
(12) United States Patent
Carreno-Fuentes et al.

USOO9436660B2

US 9,436,660 B2
Sep. 6, 2016

(10) Patent No.:
(45) Date of Patent:

(54) BUILDING AND MAINTAINING
INFORMATION EXTRACTION RULES

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Arnaldo Carreno-Fuentes, Dacula, GA
(US); Laura Chiticariu, San Jose, CA
(US); Eser Kandogan, Mountain View,
CA (US); Yunyao Li, San Jose, CA
(US); Huahai Yang, San Jose, CA (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 616 days.

(21) Appl. No.: 13/679,349

(22) Filed: Nov. 16, 2012

(65) Prior Publication Data

US 2014/O143661 A1 May 22, 2014

(51) Int. Cl.
G06F 7700 (2006.01)
G06F 7/2 (2006.01)
G06F 7/24 (2006.01)
GO6F 17/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/218 (2013.01); G06F 17/24

(2013.01); G06F 17/30011 (2013.01)
(58) Field of Classification Search

CPC G06F 17/24: G06F 17/30011
USPC .. 71.5/255
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,890,533 B2 2/2011 Pollara
8, 131,756 B2 * 3/2012 Carus et al. 707/776

2007. O157087 A1 7/2007 Foerg et al.
2008/0208857 A1* 8, 2008 Liu et al. 707/6
2009,0172517 A1* 7, 2009 Kalicharan T15,234
2012/007895.0 A1 3/2012 Conrad et al. 707/769
2013/0110842 A1* 5, 2013 Donneau-Golencer

et al. ... 707,741
2013,029.0270 A1* 10, 2013 Pareek 707/687

OTHER PUBLICATIONS

Nisanth Simon, Blog "Building Extractors using InfoSphereTM
Big Insights Text Analytics in Eclipse”, Oct. 19, 2011, (PDF version,
7 pages) can be retrieved at <https://www.ibm.com/
developerworks community/blogs/ibm-big-data entry/building
extractors using infosphere biginsights text analytics in
eclipse?maxresults=1&page=1&lang=en us>.*

(Continued)

Primary Examiner — Stephen Hong
Assistant Examiner — Marshon Robinson
(74) Attorney, Agent, or Firm — Ference & Associates LLC
(57) ABSTRACT
Methods and arrangements for managing development of
information extraction rules. One or more documents are
opened for extraction. An interface is provided to create a
label and thereupon label a portion of the document. The
created label is stored, and an extractor is developed based
on the labeling. A test interface is provided for the extractor,
and results of a test conducted through the test interface are
displayed. The extractor is exported. In accordance with at
least one embodiment, developers are presented with eased
automated guidance to write extractors, which thereby
reduces an overall manual effort involved in extractor devel
opment. Generally, a focused, tutorial-type environment
serves as a guide based on previously developed best
practices.

18 Claims, 13 Drawing Sheets

9. 107 113 117

Rie Performance s Delivery Development uning

--------------------------, ---------------------------- f-------------1. --- i
Input label Develop Export

Documents ext Clues : Extractor Extractor Extractor
| i r t (t 93- 95 - 109 - Arww Y ^-111 19

US 9,436,660 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Alemany, Laura Alonso I, et al., “A System for Adaptive Informa
tion Extraction from Highly Informal Text.” Proceedings of the 16th
International Conference on Applications of Natural Language to
Information Systems, NLDB 2011, 1 page, Abstract only, Springer
Verlag, Berlin, Germany.
Li, Yunyao, et al., “WizIE: A Best Practices Guided Development
Environment for Information Extraction.” Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics,
Jeju, Republic of Korea, Jul. 8-14, 2012, pp. 109-114, Association
for Computational Linguistics, MIT Press, Cambridge, Massachu
setts, USA.
Chiticariu, L., et al., “Domain Adaptation of Rule-Based Annotators
for Named-Entity Recognition Tasks'. Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing,
Oct. 9-11, 2010, pp. 1002-1012, Association for Computational
Linguistics, MIT, Massachusetts, USA.

* cited by examiner

US 9,436,660 B2 Sheet 1 of 13 Sep. 6, 2016 U.S. Patent

| ||

||

US 9,436,660 B2 Sheet 2 of 13 Sep. 6, 2016 U.S. Patent

????????????????
|– ––

US 9,436,660 B2 Sheet S of 13 Sep. 6, 2016 U.S. Patent

---------------------------------------*~~~~~~~~~~~~~~~~~~~~
S.
xa

.
c
ww.

f

US 9,436,660 B2 Sheet 8 of 13 Sep. 6, 2016 U.S. Patent

US 9,436,660 B2 Sheet 10 of 13 Sep. 6, 2016 U.S. Patent

???????????????\---------------------------
(b?g?s?,

U.S. Patent Sep. 6, 2016 Sheet 11 of 13 US 9,436,660 B2

1135- -1137
|

. w Y.

E5 Extraction Plan x

r23, estWork
Erik Quarterly ReventeByMarket

F 2 Examples
& Americas revenues were $8.8 billion
É Revenue from Europelvii. 3 billion

Tiš. Asia-Pacific revenues gre ...5 billion
FC AQL Statements
- Basic Features
Ert Candidate Generation
I. Revenue
(Filter and Consolidate

F-27 labels
Sir Varket

:-É Examples
AQ Statements

trä. Basic Features
Candidate Generation

r(t) Filter and Consolidate

33
s iter and Consolidate

------- labels

FIG. 11

US 9,436,660 B2 Sheet 12 of 13 Sep. 6, 2016 U.S. Patent

US 9,436,660 B2 Sheet 13 of 13 Sep. 6, 2016 U.S. Patent

/
„Új,

US 9,436,660 B2
1.

BUILDING AND MANTAINING
INFORMATION EXTRACTION RULES

BACKGROUND

Information extraction (IE) refers to the problem of
extracting structured information from unstructured or semi
structured text. It has been well-studied in the realm of
Natural Language Processing. In recent years, IE has
emerged as a critical building block in a wide range of
enterprise applications, including financial risk analysis,
Social media analytics and regulatory compliance, among
many others. An important practical challenge driven by the
use of IE in these applications is usability, particularly, how
to enable the ease of development and maintenance of
high-quality information extraction rules, also known as
annotators, or extractors.

Generally, the development of extractors presents itself as
a notoriously labor-intensive and time-consuming process.
In order to ensure highly accurate and reliable results, this
task is traditionally performed by trained linguists with
domain expertise. As a result, extractor development is
regarded as a major bottleneck in Satisfying the increasing
text analytics demands of enterprise applications.

BRIEF SUMMARY

In Summary, one aspect of the invention provides a
method comprising opening one or more documents for
extraction. The method includes providing an interface to
create a label and thereupon label a portion of the document,
and storing the created label. Further, the method includes
developing an extractor based on the labeling, providing a
test interface for the extractor, and displaying results of a test
conducted through the test interface. Additionally, the
method includes and exporting the extractor.

Another aspect of the invention provides an apparatus
comprising at least one processor, and a computer readable
storage medium having computer readable program code
embodied therewith and executable by the at least one
processor. The computer readable program code comprises
computer readable program code configured to open one or
more documents for extraction. The computer readable
program code also includes computer readable program
code configured to provide an interface to create a label and
thereupon label a portion of the document, and computer
readable program code configured to store the created label.
Further, the computer readable program code includes com
puter readable program code configured to develop an
extractor based on the labeling, computer readable program
code configured to provide a test interface for the extractor,
and computer readable program code configured to display
results of a test conducted through the test interface. Also,
the computer readable program code includes computer
readable program code configured to export the extractor.
An additional aspect of the invention provides a computer

program product comprising: a computer readable storage
medium having computer readable program code embodied
therewith. The computer readable program code comprises
computer readable program code configured to open one or
more documents for extraction. The computer readable
program code also includes computer readable program
code configured to provide an interface to create a label and
thereupon label a portion of the document, and computer
readable program code configured to store the created label.
Further, the computer readable program code includes com
puter readable program code configured to develop an

10

15

25

30

35

40

45

50

55

60

65

2
extractor based on the labeling, computer readable program
code configured to provide a test interface for the extractor,
and computer readable program code configured to display
results of a test conducted through the test interface. Also,
the computer readable program code includes computer
readable program code configured to export the extractor.

For a better understanding of exemplary embodiments of
the invention, together with other and further features and
advantages thereof, reference is made to the following
description, taken in conjunction with the accompanying
drawings, and the scope of the claimed embodiments of the
invention will be pointed out in the appended claims.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 schematically illustrates phases of an extractor
development process.

FIG. 2 schematically illustrates a general process over
view.

FIG. 3 illustrates a graphical user interface (GUI), show
ing in particular a workflow perspective.

FIG. 4 illustrates two phases of use of an extraction tasks
view.

FIG. 5 illustrates a first step, opening a document collec
tion, with respect to the extraction tasks view.

FIG. 6 illustrates a first sub-step of a second step (labeling
examples and clues of interest) with respect to the extraction
tasks view.

FIG. 7 illustrates a second sub-step of the aforementioned
second step with respect to the extraction tasks view.

FIG. 8 illustrates a third step, developing an extractor,
with respect to the extraction tasks view.

FIG. 9 illustrates a fourth step, testing of the extractor,
with respect to the extraction tasks view

FIG. 10 illustrates fifth and sixth steps, profiling and
exporting the extractor, respectively, with respect to the
extraction tasks view.

FIG. 11 illustrates an extraction plan view.
FIG. 12 sets forth a process more generally for managing

development of information extraction programs
FIG. 13 illustrates a computer system.

DETAILED DESCRIPTION

Broadly contemplated herein, in accordance with at least
one embodiment of the invention, is the use of an IE
development environment configured to permit developers
with little or no linguistic background to write high quality
extractors, which thereby reduces an overall manual effort
involved in extractor development. Generally, a wizard-like
environment guides extractor development based on best
practices drawn from the experience of trained linguists and
expert developers. In so doing, natural entry points are
provided for different tools focused on reducing the effort
required for performing common tasks during IE develop
ment.

In accordance with at least one embodiment of the inven
tion, a workflow interface provides a step-by-step guide for
developing an information extractor program (or extractor)
in six steps: select input data; label text snippets and clues
of interest; develop extraction rules; test the extraction rules:
profile the extraction rules and export the extraction rules to
a compiled executable plan. Among the main components
are an extraction tasks view, which contains or provides
instructions for the aforementioned six steps, and an extrac
tion plan view, which captures a semantic overview of an

US 9,436,660 B2
3

extractor, including data examples, as well as extraction
rules for capturing the examples.

It will be readily understood that the components of the
embodiments of the invention, as generally described and
illustrated in the figures herein, may be arranged and
designed in a wide variety of different configurations in
addition to the described exemplary embodiments. Thus, the
following more detailed description of the embodiments of
the invention, as represented in the figures, is not intended
to limit the scope of the embodiments of the invention, as
claimed, but is merely representative of exemplary embodi
ments of the invention.

Reference throughout this specification to “one embodi
ment” or “an embodiment” (or the like) means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the invention. Thus, appearances of the
phrases “in one embodiment' or “in an embodiment” or the
like in various places throughout this specification are not
necessarily all referring to the same embodiment.

Furthermore, the described features, structures, or char
acteristics may be combined in any suitable manner in at
least one embodiment. In the following description, numer
ous specific details are provided to give a thorough under
standing of embodiments of the invention. One skilled in the
relevant art may well recognize, however, that embodiments
of the invention can be practiced without at least one of the
specific details thereof, or can be practiced with other
methods, components, materials, et cetera. In other
instances, well-known structures, materials, or operations
are not shown or described in detail to avoid obscuring
aspects of the invention.
The description now turns to the figures. The illustrated

embodiments of the invention will be best understood by
reference to the figures. The following description is
intended only by way of example and simply illustrates
certain selected exemplary embodiments of the invention as
claimed herein.

It should be noted that the flowchart and block diagrams
in the figures illustrate the architecture, functionality, and
operation of possible implementations of systems, appara
tuses, methods and computer program products according to
various embodiments of the invention. In this regard, each
block in the flowchart or block diagrams may represent a
module, segment, or portion of code, which comprises at
least one executable instruction for implementing the speci
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in Succession may, in fact, be executed
Substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

Specific reference will now be made herebelow to FIGS.
1-11. It should be appreciated that the processes, arrange
ments and products broadly illustrated therein can be carried
out on, or in accordance with, essentially any Suitable
computer system or set of computer systems, which may, by
way of an illustrative and non-restrictive example, include a
system or server such as that indicated at 12 in FIG. 13. In
accordance with an example embodiment, most if not all of

10

15

25

30

35

40

45

50

55

60

65

4
the process steps, components and outputs discussed with
respect to FIGS. 1-11 can be performed or utilized by way
of a processing unit or units and system memory Such as
those indicated, respectively, at 16" and 28' in FIG. 13,
whether on a server computer, a client computer, a node
computer in a distributed network, or any combination
thereof.
To facilitate easier reference, in advancing from FIG. 1 to

and through FIG. 11, a reference numeral is advanced by a
multiple of 100 in indicating a substantially similar or
analogous component or element with respect to at least one
component or element found in at least one earlier figure
among FIGS. 1-11.

Generally, in accordance with at least one embodiment of
the invention, a user examines data, and findings are
recorded in the extraction plan. Snippets of text to be
extracted are labeled along with clues that would be useful
in extraction, and these can be viewed as formal test cases
for the final extraction; this will be better appreciated from
the description of FIG. 6 herebelow. The extraction plan then
captures the final intent and semantics of the AQL code at a
high level (wherein AQL is a query language based on APL,
A Programming Language). The user is then encouraged to
think in terms of a predetermined “Best Practices' method
ology, whereby the extraction tasks view encourages or
enforces such a methodology in developing extractors. Such
practices are associated, e.g., with analyzing the input data,
identifying text that must be extracted, developing rules
(including testing, debugging, and performance optimiza
tions) and exporting to a compiled execution plan. An
extraction plan view then enforces a top-down approach to
developing rules, as well as rules categorized into three
categories (basic features, candidate generation, filter &
consolidate), which may correspond to the best practices.
The tool then can expose the user to the “full power of the
language but in a subtle fashion, whereby a palette of
statements appropriate for each rule category are provided.
The user then selects a type of statement and the tool
provides a template for the statement, where the user can
proceed to “fill in the blanks’.

In accordance with at least one embodiment of the inven
tion, it is recognized that a development process for extrac
tors can include four phases as schematically illustrated in
FIG. 1. First, in a task analysis phase 91, extraction tasks are
defined based on high-level business requirements; docu
ments are input (93) and text in the documents is labeled
along with potential clues for assisting in extraction (95).
For each extraction task, IE rules are developed during a rule
development phase (107). Here, then, an extractor is devel
oped (109) and tested (111); these steps iterate as needed.
The rules are profiled and further fine-tuned (115) in a
performance tuning phase 113, to ensure high runtime
performance. Finally, in a delivery phase 117, the rules are
packaged so that they can be easily exported (119) and
thereupon embedded in various applications.

In accordance with at least one embodiment of the inven
tion, both novice and experienced developers are assisted by
providing an intuitive wizard-like interface that is informed
by best practices in extractor development throughout each
of these phases. By doing so, key missing pieces in a
conventional IE development environment can be provided
or “filled in’.

FIG. 2 schematically illustrates another general process
overview, in accordance with at least one embodiment of the
invention. As shown, in a first general step, the user is
assisted (200) in understanding the extraction task by asking
them to examine the data and label text Snippets of interest.

US 9,436,660 B2
5

Thence, a general extractor development step 209 includes
enforcing a predetermined structure for building extractors,
via three categories of “basic features' 221, “candidate
generation 223 and “consolidation 225. Basic features 221
include individual “building blocks, such as capitalized
word regex (LA-Za-Z+) and a dictionary of first names.
Candidate generation 223 involves defining “complete can
didates, e.g., the full name of a person. Consolidation 225
then deals with overlapping annotations from candidate
rules. A very wide variety of extraction tasks can be accom
modated; these can include, by way of illustrative and
non-restrictive examples: entity tasks (e.g., financial metrics
or tasks related to organizations) relationship tasks (e.g.,
company acquisitions or earning announcements) and com
plex tasks (e.g., driving directions, sentiment, intent to buy).

FIG. 3 illustrates a graphical user interface (GUI) 327 in
accordance with at least one embodiment of the invention,
showing in particular a workflow perspective. As shown, an
extraction tasks view 329 illustrates a sequence of opera
tions to be performed for extractor development. A text
editor 331 is provided for labeling input documents (e.g., via
providing an AQL editor for AQL code) and an extraction
plan view 333 provides a semantic overview of the extractor.

FIG. 4 illustrates two phases (labeled in the illustrated
GUI views as steps 1-2 followed by steps 3-6) of use of an
extraction tasks view, 429a and 429b, respectively, in accor
dance with at least one embodiment of the invention. Gen
erally, this view (429a/b) guides the user through a sequence
of tasks to perform when developing an extractor. The steps,
as labeled in the illustrated GUI views, are as follows: (1)
OpenDocument Collection; (2) Label examples and clues of
interest; (3) Develop extractor; (4) Test extractor; (5) Profile;
and (6) Export. Generally, steps (2)-(5) are likely to be
performed iteratively many times.

FIG. 5 illustrates a first step, opening a document collec
tion, with respect to extraction tasks view 529, in accordance
with at least one embodiment of the invention. In a first
Sub-step 1a, the user clicks and dialog opens where user
selects an input collection and in a Subsequent Sub-step 1b.
the user chooses which documents in the selected collection
to review. A document so chosen then shows up in the text
editor. (An allowance can also be made for multiple docu
ments to be opened up in the text editor pane, e.g., in a
separate tab.)

FIG. 6 illustrates a first sub-step of a second step (labeling
examples and clues of interest) with respect to extraction
tasks view 629, in accordance with at least one embodiment
of the invention. First, in a step 2a(1), the user examines a
few input documents and labels the Snippets of information
he/she wants to extract. By way of illustrative example, the
user may do this by going to text editor 631 and highlighting
selected text, and then right-clicking to access options such
as “label example as and/or “add example with new
label’. Labeled examples (snippets) are then recorded (i.e.,
stored) in the extraction plan 633 (step 2a(2)). Such record
ing or storage can take any of a variety of forms in
accordance with embodiments of the invention; in the pres
ent illustrative example, Such recording/storage is carried
out with respect to a hierarchy of memory-based folders or
nodes as shown (by way of illustrative example) in the field
constituted by extraction plan 633 in FIG. 6.

FIG. 7 illustrates a second sub-step of the aforementioned
second step with respect to the extraction tasks view 729, in
accordance with at least one embodiment of the invention.
First, in a step 2b(1), and in document viewer 731, the user
labels additional clues, from within the labeled examples or
from text near to the same, and Such clues are configured to

5

10

15

25

30

35

40

45

50

55

60

65

6
capture why a labeled example is desirable for extraction.
(As shown, in response to choosing “label example as”, a
right-clicked pull-down menu can assist a user in choosing
an existing label by providing ready choices for the same;
such choices could include, but need not be limited to, those
labels that the user has already created.) In a next step 2b(2),
such clues are also recorded in the extraction plan 733.

FIG. 8 illustrates a third step, developing an extractor, in
accordance with at least one embodiment of the invention.
In a first Sub-step 3(1), a template statement is inserted into
the AQL file in document viewer 831, and the user fills in the
blanks in the template and edits directly in the AQL Editor.
(Here, there need not be any generated code, in that a code
template may be generated that itself does not constitute
fully working code. Thus, essentially only a template need
be in play here, where the user then proceeds to add to the
template, or “fill in the blanks') A palette of statements
appropriate for "Basic Feature' category appears (step 3(2));
the same applies for “Candidate Rules” and
“Filter&Consolidate” section. Then (step 3(3)), in the
extraction plan 833, the user starts developing AQL to
capture examples of each label, starting from lower-level
clues, to the top-level examples that need to be extracted.

FIG. 9 illustrates a fourth step, testing of the extractor, in
accordance with at least one embodiment of the invention.
In a first Sub-step 4a, results are visualized in an annotation
explorer, which represents a portion of document viewer
931. Thence, in a sub-step 4b, with respect to extraction plan
933, the extractor is run on the entire input collection, the
documents that were selected in step 1b, and the documents
that were labeled in step 2.

FIG. 10 illustrates fifth and sixth steps, profiling and
exporting the extractor, respectively, with respect to the
extraction plan 1033 and in accordance with at least one
embodiment of the invention. Two squares 1035 and 1037.
as shown, can be clicked upon for the profiling and export
ing steps, respectively. In the former step, the runtime
performance of the extractor can be tested.

FIG. 11 illustrates an extraction plan view 1133, in
accordance with at least one embodiment of the invention.
Generally, this view captures a semantic overview of the
extractor, including examples and clues labeled in Step 2 and
AQL Code developed in Step 3. The AQL code is associated
with a label, and each label corresponds to either an example
of text snippet that should be extracted, or a clue that is
useful for identifying an example as candidate for extraction.
The structure of a label node can include AQL statements
and labels. For their part, AQL Statements can be organized
into three categories of basic features, candidate generation
and filter/consolidate. Each category exposes a number of
template AQL statements that are appropriate for that cat
egory. The labels, on the other hand, can convey the set of
labels of additional clues recorded in Step 2.

In accordance with at least one embodiment of the inven
tion, the extraction plan can provide a functionality of
moving, renaming or deleting nodes. This involves simply
semantic reorganization, with no effect on underlying AQL
code. A label can be marked as done or undone, e.g., to the
extent that a user has finished AQL development for the
label. Examples can be highlighted in input documents. An
AQL statement can be added here, wherein an AQL template
is added in a correct.aql file for the label and category of a
statement. The user may modify the template as he/she
wishes.

In accordance with at least one embodiment of the inven
tion, in the extraction plan view, a bidirectional link from the
extraction plan node can be made to view definition in AQL

US 9,436,660 B2
7

code. From the statement node in the extraction plan, one
can jump to the place in AQL code where the view is
defined, and an error message can be shown if the view is not
defined. From AQL editor, a view name can be selected in
“create view statement” and added to a label (e.g., via drag
and drop). Running (that is, testing) the extractor can be
undertaken as described heretofore with respect to step 4,
profiling (step 5) can take place with a predetermined default
running time (e.g., 60 seconds), and exporting (step 6) can
take place via popping up a wizard for that purpose.

Inasmuch as a set or framework of best practices are
discussed herein with respect to embodiment of the inven
tion, it should be understood that suitable examples of such
best practices can derive from any of a great variety of
Sources. One such source, by way of illustration, is consti
tuted by the best practices discussed in the following refer
ence, which may be referred to for background purposes:
Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li,
Frederick Reiss, and Shivakumar Vaithyanathan: “Domain
Adaptation of Rule-Based Annotators for Named-Entity
Recognition Tasks, 2010 Conference on Empirical Meth
ods in Natural Language Processing: 1002-1012.

It can be appreciated from the foregoing that, in accor
dance with at least one embodiment of the invention, a
useful tool is provided, via an interface, that permits a user
to develop an extractor and to do so in a manner that enjoys
Some efficiencies as compared to conventional arrangements
for providing Such training to a non-expert. As discussed
herein, best practices can be accommodated and dissemi
nated to assist in Such training (or guidance). At the same
time, there are broadly contemplated herein variant embodi
ments of the invention which employ significantly less
manual intervention and thus may be carried out with
significantly more automation.

Accordingly, by way of an illustrative example in accor
dance with at least one variant embodiment of the invention,
an extractor may be developed by automatically incorporat
ing best practices and guidelines in a manner that automati
cally generates rules and guidelines for a new extractor.
Such automatic generation, for instance, can involve an
automatic parsing and labeling of text in a manner that
foregoes a need for manual intervention. Such automated
steps can be carried to a point where one or more steps of
manual intervention may be warranted or desired or, in the
alternative, can constitute an entirely automated process.

FIG. 12 sets forth a process more generally for managing
information extraction, in accordance with at least one
embodiment of the invention. It should be appreciated that
a process such as that broadly illustrated in FIG. 13 can be
carried out on essentially any suitable computer system or
set of computer systems, which may, by way of an illustra
tive and non-restrictive example, include a system Such as
that indicated at 12" in FIG. 13. In accordance with an
example embodiment, most if not all of the process steps
discussed with respect to FIG. 12 can be performed by way
of a processing unit or units and system memory Such as
those indicated, respectively, at 16" and 28 in FIG. 13.
As shown in FIG. 12, in accordance with at least one

embodiment of the invention, one or more documents are
opened for extraction. An interface is provided to create a
label and thereupon label a portion of the document. The
created label is stored, and an extractor is developed based
on the labeling. A test interface is provided for the extractor,
and results of a test conducted through the test interface are
displayed. The extractor is exported.

Referring now to FIG. 13, a schematic of an example of
a cloud computing node is shown. Cloud computing node

10

15

25

30

35

40

45

50

55

60

65

8
10' is only one example of a suitable cloud computing node
and is not intended to Suggest any limitation as to the scope
of use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node 10' is
capable of being implemented and/or performing any of the
functionality set forth hereinabove. In accordance with
embodiments of the invention, computing node 10' may not
necessarily even be part of a cloud network but instead could
be part of another type of distributed or other network, or
could represent a stand-alone node. For the purposes of
discussion and illustration, however, node 10' is variously
referred to herein as a “cloud computing node'.

In cloud computing node 10' there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys
tems, environments, and/or configurations that may be suit
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.
Computer system/server 12" may be described in the

general context of computer system-executable instructions,
Such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12" may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.
As shown in FIG. 13, computer system/server 12" in cloud

computing node 10 is shown in the form of a general
purpose computing device. The components of computer
system/server 12 may include, but are not limited to, at least
one processor or processing unit 16', a system memory 28,
and a bus 18' that couples various system components
including system memory 28' to processor 16'.
Bus 18' represents at least one of any of several types of

bus structures, including a memory bus or memory control
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi
tectures. By way of example, and not limitation, Such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.
Computer system/server 12' typically includes a variety of

computer system readable media. Such media may be any
available media that are accessible by computer system/
server 12, and includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28' can include computer system read
able media in the form of Volatile memory, Such as random
access memory (RAM) 30' and/or cache memory 32". Com
puter system/server 12 may further include other remov
able/non-removable, volatile/non-volatile computer system
storage media. By way of example only, storage system 34'
can be provided for reading from and writing to a non

US 9,436,660 B2

removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a "floppy
disk”), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 18' by at
least one data media interface. As will be further depicted
and described below, memory 28' may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

Program/utility 40', having a set (at least one) of program
modules 42", may be stored in memory 28' (by way of
example, and not limitation), as well as an operating system,
at least one application program, other program modules,
and program data. Each of the operating systems, at least one
application program, other program modules, and program
data or some combination thereof, may include an imple
mentation of a networking environment. Program modules
42 generally carry out the functions and/or methodologies
of embodiments of the invention as described herein.

Computer system/server 12" may also communicate with
at least one external device 14' such as a keyboard, a
pointing device, a display 24', etc.; at least one device that
enables a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12' to communicate with at
least one other computing device. Such communication can
occur via I/O interfaces 22. Still yet, computer system/
server 12 can communicate with at least one network such
as a local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via
network adapter 20'. As depicted, network adapter 20' com
municates with the other components of computer system/
server 12" via bus 18'. It should be understood that although
not shown, other hardware and/or software components
could be used in conjunction with computer system/server
12. Examples include, but are not limited to: microcode,
device drivers, redundant processing units, external disk
drive arrays, RAID systems, tape drives, and data archival
Storage Systems, etc.

It should be noted that aspects of the invention may be
embodied as a system, method or computer program prod
uct. Accordingly, aspects of the invention may take the form
of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro
code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module' or “system.” Furthermore, aspects
of the invention may take the form of a computer program
product embodied in at least one computer readable medium
having computer readable program code embodied thereon.
Any combination of one or more computer readable

media may be utilized. The computer readable medium may
be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor system, apparatus, or device, or any Suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec
tion having at least one wire, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only

5

10

15

25

30

35

40

45

50

55

60

65

10
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store, a program for use
by, or in connection with, an instruction execution system,
apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro
magnetic, optical, or any Suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ
ing but not limited to wireless, wire line, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the invention may be written in any combination
of at least one programming language, including an object
oriented programming language such as Java R, Smalltalk,
C++ or the like and conventional procedural programming
languages. Such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user's computer (device), partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer, or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider).

Aspects of the invention are described herein with refer
ence to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, Such that the
instructions stored in the computer readable medium pro
duce an article of manufacture. Such an article of manufac
ture can include instructions which implement the function/
act specified in the flowchart and/or block diagram block or
blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable

US 9,436,660 B2
11

apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

This disclosure has been presented for purposes of illus
tration and description but is not intended to be exhaustive
or limiting. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi
ments were chosen and described in order to explain prin
ciples and practical application, and to enable others of
ordinary skill in the art to understand the disclosure.

Although illustrative embodiments of the invention have
been described herein with reference to the accompanying
drawings, it is to be understood that the embodiments of the
invention are not limited to those precise embodiments, and
that various other changes and modifications may be
affected therein by one skilled in the art without departing
from the scope or spirit of the disclosure.
What is claimed is:
1. A method comprising:
opening one or more documents for extraction;
providing an interface to create a label and thereupon

label a portion of the document;
said providing of an interface comprising providing an

extraction tasks view, a text editor and an extraction
plan view:

receiving at least one labeled example, wherein the at
least one labeled example is labeled by a user and
wherein the at least one labeled example identifies a
portion of the document to extract;

receiving at least one clue label created by the user,
wherein the clue label indicates a reason for extraction
of the at least one labeled example:

storing the received at least one labeled example and at
least one clue label in the extraction plan;

developing an extractor using the at least one labeled
example and the at least one clue label;

said developing comprising conveying a predetermined
structure for guiding a user and further comprising
creating extraction rules based upon the at least one
labeled example and the at least one clue label;

wherein the predetermined extractor structure comprises
the categories of basic features, candidate generation,
and consolidation;

providing a test interface for the extractor;
thereupon testing the extractor through the test interface;
displaying results of a test of the extractor conducted

through the test interface;
permitting iteration of said steps of developing the extrac

tor and testing the extractor; and
exporting the extractor.
2. The method according to claim 1, wherein said pro

viding of an interface comprises providing an interface
portion to permit said storing of the created label.

3. The method according to claim 1, wherein said devel
oping comprises storing the extraction rules.

4. The method according to claim 3, wherein said pro
viding of an interface comprises providing an interface
portion to permit said creating and storing of extraction
rules.

5. The method according to claim 4, wherein:
said providing of an interface portion to permit said

creating and storing of extraction rules comprises pro
viding an interface for creating at least one top-level
node configured to capture at least one main concept to
be extracted; and

5

10

15

25

30

35

40

45

50

55

60

65

12
said creating comprises creating the at least one top-level

node.
6. The method according to claim 5, wherein each at least

one top-level node comprises examples for recording
labeled Snippets and extraction rules for capturing labeled
Snippets.

7. The method according to claim 6, wherein:
said creating of the at least one top-level node comprises

creating the examples;
said creating of the examples comprises creating

examples of the at least one main concept and creating
clues configured to guide extraction of the at least one
main concept.

8. The method according to claim 6, wherein the extrac
tion rules for capturing labeled Snippets comprise code
generation for rules from actions performed with respect to
the at least one top-level node.

9. The method according to claim 5, wherein the interface
for creating at least one top-level node comprises a drag and
drop function that coordinates with a text editor.

10. The method according to claim 1, wherein said
providing of a test interface comprises affording a capability
to select Snippets and clues to label and to display extraction
results associatively with respect to labels.

11. The method according to claim 1, wherein the test
interface comprises a portion of the interface.

12. The method according to claim 1, further comprising
functionally coordinating the test interface with a remainder
of the interface such that actions undertaken with respect to
the test interface are reflected in the remainder of the
interface and actions undertaken with respect to the remain
der of the interface are reflected in the test interface.

13. The method according to claim 1, wherein said
conveying of a predetermined structure comprises convey
ing a predetermined structure with respect to at least one rule
associated with at least one top-level node to thereby guide
a user in developing the rules for that node.

14. The method according to claim 1, wherein said
providing of an interface comprises providing a mechanism
for a user to alter the predetermined extractor structure.

15. An apparatus comprising:
at least one processor; and
a computer readable storage medium having computer

readable program code embodied therewith and execut
able by the at least one processor, the computer read
able program code comprising:

computer readable program code configured to open one
or more documents for extraction;

computer readable program code configured to provide an
interface to create a label and thereupon label a portion
of the document;

the providing of an interface comprising providing an
extraction tasks view, a text editor and an extraction
plan view:

computer readable program code configured to receive at
least one labeled example, wherein the at least one
labeled example is labeled by a user and wherein the at
least one labeled example identifies a portion of the
document to extract;

computer readable program code configured to receive at
least one clue label created by the user, wherein the clue
label indicates areason for extraction of the at least one
labeled example:

computer readable program code configured to store the
received at least one labeled example and at least one
clue label in the extraction plan;

US 9,436,660 B2
13

computer readable program code configured to develop an
extractor using the at least one labeled example and the
at least one clue label;

the developing comprising conveying a predetermined
structure for guiding a user and further comprising
creating extraction rules based upon the at least one
labeled example and the at least one clue label;

wherein the predetermined structure comprises the cat
egories of basic features, candidate generation, and
consolidation;

computer readable program code configured to provide a
test interface for the extractor;

computer readable program code configured to thereupon
test the extractor through the test interface;

computer readable program code configured to display
results of a test of the extractor conducted through the
test interface;

computer readable program code configured to permit
iteration of the steps of developing the extractor and
testing the extractor, and

computer readable program code configured to export the
eXtractOr.

16. A computer program product comprising:
a computer readable storage medium having computer

readable program code embodied therewith, the com
puter readable program code comprising:

computer readable program code configured to open one
or more documents for extraction;

computer readable program code configured to provide an
interface to create a label and thereupon label a portion
of the document;

the providing of an interface comprising providing an
extraction tasks view, a text editor and an extraction
plan view:

computer readable program code configured to receive at
least one labeled example, wherein the at least one
labeled example is labeled by a user and wherein the at
least one labeled example identifies a portion of the
document to extract;

computer readable program code configured to receive at
least one clue label created by the user, wherein the clue
label indicates areason for extraction of the at least one
labeled example:

computer readable program code configured to store the
received at least one labeled example and at least one
clue label in the extraction plan;

computer readable program code configured to develop an
extractor using the at least one labeled example and the
at least one clue label;

the developing comprising conveying a predetermined
structure for guiding a user and further comprising

10

15

25

30

35

40

45

50

14
creating extraction rules based upon the at least one
labeled example and the at least one clue label;

wherein the predetermined structure comprises the cat
egories of basic features, candidate generation, and
consolidation;

computer readable program code configured to provide a
test interface for the extractor;

computer readable program code configured to thereupon
test the extractor through the test interface;

computer readable program code configured to display
results of a test of the extractor conducted through the
test interface;

computer readable program code configured to permit
iteration of the steps of developing the extractor and
testing the extractor, and

computer readable program code configured to export the
eXtractOr.

17. The computer program product according to claim 16,
wherein said providing of an interface comprises providing
an interface portion to permit said storing of the created
label.

18. The method according to claim 1, wherein:
the extraction tasks view displays a sequence of tasks for

the user to perform when developing the extractor, the
sequence of tasks including: open document collection,
label examples and clues of interest, develop extractor,
test extractor, profile, and export;

said opening comprises:
permitting selection of one or more documents within

a collection for review; and
displaying the selected one or more documents in the

text editor;
said providing of an interface comprises:

permitting use of a text editor to highlight selected text;
permitting labeling of the selected text;
recording the labeled text in the extraction plan view:
and

permitting labeling of additional clues relative to the
selected text;

said developing comprises:
inserting a template statement into a file in the text

editor, and
permitting the user to fill blanks in the template; and

said testing comprises:
visualizing results in an annotation explorer portion of

the text editor; and
running the extractor on an input collection of docu

mentS.

