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PREFETCH WITH REQUEST FOR 
OWNERSHIP WITHOUT DATA 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This patent application is a U.S. National Phase Applica 
tion under 35 U.S.C. S371 of International Application No. 
PCT/US2011/066854, filed Dec. 22, 2011, entitled 
PREFETCH WITH REQUEST FOROWNERSHIP WITH 
OUT DATA. 

BACKGROUND 

1. Field of Invention 
The field of invention relates generally to the computing 

Sciences and more specifically to a prefetch with request for 
ownership without data. 

2. Background 
FIG. 1 shows a processor 100 having a plurality of 

processor cores 101 1 to 101 N. Each of the cores has its 
own respective L1 cache 102 1 to 102 N but shares a 
common system memory 103. The collective goal of the L1 
caches 1021 to 102 N is to minimize accesses to the shared 
memory 103 by keeping a data item in the cache of a core 
that is apt to operate on it. However, as it is entirely possible 
that the respective program code running on the different 
cores 101 1 to 101 N may wish to concurrently operate on 
a same item of data, a “coherency” protocol is implemented 
to ensure that an item of data remains "consistent” within the 
computing system as a whole. 
A commonly used coherency protocol is the MESI pro 

tocol. The MESI protocol assigns one of four different states 
to any cached item: 1) Modified (M); 2) Exclusive (E); 3) 
Shared (S); and, 4) Invalid. A cache line in the M state 
corresponds to a “dirty' cache line that includes recent, 
updated data that has not yet been updated to shared 
memory. A cache line in the E State corresponds to data that 
is "clean'. That is, its data content is the same as its 
corresponding entry (i.e., same address) in shared memory. 
When a processor writes new data to a cache line in the E 
state, the state of the cache line is changed to the M state. 
When a cache line is in the M state, the updated data must 
be written back to shared memory before a read of shared 
memory is permitted at the cache line's corresponding 
address. The write back to memory causes the cache line to 
transition from the M state to the E state. 
Acache line in the S state typically corresponds to a cache 

line having multiple copies across the various caches 102 1 
to 102 N. In a typical situation, a single instance of a cache 
line is resident in the E state in the cache of a particular 
processor. If another processor desires the same cache line, 
a second copy of the cache line is sent to the requesting 
processor. The state of the cache line therefore changes from 
E to S as there are now two copies of the cache line in the 
system. Other aspects of the MESI protocol exist. However 
such features are well know and need not be discussed here. 

If any of the processors 101 1 to 101 N desires to write 
to a copy of a cache line in the S State, the processor that 
desires to perform the write issues a request for ownership 
(RFO) for the cache line that is broadcast to the other 
processors. If the RFO is granted, any other copies of the 
cache line in the caches of the other processors are invali 
dated (i.e., change from the S to I state). 

If the processor that was grated the RFO has a local copy 
of the cache line in the S state, the grant of the RFO 
transitions the state of the local copy to the E state, and, the 
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2 
Subsequent write changes the state again from the E State to 
the M state. If the processor that was granted the RFO did 
not have a local copy of the cache line when the RFO was 
issued, as part of the grant of the RFO it is provided with a 
copy of the cache line from one of the other processors that 
has a copy. The cache line is initially held in the E state. The 
subsequent write transitions the cache line from the E state 
to the M state. 
When a processor issues an RFO for a cache line that it 

desires to write to but does not currently have a copy of in 
its own cache, there is no guarantee that the desired cache 
line is in any of the other caches. In this case, where no 
instance of the desired cache line exists in any of the other 
caches, the cache line is fetched from shared memory and 
provided to the requesting processor's cache in the E State. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is illustrated by way of example 
and not limitation in the figures of the accompanying 
drawings, in which like references indicate similar elements 
and in which: 

FIG. 1 shows a plurality of processors and a system 
memory; 

FIG. 2 shows a method for issuing an RFO NODATA 
request; 

FIG. 3 shows a method for handling an entry in cache 
created after a grant of an RFO NODATA request; 

FIG. 4 shows a program code compilation process for 
inserting a CLINITPREFM instruction that causes hardware 
to issue an RFO NODATA request; 

FIG. 5 shows a multiprocessor semiconductor chip having 
caching and system memory protocol agents capable of 
handling an RFO NODATA request; 

FIG. 6 shows a processing core pipeline capable of 
executing a CLINTPREF M instruction: 

FIG. 7 shows a more detail processing core pipeline; 
FIG. 8 shows a computing system 

DETAILED DESCRIPTION 

Overview 

Recall from the discussion in the background that there is 
no guarantee that a desired cache line is in the cache of 
another processor when a processor issues an RFO to write 
to a cache line that it does not currently have in its own local 
cache. In this case, referred to as a "cache miss', the cache 
line is fetched from shared memory and entered into the 
requesting processor's cache. 

This operation corresponds to an inefficiency however 
when the requesting processor intends to write to the full 
cache line (rather than write to the cache line partially). 
Here, a cache line is typically organized into different 
separately addressable sections (e.g., bytes). At least in 
circumstances where the processor intends to write new data 
to each of these separately addressable sections, it serves no 
purpose to fetch the cache line from shared memory in the 
case of a cache miss. That is, because the processor intends 
to completely overwrite each section with new data, it serves 
no useful purpose to waste memory bandwidth resources 
fetching data that will be completely overwritten. 

FIG. 2 pertains to an improved approach in which the 
processing core's instruction set includes an instruction that 
the program code can call if it believes it will overwrite an 
entire cache line. According to the approach of FIG. 2, the 
processing cores of a multi core processor Support an 
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instruction CLINITPREF M that acts as a hint to the 
hardware to prefetch a cache line at address M. 
A processing core that executes the CLINITPREF M 

instruction first checks its own cache 201 for the cache line 
and if it is there (cache hit) the process ends. If the cacheline 
is not in the processor's local cache (local cache miss), the 
processor issues an RFO NODATA to the other processing 
cores 202. If the RFO NODATA is granted 203 and there is 
a cache hit in another cache 204 (i.e., at least one of the other 
processing cores has the cache line in its local cache) the 
other processors invalidate their local copies of the cache 
line. However, unlike a traditional granted RFO and cache 
hit, the cache line is not provided to the requesting process 
ing core 205. Similarly, if the RFO NODATA is granted 203 
and the cache line is not resident in any of the other 
processing cores respective caches (cache miss), the 
requested cache line is not fetched from memory 206. 

Rather, in an embodiment, a dummy entry is created 207 
in the cache of the processor that issued the RFO NODATA 
for the requested cache line without any “real data. Ideally, 
the processor completely writes over the dummy cache line 
entry through execution of a Subsequent store instruction 
before any other access of the cache line is desired (e.g., a 
read or partial write). Here, the refusal to forward the cache 
line to the requesting core and the creation of the dummy 
entry in lieu thereof saves bandwidth/communication 
resources between the protocol agents and between the 
protocol agents and system memory. 
The dummy entry can be viewed as having a new state 

that is added to the traditional set of MESI states in the MESI 
coherency protocol. Specifically, the dummy entry can be 
viewed as being in the N state: an Exclusive state with the 
further understanding that the cache line has no data (recall 
that, traditionally, a granted RFO resulted in the only 
remaining copy of the cache line being placed in the E state). 

With the understanding that the cache line has no data, 
protocol agent behavior is different than if the cache line 
were in a traditional Estate. Specifically, as observed in FIG. 
3, the processing core that has the dummy entry 301 
invalidates the dummy entry 303 if the processing core is 
unable to execute a store instruction that completely over 
writes the cache line 302 before it executes a load instruction 
to read the dummy entry or executes a store instruction that 
only partially writes the cache line 303. Moreover, if a read 
or RFO request is made for the dummy cache line by another 
processor, rather than transition the cache line to the S State 
and service the read/RFO request (i.e., send the requesting 
processor a copy of the cache line), instead, the dummy 
cache line is invalidated (transitions to the I state) and the 
request is not serviced. This forces the requesting processor 
to receive the cache line from memory in the E state. 

Note that in various embodiments the CLINITPREF M 
instruction can be viewed as a type of prefetch instruction 
that effectively prepares the system for a complete overwrite 
of the cache line at address M without enduring the penalty 
of enduring a cache line transfer between protocol agents or 
over a system memory interface where the cache line is 
question stands to be completely overwritten. As such, the 
CLINITPREF M instruction is particularly useful in the 
compilation of program code. 

Here, referring to FIG. 4, if a compiler recognizes 401 the 
existence of a store instruction that will completely over 
write a cache line, the compiler can insert a CLINITPREF 
instruction into the code in advance of the store instruction 
402. As such, during runtime, first the CLINITPREF instruc 
tion is executed which has the effect of: i) invalidating any 
shared copies of the affected cache line in other processing 
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4 
cores; ii) giving exclusive ownership of the cache line to the 
processing core that will completely overwrite the cache 
line; and, iii) creating a dummy entry in the processing 
core's cache so that it will handle the store operation as a 
cache hit in its local cache. 

Note that various embodiments consistent with the ideas 
presented above are possible. For example, the approach of 
FIG. 2 avoids the penalty of both a cache line transfer 
between cores a cache line transfer over a system memory 
interface in the case where a processing core is about to 
completely overwrite the cache line. 

In an alternate embodiment that may be implemented, for 
example, to impose less Sophisticated coherency protocol 
logic at the expense of system performance, only the penalty 
of a cache line transfer across a system memory interface is 
avoided. That is, when the requesting processing core issues 
an RFO NODATA request, the “no data” part is adhered to 
at the component of the coherence protocol logic that 
controls system memory accesses but not the components of 
the coherence protocol logic associated with the local caches 
of the individual cores. 
As such, when a processing core issues an RFO NO 

DATA request, if another processing core has the cache line 
in its local cache, the cache line is forwarded from the 
processing core having the cache line to the processing core 
that requested the cache line. If a cache miss occurs across 
the local caches of all the processing cores, the coherency 
logic that controls access to the system memory understands 
that even though a normal cache miss should trigger a read 
of system memory, in the case of an RFO NODATA, no 
such read should be made. 

In another approach hints are provided in the instruction 
to dictate how far the requested cache line should move 
towards the requesting processing core in the case of (e.g., 
multiple) cache misses. For example, FIG. 5 shows a multi 
processor chip having multiple processing cores 501 1 
501 N. (each with its own local L1 cache 502 1-502 N), 
and an L2 caching layer that consists of different L2 cache 
“slices' 503 1-503 X where each slice is responsible for 
caching a different address and has its own associated 
coherence plane logic. Switch core 509 interconnects the 
processing cores to the L2 cache agents and the system 
memory controller 507. Both the L1 caches, the L2 cache 
slices and a system memory controller 507 have their own 
respective protocol agent logic circuitry 504 1-504 N. 
505 1-505 X, 508 for implementing the RFO NODATA 
protocol and N State consistent with the teachings provided 
herein. 

Note that any of the above described embodiments can be 
implemented in a system as observed in FIG. 5. Specifically, 
the system of FIG. 5 operates as described above except that 
a miss in all L1 caches 502 1 to 502 N in response to an 
RFO NODATA request causes a Snoop into L2 cache. In a 
first embodiment, if there is a hit in L2 cache, the copy in L2 
cache is invalidated and not forwarded to the requesting 
processor. In an alternate embodiment, the copy in L2 cache 
is invalidated but is forwarded to the requesting processor. 
The alternate embodiment wastes communication resources 
509 between the L2 cache and the processors but keeps the 
logic of the L2 caching agent less complex than the first 
embodiment. If there is a miss in L2 cache, the process 
proceeds toward system memory 506 as just described. 
Specifically, the system memory protocol agent 508 can be 
designed to behave like a L2 cache protocol agent described 
above according to either embodiment. 

Consistent with these options, in further embodiments, a 
hint is provided in the CLINITPREF M instruction that 
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specifies data movement of the cache line within the pro 
cessor. That is, the system may be designed to Support each 
of the embodiments discussed above, and, which embodi 
ment is to take effect is specified in the instruction. Specifi 
cally, the instruction may take the form of CLINITPREFM 
h where h is a temporal hint that dictates whether the L2 
caching protocol agent is to, upon a hit in L2 cache, move 
the cache line that is the subject of the RFO NODATA up 
into the L1 cache or not move the cache line into the L1 
cache. 

Separately or in combination the temporal hinth may also 
specify whether the system memory protocol agent 508, 
upon an L2 cache miss, should fetch the cache line from 
system memory 506 or not fetch the cache line from system 
memory 506. In a further embodiment, if the system 
memory protocol agent 508 is to fetch the cache line from 
system memory 506, the cache line only moves up into L2 
cache and is not passed all the way up to the requesting 
processor. This has the effect of Saving communication 
resources 509 between the L2 cache and the processors (but 
not the system memory bus). In an embodiment the temporal 
hint information h is specified in an immediate operand of 
the instruction. 

FIG. 6 shows an instruction execution pipeline 600 hav 
ing at least one execution unit 601 that is coupled to the (e.g., 
L1) cache coherence logic 602 of the processing core having 
the pipeline. In an embodiment, in response to the execution 
of a CLINITPREF M instruction, a signal is sent from the 
execution unit 601 to the cache coherence logic 602 that 
triggers the issuance of a RFO NODATA for the address M 
specified in the instruction. The signal therefore includes 
some indication that the RFO NODATA should be issued as 
well as the address M. The address M may be routed to the 
L1 cache coherence logic from general purpose register 
space 603 where the address M is kept as an input operand 
for the instruction. The address M may be routed directly to 
the cache protocol agent logic 602 from register space 603 
or may be routed through the pipeline 600. In the case of 
CLINITPREF M h instructions containing temporal hint 
information, the temporal hint information is also passed 
from the execution unit 601 to the cache coherence logic 602 
which embeds the information in the RFO NODATA 
request. 

FIG. 7 shows a generic processing core 700 that is 
believed to describe many different types of processing core 
architectures such as Complex Instruction Set (CISC), 
Reduced Instruction Set (RISC) and Very Long Instruction 
Word (VLIW). The processing core of FIG. 7 can be coupled 
to L1 cache agent protocol logic and register space as 
depicted in FIG. 6 to support execution of a CLINITPREF 
M instruction. 
The generic processing core 700 of FIG. 7 includes: 1) a 

fetch unit 703 that fetches instructions (e.g., from cache or 
memory); 2) a decode unit 704 that decodes instructions; 3) 
a schedule unit 705 that determines the timing and/or order 
of instruction issuance to the execution units 706 (notably 
the scheduler is optional); 4) execution units 706 that 
execute the instructions; 5) a retirement unit 707 that sig 
nifies successful completion of an instruction. Notably, the 
processing core may or may not include microcode 708, 
partially or wholly, to control the micro operations of the 
execution units 706. The instruction execution resources/ 
logic referred to in preceding discussions may be imple 
mented with one or more of the execution units within 
execution units 706. 
A processing core having the functionality described 

above can be implemented into various computing systems 
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6 
as well. FIG. 8 shows an embodiment of a computing system 
(e.g., a computer). The exemplary computing system of FIG. 
8 includes: 1) one or more processing cores 801 that may be 
designed to include two and three register scalar integer and 
vector instruction execution; 2) a memory control hub 
(MCH) 802; 3) a system memory 803 (of which different 
types exist such as DDR RAM, EDO RAM, etc); 4) a cache 
804; 5) an I/O control hub (ICH) 805; 6) a graphics 
processor 806; 7) a display/screen 807 (of which different 
types exist such as Cathode Ray Tube (CRT), flat panel. Thin 
Film Transistor (TFT), Liquid Crystal Display (LCD), DPL, 
etc.) one or more I/O devices 808. 
The one or more processing cores 801 execute instruc 

tions in order to perform whatever software routines the 
computing system implements. The instructions frequently 
involve some sort of operation performed upon data. Both 
data and instructions are stored in system memory 803 and 
cache 804. Cache 804 is typically designed to have shorter 
latency times than system memory 803. For example, cache 
804 might be integrated onto the same silicon chip(s) as the 
processor(s) and/or constructed with faster SRAM cells 
whilst system memory 803 might be constructed with slower 
DRAM cells. By tending to store more frequently used 
instructions and data in the cache 804 as opposed to the 
system memory 803, the overall performance efficiency of 
the computing system improves. 

System memory 803 is deliberately made available to 
other components within the computing system. For 
example, the data received from various interfaces to the 
computing system (e.g., keyboard and mouse, printer port, 
LAN port, modem port, etc.) or retrieved from an internal 
storage element of the computing system (e.g., hard disk 
drive) are often temporarily queued into system memory 803 
prior to their being operated upon by the one or more 
processor(s) 801 in the implementation of a software pro 
gram. Similarly, data that a Software program determines 
should be sent from the computing system to an outside 
entity through one of the computing system interfaces, or 
stored into an internal storage element, is often temporarily 
queued in system memory 803 prior to its being transmitted 
or stored. 
The ICH 805 is responsible for ensuring that such data is 

properly passed between the system memory 803 and its 
appropriate corresponding computing system interface (and 
internal storage device if the computing system is so 
designed). The MCH 802 is responsible for managing the 
various contending requests for system memory 803 access 
amongst the processor(s) 801, interfaces and internal storage 
elements that may proximately arise in time with respect to 
one another. 
One or more I/O devices 808 are also implemented in a 

typical computing system. I/O devices generally are respon 
sible for transferring data to and/or from the computing 
system (e.g., a networking adapter); or, for large scale 
non-volatile storage within the computing system (e.g., hard 
disk drive). ICH 805 has bi-directional point-to-point links 
between itself and the observed I/O devices 808. 

Processes taught by the discussion above may be per 
formed with program code Such as machine-executable 
instructions that cause a machine that executes these instruc 
tions to perform certain functions. In this context, a 
“machine' may be a machine that converts intermediate 
form (or “abstract’) instructions into processor specific 
instructions (e.g., an abstract execution environment Such as 
a “virtual machine' (e.g., a Java Virtual Machine), an 
interpreter, a Common Language Runtime, a high-level 
language virtual machine, etc.)), and/or, electronic circuitry 
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disposed on a semiconductor chip (e.g., "logic circuitry’ 
implemented with transistors) designed to execute instruc 
tions such as a general-purpose processor and/or a special 
purpose processor. Processes taught by the discussion above 
may also be performed by (in the alternative to a machine or 5 
in combination with a machine) electronic circuitry designed 
to perform the processes (or a portion thereof) without the 
execution of program code. 

It is believed that processes taught by the discussion 
above may also be described in Source level program code 10 
in various object-orientated or non-object-orientated com 
puter programming languages (e.g., Java, C#, VB, Python, 
C, C++, Ji, APL, Cobol, Fortran, Pascal, Perl, etc.) Sup 
ported by various software development frameworks (e.g., 
Microsoft Corporation's .NET, Mono, Java, Oracle Corpo- 15 
ration’s Fusion, etc.). The source level program code may be 
converted into an intermediate form of program code (Such 
as Java byte code, Microsoft Intermediate Language, etc.) 
that is understandable to an abstract execution environment 
(e.g., a Java Virtual Machine, a Common Language Run- 20 
time, a high-level language virtual machine, an interpreter, 
etc.) or may be compiled directly into object code. 

According to various approaches the abstract execution 
environment may convert the intermediate form program 
code into processor specific code by, 1) compiling the 25 
intermediate form program code (e.g., at run-time (e.g., a 
JIT compiler)), 2) interpreting the intermediate form pro 
gram code, or 3) a combination of compiling the interme 
diate form program code at run-time and interpreting the 
intermediate form program code. Abstract execution envi- 30 
ronments may run on various operating systems (such as 
UNIX, LINUX, Microsoft operating systems including the 
Windows family, Apple Computers operating systems 
including MacOS X, Sun/Solaris, OS/2, Novell, etc.). 
An article of manufacture may be used to store program 35 

code. An article of manufacture that stores program code 
may be embodied as, but is not limited to, one or more 
memories (e.g., one or more flash memories, random access 
memories (static, dynamic or other)), optical disks, CD 
ROMs, DVD ROMs, EPROMs, EEPROMs, magnetic or 40 
optical cards or other type of machine-readable media 
Suitable for storing electronic instructions. Program code 
may also be downloaded from a remote computer (e.g., a 
server) to a requesting computer (e.g., a client) by way of 
data signals embodied in a propagation medium (e.g., via a 45 
communication link (e.g., a network connection)). 

In the foregoing specification, the invention has been 
described with reference to specific exemplary embodiments 
thereof. It will, however, be evident that various modifica 
tions and changes may be made thereto without departing 50 
from the broader spirit and scope of the invention as set forth 
in the appended claims. 
What is claimed is: 
1. A semiconductor chip having multiple processing cores 

comprising: 55 
a cache; and 
a processing core of said multiple processing cores com 

prising cache coherence logic to issue a request for 
ownership of a cache line of the cache without receipt 
of the cache line in response to the request, said cache 60 
coherence logic to give exclusive ownership of the 
cache line to the processing core in response to only a 
full write to the cache line, create a dummy entry for 
said cache line in said cache in response to said request, 
invalidate said dummy entry in response to only the full 65 
write to said cache line, and not invalidate said dummy 
entry in response to a read of said cache line, wherein 

8 
said cache coherence logic is to place the dummy entry 
for said cache line in said cache in an exclusive with no 
data State of a cache coherency protocol. 

2. The semiconductor chip of claim 1 wherein the exclu 
sive with no data state is not any of modified, exclusive, 
shared and invalid (MESI) states of the cache coherency 
protocol. 

3. The semiconductor chip of claim 1 wherein the exclu 
sive with no data state is in addition to modified exclusive, 
shared and invalid (MESI) states of the cache coherency 
protocol. 

4. The semiconductor chip of claim 1 wherein said request 
includes temporal hint information that determines whether 
the cache line is to be read from system memory for a cache 
miss. 

5. The semiconductor chip of claim 1 wherein said cache 
coherence logic is to issue said request in response to 
execution of a prefetch instruction. 

6. The semiconductor chip of claim 1 further comprising 
L2 cache coherence logic, said L2 cache coherence logic to, 
in response to said request, not forward said cache line to 
said processing core for an L2 cache hit, wherein the cache 
coherence logic is L1 cache coherence logic. 

7. The semiconductor chip of claim 1 further comprising 
system memory coherence logic to, in response to said 
request, not fetch said cache line from system memory for 
a cache miss. 

8. A method performed by a processor comprising: 
issuing a request for ownership of a cache line of a cache 
by a processing core of the processor without receiving 
the cache line in response to the request; 

giving exclusive ownership of the cache line to the 
processing core in response to only a full write to the 
cache line; 

creating a dummy entry for said cache line in said cache 
in response to the issuing: 

invalidating said dummy entry in response to only the full 
write to said cache line; 

not invalidating said dummy entry in response to a read of 
said cache line; and 

creating placing the dummy entry for said cache line in 
said cache in an exclusive with no data state of a cache 
coherency protocol. 

9. The method of claim 8 wherein the exclusive with no 
data state is not any of modified, exclusive, shared, and 
invalid (MESI) states of the cache coherency protocol. 

10. The method of claim 8 wherein the exclusive with no 
data State is in addition to modified, exclusive, shared, and 
invalid (MESI) states of the cache coherency. 

11. The method of claim 8 wherein the issuing the request 
comprises execution of a prefetch instruction. 

12. The method of claim 8 further comprising, in response 
to said issuing, moving said cache line from system memory 
to a second cache located between said cache and system 
memory. 

13. A semiconductor chip having multiple processing 
cores comprising: a processing core of said multiple pro 
cessing cores comprising its own local cache and cache 
coherence logic, said cache coherence logic to issue a 
request for ownership of a cache line without receipt of the 
cache line in response to the request even if said cache line 
is not in said local cache, the cache coherence logic to give 
exclusive ownership of the cache line to the processing core 
in response to only a full write to the cache line, create a 
dummy entry for said cache line in said local cache in 
response to said request, invalidate said dummy entry in 
response to only the full write to said cache line, and not 
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invalidate said dummy entry in response to a read of said 
cache line, wherein said cache coherence logic is to place the 
dummy entry for said cache line in said local cache in an 
exclusive with no data state of a cache coherency protocol. 

14. The semiconductor chip of claim 13 wherein the 
exclusive with no data State is not any of modified, exclu 
sive, shared, and invalid (MESI) states of the cache coher 
ency protocol. 

15. The semiconductor chip of claim 13 wherein the 
exclusive with no data state is in addition to modified, 
exclusive, shared, and invalid (MESI) states of the cache 
coherency protocol. 

16. The semiconductor chip of claim 13 wherein said 
request includes temporal hint information that determines 
whether the cache line is to be read from system memory for 
a miss in a second cache between said local cache and 
system memory. 

17. The semiconductor chip of claim 13 wherein a said 
cache coherence logic is to issue said request in response to 
execution of a prefetch instruction. 

18. A semiconductor chip having multiple processing 
cores comprising: 

a cache; and 
a processing core of said multiple processing cores com 

prising cache coherence logic to issue a request for 

10 

15 

10 
ownership of a cache line of the cache without receipt 
of the cache line in response to the request, said cache 
coherence logic to give exclusive ownership of the 
cache line to the processing core in response to only a 
full write to the cache line, create a dummy entry for 
said cache line in said cache in response to said request, 
and place the dummy entry for said cache line in said 
cache in an exclusive with no data state of a cache 
coherency protocol. 

19. The semiconductor chip of claim 18 wherein the 
exclusive with no data State is not any of modified, exclu 
sive, shared, and invalid (MESI) states of the cache coher 
ency protocol. 

20. The semiconductor chip of claim 18 wherein said 
cache coherence logic is to invalidate said dummy entry in 
response to only the full write to said cache line. 

21. The semiconductor chip of claim 18 wherein said 
cache coherence logic is to not invalidate said dummy entry 
in response to a read of said cache line. 

22. The semiconductor chip of claim 18 wherein said 
cache coherence logic is to issue said request in response to 
execution of a prefetch instruction. 

k k k k k 


