3, each of the adders 321-324 
is a four-input adder, although one or more of the inputs to 
some of the adders is tied off. Thus, the adders each will 
always add four inputs, although some of those inputs (the 
tied off inputs) will always be zero. Thus, in a manner 
similar to that described above, extra control signals are not 
needed, nor is it necessary to chain Smaller adders—the 
adders simply use the values presented to them. Adders other 
than four-input adders could be substituted for the adders 
with tied off inputs, but then the analogous nature of the 
ALUs and the benefits provided (e.g., less wiring, better 
timing) would not be preserved. 

In the embodiment of FIG. 3, the multiplexers 342, 344, 
346 and 348 are each controlled separately using program 
ming code (e.g., a one-bit control signal). These control 
signals are labeled “RECV in FIG. 3, and the multiplexers 
342, 344, 346 and 348 may be referred to herein as the 
“receive” multiplexers. Operands for the various adders 
321-324 are selected depending on the programming of the 
multiplexers 342, 344, 346 and 348. More specifically, the 
multiplexer 342 selects either the input value C1 (which 
bypasses the multiplier 311) or the output of the multiplier 
314 as one of the operands for the adder 321, depending on 
how the multiplexer 342 is programmed. Similarly, the 
multiplexer 344 selects either the input value C2 or the 
output of the multiplier 311 as one of the operands for the 
adder 322, the multiplexer 346 selects either the input value 
C3 or the output of the multiplier 312 as one of the operands 
for the adder 323, and the multiplexer 348 selects either the 
input value C4 or the output of the multiplier 313 as one of 
the operands for the adder 324. 

Thus, in one embodiment, the ALUs 301-304 each 
receives a two-bit control signal: one bit of the signal (the 
SEND bit) is for controlling each ALUs send multiplexer, 
and one bit of the signal (the RECV bit) is for controlling 
each ALUs receive multiplexer. As mentioned above, the 
multiplexer 341 is not utilized, and as Such a control signal 
is not necessary for the ALU 301. Nevertheless, in the 
present embodiment, a two-bit control signal is used for the 



US 9,448,766 B2 
7 

ALU 301. Thus, even though the ALUs may be asymmetri 
cal, the control signals are symmetrical, which facilitates 
programming. 

To summarize the example of FIG. 3, the operands that 
are input to the adder 321 can include: the output of the 5 
multiplier 311; either operand C1 or the output of the 
multiplier 314; optionally the output of the multiplier 312: 
and optionally the output of the multiplier 313. The operands 
of the adder 322 can include: the output of the multiplier 
312; and either operand C2 or the output of the multiplier 10 
311. The operands of the adder 323 can include: the output 
of the multiplier 313; either operand C3 or the output of the 
multiplier 312; and optionally the output of the multiplier 
314. The operands of the adder 324 can include: the output 
of the multiplier 314; and either the operand C4 or the output 15 
of the multiplier 313. 
The interconnecting circuitry—specifically, the multi 

plexers 342-348 in the example of FIG. 3 is software 
programmable and can be configured in different ways to 
perform various multidimensional operations in a single 20 
pass through the ALU stage 230. That is, the inputs A1-A4, 
B1-B4 and C1-C4, or the subset of those inputs that are 
needed for the prescribed operation, are received at the “top” 
of the ALU stage 230. The prescribed multidimensional 
operation is performed, and the result is output from the 25 
“bottom’ of the ALU stage 230. Thus, the output of the ALU 
stage 230 does not necessarily have to be recirculated back 
through the ALU stage in order to complete the operation. 

The types of operations that can be performed by the ALU 
stage 230 in a single pass include, for example: a four- 30 
dimensional dot product (DP4); a three-dimensional dot 
product with scalar add and multiply–add (DP3a+MAD); a 
three-dimensional dot product and multiply–add (DP3+ 
MAD); up to four multiply–adds (4 MADs); two two 
dimensional dot products with scalar adds (2 DP2a); two 35 
two-dimensional dot products with Scalar add and two 
multiply–adds (2 DP2a+2 MADs); and two, three or four 
two-dimensional dot products (2, 3 or 4 DP2). Other types 
of operations may also be performed in single pass. Because 
the interconnecting circuitry is programmable, the same 40 
adders and multipliers can be used to perform one type of 
operation in one pass and another type of operation in 
another pass. 
The interconnecting circuitry may be different from that 

illustrated and described by the example of FIG. 3. That is, 45 
there may be different ways to route the data between ALUs 
in order to accomplish operations such as those mentioned 
above. In the extreme, the interconnecting circuitry (includ 
ing multiplexers) may be designed to implement a full 
crossbar embodiment. In Such an embodiment, the intercon- 50 
necting circuitry allows the output of any one of the multi 
pliers to be routed to any one of or any combination of the 
adders. A full crossbar embodiment is advantageous because 
of the flexibility it provides. The embodiment of FIG. 3 is 
advantageous because it provides the flexibility of a full 55 
crossbar, but reduces the amount of hardware and simplifies 
the routing of the interconnecting circuitry relative to a full 
crossbar design. 

Although four multipliers and four adders are described 
above, the present invention is not so limited. That is, more 60 
than four multipliers (e.g., eight or 16) and more than four 
adders (e.g., eight or 16) can be interconnected in a manner 
similar to that described above. 

FIG. 4 is a table 400 Summarizing programming instruc 
tions for an arithmetic logic stage 230 (FIG. 3) according to 65 
one embodiment of the present invention. As illustrated in 
FIG. 3, each of the ALUs 301-304 can receive three inputs 

8 
A, B and C from the preceding stage of the graphics 
pipeline. In the pipeline stage preceding the arithmetic logic 
stage 230, the pixel data is manipulated so that the correct 
data is properly distributed to the correct ALU in order to 
perform the operations about to be described. In other 
words, the ALUs 301-304 simply operate on the data pre 
sented to them; other parts of the pipeline are programmed 
to deliver the correct data to the ALUs. 

For a DP4 operation, the multiplexer 342 is programmed 
to receive the output of the multiplier 314 (that is, it selects 
the output of the multiplier 314 as an input to the adder 321), 
the multiplexer 343 is programmed to send the output of the 
multiplier 312 to the adder 321, and the multiplexer 345 is 
programmed to send the output of the multiplier 313 to the 
adder 321. Also, the adder 321 will receive the output of the 
multiplier 311 as an input. The multiplier 311 performs 
A1*B1; the multiplier 312 performs A2*B2; the multiplier 
313 performs A3*B3; the multiplier 314 performs A4*B4; 
and the adder 321 adds each of those results (A1*B1+ 
A2*B2+A3*B3+A4*B4). The output of the ALU 301 is the 
result of the DP4 operation. 

For two DP2a operations, the multiplexer 343 is pro 
grammed to send the output of the multiplier 312 to the 
adder 321, and the multiplexer 347 is programmed to send 
the output of the multiplier 314 to the adder 323. Also, the 
adder 321 will receive the output of the multiplier 311 and 
C1 as inputs, and the adder 323 will receive the output of the 
multiplier 313 and C3 as inputs. The multiplier 311 performs 
A1*B1; the multiplier 312 performs A2*B2; the multiplier 
313 performs A3*B3; and the multiplier 314 performs 
A4*B4. The adder 321 adds A1*B1+A2*B2+C1, and the 
adder 323 adds A3*B3+A4*B4+C3. The output of the ALU 
301 is the result of the first of the two DP2a operations, and 
the output of the ALU 303 is the result of the second of the 
two DP2a operations. 

For a DP3a+MAD operation, the multiplexer 343 is 
programmed to send the output of the multiplier 312 to the 
adder 321, and the multiplexer 345 is programmed to send 
the output of the multiplier 313 to the adder 321. Also, the 
adder 321 will receive the output of the multiplier 311 and 
C1 as inputs, and the adder 324 will receive the output of the 
multiplier 314 and C4 as inputs. The multiplier 311 performs 
A1*B1; the multiplier 312 performs A2*B2; the multiplier 
313 performs A3*B3; and the multiplier 314 performs 
A4*B4. The adder 321 adds A1*B1+A2*B2+A3*B3+C1, 
and the adder 324 adds A4*B4+C4. The output of the ALU 
301 is the result of the DP3a operation, and the output of the 
ALU 304 is the result of the MAD operation. 

For a two DP2 operation, the multiplexer 342 is pro 
grammed to receive the output of the multiplier 314 (that is, 
it selects the output of the multiplier 314, A4*B4, as an input 
to the adder 321) and the multiplexer 346 is programmed to 
receive the output of the multiplier 312 (that is, it selects the 
output of the multiplier 312, A2B2, as an input to the adder 
323). Also, the adder 321 will receive the output of the 
multiplier 311 (A1*B1) as an input, and the adder 323 will 
receive the output of the multiplier 313 (A3*B3) as an input. 
The adder 321 adds A1*B1+A4*B4, and the adder 323 adds 
A2*B2+A3*B3. The output of the ALU 301 is the result of 
the first of the two DP2 operations, and the output of the 
ALU 303 is the result of the Second of the two DP2 
operations. 

For a four DP2 operation, the output of the ALU 302 and 
the output of the ALU 304 can be used to provide the results 
of the third and fourth DP2 operations. The multiplexer 344 
is programmed to receive the output of the multiplier 311 
(A1*B1) as an input for the adder 322, and the multiplexer 



US 9,448,766 B2 
9 

348 is programmed to receive the output of the multiplier 
313 (A3*B3) as an input for adder 324. Also, the adder 322 
will receive the output of the multiplier 312 (A2 B2) as an 
input, and the adder 324 will receive the output of the 
multiplier 314 (A4*B4) as an input. The adder 322 adds 
A1*B1+A2*B2, and the adder 324 adds A3*B3+A4*B4. In 
a similar manner, a three DP2 operation can be performed 
using the output of any combination of three of the four 
ALUs. 

For a DP2a+two MADs operation, the multiplexer 343 is 
programmed to send the output of the multiplier 312 
(A2*B2) to the adder 321. Also, the adder 321 will receive 
the output of the multiplier 311 (A1*B1) and C1 as inputs, 
the adder 323 will receive the output of the multiplier 313 
(A3*B3) and C3 as inputs, and the adder 324 will receive the 
output of the multiplier 314 (A4*B4) and C4 as inputs. The 
adder 321 adds A1*B1+A2*B2+C1, the adder 323 adds 
A3*B3+C3, and the adder 324 adds A4*B4+C4. The output 
of the ALU 301 is the result of the DP2a operation, the 
output of the ALU 303 is the result of one of the two MADs, 
and the output of the ALU 304 is the result of the other of 
the two MADS. 

For a DP3+MAD operation, the multiplexer 342 is pro 
grammed to receive the output of the multiplier 314 (that is, 
it selects the output of the multiplier 314, A4*B4, as an input 
to the adder 321), and the multiplexer 343 is programmed to 
send the output of the multiplier 312 (A2B2) to the adder 
321. Also, the adder 321 will receive the output of the 
multiplier 311 (A1*B1) as an input, and the adder 323 will 
receive the output of the multiplier 313 (A3*B3) and C3 as 
inputs. The adder 321 adds A1*B1+A2*B2+A4*B4, and the 
adder 323 adds A3*B3+C3. The output of the ALU 301 is 
the result of the DP3 operation, and the output of the ALU 
303 is the result of the MAD operation. 

For a four MADs operation, each of the adders 321-324 
receives the output of its respective multiplier 311-314 as 
one input and a respective input value C1-C4 as its other 
input. Each of the ALUs 301-304 outputs a result of one of 
the four MADS. 

The foregoing descriptions of specific embodiments of the 
present invention have been presented for purposes of 
illustration and description. They are not intended to be 
exhaustive or to limit the invention to the precise forms 
disclosed, and many modifications and variations are pos 
sible in light of the above teaching. For example, embodi 
ments of the present invention can be implemented on GPUs 
that are different in form or function from GPU 110 of FIG. 
2. The embodiments were chosen and described in order to 
best explain the principles of the invention and its practical 
application, to thereby enable others skilled in the art to best 
utilize the invention and various embodiments with various 
modifications as are Suited to the particular use contem 
plated. It is intended that the scope of the invention be 
defined by the claims appended hereto and their equivalents. 
What is claimed is: 
1. An arithmetic logic stage circuit of a graphics processor 

unit pipeline, the circuit comprising: 
a plurality of arithmetic logic units (ALUS) coupled in 

parallel to one another; and 
programmable interconnecting circuitry coupled between 

the ALUs and programmable according to program 
ming code, wherein the interconnecting circuitry is 
operable to allow the plurality of ALUs to implement, 
on a single pass through the ALUs, a multiply–add 
operation according to a first programming code and a 
multidimensional dot product computation according 
to a second programming code, wherein the intercon 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
necting circuitry comprises multiplexers coupling the 
parallel ALUs, the multiplexers comprising a multi 
plexer that routes data from one of the ALUs to another 
one of the ALUs, the multiplexers also comprising a 
multiplexer that receives data at one of the ALUs from 
another one of the ALUs. 

2. The circuit of claim 1 wherein the programming code 
comprises a respective code for each off the ALUs and 
wherein the respective code is symmetrical with respect to 
each other code. 

3. The circuit of claim 1 wherein the interconnecting 
circuitry is asymmetric with respect to each of the ALUs. 

4. The circuit of claim 1 wherein each of the ALUs is 
analogous. 

5. The circuit of claim 1 wherein the multidimensional dot 
product computation comprises a four-dimensional dot 
product. 

6. A method comprising: 
performing a first type of operation and performing a 

second type of operation using a plurality of arithmetic 
logic units (ALUs) comprising a first ALU, a second 
ALU, a third ALU and a fourth ALU, each of the ALUs 
comprising a first digital circuit operable for perform 
ing the first type of operation and a second digital 
circuit operable for performing the second type of 
operation; 

routing data that is output from the first digital circuit of 
the first ALU to both the second digital circuit of the 
second ALU and the second digital circuit of the third 
ALU, the routing through circuitry interconnecting the 
ALUs, the circuitry comprising a first multiplexer 
coupled between the first digital circuit of the first ALU 
and the second digital circuit of the second ALU, the 
circuitry further comprising a second multiplexer 
coupled between the first digital circuit of the first ALU 
and the second digital circuit of the third ALU: 

selecting, using the first multiplexer, the data as an 
operand for the second digital circuit of the second 
ALU; and 

forwarding, using the second multiplexer, the data to the 
second digital circuit of the third ALU. 

7. The method of claim 6, wherein the first digital circuit 
comprises a multiplier and the second digital circuit com 
prises an adder, wherein the first type of operation comprises 
multiplication and the second type of operation comprises 
addition. 

8. The method of claim 6, wherein the plurality of ALUs 
are operable for performing multidimensional computations 
in a single pass, the multidimensional computations selected 
from the group consisting of four-dimensional dot product; 
three-dimensional dot product with Scalar add and multiply 
add; three-dimensional dot product and multiply–add, up to 
four multiply–adds; two two-dimensional dot products with 
Scalar adds; two two-dimensional dot products with Scalar 
add and two multiply-adds; two two-dimensional dot prod 
ucts; three two-dimensional dot products; and four two 
dimensional dot products. 

9. The method of claim 6 further comprising receiving, at 
each of the ALUs, a two-bit control signal for controlling the 
routing of data. 

10. A method comprising: 
receiving, at a first adder of a plurality of adders, a first 

operand that is an output of a first multiplier of a 
plurality of multipliers comprising the first multiplier, a 
second multiplier, a third multiplier and a fourth mul 
tiplier; 



US 9,448,766 B2 
11 

Selecting, with a first multiplexer, a second operand for 
the first adder; 

Selecting, with a second multiplexer, a third operand for 
the first adder, wherein the third operand comprises an 
output of one of the second, third and fourth multipli 
ers; and 

interconnecting the plurality of multipliers to the plurality 
of adders with software-configurable circuitry, the cir 
cuitry configurable to allow an adder to receive data 
from more than one of the multipliers and to allow data 
to be sent from a multiplier to more than one of the 
adders. 

11. The method of claim 10, wherein the circuitry com 
prises a plurality of multiplexers. 

12. The method of claim 10, wherein the second operand 
comprises an input to the arithmetic logic stage that 
bypasses the multipliers. 

13. The method of claim 10, wherein the second operand 
comprises an output of one of the second, third and fourth 
multipliers. 

14. The method of claim 10 further comprising selecting, 
with a third multiplexer, a fourth operand for the first adder, 
wherein the fourth operand comprises an output of one of the 
second, third and fourth multipliers. 

15. The method of claim 10, wherein the plurality of 
multipliers and the plurality of adders in combination are 
operable for performing multidimensional computations in a 
single pass through the arithmetic logic stage, the multidi 
mensional computations selected from the group consisting 
of four-dimensional dot product; three-dimensional dot 
product with scalar add and multiply–add; three-dimensional 
dot product and multiply–add; up to four multiply–adds: two 
two-dimensional dot products with scalar adds: two two 
dimensional dot products with scalar add and two multiply 
adds: two two-dimensional dot products; three two-dimen 
Sional dot products; and four two-dimensional dot products. 

16. In an arithmetic logic stage in a graphics pipeline 
comprising a first arithmetic logic unit (ALU) comprising a 
first multiplier and a first adder coupled in series, a second 
ALU comprising a second multiplier and a second adder 
coupled in series, a third ALU comprising a third multiplier 
and a third adder coupled in series, and a fourth ALU 
comprising a fourth multiplier and a fourth adder coupled in 
Series, a method comprising coupling operations compris 
1ng: 

coupling an output of the first multiplier to the second 
adder, 

coupling an output of the second multiplier to the third 
adder, 

coupling an output of the third multiplier to the fourth 
adder, 

5 

10 

15 

25 

30 

35 

40 

45 

50 

12 
coupling an output of the fourth multiplier to the first 

adder; 
coupling an output of the second multiplier to the first 

adder; 
coupling an output of the third multiplier to the first adder; 

and 
coupling an output of the fourth multiplier to the third 

adder. 
17. The method of claim 16, wherein the circuitry com 

prises a plurality of multiplexers, the method further com 
prising: 

Selecting, with a first multiplexer coupled to an input of 
the first adder, between the output of the third multiplier 
and an input to the first ALU: 

Selecting, with a second multiplexer coupled to the output 
of the second multiplier, between sending and not 
sending the output of the second multiplier to the first 
adder; 

Selecting, with a third multiplexer coupled to an input of 
the second adder, between the output of the first mul 
tiplier and an input to the second ALU: 

Selecting, with a fourth multiplexer coupled to the output 
of the third multiplier, between sending and not sending 
the output of the third multiplier to the first adder; 

Selecting, with a fifth multiplexer coupled to an input of 
the third adder, between the output of the second 
multiplier and an input to the third ALU: 

Selecting, with a sixth multiplexer coupled to the output of 
the fourth multiplier, between sending and not sending 
the output of the fourth multiplier to the third adder; 
and 

Selecting, with a seventh multiplexer, between the output 
of the third multiplier and an input to the fourth ALU. 

18. The method of claim 16, wherein the first, second, 
third and fourth ALUs are operable for performing multidi 
mensional computations in a single pass, the multidimen 
Sional computations selected from the group consisting of: 
four-dimensional dot product; three-dimensional dot prod 
uct with scalar add and multiply–add; three-dimensional dot 
product and multiply–add; up to four multiply–adds; two 
two-dimensional dot products with scalar adds; two two 
dimensional dot products with scalar add and two multiply 
adds: two two-dimensional dot products; three two-dimen 
Sional dot products; and four two-dimensional dot products. 

19. The method of claim 16 further comprising receiving, 
at each of the first, second, third and fourth ALUs, a two-bit 
control signal for configuring the coupling operations. 

20. The method of claim 16, programmable in software 
and dynamically configurable on the fly. 

ck ck ck ck ck 


