
(12) United States Patent 

USOO9437.024B2 

(10) Patent No.: US 9.437,024 B2 
Krajec et al. (45) Date of Patent: *Sep. 6, 2016 

(54) TRANSFORMATION FUNCTION INSERTION (51) Int. Cl. 
FOR DYNAMICALLY DISPLAYED TRACER G06T II/20 (2006.01) 
DATA (52) U.S. Cl. 

(71) Applicant: Microsoft Technology Licensing, LLC, CPC .................................... G06T II/206 (2013.01) 
Redmond, WA (US) (58) Field of Classification Search 

None 
(72) Inventors: Russell S. Krajec, Loveland, CO (US); See application file for complete search history. 

Alexander G. Gounares, Kirkland, WA 
(US) Primary Examiner — David H Chu 

(74) Attorney, Agent, or Firm — Ben Tabor; Raghu 
(73) Assignee: Misroe? states Licensing, LLC, Chinagudabha; Micky Minhas 

(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT 
patent is extended or adjusted under 35 A visualization system for a tracer may include a processing 
U.S.C. 154(b) by 0 days. pipeline that may generate tracing data, preprocess the data, 
This patent is Subject to a terminal dis- and visualize the data. The preprocessing step may include 
claimer. a mechanism to process user-defined expressions or other 

executable code. The executable code may perform various 
(21) Appl. No.: 14/995,872 functions including mathematical, statistical, aggregation 

with other data, and others. The preprocessor may perform 
(22) Filed: Jan. 14, 2016 malware analysis, test the functionality, then implement the 

O O executable code. A user may be presented with an editor or 
(65) Prior Publication Data other text based user interface component to enter and edit 

US 2016/O133O35 A1 May 12, 2016 the executable code. The executable code may be saved and 
Related U.S. Application Data later recalled as a selectable transformation for use with 

other data streams. 
(63) Continuation of application No. 13/757,631, filed on 

Feb. 1, 2013, now Pat. No. 9,256,969. 20 Claims, 14 Drawing Sheets 

SSS ESSE 
S$388 

S.SY &S - 68 
w Sissa is 8 As 

& SSS $38. $3. $838.883 
88:8 S 3.38 

... -- 

  

  

  

  









U.S. Patent Sep. 6, 2016 Sheet 4 of 14 US 9.437,024 B2 

S$3.8 Y&R 
state RAH 

&^- M - M - ~ W. M. . . . M . . . . - - - Y -- a-- a --> - Y - - - 

c. SSSS): Sösis SS & SSS i8 

ŠSA R is S388 is 88.S. -: 

SFASRAE FREES ANS" 
& SSS&38 Six-S S& : 

R&R8R SER is: SESQ 8& '88 
SEER s: 

---. - NS: 
-RSRs: 

&SY $83 Six: 
ES: 

risi's 33 as: 

SSSS is: SS &N:3 &S$3S 

: 
: 

a. 3. E-SSSS & SS & EX: -SS 

“Sista NSSESAN ESSESAs, 
saasa is is 8 

EFYNSSESARS ESSES NOT" 
is&S3 & 8: 883: 

--S28 

  

  

    

  





U.S. Patent Sep. 6, 2016 Sheet 6 of 14 US 9.437,024 B2 

e-afi SS & 

w-Yix: $; $3 

x-ra:S $8:SE 

-“NY& 888 & 

N- £88 
38 SSSSSS is 88&ES 

::RSKS &&.8- 

Figure 7 

  







U.S. Patent Sep. 6, 2016 Sheet 9 of 14 US 9.437,024 B2 

as: - 
88. 

SSSfS is is SSS 

Six ES& 

test ^ is is: 
& SyS s SSS SSE (iâ-3ES 

M sei Ecitor- SSS Essie & is 
- a 888 

Six S. SANSES 
; : 8&&S$8 

& 

RESERE SAFE SAFA SEF R8 
- M. 

Figure 10 

    

  

  

    

  







U.S. Patent Sep. 6, 2016 Sheet 12 of 14 US 9.437,024 B2 

8& h;SSRF&S 
S8&^S$388& Six Sis: 8 

r-- 3: 
SS: is $383 838&S 8:::::: S 

SEESAE SES &&is a' 

(S. 8RARY & 
O coR. Roess 

& S&S. Six Sis -Yrsato winbow 
cist: A v. ATA-rriata 
3:FFERSRCS as TA-----3 is 

X i^338 
(N&^a 
S. 

S^ 38 SSXS ESS: 
s ar &SSY 

AP8 Ysses'ORE SORA&E - 

Figure 13 

  







US 9,437,024 B2 
1. 

TRANSFORMATION FUNCTION INSERTON 
FOR DYNAMICALLY DISPLAYED TRACER 

DATA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica 
tion Ser. No. 13/757,631 filed on Feb. 1, 2013 entitled 
“Transformation Function Insertion for Dynamically Dis 
played Tracer Data'. This application expressly incorporates 
herein the entirety of the foregoing application. 

BACKGROUND 

Message passing computational environments operate by 
having independent processing elements, such as threads or 
other computational components, pass messages from one 
element to another during execution. The messages passed 
between components may contain data and other informa 
tion that may be consumed by the recipient. 

SUMMARY 

A visualization system for a tracer may include a pro 
cessing pipeline that may generate tracing data, preprocess 
the data, and visualize the data. The preprocessing step may 
include a mechanism to process user-defined expressions or 
other executable code. The executable code may perform 
various functions including mathematical, statistical, aggre 
gation with other data, and others. The preprocessor may 
perform malware analysis, test the functionality, then imple 
ment the executable code. A user may be presented with an 
editor or other text based user interface component to enter 
and edit the executable code. The executable code may be 
saved and later recalled as a selectable transformation for 
use with other data streams. 
A force directed graph may serve as a part of a user 

control for a tracer. The tracer may collect data while 
monitoring an executing application, then the data may be 
processed and displayed on a force directed graph. A user 
may be able to select individual nodes, edges, or other 
elements, then cause the tracer to change what data may be 
collected. The user may be able to select individual nodes, 
edges, or groups of elements on the graph, then perform 
updates to the tracer using the selected elements. The 
selection mechanisms may include clicking and dragging a 
window to select nodes that may be related, as well as 
selecting from a legend or other grouping. 
A force directed graph may display time series data using 

a set of playback controls to pause, play, reverse, fast 
forward, slow down, or otherwise control the display of the 
time series data. The playback controls may be used in a real 
time or near real time application to which data sets are 
displayed and the speed with which the data sets may be 
displayed. In one architecture, the force directed graph may 
be deployed using a rendering engine that receives data and 
renders the data into a graph. A playback controller may 
send updates to the rendering engine according to user 
inputs from the playback controls. 
A message passing compute environment may be visual 

ized by illustrating messages passed within the environment. 
The messages may contain data consumed by a function or 
other computational element, and may be used to launch or 
spawn various computational elements. One visualization 
may be a force directed graph that has each function as a 
node, with messages passed as edges of the graph. In some 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
embodiments, the edges may display the number of mes 
sages, quantity of data, or other metric by showing the edges 
as wider or thinner, or by changing the color of the displayed 
edge. The nodes may be illustrated with different colors, 
size, or shape to show different aspects. Some embodiments 
may have a mechanism for storing and playing back changes 
to the graph over time. 
A force directed graph may display recent activities of a 

message passing system as highlighted features over a larger 
graph. The force directed graph may display a Superset of 
nodes and edges representing processes and message routes, 
then display recent activities as highlighted elements within 
the larger Superset. The highlighted elements may display 
messages passed or computation performed during a recent 
time element of a time series. In some embodiments, the 
effects of activities may be displayed by decaying the 
highlighted visual elements over time. 

This Summary is provided to introduce a selection of 
concepts in a simplified form that are further described 
below in the Detailed Description. This Summary is not 
intended to identify key features or essential features of the 
claimed subject matter, nor is it intended to be used to limit 
the scope of the claimed Subject matter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In the drawings, FIG. 1 is a diagram illustration of an 
embodiment showing a force directed graph. 

FIG. 2 is a diagram illustration of an embodiment show 
ing an environment for data collection and display using a 
graph. 

FIG. 3 is a flowchart illustration of an embodiment 
showing a method for gathering data. 

FIG. 4 is a flowchart illustration of an embodiment 
showing a method for aggregating data prior to visualiza 
tion. 

FIG. 5 is a flowchart illustration of an embodiment 
showing a method for deploying and updating a graph. 

FIG. 6 is a flowchart illustration of an embodiment 
showing a method for generating traces of objects on a 
graph. 

FIG. 7 is a diagram illustration of an embodiment show 
ing a sample force directed graph displaying a time series. 

FIGS. 8A, 8B, and 8C are a sequence of diagram illus 
trations of an embodiment showing a selection mechanism 
with a force directed graph. 

FIGS. 9A, 9B, and 9C are a sequence of diagram illus 
trations of an embodiment showing a second selection 
mechanism with a force directed graph. 

FIG. 10 is a flowchart illustration of an embodiment 
showing a method controlling a tracer through an interactive 
graph. 

FIG. 11 is a diagram illustration of an embodiment 
showing a network environment for visualizing trace data. 

FIG. 12 is a diagram illustration of an embodiment 
showing a method for visualizing trace data with transfor 
mations. 

FIG. 13 is a diagram illustration of an embodiment 
showing a sample user interface with a transformation 
editor. 

FIG. 14 is a diagram illustration of an embodiment 
showing a network environment with transformations. 

FIG. 15 is a flowchart illustration of an embodiment 
showing a method for controlling a display using a data 
browser. 



US 9,437,024 B2 
3 

DETAILED DESCRIPTION 

Graphs for Visualizing a Message Passing Compute 
Environment 

A message passing compute environment may be visual 
ized by showing graphs of the messages passed between 
compute elements. The graphs may show the compute 
elements as nodes, with messages as edges of the graph. One 
type of Such a visualization may be a force directed graph. 

The visualization may illustrate different features of the 
data, such as the number of messages, quantity of data, 
direction of messages, or other features as line widths, 
colors, or other visual elements. In the case of a force 
directed graph, the forces between elements may represent 
Such data features. 
The nodes of a graph may represent compute elements. 

The compute elements may be any executable code, device, 
or other element that may send or receive a message. The 
nodes may be illustrated with different sizes, colors, shapes, 
or other features to illustrate the amount of computational 
time consumed, frequency of calling, membership in a 
group, interaction with other elements, or other data items. 
The visualization may be performed using a sequence of 

data sets, where each data set may be collected over time. In 
Such embodiments, a graph may expand, contract, and 
change shape as an application executes. Such embodiments 
may be capable of storing and playing back the sequence of 
data sets. In some cases, such playback may be slowed down 
or sped up to illustrate changes during execution. 
The visualization system may have an instrumentation 

system that gathers message information during execution, 
then processes or formats the information for display. The 
display system may generate the graphs and display the 
graphs for a user. In some cases, the graphs may be inter 
active, where the user may be able to probe the graphs to 
gain additional insight. In one example, a user may be able 
to click on a node to find details about the node. Such as the 
node name, performance metrics regarding the node, or 
other information. 
The visualization system may be used to monitor and 

display messages passed within a single device, as well as 
embodiments where messages are passed between devices. 
For example, some functional languages may pass messages 
between processes that may execute on a single processor or 
across several processors within a single device. In another 
example, a high performance computing system may com 
bine processors located on many different devices to execute 
a large application. Such an application may be visualized 
by showing all of the messages passed from device to 
device, as well as from one process to another within each 
individual devices, for example. 

Force Directed Graph for Time Series Data with High 
lighting 
A force directed graph may display time series data by 

maintaining a Superset of nodes and edges, and displaying 
recent activity by highlighting those elements within the 
graph representing the recent activity. The Superset of nodes 
and edges may be created by capturing each node and edge 
that may be defined through the time series and maintaining 
the Superset during playback or display of a time series. 

Recent activity may be overlaid on the Superset of ele 
ments by highlighting those elements that represent the 
activity, while showing at least some of the Superset of nodes 
and edges in a non-highlighted fashion. In one style of Such 
a visualization, the Superset of nodes and edges may be 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
presented in a greyed-out fashion while recently active 
nodes and edges may be presented in a colored manner. 
The recent activity may be illustrated as fading or dis 

Solving by causing an element to decrease in highlighting for 
Successive time periods after being active. Such a visual 
decay may highlight an active element yet keep a visual cue 
for a certain number of time slices, and may be useful in 
cases where the time slices are short enough that activity in 
a single time slice may not be fully comprehended. 

Visualization of Time Series Data with Force Directed 
Graph 
A dynamic visualization of time series data may be 

rendered in a force directed graph. The time series data may 
include data sets that represent a state of a system at any 
given time. The visualization may illustrate the state changes 
as time progresses. 
The visualization may have a set of controls that allow a 

user to move forward and backwards through the data sets. 
The controls may allow the user to control playback of the 
data. In some cases, the data may be presented in a normal 
time basis where the playback may correspond with the 
speed of the data collection. In other cases, the playback may 
be sped up or slowed down with respect to the periodicity in 
which the data were collected. 
An architecture for a visualization system may have a 

visualizer that may be bound to a data source. The visualizer 
may display the force directed graph, including rendering 
any animated motion of the forces. The controls may con 
figure a data browser that may select the data sets to present, 
which may be transferred to the visualizer through a data 
binding. In some cases, the visualizer may collect user input 
that may be processed by a remote device on which the data 
browser may operate. 

Force Directed Graph as Input Mechanism for Tracer 
A tracer may use a force directed graph as an input 

mechanism. The force directed graph may allow a user to 
select and manipulate nodes and edges of the graph, which 
may represent various elements of an application. Once 
selected, the user may be able to apply various actions to the 
elements, such as causing additional tracing to be applied to 
the elements or to related elements. 
A force directed graph or other visualization may present 

application elements in different groupings or presentations, 
which may help a user see relationships within the elements. 
By using a force directed graph or other visualization as an 
input to the tracer, a user may be able to easily select 
elements and related elements that would otherwise be 
difficult to select. 
The graph may contain a legend that may show groups of 

elements. The legend may include hot spots or other user 
interface controls with which a user may select a subset of 
the elements. 
The user interface may include an additional menu of 

options that may use the selected elements as input. The 
additional menu may include various actions that may be 
taken by the tracer Supplying the displayed data. A configu 
ration file may be updated and sent to the tracer to change 
the tracer behavior. 

Transformation Definition for Trace Data 
Trace data may be prepared for display by applying 

predefined or user-defined transformations. A visualization 
of the data may include a user interface through which a user 
may select one or more predefined transformations or enter 
executable code or expressions that may create a new 
transformation. 
The user-entered expression may define changes that may 

be applied to data in preparation for visualization. The 



US 9,437,024 B2 
5 

changes may perform statistical analysis, apply arithmetic 
functions, combine data fields, merge external data, or other 
functions. The expressions may allow a user to create 
transformations that address specific scenarios that may not 
be envisioned when a visualization may be created. 

The expression may be inserted into a data processing 
pipeline for a data feed. In some cases, the data processing 
pipeline may be a real time pipeline that may receive, 
process, and display real time data. 

Throughout this specification and claims, the terms “pro 
filer”, “tracer', and “instrumentation” are used interchange 
ably. These terms refer to any mechanism that may collect 
data when an application is executed. In a classic definition, 
“instrumentation' may refer to stubs, hooks, or other data 
collection mechanisms that may be inserted into executable 
code and thereby change the executable code, whereas 
“profiler” or “tracer” may classically refer to data collection 
mechanisms that may not change the executable code. The 
use of any of these terms and their derivatives may implicate 
or imply the other. For example, data collection using a 
“tracer” may be performed using non-contact data collection 
in the classic sense of a “tracer” as well as data collection 
using the classic definition of “instrumentation' where the 
executable code may be changed. Similarly, data collected 
through "instrumentation' may include data collection using 
non-contact data collection mechanisms. 

Further, data collected through “profiling, “tracing, and 
“instrumentation' may include any type of data that may be 
collected, including performance related data Such as pro 
cessing times, throughput, performance counters, and the 
like. The collected data may include function names, param 
eters passed, memory object names and contents, messages 
passed, message contents, registry settings, register con 
tents, error flags, interrupts, or any other parameter or other 
collectable data regarding an application being traced. 

Throughout this specification and claims, the term 
“execution environment may be used to refer to any type of 
Supporting Software used to execute an application. An 
example of an execution environment is an operating sys 
tem. In some illustrations, an “execution environment may 
be shown separately from an operating system. This may be 
to illustrate a virtual machine. Such as a process virtual 
machine, that provides various Support functions for an 
application. In other embodiments, a virtual machine may be 
a system virtual machine that may include its own internal 
operating system and may simulate an entire computer 
system. Throughout this specification and claims, the term 
“execution environment' includes operating systems and 
other systems that may or may not have readily identifiable 
“virtual machines' or other supporting software. 

Throughout this specification, like reference numbers 
signify the same elements throughout the description of the 
figures. 
When elements are referred to as being “connected” or 

“coupled, the elements can be directly connected or 
coupled together or one or more intervening elements may 
also be present. In contrast, when elements are referred to as 
being “directly connected' or “directly coupled, there are 
no intervening elements present. 
The Subject matter may be embodied as devices, systems, 

methods, and/or computer program products. Accordingly, 
some or all of the subject matter may be embodied in 
hardware and/or in Software (including firmware, resident 
Software, micro-code, state machines, gate arrays, etc.) 
Furthermore, the subject matter may take the form of a 
computer program product on a computer-usable or com 
puter-readable storage medium having computer-usable or 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
computer-readable program code embodied in the medium 
for use by or in connection with an instruction execution 
system. In the context of this document, a computer-usable 
or computer-readable medium may be any medium that can 
contain, store, communicate, propagate, or transport the 
program for use by or in connection with the instruction 
execution system, apparatus, or device. 
The computer-usable or computer-readable medium may 

be, for example but not limited to, an electronic, magnetic, 
optical, electromagnetic, infrared, or semiconductor system, 
apparatus, device, or propagation medium. By way of 
example, and not limitation, computer readable media may 
comprise computer storage media and communication 
media. 
Computer storage media includes Volatile and nonvola 

tile, removable and non-removable media implemented in 
any method or technology for storage of information Such as 
computer readable instructions, data structures, program 
modules or other data. Computer storage media includes, but 
is not limited to, RAM, ROM, EEPROM, flash memory or 
other memory technology, CD-ROM, digital versatile disks 
(DVD) or other optical storage, magnetic cassettes, mag 
netic tape, magnetic disk storage or other magnetic storage 
devices, or any other medium which can be used to store the 
desired information and which can accessed by an instruc 
tion execution system. Note that the computer-usable or 
computer-readable medium could be paper or another Suit 
able medium upon which the program is printed, as the 
program can be electronically captured, via, for instance, 
optical scanning of the paper or other medium, then com 
piled, interpreted, of otherwise processed in a suitable 
manner, if necessary, and then stored in a computer memory. 
When the subject matter is embodied in the general 

context of computer-executable instructions, the embodi 
ment may comprise program modules, executed by one or 
more systems, computers, or other devices. Generally, pro 
gram modules include routines, programs, objects, compo 
nents, data structures, etc. that perform particular tasks or 
implement particular abstract data types. Typically, the func 
tionality of the program modules may be combined or 
distributed as desired in various embodiments. 

FIG. 1 is a diagram of an embodiment 100 showing an 
example force directed graph. Embodiment 100 is an 
example of a force directed graph that may show objects in 
a message passing relationship with each other, as well as 
various controls that may be used to view the graph with a 
sequence of data sets. 
The force directed graph of embodiment 100 may illus 

trate messages passed within a message passing environ 
ment. As an example of Such an environment, independent 
compute elements may process portions of an application. 
During processing, each compute element may pass mes 
sages to another compute element that contain data, instruc 
tions, or other elements. In Such environments, a force direct 
graph may be used to visualize the computational elements 
and the activity between the elements. In many cases, force 
directed graphs may be used to identify bottlenecks or other 
irregularities during execution. 
The force directed graph of embodiment 100 may illus 

trate one time period during the execution of an application. 
In Such embodiments, the execution of an application may 
be traced over time and the force directed graph may 
illustrate how the application behaves. The force directed 
graph of embodiment 100 may be updated periodically with 
newly collected data, which may visually show operations 
of the application. 



US 9,437,024 B2 
7 

The force directed graph of embodiment 100 may illus 
trate the operations of an application. In some embodiments, 
the force directed graph may illustrate the system state of a 
device or application at discrete periods of time. An example 
of a graph illustrating the system state may include nodes 
representing the state of memory objects, functions, input/ 
output devices, memory storage devices, or other hardware 
or software objects. In some embodiments, the force 
directed graph may illustrate activities that may occur 
between two periods of time. An example of Such a graph 
may include functions or processes and messages passed 
between processes. 

The force directed graph may show nodes 102, 104, 106 
and 108 connected by various edges. Edge 112 connects 
nodes 102 and 104. Edge 114 connects nodes 102 and 106, 
while edge 116 connects nodes 102 and 108 and edge 118 
connects nodes 106 and 104. Additional nodes and edges are 
also illustrated. 
A force directed graph may be computed by applying an 

attractive force connecting two nodes with an edge, and at 
the same time applying a repulsive force to nodes in general. 
In many embodiments, a force directed graph may be 
displayed in an interactive manner Such that a user may be 
able to perturb the graph by clicking and dragging an object 
or through some other mechanism. As a perturbation is 
introduced, an interactive graph may show the various nodes 
and edges change position. 
The force directed graph of embodiment 100 may show 

additional data elements. For example, the relative size, 
shape, and color of the various nodes may be configured to 
indicate different characteristics of the node. In another 
example, the edges may display characteristics using thick 
ness, color, and other visual elements. 
When a force directed graph displays the execution of an 

application, the nodes may represent compute elements. The 
compute elements may be processes, threads, processors, 
devices, or other elements that may pass messages to other 
elements. In such a graph, the edges may represent messages 
passed between compute elements. 

Nodes representing compute elements may be modified to 
reflect additional data. For example, the color or shape of the 
node may be modified to show groupings of the compute 
elements. In the example of embodiment 100, a legend 126 
illustrates different colors or patterns applied to the nodes 
and the meaning of the patterns. Nodes representing com 
pute elements from library A120 may include nodes 102 and 
108. Nodes representing compute elements from library B 
122 may include nodes 104 and 106. Node 110 may repre 
sent a core process 124. 

Groupings may reflect different shared characteristics of 
the objects. For example, nodes may be grouped by library, 
code module, or other group, and Such a grouping may assist 
a developer in understanding program flow. In another 
example, nodes may be grouped by memory consumption, 
where those nodes representing compute elements that con 
Sume large amounts of data are grouped together, or where 
compute elements that reference specific groups of memory 
objects are grouped together. In another example, processes 
or functions that operate on a specific process Scheduler may 
be shown as groups. In still another example, nodes that may 
be related to a memory domain may be grouped. 

In some embodiments, a legend may be shown as part of 
a graph. The legend may have colors, shapes, or other visual 
elements and a corresponding label. In some embodiments, 
the legend may have a selection mechanism whereby a user 
may be able to select a grouping using a drop down menu or 
other selection tool. In some such embodiments, a user may 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
be able to select one visual effect to correspond to one 
grouping while another visual effect may correspond to 
another grouping. For example, a legend may be used to 
configure grouping by memory domain to be illustrated by 
shapes that represent each domain, while nodes relating to 
specific services may be grouped by color. 
The legend 126 may have a selection tool for selecting a 

grouping to be shown. A toggle button 136 may open a drop 
down list that may contain several options. In the case of 
embodiment 100, the options may include grouping by 
processor 138, memory domain 140, scheduler 142, and 
service 144. The service 144 selection is currently selected, 
as indicated by a star. When a user selects a different 
grouping, the grouping may be applied to the various nodes 
by changing the color, shape, or other visual element. 
The size of the various nodes may reflect different aspects 

of the computational elements. For example, the size may 
represent the amount of computation performed by a par 
ticular element, the number of times the element was called, 
the amount of data handled by the element, or other factors. 
In some cases, a specific color may be applied to an element 
that receives input data from an external source and a 
different color may be applied to an element that transmits 
output data. 

Likewise, the edges may be modified to show various 
aspects of the messages. For example, the messages may be 
aggregated to show the number of messages along a specific 
path, the frequency of messages, the data payloads of the 
messages, as well as directionality of the messages and other 
features. The edges corresponding to the messages may be 
modified using different thicknesses, colors, or other visual 
elements to illustrate one or more of the aggregated param 
eters. 
The operation of an application may produce many mes 

sages that may be passed over time. Such time-related data 
may be displayed using a time series of datasets, where each 
dataset may reflect the state of the application at a period of 
time or as an aggregation of the messages passed during a 
time interval. 

In some embodiments, a tracing system may collect 
message passing information from an active application and 
store the collected data in a database. An aggregator may 
analyze the database to Summarize message passing activi 
ties for individual time intervals. In some cases. Such 
Summarizing may be performed by the tracing system 
without storing message passing data in a separate database. 

Aggregated data may be displayed in a force directed 
graph by updating the data within the force directed graph. 
In many visualizations of a force directed graph, the dataset 
may be updated, causing the force directed graph to repo 
sition itself with the updated data. 
A force directed graph may reflect the operations of an 

application in real time. In Such an embodiment, a tracer 
system may collect message passing data from a compute 
environment and aggregate the data for presentation. The 
data may be updated at a periodic interval. Such as every 
second, then transmitted to a system displaying the force 
directed graph. The force directed graph may be updated and 
change with each update, allowing a user to visualize the 
operations of the application in real time or near real time. 
When datasets may be collected and stored in such an 

embodiment, a control panel user interface may allow a user 
to browse and view the various datasets. For example, a 
reverse button 128 may cause older data sets to be shown in 
reverse order. A play button 130 and a pause button 132 may 



US 9,437,024 B2 
9 

start and stop a force directed graph to be updated. A fast 
forward button 134 may cause the playback to occur at a 
faster than normal speed. 

FIG. 2 is a diagram of an embodiment 200 showing a 
computing environment that may collect and display mes 
sage passing data in a graph. Embodiment 200 illustrates 
hardware components that may deliver the operations 
described in embodiment 100, as well as other embodi 
mentS. 

The diagram of FIG. 2 illustrates functional components 
of a system. In some cases, the component may be a 
hardware component, a Software component, or a combina 
tion of hardware and Software. Some of the components may 
be application level Software, while other components may 
be execution environment level components. In some cases, 
the connection of one component to another may be a close 
connection where two or more components are operating on 
a single hardware platform. In other cases, the connections 
may be made over network connections spanning long 
distances. Each embodiment may use different hardware, 
Software, and interconnection architectures to achieve the 
functions described. 

Embodiment 200 illustrates a device 202 that may have a 
hardware platform 204 and various software components. 
The device 202 as illustrated represents a conventional 
computing device, although other embodiments may have 
different configurations, architectures, or components. 

In many embodiments, the optimization server 202 may 
be a server computer. In some embodiments, the optimiza 
tion server 202 may still also be a desktop computer, laptop 
computer, netbook computer, tablet or slate computer, wire 
less handset, cellular telephone, game console or any other 
type of computing device. In some cases, the optimization 
server 202 may be deployed on a computing cluster, cloud 
computing environment, or other hardware platform. 
The hardware platform 204 may include a processor 208, 

random access memory 210, and nonvolatile storage 212. 
The hardware platform 204 may also include a user interface 
214 and network interface 216. 
The random access memory 210 may be storage that 

contains data objects and executable code that can be 
quickly accessed by the processors 208. In many embodi 
ments, the random access memory 210 may have a high 
speed bus connecting the memory 210 to the processors 208. 
The nonvolatile storage 212 may be storage that persists 

after the device 202 is shut down. The nonvolatile storage 
212 may be any type of storage device, including hard disk, 
Solid state memory devices, magnetic tape, optical storage, 
or other type of storage. The nonvolatile storage 212 may be 
read only or read/write capable. In some embodiments, the 
nonvolatile storage 212 may be cloud based, network Stor 
age, or other storage that may be accessed over a network 
connection. 
The user interface 214 may be any type of hardware 

capable of displaying output and receiving input from a user. 
In many cases, the output display may be a graphical display 
monitor, although output devices may include lights and 
other visual output, audio output, kinetic actuator output, as 
well as other output devices. Conventional input devices 
may include keyboards and pointing devices such as a 
mouse, stylus, trackball, or other pointing device. Other 
input devices may include various sensors, including bio 
metric input devices, audio and video input devices, and 
other sensors. 
The network interface 216 may be any type of connection 

to another computer. In many embodiments, the network 
interface 216 may be a wired Ethernet connection. Other 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
embodiments may include wired or wireless connections 
over various communication protocols. 
The Software components 206 may include an operating 

system 218 on which various applications 244 and services 
may operate. An operating system may provide an abstrac 
tion layer between executing routines and the hardware 
components 204, and may include various routines and 
functions that communicate directly with various hardware 
components. 

Each of the various devices illustrated in embodiment 200 
may have a hardware platform. The respective hardware 
platforms may be similar to the hardware platform 204. The 
devices may be any type of hardware platform, such as a 
personal computer, server computer, game console, tablet 
computer, mobile telephone, or any other device with a 
programmable processor. 
The analyzer device 202 may contain an operating system 

218, which may support various other Software components. 
The components may include an analyzer 220, which may 
prepare data for visualization. The analyzer 220 may take 
data collected while an application runs using an extractor 
222 and aggregate the data using an aggregator 224 to create 
data that may be visualized by a visualizer 226. 
A collector system 230 may operate on a hardware 

platform 232 and have a collector 234 that may gather trace 
data collected while an application executes and store the 
data in a database 236. These data may then be processed by 
the analyzer 220. 
A client device 238 may have a hardware platform 240 in 

which a browser 242 may execute. The browser 242 may 
display a graph 244 that may be generated by the visualizer 
226. 
The architecture of embodiment 200 illustrates a system 

where an analyzer 202 may prepare data for a visualizer 226 
to display a graph 244 that may be rendered in a browser 
242. In such an architecture, message passing data may be 
collected on an ongoing basis, then a separate processing 
step may be performed by the analyzer 220. Such an 
architecture may allow multiple analyses of the raw data to 
be performed. 

For example, when the raw data are stored prior to 
analysis, time series of datasets may be configured with 
different periods. For example, a time series for a long time 
period may be created that illustrates changes that may occur 
over a long period of time. At the same time, a detailed time 
series may be created for very Small time periods. A longer 
time period may help a user understand long term activities 
that occur in an application, while the detailed time series 
may show a much higher level of detail for debugging, for 
example. 

Another embodiment may include Some of the operations 
of the collector 234 and analyzer 220 into a single compo 
nent. In Such embodiments, the data may be analyzed, 
aggregated, and prepared for viewing in a single software 
component. Such a component may be integrated into a 
tracer that runs on the same device as the application under 
test in Some cases. Still other architectures may perform 
similar operations but are configured differently. 
An example of a compute environment 246 illustrates 

multiple devices which may interact in a high performance 
computing environment or other environment where mes 
sage passing may be deployed. Each device 248, 256, 264, 
and 272 may have a respective hardware platform 250, 258, 
266, and 274. An application 252, 260, 268, and 272 may 
execute with a respective tracer 254, 262, 270, and 278 on 
the respective hardware platforms. 



US 9,437,024 B2 
11 

The example of compute environment 246 may be 
deployed in a cluster environment, dispersed computing 
environment, or some other manner Such that the various 
devices may communicate with each other. The applications 
may contain the same or different executable code that may 
be configured to pass messages to other devices in order to 
execute a workload that may be larger than can be performed 
on a single device. 

Another example of a compute environment may be an 
application device 280 that may have a hardware platform 
282 which may contain one or more processors. On each 
processor, multiple processes may execute and pass mes 
sages between the processes. In the example of device 280, 
four processors 284, 288. 292, and 296 are illustrated as 
executing processes 286, 290, 294, and 298. 
One example of Such a system may deploy a functional 

language. Such as Erlang, whereby a single application may 
be executed using many individual processes, threads, or 
other compute elements. The various elements may com 
municate with each other by passing messages within the 
device 280. In some applications, many thousands, tens of 
thousands, or even millions of processes and messages may 
make up an application during execution. 

FIG. 3 is a flowchart illustration of an embodiment 300 
showing a method for monitoring data. Embodiment 300 
illustrates the operations of a tracer that may gather message 
passing data and store the data in a database for later 
analysis. The operations of embodiment 300 may reflect the 
operations of tracer 254, for example, in embodiment 200. 

Other embodiments may use different sequencing, addi 
tional or fewer steps, and different nomenclature or termi 
nology to accomplish similar functions. In some embodi 
ments, various operations or set of operations may be 
performed in parallel with other operations, either in a 
synchronous or asynchronous manner. The steps selected 
here were chosen to illustrate some principles of operations 
in a simplified form. 

Embodiment 300 may illustrate a method whereby each 
message passed may be analyzed to gather various data. The 
architecture of embodiment 300 illustrates one routine that 
may monitor an application and when a message is identi 
fied, a data gatherer instance may be deployed. The data 
gatherer instance may collect various data and store the data. 
An application may be started in block 302 and monitor 

ing may start in block 304. When a message is identified in 
block 306, a data gatherer instance 312 may be deployed. 
The monitoring may continue in block 308 until another 
message is identified, causing the process to return to block 
306 and launch another data gatherer instance 312. When no 
more messages are identified in block 308, the process may 
end in block 310. 
The data gatherer instance 312 may reflect the operations 

of a process or function that may operate on a single 
message. From the message, the sender and receiver may be 
identified in block 314. The data transmitted in the message 
payload may be gathered in block 316. 

Information about the sender may be gathered in block 
318 and information about the receiver may be gathered in 
block 320. Such information may include how much pro 
cessing may be performed, the nature of the processing, or 
other information. Once all of the information has been 
gathered, the message data may be stored in block 322. 

FIG. 4 is a flowchart illustration of an embodiment 400 
showing a method for analyzing and aggregating data. 
Embodiment 400 illustrates the operations of an analyzer 
that may analyzed and aggregate data collected in embodi 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
ment 300. The operations of embodiment 400 may reflect 
the operations of analyzer 220, for example, in embodiment 
2OO. 

Other embodiments may use different sequencing, addi 
tional or fewer steps, and different nomenclature or termi 
nology to accomplish similar functions. In some embodi 
ments, various operations or set of operations may be 
performed in parallel with other operations, either in a 
synchronous or asynchronous manner. The steps selected 
here were chosen to illustrate some principles of operations 
in a simplified form. 
Embodiment 400 illustrates an example of how message 

passing data may be analyzed prior to visualization. In some 
embodiments, the operations of embodiment 400 may be 
performed inline with the operations of a data monitoring 
method. Some such embodiments may apply the aggrega 
tion method 400 within a tracer to create data that may be 
ready for display as quickly as possible, so as to enable real 
time or near-real time visualizations of an application. 
The periodicity of a dataset may be determined in block 

402. The periodicity may define the time interval of a time 
series. For monitoring an application, the periodicity of a 
time series may be values less than a millisecond, in the 
Sub-second range, in the single digit seconds, or longer. 
Depending on the application, Some instances may have 
periods of tens of seconds, single digit minutes, tens of 
minutes, hours, days, weeks, or longer. 
A starting period may be selected in block 404. Messages 

passed within the period may be identified in block 406. In 
Some cases, the selected messages may have multiple mes 
sages that communicate between compute elements, which 
may be sorted by the message path in block 408. 

For each message path in block 410, a Summary of the 
messages passed may be made in block 412. The Summary 
may include the number of messages, direction of those 
messages, amount of data passed, frequency, or other sta 
tistics. In some cases, the Summaries may be nonlinear 
Summaries. For example, a logarithm, square, cubic, or other 
function may be used to generate aggregated Summaries. In 
many data collection scenarios, Some objects may be 
accessed one, two, or a handful of times while other objects 
may be accessed thousands or even millions of time. In order 
to present such data comparisons within a graph, a nonlinear 
Scaling of the data may be used. 

Each node may be identified in block 414. For each node 
in block 416, the node activity may be summarized in block 
418. The Summary may include the amount of computation 
performed by the compute element, input or output data 
passed to or from the element, type of computing performed, 
as well as statistics relating to the computation Such as the 
time busy, waiting, performing garbage collection, heap 
size, memory calls, or other information. 

After analyzing all of the message data for the period of 
time, the message data may be stored in block 420 as a data 
set. If another period is to be analyzed in block 422, the 
period may be incremented in block 424 and the process 
may return to block 404. When no more periods are to be 
analyzed in block 422, the process may end in block 426. 

FIG. 5 is a flowchart illustration of an embodiment 500 
showing a method for deploying and updating a graph. 
Embodiment 500 illustrates the operations of a visualizer of 
the data aggregated in embodiment 400. The operations of 
embodiment 500 may reflect the operations of visualizer 
226, for example, in embodiment 200. 

Other embodiments may use different sequencing, addi 
tional or fewer steps, and different nomenclature or termi 
nology to accomplish similar functions. In some embodi 



US 9,437,024 B2 
13 

ments, various operations or set of operations may be 
performed in parallel with other operations, either in a 
synchronous or asynchronous manner. The steps selected 
here were chosen to illustrate some principles of operations 
in a simplified form. 

Embodiment 500 illustrates two separate activities that 
may be performed to display a graph. A baseline graph may 
be created and displayed in block 502 and highlights may be 
added in block 504 on an ongoing basis. 
The baseline graph of block 502 may display a graph that 

contains all nodes and edges from a large database. In many 
instances, such a graph may represent the long term opera 
tions of an application and may be useful to understand the 
application. 
A database may be selected in block 506 to visualize. All 

of the time periods may be analyzed in block 508 to identify 
all nodes in block 510 and all message paths in block 512. 
In some embodiments, Summary statistics may be generated 
over all of the nodes and edges in blocks 510 and 512, 
respectively. The corresponding graph may be generated in 
block 514. 

The baseline graph generated in block 514 may be a static 
graph that illustrates Summary statistics from many time 
periods. In many embodiments, the baseline graph may 
serve as a framework for other illustrations. 

For example, the operations of highlighting activity in 
block 504 may identify changes to the graph from a specific 
time period and overlay those changes on the baseline graph. 
In one Such example, a baseline graph may contain repre 
sentations of all the computational elements and messages 
that may be passed during the lifetime of an application. In 
order to see the recent operations, operations in a current 
time period may be identified and displayed with visual 
highlighting, where other compute elements and message 
paths that were not exercised in the time period may be 
displayed without highlighting. In such an example, all of 
the nodes and edges may be displayed in a greyed-out 
fashion with currently executing nodes and messages shown 
in a vibrant color. 

In Such a display, the baseline graph may provide a visual 
context on which the current changes may be displayed. 
The operations for highlighting activities in block 504 

may include receiving user input that selects a time period 
in block 518. A dataset for the selected time period may be 
retrieved in block 520. 
Nodes and edges within the selected time period may be 

identified in block 522 and displayed as highlighted in block 
524. Those nodes and edges not changed in the time period 
may be identified in block 526 and displayed as not high 
lighted in block 528. 

In many cases, the user may select a current time period 
to display. Such a selection may update a graph in real time 
or near-real time. When an embodiment incorporates various 
navigation tools, such as the control buttons of embodiment 
100, a user may be able to browse, scroll, or use some other 
mechanism to identify a data set to display. 
When a visualization is updated over period of time while 

an application executes, some embodiments may display 
only those elements that have been changed in the last 
sampling period of the time series. In Such embodiments, the 
shape of a force directed graph or other visualization may 
change rapidly, especially when the time period may be very 
short. 
Some Such embodiments may decay and remove elements 

over multiple updates. In Such an embodiment, each node or 
edge may be displayed for a predefined number of periods, 
then removed from the graph. As the node becomes older 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
and is not used, the node may be displayed in a greyed-out 
fashion in some Such embodiments. 

FIG. 6 is a flowchart illustration of an embodiment 600 
showing a method for generating traces of an object within 
a graph. Embodiment 600 illustrates another version of 
changes that may be made to a baseline graph, similar to the 
operations of embodiment 500. In some cases, the opera 
tions of embodiment 600 may be modified to update a graph 
without using the baseline graph. 

Other embodiments may use different sequencing, addi 
tional or fewer steps, and different nomenclature or termi 
nology to accomplish similar functions. In some embodi 
ments, various operations or set of operations may be 
performed in parallel with other operations, either in a 
synchronous or asynchronous manner. The steps selected 
here were chosen to illustrate some principles of operations 
in a simplified form. 
The operations of embodiment 600 may illustrate one 

method by which an object and its effects may be illustrated 
within a graph, Such as a force directed graph. After defining 
an object, one, two, or more generations of messages stem 
ming from the object may be highlighted to create an update 
to a baseline graph. The update may be displayed on a 
baseline graph as highlighted nodes and edges to illustrate 
the effects of the selected object. 
A baseline graph may be created and displayed in block 

602. An example of the operations of block 602 may be 
found in block 502 of embodiment 500. 
A selection for a trace object may be received in block 

604. A trace object may be any event, memory object, 
condition, function, or other parameter that a user may wish 
to examine. A user may be able to define a memory object 
to trace, for example, when the memory object is changed or 
is set to a specific value. Once Such a condition is met, the 
effects of the condition may be illustrated. 

After defining a trace object, instances of the trace object 
may be searched in the message passing database. In some 
cases, multiple instances of the condition may be identified. 
When multiple instances exist, a time series of datasets may 
be generated for each instance and a user may be able to 
select between the instances to view the time series datasets. 

For each instance in block 608, a starting point for the 
sequence may be identified. The starting point may be a 
starting time or period that the condition originates. 
Any messages referring to the trace object may be iden 

tified in block 612 and added to a trace list. A message may 
refer to a trace object when the selected object interacts with 
a compute element and the compute element passes a 
message to another compute element. For example, a trace 
object may be an input event that may be processed by a first 
compute element, which may send a message to two other 
compute elements. Such messages may be added to a trace 
list in block 612. 
The operations of block 612 may identify an original set 

of messages that may be triggered by a trace object or 
condition. For each message in the trace list in block 614, 
downstream messages may be identified in block 616 and 
added to the trace list. The downstream messages may be 
messages that may have been triggered by the original 
messages identified in block 612. If additional generations 
of messages are desired in block 618, the process may return 
to block 614 to add additional messages. 
When all of the desired generations of messages may be 

identified in block 618, a time series of all the generations 
of messages may be created in block 620. The time series 
may include separate data sets that represent individual 



US 9,437,024 B2 
15 

generations of messages that may be passed from compute 
element to compute element in response to the trace condi 
tion. 
An instance may be selected in block 622 and the mes 

sages may be displayed as highlighted messages in block 
624. In many cases, the highlighted messages may be 
displayed on the framework of a baseline graph that may be 
created and displayed in block 602. 

FIG. 7 is a diagram illustration of an embodiment 700 
showing a time series of data sets displayed as a force 
directed graph. Embodiment 700 shows a time A 702, time 
B 704, time C 706, and time D 708. Embodiment 700 is a 
simplified example of a force directed graph that may grow 
and decay over time. 

Embodiment 700 illustrates a simple force directed graph 
that may be created and may grow and decay with each 
Successive time step. 
At the initial time step, time A 702, nodes 710, 712, and 

714 are illustrated. At the second time step, time B 704, node 
716 may be added. 

In the third time step, time C 706, nodes 718 are added 
while node 712 may be either removed or displayed in a 
greyed out mode. In the fourth time step, time D 708, nodes 
720 are added and nodes 710 and 712 may be removed or 
displayed in a greyed out mode. 

Embodiment 700 shows the progression of a trace of an 
application over time. In each time period, the compute 
elements may be represented by the nodes and messages 
passed between the compute elements may be represented 
by the edges of the graph. Initially, three compute elements 
are present and two message paths were exercised in time A 
702. As time progresses, additional compute elements are 
used and additional message paths are exercised. 

At time C 706, one of the nodes and message paths may 
no longer be used. In Such a case, Some embodiments may 
preserve the representation of node 712 as a greyed-out 
version. Other embodiments may remove the node 712 
when the node 712 has not been exercised. 
Some embodiments may decay the representations over 

time. In such embodiments, each node may be illustrated for 
several time periods, even when the node is not exercised in 
the successive time periods. The node may be illustrated 
with full color intensity when it is initially displayed, then 
the node may be illustrated with less intensity at each 
successive time period until the point where the node may be 
removed from the graph. Such an embodiment may keep a 
node visible for several time periods so that a user may 
visualize the node, but may remove the node when the node 
has not been exercised. 

In an example, a node may be displayed with full intensity 
for two, three, or more time periods in an animated repre 
sentation. After the initial display, the node may be illus 
trated with decreasing intensity for another 15 time periods, 
after which the node may be removed from the graph. In 
some embodiments, the time period for decay and for the 
initial representation may be adjustable by a user. 

FIGS. 8A, 8B, and 8C are diagram illustrations of 
example embodiments 802, 804, and 806 showing force 
directed graphs in a user interface. Embodiments 802, 804, 
and 806 illustrate a sequence of interactions that may be 
performed with user input to select a group of graphical 
elements, then perform an action on the selected elements. 
Each of the embodiments 802, 804, and 806 comprises a 
force directed graph and a legend 808. 

Embodiments 802, 804, and 806 may illustrate one 
mechanism to select multiple elements from a force directed 
graph: Such a mechanism may be an area selection using a 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
rectangular window. Other embodiments may permit a user 
to select groups of elements by other selection mechanisms, 
Such as a lasso tool, clicking on a succession of elements, or 
other mechanisms. 
The nodes of embodiments 802, 804, and 806 are com 

monly labeled. The force directed graphs are composed of 
nodes 810, 812, 814, 816, 818, and 820. 
Embodiment 802 may represent a force directed graph as 

displayed in a user interface. Embodiment 804 may illustrate 
the force directed graph of embodiment 802 with a window 
selection. The window selection may be defined by points 
822 and 824 to define a selection box 826. 
The selection box 826 may be created by a user by 

defining the points 822 and 824. One mechanism for creat 
ing the points 822 and 824 may be to click and drag a stylus, 
cursor, or other pointing tool within the displayed area of the 
force directed graph. 
The selection box 826 may capture node 812 and the 

group of nodes 814, which may illustrate one use scenario. 
Specifically, a force directed graph or other visualization 
may illustrate relationships and groups of elements in ways 
that may not be readily apparent without the visualization. 
The selection mechanism performed with the visualization 
may allow a user to select related objects quickly and easily, 
especially when the relationships may not be apparent by 
other mechanisms. 

For example, node 812 may represent one function in a 
library and nodes 814 may represent a group of functions in 
a second library. When initially started, a programmer may 
or may not be able to determine that the two sets of functions 
were related. After running a tracer and visualizing the 
relationships in a force directed graph 802, the programmer 
may be able to identify the relationships. 

After selecting node 812 and group of nodes 814, the user 
may perform additional operations, as illustrated in embodi 
ment 806. 

In embodiment 806, the selected items 812 and 814 may 
be illustrated as highlighted while the remaining portions of 
the force directed graph may be illustrated as not high 
lighted. Some embodiments may display non highlighted 
elements using transparency, color schemes Such as greyed 
out colors, or other visual cues. Some embodiments may 
display highlighted elements using brighter or more vibrant 
colors, different color pallets, boldness, or other visual cues. 
Once selected, the items may be have some activity or 

changes to be applied to the selected group. Such a change 
may be selected from a user interface component 828, which 
may have various options 830 and 832. 

In some embodiments, the selected activity may cause the 
tracer to change the way data are collected. In Such embodi 
ments, the force directed graph may be a user interface 
component for controlling or managing a tracer. An example 
of such a change may to increase the detail of tracing for the 
selected elements. Such a change may increase the tracing 
data for Subsequent time slices. In another example, the 
tracer may be instructed to remove the selected elements 
from future data sets. In Such a change, the tracer may 
reduce the amount of data collected in future time slices. 

In some embodiments, the selected activity may cause a 
preprocessor to change the way trace data are processed or 
presented on the user interface. An example may be to show 
cumulative data for the selected elements or to visually 
highlight objects that may flow from the selected elements. 
Such selections may not cause the tracer to change the data 
collected but may cause a preprocessor or visualizer to 
change the way the data are illustrated. 



US 9,437,024 B2 
17 

FIGS. 9A, 9B, and 9C are diagram illustrations of 
example embodiments 902, 904, and 906 showing force 
directed graphs in a user interface. Embodiments 902, 904, 
and 906 illustrate a sequence of interactions that may be 
performed with user input to select a group of graphical 
elements, then perform an action on the selected elements. 
Each of the embodiments 902, 904, and 906 comprises a 
force directed graph and a legend 908. 

Embodiments 902, 904, and 906 may illustrate one 
mechanism to select multiple elements from a force directed 
graph: Such a mechanism may use a legend label to select 
members of a group of elements. 
The nodes of embodiments 902, 904, and 906 are com 

monly labeled. The force directed graphs are composed of 
nodes 910, 912,914,916,918, and 920. 
Embodiment 902 may represent a force directed graph as 

displayed in a user interface. Embodiment 904 may illustrate 
the force directed graph of embodiment 902 with a selection 
made from the legend 908. The selection 922 within the 
legend 908 may cause all of the objects with membership in 
group B to be selected and highlighted. 

Embodiment 904 illustrates nodes 910 and 920 as the 
selected members of group B, while the remaining elements 
may be illustrated as not highlighted. The relationships of 
nodes 910 and 920 are also illustrated as highlighted, while 
the remaining relationships or edges may be illustrated as 
not highlighted. 
Once the elements associated with the selection 922 are 

selected, a user interface component 924 may be presented. 
A user may be able to select between options 926 and 928 
to apply changes to a tracer or changes to how the data are 
preprocessed and displayed, in a similar manner as with the 
user interface component 828. When the selections may be 
made, a launch button 930 may be used to cause the changes 
to be implemented. 

FIG. 10 is a flowchart illustration of an embodiment 1000 
showing a method for controlling a tracer through user 
interactions with a graph. Embodiment 1000 illustrates a 
simplified method that may be performed with the user 
interface examples of embodiments 802, 804, and 806 as 
well as embodiment 902, 904, and 906. 

Other embodiments may use different sequencing, addi 
tional or fewer steps, and different nomenclature or termi 
nology to accomplish similar functions. In some embodi 
ments, various operations or set of operations may be 
performed in parallel with other operations, either in a 
synchronous or asynchronous manner. The steps selected 
here were chosen to illustrate some principles of operations 
in a simplified form. 
An initial data set may be received in block 1002, and a 

graph may be displayed in block 1004. If there is no user 
selection in block 106, a new data set may be received in 
block 1008 and the process may return to block 1004 to 
show an updated graph. 
The loop of blocks 1004 through 1008 may illustrate a 

normal operation of a user interface display for time series 
data. The graph may be continually updates with the 
sequence of data sets within the time series. 

In block 1006, a user may select one or more elements of 
the graph. In some embodiments, updating may be paused in 
block 1010. The updating may be paused in cases where the 
graph may change rapidly and the user may not be able to 
select a set of desired elements while the graph changes. 
Once the elements may be selected, changes to be per 

formed on those items may be selected in block 1012. The 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
changes may be transmitted to the tracer in block 1014 and 
the process may return to block 1008, where a new data set 
may be received. 

FIG. 11 is a diagram of an embodiment 1100 showing a 
computing environment that may collect and display mes 
sage passing data in a graph, then use the graph to control 
how those data are collected. Embodiment 1100 illustrates 
hardware components that may deliver the operations 
described in embodiment 1000, as well as other embodi 
mentS. 

The diagram of FIG. 11 illustrates functional components 
of a system. In some cases, the component may be a 
hardware component, a Software component, or a combina 
tion of hardware and Software. Some of the components may 
be application level Software, while other components may 
be execution environment level components. In some cases, 
the connection of one component to another may be a close 
connection where two or more components are operating on 
a single hardware platform. In other cases, the connections 
may be made over network connections spanning long 
distances. Each embodiment may use different hardware, 
Software, and interconnection architectures to achieve the 
functions described. 

Embodiment 1100 illustrates a network environment in 
which visualizations of trace data may be used to control the 
tracer operation. A visualization device 1102 may display a 
graph and provide a user interface, while a controller device 
1104 may control the data sets to be displayed, as well as 
manage the operations of a tracer. The controller device 
1104 may retrieve data from a data repository 1106. A tracer 
device 1108 may collect trace data while running an appli 
cation 1138. All of the various devices may be connected 
with a network 1110. 
The visualizer device 1102 may include on a hardware 

platform 1112, on which a browser 1114 may execute. A 
visualizer 1116 may be code running in the browser 1114 
that may generate a graph within the user interface 1118. 
The controller device 1104 may operate as a backend 

server that performs several services that Support the opera 
tions of the visualizer device 1102. 
The example of embodiment 1100 illustrates an architec 

ture where the visualizer 1116 may reside on a client device, 
while other services may reside on a server device. The 
visualizer 1116 may be located on the client device to 
improve the user experience with an animated graph. When 
the visualizer 1116 is located on a user's device, the smooth 
ness of animation and responsiveness of the graph may be 
improved over architectures where rendering and visualiza 
tion may be performed on remote devices. 

Embodiments where remote devices perform some or all 
of the visualization may be useful in situations where a client 
device may not have Sufficient processing power to render a 
graph. Such embodiments may enable more complex and 
detailed renderings than may be generated with client-side 
visualization tools. 
The controller device 1104 may provide two different 

functions, one of which may be as a data browser 1126 
through which data for a visualization may be retrieved and 
prepared, as well as a tracer configuration manager 1122. 
where changes to a tracer may be created and dispatched. A 
user interface communicator 1124 may be accessed through 
components in the browser 1114 to cause changes in the data 
browser 1126 or the tracer configuration manager 1122. 

In some embodiments, a user interface 1118 may include 
a dialog box, selection tool, or other user interface compo 
nent that may be used to configure or change configuration 
of a tracer. Such configuration may include items relating to 



US 9,437,024 B2 
19 

the general operation of the tracer, Such as sampling fre 
quency, resources allocated to the tracer, conditions for 
starting or stopping the tracer, and other general operational 
options. In some embodiments, such changes may be 
applied generally or to items selected from the graph. 
The data browser 1126 may retrieve data sets 1128 from 

the data repository 1106 and prepare the data sets for 
viewing by the visualizer 1116. The data browser 1126 may 
be responsive to playback controls, such as the controls 128 
through 134 in embodiment 100. 

The data browser 1126 in normal playback mode may 
retrieve data sets 1128 and make the data sets available to the 
visualizer 1116. In many embodiments, such an action may 
be performed on a recurring, periodic basis according to the 
time series represented by the data sets 1128. For example, 
a time series may be created where data sets 1128 may 
represent each second of time during a time series. In Such 
an example, the data browser 1126 may make each Succes 
sive data set available each second. 
The user interface communicator 1124 may receive com 

mands from the browser 1114 to pause, rewind, fast forward, 
play, stop, and other commands. These commands may be 
passed to the data browser 1126 which may begin retrieving 
data sets 1128 and presenting the data sets in the requested 
sequence and in the requested frame rate or speed. 
The tracer configuration manager 1122 may receive inputs 

from the user interface communicator 1124, where the 
inputs may define changes to be made to trace data. The 
changes may reflect additional data points that may be 
collected, as well as data points that may be removed or 
other changes. In some cases, the changes may reflect the 
behavior or operational changes, such as when the tracer 
may be executed, the frequency of data collection, or other 
changes. 
The tracer device 1108 may operate on a hardware 

platform 1130 and have an instrumented execution environ 
ment 1132 that may include a tracer 1134 and a configuration 
1136 for the tracer 1134. The tracer configuration manager 
1122 may update the configuration 1136 to cause the tracer 
1134 to change behavior. 
An application 1138 may execute in the instrumented 

execution environment 1132, allowing the tracer 1134 to 
generate trace data. The trace data may be transmitted to the 
data repository 1106 by a data transmitter 1140. The data 
transmitter 1140 may periodically communicate with the 
data repository 1106 to transmit any collected data from the 
tracer 1134. 

FIG. 12 is a diagram illustration of an embodiment 1200 
showing a process for visualizing data from a tracer. 
Embodiment 1200 may illustrate a processing pipeline 
where transformations may be inserted. In some embodi 
ments, user written executable code may be inserted into the 
processing pipeline to prepare data for visualization in many 
different manners. 
A tracer 1202 may generate a stream of trace data that 

may be processed by a storage pipeline 1204. The storage 
pipeline 1204 may prepare and process the trace data using 
a set of transformations in block 1206 for storage in block 
1208. In some embodiments, the trace data may be a 
continuous stream of data items that may be gathered by the 
tracer 1202. Such streams of data may increase and decrease 
in volume over time. In other embodiments, the trace data 
may be Snap shots of data reported at specific intervals. Such 
streams of data may be regularly recurring. 
The storage pipeline 1204 may be a set of processes that 

apply a set of transformations in block 1206 to the data 
stream, then cause the data to be stored in block 1208. The 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
transformations in block 1206 may apply formatting, data 
analysis, aggregation, or other changes to the data prior to 
storage. In many cases, the transformations in block 1206 
may perform de-duplication, compression, differencing, or 
other operations that may reduce the size of the trace data in 
block 1208, as well as format the data for later retrieval. 
The transformations in block 1206 may be applied prior 

to storage of the trace data in block 1208. When such 
transformations may be lossy or otherwise diminish the 
accuracy, fidelity, or completeness of the data, Such a 
transformation may be permanent in the sense that later 
analysis may not be able to recreate the original data. 

After storage in block 1208, a visualization pipeline 1210 
may apply an additional set of transformations in block 1214 
prior to visualizing the data in block 1216. The visualization 
pipeline 1210 may prepare the data for visualization. The 
transformations in block 1214 may not be permanent in the 
sense that the raw data in block 1208 may still remain, 
allowing for a different set of transformations to be applied 
in a later analysis. 
The transformations in block 1214 may perform various 

operations for preparing data for visualizations. In some 
cases, the transformations in block 1214 may perform for 
matting and other operations so that a visualizer in block 
1216 may accept and parse the incoming data. In some 
cases, the transformations in block 1214 may perform fil 
tering, aggregation, statistical analysis, and other operations 
that may affect which data are displayed and how the data 
are displayed. 
The visualizer in block 1216 may be part of a user 

interface 1218 through which a user may view data and 
control how the data are displayed. One mechanism for 
controlling how the data may be displayed may be a user 
interface in block 1220 where a user may create or edit 
transformations. A user may also be able to store and retrieve 
the transformations in block 1224 for later use. In many 
embodiments, a library or selection of several pre-config 
ured transformations may be stored for a user to select and 
use with or without editing. 
The user interface in block 1220 may allow a user to add 

and edit executable code to define a portion of a transfor 
mation. The executable code may be any function descrip 
tion, expression, or other definition that may be compiled, 
interpreted, or otherwise executed as a transformation. 
Once added, a transformation may go through a malware 

check in block 1226 before being inserted into a processing 
pipeline in block 1228. A transformation may be identified 
to be applied prior to storage in block 1206 or after storage 
in block 1214. 

FIG. 13 is a diagram illustration of an embodiment 1300 
showing an example user interface. Embodiment 1300 may 
illustrate a user interface through which a user may enter 
executable code that may be deployed as a transformation. 
Embodiment 1300 may illustrate a visualization user 

interface 1302 that contains a force directed graph 1304, a 
legend 1306, and a control set 1308. The force directed 
graph 1304 may display trace data in the form of nodes and 
edges, where the edges may represent relationships between 
objects. The legend 1306 may show groups of elements. The 
control set 1308 may be a set of control buttons through 
which a user may input playback commands to view differ 
ent data sets in a time series of trace data. 
A window 1310 may be an interface through which a user 

may select different data to show in the graph. Two different 
options 1312 and 1314 may reflect pre-defined transforma 
tions that may be selected, as well as a third option 1316 
where a user may enter and edit an executable expression in 



US 9,437,024 B2 
21 

a text editor 1318. The user may also select which process 
ing pipeline to implement the transformation in the selection 
132O. 
The transformations may cause data to be displayed, and 

Sometimes Stored, in different manners. The transformations 
may be defined in an executable language that may be 
compiled or interpreted to process data. In some cases, the 
language may enable multiple data elements to be analyzed 
together. A simple example of which may be to take a 
difference between two elements. 
The transformations may allow a filter to be applied, such 

as to show tracing data from a specific function or memory 
object, while eliminating other data. In some cases, the 
transformations may include an expression, such as to 
display data from processes that operate for greater than 10 
seconds and less than 15 seconds. 
An example of pseudo-code for an expression may be: 

TABLE-US-00001 on event (type, data) old data-fetch 
(type) new data old data+data put (type, new data) 
The pseudo-code above may be applied to each displayed 

variable to count each occurrence of the variable for each 
time slice in the time series. In such a transformation, the 
displayed data may grow over time. 

Because the transformations may include user-supplied 
code, the transformations may undergo a malware check 
prior to deployment. The malware check may attempt to 
catch malicious or malformed transformations so that the 
transformations may not cause unwanted errors or malicious 
effects. 

FIG. 14 is a diagram of an embodiment 1400 showing a 
computing environment that may collect and display trace 
data in a graph. Embodiment 1400 illustrates hardware 
components that may deliver the operations described in 
embodiment 1300, as well as other embodiments. 
The diagram of FIG. 14 illustrates functional components 

of a system. In some cases, the component may be a 
hardware component, a Software component, or a combina 
tion of hardware and Software. Some of the components may 
be application level Software, while other components may 
be execution environment level components. In some cases, 
the connection of one component to another may be a close 
connection where two or more components are operating on 
a single hardware platform. In other cases, the connections 
may be made over network connections spanning long 
distances. Each embodiment may use different hardware, 
Software, and interconnection architectures to achieve the 
functions described. 

Each of the various devices illustrated in embodiment 
1400 may have a hardware platform. The respective hard 
ware platforms may be similar to the hardware platform 204. 
The devices may be any type of hardware platform, such as 
a personal computer, server computer, game console, tablet 
computer, mobile telephone, or any other device with a 
programmable processor. 

Embodiment 1400 illustrates a network environment in 
which transformations may be deployed to modify the 
operations of data collection, storage, and visualizations. 
The transformations may be stored and deployed in various 
contexts and managed through a transformation manager. 
The environment may include a visualization system 

1402, a controller device 1406, a transformation manager 
1408, a tracer device 1410, and a data repository 1412. The 
visualization system 1402 may provide a user interface for 
the overall system, and may send commands to the control 
ler device 1406 to provide data for a visualization. The 
transformation manager 1408 may receive, store, test, and 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
dispatch transformations to various devices. The tracer 
device 1410 may collect trace data, which may be stored by 
the data repository 1412. 
The visualization system 1402 may contain a hardware 

platform 1414 on which a browser 1416 may run. The 
browser may present a user interface 1418 to a user. The 
browser 1416 may execute a visualizer 1420, which may 
create and display a graph. The visualizer 1420 may be 
executable code that runs within the browser 1416 to 
retrieve data and render a graph. The visualizer 1420 may 
include animation routines as well as interactive components 
that may allow a user to interact with the graph. 
The browser 1416 may also include an editor 1422 

through which a user may enter executable code that may be 
used as various transformations within the larger system. 
The transformations may be used by a tracer during data 
gathering, by a storage manager during data storage, and by 
a preprocessor when preparing data for visualization. The 
user Supplied code may enable a wide range of customizable 
options for a user to control how data may be gathered, 
stored, and displayed. Such control may be useful in Sce 
narios where a user may experiment with different ways of 
collecting and viewing data. 
A controller device 1406 may operate on a hardware 

platform 1424. A data browser 1426 may be controlled from 
the user interface 1418 on the visualization system 1402. 
The data browser 1426 may select data sets to be displayed 
by the visualizer 1420. Prior to transmitting the data sets 
with a communications agent 1432, a preprocessor 1428 
may apply various transformations 1430 to the data. 
A tracer device 1410 may operate on a hardware platform 

1434 and have an instrumented execution environment 1436 
that may include a tracer 1438. The tracer 1438 may have a 
configuration 1440 that may define behaviors for the tracer 
1438, such as what data to collect and under which condi 
tions the data may be collected. 
The tracer device 1410 may also have a set of transfor 

mations 1444, which may process the collected data. The 
transformations 1444 may be applied prior to storing the 
data and may be used to aggregate, compact, condense, or 
otherwise prepare the data for transmission to a data reposi 
tory 1412. The transformations 1444 may also perform data 
analysis, including various statistical analysis, comparisons, 
or any other operation. 
A data repository 1412 may have a hardware platform 

1456 on which a storage manager 1458 may operate. The 
storage manager 1458 may receive data from various tracer 
devices and apply transformations 1460 prior to storing the 
data 1462. The transformations 1460 may perform many 
different types of operations prior to storage, including 
aggregation and compaction, as well as Summarizing, com 
parisons, or other operations. 
Embodiment 1400 illustrates two locations for applying 

pre-storage transformations. One location may be at the 
tracer device 1410 as transformations 1444 and the other 
location may be at the data repository 1412 as transforma 
tions 1460. Either location for transformations may apply 
changes to the trace data prior to storage. Transformations 
applied at the tracer device 1410 may apply transformations 
prior to data transmittal, as such, some of the transforma 
tions 1444 may compact the data or otherwise prepare the 
data for transmittal over the network 1464 to the data 
repository 1412. 
A transformation manager 1408 may operate on a hard 

ware platform 1446 and may include a transformation 
manager 1448. The transformation manager 1448 may 
receive transformations from a user through the visualiza 



US 9,437,024 B2 
23 

tion system 1402, cause the transformations to be dispatched 
to different devices using a dispatcher 1450. The dispatcher 
1450 may communicate with the various devices that 
execute transformations, transmit the transformations, and 
cause the transformations to execute under specified condi 
tions. 

For example, a dispatcher 1450 may deploy a transfor 
mation to the tracer device 1410 to compact data prior to 
transmission and a second transformation to the data reposi 
tory 1412 to create Summary statistics prior to storing the 
data. The dispatcher 1450 may make the transformations 
conditional for tracing a specific application 1442 during a 
specific time period, then cause the transformations to be 
turned off. 

The dispatcher 1450 may also cause certain transforma 
tions to be deployed on the controller device 1406 to 
prepare, filter, or otherwise modify data that may be dis 
played in a visualization. In some cases, the transformations 
1430 deployed to the preprocessor 1428 may be deployed in 
near-real time under user control so that data displayed in a 
visualization may be quickly changed. 
The transformation manager 1448 may receive new or 

edited transformations from a user and then use a malware 
checker 1452 to determine if the transformation may be 
incorrect, incomplete, or has the potential to cause harm. 
The malware checker 1452 may use various tools to approve 
or deny a given transformation. Such tools may include a 
virus checker, white list, black list, or other technologies. 
The transformation manager 1448 may store transforma 

tions in a repository 1454. The stored transformations in the 
repository 1454 may be made available as selectable options 
within the browser 1416. 

FIG. 15 is a flowchart illustration of an embodiment 1500 
showing a method for controlling a visualization for a time 
series of data sets. Embodiment 1500 illustrates the opera 
tions of a visualizer and user interface 1502 in the left hand 
column and a data browser 1504 in the right hand column. 

Other embodiments may use different sequencing, addi 
tional or fewer steps, and different nomenclature or termi 
nology to accomplish similar functions. In some embodi 
ments, various operations or set of operations may be 
performed in parallel with other operations, either in a 
synchronous or asynchronous manner. The steps selected 
here were chosen to illustrate some principles of operations 
in a simplified form. 

Embodiment 1500 may illustrate a simplified example of 
the interactions between a user interface 1502 and a data 
browser 1504, where the data browser may process data sets 
and present the data sets for visualization. The visualizer 
may have a data binding or other connection to the data 
browser such that the visualizer may retrieve and display 
whatever data sets are being presented. 

The data browser 1504 may present data sets in sequence 
so that the visualizer presents a graph that changes over 
time. Controls on the user interface may direct the data 
browser 1504 to present different sequences of data sets for 
normal playback, reverse playback, fast forward, and other 
Sequences. 
Embodiment 1500 illustrates a method where a sequence 

may be defined for presentation, then the data browser may 
advance through the sequence to cause data sets to be 
displayed. In embodiment 1500, the sequences may be 
normal forward play where the data sets may be displayed 
in a time sequence, as well as reverse where the sequence of 
data sets are inverted or reversed, and fast forward where the 
sequence only shows every other data set such that the graph 
may be updated twice as fast as normal playback. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

24 
Once the sequence is defined, the data browser may use 

the sequence to look up the next data set, prepare the data set 
for viewing, and make the data set available to the visualizer. 
Using a data binding or other connection, the visualizer may 
gather the data set and update the graph. 

In several of the embodiments presented above, a visu 
alizer may operate on one device and a data browser may 
operate on a second device. In some cases, both the visu 
alizer and user interface 1502 and data browser 1504 may 
operate on the same device or different devices. 
From the user interface 1502, a command may be sent to 

start visualization in block 1506. The command may be 
received by the data browser 1504 in block 1508. 
The sequence to display may be defined in block 1510. 

For a normal playback, the sequence may be a time series of 
data sets in a normal, forward sequence. The next time point 
to display may be selected in block 1512, and the data set 
associated with the time point may be retrieved in block 
1514. In some cases, the data set may be retrieved from a 
data repository, which may be a remote device accessed over 
a network. 

After retrieving the data set in block 1514, any transfor 
mations may be applied in block 1516 and the data set may 
be transmitted in block 1518. The process may return to 
block 1512 to select the next data set in the sequence. 
The visualizer and user interface 1502 may receive the 

new data set in block 1522 and render or update the graph 
in block 1524. The visualizer may cycle through the loop of 
blocks 1522 and 1524 each time the data set may be updated 
by the data browser 1504. 

Similarly, the data browser 1504 may loop through the 
blocks 1512 through 1518 to fetch the next data set in 
sequence, prepare the data set, and make the data set 
available for the visualizer. The timing of the loop of blocks 
1512 through 1518 may be set to correspond with the real 
time represented by the data sets and thereby cause the graph 
to update in the same time frame as the underlying data. 

In some embodiments, the loop of blocks 1512 through 
1518 may be adjusted faster or slower so that the playback 
may be increased or decreased in speed. In some cases, the 
data collection frequency may be much faster than the 
playback frequency, which may cause the playback to be 
slower than real time. In other cases, the data collection 
frequency may be much slower than the playback frequency, 
causing the playback to be much faster than real time. 
At some point, the user interface 1502 may issue a rewind 

command in block 1526, which may be transmitted to the 
data browser 1504 in block 1528. The data browser 1504 
may define a new sequence with the time points in reverse 
order in block 1530. The data browser 1504 may return to 
block 1512 to select the next data set in the sequence. 
Because the sequence is now reversed, the data browser 
1504 may present the data sets in reverse sequence, and each 
time the data set may be updated, the visualizer may update 
the graph. 
A pause command may be issued from the user interface 

1502 in block 1532 and transmitted to the data browser 
1504, which may receive the pause command in block 1534. 
The data browser 1504 may merely stop sending data sets in 
block 1536 to cause the graph from being updated. 
A play command may be issued from the user interface 

1502 in block 1538 and transmitted to the data browser 
1504, which may receive the play command in block 1540. 
The data browser 1504 may define a new sequence with the 
time points arranged in a forward order in block 1542 and 
resume sending data sets in block 1544, then continue with 
block 1512. 



US 9,437,024 B2 
25 

A fast forward command may be issued from the user 
interface 1502 in block 1546 and transmitted to the data 
browser 1504, which may receive the fast forward command 
in block 1548. The data browser 1504 may create a sequence 
in block 1550 that has only a subset of the available data 
sets. In a case where the fast forward may be replayed at 
twice the normal play speed, the sequence may include only 
every other data set. The process may return to block 1512 
to cycle through the sequence of data sets. 

The foregoing description of the Subject matter has been 
presented for purposes of illustration and description. It is 
not intended to be exhaustive or to limit the subject matter 
to the precise form disclosed, and other modifications and 
variations may be possible in light of the above teachings. 
The embodiment was chosen and described in order to best 
explain the principles of the invention and its practical 
application to thereby enable others skilled in the art to best 
utilize the invention in various embodiments and various 
modifications as are Suited to the particular use contem 
plated. It is intended that the appended claims be construed 
to include other alternative embodiments except insofar as 
limited by the prior art. 

What is claimed is: 
1. A hardware storage media comprising computer-ex 

ecutable instructions which, when executed on one or more 
processors, cause the one or more processors to perform a 
computer-implemented method for using a force directed 
graph to visualize how messages are passed between com 
putational components, and for using the force directed 
graph as an input to control a tracer in order to permit trace 
data to be prepared for display by applying predefined or 
user-defined transformations to elements of the force 
directed graph, the computer-implemented method compris 
ing: 

executing an application and gathering message passing 
data derived from messages passed between compute 
elements, the message passing data comprising peri 
odic updates transmitted at a predefined interval; 

collecting and storing the message passing data; 
analyzing at least some of the stored message passing data 

and preparing from the analyzed message passing data 
a force directed graph comprised of nodes which rep 
resent the compute elements, and edges between at 
least Some of the nodes, with the edges representing the 
periodic updates for the messages as the messages are 
passed between the nodes at the predefined interval as 
the application is executed; 

displaying said force directed graph data to visualize how 
the periodic updates for the messages occur as the 
messages are passed between the compute elements at 
the predefined interval during execution of the appli 
cation; 

inputting one or more transformation definitions for one 
or more elements of the force directed graph during one 
or more of the periodic updates visualized for the force 
directed graph, at least some of said transformation 
definitions comprising executable code that performs 
operations on said one or more elements of the force 
directed graph; and 

displaying said force directed graph as modified by 
executing said transformation definitions. 

2. The computer storage media of claim 1 wherein the 
computer-implemented method further comprises perform 
ing a malware analysis of the executable code for said 
transformation definitions before executing the executable 
code for the transformation definitions. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

26 
3. The computer storage media of claim 1, wherein 

inputting one or more transformation definitions is per 
formed at an interface which comprises a set of execution 
Settings. 

4. The computer storage media of claim 3 wherein the 
computer-implemented method further comprises storing 
said one or more transformation definitions. 

5. The computer storage media of claim 4, wherein said 
interface further comprises a retrieval mechanism to select 
said stored one or more transformation definitions from a 
stored set of transformation definitions. 

6. The computer storage media of claim 1, wherein 
displaying said force directed graph comprises animating the 
force directed graph to show the periodic updates at the 
predefined interval as the force directed graph is visualized. 

7. The computer storage media of claim 2, wherein said 
malware analysis comprises checking said executable code 
against a whitelist. 

8. The computer storage media of claim 2, wherein said 
malware analysis comprises checking said executable code 
against a blacklist. 

9. A computing system comprising hardware storage 
media containing computer-executable instructions which, 
when executed on one or more processors, cause the one or 
more processors to configure the computing system with a 
system architecture that performs a computer-implemented 
method for using a force directed graph to visualize how 
messages are passed between computational components, 
and for using the force directed graph as an input to control 
a tracer in order to permit trace data to be prepared for 
display by applying predefined or user-defined transforma 
tions to elements of the force directed graph, the system 
architecture comprising: 

a compute environment that executes an application and 
gathers with a tracer message passing data derived from 
messages passed between compute elements of the 
compute environment, the message passing data com 
prising periodic updates transmitted at a predefined 
interval; 

a collector which collects the message passing data and 
stores the collected message passing data in a database; 

an analyzer that executes a visualizer, and wherein the 
visualizer performs the following: 
analyzes at least some of the stored message passing 

data and prepares from the analyzed message passing 
data a force directed graph comprised of nodes 
which represent the compute elements of the com 
pute environment, and edges between at least some 
of the nodes, with the edges representing the periodic 
updates for the messages as the messages are passed 
between the nodes at the predefined interval as the 
application is executed, the directed graph being 
prepared for presentation at the display to visualize 
how the periodic updates for the messages occur as 
the messages are passed between the compute ele 
ments at the predefined interval during execution of 
the application; and 

an interface comprising an input for inputting one or more 
transformation definitions for one or more elements of 
the force directed graph during one or more of the 
periodic updates visualized for the force directed graph, 
at least Some of said transformation definitions com 
prising executable code that performs operations on 
said one or more elements of the force directed graph. 

10. The computing system of claim 9, wherein the com 
puter architecture performs a malware analysis of the 



US 9,437,024 B2 
27 

executable code for said transformation definitions before 
executing the executable code for the transformation defi 
nitions. 

11. The computing system of claim 9, wherein inputting 
one or more transformation definitions is performed at an 
interface which comprises a set of execution settings. 

12. The computing system of claim 11 wherein said one 
or more transformation definitions are stored in a database. 

13. The computing system of claim 12, wherein said 
interface further comprises a retrieval mechanism to select 
said stored one or more transformation definitions from a 
stored set of transformation definitions. 

14. The computing system of claim 9, wherein displaying 
said force directed graph comprises animating the force 
directed graph to show the periodic updates at the predefined 
interval as the force directed graph is visualized. 

15. The computing system of claim 9, wherein said 
interface comprises an editor that edits said executable code 
for said at least some transformation definitions. 

16. A computing system for using a force directed graph 
to visualize how messages are passed between computa 
tional components, and for using the force directed graph as 
an input to control a tracer in order to permit trace data to be 
prepared for display by applying predefined or user-defined 
transformations to elements of the force directed graph, the 
computing system comprising: 

a memory containing computer executable instructions 
for a computer-implemented method; 

one or more processors which, when executing the 
executable instructions for the computer implemented 
method, cause the computing system to perform the 
following: 
execute an application and gather message passing data 

derived from messages passed between compute 
elements, the message passing data comprising peri 
odic updates transmitted at a predefined interval; 

collect and store the message passing data; 
analyze at least some of the stored message passing 

data and prepare from the analyzed message passing 
data a force directed graph comprised of nodes 
which represent the compute elements, and edges 

5 

10 

15 

25 

30 

35 

40 

28 
between at least some of the nodes, with the edges 
representing the periodic updates for the messages as 
the messages are passed between the nodes at the 
predefined interval as the application is executed; 

display said force directed graph data to visualize how 
the periodic updates for the messages occur as the 
messages are passed between the compute elements 
at the predefined interval during execution of the 
application; 

receive as input one or more transformation definitions 
for one or more elements of the force directed graph 
during one or more of the periodic updates visualized 
for the force directed graph, at least some of said 
transformation definitions comprising executable 
code that performs operations on said one or more 
elements of the force directed graph; and 

display said force directed graph as modified by execut 
ing said transformation definitions. 

17. The computing system of claim 16, wherein the 
computer-executable instruction for the computer-imple 
mented method cause the computing system to further 
perform the following: perform a malware analysis of the 
executable code for said transformation definitions before 
executing the executable code for the transformation defi 
nitions. 

18. The computing system of claim 16, wherein the one 
or more transformation definitions are received as input at an 
interface which comprises a set of execution settings. 

19. The computing system of claim 18, wherein the 
computer-executable instructions for the computer-imple 
mented method cause the computing system to further 
perform the following: store said one or more transformation 
definitions. 

20. The computing system of claim 16, wherein the 
computer-executable instructions for the computer-imple 
mented method cause the computing system to further 
perform the following: animate the force directed graph to 
show the periodic updates at the predefined interval as the 
force directed graph is visualized. 


