
(12) United States Patent
Corbal et al.

USOO943O389B2

US 9.430,389 B2
Aug. 30, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(86)

(87)

(65)

(51)

(52)

(58)

PREFETCH WITH REQUEST FOR
OWNERSHIP WITHOUT DATA

Inventors: Jesus Corbal, Barcelona (ES); Lisa K.
Wu, New York, NY (US); George Z.
Chrysos, Portland, OR (US); Andrew
T. Forsyth, Kirkland, WA (US);
Ramacharan Sundararaman,
Hillsboro, OR (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 13/976,429

PCT Fed: Dec. 22, 2011

PCT No.: PCT/US2O11AO66854

S 371 (c)(1),
(2), (4) Date: Jan. 23, 2014

PCT Pub. No.: WO2O13AO95511

PCT Pub. Date: Jun. 27, 2013

Prior Publication Data

US 2014/O164705 A1 Jun. 12, 2014

Int. C.
G06F 3/00 (2006.01)
G06F 2/08 (2016.01)
G06F 9/30 (2006.01)
U.S. C.
CPC G06F 12/0815 (2013.01); G06F 9/30047

(2013.01); G06F 12/08 II (2013.01); G06F
12/0862 (2013.01)

Field of Classification Search
None
See application file for complete search history.

201

XCUT CLINTREFM
INSTRUCTION

CACHE
LINEN

L1 (LOCAL)
CACHE

NO 202

ISSUERFO NODATAREQUEST

203
CREATEUMMY

NTRY FOR
CACHELINEN
LOCAL CACHE

DO NOT
FETCHCACHE
LINE FROM
SYSTEM
MEMORY

CACHE
HTM

ANOTHER
CACHE

PRCESSOR

(56) References Cited

U.S. PATENT DOCUMENTS

4,775,955 A * 10/1988 Liu GO6F 12,0837
T11 135

6,842,826 B1* 1/2005 McNutt T11 136
6,865,645 B1* 3/2005 Shum G06F 93812

T11 123
7,284,097 B2 10/2007 Dodson et al.
7.546,422 B2 * 6/2009 George G06F 12,082

T11 129
2002fOO78305 A1 6/2002 Khare et al.
2002/O124143 A1* 9, 2002 Barroso G06F 11.1064

T11 145
2004/OO88487 A1 5, 2004 Barroso et al.
2007/0088919 A1 4/2007 Shen et al. T11,154

FOREIGN PATENT DOCUMENTS

CN 1495618 A

OTHER PUBLICATIONS

5, 2004

PCT International Search Report for PCT Counterpart Application
No. PCT/US2011/066854, 3 pgs. (Jul 27, 2012).

(Continued)

Primary Examiner — Elias Mamo
(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott, LLP

(57)
A method performed by a processor is described. The
method includes executing an instruction. The instruction
has an address as an operand. The executing of the instruc
tion includes sending a signal to cache coherence protocol
logic of the processor. In response to the signal, the cache
coherence protocol logic issues a request for ownership of a
cache line at the address. The cache line is not in a cache of
the processor. The request for ownership also indicates that
the cache line is not to be sent to the processor.

ABSTRACT

22 Claims, 8 Drawing Sheets

301
DUMMY ENTRY CREATED

FORRFONODATA
REQUESTED CACHELINE

NEXT ACCESS FORCACHE
LINE

STH
ACCESS TO

FULLY WRIT TO
THE CACHELINE

INWALIATEUMMY
NTRY

302
FULLYWRITE
TO CACHE

LINE

THER PROCESSORS
NWAAT THEIR

COPY OF THE CACHE
LINEAN CACHELINE
SNOTORWARDED
TOREUSTING

US 9.430,389 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

PCT Written Opinion of the International Searching Authority for
PCT Counterpart Application No. PCT/US2011/066854, 3 pgs.
(Jul 27, 2012).
PCT Notification concerning Transmittal of Copy of International
Preliminary Report on Patentability (Chapter I of the Patent Coop
eration Treaty) for PCT Counterpart Application No. PCT/US2011/
066854, 5 pgs. (Jul. 3, 2014).
Chrysos, George, “Under the Armor of Knights Corner: Intel MIC
Architecture at Hotchips 2012.” Intel Communities The Data Stack

blog. https://communities.intel.com/community/datastack/blog/
2012/08/30/knights-corner-at-hot-chips-24. Aug. 30, 2012, 3 pages.
Chrysos, George, “Intel(R) Xeon Phi TM Coprocessor—the Architec
ture.” Intel Developer Zone webpage, http://software.intel.com/en
us/articles/intel-Xeon-phi-coprocessor-codename-knights-corner,
2012, 9 pages.
Office Action and Search Report with English Translation from
Taiwan Patent Application No. 101148094, mailed Mar. 18, 2015,
14 pages.
Office action with English translation from Chinese Patent Appli
cation No. 20118.0076288.5, mailed Mar. 30, 2016, 21 pages.

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 8 US 9.430,389 B2

FIG. 1

U.S. Patent Aug. 30, 2016 Sheet 2 of 8 US 9.430,389 B2

201

EXECUTE CLINTPREFM
INSTRUCTION

CACHE
LINE IN

L1 (LOCAL)
CACHE

ISSUERFO NODATA REQUEST

CREATE DUMMY
ENTRY FOR

CACHE LINE IN
LOCAL CACHE

DO NOT OTHER PROCESSORS
FETCH CACHE CACHE INVALIDATE THEIR

SYSTEM ANOTHER LINE AND CACHE LINE
CACHE IS NOT FORWARDED

MEMORY TO REOUESTING
PROCESSOR

FIG. 2

U.S. Patent Aug. 30, 2016 Sheet 3 of 8 US 9.430,389 B2

301
DUMMY ENTRY CREATED

FOR RFO NODATA
REQUESTED CACHE LINE

NEXT ACCESS FOR CACHE
LINE

IS THE 302
ACCESS TO FULLY WRITE

FULLY WRITE TO TO CACHE
THE CACHE LINEP LINE

INVALIDATE DUMMY
ENTRY

FIG. 3

U.S. Patent Aug. 30, 2016 Sheet 4 of 8

RECOGNIZE EXISTENCE
OF STORE INSTRUCTION
THAT WILL FULLY WRITE

TO ADDRESSM

INSERT CLINTPREFM
INSTRUCTION IN PROGRAM

CODE AHEAD OF THE
STORE INSTRUCTION

FIG. 4

401

402

US 9.430,389 B2

U.S. Patent Aug. 30, 2016

PROCESSING
CORE 1

502 1

PROTOCOL
AGENT

w

V

RFO NODATA

505 1

PROTOCOL
AGENT 1

SWITCH CORE

509

SEGMENT 1

503 1

Sheet S of 8

PROCESSING
CORE 1

502 2

PROTOCOL
AGENT

504 2

505 2

PROTOCOL
AGENT 2

L2 L2
SEGMENT 2

503 2

PROTOCOL
AGENT

MEMORY
CONTROLLER

MEMORY
CONTROLLER

503 X

US 9.430,389 B2

PROCESSING
CORE 1

502 N

PROTOCOL
AGENT

505 X

PROTOCOL
AGENT X

L2
SEGMENT X

U.S. Patent Aug. 30, 2016 Sheet 6 of 8 US 9.430,389 B2

1. 600

REGISTER

SPACE 603 INSTRUCTION FETCH
AND DECODE

ADDRESS
M DATA FETCH

L1 CACHE 4------4---

AGENT 601
LOGIC

CIRCUITRY
ISSUE

RFO NODATA

WRITE BACK
602

FIG. 6

U.S. Patent Aug. 30, 2016 Sheet 7 of 8 US 9.430,389 B2

FETCHUNIT
703 708

O4. MICROCODE 7

DECODE UNIT

N -1TY

705 \ ----------------------------------

SCHEDUER
UNIT

PROCESSOR
CORE
700

condition cope 706
REG. EXECUTION

UNIT(S)
702

SHADOW REG NJ-1-
72 722

RETIREMENT
UNIT

707

FIG.7

U.S. Patent Aug. 30, 2016 Sheet 8 of 8 US 9.430,389 B2

PROCESSOR(S)
801.

GRAPHCS
PROCESSOR

806

SYSTEM
MEMORY

803

DISPLAY
807

FIG. 8

US 9,430,389 B2
1.

PREFETCH WITH REQUEST FOR
OWNERSHIP WITHOUT DATA

CROSS-REFERENCE TO RELATED
APPLICATION

This patent application is a U.S. National Phase Applica
tion under 35 U.S.C. S371 of International Application No.
PCT/US2011/066854, filed Dec. 22, 2011, entitled
PREFETCH WITH REQUEST FOROWNERSHIP WITH
OUT DATA.

BACKGROUND

1. Field of Invention
The field of invention relates generally to the computing

Sciences and more specifically to a prefetch with request for
ownership without data.

2. Background
FIG. 1 shows a processor 100 having a plurality of

processor cores 101 1 to 101 N. Each of the cores has its
own respective L1 cache 102 1 to 102 N but shares a
common system memory 103. The collective goal of the L1
caches 1021 to 102 N is to minimize accesses to the shared
memory 103 by keeping a data item in the cache of a core
that is apt to operate on it. However, as it is entirely possible
that the respective program code running on the different
cores 101 1 to 101 N may wish to concurrently operate on
a same item of data, a “coherency” protocol is implemented
to ensure that an item of data remains "consistent” within the
computing system as a whole.
A commonly used coherency protocol is the MESI pro

tocol. The MESI protocol assigns one of four different states
to any cached item: 1) Modified (M); 2) Exclusive (E); 3)
Shared (S); and, 4) Invalid. A cache line in the M state
corresponds to a “dirty' cache line that includes recent,
updated data that has not yet been updated to shared
memory. A cache line in the E State corresponds to data that
is "clean'. That is, its data content is the same as its
corresponding entry (i.e., same address) in shared memory.
When a processor writes new data to a cache line in the E
state, the state of the cache line is changed to the M state.
When a cache line is in the M state, the updated data must
be written back to shared memory before a read of shared
memory is permitted at the cache line's corresponding
address. The write back to memory causes the cache line to
transition from the M state to the E state.
Acache line in the S state typically corresponds to a cache

line having multiple copies across the various caches 102 1
to 102 N. In a typical situation, a single instance of a cache
line is resident in the E state in the cache of a particular
processor. If another processor desires the same cache line,
a second copy of the cache line is sent to the requesting
processor. The state of the cache line therefore changes from
E to S as there are now two copies of the cache line in the
system. Other aspects of the MESI protocol exist. However
such features are well know and need not be discussed here.

If any of the processors 101 1 to 101 N desires to write
to a copy of a cache line in the S State, the processor that
desires to perform the write issues a request for ownership
(RFO) for the cache line that is broadcast to the other
processors. If the RFO is granted, any other copies of the
cache line in the caches of the other processors are invali
dated (i.e., change from the S to I state).

If the processor that was grated the RFO has a local copy
of the cache line in the S state, the grant of the RFO
transitions the state of the local copy to the E state, and, the

10

15

25

30

35

40

45

50

55

60

65

2
Subsequent write changes the state again from the E State to
the M state. If the processor that was granted the RFO did
not have a local copy of the cache line when the RFO was
issued, as part of the grant of the RFO it is provided with a
copy of the cache line from one of the other processors that
has a copy. The cache line is initially held in the E state. The
subsequent write transitions the cache line from the E state
to the M state.
When a processor issues an RFO for a cache line that it

desires to write to but does not currently have a copy of in
its own cache, there is no guarantee that the desired cache
line is in any of the other caches. In this case, where no
instance of the desired cache line exists in any of the other
caches, the cache line is fetched from shared memory and
provided to the requesting processor's cache in the E State.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements
and in which:

FIG. 1 shows a plurality of processors and a system
memory;

FIG. 2 shows a method for issuing an RFO NODATA
request;

FIG. 3 shows a method for handling an entry in cache
created after a grant of an RFO NODATA request;

FIG. 4 shows a program code compilation process for
inserting a CLINITPREFM instruction that causes hardware
to issue an RFO NODATA request;

FIG. 5 shows a multiprocessor semiconductor chip having
caching and system memory protocol agents capable of
handling an RFO NODATA request;

FIG. 6 shows a processing core pipeline capable of
executing a CLINTPREF M instruction:

FIG. 7 shows a more detail processing core pipeline;
FIG. 8 shows a computing system

DETAILED DESCRIPTION

Overview

Recall from the discussion in the background that there is
no guarantee that a desired cache line is in the cache of
another processor when a processor issues an RFO to write
to a cache line that it does not currently have in its own local
cache. In this case, referred to as a "cache miss', the cache
line is fetched from shared memory and entered into the
requesting processor's cache.

This operation corresponds to an inefficiency however
when the requesting processor intends to write to the full
cache line (rather than write to the cache line partially).
Here, a cache line is typically organized into different
separately addressable sections (e.g., bytes). At least in
circumstances where the processor intends to write new data
to each of these separately addressable sections, it serves no
purpose to fetch the cache line from shared memory in the
case of a cache miss. That is, because the processor intends
to completely overwrite each section with new data, it serves
no useful purpose to waste memory bandwidth resources
fetching data that will be completely overwritten.

FIG. 2 pertains to an improved approach in which the
processing core's instruction set includes an instruction that
the program code can call if it believes it will overwrite an
entire cache line. According to the approach of FIG. 2, the
processing cores of a multi core processor Support an

US 9,430,389 B2
3

instruction CLINITPREF M that acts as a hint to the
hardware to prefetch a cache line at address M.
A processing core that executes the CLINITPREF M

instruction first checks its own cache 201 for the cache line
and if it is there (cache hit) the process ends. If the cacheline
is not in the processor's local cache (local cache miss), the
processor issues an RFO NODATA to the other processing
cores 202. If the RFO NODATA is granted 203 and there is
a cache hit in another cache 204 (i.e., at least one of the other
processing cores has the cache line in its local cache) the
other processors invalidate their local copies of the cache
line. However, unlike a traditional granted RFO and cache
hit, the cache line is not provided to the requesting process
ing core 205. Similarly, if the RFO NODATA is granted 203
and the cache line is not resident in any of the other
processing cores respective caches (cache miss), the
requested cache line is not fetched from memory 206.

Rather, in an embodiment, a dummy entry is created 207
in the cache of the processor that issued the RFO NODATA
for the requested cache line without any “real data. Ideally,
the processor completely writes over the dummy cache line
entry through execution of a Subsequent store instruction
before any other access of the cache line is desired (e.g., a
read or partial write). Here, the refusal to forward the cache
line to the requesting core and the creation of the dummy
entry in lieu thereof saves bandwidth/communication
resources between the protocol agents and between the
protocol agents and system memory.
The dummy entry can be viewed as having a new state

that is added to the traditional set of MESI states in the MESI
coherency protocol. Specifically, the dummy entry can be
viewed as being in the N state: an Exclusive state with the
further understanding that the cache line has no data (recall
that, traditionally, a granted RFO resulted in the only
remaining copy of the cache line being placed in the E state).

With the understanding that the cache line has no data,
protocol agent behavior is different than if the cache line
were in a traditional Estate. Specifically, as observed in FIG.
3, the processing core that has the dummy entry 301
invalidates the dummy entry 303 if the processing core is
unable to execute a store instruction that completely over
writes the cache line 302 before it executes a load instruction
to read the dummy entry or executes a store instruction that
only partially writes the cache line 303. Moreover, if a read
or RFO request is made for the dummy cache line by another
processor, rather than transition the cache line to the S State
and service the read/RFO request (i.e., send the requesting
processor a copy of the cache line), instead, the dummy
cache line is invalidated (transitions to the I state) and the
request is not serviced. This forces the requesting processor
to receive the cache line from memory in the E state.

Note that in various embodiments the CLINITPREF M
instruction can be viewed as a type of prefetch instruction
that effectively prepares the system for a complete overwrite
of the cache line at address M without enduring the penalty
of enduring a cache line transfer between protocol agents or
over a system memory interface where the cache line is
question stands to be completely overwritten. As such, the
CLINITPREF M instruction is particularly useful in the
compilation of program code.

Here, referring to FIG. 4, if a compiler recognizes 401 the
existence of a store instruction that will completely over
write a cache line, the compiler can insert a CLINITPREF
instruction into the code in advance of the store instruction
402. As such, during runtime, first the CLINITPREF instruc
tion is executed which has the effect of: i) invalidating any
shared copies of the affected cache line in other processing

10

15

25

30

35

40

45

50

55

60

65

4
cores; ii) giving exclusive ownership of the cache line to the
processing core that will completely overwrite the cache
line; and, iii) creating a dummy entry in the processing
core's cache so that it will handle the store operation as a
cache hit in its local cache.

Note that various embodiments consistent with the ideas
presented above are possible. For example, the approach of
FIG. 2 avoids the penalty of both a cache line transfer
between cores a cache line transfer over a system memory
interface in the case where a processing core is about to
completely overwrite the cache line.

In an alternate embodiment that may be implemented, for
example, to impose less Sophisticated coherency protocol
logic at the expense of system performance, only the penalty
of a cache line transfer across a system memory interface is
avoided. That is, when the requesting processing core issues
an RFO NODATA request, the “no data” part is adhered to
at the component of the coherence protocol logic that
controls system memory accesses but not the components of
the coherence protocol logic associated with the local caches
of the individual cores.
As such, when a processing core issues an RFO NO

DATA request, if another processing core has the cache line
in its local cache, the cache line is forwarded from the
processing core having the cache line to the processing core
that requested the cache line. If a cache miss occurs across
the local caches of all the processing cores, the coherency
logic that controls access to the system memory understands
that even though a normal cache miss should trigger a read
of system memory, in the case of an RFO NODATA, no
such read should be made.

In another approach hints are provided in the instruction
to dictate how far the requested cache line should move
towards the requesting processing core in the case of (e.g.,
multiple) cache misses. For example, FIG. 5 shows a multi
processor chip having multiple processing cores 501 1
501 N. (each with its own local L1 cache 502 1-502 N),
and an L2 caching layer that consists of different L2 cache
“slices' 503 1-503 X where each slice is responsible for
caching a different address and has its own associated
coherence plane logic. Switch core 509 interconnects the
processing cores to the L2 cache agents and the system
memory controller 507. Both the L1 caches, the L2 cache
slices and a system memory controller 507 have their own
respective protocol agent logic circuitry 504 1-504 N.
505 1-505 X, 508 for implementing the RFO NODATA
protocol and N State consistent with the teachings provided
herein.

Note that any of the above described embodiments can be
implemented in a system as observed in FIG. 5. Specifically,
the system of FIG. 5 operates as described above except that
a miss in all L1 caches 502 1 to 502 N in response to an
RFO NODATA request causes a Snoop into L2 cache. In a
first embodiment, if there is a hit in L2 cache, the copy in L2
cache is invalidated and not forwarded to the requesting
processor. In an alternate embodiment, the copy in L2 cache
is invalidated but is forwarded to the requesting processor.
The alternate embodiment wastes communication resources
509 between the L2 cache and the processors but keeps the
logic of the L2 caching agent less complex than the first
embodiment. If there is a miss in L2 cache, the process
proceeds toward system memory 506 as just described.
Specifically, the system memory protocol agent 508 can be
designed to behave like a L2 cache protocol agent described
above according to either embodiment.

Consistent with these options, in further embodiments, a
hint is provided in the CLINITPREF M instruction that

US 9,430,389 B2
5

specifies data movement of the cache line within the pro
cessor. That is, the system may be designed to Support each
of the embodiments discussed above, and, which embodi
ment is to take effect is specified in the instruction. Specifi
cally, the instruction may take the form of CLINITPREFM
h where h is a temporal hint that dictates whether the L2
caching protocol agent is to, upon a hit in L2 cache, move
the cache line that is the subject of the RFO NODATA up
into the L1 cache or not move the cache line into the L1
cache.

Separately or in combination the temporal hinth may also
specify whether the system memory protocol agent 508,
upon an L2 cache miss, should fetch the cache line from
system memory 506 or not fetch the cache line from system
memory 506. In a further embodiment, if the system
memory protocol agent 508 is to fetch the cache line from
system memory 506, the cache line only moves up into L2
cache and is not passed all the way up to the requesting
processor. This has the effect of Saving communication
resources 509 between the L2 cache and the processors (but
not the system memory bus). In an embodiment the temporal
hint information h is specified in an immediate operand of
the instruction.

FIG. 6 shows an instruction execution pipeline 600 hav
ing at least one execution unit 601 that is coupled to the (e.g.,
L1) cache coherence logic 602 of the processing core having
the pipeline. In an embodiment, in response to the execution
of a CLINITPREF M instruction, a signal is sent from the
execution unit 601 to the cache coherence logic 602 that
triggers the issuance of a RFO NODATA for the address M
specified in the instruction. The signal therefore includes
some indication that the RFO NODATA should be issued as
well as the address M. The address M may be routed to the
L1 cache coherence logic from general purpose register
space 603 where the address M is kept as an input operand
for the instruction. The address M may be routed directly to
the cache protocol agent logic 602 from register space 603
or may be routed through the pipeline 600. In the case of
CLINITPREF M h instructions containing temporal hint
information, the temporal hint information is also passed
from the execution unit 601 to the cache coherence logic 602
which embeds the information in the RFO NODATA
request.

FIG. 7 shows a generic processing core 700 that is
believed to describe many different types of processing core
architectures such as Complex Instruction Set (CISC),
Reduced Instruction Set (RISC) and Very Long Instruction
Word (VLIW). The processing core of FIG. 7 can be coupled
to L1 cache agent protocol logic and register space as
depicted in FIG. 6 to support execution of a CLINITPREF
M instruction.
The generic processing core 700 of FIG. 7 includes: 1) a

fetch unit 703 that fetches instructions (e.g., from cache or
memory); 2) a decode unit 704 that decodes instructions; 3)
a schedule unit 705 that determines the timing and/or order
of instruction issuance to the execution units 706 (notably
the scheduler is optional); 4) execution units 706 that
execute the instructions; 5) a retirement unit 707 that sig
nifies successful completion of an instruction. Notably, the
processing core may or may not include microcode 708,
partially or wholly, to control the micro operations of the
execution units 706. The instruction execution resources/
logic referred to in preceding discussions may be imple
mented with one or more of the execution units within
execution units 706.
A processing core having the functionality described

above can be implemented into various computing systems

10

15

25

30

35

40

45

50

55

60

65

6
as well. FIG. 8 shows an embodiment of a computing system
(e.g., a computer). The exemplary computing system of FIG.
8 includes: 1) one or more processing cores 801 that may be
designed to include two and three register scalar integer and
vector instruction execution; 2) a memory control hub
(MCH) 802; 3) a system memory 803 (of which different
types exist such as DDR RAM, EDO RAM, etc); 4) a cache
804; 5) an I/O control hub (ICH) 805; 6) a graphics
processor 806; 7) a display/screen 807 (of which different
types exist such as Cathode Ray Tube (CRT), flat panel. Thin
Film Transistor (TFT), Liquid Crystal Display (LCD), DPL,
etc.) one or more I/O devices 808.
The one or more processing cores 801 execute instruc

tions in order to perform whatever software routines the
computing system implements. The instructions frequently
involve some sort of operation performed upon data. Both
data and instructions are stored in system memory 803 and
cache 804. Cache 804 is typically designed to have shorter
latency times than system memory 803. For example, cache
804 might be integrated onto the same silicon chip(s) as the
processor(s) and/or constructed with faster SRAM cells
whilst system memory 803 might be constructed with slower
DRAM cells. By tending to store more frequently used
instructions and data in the cache 804 as opposed to the
system memory 803, the overall performance efficiency of
the computing system improves.

System memory 803 is deliberately made available to
other components within the computing system. For
example, the data received from various interfaces to the
computing system (e.g., keyboard and mouse, printer port,
LAN port, modem port, etc.) or retrieved from an internal
storage element of the computing system (e.g., hard disk
drive) are often temporarily queued into system memory 803
prior to their being operated upon by the one or more
processor(s) 801 in the implementation of a software pro
gram. Similarly, data that a Software program determines
should be sent from the computing system to an outside
entity through one of the computing system interfaces, or
stored into an internal storage element, is often temporarily
queued in system memory 803 prior to its being transmitted
or stored.
The ICH 805 is responsible for ensuring that such data is

properly passed between the system memory 803 and its
appropriate corresponding computing system interface (and
internal storage device if the computing system is so
designed). The MCH 802 is responsible for managing the
various contending requests for system memory 803 access
amongst the processor(s) 801, interfaces and internal storage
elements that may proximately arise in time with respect to
one another.
One or more I/O devices 808 are also implemented in a

typical computing system. I/O devices generally are respon
sible for transferring data to and/or from the computing
system (e.g., a networking adapter); or, for large scale
non-volatile storage within the computing system (e.g., hard
disk drive). ICH 805 has bi-directional point-to-point links
between itself and the observed I/O devices 808.

Processes taught by the discussion above may be per
formed with program code Such as machine-executable
instructions that cause a machine that executes these instruc
tions to perform certain functions. In this context, a
“machine' may be a machine that converts intermediate
form (or “abstract’) instructions into processor specific
instructions (e.g., an abstract execution environment Such as
a “virtual machine' (e.g., a Java Virtual Machine), an
interpreter, a Common Language Runtime, a high-level
language virtual machine, etc.)), and/or, electronic circuitry

US 9,430,389 B2
7

disposed on a semiconductor chip (e.g., "logic circuitry’
implemented with transistors) designed to execute instruc
tions such as a general-purpose processor and/or a special
purpose processor. Processes taught by the discussion above
may also be performed by (in the alternative to a machine or 5
in combination with a machine) electronic circuitry designed
to perform the processes (or a portion thereof) without the
execution of program code.

It is believed that processes taught by the discussion
above may also be described in Source level program code 10
in various object-orientated or non-object-orientated com
puter programming languages (e.g., Java, C#, VB, Python,
C, C++, Ji, APL, Cobol, Fortran, Pascal, Perl, etc.) Sup
ported by various software development frameworks (e.g.,
Microsoft Corporation's .NET, Mono, Java, Oracle Corpo- 15
ration’s Fusion, etc.). The source level program code may be
converted into an intermediate form of program code (Such
as Java byte code, Microsoft Intermediate Language, etc.)
that is understandable to an abstract execution environment
(e.g., a Java Virtual Machine, a Common Language Run- 20
time, a high-level language virtual machine, an interpreter,
etc.) or may be compiled directly into object code.

According to various approaches the abstract execution
environment may convert the intermediate form program
code into processor specific code by, 1) compiling the 25
intermediate form program code (e.g., at run-time (e.g., a
JIT compiler)), 2) interpreting the intermediate form pro
gram code, or 3) a combination of compiling the interme
diate form program code at run-time and interpreting the
intermediate form program code. Abstract execution envi- 30
ronments may run on various operating systems (such as
UNIX, LINUX, Microsoft operating systems including the
Windows family, Apple Computers operating systems
including MacOS X, Sun/Solaris, OS/2, Novell, etc.).
An article of manufacture may be used to store program 35

code. An article of manufacture that stores program code
may be embodied as, but is not limited to, one or more
memories (e.g., one or more flash memories, random access
memories (static, dynamic or other)), optical disks, CD
ROMs, DVD ROMs, EPROMs, EEPROMs, magnetic or 40
optical cards or other type of machine-readable media
Suitable for storing electronic instructions. Program code
may also be downloaded from a remote computer (e.g., a
server) to a requesting computer (e.g., a client) by way of
data signals embodied in a propagation medium (e.g., via a 45
communication link (e.g., a network connection)).

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica
tions and changes may be made thereto without departing 50
from the broader spirit and scope of the invention as set forth
in the appended claims.
What is claimed is:
1. A semiconductor chip having multiple processing cores

comprising: 55
a cache; and
a processing core of said multiple processing cores com

prising cache coherence logic to issue a request for
ownership of a cache line of the cache without receipt
of the cache line in response to the request, said cache 60
coherence logic to give exclusive ownership of the
cache line to the processing core in response to only a
full write to the cache line, create a dummy entry for
said cache line in said cache in response to said request,
invalidate said dummy entry in response to only the full 65
write to said cache line, and not invalidate said dummy
entry in response to a read of said cache line, wherein

8
said cache coherence logic is to place the dummy entry
for said cache line in said cache in an exclusive with no
data State of a cache coherency protocol.

2. The semiconductor chip of claim 1 wherein the exclu
sive with no data state is not any of modified, exclusive,
shared and invalid (MESI) states of the cache coherency
protocol.

3. The semiconductor chip of claim 1 wherein the exclu
sive with no data state is in addition to modified exclusive,
shared and invalid (MESI) states of the cache coherency
protocol.

4. The semiconductor chip of claim 1 wherein said request
includes temporal hint information that determines whether
the cache line is to be read from system memory for a cache
miss.

5. The semiconductor chip of claim 1 wherein said cache
coherence logic is to issue said request in response to
execution of a prefetch instruction.

6. The semiconductor chip of claim 1 further comprising
L2 cache coherence logic, said L2 cache coherence logic to,
in response to said request, not forward said cache line to
said processing core for an L2 cache hit, wherein the cache
coherence logic is L1 cache coherence logic.

7. The semiconductor chip of claim 1 further comprising
system memory coherence logic to, in response to said
request, not fetch said cache line from system memory for
a cache miss.

8. A method performed by a processor comprising:
issuing a request for ownership of a cache line of a cache
by a processing core of the processor without receiving
the cache line in response to the request;

giving exclusive ownership of the cache line to the
processing core in response to only a full write to the
cache line;

creating a dummy entry for said cache line in said cache
in response to the issuing:

invalidating said dummy entry in response to only the full
write to said cache line;

not invalidating said dummy entry in response to a read of
said cache line; and

creating placing the dummy entry for said cache line in
said cache in an exclusive with no data state of a cache
coherency protocol.

9. The method of claim 8 wherein the exclusive with no
data state is not any of modified, exclusive, shared, and
invalid (MESI) states of the cache coherency protocol.

10. The method of claim 8 wherein the exclusive with no
data State is in addition to modified, exclusive, shared, and
invalid (MESI) states of the cache coherency.

11. The method of claim 8 wherein the issuing the request
comprises execution of a prefetch instruction.

12. The method of claim 8 further comprising, in response
to said issuing, moving said cache line from system memory
to a second cache located between said cache and system
memory.

13. A semiconductor chip having multiple processing
cores comprising: a processing core of said multiple pro
cessing cores comprising its own local cache and cache
coherence logic, said cache coherence logic to issue a
request for ownership of a cache line without receipt of the
cache line in response to the request even if said cache line
is not in said local cache, the cache coherence logic to give
exclusive ownership of the cache line to the processing core
in response to only a full write to the cache line, create a
dummy entry for said cache line in said local cache in
response to said request, invalidate said dummy entry in
response to only the full write to said cache line, and not

US 9,430,389 B2
9

invalidate said dummy entry in response to a read of said
cache line, wherein said cache coherence logic is to place the
dummy entry for said cache line in said local cache in an
exclusive with no data state of a cache coherency protocol.

14. The semiconductor chip of claim 13 wherein the
exclusive with no data State is not any of modified, exclu
sive, shared, and invalid (MESI) states of the cache coher
ency protocol.

15. The semiconductor chip of claim 13 wherein the
exclusive with no data state is in addition to modified,
exclusive, shared, and invalid (MESI) states of the cache
coherency protocol.

16. The semiconductor chip of claim 13 wherein said
request includes temporal hint information that determines
whether the cache line is to be read from system memory for
a miss in a second cache between said local cache and
system memory.

17. The semiconductor chip of claim 13 wherein a said
cache coherence logic is to issue said request in response to
execution of a prefetch instruction.

18. A semiconductor chip having multiple processing
cores comprising:

a cache; and
a processing core of said multiple processing cores com

prising cache coherence logic to issue a request for

10

15

10
ownership of a cache line of the cache without receipt
of the cache line in response to the request, said cache
coherence logic to give exclusive ownership of the
cache line to the processing core in response to only a
full write to the cache line, create a dummy entry for
said cache line in said cache in response to said request,
and place the dummy entry for said cache line in said
cache in an exclusive with no data state of a cache
coherency protocol.

19. The semiconductor chip of claim 18 wherein the
exclusive with no data State is not any of modified, exclu
sive, shared, and invalid (MESI) states of the cache coher
ency protocol.

20. The semiconductor chip of claim 18 wherein said
cache coherence logic is to invalidate said dummy entry in
response to only the full write to said cache line.

21. The semiconductor chip of claim 18 wherein said
cache coherence logic is to not invalidate said dummy entry
in response to a read of said cache line.

22. The semiconductor chip of claim 18 wherein said
cache coherence logic is to issue said request in response to
execution of a prefetch instruction.

k k k k k

