
(12) United States Patent
Rosenberg et al.

USOO943 0672B2

US 9.430,672 B2
Aug. 30, 2016

(10) Patent No.:
(45) Date of Patent:

(54) STACK FUSION ARCHITECTURE
INCLUDING DISTRIBUTED SOFTWARE
CLUSTERS TO ENABLE SOFTWARE
COMMUNICATION SERVICES

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

Applicant: Cisco Technology, Inc., San Jose, CA

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

(US)

Jonathan Rosenberg, Freehold, NJ
(US); Patrick Linskey, San Francisco,
CA (US); Reinhardt Quelle, Belmont,
CA (US)

Cisco Technology, Inc., San Jose, CA
(US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

14/561,437

Dec. 5, 2014

Prior Publication Data

US 2016/O162701 A1

Int. C.
H04L 9/32

U.S. C.

Jun. 9, 2016

(2006.01)
(2013.01)
(2006.01)
(2006.01)

CPC. G06F 21/6245 (2013.01); G06F 17/30867
(2013.01); H04L 63/08 (2013.01); H04L

Field of Classification Search
CPC G06F 21/31; G06F 21/50; G06F 21/105;

G06F 21/10; H04L 63/08; H04L 63/10;
H04L 63/101; H04L 63/102

USPC 726/1 7, 2630; 713/193; 705/51
See application file for complete search history.

63/102 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

7,466,810 B1 12/2008 Quon et al.
8,478,845 B2 * 7/2013 Agarwala GO6F9,5061

TO9,216
8,862.933 B2 * 10/2014 Manglik GO6F 9/5072

T14f11
9,047,133 B2 * 6/2015 Winterfeldt G06F 8.60

(Continued)
OTHER PUBLICATIONS

Kaviani et al., “Cross-Tier Application & Data Partitioning of Web
Applications for Hybrid Cloud Deployment'. Middleware 2013–
Lecture Notes in Computer Science vol. 8275, 2013, pp. 226-246,
Dec. 2013.

(Continued)

Primary Examiner — Hosuk Song
(74) Attorney, Agent, or Firm — Edell, Shapiro & Finnan,
LLC

(57) ABSTRACT

A stack fusion architecture enables a cloud provider to
provide Software-as-a-Service (SaaS) offerings to multiple
organizations. Each organization operates a Infrastructure
as-a-Service (IaaS) platform and is associated with an orga
nization domain. A cluster of software/communication Ser
vices is deployed to each platform. Users registered to an
organization domain have access limited to the cluster
uniquely associated with that domain. The architecture
includes a globally accessible domain-to-cluster map used to
map each cluster to the associated domain. A locally acces
sible user-to-cluster map is stored in each cluster to map that
cluster to each user registered to the domain uniquely
associated with that cluster. The architecture enables com
munication between users provisioned on different clusters
and registered to different domains without exposing private
information to the cloud provider.

22 Claims, 19 Drawing Sheets

COUD SERCE

USER
as

PRODER

Sist) OFSOOLS --
CONSUMER a

PAORPA N DAA
ENER4

CORENCATIONETWORKCN

CAACENTERD OATACENERO2 DAACENTERD3

- /1. ----

(s) CLUSEERC2 (e)
PLATORMP PLAFORP2 PLATFORP3

() SER us) USER () USER U2/ U3/ US S
y 1

COMPANY- COMPANY 2 - - COMPANY3

US 9.430,672 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

9,104,800 B2 * 8/2015 Bragstad G06F 11,362
9,137,106 B2 * 9/2015 McCarthy GO6F9,5072

2009/03 19781 A1 12/2009 Byrum et al.
OTHER PUBLICATIONS

Zhang et al., “Sedic: Privacy-Aware Data Intensive Computing on
Hybrid Clouds”, CCS 11 Proceedings of the 18th ACM conference
on Computer and communications security, Oct. 21, 2011, pp.
515-525.
Khadilkar et al., "Hybridizer: A Framework for Partitioning Work
loads over Hybrid Clouds'. Retrieved from https://utd.edu/
-vvk072000/Research/Hybridizer/tech-report.pdf on Nov. 26.
2014, 31 Pages.

International Search Report and Written Opinion in counterpart
International Application No. PCT/US2015/063869, mailed Mar.
11, 2016, 13 pages.
Wieland Alge, “Email in the cloud: the challenges and benefits”.
Computer Fraud and Security, vol. 2012, No. 7, Mar. 17, 2012, pp.
10-12, XP0552.54833, ISSN: 1361-3723, DOI: 10.1016/S1361
3723(12)70073-8, 3 pages.
Marco Carugi, ZTE Corporation PR China, “Draft deliverable on
Introduction to the cloud ecosystem: definitionsm taxonomies, use
cases, high level requirements and capabilities—Output of the FG
Cloud #6 meeting, Geneva Jun. 27-Jul. 1, 2011; Clo”, ITU-T
DRAFT: Study Period 2009-2012, International Telecommunica
tion Union, Geneva, CH, vol. cloud, Jul. 11, 2011; pp. 1-88,
XPO 17587068, (retrieved on Jul 11, 2011).

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 19 US 9.430,672 B2

100

CLOUD SERVICE
PROVIDER

CUSTER C4 OPSOOLS --
CONSUMER

s PLAFORMP4 DAA
CENTERD4

COMMUNICATION NETWORKCN

DAA CENTERD DATA CENERO2 DAA CENTERD3

PLATFORMP PATFORM P2 PLATFORMP3

USER
J

COMPANY COMPANY 2 - COMPANY 3

FIG.

U.S. Patent Aug. 30, 2016 Sheet 2 of 19 US 9.430,672 B2

CONSUMER
(E) CUSTERgy/ OPSOOS

PLATFORMP4

COMPANY

FIG.2

U.S. Patent Aug. 30, 2016 Sheet 3 of 19 US 9.430,672 B2

300 302
CUSTOMERSETSUPIaaS -

CUSOMER PROVISIONSaaS WITH TENAN
CREDENIALS

CUSTOMER WISIS COUD PROVIDERADMIN PORTAL

CUSTORERWISS CLOUD PROVIDERADMINPORTA AND
OGSIN

304

306

308

CUSTOMERENTERS CREDENTIAL FOR laaS ACCESS

316

CUSTOMER PRESSES DEPLOY

FIG.3

U.S. Patent Aug. 30, 2016 Sheet 4 of 19 US 9.430,672 B2

CN

PUBLICINTERNET

402

FIREWAL

404 406 408 40

SERVER SERVER SERVER SERVER

414
SWITCH SWITCH

46

FIREWAL

420

CORPORATE INTRANE

FIG.4

U.S. Patent

500

Aug. 30, 2016 Sheet 5 Of 19

CONNECTO OPENSTACKRESTENDPOINT

AUTHENTICATE USING CREDENTIAS

REQUEST CREATION OF WMS

NSA SOFTWARE

504

506

508

RUNINTEGRATION TESTSTOVERIFY
INSTALATION

CREATE CLUSERNAME AND STORE

FIG5

US 9.430,672 B2

US 9.430,672 B2 Sheet 6 of 19 Aug. 30, 2016 U.S. Patent

US 9.430,672 B2 Sheet 7 Of 19 Aug. 30, 2016

|{- - - - - --- - - -

U.S. Patent

U.S. Patent Aug. 30, 2016 Sheet 8 of 19 US 9.430,672 B2

808

PROVISIONING

HP

HTPS

FIG.8

U.S. Patent Aug. 30, 2016 Sheet 9 Of 19 US 9.430,672 B2

900

AP
SERVER

MESSAGE BUS

CXN CXN
SERVER SERVER

AP
SERVER

MESSAGE BUS

CXN CXN
SERVER SERVER

CONNECTION
SERVER

WEBSOCKE

CUSERA CUSERB

FIG.9

US 9.430,672 B2 Sheet 10 of 19 Aug. 30, 2016

000||

U.S. Patent

US 9.430,672 B2 Sheet 11 of 19 Aug. 30, 2016 U.S. Patent

US 9.430,672 B2 U.S. Patent

US 9.430,672 B2 Sheet 13 Of 19 Aug. 30, 2016 U.S. Patent

808

|----------------------------~--~~~~ ~~-
} } }

~ 0%|

–

US 9.430,672 B2 Sheet 14 of 19 Aug. 30, 2016 U.S. Patent

U.S. Patent Aug. 30, 2016 Sheet 15 Of 19 US 9.430,672 B2

1500
DEPOY AND CONFIGURE AN laaS
PATFORMINADAACENTER

OPERATED BY AN ORGANIZATION
ASSOCATED WHAN ORGANIZAION

DOMAIN CLAIMED

150 PROVISIONREGISTER USERS THAT
BELONG TO EACHORGANIZATIONDOMAIN

ONLY ON THE CLUSER UNIQUELY ASSOCATED
WITH THAORGANIZATION DOMAIN

CREATE (I)AGLOBALLY ACCESSIBLEDOMAIN-TO-CLUSTER
MAP TOMAPEACH CLUSTERTO HE ORGANIZATION
DOMAINUNIQUELY ASSOCIATED THEREWITH AND(i)

AOCALYACCESSIBLE USER-TO-CLSTERMAP TO MAP
HAC USERO EACH USER PROVISIONED ONA

ENABLE USERS
PROVISIONED ON DIFFEREN

CUSTER CLUSTERSTO
COMMUNICAEWITH
EACHOHERAS

RECEIVE AUSERREQUEST FROMA FIRS USERTO F ts st
COMMUNICATE WHA SECONDUSER USINGA

COMMUNICAON SERVICE CENTRALIZED COUD
COMMUNICATION
SERVICE, WITHOUT

SHARING
DIRECT THE USER REQUESTO THE COMMUNICATION RESPECTIVE USER
SERVICE IN THE CLUSER UNIQUELY ASSOCATED WITH INFORMATION WITH THE

COUD PROVIDER THE ORGANIZATION DOMAINOWHICHE FIRST
USER BELONGS BASED ON THE USEREMAIL ADDRESS,

THEDOMAIN-TO-CLUSTER MAP, AND
THE USER-TO-CLUSTER MAPS

FIG.5

U.S. Patent Aug. 30, 2016 Sheet 16 of 19 US 9.430,672 B2

1600

STOREAGLOBALLY ACCESSIBLEDOMAIN-TO-CLUSTERMAP 1608
USED TOMAPEACH CUSTER OTHE ORGANIZATION

DOMAIN UNIQUEYASSOCIAEDHEREWIH

STORE IN EACH CUSTERAOCALYACCESSIBLE
USER-O-CJSTERMAP TOMAPTHAT CLUSTERTO

EACH USERREGISTERED TO THE ORGANIZATION DOMAIN
UNIQUEYASSOCIATED WITH THAT CUSTER

STORE WITH A COUD PROVIDERACONSUMER
ORGANIZATIONUSER-O-CUSER MAP TOMAP

EMAIL ADDRESSES OF USERS NOT REGISTERED TO ANY
ORGANIZATION DOMAIN UNIQUELY ASSOCATED WITH
ACLUSTER TOOTHER CLUSERS TO WHICH THE

UNREGISTERED USERS HAVEACCESS

620
RECEIVE AUSER REQUEST FORACCESS TO ASOFTWARE
SERVICE OFFERED BY THE CLOUD PROVIDER THE USER
REQUESTINCLUDINGAUSEREMAIL ADDRESS (DOMAIN

+USERIDENTIFIERIDENTITY)

DIRECT THE USERREQUESTO THE REQUESTED 1625
SOFTWARESERVICE INACLUSTER UNIQUELY ASSOCATED

WITH THE ORGANIZATION DOMAIN TO WITH THE USER
ISREGISTERED BASED ON THE USEREMAIL ADDRESS,

THEDOMAIN-TO-CLUSTERMAP, ONE OF THE USER-TO-CLUSTER
MAPS, OR THE CONSUMER ORGANIZATION

MAP (THE DIRECTRESOLVES THE USEREMAIL ADDRESS
TOTHEREQUESTED SOFTWARESERVICE IN THE CLUSTER)

FIG.6

U.S. Patent Aug. 30, 2016 Sheet 17 Of 19 US 9.430,672 B2

1625
SEARCHHE GLOBALYACCESSIBLEDOMAIN-TO-CLUSER
MAPFORAN ORGANIZATION DOMAINHA MATCHESA

DOMAIN OFHE USER EMA ADDRESS

1705

FHESEARCH IN 705 FINDSAN ORGANIZATION DOMAIN
THAT MATCHES THE DOMAIN OF THE USEREMAIL ADDRESS,
CONSTRUCT AN ADDRESS FORTHEREQUESTED SOFTWARE
SERVICEBASED ON THE CLUSER MAPPED TO THE FOUND
ORGANIZATION DOMAIN, WHICH VECTORS THESEARCH
TO THAT CLUSTER (GOTONEXT OPERATION 1715)

SEARCH THE LOCALLYACCESSIBE USER-TO-CLUSTER
MAPIN THE MAPPEDCLUSTERFOR THE USERIDENTIFIER, AND
FTHE USER DENIFIERIS FOUND INHEOCALYACCESSIBLE"
USER-TO-CLUSTER MAP, ACCESS THE REQUESTED SOFTWARE

SERVICES ON THAT CUSTER

75

FHESEARCH OFHE GLOBALYACCESSIBLE
DOMAIN-O-CLUSTER MAPA 1705 DOES NOT FIND
ANORGANIZATION OONANTHEREIN THAT MACHES
THE DOMAIN OF THE USEREMAIL ADDRESS, SEARCH
THE CONSUMER ORGANIZATIONUSER-TO-CLUSER
MAPFOR A CUSTER THAT IS MAPPED TO THE USER

EMAADDRESS

1720

IF THESEARCH OF THE CONSUMER ORGANIZATION 725
USER-O-CUSER MAPA 720 FINDS ACLUSER

MAPPED TO THE USEREMAIL ADDRESS, CONSTRUCT AN
ADDRESS FORTHEREQUESTED SOFTWARESERVICE
BASED ON THE CLUSER MAPPED TO THE USEREMAIL
ADDRESS, WHICH WECTORS ACCESSTO THESERVICE IN

THE CLUSTER

ACCESS THE REQUESTED SOFTWARESERVICE IN THE
CLUSTER MAPPEDOTHE USEREMAIADDRESS

BASED ON THE CONSTRUCTED ADDRESS (FROM 4725) FIG.17

U.S. Patent Aug. 30, 2016 Sheet 18 of 19 US 9.430,672 B2

1800

RECEIVE AREQUEST FORA COMMUNICATION
SERVICE FROMAN ORIGINATORREGISTERED TO

ANORIGINATOR CLSER THAT INCLUDES
DENITIES OF THE ORIGINATOR AND A EAST ONE

PARTICIPANT

RESPONSIVE TOTHEREQUEST, CREATEA
COMMUNICATION PROTOCOLOBJECT ("RENDEZVOUS

OBJECT) IN THE ORIGINATOR CLUSTER THAT
REPRESENSA COMUNICATION SESSION

DISCOVERA PARTICIPAN CUSER
ON, WHICH THE PARTICIPAN IS REGISTERED

1820
NOTIFY THE PARTICIPANT WIAHE PARTICIPANCLUSER
THAT THE COMMUNICATION PROTOCOLOBECTEXISTS

1825 UPDATE AN INDEXPROTOCO OBJEC
INTHE PARTICIPANT CLUSER THAT TRACKS
COMMUNICATION SESSIONS IN WHICH THE

PARTICIPANTIS ENGAGED WITH AREFERENCE
THAT POINTS TOTHE COMMUNICATION PROTOCO

OBECTIN THE ORIGINATOR CLUSER

FIG.8

U.S. Patent Aug. 30, 2016 Sheet 19 Of 19 US 9.430,672 B2

CONTROLER 900 FOR laaSPLAFORM

1930
NETWORK
INTERFACE

UNI

1910

PROCESSOR

1935 940

CONTROL
OGIC

DATABASE

FIG.9

US 9,430,672 B2
1.

STACK FUSION ARCHITECTURE
INCLUDING DISTRIBUTED SOFTWARE
CLUSTERS TO ENABLE SOFTWARE

COMMUNICATION SERVICES

TECHNICAL FIELD

The present disclosure relates to cloud based real-time
communications, also known as Software as a service
(SaaS).

BACKGROUND

Real-time communications services for business are
available in two deployment models. One model, called
on-premise, is a model wherein the Information Technology
(IT) department of a company obtains software for provid
ing communications services to their users. Premise-based
deployment models have drawbacks. They require costly
up-front licenses and IT projects to install and deploy. They
have very slow upgrade cycles, with businesses often being
many years behind the current release. They also typically
struggle in providing business-to-business (b2b) communi
cations.

In an alternative deployment model, referred to as cloud
or software as a service (SaaS), a third party—the SaaS
provider builds and operates the server software. The SaaS
model introduces difficulties, too. The communications soft
ware might run in a data center far away from the business
customer, introducing latency. Another issue is that of data
sovereignty. Communications services typically include
storage and maintenance of personally identifiable informa
tion, including user accounts. Many businesses would prefer
that personally identifiable user information and company
corporate information reside in the corporate data center, not
in the data centers of a third party that cannot (perhaps) be
trusted as much.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a deployment model of an
example distributed services system or “stack fusion' sys
tem, according to an example embodiment.

FIG. 2 is a block diagram of a variation of the deployment
model depicted in FIG. 1, according to an example embodi
ment.

FIG. 3 is an example process of deploying software to a
given cluster depicted in FIG. 1, according to an example
embodiment.

FIG. 4 is a typical deployment for a private cloud that
results from the actions performed in the process of FIG. 3,
according to an example embodiment.

FIG. 5 is depicted an example process of installing and
testing services in the private cloud that were provisioned by
the process of FIG. 3, according to an example embodiment.

FIG. 6 is an example message transaction used to access
domain-to-cluster map, according to an example embodi
ment.

FIG. 7 is an illustration of message exchanges used to
perform an example of a user provisioning operation on a
cluster (also referred to as registering the user to or on the
cluster), according to an example embodiment.

FIG. 8 is an illustration of example software components
within a cluster implemented in a three-tier web architecture.

FIG. 9 is an example Mercury architecture as imple
mented in a multi-cluster model, according to an example
embodiment.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 10 is a pictorial representation of an example design

pattern that enables users provisioned on different clusters to
use services that communicate across the clusters, according
to an example embodiment.

FIG. 11 is an illustration of an example diagrammatic
identity model of orgs, users, and domains, according to an
example embodiment.

FIG. 12 is a block diagram of distributed mapping,
according to an example embodiment.

FIG. 13 is a diagram of example message exchanges used
to setup a chat session between users provisioned on differ
ent clusters, according to an example embodiment.

FIG. 14 is a diagram of example message exchanges when
a user provisioned on a first cluster wants to call a user
provisioned on second cluster, using a locus technique,
according to an example embodiment.

FIG. 15, there is a flowchart of an example method of
establishing an architecture for distributed communication
services, according to an example embodiment.

FIG. 16 is a flowchart of an example method of user and
cluster-related mapping operations performed in the archi
tecture for distributed communication services established
in the method of FIG. 15, according to an example embodi
ment.

FIG. 17 is a flowchart of a “directing operation from the
method of FIG. 16, according to an example embodiment.

FIG. 18 is a flowchart of an example method of commu
nicating in a distributed communication services system.

FIG. 19 is a block diagram of an example generalized
controller used in a data center to execute cluster applica
tions deployed on a platform.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview
Techniques presented herein facilitate a communications

service that can be provided as a cloud service amongst a
number of organizations. According to a first technique, a
cloud provider is configured to provide Software-as-a-Ser
vice (SaaS) offerings to multiple organizations. Each of the
organizations operates a distinct Infrastructure-as-a-Service
(IaaS) platform and is associated with at least one distinct
organization domain associated with the organization. A
cluster of Software services, including communication ser
vices, is deployed to each IaaS platform. Each cluster is
uniquely associated with the organization that operates that
IaaS platform. Users that belong to each organization are
provisioned on the cluster associated with that organization.
The provisioning includes storing user information for each
user only on the associated cluster. Users provisioned on
different clusters are enabled to communicate with each
other as if the users were part of a centralized cloud
communication service, without sharing respective user
information with the cloud provider.

According to a second technique that Supports operations
in the first technique, a globally accessible domain-to-cluster
map is established and used to map each cluster to the
organization domain associated therewith. A locally acces
sible user-to-cluster map is stored in each cluster to map that
cluster to each user registered to the organization domain
associated with that cluster so as to have access thereto. A
user request for access to a software service offered by the
cloud provider is received, wherein the user request includes
a user email address (which may include a domain name and
a user identifier/identity). The user request is directed to the
requested Software service in a cluster associated with the

US 9,430,672 B2
3

organization domain to with the user is registered based on
the user email address, the domain-to-cluster map, and one
of the user-to-cluster maps.

Example Embodiments

Introduction

Historically, real-time communications services for busi
ness have been available in two deployment models. One
model, called on-premise, is a model wherein the Informa
tion Technology (IT) department of a company obtains
Software for providing communications services to their
users. The IT department then installs the software on
servers residing in their data centers, and then operates this
software. This is the traditional deployment model for
enterprise Internet Protocol (IP) communications services
(also known as IP PBX or Unified Communications for the
past 15 years). However, premise-based deployment models
have drawbacks. They require costly up-front licenses and
IT projects to install and deploy. They have very slow
upgrade cycles, with businesses often being many years
behind the current release. They also typically struggle in
providing b2b communications.
More recently, an alternative deployment model has

arisen. In this model, referred to as cloud or Software as a
service (SaaS), the IT department does not need to install or
manage the Software. Rather, a third party—the SaaS pro
vider builds and operates the server software. The IT
department typically pays for this service on a monthly
basis. The IT department can consume the service using
Personal Computer (PC), mobile or tablet based soft clients,
or by plugging in hard phones into the Internet. The hard
phones automatically connect to the SaaS provider and
enable service. SaaS services resolve many of the key
drawbacks of premise Software deployments. They require
little upfront costs or time to deploy—the IT department can
be operational within minutes. The SaaS provider handles
Software upgrades and typically provides service that is
upgraded invisibly to the customers with great frequency.
Most importantly, cloud communications services have
proven extremely effective at business-to-business (b2b)
communications. Since there is a common SaaS provider
Supporting multiple business customers, communications
amongst those business customers is trivial.

However, the SaaS model introduces difficulties too. The
communications Software might run in a data center far
away from the business customer, introducing latency.
Latency is of critical importance particularly for communi
cations applications which are far more sensitive to latency
than many other applications. Furthermore, loss of Internet
connectivity means that the business can no longer access
communications services. Another issue is that of data
sovereignty. Communications services typically include
storage and maintenance of personally identifiable informa
tion, including user accounts. It also includes content—
instant messages, shared documents, and meeting record
ings—which contain highly sensitive corporate information.
Many businesses would prefer that personally identifiable
user information and company corporate information reside
in the corporate data center, not in the data centers of a third
party that cannot (perhaps) be trusted as much.
A better solution is possible.
Techniques are presented herein for facilitating a com

munications service that can be provided as a cloud service
amongst a number of companies. Customers of this service
can elect to have a portion of the software run within their

10

15

25

30

35

40

45

50

55

60

65

4
own data centers. This software is still operated as a SaaS
service by the cloud provider; it merely physically resides
within the data center of the customer. Employees of that
company are served by the software that runs within the data
center of that company, and all communications between
users of the same company remains within the boundaries of
the company IP network. Furthermore, user data also
remains within the boundaries of the company. However,
users can freely communicate with users in other companies
as if they were all part of the same cloud service; the service
is completely borderless. Users exist within a single global
namespace even though they are across multiple companies.
Furthermore, users may consume the service directly from
the cloud provider, and those users can communicate with
users in any other company. The Software as a whole has the
properties of a SaaS offering. Analytics and metrics are fed
from company data centers back to the cloud provider, and
the cloud provider can remotely upgrade the software within
each company without disruption in service. This capability
I enabled primarily through a loosely federated identity
service which allows for the global namespace with distrib
uted user data, combined with a cluster-based Representa
tional State Transfer (REST) architecture.

Architecture

With reference to FIG. 1, there is depicted a block
diagram of a deployment model of an example distributed
services system 100, according to an embodiment. System
100 is also referred to as a “stack fusion' system that
implements stack fusion techniques presented herein. The
system 100 includes a number of companies that opt into the
service. The service includes a communications service,
providing Voice, Video, conferencing, and messaging, and
other features which involve communications between
users. FIG. 1 shows three such companies, Company 1, 2,
and 3. Companies 1, 2, and 3 deploy respective platforms
P1, P2, and P3 within their respective data centers D1, D2,
and D3. Each of platforms P1, P2, and P3 is an instance of
an Infrastructure-as-a-Service (IaaS) platform. Examples of
such platforms include Openstack. Each IaaS platform Pi
(where i is 1, 2, and 3) includes/provides compute, storage
and networking services for the respective data center Di.
Typically, these types of platforms are deployed by public
IaaS providers (for example, RackSpace), and anyone can
access them. The platforms are also sometimes deployed as
private clouds within an enterprise, in which case they are
accessible only by enterprise IT. As depicted in FIG. 1, each
platform Pi is deployed as part of a private cloud in that the
platform runs within the respective company data center Di.
However, the platform is made accessible to a cloud pro
vider (depicted at the top of FIG. 1), that operates a data
center D4, as a special tenant. To the cloud provider, each
platform P1, P2, or P3 looks much like what a public IaaS
would look like. The platform exposes REST-based Appli
cation Programming Interfaces (APIs) (though any other
network based API would suffice), and the cloud provider
can access those APIs to spin up virtual machines associated
with the platform, install software on those virtual machines,
create networks, and access local disk for storage. In the
example of FIG. 1, an IT department in each data center D1,
D2, or D3 is responsible for operating the respective plat
form P1, P2, or P3 and making sure its services, and the APIs
which access it, are available to the cloud provider.
As mentioned above, the cloud provider operates data

center D4, similar to the company data centers D1-D3. Data
center D4 also has a dedicated platform P4. Platform P4 is

US 9,430,672 B2
5

ideally the same technology foundation as the ones within
the company data centers D1-D3 (e.g., OpenStack), but need
not be. Services within data centers D1-D4 intercommuni
cate over a communication network CN, which may include
wide area networks, such as the Internet, and local area
networks.
The cloud provider deploys and operates a respective one

of clusters C1, C2, and C3 on top of respective ones of
company platforms P1, P2, and P3 in respective ones of data
centers D1, D2, and D3. Also, a cluster C4 operates on
platform P4 in data center D4 of the cloud/service provider.
A cluster includes an "atomic' set of software which can
reside within a single data center. The cluster typically
includes load balancers, reverse Hypertext Transfer Protocol
(HTTP) proxies (aka REST routers), application servers like
chat servers, conferencing servers, content servers, and
databases. The databases are used to store user information,
including user profile data, user entitlements, along with
user-generated content, Such as chat, photos, videos, PPT
documents, meeting recordings, and so on.

Each cluster is said to serve a specific set of users, which
means the following:

a. The profile data and user account information for those
users resides in that cluster;

b. When a set of users communicate with each other, if all
of those users are served by the same cluster, only
software within that cluster is utilized to service the
communications;

c. When a set of users communicate with each other, if all
of those users are served by the same cluster, any
content resulting from that communications—an
instant message, a photo that is shared, or a meeting
recording, is stored within the disks on the platform that
operates that cluster, and

d. When a set of users communicate with each other, yet
they are in different clusters, only those clusters asso
ciated with those users are utilized—for compute, stor
age, or networking—for those communications.

These properties are paramount for providing the needed
data sovereignty, Survivability, security, and reliability prop
erties that the stack fusion system needs to provide.
As seen in FIG. 1, users U1 and U2 are served by cluster

C1 of data center D1 for company 1. Users U3 and U4 are
served by cluster C2 of data center D2 for company 2. Users
U5 and U6 are served by cluster C3 of data center D3 for
company 3. The cloud provider has its own cluster, cluster
C4, which resides on cloud provider platform P4. Users U5
and U6 are served directly by cluster C4. Users U7 and U8
may work for a company, but the users utilize the services
of cluster C4 in the cloud provider. Cluster C4 services users
which may reside across many different companies. Such
multi-company users are all combined together and referred
to as a “consumer group. Thus, cluster C4, which serves the
consumer group, is referred to as the "consumer cluster.
As depicted in FIG. 1, platform P4 used by the cloud

provider also supports operational tools “Ops Tools,” which
include scripts and software responsible for:

a. Installing and upgrading software in all of the clusters;
b. Receiving and processing analytics from each of the

clusters; and
c. Receiving and processing alerts from each of the

clusters.
With reference to FIG. 2, there is a block diagram of a

variation of the deployment model depicted in FIG.1. In the
variation depicted in FIG. 2, company 1 has dedicated
cluster C1 to serve its own users; however, cluster C1 now
resides alongside the consumer cluster C4 on platform P4

10

15

25

30

35

40

45

50

55

60

65

6
hosted in data center D4, operated by the cloud provider. The
cloud provider may host many other Such clusters, in addi
tion to the consumer cluster.

Software Development

Before services may be accessed by customers/users of a
company that are served at a given data center (e.g., in data
center D1), software that supports the services needs to be
deployed to the cluster (e.g., cluster C1) in the data center.
With reference to FIG. 3, there is depicted an example
process 300 of deploying the software to a given cluster
depicted in FIG.1. The deployment process for a data center
operated by a given company may be performed by an
administrator in an IT department of the company. The
administrator is referred to as the “admin.”

First, at 302, the admin deploys a private cloud, or IaaS.
in the data center. The admin will typically do this by
installing servers (such as Cisco Unified Computing System
(UCS)), network switches (such as a Cisco Nexus switch)
and host attached disks. On top of these servers the admin
installs an IaaS platform, Such as OpenStack. OpenStack
software provides APIs—accessed over REST for spin
ning up Virtual Machines (VMs), installing software, creat
ing networks, and accessing storage within the private cloud.
This private cloud typically sits behind a corporate firewall,
however the firewall may be configured with pinholes that
allow inbound traffic towards the servers within the private
cloud. The private cloud is also firewalled from the rest of
a corporate network.

With reference to FIG.4, there is shown a typical deploy
ment for a private cloud that results from the actions at 302.
The private cloud of FIG. 4 includes a firewall 402 through
which the private cloud access communication network CN,
multiple servers 404-410, network switches 412–414, and a
corporate firewall 416 through which the private cloud
access a corporate Intranet 420.

Returning to FIG. 3, at 304, once the admin has set up the
private cloud (e.g., as depicted in FIG. 4), the admin will
provision a tenant into the private cloud. The result of this
provisioning is a tenant username, tenant password, and set
of policies defining the amount of compute, storage and
networking resources that the tenant is allowed to access.
Such provisioning is a standard capability for IaaS software
platforms like Openstack.
Once provisioned, at 306, the admin visits a web portal

provided by the cloud provider. The admin is a customer of
the cloud provider, and has credentials to log into the cloud
provider web portal. Typically, the admin has also purchased
the appropriate entitlements that enable the adminto access
the capabilities of this solution to be deployed on the private
cloud (i.e., on the cluster hosted by the platform of the
private cloud). At 308 and 310, the admin selects an icon
presented on a web page of the web portal to activate
deployment, which causes a step-by-step deployment pro
cess to begin. This takes the adminto a web page where, at
314, the admin enters in the credentials for the private cloud
tenant they just provisioned. The admin also enters a Uni
form Resource Locator (URL) for accessing the IaaS ser
vices. Finally, at 316, the admin selects to deploy the
services.
Once the admin selects to deploy the services, the opera

tional tools, Ops Tools, in the cloud provider are activated to
begin an installation and test process. With reference to FIG.
5, there is depicted an example process 500 of installing and
testing services in the private cloud that were previously
provisioned by the process of FIG. 3. At 502, the operational

US 9,430,672 B2
7

tools in the cloud provider, upon receipt of the final “deploy”
button click, utilize the URL. This URL is basically the root
URL for accessing OpenStack in the private cloud, e.g.
https://privatecloud.company.com. Because the REST APIs

8
action 600 used to access the domain-to-cluster map. At 602,
a client/user issue an HTTP query to a URL of the form, e.g.:
GET http://clustermap.provider.com/company.com. The
URL is directs to the domain-to-cluster map stored in cluster

for Openstack are standardized, the cloud provider can 5 C4 of the cloud provider.
create the URLs necessary to connect to the various REST
endpoints which constitute the Openstack IaaS services. At
504, the scripts in the cloud provider will take the username
and password, authenticate to the private cloud. Once
authenticated, at 506, the scripts will then begin to spin up
VMs, using the number of VMs required to install the
minimum capacity of the cluster. At 508, the scripts then
install the Software, including databases, message buses,
applications, and so on, as needed. Once installed, at 510,
the scripts run a battery of automated tests. These automated
tests utilize servers in the cloud provider data center which
emulate clients, and connect to the Software that was just
installed in order to validate it. These tests are fully auto
mated, and require no human intervention from the adminor
from employees of the cloud provider.
Once the integration tests are complete, the software in

the private cloud is operational and ready for use. At 512, a
final step in the process is that the Scripts in the cloud
provider will create a cluster name. This cluster name is
arbitrarily chosen, but must be a valid Domain Name System
(DNS) name. An example of Such a name might be sequen
tial letters of the alphabet, e.g., “a,” “b,' etc.

Domain Claim

The next step in the process is domain claim. This is an
optional step. However, if not done, the full privacy capa
bilities of the system may not be provided. In the domain
claim process, the admin will visit the cloud provider portal
once again to enter a domain name (also referred to as an
"organization domain”), e.g., “company.com,” of the com
pany for which the admin is acting, i.e., the company that
operates the data center that was provisioned by the admin
in accordance with processes 300 and 500 of FIGS. 3 and 5.
The web portal will utilize any of a number of common
techniques for verifying that the admin/company does in fact
have DNS ownership over the domain entered through the
web portal. According to one such technique, the web portal
visits the “WHOIS record for the associated domain, search
for and find the email address of the associated admin, and
then send an email to the admin using the found email
address, where the email provides a code. Once the admin
receives the email, the admin must then enter the code into
the web portal. Another technique is to request the adminto
create a Subdomain with a specific name which maps to a
specific IP address. The admin will visit their domain
provider site, make the configuration change, and then return
to the cloud provider portal. The admin then selects an icon
to “verify, which causes the web portal to do a DNS query
for the requested subdomain, and verify that the IP address
which is returned is the expected IP address.

Domain Mapping

Once the domain ownership is verified, the web portal
stores, within the cloud provider, e.g., in cluster C4, a
mapping referred to as a globally accessible “domain-to
cluster map.” The domain-to-cluster map maps the claimed
domain (e.g., company.com) to the cluster name that was
created for the admin (e.g., “a”). This mapping is accessible
as a REST endpoint within the cloud provider. With refer
ence to FIG. 6, there is shown an example message trans

10

15

25

30

35

40

45

50

55

60

65

In response to the GET, the cloud provider uses a cloud
provider mapping service that returns a message 604 includ
ing a payload that conveys the requested mapping. E.g., in
a JavaScript Object Notation (JSON) or Extensible Markup
Language (XML) body of the payload, the requested map
ping may take the form:

“company.com': "a

The web portal also creates a series of DNS records, of the
following form, e.g.:

a-server-name>.cloudprovider.com->IP
Sever

So for example, if the scripts in the cloud provider had
created a VM on one of the servers in the private cloud, and
the IP address of the VM was 1.2.3.4, and the script installed
server with the name “locus on that VM, the script would
create a DNS entry:

a-locus.cloudprovier.com-> 1.2.3.4
The way in which the domain-to-cluster mapping service

and the associated DNS records are used will become more
apparent later.

address of

Identity Model

A key part of the system is the notion of users, and how
those users are reached in the various clusters.

Users are identified by an email address, e.g.,
joe(a)example.com. The email address can be corporate
provided, or the email address can be a public consumer
service like Gmail or Yahoo.com email address.

There is also implemented the concept of an “org.” An org
is an administrative entity which manages policy for a group
of users. This policy includes the ability to control user
access to content, to control access to services, to force
usage of corporate credentials, and the like. The org also
includes the ability to pay for services for users. Most often,
an org is a company. Typically, a company has authoritative
ownership over one or more DNS domain names. For
example, Cisco may be an org that would have authoritative
ownership over the domains cisco.com, collaborate.com,
insieme.com, and other domain names which Cisco owns or
has acquired.

There is an important org which is called the “consumer
org.” The consumer org represents the cloud provider as the
administrative entity. All users which are not under the
control of a different org, fall within the consumer org. In a
sense, the consumer org is, therefore, a “default org.”
Through a process called domain claim, an administrator

of an org proves that they are the DNS owner of a domain.
Once proven, this entitles that admin the right to take
authoritative ownership of some or all users with email
addresses matching the claimed domain name.

Importantly, even when an org has claimed a domain,
there still may be email addresses with that domain name not
under that org. An example of this is a company that has
purchases the cloud service for only some of its employees.
The remaining employees can use the cloud service but as
users in the “consumer org.” in which case the users would
not be subject to IT policy controls, nor would receive the
benefits of IT payment for services.

US 9,430,672 B2

In an embodiment, a domain can only ever be claimed by
one org. The consumer org never has claims over any
domain. An email address matching a claimed domain can
only be in the org that claimed that domain, or in the
consumer Org.

With reference to FIG. 11, there is an illustration of an
example diagrammatic identity model 1100 of orgs, users
(identified by user email addresses), and domains. A Cisco
org 1102 owns domain names (i.e., domains) Cisco.com,
Insieme.com, and Collaborte.com. Thus, example users
“Bob” and “Alice' associated with/belonging to the Cisco
org domains Cisco.com and Insiene.com may be assigned
and identified by email addresses such as Bob (a)cisco.com
and Alice(ainsieme.com, respectively. Also, depicted in
FIG. 11 is a General Electric org that owns domains Ge.com
and General.com to which users “Prasad' and “Jack'
belong, respectively. A consumer org 1106 is associated with
the cloud provider. A Yahoo user “Mymom’ belongs to the
consumer org; however, users “Smith' and “Joe” belonging
to the domains Cisco and Ge may also belong additionally
to the consumer org.

This identity model has direct and important interactions
with each cluster.

The consumer org is mapped to a multiplicity of clusters
across data centers (e.g., across data centers D1-D4), for
purposes of Scale. This mapping is a function of the user. As
Such, there exists a mapping service in the data center(s) of
the cloud provider, which can map a user email address
(including the user name) to the cluster for that user, but only
for email addresses in the consumer org.

In a similar way, a non-consumer org. Such as a company
org, can also have one or more clusters and the mapping of
a (company) user to a specific cluster for that (company) org
exists in a mapping service that exists ONLY in the clusters
for that (company) org, not in the cloud provider; however,
in an alternative embodiment, a “global service exists
which maps domain names to the clusters for that org. The
“global mapping service is considered global because the
mapping service accessible from all of the clusters in the
system.

With reference to FIG. 12, there is depicted a block
diagram of distributed mapping as described above, accord
ing to an embodiment. Multiple cloud provider data centers
(DCs) D1202, D1204, and D1206 host respective clusters
C1202, C1204, and C1206, where each of the clusters
accesses a respective one of local consumer org maps
M1202, M1204, and M1206, which each map consumer org
email addresses to the local (hosting) cluster. A Cisco org
data center (DC) D1220 includes a Cisco cluster C1220 and
a Cisco org map M1220. Cisco org map M1220 maps email
addresses belonging to the Cisco org to Cisco cluster C1220
based on the user name identified in the email address. GE
DCs 1230 and 1232 host respective clusters C1230 and
C1232, where each of the clusters accesses a respective one
of local Georg maps M1230 and M1232, which each map
Ge email addresses to the Ge clusters. A global domain-to
cluster map 1240 maps domains to clusters, e.g., Cisco.com
to cluster C1220, and GE to clusters C1230 and C1232.

Together, the various maps provide and enable a distrib
uted service which allows mapping of a user, identified by
an email address of the user, into the cluster for that user.
Any user/client (which can be an end user piece of

software, or a service in one of the clusters) which wants to
resolve a user's email address into a service in a cluster for
that user, performs the following steps:

10

15

25

30

35

40

45

50

55

60

65

10
a. Query the global mapping service (e.g., using global

domain-to-cluster map 1240) for the domain name in
the email address, to see if the domain name represents
a claimed domain;

b. If the domain is claimed:
i. The result will be a specific cluster. Construct the
domain name for the service as <cluster-name>-
<services.cloudprovider.com/service-namefuser;

ii. Query the above URL. This is received by the
service node in the targeted cluster. The service node
looks up the user (i.e., the user name in the email
address) in the user-to-cluster mapping service (e.g.,
using map M1220) for the org that resides on the
cluster. Three cases:
1. This user is served by this cluster: process the

request:
2. The user is not a user of this org: Generate a 3xx

redirect (i.e., a URL redirection based on HTTP
status codes 3xx) to one of the clusters in the
consumer org (which is well known); and

3. The user is a user of this org but served in a
different cluster: Generate a 3XX redirect to the
right cluster, known from the mapping service;
and

iii. Follow any redirects; and
c. Else if the domain is not claimed:

i. Query the mapping service in the consumer org, find
the right cluster for this user. Construct the URL
using the resulting cluster, and query it.

This architecture and logic is designed specifically to
ensure some important data properties:

a. User data for users claimed by an org, reside only in the
data centers for that org;

b. The cloud provider itself actually has no record in its
own databases of all of the users (by user name) of the
service; the list of users themselves—and the clusters
which serve them—exist only in the data centers of the
org; and

c. A query to connect to the service for a user, if that user
is claimed by an org, never needs to touch the cloud
provider at all. This is because the map of claimed
domains to clusters is distributed and exists in ALL
clusters.

All of these data properties serve to meet data Sovereignty
requirements, so that the cloud provider has little record or
visibility into the users actually using its service. Yet, we still
provide global connectivity amongst users.
An alternative embodiment may be used as an optimiza

tion. In this optimization, the mapping service in the con
Sumer org is also populated with the email addresses for
users in all of the clusters in all domains. To provide privacy,
the mapping uses a hash of the email address rather than the
actual email address. Furthermore, this consumer map may
be distributed to all clusters, not just the ones servicing the
consumer org. In Such an optimization, the domain to cluster
map is always (or often) empty and the users are looked up
in the user to cluster mapping service. This global user-to
cluster map does not contain any user information, because
it is indexed with a hash over an infinitely large namespace
(and is therefore not invertible).

End User Provisioning

The next step in the process is the provisioning operation.
This is the process by which the admin now provisions
individual end users into their system. To do that, the admin
once again visits the web portal. The web portal provides

US 9,430,672 B2
11

means for entering the user email address, which resides
within the domain claimed by the admin. For example, if the
admin had claimed the domain company.com, the admin
may then provision user Joe with email address
joe(a)company.com. The admin may enter additional profile
information or entitlements. Many other techniques for
obtaining the email address and profile information might be
provided, including syncing this information from the cor
porate directory, bulk spreadsheet uploads, and so on. User
credentials may also be provided, or the user may instead log
in with a single-sign on process using one of any of a number
of industry standard federated identity systems.
One way or another, the user email address and profile

data is obtained by the web portal. The web portal is a web
server that operates within the data center of the cloud
provider. This web server will return static content and
JavaScript that execute within the admin’s browser. Once
the actual form data is collected to provision the user, the
browser-side JavaScript will consult the mapping service,
obtain the cluster name for the domain of the admin, and
convert this into a URL for accessing the provisioning
service. The provisioning service is one of the application
server components that reside in each cluster. Here, the
browser accesses this within the company cluster. It per
forms a provisioning operation by POSTing against the
REST endpoint for the provisioning service. In an alterna
tive embodiment, the provisioning service resides centrally,
in the cloud provider's data center. It receives a REST
request to provision the user, and it obtains the cluster name
for the domain of the user, and then pushes the information
into the database for the cluster.

With reference to FIG. 7, there is illustration of message
exchanges 700 used to perform an example of a provisioning
operation as described above. In the example of FIG. 7, an
admin browser 704 associated with a company data center
708 (e.g., data center D1 in FIG. 1) that hosts a cluster A
(e.g., cluster C1 in FIG. 1) to be provisioned exchanges
messages with a web server 705 and a domain-to-cluster
map 706 of the cloud provider. At 710, admin browser 704
requests and receives the JavaScript and static content
mentioned above. At 712, browser 704 examines the domain
name part of the provisioned email address (e.g., “compa
ny.com') and, at 714, sends a query to domain-to-cluster
map 706 to discover the name of the cluster handling the
domain name (“company.com'). At 716, browser 704
receives “a” (the name of cluster a) from map 706 respon
sive to the query. At 718, browser 704 then constructs the
URL for the provisioning service in cluster “a”, which
follows the convention "<clustername>-
<service> provider.com’ as described above. The cloud
provider portal had previously created DNS records for
these services so that HTTP requests for this subdomain of
the provider route into the private cloud in the customer data
center. Furthermore, because these URLs are all subdomains
of provider.com, the browser will utilize the OAuth token
for the admin account, which will be also valid within the
private cloud. At 720, browser 704 access a provisions
service in cluster A of data center 708 based on the con
structed URL to perform a requested provisioning operation
on the cluster. At 722, after the provision operation succeeds,
cluster A sends a Success message to browser 704.
An important benefit of this process is that the provision

ing operations of users are never seen by the cloud provider.
They transact directly between the browser and the provi
Sioning service within the customer premise. This ensures
that, from a data sovereignty perspective, it is not possible
for the cloud provider to know what users have been

10

15

25

30

35

40

45

50

55

60

65

12
provisioned, since those requests do not pass through the
cloud provider data center. The alternative embodiment does
not hide provisioning operations from the cloud provider,
but does not store any persistent information about provi
Sioned users in the cloud provider clusters.

Cluster Software Elements

With reference to FIG. 8, there is an illustration of
example Software components within a cluster implemented
in a three-tier web architecture. The software components
include:

a. A load balancer 802, which performs Transport Layer
Security (TLS) termination;

b. A reverse HTTP proxy 804, also known as a REST
router;

c. A set of HTTP applications 806 which sit behind the
REST router, which include:

d. A provisioning service 808, which is used to provision
users and add user profile information;

e. An authentication and authorization service 810;
f. A notification service 812, which we call mercury,

which handles asynchronous notification and message
delivery to end user clients on mobile phones, desktop
and browser apps:

g. A persistent chat service 814, which we call conversa
tion, which handles IM and related services;

h. A call and conferencing service 816, which we call
locus; and

i. Databases 818 which are accessed by the HTTP appli
cations 806.

Partitioning Model

Some of the HTTP application services that are utilized
are not communications applications. An example of this is
provisioning. The provisioning service provisions a single
user. As such, the act of provisioning a user involves
discovering the cluster for the user who is to be provisioned,
and then directing the HTTP request there. This same basic
pattern applies to other REST operations which involve a
single user. Another example would be, a user updating a
profile picture of the user.

Solutions presented herein enable users to communicate
with each other when they reside in different clusters. To
enable this, the solutions make use of a partitioning model
which follows a common design pattern. This pattern applies
to each of the HTTP services/applications which provide
communications. These include locus, mercury, and conver
sation, depicted in FIG. 8.
With reference to FIG. 10, there is a pictorial represen

tation of an example design pattern 1000 that enables users
provisioned on different clusters “Cluster 1 and “Cluster 2
to use services that communicate across the clusters. Each of
these services (e.g., locus, mercury, and conversation) mod
els communications as occurring through an “object,” which
is a RESTful resource that implements the service. In FIG.
10, each RESTful resource is referenced as a generic
“resource,” where the resource may be a call, or a conver
sation, or a meeting, or other communications events. This
resource is created (e.g., at 1006 in Cluster 1 and 1008 in
Cluster 2) by the user that wishes to communicate. This
creation process happens by invoking a REST endpoint that
provides the creation service. A user always creates the
resource within the cluster in which the user is provisioned
and thus served.

US 9,430,672 B2
13

According to the representation depicted in FIG. 10, user
1 would create the resource by accessing the creation service
in user1's own cluster, Cluster 1. User 2 would access the
creation resource in its own cluster, Cluster 2. As such, the
creation resource exists in all clusters. However, once a
specific resource is created—a call or a chat conversation—
that represents a specific “instance' of the resource, this
resource always exists/executes solely in the cluster in
which the resource was created. As such, the HTTP URL
representing that resource instance includes, in its domain
name, the cluster in which the resource exists, along with the
unique identifier for the resource. In the example of FIG. 10,
three of the resource instances (instances 1, 2, and 3) exist
in Cluster 1, and three of the instances (instances 4, 5, and
6) exist in Cluster 2. Once each resource instance is created,
the user that created the instance can add users to the
instance, representing the users that communications should
take place with whether it is a call or a chat, for example.
These users are identified by email address. The resource
instance then, acting like a client, accesses services in the
cluster of those users, reaching them by mapping their email
addresses into a cluster name and accessing resources there;
however, the communications session is never split across
two resources, the session always exists in one place.
Resources accessed in the clusters of the other users are used
strictly for messaging routing and bootstrapping to direct
them back to the one resource instance where the commu
nications session exists.

This pattern is best understood with specific embodiments
for the communications services we have built.

Notification Services: Mercury

A key primitive operation is the ability to asynchronously
send information to a user. Examples of where this may be
needed are to deliver an instant message to a user, or to place
a call to a user, or to acknowledge receipt of a message. For
mobile clients, asynchronous information can also be sent
using Smartphone notification services, examples being
Apple's Push Notification Service (APNS) and Google's
Cloud Messaging (GCM).

These notifications are handled by Mercury. With refer
ence to FIG. 9, there is depicted an example Mercury
architecture 900 as implemented in the multi-cluster model.

REST Endpoint

Conversations

Conversations.<convo

Conversations users<userID

Conversations users<userID-f
sparticipant

10

15

25

30

35

40

14
At the bottom of FIG. 9, users represent end-user client

applications, such as an application on a Smartphone, or a
web browser client, or a desktop application. These appli
cations render the end user UX for the communications
service.

In operation, the user software/application will establish a
Websocket connection to a connection server in its own
cluster (e.g., Cluster A or B). The user discovers its own
cluster during the login process, as the login process starts
with the email address which can be used to map to a cluster.
As discussed previously, starting with the email address the
user Software can find the connection server in its own
cluster.
The user Software connects to its connection server, and

through the websocket connection, authenticates and
requests a notification Uniform Resource Identifier (URI).
This notification URI can be used by any other application
to send asynchronous messages to the user Software, over
this websocket connection. That request is sent from the
connection server, to the API server over a message bus. The
API server constructs a URL representing notification ser
vice for this device. This URI is of the form http://cluster
name-mercury.cloudprovider.com/notifications/<userIDs.
The API server knows the cluster in which the server resides
and as such populates that cluster name (e.g., Cluster A or B)
into the URL. This URL now will properly route to one of
the API servers in the cluster for this user. As such, any piece
of software resolving this URL will get routed to the right
place.

This URL is returned from the API server, to the connec
tion server, to the client. The client now remembers this URI
and can register it, along with its APNS and or GCM URIs,
with a separate registry service (not shown).

Conversation Service

Let us now consider a communications service, conver
sation. This is a chat service. It consists of “chat rooms',
which are created as needed. We have a specific constraint
however that, for 1-1 chats, there is just a single conversa
tion between them. This emulates current behavior in most
IM and mobile chat apps.
A conversation service can be thought of as having three

REST endpoints, shown below:

Exists Meaning

The creation or construction
resource. It is used to create

In each cluster

conversations.
A specific conversation
object, which will hold the
messages sent into this
conversation.

In the cluster in which the
conversation was created

In the cluster in which the user
lives

For each user, a list of the
most recent conversations that

have had activity. POST is
used to add content: GET is
used to retrieve the list. The

GET is used by the client to
populate the conversation list
when the conversation starts.

For each pair of users, there is
one and only one conversation
between them. This resource
is populated to point to that
conversation instance.

In the cluster in which the user
lives

US 9,430,672 B2
15

With reference to FIG. 13, there is a diagram of example
message exchanges 1300 used to setup a chat session
between users provisioned on different clusters, e.g., user
Alice in a cluster 1 who wishes to have a chat session with
user Bob provisioned on a cluster 2.

First, at 1305, Alice will create the conversation/chat
session with Bob. To do this, Alice invokes the creation
resource in cluster 1, creating the conversation with Bob.
Because this creation operation occurs in Alice's cluster 1,
the conversation instance exists now in Alice's cluster 1. As
part of the creation process, Alice will also specify the
invitee as Bob, Bob (a Gmail.com.
When the conversation service in cluster 1 receives the

request to create the conversation, the service performs a
few operations. First, the service creates the conversation
instance object "Conv' (also revered to as a "client rendez
vous protocol object’) and stores it in the database.

Next, the service recognizes that the other participant in
the conversation is Bob (a Gmail.com. The service needs to
first notify Bob of this new conversation. To do that, the
service needs to access the Mercury service for Bob and, to
do this, the service first needs to discover Bob's cluster. In
the manner described above, at 1310, the service queries the
local domain-to-cluster mapping service/map “Dom2 Clus
ter” and discovers, at 1315, that "Gmail.com' is not owned
by any cluster (in an embodiment, the service may recognize
known public domains like Gmail.com and Yahoo.com So as
to avoid this step entirely).

At 1320, the service then queries the user-to-cluster
mapping service/map “User2 Cluster Consumer for the
consumer org, and discovers, at 1325, that Bob is in cluster
2.
Now the service needs to notify Bob of the existence of

the conversation instance object "Conv' in cluster 1. To do
this, the service then constructs the URI to access the
mercury service for cluster 2 http://c2-mercury.wbx2.com/
notifications/Bob (a Gmail.com. At 1330, the service POSTS
to this URL to request delivery of a notification, and the
notification is routed to the mercury service in cluster 2,
which knows of user Bob through the prior registration
process. At 1335, the notification is delivered to Bob.

In Bob's cluster 2, there exists a resource conversations/
users/Bob “Conv' (also referred to as an “index protocol
object’) which keeps track of the conversations in which
Bob is a participant (which may include maintaining point
ers back to conversation instance objects, such as Conv., in
other clusters), and what the most recent few messages are
for each of those. This resource (the index protocol object
Conv" in cluster 2) must now be updated by Alice's conver
sation service, to indicate this new conversation now exists
(i.e., a pointer back to Conv in cluster 1 must be added to the
index protocol object in cluster 2). To support that, at 1340,
the conversation service in cluster 1 does a POST to the
conversation service in cluster 2, adding an event for the
creation of a new conversation.
When Bob receives the notification at 1335, he can launch

his Smartphone app. The app will query the conversation
service in his cluster 2, asking the cluster to return all recent
conversation events. He does that by performing a GET to
c2.wbx2.com/conv/users/Bob (a Gmail, which returns an
object that indicates the recent events since last timestamp.
In this case, the returned events indicate creation of a new
conversation and includes in the JSON response the URL
reference to the actual conversation in cluster
1—c.1.wbx2.com/conv/uah,387.
Now if Bob wants to send a message to Alice, he does so

by POSTing directly to this conversation object in cluster

10

15

25

30

35

40

45

50

55

60

65

16
1. Furthermore, if Bob wants to fetch older messages in this
conversation, or add another user, or upload a file, all of
those operations happen against the actual conversation
instance in cluster 1. The conversation user resource Conv'
exists in cluster 2, but Conv' serves primarily as a reference
to allow Bob to know—across all of the other clusters—the
conversations he is a member of, and which ones have recent
activity. This conversation user resource Conv" also allows
Bob's Smartphone app to quickly show to him the most
recent few messages across all conversations that he is a
member of without having to directly query each cluster to
find out.
The conversation server in cluster 2 will also locally

update c2.wbx2.com/conv/users/Bob (a Gmail/Alice(afoo,
and that resource—which identifies the conversation
between Bob and Alice—references c1.wbx2.com/conv/
uah387. Similarly, the conversation server in cluster 1 will
update c1.wbx2.com/conv/users/Alice(afoo/Bob (a Gmail
and point to the same URL c1.wbx2.com/conv/uah387.

There is a race condition here, of course, if Alice and Bob
should try to chat with each other for the first time at the
same instance, we will create two conversation objects in
two different clusters. In such a case, the one that is "lower
will win (based on some kind of hash or timestamp or
anything that provides a unique ordering. This is a cleanup
operation after the fact.

In a similar way, the conversation servers inclusters 1 and
2 will maintain search indexes for the conversation. How
ever, only the index in cluster 1 is truly complete since the
index will have/indicate all messages since the beginning of
this conversation; if messages are sent and then much later
another person is added to the conversation, the index in the
cluster of the new user will be incomplete. This requires a
multi-step search process which will necessarily result in the
slowest search results when a user queries history for a
conversation he was recently added to, for which that
conversation exists in a different cluster.

Calling

Calling works in much the same way as conversations,
described above. There is a “call object, which we call the
locus. Like conversation, there is a resource for construction
of a call which lives in every cluster, and the resource for
each specific call lives only in a single cluster. This is true
for both 1-1 calls and group calls. In that sense, this
architecture is what is often referred to as a “full call model
in the literature. The trick is to create an index in the cluster
of the other user to allow these calls to be found and
manipulated.
The REST endpoints for calls look much like their con

versation counterparts:

REST Endpoint Exists Meaning

loci In each cluster The creation or construction
resource. It is used to create
locuses (aka loci aka calls)

Loci <lid- In the cluster in which Aspecific locus, which will
hold the state of the call for all
participants (active, inactive,
ringing, etc.)
For each user, a list of the
active loci for this user. This
REST endpoint receives a
POST to update it with active
loci from other clusters. The

the locus was created

In the cluster in which
the user lives

Locifusers
<userID

US 9,430,672 B2
17

-continued

REST Endpoint Exists Meaning

user will GET against this
resource to find the calls they
are in.

We described above the race condition that can exist when
two users create a conversation with each other at the same
time. This same race condition is possible for calls. How
ever, in the case of calls the race condition is far more likely,
and furthermore, the race condition must be resolved very
quickly. To address this problem, we utilize a concept we
call the persistent locus. The idea is that, once a conversation
between a pair of users is created (establishing only a single
conversation object between any pair of users), there is also
allocated a single locus. The way to think about this, is that
for each pair of users we basically have a persistent confer
ence bridge that is created and unique for the pair. When user
A wants to call user B, what they are really doing is joining
the bridge', and then asking the other user to join the same
bridge. Consequently, this “bridge' model allows us to
provide a user experience which is identical to the well
understood calling experience. Yet, the bridge model works
well for inter-cluster cases because there is a single source
of truth for call state and a single rendezvous point—a
singular REST endpoint—where both participants access.
This means race conditions are resolved much quicker,
within the timespan of local DB replication within a single
data center.

This persistent locus object is created at the time the
conversation itself is created. The locus URL thus exists in
the same cluster as where the conversation itself was cre
ated.

With reference to FIG. 14, there is a diagram of example
message exchanges 1400 when user Alice provisioned on
cluster 1 wants to call user Bob provisioned on cluster 2,
using the above-mentioned locus technique.

At 1405 generally, user Alice initiates the call in the
following manner. User Alice may select Bob from a contact
list available on an application (“app') on Alice's Smart
phone, for example. Alice clicks “call” from the app. The
app will query her local conversation service (Conv), to find
the existing 1-1 conversation with Bob. This uses the REST
endpoint c1.wbx2.com/conv/users/Alice(afoo/Bob (a Gmail.
As described above this query returns a pointer to their joint
conversation, which also lives in cluster 1: c1.wbx2.com/
conv/uah387.

General operation 1405 includes operations 1420 and
1425. At 1420, Alice's client will connect to that conversa
tion service instance Conv., and query Conv for state. At
1425, the state is returned to Alice's client. This state will
include the URL of the locus instance (“Locus') for the two
users, which is c1.wbx2.com/locus/9283747a. Note how this
resource also lives in cluster 1; this is because this locus
instance was created by the conversation server in cluster 1
when this conversation was first created.
Now, Alice has the URL of the locus. At 1430, Alice

invokes the locus, asking the locus to activate and thus call
Bob. The locus instance in cluster 1 knows that Bob is the
other participant. At 1435, the locus then follows a process
identical to the conversation server flow above to discover
Bob's cluster (i.e., actions 1310-1325). At 1440 and 1445,
the locus finds Bob's cluster, creates the URL to notify him
of the call, sends the POST to the URL, and creates the URL

10

15

25

30

35

40

45

50

55

60

65

18
to update Bob's user object to indicate that this locus is now
active. A result of the POST is the notify to Bob at 1445.

Bob’s phone rings when he receives the notify. The
notification payload will contain the locus URL. If Bob
ignores the notification on his Smartphone and just launches
his communications app anyway, the app will start up. One
of the first things the app does is to query c2.wbX2.com/
locus/users/Bob (a Gmail and retrieve its list of active loci. In
this case, the one locus c1.wbx2.com/conv/uah387 is listed.
Bob can then query this locus resource, find the state of this
call (in this case its state is “alerting Bob') which causes
Bob’s phone to show a ringing dialog. Bob presses answer.
This causes his client to again POST to c1.wbx2.com/conv/
uah387, and updates the state to active. Alice and Bob are
now talking, having rendezvoused through this locus/call
object in cluster 1.
When the call ends, the locus instance in cluster 1 will

POST to the user resource in cluster 2, updating the user
resource in cluster 2 to indicate that this call is now inactive.

Method Flowcharts

FIGS. 15-18 are flowcharts of operations that summarize
various stack fusion techniques described above.

With reference to FIG. 15, there is a flowchart of an
example method 1500 of establishing a stack fusion archi
tecture for distributed communication services that enables
communications between users, according to an embodi
ment. A cloud provider provides SaaS offerings to multiple
organizations based on the architecture/services established
in method 1500.
At 1505, an IaaS platform including compute, storage,

and network resources is deployed and configured in each of
multiple data centers. Each data center is operated by a
corresponding organization associated with an organization
domain claimed by that organization.
At 1510, users that belong to each organization domain

are provisioned/registered only on the cluster uniquely asso
ciated with that organization domain.
At high-level operation 1515, users provisioned on dif

ferent clusters are enabled to communicate with each other
as if the users were part of a centralized cloud communica
tion service, without sharing respective user information
with the cloud provider, e.g., without exposing user identi
ties or private user information stored on a give cluster with
the cloud provider. High-level operation 1515 includes
further operations 1520-1530, described below.
At 1520, a globally accessible domain-to-cluster map is

created to map each cluster to the organization domain
uniquely associated therewith. Also, a locally accessible
user-to-cluster map to map a given cluster to each user
provisioned on that cluster is stored in that cluster.
At 1525, a user request from a first user to communicate

with a second user using a communication service is
received.
At 1525, the user request is directed to the communication

service in the cluster uniquely associated with the organi
zation domain to which the first user belongs based on the
user email address, the domain-to-cluster map, and the
user-to-cluster maps.

With reference to FIG. 16, there is a flowchart of an
example method 1600 of user and cluster-related mapping
operations performed in the stack fusion architecture for
distributed communication services established in method
1500, according to an embodiment.

US 9,430,672 B2
19

At 1605, a globally accessible domain-to-cluster map
used to map each cluster to the organization domain
uniquely associated therewith is stored in the architecture
established in method 1500.
At 1610, a locally accessible user-to-cluster map is stored

in each cluster to map that cluster to each user registered to
the organization domain uniquely associated with that clus
ter.

At 1615, a consumer organization user-to-cluster map is
stored with the cloud provider to map email addresses of
users not registered to any organization domain uniquely
associated with a cluster to other clusters to which the
unregistered users have access.

At 1620, a user request is received for access to a software
service (e.g., communication service) offered by the cloud
provider, the user request including a user email address
(which includes an organization domain and a user identi
fier/identity).

At 1625, the user request is directed to the requested
Software service in a cluster uniquely associated with the
organization domain to with the user is registered based on
the user email address, the domain-to-cluster map, one of the
user-to-cluster maps, or the consumer organization map (the
“direct resolves the user email address to the requested
software service in the cluster).

With reference to FIG. 17, there is a flowchart of “direct
ing operation 1625 from method 1600, according to an
embodiment.
At 1705, the globally accessible domain-to-cluster map is

searched for an organization domain that matches a domain
of the user email address.
At 1710, if the search in 1705 finds an organization

domain that matches the domain of the user email address,
an address is constructed for the requested Software service
based on the cluster mapped to the found organization
domain, which vectors the search to that cluster (go to next
operation 1715).

At 1715, the locally accessible user-to-cluster map in the
mapped cluster for the user identifier is searched, and if the
user identifier is found in the locally accessible user-to
cluster map, the requested Software services on that cluster
is accessed.
At 1720, if the search of the globally accessible domain

to-cluster map at 1705 does not find an organization domain
therein that matches the domain of the user email address,
the consumer organization user-to-cluster map is searched
for a cluster that is mapped to the user email address.

At 1725, if the search of the consumer organization
user-to-cluster map at 1720 finds a cluster mapped to the
user email address, an address is constructed for the
requested Software service based on the cluster mapped to
the user email address, which vectors access to the service
in the cluster.
At 1730, the requested software service in the cluster

mapped to the user email address based on the constructed
address (from 1725) is accessed.

With reference to FIG. 18, there is a flowchart of an
example method 1800 of communicating in a distributed
communication services system as established in method
1500. Method 1800 corresponds to the message diagram of
FIG 14.
At 1805, a request for a communication service is

received from an originator registered to an originator
cluster that includes identities of the originator and at least
one participant.

10

15

25

30

35

40

45

50

55

60

65

20
At 1810, responsive to the request, a communication

protocol object (“rendezvous protocol object') is created in
the originator cluster that represents a communication ses
Sion.
At 1815, a participant cluster on which the participant is

registered is discovered.
At 1820, the participant is notified via the participant

cluster that the communication protocol object exists.
At 1825, an index protocol object in the participant cluster

that tracks communication sessions in which the participant
is engaged is updated with a reference that points to the
communication protocol object in the originator cluster. A
POST may be used to perform the update.

Generalized Device Controller

With reference to FIG. 19, there is depicted a block
diagram of an example generalized controller 1900 for an
IaaS platform (e.g., any of platforms P1-P4 in FIG. 1) used
in a data center to execute cluster applications and Ops tools,
and the like. Thus, controller 1900 is an example of com
pute, storage, and network resources for the IaaS platform.

Controller 1900 includes a processor 1910 that processes
instructions to perform operations for a given IaaS platform;
and a memory 1920 to store a variety of data and software
instructions for execution by the processor 1910. Controller
1900 also includes a network interface unit (e.g., network
interface card or multiple network interface cards) 1930 that
enables network communications so that the controller can
communicate with other devices. Memory 1920 may com
prise read only memory (ROM), random access memory
(RAM), magnetic disk storage media devices, optical stor
age media devices, flash memory devices, electrical, optical,
or other physical/tangible (e.g., non-transitory) memory
storage devices. The processor 1910 is, for example, a
microprocessor or microcontroller that executes instructions
for implementing the processes described herein. Thus, in
general, the memory 1920 may comprise one or more
tangible (non-transitory) computer readable storage media
(e.g., a memory device) encoded with Software (e.g., control
logic/software 1935) comprising computer executable
instructions and when the software is executed (by the
processor 1910) it is operable to perform the operations
described herein, e.g., to implement the stack fusion pro
cesses, methods, and messages exchanges represented at
300, 500, 600, 700, 900, and 1300-1800. In addition,
memory 1920 includes a data store or database 1940 to store
data used and generated by logic 1935.

In one form, a method is provided comprising: in a system
in which a cloud provider is configured to provide Software
as-a-Service (SaaS) offerings to multiple organizations, each
organization to operate a distinct Infrastructure-as-a-Service
(IaaS) platform and being associated with at least one
distinct organization domain associated with the organiza
tion: deploying to each IaaS platform a cluster of software
services, including communication services, operated by the
cloud provider, each cluster being uniquely associated with
the organization that operates that IaaS platform; provision
ing users that belong to each organization on the cluster
associated with that organization, wherein the provisioning
includes storing user information for each user only on the
associated cluster; and enabling users provisioned on dif
ferent clusters to communicate with each other as if the users
were part of a centralized cloud communication service,
without sharing respective user information with the cloud
provider.

US 9,430,672 B2
21

In another form, another method is provided comprising:
establishing a distributed Software-as-a-Service (SaaS) sys
tem in which a cloud provider offers software services to
multiple organizations, each organization to operate a dis
tinct cluster of software services of the cloud provider, each
cluster uniquely associated with an organization domain of
the organization that operates the cluster, wherein users
registered to a given organization domain have access lim
ited to the cluster associated with that organization domain;
storing a globally accessible domain-to-cluster map used to
map each cluster to the organization domain uniquely asso
ciated therewith; storing in each cluster a locally accessible
user-to-cluster map to map that cluster to each user regis
tered to the organization domain associated with that cluster
So as to have access thereto; receiving a user request for
access to a software service offered by the cloud provider,
the user request including a user email address; and directing
the user request to the requested Software service in a cluster
uniquely associated with the organization domain to with the
user is registered based on the user email address, the
domain-to-cluster map, and one of the user-to-cluster maps.

In yet another form, a system is provided comprising:
multiple infrastructure-as-a-Service (IaaS) platforms each to
be operated by a corresponding one of multiple organiza
tions and being associated with at least one organization
domain claimed by the organization that is to operate that
IaaS platform; multiple clusters of software services, includ
ing communication services, deployed on corresponding
ones of the IaaS platforms and being uniquely associated
with the organization domain corresponding to the organi
zation that operates that IaaS platform on which the cluster
is deployed, wherein the software services include offerings
from a cloud provider; wherein users that belong to each
organization domain are provisioned only on the cluster
uniquely associated with that organization domain, such that
user information for each user is stored only on the associ
ated cluster; and wherein users provisioned on different
clusters are enabled to communicate with each other as if the
users were part of a centralized cloud communication ser
vice, and without sharing respective user information with
the cloud provider.

In yet another form, a method is provided comprising: at
an originator cluster of Software services, including com
munication services, in a distributed Software-as-a-Service
(SaaS) system including multiple clusters each associated
with an organization that operates that cluster, wherein
participants registered to a given organization have access
limited to the cluster uniquely associated with that organi
Zation: receiving a request for a communication service from
an originator registered to the originator cluster that includes
identities of the originator and at least one participant;
responsive to the request, creating a communication proto
col object in the originator cluster that represents a commu
nication session; discovering a participant cluster on which
the participant is registered; notifying the participant via the
participant cluster that the communication protocol object
exists; and updating an indeX protocol object in the partici
pant cluster that tracks communication sessions in which the
participant is engaged with a reference that points to the
communication protocol object in the originator cluster.

In still another form, an apparatus is provided comprising:
an originator platform, including compute resources, net
work resources, and storage resources, configured to host an
originator cluster of Software services, including communi
cation services, in a distributed Software-as-a-Service
(SaaS) system including multiple clusters each uniquely
associated with an organization domain claimed by a cor

10

15

25

30

35

40

45

50

55

60

65

22
responding organization that operates that cluster, wherein
participants registered to a given organization domain have
access limited to the cluster uniquely associated with that
organization domain, the compute resources including a
processor to: receive a request for a communication service
from an originator registered to the originator cluster that
includes identities of the originator and at least one partici
pant; responsive to the request, create a communication
protocol object in the originator cluster that represents a
communication session; discover a participant cluster on
which the participant is registered; notify the participant via
the participant cluster that the communication protocol
object exists; and update an indeX protocol object in the
participant cluster that tracks communication sessions in
which the participant is engaged with a reference that points
to the communication protocol object in the originator
cluster.

In an even further form, a tangible computer readable
storage media is provided. The tangible computer readable
storage media is encoded with instructions that, when
executed by a processor on which a cluster of software
services, including communication services, is deployed in
a distributed Software-as-a-Service (SaaS) system including
multiple clusters each associated with an organization
domain corresponding to an organization that operates that
cluster, wherein participants registered to a given organiza
tion domain have access limited to the cluster uniquely
associated with that organization domain, cause the proces
Sor to: receive a request for a communication service from
an originator registered to the originator cluster that includes
identities of the originator and at least one participant;
responsive to the request, create a communication protocol
object in the originator cluster that represents a communi
cation session; discover a participant cluster on which the
participant is registered; notify the participant via the par
ticipant cluster that the communication protocol object
exists; and update an indeX protocol object in the participant
cluster that tracks communication sessions in which the
participant is engaged with a reference that points to the
communication protocol object in the originator cluster.
The above description is intended by way of example

only. Various modifications and structural changes may be
made therein without departing from the scope of the
concepts described herein and within the scope and range of
equivalents of the claims.
What is claimed is:
1. A method comprising:
in a system in which a cloud provider is configured to

provide Software-as-a-Service (SaaS) offerings to mul
tiple organizations, each organization to operate a dis
tinct Infrastructure-as-a-Service (IaaS) platform and
being associated with at least one distinct organization
domain associated with the organization:
deploying to each IaaS platform a cluster of Software

services, including communication services, oper
ated by the cloud provider, each cluster being
uniquely associated with the organization that oper
ates that IaaS platform:

provisioning users that belong to each organization on
the cluster associated with that organization, wherein
the provisioning includes storing user information
for each user only on the associated cluster, and

enabling users provisioned on different clusters to
communicate with each other as if the users were
part of a centralized cloud communication service,
without sharing respective user information with the
cloud provider, wherein the enabling includes:

US 9,430,672 B2
23

creating a globally accessible domain-to-cluster map
to map each cluster to the organization domain
uniquely associated therewith; and

storing in each cluster a locally accessible user-to
cluster map to map that cluster to each user
provisioned on that cluster.

2. The method of claim 1, wherein the enabling further
comprises: Storing a copy of the globally accessible domain
to-cluster map in each of the clusters.

3. The method of claim 1, wherein:
the provisioning users includes storing an email address

for each user including an organization domain to
which the user belongs and a user identifier, and

the enabling includes:
receiving a request to communicate with a user using a

communication service, the request including an
email address of the user; and

directing the request to the communication service in
the cluster uniquely associated with the organization
domain to which the user belongs based on the user
email address, the domain-to-cluster map, and one of
the user-to-cluster maps.

4. The method of claim 3, wherein the directing includes:
searching the domain-to-cluster map for the cluster asso

ciated with the organization domain in the email
address;

if the associated cluster is found as a result of the
searching, constructing an address of the communica
tion service in the found cluster, wherein the con
structed address includes the user identifier;

determining whether the first user is provisioned on the
cluster based on the user identifier in the address; and

if it is determined that the user is provisioned on the
cluster, invoking the communication service to process
the request.

5. The method of claim 4, wherein the searching includes
exposing only the domain of the email address to the cloud
provider.

6. The method of claim 1, wherein the deploying includes
deploying to each cluster a provisioning service to perform
the provisioning users, an authentication and authorization
service to authenticate and authorize only provisioned users
to invoke the other services deployed to the cluster, and a
communication service to Support communications between
users provisioned in one cluster and between users provi
sioned on different clusters.

7. The method of claim 1, wherein the provisioning of a
given cluster with user information identifying a given user
associated with an organization includes:

receiving a user email address for the user to be provi
sioned, the user email address including a user identi
fier and the organization domain corresponding to the
organization;

searching the domain-to-cluster map for the cluster asso
ciated with the organization domain in the email
address;

if the associated cluster is found as a result of the
searching, constructing an address of a provisioning
service deployed on the associated cluster, and

invoking the provisioning service in the associated cluster
to add the private user information thereto.

8. The method of claim 1, further comprising:
deploying each IaaS platform to a data center, wherein

each IaaS platform includes compute, storage, and
network resources and an IaaS operating system; and

5

10

15

25

30

35

40

45

50

55

60

65

24
configuring each IaaS platform remotely from the cloud

provider via the IaaS operating system for that plat
form.

9. The method of claim 1, wherein the enabling further
includes:

creating a globally accessible userhash-to-cluster map to
map each cluster to a hash of a user name of each user
in the domain associated therewith; and

storing in each cluster a locally accessible userhash-to
cluster map to map that cluster to each user provisioned
on any cluster.

10. The method of claim 9, wherein the enabling further
includes:

receiving a request to communicate with a user using a
communication service, the request including an email
address of the user; and

directing the request to the communication service in the
cluster uniquely associated with the organization
domain to which the user belongs based on the hash of
the user email address, and the userhash-to-cluster map.

11. A method comprising:
establishing a distributed Software-as-a-Service (SaaS)

system in which a cloud provider offers software ser
vices to multiple organizations, each organization to
operate a distinct cluster of software services of the
cloud provider, each cluster uniquely associated with
an organization domain of the organization that oper
ates the cluster, wherein users registered to a given
organization domain have access limited to the cluster
associated with that organization domain;

storing a globally accessible domain-to-cluster map used
to map each cluster to the organization domain
uniquely associated therewith:

storing in each cluster a locally accessible user-to-cluster
map to map that cluster to each user registered to the
organization domain associated with that cluster so as
to have access thereto;

receiving a user request for access to a software service
offered by the cloud provider, the user request includ
ing a user email address; and

directing the user request to the requested Software ser
vice in a cluster uniquely associated with the organi
Zation domain to with the user is registered based on the
user email address, the domain-to-cluster map, and one
of the user-to-cluster maps.

12. The method of claim 11, wherein the storing a globally
accessible domain-to-cluster map includes storing a copy of
the globally accessible domain-to-cluster map in each of the
clusters.

13. The method of claim 11, wherein the directing
includes resolving the user email address to the requested
software service in the cluster uniquely associated with the
organization domain to which the user is registered, the
resolving including:

searching the globally accessible domain-to-cluster map
for an organization domain that matches a domain of
the user email address;

if the searching the globally accessible domain-to-cluster
map finds an organization domain therein that matches
the domain of the user email address, constructing an
address for the requested software service based on the
cluster mapped to the found organization domain; and

accessing the Software service in the mapped cluster
based on the constructed address and a user identifier of
the user email address.

US 9,430,672 B2
25

14. The method of claim 13, wherein the searching the
globally accessible domain-to-cluster map includes expos
ing only the domain of the email address to the cloud
provider.

15. The method of claim 13, wherein the accessing
includes:

Searching the locally accessible user-to-cluster map in the
mapped cluster for the user identifier; and

if the user identifier is found in the locally accessible
user-to-cluster map, accessing the requested software
services on that cluster.

16. The method of claim 15, further comprising:
storing with the cloud provider a consumer organization

user-to-cluster map to map email addresses of users not
registered to any organization domain uniquely asso
ciated with a cluster to other clusters to which the
unregisters users have access:

if the user identifier is not found in the locally accessible
user-to-cluster map, searching the consumer organiza
tion user-to-cluster map for a cluster that is mapped to
the user email address;

if the searching the consumer organization user-to-cluster
map finds a cluster mapped to the user email address,
constructing an address for the requested software
service based on the cluster mapped to the user email
address; and

accessing the requested software service in the cluster
mapped to the user email address based on the con
structed address.

17. The method of claim 13, further comprising:
storing with the cloud provider a consumer organization

user-to-cluster map to map email addresses of users not
registered to any organization domain uniquely asso
ciated with a cluster to other clusters to which the
unregisters users have access;

if the searching the globally accessible domain-to-cluster
map does not finds an organization domain therein that
matches the domain of the user email address, search
ing the consumer organization user-to-cluster map for
a cluster that is mapped to the user email address;

if the searching the consumer organization user-to-cluster
map finds a cluster mapped to the user email address,
constructing an address for the requested software
Service based on the cluster mapped to the user email
address; and

accessing the requested software service in the cluster
mapped to the user email address based on the con
structed address.

18. A system comprising:
multiple infrastructure-as-a-Service (IaaS) platforms each

to be operated by a corresponding one of multiple
organizations and being associated with at least one
organization domain claimed by the organization that is
to operate that IaaS platform:

multiple clusters of software services, including commu
nication services, deployed on corresponding ones of
the IaaS platforms and being uniquely associated with
the organization domain corresponding to the organi
zation that operates that IaaS platform on which the
cluster is deployed, wherein the software services
include offerings from a cloud provider;

10

15

25

30

35

40

45

50

55

60

26
a globally accessible domain-to-cluster map to map each

cluster to the organization domain uniquely associated
therewith; and

a locally accessible user-to-cluster map stored in each
cluster to map that cluster to each user provisioned on
that cluster;

wherein users that belong to each organization domain are
provisioned only on the cluster uniquely associated
with that organization domain, such that user informa
tion for each user is stored only on the associated
cluster; and

wherein users provisioned on different clusters are
enabled to communicate with each other as if the users
were part of a centralized cloud communication ser
vice, and without sharing respective user information
with the cloud provider.

19. The system of claim 18, wherein:
an email address for each user is stored in the cluster on

which the user is provisioned, the email address includ
ing an organization domain to which the user belongs
and a user identifier;

a software service on a given cluster is configured to
receive a user request from a first user to communicate
with a second user using a communication service
includes an email address of the first user; and

direct the user request to the communication service in the
cluster uniquely associated with the organization
domain to which the first user belongs based on the user
email address, the domain-to-cluster map, and one of
the user-to-cluster maps.

20. The system of claim 19, wherein the given cluster is
further configured to:

search the domain-to-cluster map for the cluster associ
ated with the organization domain in the email address;

if the associated cluster is found as a result of the
searching, construct an address of the communication
service in the found cluster, wherein the constructed
address includes the user identifier;

determine whether the first user is provisioned on the
cluster based on the user identifier in the address; and

if it is determined that the user is provisioned on the
cluster, invoke the communication service to process
the request.

21. The system of claim 18, wherein the users are enabled
by:

creating a globally accessible userhash-to-cluster map to
map each cluster to a hash of a user name of each user
in the domain associated therewith; and

storing in each cluster a locally accessible userhash-to
cluster map to map that cluster to each user provisioned
on any cluster.

22. The system of claim 21, wherein the users are further
enabled by:

receiving a request to communicate with a user using a
communication service, the request including an email
address of the user; and

directing the request to the communication service in the
cluster uniquely associated with the organization
domain to which the user belongs based on a hash of
the user email address, and the userhash-to-cluster map.

ck ck ck ck ck

