US009437024B2

a2 United States Patent (10) Patent No.: US 9,437,024 B2
Krajec et al. 45) Date of Patent: *Sep. 6, 2016
(54) TRANSFORMATION FUNCTION INSERTION (51) Imt. ClL
FOR DYNAMICALLY DISPLAYED TRACER GO6T 1120 (2006.01)
DATA (52) US. CL
(71) Applicant: Microsoft Technology Licensing, LLC, C.PC S R GO6T 11/206 (2013.01)
Redmond, WA (US) (58) Field of Classification Search
None
(72) Inventors: Russell S. Krajec, Loveland, CO (US); See application file for complete search history.
Alexander G. Gounares, Kirkland, WA
(as) Primary Examiner — David H Chu

. . . . (74) Attorney, Agent, or Firm —Ben Tabor; Raghu
(73) Assignee: Microsoft Technology Licensing, LLC, Chinagudabha; Micky Minhas

Redmond, WA (US)

(*) Notice: Subject to any disclaimer, the term of this 67 ABSTRACT
patent is extended or adjusted under 35 A visualization system for a tracer may include a processing
U.S.C. 154(b) by 0 days. pipeline that may generate tracing data, preprocess the data,
This patent is subject to a terminal dis- and visualize the data. The preprocessing step may include
claimer. a mechanism to process user-defined expressions or other
executable code. The executable code may perform various
(21) Appl. No.: 14/995,872 functions including mathematical, statistical, aggregation
with other data, and others. The preprocessor may perform
(22) Filed: Jan. 14, 2016 malware analysis, test the functionality, then implement the

. L. executable code. A user may be presented with an editor or

(65) Prior Publication Data other text based user interface component to enter and edit
US 2016/0133035 Al May 12, 2016 the executable code. The executable code may be saved and
Related U.S. Application Data later recalled as a selectable transformation for use with

other data streams.
(63) Continuation of application No. 13/757,631, filed on
Feb. 1, 2013, now Pat. No. 9,256,969. 20 Claims, 14 Drawing Sheets

FORCE NRECTED

GRAH
PLAY FALSE et

. BUTTON BUTTON EAST
BEVERSE 530 132 FORWARD ‘
BUTTON y p RUTTON

AN ~ P ol

bl ot R o 126
e
LEGEND

1207 LIBRARY &
122N LBRARY B
12474) CORE PROCESS

oroUP Y (v
13075 PROCESSOR -
1407 MERCRY DURMAIN
1424 SCHEDULER
144 BERVIGE %

U.S. Patent Sep. 6, 2016 Sheet 1 of 14 US 9,437,024 B2

FORCE BIRECTED

GNARH
,@LAY p;\%&%{& S:A %T u-““““'éf 3&
. BUTTON BUTTON FART :
REVERSE 136 142 FORWARD 5
SUTTON ; BUTTON
1 *&\ \ : fm; LX) -~
p b C L) 176
Pl
LESEND

wope 1 Py 125G LBRARY &
108 22NAY LIBRARY 8§

124) CORE PROCESS

SROUP BY:. [Whlag
1387 PROGESSOR -
1407 MEMORY DOMAIN
142 SCHEDULER
144 SERVICE

Figure 1

U.S. Patent Sep. 6, 2016 Sheet 2 of 14 US 9,437,024 B2

f T ; ‘ !

[FROCESS]) g:;;lrvw%s } EERLE <281 BEVICE
208 2 "aw PR o LIERGER ﬁg@. :
(PROCESSOR] i 262 P Ik . 8
- 1 APPLICATION |1 L APPLICATION 113

; P s !

it FHARGWARE HARDIWARET 14

» 1| PLATFORM PLATFORM |

FEROCESRON | N ; §
{1 Sl IBACER |

HARDWARE PLATFORM pmugz ,/? R T 278 £
3 HLarrucaTion L i aPrPucaTION |1}

oo \\. yd ; P 374 1
APPLICATION hg i} [HARDWARE HARBWARE | I
DEVIOE NETVWORK ! FLATFOMM PLATFORRM ;
28 | DEVICE 248 37 DEVICE |

E"

AMALYIER ; “””'““’”“‘”“”“*““‘”‘Qj“”“””“‘
252 o, Y
'y g" o385
2 £ \\ COMPUTE
SOETWVARE ., EMVIRONMENT
COMPONENTS 208~ '
ANALYZER 24l [COUECTOR

o338 GRAPH

EXTRACTOR |
BROWSER | Lo
|| (R
HARDWARE » A
[OPERATING SYSTEM | FLATRORM N,
: = S
COUERTOR
HARDWARE o it
PLATEORE 208~ {;fa*é?xﬁ' KYRTEM
T DEVICE
~ % : ~214
gﬁe“@? GSER R
35 ENTERFACE <
E‘gm‘% calt s:zw;%fg{ém FOR
: Loy Y SEIAURE CREATING FORCE
[THEMORY | BNTERFACE CARECTES GRAPH

Figure 2

U.S. Patent Sep. 6, 2016 Sheet 3 of 14 US 9,437,024 B2

DTS MOMITORING

2 - . METHOD
{ START APPLIDATION i o 30T
3h - 5
T ETART MOMTORING 1 -
e SND= [i ——————
| IDENTIFY MESSAGE et GATHER SEMUOER AND RECERVER 1
~~§w:w,,m- : t i GETHEE DATA TRAKSIMTTED .
58 o AMOTHER J : 38 |
o, BAESSAGEY . e K ey
— i GATHER E;\&&\@R%}w;\};ﬁ(}i\i ABOUT ;
e : SENDER d
; - 320
END 310 : GATHER INECRNMATION RESUT f
: RECEIVER :
: ¥ R
S STORE MESBAGEDATA i
¥ o e e e o e oo oo e v v meo e v oee oo e v voe oo ot e vee oo
Figure 3
AGGREGATION
METHOD
A0
{ DETERMINE PERIODICITY) f/"
f
*‘\
§ SELECT PERIDD bsod
¥
| IDENTIEY MESSAGES WITHIN PERIDD byia
‘;,.
i SORT BY MESSAGE FATH Lemang
40, ¥ ‘
g FOR EACH ~of
S MESSAGE PATH 4“"&
\ SUMBMARIZE MESSAGES g
k4 ;
! CENTIFY NODES hengtg

41§ -
e FOR BAUH ~
v NODE

U SLIMMARISE NODE ACTIVITY bmgis

i
R 4
[TETORE MESSASE DATAFOR PERNIOT buap
mew" P
T NERT TN TRCRENERT
S FERIOD? PERIOD

"\M)

Figure 4

U.S. Patent

Sep. 6, 2016 Sheet 4 of 14

US 9,437,024 B2

DEFLOY AND
LIPDATE GRAPH
BB s e e s o e s o o vt e o s s o s e o S o e s
1 §§ SRLEQY mmﬁa&;r T GISUALZE borsos
- ¢ §
: L TANALYZE AVAILARLE TIVE PERIGBS L-sos |
! - S
H
] DENTIEY ALL NODES S
i :
CREATE Q4D 1} IDENTIEY ALL MESSAGE PATHS b"si0 4
0 ww\x; Bégﬁuma § I §
GRARY
> ; {:::%\&A‘ra ORAPH USING ALL NODES | .,
§ NI ALL MESSAGE PATHS HEE §
i ¥ :
H DISPLAY SRAPH OF ALL NODES &ND 1 ., }
: ALl MESSAGE PATHS i
reEsERE TEER e —
F N > » ‘91 ! 3 .
2 RECEVE USER gs{:u QFL SCTING TINE | s&sg
1t ’i i’x.....w-‘"""\&_{}
§§ RETRIEEVE TIVME RERIOD femgng 1 HHOHLUIGHT
L T § ACTRATY 1N TIME
1 i FERIOR
1 IDENTIFY NODES AND EDGES P
! DHANGED I TIME PERIOD S
| ‘ t
Ui DISPLAY NODES AND EDGES AB ey
Y —— FHGHUGHTER e el
1 ¥ ;
U IDENTIFY NODES AND EDOES KOT .
- CHANGED I TIME FERIOD ek |
s ¥ !
| 1 DIEPLAY NODES aND EDGES ARSNOT | 3
: HIGHLIGHTED R
YES o meﬁ
, PERIDOT
o e
NSYT

Figure 5

U.S. Patent Sep. 6, 2016 Sheet 5 of 14 US 9,437,024 B2

CENERATING TRAGES
OF AN ORJECT
e BGQ

{CREATE AND DIGPLAY RBASEUINE R
ERARM -

T

L d
RECEIVE JSER NBUT SELECTING] g, -~
TRACE OBJECT St

¥
SEARCH TRACE DATABASE TO FIND -
INSTANCES OF TRACE OBJEQT P 808
$08
P FOR £ACH ;
- NS T ANCE s

HENTIPY START POINT N

SELUENCE il

= T

7 FOR EAUH MESSARE
i TRAGE LISY ,f_;

: £o818
SELECT DOWNSTREAM | |
MESSAGE AN ADD YO |

TRALE LUSY =

&id

P

e X

S T HEE OREATE TIME SERIES
YES T gEnERATION, > T OF MESSAGE 1
E SENERATIONS

-

| SELECT WNSTANCE bga

DISRIAV SRR WA Ty Ry
HIGHLIGHTED Fo

Figure 6

U.S. Patent Sep. 6, 2016 Sheet 6 of 14 US 9,437,024 B2

D71

e TNTO2 THEE A

714

NI TRE B

e OGS THAE O

o NFOR THAE D

| e O
THE SERIES OF FOROE
PHRBOTRD GRARM

Figure 7

U.S. Patent

Sep. 6, 2016

Sheet 7 of 14

BH2" "
FORCE
HRECTED

FORCE DIRECTED
GRAFH
:zsm»\\}
«
.

FORGE
MRECTED
GRAPH

USER INTERFACE

OFTIONS:
B30 HT] EXPANDED]
TRACE |

e~NAT] REMOVE.
ELEMENTS |

Figure 8C

US 9,437,024 B2

I"g’g&

LEGEND

@ SROUP A
£ BROUP B
€2 GROUR 2
3 GROUWP D

7]

R
I

£

LEGEND
& crouwr A
Y ORGP B
£ GROUP D
Y GROUP D

F

LEGEND

@ crROUP A
£33 GROUP B
GROUP O
O RO D

U.S. Patent Sep. 6, 2016 Sheet 8 of 14 US 9,437,024 B2

ST
LEGEND
— & SROUP A
roReE T £ GROUP B
DIREGTED £ GROUE Q
GRAPH QarouP D
Eis&“s
-
LEQEND
N I OROUP A
{Q‘U“&"’” 5 z'g ““““““““““““ t
FoRGE T £ GROUF Bidrsez
i}i{%E{:‘?ﬁi} SGROUP O
GRAPH O GROUP D
{4 OB
\‘“\ P
CHRTIONS N LERGSENE
e Oy Q) GROUF Blrva
paEHl) SHOW T GROUR O
B ATIONRM IS s se o
RELATIONSHIFS &) GROUP 1

S CADNGH |

R
FORGE

DIRECTED
GRAPH

Figure 9C

U.S. Patent Sep. 6, 2016 Sheet 9 of 14 US 9,437,024 B2

METHOD FOR
CONTROLLING TRAQER
THROLGH smLW*‘*w&_
SRAPH
w,*-«’%{}i‘,}{}
§ PECERE WNITIAL DATASEY §w"‘~; G0)
h.;
§ DISPLAY GRAPH Ew"'“s 404
iz}@%ﬁ‘i\. e i@»}? Lo3a2
.w“ {08 ﬂ PaLIRE wi SELELT CHANGES
%E&E{Jli}w* N“‘““‘“ Ty UPDIATING W POR TRAGE DATA
: TRARSAMIT CHANGES
: T TRAGER
-~ i
] REGEIVE DPDATE DATA 8EY Lia0n
i

Figure 10

U.S. Patent Sep. 6, 2016

ENVIRONMENT WITH
VISUALIZATION OF
THACE DATA

Sheet 10 of 14 US 9,437,024 B2

“

DATA
REFOQITORY
P

e 11
USER
NTERFAGE

| HARDWARE PLATFORM 1112

e

R
VISURLIZESR

el DEVIOE
{ HETWORK L
L it A
COMTRDLLER Moo TRACER
DEVICE DEVICE
1o - 1108
N A Pl
1 DATA BROWSER | TAPPLICATION] [DATA TRANSMITIER |
oS : Py Sy g
i "5{3;@\ " \e:‘":‘g *tg‘fr 1138 1132 tRE1t
USER INTERFACE ; =
COMMUNICATOR NOTRUMENTED L IRACGER
EXBECUTION 1134~ 1138
TRALER ARARONMENT ISR Ty
CONFIGURATION ENVIRONMENT [CONFIGURATION]
MANAGER
112 380 | HABDWARE PLATFORM M71130
HARDWARE
FLATRORM

Figure 11

U.S. Patent Sep. 6, 2016 Sheet 11 of 14 US 9,437,024 B2

PROCESS FOR VISUALIZING
TRACE DATA VATH

ez STORAGE TRANSFORMATIONS
1202 “v{lfmsa PIPELINE 1200
ﬁﬁﬁﬁﬁﬁ - 1204 an

e '“3\3 X s 5
O e
§

kS

%

X

AN

Nt “‘""",..-"
f 'h:"u“\&wjgmw 1eas

23"4‘-\

MALWARE
 THECK

s ot S S
v -~ <
5 &

o CREATSEOT §\§, W
\ “{?‘%@*\NSFQ}R&%* ONG A

: M L e
e o, »:\‘MMM“ [e
PR o R
1230 1E18
VISUALIZATION USER
PIPELINE INTERFADE

Figure 12

U.S. Patent

Sep. 6, 2016

Sheet 12 of 14

US 9,437,024 B2

LIGER INTERFACE WITH
THRANSFORRMATION EDITOR

P 1300
USER CORTROL FORGE DIREGTED %
INTERFADE SET GRAPM P
1302 ¥
N

C LIBRARY A
Q) LIBRARY 8
{3 CORE PROCESS

DATA TO SHOW:
{1 CURLATIVE DATA ™
{1 DIFFERENCE DATA]

B2 ENTER TRANSFORMATION

B R e

o A
B A 0
g ﬂ:’\;{\&;\

AN

{1 AFPLY BEFORE STORAGE s

LTS WINEICRY
B K0
kLT

S

TS TEXTEDITOR

Figure 13

U.S. Patent Sep. 6, 2016 Sheet 13 of 14 US 9,437,024 B2

TRACER ISUALIZATION
DEVICE BYSTEN
‘!:ij{} iiaﬁﬁﬁ
_ et
iAPF’* ICATION | | TRANSFORMATIONS it 1318
D SONTO 1818
P faas 10 HEREEUEDE f: vvvvvvvvvvv
EXECUTION | T |)
{:“«\" ??GNM{:\T Kzﬁ“ﬁ@ﬁRﬁfﬁ@N% BROWSBER i
[HARDWARE PLATEORM a3 | HARDWARE PLATEORM MT1414
hl N e 3 § TRy
CONTROLLER / DIATA
DEVICE f R{:pmwﬁm
14085 / ,
, ; ,m,z
| DATA BROWSER | P STORE MANAGER
1428 | 28 § NETWORK 1We8 1 1460
PREPROOESSON TRANSFOBMATIONS
RPN “*‘”‘r\\\ =
| THANSFORMATIONS B x"“ / _
I ~1432 I [
CTRAMUNICATIONS ¢ I 5.
AGENT / [HARDWARE PLATEDGM|
1424
[HARIWARE PLATFORM| TRANSFCORMATION
MANAGER
j‘ MS}&
.«f Fa -~
| DISPATCHER 3 W;wgmggz
1450 CHECKER
L__cot8es f O Svas2 .
TRANSFORMATION ¢ M- “*
MANAGER
\wmg}
1448 ERNVIRONMENT WITH
HARDWARE | TRAMNSFORMATIONS
_____ PLATFCRM

Figure 14

U.S. Patent

Sep. 6, 2016

WIRUALIZER USER INTERFAGE

Sheet 14 of 14

a0 1564
: ?gz% EERIANE ¥ START 1508
SRS LS LR, ‘ 3 § RECERER]
- ,} (ws S48
: OEFINE SEQUENGE TO
{ mww*
: . {? __
: | OSELEDT NEXT TIME POINT
% % oo
: RETRIEVE DATA SEY i
; + P T
: ¥]
i ! 2y
T e peTYry
] RECEWE DATAEEY THANSRIY DATS hi‘l’i" i
158~ ¥ ? y

| RENDERUPDATE GRAPH |

E

)‘

DATA BROWSER

US 9,437,024 B2

1EEB~, coiaa
| SENG M"W;ND COMMAND bt RECEIVE REVWING COMBMAND |
18I0
: DEFDIR NEW SEQUBNGE
: WHTH TIME POINTS IN
: REVERSE ORDER
i i
TEERw, o P
| SEND PAUSE COMMAND b—> RECEIVE PAUSE COMMAND |
§ “r f"mi’sﬁ
| STOP SENDING DATA SETS |
1538 ¥ ‘ ¥ Y548
L SEND PLAY COMMAND P RECEIVE BLAY COMMAND
DEFING NEW SEQUENCE
: WITH TIME POINTS N
! FORWARD GRDER v
! I
; IRESUIME SENDINDG DATA SBETSY
$ I
1548 H 1588 T
SEND FAST FORWARD L RECENVE FAST PURWARD
SOMMAND SORMAND v
- DEFING NEW SEQUENCE
g - WITH EVERY OTHER DATA
2 SET v FORWARD BEQUENGE |
150G H

METHOD FOR

CONTROLLING (83PLAY

Figure 15

US 9,437,024 B2

1
TRANSFORMATION FUNCTION INSERTION
FOR DYNAMICALLY DISPLAYED TRACER
DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/757,631 filed on Feb. 1, 2013 entitled
“Transformation Function Insertion for Dynamically Dis-
played Tracer Data”. This application expressly incorporates
herein the entirety of the foregoing application.

BACKGROUND

Message passing computational environments operate by
having independent processing elements, such as threads or
other computational components, pass messages from one
element to another during execution. The messages passed
between components may contain data and other informa-
tion that may be consumed by the recipient.

SUMMARY

A visualization system for a tracer may include a pro-
cessing pipeline that may generate tracing data, preprocess
the data, and visualize the data. The preprocessing step may
include a mechanism to process user-defined expressions or
other executable code. The executable code may perform
various functions including mathematical, statistical, aggre-
gation with other data, and others. The preprocessor may
perform malware analysis, test the functionality, then imple-
ment the executable code. A user may be presented with an
editor or other text based user interface component to enter
and edit the executable code. The executable code may be
saved and later recalled as a selectable transformation for
use with other data streams.

A force directed graph may serve as a part of a user
control for a tracer. The tracer may collect data while
monitoring an executing application, then the data may be
processed and displayed on a force directed graph. A user
may be able to select individual nodes, edges, or other
elements, then cause the tracer to change what data may be
collected. The user may be able to select individual nodes,
edges, or groups of elements on the graph, then perform
updates to the tracer using the selected elements. The
selection mechanisms may include clicking and dragging a
window to select nodes that may be related, as well as
selecting from a legend or other grouping.

A force directed graph may display time series data using
a set of playback controls to pause, play, reverse, fast
forward, slow down, or otherwise control the display of the
time series data. The playback controls may be used in a real
time or near real time application to which data sets are
displayed and the speed with which the data sets may be
displayed. In one architecture, the force directed graph may
be deployed using a rendering engine that receives data and
renders the data into a graph. A playback controller may
send updates to the rendering engine according to user
inputs from the playback controls.

A message passing compute environment may be visual-
ized by illustrating messages passed within the environment.
The messages may contain data consumed by a function or
other computational element, and may be used to launch or
spawn various computational elements. One visualization
may be a force directed graph that has each function as a
node, with messages passed as edges of the graph. In some

20

25

30

35

40

45

50

55

60

65

2

embodiments, the edges may display the number of mes-
sages, quantity of data, or other metric by showing the edges
as wider or thinner, or by changing the color of the displayed
edge. The nodes may be illustrated with different colors,
size, or shape to show different aspects. Some embodiments
may have a mechanism for storing and playing back changes
to the graph over time.

A force directed graph may display recent activities of a
message passing system as highlighted features over a larger
graph. The force directed graph may display a superset of
nodes and edges representing processes and message routes,
then display recent activities as highlighted elements within
the larger superset. The highlighted elements may display
messages passed or computation performed during a recent
time element of a time series. In some embodiments, the
effects of activities may be displayed by decaying the
highlighted visual elements over time.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, FIG. 1 is a diagram illustration of an
embodiment showing a force directed graph.

FIG. 2 is a diagram illustration of an embodiment show-
ing an environment for data collection and display using a
graph.

FIG. 3 is a flowchart illustration of an embodiment
showing a method for gathering data.

FIG. 4 is a flowchart illustration of an embodiment
showing a method for aggregating data prior to visualiza-
tion.

FIG. 5 is a flowchart illustration of an embodiment
showing a method for deploying and updating a graph.

FIG. 6 is a flowchart illustration of an embodiment
showing a method for generating traces of objects on a
graph.

FIG. 7 is a diagram illustration of an embodiment show-
ing a sample force directed graph displaying a time series.

FIGS. 8A, 8B, and 8C are a sequence of diagram illus-
trations of an embodiment showing a selection mechanism
with a force directed graph.

FIGS. 9A, 9B, and 9C are a sequence of diagram illus-
trations of an embodiment showing a second selection
mechanism with a force directed graph.

FIG. 10 is a flowchart illustration of an embodiment
showing a method controlling a tracer through an interactive
graph.

FIG. 11 is a diagram illustration of an embodiment
showing a network environment for visualizing trace data.

FIG. 12 is a diagram illustration of an embodiment
showing a method for visualizing trace data with transfor-
mations.

FIG. 13 is a diagram illustration of an embodiment
showing a sample user interface with a transformation
editor.

FIG. 14 is a diagram illustration of an embodiment
showing a network environment with transformations.

FIG. 15 is a flowchart illustration of an embodiment
showing a method for controlling a display using a data
browser.

US 9,437,024 B2

3
DETAILED DESCRIPTION

Graphs for Visualizing a Message Passing Compute
Environment

A message passing compute environment may be visual-
ized by showing graphs of the messages passed between
compute elements. The graphs may show the compute
elements as nodes, with messages as edges of the graph. One
type of such a visualization may be a force directed graph.

The visualization may illustrate different features of the
data, such as the number of messages, quantity of data,
direction of messages, or other features as line widths,
colors, or other visual elements. In the case of a force
directed graph, the forces between elements may represent
such data features.

The nodes of a graph may represent compute elements.
The compute elements may be any executable code, device,
or other element that may send or receive a message. The
nodes may be illustrated with different sizes, colors, shapes,
or other features to illustrate the amount of computational
time consumed, frequency of calling, membership in a
group, interaction with other elements, or other data items.

The visualization may be performed using a sequence of
data sets, where each data set may be collected over time. In
such embodiments, a graph may expand, contract, and
change shape as an application executes. Such embodiments
may be capable of storing and playing back the sequence of
data sets. In some cases, such playback may be slowed down
or sped up to illustrate changes during execution.

The visualization system may have an instrumentation
system that gathers message information during execution,
then processes or formats the information for display. The
display system may generate the graphs and display the
graphs for a user. In some cases, the graphs may be inter-
active, where the user may be able to probe the graphs to
gain additional insight. In one example, a user may be able
to click on a node to find details about the node, such as the
node name, performance metrics regarding the node, or
other information.

The visualization system may be used to monitor and
display messages passed within a single device, as well as
embodiments where messages are passed between devices.
For example, some functional languages may pass messages
between processes that may execute on a single processor or
across several processors within a single device. In another
example, a high performance computing system may com-
bine processors located on many different devices to execute
a large application. Such an application may be visualized
by showing all of the messages passed from device to
device, as well as from one process to another within each
individual devices, for example.

Force Directed Graph for Time Series Data with High-
lighting

A force directed graph may display time series data by
maintaining a superset of nodes and edges, and displaying
recent activity by highlighting those elements within the
graph representing the recent activity. The superset of nodes
and edges may be created by capturing each node and edge
that may be defined through the time series and maintaining
the superset during playback or display of a time series.

Recent activity may be overlaid on the superset of ele-
ments by highlighting those elements that represent the
activity, while showing at least some of the superset of nodes
and edges in a non-highlighted fashion. In one style of such
a visualization, the superset of nodes and edges may be

20

25

30

35

40

45

50

55

60

65

4

presented in a greyed-out fashion while recently active
nodes and edges may be presented in a colored manner.

The recent activity may be illustrated as fading or dis-
solving by causing an element to decrease in highlighting for
successive time periods after being active. Such a visual
decay may highlight an active element yet keep a visual cue
for a certain number of time slices, and may be useful in
cases where the time slices are short enough that activity in
a single time slice may not be fully comprehended.

Visualization of Time Series Data with Force Directed
Graph

A dynamic visualization of time series data may be
rendered in a force directed graph. The time series data may
include data sets that represent a state of a system at any
given time. The visualization may illustrate the state changes
as time progresses.

The visualization may have a set of controls that allow a
user to move forward and backwards through the data sets.
The controls may allow the user to control playback of the
data. In some cases, the data may be presented in a normal-
time basis where the playback may correspond with the
speed of the data collection. In other cases, the playback may
be sped up or slowed down with respect to the periodicity in
which the data were collected.

An architecture for a visualization system may have a
visualizer that may be bound to a data source. The visualizer
may display the force directed graph, including rendering
any animated motion of the forces. The controls may con-
figure a data browser that may select the data sets to present,
which may be transferred to the visualizer through a data
binding. In some cases, the visualizer may collect user input
that may be processed by a remote device on which the data
browser may operate.

Force Directed Graph as Input Mechanism for Tracer

A tracer may use a force directed graph as an input
mechanism. The force directed graph may allow a user to
select and manipulate nodes and edges of the graph, which
may represent various elements of an application. Once
selected, the user may be able to apply various actions to the
elements, such as causing additional tracing to be applied to
the elements or to related elements.

A force directed graph or other visualization may present
application elements in different groupings or presentations,
which may help a user see relationships within the elements.
By using a force directed graph or other visualization as an
input to the tracer, a user may be able to easily select
elements and related elements that would otherwise be
difficult to select.

The graph may contain a legend that may show groups of
elements. The legend may include hot spots or other user
interface controls with which a user may select a subset of
the elements.

The user interface may include an additional menu of
options that may use the selected elements as input. The
additional menu may include various actions that may be
taken by the tracer supplying the displayed data. A configu-
ration file may be updated and sent to the tracer to change
the tracer behavior.

Transformation Definition for Trace Data

Trace data may be prepared for display by applying
predefined or user-defined transformations. A visualization
of'the data may include a user interface through which a user
may select one or more predefined transformations or enter
executable code or expressions that may create a new
transformation.

The user-entered expression may define changes that may
be applied to data in preparation for visualization. The

US 9,437,024 B2

5

changes may perform statistical analysis, apply arithmetic
functions, combine data fields, merge external data, or other
functions. The expressions may allow a user to create
transformations that address specific scenarios that may not
be envisioned when a visualization may be created.

The expression may be inserted into a data processing
pipeline for a data feed. In some cases, the data processing
pipeline may be a real time pipeline that may receive,
process, and display real time data.

Throughout this specification and claims, the terms “pro-
filer”, “tracer”, and “instrumentation” are used interchange-
ably. These terms refer to any mechanism that may collect
data when an application is executed. In a classic definition,
“instrumentation” may refer to stubs, hooks, or other data
collection mechanisms that may be inserted into executable
code and thereby change the executable code, whereas
“profiler” or “tracer” may classically refer to data collection
mechanisms that may not change the executable code. The
use of any of these terms and their derivatives may implicate
or imply the other. For example, data collection using a
“tracer” may be performed using non-contact data collection
in the classic sense of a “tracer” as well as data collection
using the classic definition of “instrumentation” where the
executable code may be changed. Similarly, data collected
through “instrumentation” may include data collection using
non-contact data collection mechanisms.

Further, data collected through “profiling”, “tracing”, and
“instrumentation” may include any type of data that may be
collected, including performance related data such as pro-
cessing times, throughput, performance counters, and the
like. The collected data may include function names, param-
eters passed, memory object names and contents, messages
passed, message contents, registry settings, register con-
tents, error flags, interrupts, or any other parameter or other
collectable data regarding an application being traced.

Throughout this specification and claims, the term
“execution environment” may be used to refer to any type of
supporting software used to execute an application. An
example of an execution environment is an operating sys-
tem. In some illustrations, an “execution environment” may
be shown separately from an operating system. This may be
to illustrate a virtual machine, such as a process virtual
machine, that provides various support functions for an
application. In other embodiments, a virtual machine may be
a system virtual machine that may include its own internal
operating system and may simulate an entire computer
system. Throughout this specification and claims, the term
“execution environment” includes operating systems and
other systems that may or may not have readily identifiable
“virtual machines” or other supporting software.

Throughout this specification, like reference numbers
signify the same elements throughout the description of the
figures.

When elements are referred to as being “connected” or
“coupled,” the elements can be directly connected or
coupled together or one or more intervening elements may
also be present. In contrast, when elements are referred to as
being “directly connected” or “directly coupled,” there are
no intervening elements present.

The subject matter may be embodied as devices, systems,
methods, and/or computer program products. Accordingly,
some or all of the subject matter may be embodied in
hardware and/or in software (including firmware, resident
software, micro-code, state machines, gate arrays, etc.)
Furthermore, the subject matter may take the form of a
computer program product on a computer-usable or com-
puter-readable storage medium having computer-usable or

20

25

30

35

40

45

50

55

60

65

6

computer-readable program code embodied in the medium
for use by or in connection with an instruction execution
system. In the context of this document, a computer-usable
or computer-readable medium may be any medium that can
contain, store, communicate, propagate, or transport the
program for use by or in connection with the instruction
execution system, apparatus, or device.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. By way of
example, and not limitation, computer readable media may
comprise computer storage media and communication
media.

Computer storage media includes volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can accessed by an instruc-
tion execution system. Note that the computer-usable or
computer-readable medium could be paper or another suit-
able medium upon which the program is printed, as the
program can be electronically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, of otherwise processed in a suitable
manner, if necessary, and then stored in a computer memory.

When the subject matter is embodied in the general
context of computer-executable instructions, the embodi-
ment may comprise program modules, executed by one or
more systems, computers, or other devices. Generally, pro-
gram modules include routines, programs, objects, compo-
nents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Typically, the func-
tionality of the program modules may be combined or
distributed as desired in various embodiments.

FIG. 1 is a diagram of an embodiment 100 showing an
example force directed graph. Embodiment 100 is an
example of a force directed graph that may show objects in
a message passing relationship with each other, as well as
various controls that may be used to view the graph with a
sequence of data sets.

The force directed graph of embodiment 100 may illus-
trate messages passed within a message passing environ-
ment. As an example of such an environment, independent
compute elements may process portions of an application.
During processing, each compute element may pass mes-
sages to another compute element that contain data, instruc-
tions, or other elements. In such environments, a force direct
graph may be used to visualize the computational elements
and the activity between the elements. In many cases, force
directed graphs may be used to identify bottlenecks or other
irregularities during execution.

The force directed graph of embodiment 100 may illus-
trate one time period during the execution of an application.
In such embodiments, the execution of an application may
be traced over time and the force directed graph may
illustrate how the application behaves. The force directed
graph of embodiment 100 may be updated periodically with
newly collected data, which may visually show operations
of the application.

US 9,437,024 B2

7

The force directed graph of embodiment 100 may illus-
trate the operations of an application. In some embodiments,
the force directed graph may illustrate the system state of a
device or application at discrete periods of time. An example
of a graph illustrating the system state may include nodes
representing the state of memory objects, functions, input/
output devices, memory storage devices, or other hardware
or software objects. In some embodiments, the force
directed graph may illustrate activities that may occur
between two periods of time. An example of such a graph
may include functions or processes and messages passed
between processes.

The force directed graph may show nodes 102, 104, 106
and 108 connected by various edges. Edge 112 connects
nodes 102 and 104. Edge 114 connects nodes 102 and 106,
while edge 116 connects nodes 102 and 108 and edge 118
connects nodes 106 and 104. Additional nodes and edges are
also illustrated.

A force directed graph may be computed by applying an
attractive force connecting two nodes with an edge, and at
the same time applying a repulsive force to nodes in general.
In many embodiments, a force directed graph may be
displayed in an interactive manner such that a user may be
able to perturb the graph by clicking and dragging an object
or through some other mechanism. As a perturbation is
introduced, an interactive graph may show the various nodes
and edges change position.

The force directed graph of embodiment 100 may show
additional data elements. For example, the relative size,
shape, and color of the various nodes may be configured to
indicate different characteristics of the node. In another
example, the edges may display characteristics using thick-
ness, color, and other visual elements.

When a force directed graph displays the execution of an
application, the nodes may represent compute elements. The
compute elements may be processes, threads, processors,
devices, or other elements that may pass messages to other
elements. In such a graph, the edges may represent messages
passed between compute elements.

Nodes representing compute elements may be modified to
reflect additional data. For example, the color or shape of the
node may be modified to show groupings of the compute
elements. In the example of embodiment 100, a legend 126
illustrates different colors or patterns applied to the nodes
and the meaning of the patterns. Nodes representing com-
pute elements from library A 120 may include nodes 102 and
108. Nodes representing compute elements from library B
122 may include nodes 104 and 106. Node 110 may repre-
sent a core process 124.

Groupings may reflect different shared characteristics of
the objects. For example, nodes may be grouped by library,
code module, or other group, and such a grouping may assist
a developer in understanding program flow. In another
example, nodes may be grouped by memory consumption,
where those nodes representing compute elements that con-
sume large amounts of data are grouped together, or where
compute elements that reference specific groups of memory
objects are grouped together. In another example, processes
or functions that operate on a specific process scheduler may
be shown as groups. In still another example, nodes that may
be related to a memory domain may be grouped.

In some embodiments, a legend may be shown as part of
a graph. The legend may have colors, shapes, or other visual
elements and a corresponding label. In some embodiments,
the legend may have a selection mechanism whereby a user
may be able to select a grouping using a drop down menu or
other selection tool. In some such embodiments, a user may

20

25

30

35

40

45

50

55

60

65

8

be able to select one visual effect to correspond to one
grouping while another visual effect may correspond to
another grouping. For example, a legend may be used to
configure grouping by memory domain to be illustrated by
shapes that represent each domain, while nodes relating to
specific services may be grouped by color.

The legend 126 may have a selection tool for selecting a
grouping to be shown. A toggle button 136 may open a drop
down list that may contain several options. In the case of
embodiment 100, the options may include grouping by
processor 138, memory domain 140, scheduler 142, and
service 144. The service 144 selection is currently selected,
as indicated by a star. When a user selects a different
grouping, the grouping may be applied to the various nodes
by changing the color, shape, or other visual element.

The size of the various nodes may reflect different aspects
of the computational elements. For example, the size may
represent the amount of computation performed by a par-
ticular element, the number of times the element was called,
the amount of data handled by the element, or other factors.
In some cases, a specific color may be applied to an element
that receives input data from an external source and a
different color may be applied to an element that transmits
output data.

Likewise, the edges may be modified to show various
aspects of the messages. For example, the messages may be
aggregated to show the number of messages along a specific
path, the frequency of messages, the data payloads of the
messages, as well as directionality of the messages and other
features. The edges corresponding to the messages may be
modified using different thicknesses, colors, or other visual
elements to illustrate one or more of the aggregated param-
eters.

The operation of an application may produce many mes-
sages that may be passed over time. Such time-related data
may be displayed using a time series of datasets, where each
dataset may reflect the state of the application at a period of
time or as an aggregation of the messages passed during a
time interval.

In some embodiments, a tracing system may collect
message passing information from an active application and
store the collected data in a database. An aggregator may
analyze the database to summarize message passing activi-
ties for individual time intervals. In some cases, such
summarizing may be performed by the tracing system
without storing message passing data in a separate database.

Aggregated data may be displayed in a force directed
graph by updating the data within the force directed graph.
In many visualizations of a force directed graph, the dataset
may be updated, causing the force directed graph to repo-
sition itself with the updated data.

A force directed graph may reflect the operations of an
application in real time. In such an embodiment, a tracer
system may collect message passing data from a compute
environment and aggregate the data for presentation. The
data may be updated at a periodic interval, such as every
second, then transmitted to a system displaying the force
directed graph. The force directed graph may be updated and
change with each update, allowing a user to visualize the
operations of the application in real time or near real time.

When datasets may be collected and stored in such an
embodiment, a control panel user interface may allow a user
to browse and view the various datasets. For example, a
reverse button 128 may cause older data sets to be shown in
reverse order. A play button 130 and a pause button 132 may

US 9,437,024 B2

9

start and stop a force directed graph to be updated. A fast
forward button 134 may cause the playback to occur at a
faster than normal speed.

FIG. 2 is a diagram of an embodiment 200 showing a
computing environment that may collect and display mes-
sage passing data in a graph. Embodiment 200 illustrates
hardware components that may deliver the operations
described in embodiment 100, as well as other embodi-
ments.

The diagram of FIG. 2 illustrates functional components
of a system. In some cases, the component may be a
hardware component, a software component, or a combina-
tion of hardware and software. Some of the components may
be application level software, while other components may
be execution environment level components. In some cases,
the connection of one component to another may be a close
connection where two or more components are operating on
a single hardware platform. In other cases, the connections
may be made over network connections spanning long
distances. Each embodiment may use different hardware,
software, and interconnection architectures to achieve the
functions described.

Embodiment 200 illustrates a device 202 that may have a
hardware platform 204 and various software components.
The device 202 as illustrated represents a conventional
computing device, although other embodiments may have
different configurations, architectures, or components.

In many embodiments, the optimization server 202 may
be a server computer. In some embodiments, the optimiza-
tion server 202 may still also be a desktop computer, laptop
computer, netbook computer, tablet or slate computer, wire-
less handset, cellular telephone, game console or any other
type of computing device. In some cases, the optimization
server 202 may be deployed on a computing cluster, cloud
computing environment, or other hardware platform.

The hardware platform 204 may include a processor 208,
random access memory 210, and nonvolatile storage 212.
The hardware platform 204 may also include a user interface
214 and network interface 216.

The random access memory 210 may be storage that
contains data objects and executable code that can be
quickly accessed by the processors 208. In many embodi-
ments, the random access memory 210 may have a high-
speed bus connecting the memory 210 to the processors 208.

The nonvolatile storage 212 may be storage that persists
after the device 202 is shut down. The nonvolatile storage
212 may be any type of storage device, including hard disk,
solid state memory devices, magnetic tape, optical storage,
or other type of storage. The nonvolatile storage 212 may be
read only or read/write capable. In some embodiments, the
nonvolatile storage 212 may be cloud based, network stor-
age, or other storage that may be accessed over a network
connection.

The user interface 214 may be any type of hardware
capable of displaying output and receiving input from a user.
In many cases, the output display may be a graphical display
monitor, although output devices may include lights and
other visual output, audio output, kinetic actuator output, as
well as other output devices. Conventional input devices
may include keyboards and pointing devices such as a
mouse, stylus, trackball, or other pointing device. Other
input devices may include various sensors, including bio-
metric input devices, audio and video input devices, and
other sensors.

The network interface 216 may be any type of connection
to another computer. In many embodiments, the network
interface 216 may be a wired Ethernet connection. Other

20

25

30

35

40

45

50

55

60

65

10

embodiments may include wired or wireless connections
over various communication protocols.

The software components 206 may include an operating
system 218 on which various applications 244 and services
may operate. An operating system may provide an abstrac-
tion layer between executing routines and the hardware
components 204, and may include various routines and
functions that communicate directly with various hardware
components.

Each of the various devices illustrated in embodiment 200
may have a hardware platform. The respective hardware
platforms may be similar to the hardware platform 204. The
devices may be any type of hardware platform, such as a
personal computer, server computer, game console, tablet
computer, mobile telephone, or any other device with a
programmable processor.

The analyzer device 202 may contain an operating system
218, which may support various other software components.
The components may include an analyzer 220, which may
prepare data for visualization. The analyzer 220 may take
data collected while an application runs using an extractor
222 and aggregate the data using an aggregator 224 to create
data that may be visualized by a visualizer 226.

A collector system 230 may operate on a hardware
platform 232 and have a collector 234 that may gather trace
data collected while an application executes and store the
data in a database 236. These data may then be processed by
the analyzer 220.

A client device 238 may have a hardware platform 240 in
which a browser 242 may execute. The browser 242 may
display a graph 244 that may be generated by the visualizer
226.

The architecture of embodiment 200 illustrates a system
where an analyzer 202 may prepare data for a visualizer 226
to display a graph 244 that may be rendered in a browser
242. In such an architecture, message passing data may be
collected on an ongoing basis, then a separate processing
step may be performed by the analyzer 220. Such an
architecture may allow multiple analyses of the raw data to
be performed.

For example, when the raw data are stored prior to
analysis, time series of datasets may be configured with
different periods. For example, a time series for a long time
period may be created that illustrates changes that may occur
over a long period of time. At the same time, a detailed time
series may be created for very small time periods. A longer
time period may help a user understand long term activities
that occur in an application, while the detailed time series
may show a much higher level of detail for debugging, for
example.

Another embodiment may include some of the operations
of the collector 234 and analyzer 220 into a single compo-
nent. In such embodiments, the data may be analyzed,
aggregated, and prepared for viewing in a single software
component. Such a component may be integrated into a
tracer that runs on the same device as the application under
test in some cases. Still other architectures may perform
similar operations but are configured differently.

An example of a compute environment 246 illustrates
multiple devices which may interact in a high performance
computing environment or other environment where mes-
sage passing may be deployed. Each device 248, 256, 264,
and 272 may have a respective hardware platform 250, 258,
266, and 274. An application 252, 260, 268, and 272 may
execute with a respective tracer 254, 262, 270, and 278 on
the respective hardware platforms.

US 9,437,024 B2

11

The example of compute environment 246 may be
deployed in a cluster environment, dispersed computing
environment, or some other manner such that the various
devices may communicate with each other. The applications
may contain the same or different executable code that may
be configured to pass messages to other devices in order to
execute a workload that may be larger than can be performed
on a single device.

Another example of a compute environment may be an
application device 280 that may have a hardware platform
282 which may contain one or more processors. On each
processor, multiple processes may execute and pass mes-
sages between the processes. In the example of device 280,
four processors 284, 288, 292, and 296 are illustrated as
executing processes 286, 290, 294, and 298.

One example of such a system may deploy a functional
language, such as Erlang, whereby a single application may
be executed using many individual processes, threads, or
other compute elements. The various elements may com-
municate with each other by passing messages within the
device 280. In some applications, many thousands, tens of
thousands, or even millions of processes and messages may
make up an application during execution.

FIG. 3 is a flowchart illustration of an embodiment 300
showing a method for monitoring data. Embodiment 300
illustrates the operations of a tracer that may gather message
passing data and store the data in a database for later
analysis. The operations of embodiment 300 may reflect the
operations of tracer 254, for example, in embodiment 200.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Embodiment 300 may illustrate a method whereby each
message passed may be analyzed to gather various data. The
architecture of embodiment 300 illustrates one routine that
may monitor an application and when a message is identi-
fied, a data gatherer instance may be deployed. The data
gatherer instance may collect various data and store the data.

An application may be started in block 302 and monitor-
ing may start in block 304. When a message is identified in
block 306, a data gatherer instance 312 may be deployed.
The monitoring may continue in block 308 until another
message is identified, causing the process to return to block
306 and launch another data gatherer instance 312. When no
more messages are identified in block 308, the process may
end in block 310.

The data gatherer instance 312 may reflect the operations
of a process or function that may operate on a single
message. From the message, the sender and receiver may be
identified in block 314. The data transmitted in the message
payload may be gathered in block 316.

Information about the sender may be gathered in block
318 and information about the receiver may be gathered in
block 320. Such information may include how much pro-
cessing may be performed, the nature of the processing, or
other information. Once all of the information has been
gathered, the message data may be stored in block 322.

FIG. 4 is a flowchart illustration of an embodiment 400
showing a method for analyzing and aggregating data.
Embodiment 400 illustrates the operations of an analyzer
that may analyzed and aggregate data collected in embodi-

20

25

30

35

40

45

50

55

60

65

12

ment 300. The operations of embodiment 400 may reflect
the operations of analyzer 220, for example, in embodiment
200.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Embodiment 400 illustrates an example of how message
passing data may be analyzed prior to visualization. In some
embodiments, the operations of embodiment 400 may be
performed inline with the operations of a data monitoring
method. Some such embodiments may apply the aggrega-
tion method 400 within a tracer to create data that may be
ready for display as quickly as possible, so as to enable real
time or near-real time visualizations of an application.

The periodicity of a dataset may be determined in block
402. The periodicity may define the time interval of a time
series. For monitoring an application, the periodicity of a
time series may be values less than a millisecond, in the
sub-second range, in the single digit seconds, or longer.
Depending on the application, some instances may have
periods of tens of seconds, single digit minutes, tens of
minutes, hours, days, weeks, or longer.

A starting period may be selected in block 404. Messages
passed within the period may be identified in block 406. In
some cases, the selected messages may have multiple mes-
sages that communicate between compute elements, which
may be sorted by the message path in block 408.

For each message path in block 410, a summary of the
messages passed may be made in block 412. The summary
may include the number of messages, direction of those
messages, amount of data passed, frequency, or other sta-
tistics. In some cases, the summaries may be nonlinear
summaries. For example, a logarithm, square, cubic, or other
function may be used to generate aggregated summaries. In
many data collection scenarios, some objects may be
accessed one, two, or a handful of times while other objects
may be accessed thousands or even millions of time. In order
to present such data comparisons within a graph, a nonlinear
scaling of the data may be used.

Each node may be identified in block 414. For each node
in block 416, the node activity may be summarized in block
418. The summary may include the amount of computation
performed by the compute element, input or output data
passed to or from the element, type of computing performed,
as well as statistics relating to the computation such as the
time busy, waiting, performing garbage collection, heap
size, memory calls, or other information.

After analyzing all of the message data for the period of
time, the message data may be stored in block 420 as a data
set. If another period is to be analyzed in block 422, the
period may be incremented in block 424 and the process
may return to block 404. When no more periods are to be
analyzed in block 422, the process may end in block 426.

FIG. 5 is a flowchart illustration of an embodiment 500
showing a method for deploying and updating a graph.
Embodiment 500 illustrates the operations of a visualizer of
the data aggregated in embodiment 400. The operations of
embodiment 500 may reflect the operations of visualizer
226, for example, in embodiment 200.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-

US 9,437,024 B2

13

ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Embodiment 500 illustrates two separate activities that
may be performed to display a graph. A baseline graph may
be created and displayed in block 502 and highlights may be
added in block 504 on an ongoing basis.

The baseline graph of block 502 may display a graph that
contains all nodes and edges from a large database. In many
instances, such a graph may represent the long term opera-
tions of an application and may be useful to understand the
application.

A database may be selected in block 506 to visualize. All
of the time periods may be analyzed in block 508 to identify
all nodes in block 510 and all message paths in block 512.
In some embodiments, summary statistics may be generated
over all of the nodes and edges in blocks 510 and 512,
respectively. The corresponding graph may be generated in
block 514.

The baseline graph generated in block 514 may be a static
graph that illustrates summary statistics from many time
periods. In many embodiments, the baseline graph may
serve as a framework for other illustrations.

For example, the operations of highlighting activity in
block 504 may identify changes to the graph from a specific
time period and overlay those changes on the baseline graph.
In one such example, a baseline graph may contain repre-
sentations of all the computational elements and messages
that may be passed during the lifetime of an application. In
order to see the recent operations, operations in a current
time period may be identified and displayed with visual
highlighting, where other compute elements and message
paths that were not exercised in the time period may be
displayed without highlighting. In such an example, all of
the nodes and edges may be displayed in a greyed-out
fashion with currently executing nodes and messages shown
in a vibrant color.

In such a display, the baseline graph may provide a visual
context on which the current changes may be displayed.

The operations for highlighting activities in block 504
may include receiving user input that selects a time period
in block 518. A dataset for the selected time period may be
retrieved in block 520.

Nodes and edges within the selected time period may be
identified in block 522 and displayed as highlighted in block
524. Those nodes and edges not changed in the time period
may be identified in block 526 and displayed as not high-
lighted in block 528.

In many cases, the user may select a current time period
to display. Such a selection may update a graph in real time
or near-real time. When an embodiment incorporates various
navigation tools, such as the control buttons of embodiment
100, a user may be able to browse, scroll, or use some other
mechanism to identify a data set to display.

When a visualization is updated over period of time while
an application executes, some embodiments may display
only those elements that have been changed in the last
sampling period of the time series. In such embodiments, the
shape of a force directed graph or other visualization may
change rapidly, especially when the time period may be very
short.

Some such embodiments may decay and remove elements
over multiple updates. In such an embodiment, each node or
edge may be displayed for a predefined number of periods,
then removed from the graph. As the node becomes older

20

25

30

35

40

45

50

55

60

65

14

and is not used, the node may be displayed in a greyed-out
fashion in some such embodiments.

FIG. 6 is a flowchart illustration of an embodiment 600
showing a method for generating traces of an object within
a graph. Embodiment 600 illustrates another version of
changes that may be made to a baseline graph, similar to the
operations of embodiment 500. In some cases, the opera-
tions of embodiment 600 may be modified to update a graph
without using the baseline graph.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

The operations of embodiment 600 may illustrate one
method by which an object and its effects may be illustrated
within a graph, such as a force directed graph. After defining
an object, one, two, or more generations of messages stem-
ming from the object may be highlighted to create an update
to a baseline graph. The update may be displayed on a
baseline graph as highlighted nodes and edges to illustrate
the effects of the selected object.

A baseline graph may be created and displayed in block
602. An example of the operations of block 602 may be
found in block 502 of embodiment 500.

A selection for a trace object may be received in block
604. A trace object may be any event, memory object,
condition, function, or other parameter that a user may wish
to examine. A user may be able to define a memory object
to trace, for example, when the memory object is changed or
is set to a specific value. Once such a condition is met, the
effects of the condition may be illustrated.

After defining a trace object, instances of the trace object
may be searched in the message passing database. In some
cases, multiple instances of the condition may be identified.
When multiple instances exist, a time series of datasets may
be generated for each instance and a user may be able to
select between the instances to view the time series datasets.

For each instance in block 608, a starting point for the
sequence may be identified. The starting point may be a
starting time or period that the condition originates.

Any messages referring to the trace object may be iden-
tified in block 612 and added to a trace list. A message may
refer to a trace object when the selected object interacts with
a compute element and the compute element passes a
message to another compute element. For example, a trace
object may be an input event that may be processed by a first
compute element, which may send a message to two other
compute elements. Such messages may be added to a trace
list in block 612.

The operations of block 612 may identify an original set
of messages that may be triggered by a trace object or
condition. For each message in the trace list in block 614,
downstream messages may be identified in block 616 and
added to the trace list. The downstream messages may be
messages that may have been triggered by the original
messages identified in block 612. If additional generations
of messages are desired in block 618, the process may return
to block 614 to add additional messages.

When all of the desired generations of messages may be
identified in block 618, a time series of all the generations
of messages may be created in block 620. The time series
may include separate data sets that represent individual

US 9,437,024 B2

15

generations of messages that may be passed from compute
element to compute element in response to the trace condi-
tion.

An instance may be selected in block 622 and the mes-
sages may be displayed as highlighted messages in block
624. In many cases, the highlighted messages may be
displayed on the framework of a baseline graph that may be
created and displayed in block 602.

FIG. 7 is a diagram illustration of an embodiment 700
showing a time series of data sets displayed as a force
directed graph. Embodiment 700 shows a time A 702, time
B 704, time C 706, and time D 708. Embodiment 700 is a
simplified example of a force directed graph that may grow
and decay over time.

Embodiment 700 illustrates a simple force directed graph
that may be created and may grow and decay with each
successive time step.

At the initial time step, time A 702, nodes 710, 712, and
714 are illustrated. At the second time step, time B 704, node
716 may be added.

In the third time step, time C 706, nodes 718 are added
while node 712 may be either removed or displayed in a
greyed out mode. In the fourth time step, time D 708, nodes
720 are added and nodes 710 and 712 may be removed or
displayed in a greyed out mode.

Embodiment 700 shows the progression of a trace of an
application over time. In each time period, the compute
elements may be represented by the nodes and messages
passed between the compute elements may be represented
by the edges of the graph. Initially, three compute elements
are present and two message paths were exercised in time A
702. As time progresses, additional compute elements are
used and additional message paths are exercised.

At time C 706, one of the nodes and message paths may
no longer be used. In such a case, some embodiments may
preserve the representation of node 712 as a greyed-out
version. Other embodiments may remove the node 712
when the node 712 has not been exercised.

Some embodiments may decay the representations over
time. In such embodiments, each node may be illustrated for
several time periods, even when the node is not exercised in
the successive time periods. The node may be illustrated
with full color intensity when it is initially displayed, then
the node may be illustrated with less intensity at each
successive time period until the point where the node may be
removed from the graph. Such an embodiment may keep a
node visible for several time periods so that a user may
visualize the node, but may remove the node when the node
has not been exercised.

In an example, a node may be displayed with full intensity
for two, three, or more time periods in an animated repre-
sentation. After the initial display, the node may be illus-
trated with decreasing intensity for another 15 time periods,
after which the node may be removed from the graph. In
some embodiments, the time period for decay and for the
initial representation may be adjustable by a user.

FIGS. 8A, 8B, and 8C are diagram illustrations of
example embodiments 802, 804, and 806 showing force
directed graphs in a user interface. Embodiments 802, 804,
and 806 illustrate a sequence of interactions that may be
performed with user input to select a group of graphical
elements, then perform an action on the selected elements.
Each of the embodiments 802, 804, and 806 comprises a
force directed graph and a legend 808.

Embodiments 802, 804, and 806 may illustrate one
mechanism to select multiple elements from a force directed
graph: such a mechanism may be an area selection using a

20

25

30

35

40

45

50

55

60

65

16

rectangular window. Other embodiments may permit a user
to select groups of elements by other selection mechanisms,
such as a lasso tool, clicking on a succession of elements, or
other mechanisms.

The nodes of embodiments 802, 804, and 806 are com-
monly labeled. The force directed graphs are composed of
nodes 810, 812, 814, 816, 818, and 820.

Embodiment 802 may represent a force directed graph as
displayed in a user interface. Embodiment 804 may illustrate
the force directed graph of embodiment 802 with a window
selection. The window selection may be defined by points
822 and 824 to define a selection box 826.

The selection box 826 may be created by a user by
defining the points 822 and 824. One mechanism for creat-
ing the points 822 and 824 may be to click and drag a stylus,
cursor, or other pointing tool within the displayed area of the
force directed graph.

The selection box 826 may capture node 812 and the
group of nodes 814, which may illustrate one use scenario.
Specifically, a force directed graph or other visualization
may illustrate relationships and groups of elements in ways
that may not be readily apparent without the visualization.
The selection mechanism performed with the visualization
may allow a user to select related objects quickly and easily,
especially when the relationships may not be apparent by
other mechanisms.

For example, node 812 may represent one function in a
library and nodes 814 may represent a group of functions in
a second library. When initially started, a programmer may
or may not be able to determine that the two sets of functions
were related. After running a tracer and visualizing the
relationships in a force directed graph 802, the programmer
may be able to identify the relationships.

After selecting node 812 and group of nodes 814, the user
may perform additional operations, as illustrated in embodi-
ment 806.

In embodiment 806, the selected items 812 and 814 may
be illustrated as highlighted while the remaining portions of
the force directed graph may be illustrated as not high-
lighted. Some embodiments may display non highlighted
elements using transparency, color schemes such as greyed-
out colors, or other visual cues. Some embodiments may
display highlighted elements using brighter or more vibrant
colors, different color pallets, boldness, or other visual cues.

Once selected, the items may be have some activity or
changes to be applied to the selected group. Such a change
may be selected from a user interface component 828, which
may have various options 830 and 832.

In some embodiments, the selected activity may cause the
tracer to change the way data are collected. In such embodi-
ments, the force directed graph may be a user interface
component for controlling or managing a tracer. An example
of'such a change may to increase the detail of tracing for the
selected elements. Such a change may increase the tracing
data for subsequent time slices. In another example, the
tracer may be instructed to remove the selected elements
from future data sets. In such a change, the tracer may
reduce the amount of data collected in future time slices.

In some embodiments, the selected activity may cause a
preprocessor to change the way trace data are processed or
presented on the user interface. An example may be to show
cumulative data for the selected elements or to visually
highlight objects that may flow from the selected elements.
Such selections may not cause the tracer to change the data
collected but may cause a preprocessor or visualizer to
change the way the data are illustrated.

US 9,437,024 B2

17

FIGS. 9A, 9B, and 9C are diagram illustrations of
example embodiments 902, 904, and 906 showing force
directed graphs in a user interface. Embodiments 902, 904,
and 906 illustrate a sequence of interactions that may be
performed with user input to select a group of graphical
elements, then perform an action on the selected elements.
Each of the embodiments 902, 904, and 906 comprises a
force directed graph and a legend 908.

Embodiments 902, 904, and 906 may illustrate one
mechanism to select multiple elements from a force directed
graph: such a mechanism may use a legend label to select
members of a group of elements.

The nodes of embodiments 902, 904, and 906 are com-
monly labeled. The force directed graphs are composed of
nodes 910, 912, 914, 916, 918, and 920.

Embodiment 902 may represent a force directed graph as
displayed in a user interface. Embodiment 904 may illustrate
the force directed graph of embodiment 902 with a selection
made from the legend 908. The selection 922 within the
legend 908 may cause all of the objects with membership in
group B to be selected and highlighted.

Embodiment 904 illustrates nodes 910 and 920 as the
selected members of group B, while the remaining elements
may be illustrated as not highlighted. The relationships of
nodes 910 and 920 are also illustrated as highlighted, while
the remaining relationships or edges may be illustrated as
not highlighted.

Once the elements associated with the selection 922 are
selected, a user interface component 924 may be presented.
A user may be able to select between options 926 and 928
to apply changes to a tracer or changes to how the data are
preprocessed and displayed, in a similar manner as with the
user interface component 828. When the selections may be
made, a launch button 930 may be used to cause the changes
to be implemented.

FIG. 10 is a flowchart illustration of an embodiment 1000
showing a method for controlling a tracer through user
interactions with a graph. Embodiment 1000 illustrates a
simplified method that may be performed with the user
interface examples of embodiments 802, 804, and 806 as
well as embodiment 902, 904, and 906.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

An initial data set may be received in block 1002, and a
graph may be displayed in block 1004. If there is no user
selection in block 106, a new data set may be received in
block 1008 and the process may return to block 1004 to
show an updated graph.

The loop of blocks 1004 through 1008 may illustrate a
normal operation of a user interface display for time series
data. The graph may be continually updates with the
sequence of data sets within the time series.

In block 1006, a user may select one or more elements of
the graph. In some embodiments, updating may be paused in
block 1010. The updating may be paused in cases where the
graph may change rapidly and the user may not be able to
select a set of desired elements while the graph changes.

Once the elements may be selected, changes to be per-
formed on those items may be selected in block 1012. The

20

25

30

35

40

45

50

55

60

65

18

changes may be transmitted to the tracer in block 1014 and
the process may return to block 1008, where a new data set
may be received.

FIG. 11 is a diagram of an embodiment 1100 showing a
computing environment that may collect and display mes-
sage passing data in a graph, then use the graph to control
how those data are collected. Embodiment 1100 illustrates
hardware components that may deliver the operations
described in embodiment 1000, as well as other embodi-
ments.

The diagram of FIG. 11 illustrates functional components
of a system. In some cases, the component may be a
hardware component, a software component, or a combina-
tion of hardware and software. Some of the components may
be application level software, while other components may
be execution environment level components. In some cases,
the connection of one component to another may be a close
connection where two or more components are operating on
a single hardware platform. In other cases, the connections
may be made over network connections spanning long
distances. Each embodiment may use different hardware,
software, and interconnection architectures to achieve the
functions described.

Embodiment 1100 illustrates a network environment in
which visualizations of trace data may be used to control the
tracer operation. A visualization device 1102 may display a
graph and provide a user interface, while a controller device
1104 may control the data sets to be displayed, as well as
manage the operations of a tracer. The controller device
1104 may retrieve data from a data repository 1106. A tracer
device 1108 may collect trace data while running an appli-
cation 1138. All of the various devices may be connected
with a network 1110.

The visualizer device 1102 may include on a hardware
platform 1112, on which a browser 1114 may execute. A
visualizer 1116 may be code running in the browser 1114
that may generate a graph within the user interface 1118.

The controller device 1104 may operate as a backend
server that performs several services that support the opera-
tions of the visualizer device 1102.

The example of embodiment 1100 illustrates an architec-
ture where the visualizer 1116 may reside on a client device,
while other services may reside on a server device. The
visualizer 1116 may be located on the client device to
improve the user experience with an animated graph. When
the visualizer 1116 is located on a user’s device, the smooth-
ness of animation and responsiveness of the graph may be
improved over architectures where rendering and visualiza-
tion may be performed on remote devices.

Embodiments where remote devices perform some or all
of'the visualization may be useful in situations where a client
device may not have sufficient processing power to render a
graph. Such embodiments may enable more complex and
detailed renderings than may be generated with client-side
visualization tools.

The controller device 1104 may provide two different
functions, one of which may be as a data browser 1126
through which data for a visualization may be retrieved and
prepared, as well as a tracer configuration manager 1122,
where changes to a tracer may be created and dispatched. A
user interface communicator 1124 may be accessed through
components in the browser 1114 to cause changes in the data
browser 1126 or the tracer configuration manager 1122.

In some embodiments, a user interface 1118 may include
a dialog box, selection tool, or other user interface compo-
nent that may be used to configure or change configuration
of a tracer. Such configuration may include items relating to

US 9,437,024 B2

19

the general operation of the tracer, such as sampling fre-
quency, resources allocated to the tracer, conditions for
starting or stopping the tracer, and other general operational
options. In some embodiments, such changes may be
applied generally or to items selected from the graph.

The data browser 1126 may retrieve data sets 1128 from
the data repository 1106 and prepare the data sets for
viewing by the visualizer 1116. The data browser 1126 may
be responsive to playback controls, such as the controls 128
through 134 in embodiment 100.

The data browser 1126 in normal playback mode may
retrieve data sets 1128 and make the data sets available to the
visualizer 1116. In many embodiments, such an action may
be performed on a recurring, periodic basis according to the
time series represented by the data sets 1128. For example,
a time series may be created where data sets 1128 may
represent each second of time during a time series. In such
an example, the data browser 1126 may make each succes-
sive data set available each second.

The user interface communicator 1124 may receive com-
mands from the browser 1114 to pause, rewind, fast forward,
play, stop, and other commands. These commands may be
passed to the data browser 1126 which may begin retrieving
data sets 1128 and presenting the data sets in the requested
sequence and in the requested frame rate or speed.

The tracer configuration manager 1122 may receive inputs
from the user interface communicator 1124, where the
inputs may define changes to be made to trace data. The
changes may reflect additional data points that may be
collected, as well as data points that may be removed or
other changes. In some cases, the changes may reflect the
behavior or operational changes, such as when the tracer
may be executed, the frequency of data collection, or other
changes.

The tracer device 1108 may operate on a hardware
platform 1130 and have an instrumented execution environ-
ment 1132 that may include a tracer 1134 and a configuration
1136 for the tracer 1134. The tracer configuration manager
1122 may update the configuration 1136 to cause the tracer
1134 to change behavior.

An application 1138 may execute in the instrumented
execution environment 1132, allowing the tracer 1134 to
generate trace data. The trace data may be transmitted to the
data repository 1106 by a data transmitter 1140. The data
transmitter 1140 may periodically communicate with the
data repository 1106 to transmit any collected data from the
tracer 1134.

FIG. 12 is a diagram illustration of an embodiment 1200
showing a process for visualizing data from a tracer.
Embodiment 1200 may illustrate a processing pipeline
where transformations may be inserted. In some embodi-
ments, user written executable code may be inserted into the
processing pipeline to prepare data for visualization in many
different manners.

A tracer 1202 may generate a stream of trace data that
may be processed by a storage pipeline 1204. The storage
pipeline 1204 may prepare and process the trace data using
a set of transformations in block 1206 for storage in block
1208. In some embodiments, the trace data may be a
continuous stream of data items that may be gathered by the
tracer 1202. Such streams of data may increase and decrease
in volume over time. In other embodiments, the trace data
may be snap shots of data reported at specific intervals. Such
streams of data may be regularly recurring.

The storage pipeline 1204 may be a set of processes that
apply a set of transformations in block 1206 to the data
stream, then cause the data to be stored in block 1208. The

20

25

30

35

40

45

50

55

60

65

20

transformations in block 1206 may apply formatting, data
analysis, aggregation, or other changes to the data prior to
storage. In many cases, the transformations in block 1206
may perform de-duplication, compression, differencing, or
other operations that may reduce the size of the trace data in
block 1208, as well as format the data for later retrieval.

The transformations in block 1206 may be applied prior
to storage of the trace data in block 1208. When such
transformations may be lossy or otherwise diminish the
accuracy, fidelity, or completeness of the data, such a
transformation may be permanent in the sense that later
analysis may not be able to recreate the original data.

After storage in block 1208, a visualization pipeline 1210
may apply an additional set of transformations in block 1214
prior to visualizing the data in block 1216. The visualization
pipeline 1210 may prepare the data for visualization. The
transformations in block 1214 may not be permanent in the
sense that the raw data in block 1208 may still remain,
allowing for a different set of transformations to be applied
in a later analysis.

The transformations in block 1214 may perform various
operations for preparing data for visualizations. In some
cases, the transformations in block 1214 may perform for-
matting and other operations so that a visualizer in block
1216 may accept and parse the incoming data. In some
cases, the transformations in block 1214 may perform fil-
tering, aggregation, statistical analysis, and other operations
that may affect which data are displayed and how the data
are displayed.

The visualizer in block 1216 may be part of a user
interface 1218 through which a user may view data and
control how the data are displayed. One mechanism for
controlling how the data may be displayed may be a user
interface in block 1220 where a user may create or edit
transformations. A user may also be able to store and retrieve
the transformations in block 1224 for later use. In many
embodiments, a library or selection of several pre-config-
ured transformations may be stored for a user to select and
use with or without editing.

The user interface in block 1220 may allow a user to add
and edit executable code to define a portion of a transfor-
mation. The executable code may be any function descrip-
tion, expression, or other definition that may be compiled,
interpreted, or otherwise executed as a transformation.

Once added, a transformation may go through a malware
check in block 1226 before being inserted into a processing
pipeline in block 1228. A transformation may be identified
to be applied prior to storage in block 1206 or after storage
in block 1214.

FIG. 13 is a diagram illustration of an embodiment 1300
showing an example user interface. Embodiment 1300 may
illustrate a user interface through which a user may enter
executable code that may be deployed as a transformation.

Embodiment 1300 may illustrate a visualization user
interface 1302 that contains a force directed graph 1304, a
legend 1306, and a control set 1308. The force directed
graph 1304 may display trace data in the form of nodes and
edges, where the edges may represent relationships between
objects. The legend 1306 may show groups of elements. The
control set 1308 may be a set of control buttons through
which a user may input playback commands to view differ-
ent data sets in a time series of trace data.

A window 1310 may be an interface through which a user
may select different data to show in the graph. Two different
options 1312 and 1314 may reflect pre-defined transforma-
tions that may be selected, as well as a third option 1316
where a user may enter and edit an executable expression in

US 9,437,024 B2

21

a text editor 1318. The user may also select which process-
ing pipeline to implement the transformation in the selection
1320.

The transformations may cause data to be displayed, and
sometimes stored, in different manners. The transformations
may be defined in an executable language that may be
compiled or interpreted to process data. In some cases, the
language may enable multiple data elements to be analyzed
together. A simple example of which may be to take a
difference between two elements.

The transformations may allow a filter to be applied, such
as to show tracing data from a specific function or memory
object, while eliminating other data. In some cases, the
transformations may include an expression, such as to
display data from processes that operate for greater than 10
seconds and less than 15 seconds.

An example of pseudo-code for an expression may be:
TABLE-US-00001 on_event (type, data) old_data=fetch
(type) new_data=old_data+data put (type, new_data)

The pseudo-code above may be applied to each displayed
variable to count each occurrence of the variable for each
time slice in the time series. In such a transformation, the
displayed data may grow over time.

Because the transformations may include user-supplied
code, the transformations may undergo a malware check
prior to deployment. The malware check may attempt to
catch malicious or malformed transformations so that the
transformations may not cause unwanted errors or malicious
effects.

FIG. 14 is a diagram of an embodiment 1400 showing a
computing environment that may collect and display trace
data in a graph. Embodiment 1400 illustrates hardware
components that may deliver the operations described in
embodiment 1300, as well as other embodiments.

The diagram of FIG. 14 illustrates functional components
of a system. In some cases, the component may be a
hardware component, a software component, or a combina-
tion of hardware and software. Some of the components may
be application level software, while other components may
be execution environment level components. In some cases,
the connection of one component to another may be a close
connection where two or more components are operating on
a single hardware platform. In other cases, the connections
may be made over network connections spanning long
distances. Each embodiment may use different hardware,
software, and interconnection architectures to achieve the
functions described.

Each of the various devices illustrated in embodiment
1400 may have a hardware platform. The respective hard-
ware platforms may be similar to the hardware platform 204.
The devices may be any type of hardware platform, such as
a personal computer, server computer, game console, tablet
computer, mobile telephone, or any other device with a
programmable processor.

Embodiment 1400 illustrates a network environment in
which transformations may be deployed to modify the
operations of data collection, storage, and visualizations.
The transformations may be stored and deployed in various
contexts and managed through a transformation manager.

The environment may include a visualization system
1402, a controller device 1406, a transformation manager
1408, a tracer device 1410, and a data repository 1412. The
visualization system 1402 may provide a user interface for
the overall system, and may send commands to the control-
ler device 1406 to provide data for a visualization. The
transformation manager 1408 may receive, store, test, and

20

25

30

35

40

45

50

55

60

65

22

dispatch transformations to various devices. The tracer
device 1410 may collect trace data, which may be stored by
the data repository 1412.

The visualization system 1402 may contain a hardware
platform 1414 on which a browser 1416 may run. The
browser may present a user interface 1418 to a user. The
browser 1416 may execute a visualizer 1420, which may
create and display a graph. The visualizer 1420 may be
executable code that runs within the browser 1416 to
retrieve data and render a graph. The visualizer 1420 may
include animation routines as well as interactive components
that may allow a user to interact with the graph.

The browser 1416 may also include an editor 1422
through which a user may enter executable code that may be
used as various transformations within the larger system.
The transformations may be used by a tracer during data
gathering, by a storage manager during data storage, and by
a preprocessor when preparing data for visualization. The
user supplied code may enable a wide range of customizable
options for a user to control how data may be gathered,
stored, and displayed. Such control may be useful in sce-
narios where a user may experiment with different ways of
collecting and viewing data.

A controller device 1406 may operate on a hardware
platform 1424. A data browser 1426 may be controlled from
the user interface 1418 on the visualization system 1402.
The data browser 1426 may select data sets to be displayed
by the visualizer 1420. Prior to transmitting the data sets
with a communications agent 1432, a preprocessor 1428
may apply various transformations 1430 to the data.

A tracer device 1410 may operate on a hardware platform
1434 and have an instrumented execution environment 1436
that may include a tracer 1438. The tracer 1438 may have a
configuration 1440 that may define behaviors for the tracer
1438, such as what data to collect and under which condi-
tions the data may be collected.

The tracer device 1410 may also have a set of transfor-
mations 1444, which may process the collected data. The
transformations 1444 may be applied prior to storing the
data and may be used to aggregate, compact, condense, or
otherwise prepare the data for transmission to a data reposi-
tory 1412. The transformations 1444 may also perform data
analysis, including various statistical analysis, comparisons,
or any other operation.

A data repository 1412 may have a hardware platform
1456 on which a storage manager 1458 may operate. The
storage manager 1458 may receive data from various tracer
devices and apply transformations 1460 prior to storing the
data 1462. The transformations 1460 may perform many
different types of operations prior to storage, including
aggregation and compaction, as well as summarizing, com-
parisons, or other operations.

Embodiment 1400 illustrates two locations for applying
pre-storage transformations. One location may be at the
tracer device 1410 as transformations 1444 and the other
location may be at the data repository 1412 as transforma-
tions 1460. Either location for transformations may apply
changes to the trace data prior to storage. Transformations
applied at the tracer device 1410 may apply transformations
prior to data transmittal, as such, some of the transforma-
tions 1444 may compact the data or otherwise prepare the
data for transmittal over the network 1464 to the data
repository 1412.

A transformation manager 1408 may operate on a hard-
ware platform 1446 and may include a transformation
manager 1448. The transformation manager 1448 may
receive transformations from a user through the visualiza-

US 9,437,024 B2

23

tion system 1402, cause the transformations to be dispatched
to different devices using a dispatcher 1450. The dispatcher
1450 may communicate with the various devices that
execute transformations, transmit the transformations, and
cause the transformations to execute under specified condi-
tions.

For example, a dispatcher 1450 may deploy a transfor-
mation to the tracer device 1410 to compact data prior to
transmission and a second transformation to the data reposi-
tory 1412 to create summary statistics prior to storing the
data. The dispatcher 1450 may make the transformations
conditional for tracing a specific application 1442 during a
specific time period, then cause the transformations to be
turned off.

The dispatcher 1450 may also cause certain transforma-
tions to be deployed on the controller device 1406 to
prepare, filter, or otherwise modify data that may be dis-
played in a visualization. In some cases, the transformations
1430 deployed to the preprocessor 1428 may be deployed in
near-real time under user control so that data displayed in a
visualization may be quickly changed.

The transformation manager 1448 may receive new or
edited transformations from a user and then use a malware
checker 1452 to determine if the transformation may be
incorrect, incomplete, or has the potential to cause harm.
The malware checker 1452 may use various tools to approve
or deny a given transformation. Such tools may include a
virus checker, white list, black list, or other technologies.

The transformation manager 1448 may store transforma-
tions in a repository 1454. The stored transformations in the
repository 1454 may be made available as selectable options
within the browser 1416.

FIG. 15 is a flowchart illustration of an embodiment 1500
showing a method for controlling a visualization for a time
series of data sets. Embodiment 1500 illustrates the opera-
tions of a visualizer and user interface 1502 in the left hand
column and a data browser 1504 in the right hand column.

Other embodiments may use different sequencing, addi-
tional or fewer steps, and different nomenclature or termi-
nology to accomplish similar functions. In some embodi-
ments, various operations or set of operations may be
performed in parallel with other operations, either in a
synchronous or asynchronous manner. The steps selected
here were chosen to illustrate some principles of operations
in a simplified form.

Embodiment 1500 may illustrate a simplified example of
the interactions between a user interface 1502 and a data
browser 1504, where the data browser may process data sets
and present the data sets for visualization. The visualizer
may have a data binding or other connection to the data
browser such that the visualizer may retrieve and display
whatever data sets are being presented.

The data browser 1504 may present data sets in sequence
so that the visualizer presents a graph that changes over
time. Controls on the user interface may direct the data
browser 1504 to present different sequences of data sets for
normal playback, reverse playback, fast forward, and other
sequences.

Embodiment 1500 illustrates a method where a sequence
may be defined for presentation, then the data browser may
advance through the sequence to cause data sets to be
displayed. In embodiment 1500, the sequences may be
normal forward play where the data sets may be displayed
in a time sequence, as well as reverse where the sequence of
data sets are inverted or reversed, and fast forward where the
sequence only shows every other data set such that the graph
may be updated twice as fast as normal playback.

20

25

30

35

40

45

50

55

60

65

24

Once the sequence is defined, the data browser may use
the sequence to look up the next data set, prepare the data set
for viewing, and make the data set available to the visualizer.
Using a data binding or other connection, the visualizer may
gather the data set and update the graph.

In several of the embodiments presented above, a visu-
alizer may operate on one device and a data browser may
operate on a second device. In some cases, both the visu-
alizer and user interface 1502 and data browser 1504 may
operate on the same device or different devices.

From the user interface 1502, a command may be sent to
start visualization in block 1506. The command may be
received by the data browser 1504 in block 1508.

The sequence to display may be defined in block 1510.
For a normal playback, the sequence may be a time series of
data sets in a normal, forward sequence. The next time point
to display may be selected in block 1512, and the data set
associated with the time point may be retrieved in block
1514. In some cases, the data set may be retrieved from a
data repository, which may be a remote device accessed over
a network.

After retrieving the data set in block 1514, any transfor-
mations may be applied in block 1516 and the data set may
be transmitted in block 1518. The process may return to
block 1512 to select the next data set in the sequence.

The visualizer and user interface 1502 may receive the
new data set in block 1522 and render or update the graph
in block 1524. The visualizer may cycle through the loop of
blocks 1522 and 1524 each time the data set may be updated
by the data browser 1504.

Similarly, the data browser 1504 may loop through the
blocks 1512 through 1518 to fetch the next data set in
sequence, prepare the data set, and make the data set
available for the visualizer. The timing of the loop of blocks
1512 through 1518 may be set to correspond with the real
time represented by the data sets and thereby cause the graph
to update in the same time frame as the underlying data.

In some embodiments, the loop of blocks 1512 through
1518 may be adjusted faster or slower so that the playback
may be increased or decreased in speed. In some cases, the
data collection frequency may be much faster than the
playback frequency, which may cause the playback to be
slower than real time. In other cases, the data collection
frequency may be much slower than the playback frequency,
causing the playback to be much faster than real time.

At some point, the user interface 1502 may issue a rewind
command in block 1526, which may be transmitted to the
data browser 1504 in block 1528. The data browser 1504
may define a new sequence with the time points in reverse
order in block 1530. The data browser 1504 may return to
block 1512 to select the next data set in the sequence.
Because the sequence is now reversed, the data browser
1504 may present the data sets in reverse sequence, and each
time the data set may be updated, the visualizer may update
the graph.

A pause command may be issued from the user interface
1502 in block 1532 and transmitted to the data browser
1504, which may receive the pause command in block 1534.
The data browser 1504 may merely stop sending data sets in
block 1536 to cause the graph from being updated.

A play command may be issued from the user interface
1502 in block 1538 and transmitted to the data browser
1504, which may receive the play command in block 1540.
The data browser 1504 may define a new sequence with the
time points arranged in a forward order in block 1542 and
resume sending data sets in block 1544, then continue with
block 1512.

US 9,437,024 B2

25

A fast forward command may be issued from the user
interface 1502 in block 1546 and transmitted to the data
browser 1504, which may receive the fast forward command
in block 1548. The data browser 1504 may create a sequence
in block 1550 that has only a subset of the available data
sets. In a case where the fast forward may be replayed at
twice the normal play speed, the sequence may include only
every other data set. The process may return to block 1512
to cycle through the sequence of data sets.

The foregoing description of the subject matter has been
presented for purposes of illustration and description. It is
not intended to be exhaustive or to limit the subject matter
to the precise form disclosed, and other modifications and
variations may be possible in light of the above teachings.
The embodiment was chosen and described in order to best
explain the principles of the invention and its practical
application to thereby enable others skilled in the art to best
utilize the invention in various embodiments and various
modifications as are suited to the particular use contem-
plated. It is intended that the appended claims be construed
to include other alternative embodiments except insofar as
limited by the prior art.

What is claimed is:
1. A hardware storage media comprising computer-ex-
ecutable instructions which, when executed on one or more
processors, cause the one or more processors to perform a
computer-implemented method for using a force directed
graph to visualize how messages are passed between com-
putational components, and for using the force directed
graph as an input to control a tracer in order to permit trace
data to be prepared for display by applying predefined or
user-defined transformations to elements of the force
directed graph, the computer-implemented method compris-
ing:
executing an application and gathering message passing
data derived from messages passed between compute
elements, the message passing data comprising peri-
odic updates transmitted at a predefined interval;

collecting and storing the message passing data;

analyzing at least some of the stored message passing data
and preparing from the analyzed message passing data
a force directed graph comprised of nodes which rep-
resent the compute elements, and edges between at
least some of the nodes, with the edges representing the
periodic updates for the messages as the messages are
passed between the nodes at the predefined interval as
the application is executed;

displaying said force directed graph data to visualize how

the periodic updates for the messages occur as the
messages are passed between the compute elements at
the predefined interval during execution of the appli-
cation;

inputting one or more transformation definitions for one

or more elements of the force directed graph during one
or more of the periodic updates visualized for the force
directed graph, at least some of said transformation
definitions comprising executable code that performs
operations on said one or more elements of the force
directed graph; and

displaying said force directed graph as modified by

executing said transformation definitions.

2. The computer storage media of claim 1 wherein the
computer-implemented method further comprises perform-
ing a malware analysis of the executable code for said
transformation definitions before executing the executable
code for the transformation definitions.

20

25

30

40

45

50

55

60

26

3. The computer storage media of claim 1, wherein
inputting one or more transformation definitions is per-
formed at an interface which comprises a set of execution
settings.

4. The computer storage media of claim 3 wherein the
computer-implemented method further comprises storing
said one or more transformation definitions.

5. The computer storage media of claim 4, wherein said
interface further comprises a retrieval mechanism to select
said stored one or more transformation definitions from a
stored set of transformation definitions.

6. The computer storage media of claim 1, wherein
displaying said force directed graph comprises animating the
force directed graph to show the periodic updates at the
predefined interval as the force directed graph is visualized.

7. The computer storage media of claim 2, wherein said
malware analysis comprises checking said executable code
against a whitelist.

8. The computer storage media of claim 2, wherein said
malware analysis comprises checking said executable code
against a blacklist.

9. A computing system comprising hardware storage
media containing computer-executable instructions which,
when executed on one or more processors, cause the one or
more processors to configure the computing system with a
system architecture that performs a computer-implemented
method for using a force directed graph to visualize how
messages are passed between computational components,
and for using the force directed graph as an input to control
a tracer in order to permit trace data to be prepared for
display by applying predefined or user-defined transforma-
tions to elements of the force directed graph, the system
architecture comprising:

a compute environment that executes an application and
gathers with a tracer message passing data derived from
messages passed between compute elements of the
compute environment, the message passing data com-
prising periodic updates transmitted at a predefined
interval,

a collector which collects the message passing data and
stores the collected message passing data in a database;

an analyzer that executes a visualizer, and wherein the
visualizer performs the following:
analyzes at least some of the stored message passing

data and prepares from the analyzed message passing
data a force directed graph comprised of nodes
which represent the compute elements of the com-
pute environment, and edges between at least some
of'the nodes, with the edges representing the periodic
updates for the messages as the messages are passed
between the nodes at the predefined interval as the
application is executed, the directed graph being
prepared for presentation at the display to visualize
how the periodic updates for the messages occur as
the messages are passed between the compute ele-
ments at the predefined interval during execution of
the application; and

an interface comprising an input for inputting one or more
transformation definitions for one or more elements of
the force directed graph during one or more of the
periodic updates visualized for the force directed graph,
at least some of said transformation definitions com-
prising executable code that performs operations on
said one or more elements of the force directed graph.

10. The computing system of claim 9, wherein the com-
puter architecture performs a malware analysis of the

US 9,437,024 B2

27

executable code for said transformation definitions before
executing the executable code for the transformation defi-
nitions.

11. The computing system of claim 9, wherein inputting
one or more transformation definitions is performed at an
interface which comprises a set of execution settings.

12. The computing system of claim 11 wherein said one
or more transformation definitions are stored in a database.

13. The computing system of claim 12, wherein said
interface further comprises a retrieval mechanism to select
said stored one or more transformation definitions from a
stored set of transformation definitions.

14. The computing system of claim 9, wherein displaying
said force directed graph comprises animating the force
directed graph to show the periodic updates at the predefined
interval as the force directed graph is visualized.

15. The computing system of claim 9, wherein said
interface comprises an editor that edits said executable code
for said at least some transformation definitions.

16. A computing system for using a force directed graph
to visualize how messages are passed between computa-
tional components, and for using the force directed graph as
an input to control a tracer in order to permit trace data to be
prepared for display by applying predefined or user-defined
transformations to elements of the force directed graph, the
computing system comprising:

a memory containing computer executable instructions

for a computer-implemented method;

one or more processors which, when executing the

executable instructions for the computer implemented

method, cause the computing system to perform the

following:

execute an application and gather message passing data
derived from messages passed between compute
elements, the message passing data comprising peri-
odic updates transmitted at a predefined interval;

collect and store the message passing data;

analyze at least some of the stored message passing
data and prepare from the analyzed message passing
data a force directed graph comprised of nodes
which represent the compute elements, and edges

20

25

30

35

40

28

between at least some of the nodes, with the edges
representing the periodic updates for the messages as
the messages are passed between the nodes at the
predefined interval as the application is executed;

display said force directed graph data to visualize how
the periodic updates for the messages occur as the
messages are passed between the compute elements
at the predefined interval during execution of the
application;

receive as input one or more transformation definitions
for one or more elements of the force directed graph
during one or more of the periodic updates visualized
for the force directed graph, at least some of said
transformation definitions comprising executable
code that performs operations on said one or more
elements of the force directed graph; and

display said force directed graph as modified by execut-
ing said transformation definitions.

17. The computing system of claim 16, wherein the
computer-executable instruction for the computer-imple-
mented method cause the computing system to further
perform the following: perform a malware analysis of the
executable code for said transformation definitions before
executing the executable code for the transformation defi-
nitions.

18. The computing system of claim 16, wherein the one
or more transformation definitions are received as input at an
interface which comprises a set of execution settings.

19. The computing system of claim 18, wherein the
computer-executable instructions for the computer-imple-
mented method cause the computing system to further
perform the following: store said one or more transformation
definitions.

20. The computing system of claim 16, wherein the
computer-executable instructions for the computer-imple-
mented method cause the computing system to further
perform the following: animate the force directed graph to
show the periodic updates at the predefined interval as the
force directed graph is visualized.

#* #* #* #* #*

