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1. 

VISUAL-BASED INERTIAL NAVIGATION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims priority to U.S. Application Ser. 
No. 61/864,754, filed Aug. 12, 2013, the contents of which are 
incorporated herein by reference in their entirety. 

BACKGROUND 

As portable computing devices, such as Smart phones, 
Smart glasses and other devices, become more ubiquitous, 
there is an interest to provide such devices with localization 
and mapping capabilities. Localization can be partially 
addressed by relying on systems that use global positioning 
system (GPS) signals or triangulation of cell tower signals to 
calculate position. Mapping can be partially addressed with 
enterprise Solutions, such as having cars configured with spe 
cialized equipment drive through and map Streets. Localiza 
tion and mapping benefit consumers with maps and location 
based services. However, such services tend to be limited to 
use outdoors, since GPS signals or cell tower signals may be 
blocked within buildings, and since mapping for portable 
computing devices typically has not extended to indoor envi 
ronments. Moreover, commercial localization and mapping 
services are generally unable to provide accuracy higher than 
several meters with respect to position. 

Visual-based inertial navigation systems rely on informa 
tion obtained from images and inertial measuring devices in 
order to achieve localization and/or mapping. Since visual 
based inertial navigation systems do not require signals from 
GPS or cell towers, such systems may be used indoors where 
GPS and cell signals cannot reach or are unavailable due to 
interference. Furthermore, visual-based inertial navigation 
systems enable very high position accuracy, e.g., on the order 
of centimeters. However, visual-based inertial navigation 
systems are typically computationally intensive as they need 
to process large amounts of image data acquired from an 
image detector, such as a camera, and inertial readings gen 
erated by an inertial measurement unit (IMU), all in real-time. 
In addition, to achieve highly accurate measurements of posi 
tion, a history of information related to previous poses (posi 
tions and orientations), inertial measurements and image fea 
tures is typically stored, thus requiring devices to use a 
Substantial amount of memory and consequently large com 
putation time to process this information. 

SUMMARY 

The present disclosure relates to visual-based inertial navi 
gation. 

In general, in a first aspect, the Subject matter of the dis 
closure may be embodied in an electronic computing system 
for performing navigation, in which the electronic computing 
system includes an electronic processor and memory oper 
able to implement a sliding-window inverse filter module, 
and in which the sliding-window inverse filter module is 
configured to: receive sensor measurements from a pre-pro 
cessing module, in which the sensor measurements comprise 
image data and inertial data for a device; transfer information, 
derived from the sensor measurements, from a first set of 
variables associated with a first window of time to a second 
set of variables associated with a second window of time, in 
which the first and second windows consecutively overlap in 
time; and output, to a post-processing module, a state of the 
device based on the transferred information. Each window in 
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2 
the pair is associated with a corresponding first information 
matrix, and each first information matrix is for multiple first 
variables representing a position and/or orientation of at least 
one object proximate to the device and multiple second vari 
ables representing a state of the device at two or more points 
in time. Transferring the information includes: marginalizing 
at least a subset of the first variables associated with the first 
information matrix of the first window to obtain a second 
information matrix, which still maintains the association with 
multiple second variables; marginalizing a Subset of the sec 
ond variables associated with the second information matrix 
to obtain a third information matrix; and Scaling the third 
information matrix to obtain a fourth information matrix, in 
which the fourth information matrix is a summarized repre 
sentation of the state of the device and of the position and/or 
orientation of the objects proximate to the device at points in 
time when the first window and the second window in the pair 
overlap. 

In another aspect, the Subject matter of the disclosure may 
be embodied in a computer-implemented method that 
includes: receiving sensor measurements from a pre-process 
ing module, in which the sensor measurements comprise 
image data and inertial data for a device; transferring, using a 
processor, information derived from the sensor measure 
ments, from a first set of variables associated with a first 
window of time to a second set of variables associated with a 
second window of time, in which the first and second win 
dows consecutively overlap in time; and outputting, to a post 
processing module, a state of the device based on the trans 
ferred information, in which each window in the pair is 
associated with a corresponding first information matrix, and 
each first information matrix is for multiple first variables 
representing a position and/or orientation of at least one 
object proximate to the device and multiple second variables 
representing a state of the device at two or more points in 
time. Transferring the information includes: marginalizing at 
least a subset of the first variables associated with the first 
information matrix of the first window to obtain a second 
information matrix, which still maintains the association with 
the multiple second variables; marginalizing a Subset of the 
second variables associated with the second information 
matrix to obtain a third information matrix; and Scaling the 
third information matrix to obtain a fourth information 
matrix, in which the fourth information matrix is a Summa 
rized representation of the state of the device and of the 
position and/or orientation of the objects proximate to the 
device at points in time when the first window and the second 
window in the pair overlap. 

In another aspect, the Subject matter of the disclosure may 
be embodied in a non-transitory computer storage medium 
encoded with computer program instructions that when 
executed by one or more electronic computing devices cause 
the one or more electronic computing devices to perform 
operations that include: receiving sensor measurements from 
a pre-processing module, in which the sensor measurements 
comprise image data and inertial data for a device; transfer 
ring, using a processor, information derived from the sensor 
measurements, from a first set of variables associated with a 
first window of time to a second set of variables associated 
with a second window of time, in which the first and second 
windows consecutively overlap in time; and outputting, to a 
post-processing module, a state of the device based on the 
transferred information, in which each window in the pair is 
associated with a corresponding first information matrix, and 
each first information matrix is for multiple first variables 
representing a position and/or orientation of at least one 
object proximate to the device and multiple second variables 
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representing a state of the device at two or more points in 
time. Transferring the information includes: marginalizing at 
least a subset of the first variables associated with the first 
information matrix of the first window to obtain a second 
information matrix, which still maintains the association with 
the multiple second variables; marginalizing a Subset of the 
second variables associated with the second information 
matrix to obtain a third information matrix; and Scaling the 
third information matrix to obtain a fourth information 
matrix, in which the fourth information matrix is a Summa 
rized representation of the state of the device and of the 
position and/or orientation of the objects proximate to the 
device at points in time when the first window and the second 
window in the pair overlap. 

Implementations of the methods, media, and/or systems 
can include one or more of the following features and/or 
features of other aspects. For example, in some implementa 
tions, the electronic computing system may further include: 
the pre-processing module, an image detection unit coupled 
to the pre-processing module, in which the pre-processing 
module is configured to receive multiple images captured by 
the image detection unit and derive the image data from 
multiple images; and a motion sensing unit coupled to the 
pre-processing module, in which the pre-processing module 
is configured to receive the inertial data from the motion 
sensing unit. 

In some implementations, a Subset of the first set of vari 
ables associated with the first window overlaps in time with a 
subset of the second set of variables associated with the 
second window. The period of overlap can correspond to any 
period of time that is present in both the first and second 
windows. In particular it may correspond to the set of vari 
ables with the earliest time that is present in both the first and 
second windows. 

In some implementations, for each window, the multiple 
first variables represent 3D positions and/or orientations of 
image features across multiple images, and the multiple sec 
ond variables include acceleration data and angular Velocity 
data. The state of the device may further include intrinsic and 
extrinsic parameters for both sensing devices (e.g., biases for 
the motion sensing unit and the relative pose of the motion 
unit with respect to the camera). 

In Some implementations, the first information matrix 
associated with each window includes: first information 
about at least one variable representing an estimate for a 
position or orientation of an object proximate to the device; 
and second information about at least one variable represent 
ing an estimate of the state of the device; and shared infor 
mation between the first information and the second informa 
tion. The shared information may represent shared 
confidence between the estimates of a position or orientation 
of an object proximate to the device and the estimate of the 
state of the device. Marginalizing at least the subset of the first 
variables associated with the first information matrix of the 
first window may include marginalizing the corresponding 
shared information. Scaling the third information matrix may 
include dividing or multiplying the third information matrix 
by a constant. The constant may be equal to a size of the first 
window, Such as the number of measurements captured in the 
first window or the length of time associated with the first 
window. 

Certain implementations may have particular advantages. 
For example, in Some implementations, the techniques dis 
closed herein enable maintaining information about the con 
straints between the inertial state of a device at different times 
and the position and/or orientation of observed objects proxi 
mate to the device, without requiring simultaneous process 
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4 
ing all constraints generated overalong period of time. More 
over, despite reducing the number of past variables over 
which the constraints are processed, the present techniques 
enable the calculation of highly-accurate estimates for the 
inertial state of the device at a present time (e.g., positional 
errors on the order of centimeters) while avoiding overconfi 
dence in the same. 

Unless otherwise defined, all technical and scientific terms 
used herein have the same meaning as commonly understood 
by one of ordinary skill in the art to which the presently 
disclosed subject matter belongs. Although methods, materi 
als, devices and systems similar or equivalent to those 
described herein can be used in the practice or testing of the 
present invention, Suitable methods, materials, devices and 
systems are described below. All publications, patent appli 
cations, patents, and other references mentioned herein are 
incorporated by reference in their entirety. In addition, the 
examples set forth herein are for illustrative purposes and not 
intended to be limiting. 
The details of one or more implementations are set forth in 

the accompanying drawings and the description below. Other 
features and advantages will be apparent from the descrip 
tion, the drawings, and the claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic illustrating a floor plan overlaid with 
a path computed by a visual-based inertial navigation system. 

FIG. 2 is a schematic illustrating an example of a visual 
based inertial navigation device. 

FIG. 3 is a flow chart illustrating an example process for 
calculating estimates of position and orientation using visual 
based inertial navigation. 

FIG. 4 is a flow chart illustrating an example process for 
performing bundle adjustment. 

FIG. 5 is a schematic illustrating an example of an infor 
mation matrix. 

FIG. 6 is a flow chart illustrating an example process for 
performing sparse structure marginalization. 

FIG. 7 is a schematic illustrating an example of a second 
information matrix. 

FIG. 8 is a flow chart illustrating an example process for 
performing delayed motion marginalization. 

FIG.9 is a schematic that illustrates an example of a mobile 
computing device, which may be used with the techniques 
described herein. 

FIG. 10 is an example of an image output by a display of a 
device that includes a visual-based inertial navigation system, 
in which a virtual arrow is overlaid on the image. 

FIG. 11 is an example of an image output by a display of a 
device that includes a visual-based inertial navigation system, 
in which a virtual path is overlaid on the image. 

DETAILED DESCRIPTION 

For visual-based inertial navigation systems, information 
about position and orientation of a device at one time, or the 
3D position of observed image features, tends to be highly 
correlated with information about the position and orientation 
of the device at a previous time, since it is often the case that 
features within a presently captured image can be found in 
one or more previous images. Such correlations, which are 
mathematically expressed in the forms of deterministic or 
stochastic measurement constraints, can be used to enhance 
the accuracy of estimates of the position and orientation of a 
device within a visual-based inertial navigation system. Pro 
cessing those measurements, however, can be computation 
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ally burdensome, especially for devices (such as wearable 
computing devices) that may have limited computation 
power. In addition, such devices may utilize low-end cam 
eras/detectors and IMUs, which suffer from nonlinearities, 
increasing the need for even more past data to be maintained 
and processed concurrently so that highly-accurate estimates 
can be produced. As the number of images and inertial read 
ings increases, the computation can become intractable. 
The techniques disclosed herein cover methods for main 

taining information about the constraints between the inertial 
state of a device at different times and the position and/or 
orientation of objects proximate to the device that are 
observed in a visual-based inertial navigation system, without 
requiring the system to simultaneously process all constraints 
generated over a long period of time. Moreover, despite 
reducing the number of past variables over which the con 
straints are processed, the present techniques enable the cal 
culation of highly-accurate estimates for the inertial state of 
the device at the present time (e.g., position errors on the order 
of centimeters) while avoiding overconfidence in the same. 

To minimize the number of past variables over which the 
constraints are optimized, a sliding window inverse filter 
(SWF) is used, in which the SWF processes information from 
overlapping windows of images, as the images are captured 
by a visual-based inertial navigation system operating on an 
electronic computing device (e.g., a Smartphone, electronic 
tablet device, or Smart glasses). Using features tracked in the 
images and corresponding information obtained from an 
IMU also operating on the device, the SWF obtains estimates 
for the inertial State of the device (e.g., position, orientation, 
Velocity, and/or gyro and accelerometer biases), which may 
be referred to as simply the “state' of the device. The SWF 
also obtains estimates for position and/or orientation of 
objects proximate to the device, in which the objects, in one 
instance, are represented as 3D positions of features that are 
being tracked between the images. The estimates for the 
device inertial state and for the objects position and/or ori 
entation are calculated for each image in a window of images. 
For each window of images, the SWF then summarizes these 
estimates by converting them into estimates about the state of 
the device at a single point in time T. For a pair of windows, 
the information summarized from the first window can then 
be carried forward to the second window, provided that the 
pair of windows overlaps in at least one same point in time T. 
Information summarized from the first window can then be 
used in Subsequent processing steps on the second window 
for estimating the state of the device in other points in time. 
The process of Summarizing and transferring information 
between pairs of overlapping windows hence maintains infor 
mation about the constraints between the inertial state of a 
device and the position and/or orientation of objects proxi 
mate to the device at different times while minimizing the 
number of past variables over which the constraints are opti 
mized. 

FIG. 1 is a schematic illustrating a floor plan overlaid with 
a path 10 computed by an electronic computing device having 
a visual-based inertial navigation system configured accord 
ing to the present disclosure. The floor plan is an overview of 
a generic hardware store including the different sections (e.g., 
plumbing section, tools and hardware section, etc.), where the 
shaded regions represent shelves and the white regions rep 
resent the aisles and other areas of the store in which a cus 
tomer may move. The device may be a portable electronic 
computing device (e.g., a camera phone, Smartphone, Smart 
glasses, a head mounted display, or a Surveying device) that 
records images as the person moves through the store. The 
portable electronic computing device also includes an IMU 
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6 
having components (e.g., accelerometer(s) and gyroscope(s)) 
that recordinertial data Such as linear acceleration and angu 
lar velocity of the device. During recording of the images and 
inertial data, the visual-based inertial navigation system cal 
culates and stores estimates of the state of the computing 
device relative to a starting point, a process commonly 
referred to as “dead reckoning.” The positions may be used to 
compute the path 10, which is stored in memory of the device 
and/or overlaid on an image of the floorplan, as shown in FIG. 
1, and which can be output to a display for a user to view. 

FIG. 2 is a schematic illustrating an example of a visual 
based inertial navigation device 100, such as the electronic 
computing device that may be used to produce the path 10 of 
FIG. 1. The device 100 includes multiple components that 
make up a visual-based inertial navigation system. For 
example, the device 100 includes an image sensor 102 that 
converts an optical image into an electronic signal. Such as a 
digital camera. The sensor 102 may utilize any appropriate 
image sensing components. Such as a digital charge-coupled 
device (CCD), complementary metal-oxide-semiconductor 
(CMOS) pixel sensors or infrared sensors. Alternatively, the 
image sensor 102 may include a depth sensor, a stereo camera 
pair, a flashlidar sensor, a laser sensor, or any combination of 
these. The image sensor 102 may be formed entirely in hard 
ware or may also be configured to include Software for modi 
fying detected images. The device 100 also includes an iner 
tial measurement unit 104. The IMU 104 may include several 
electronic hardware components, including a tri-axial gyro 
Scope and accelerometer, for recording inertial data of the 
device 100. For example, the IMU 104 may measure and 
report on the device's six degrees of freedom (X, Y, and Z 
Cartesian coordinates of the device's acceleration, and roll, 
pitch, and yaw components of the devices angular velocity). 
The IMU 104 may output other inertial data, as well. Various 
IMUs are commercially available or are pre-installed on por 
table electronic computing devices. 

Device 100 also includes a pre-processing module 106 that 
receives images detected from the image sensor 102 and the 
inertial data recorded by the IMU 104. Images recorded by 
the image sensor 102 and processed by the module 106 may 
also be referred to as “frames.” The pre-processing module 
106 can be electronic hardware, software, or a combination of 
both electronic hardware and software. Among other things, 
the pre-processing module 106 performs feature tracking 
within the recorded frames and associates the inertial data 
with the frames themselves. An image feature corresponds to 
the image coordinates (e.g., the X-y coordinates) representing 
a particular location/pixel or a group of pixels of an object or 
a portion of an object in a frame. The pre-processing module 
106 calculates “feature tracks, in which a feature track is a 
sequence of two-dimensional points representing the loca 
tions of a single feature tracked across two or more frames 
obtained by the image sensor 102. The pre-processing mod 
ule 106 generates feature tracks by identifying one or more 
image features in a first frame and then matching those one or 
more image features with one or more corresponding image 
features in consecutive frames. Various techniques known in 
the art may be used to obtain feature tracks. For example, the 
identification of image features may be performed by evalu 
ating a scoring function (such as the scoring function used in 
the Harris corner detector or the Laplacian operator) for each 
pixel and then designating pixels that have a larger score than 
any of their neighboring pixels as the image features. Image 
features can then be matched between frames by comparing a 
rectangular array of pixels (or a function of them) centered 
around the image feature in a first frame with a rectangular 
array of pixels (or a function of them) centered at an image 
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feature in a different frame. By matching image features over 
Successive pairs of frames, the pre-processing module 106 
builds up a list of feature tracks, with each feature track 
containing a sequence of image feature locations across the 
frames. The number offeature tracks identified by the module 
106 may vary and, in Some implementations, can depend on 
the end-user application for which the visual-based inertial 
navigation system is being used. 
The pre-processing module 106 also is configured to select 

a subset of the frames received from the image sensor 102 as 
“keyframes. A keyframe is any frame selected as such by the 
pre-processing module. For example, for a sequence of 10 
frames received from the image sensor 102, the pre-process 
ing module 102 may designate the first and last frames as 
keyframes. A frame may be designated as a keyframe by the 
module 106 based on one or more parameters, such as a 
desired keyframe frequency, or statistics related to the num 
ber of image features identified in a current frame or matched 
in a pair of frames. Other decision rules for selecting key 
frames may also be used. The pre-processing module 106 
further organizes a sequence of keyframes into groups of K 
consecutive keyframes, where K is a pre-defined parameter. 
Each group of keyframes (i.e., set of images) may be referred 
to as a window. As images are received from the image sensor 
102, the module 106 may organize keyframes into groups of 
overlapping windows, where each incoming window over 
laps a prior window by at least 1 keyframe and not more than 
M keyframes. M is a parameter that can take values between 
1 and K. For example, assuming Kequals 5 and M equals 3. 
a first window created by the module 106 may include key 
frames (1,2,3,4,5), whereas a second window may include 
keyframes (3,4,5,6,7), and a third window may include key 
frames (4,6,7,8,9). Thus, between the first and second win 
dow, there are three overlapping keyframes (i.e., keyframes 3. 
4, and 5), and between the second and third window, there are 
also three overlapping keyframes (i.e., keyframes 4, 6, and 7). 
Furthermore, as seen in the foregoing example, the keyframes 
selected by the pre-processing module 106 do not have to be 
consecutive. Instead, one or more keyframes may be dropped 
or ignored. Moreover, the values of K (size of the window) 
and M (number of overlapping keyframes) may vary with 
time. 

The pre-processing module 106 associates each feature 
track with a binary vector (e.g., a vector of 1s and 0's repre 
senting a status of “true’ and “false.” respectively) of length 
equal to the number of keyframes in the current window. The 
binary vector indicates which keyframes of a window include 
the tracked image feature. For example, if the window size is 
5 and the current window being processed contains key 
frames (3,4,5,6,7), then one feature track may be recogniz 
able at different locations in 3 keyframes (5.6.7) of the five 
total keyframes in the window. This particular feature track 
will have a binary vector of size 5 associated with it, such as 
(0, 0, 1, 1, 1) with the two leading O’s indicating that the 
feature was not observed in keyframes 3 and 4, and the fol 
lowing three 1's indicating that the feature was observed in 
keyframes 5, 6, and 7. The binary vector then may be used 
during later position and orientation calculations to indicate 
the presence of spurious image features (outliers). That is, the 
feature locations associated with FALSE elements (i.e., 0) in 
this vector will be ignored, whereas feature locations associ 
ated with TRUE elements (i.e., 1) will be used for further 
calculations. For example, if the 2D location of the feature 
track onkeyframe 6 in the window of keyframes (3,4,5,6,7) is 
determined as an outlier at Some point during processing, the 
keyframe 6 will then be marked in the binary vector as false, 
such that the vector changes to (0, 0, 1, 0, 1), and the obser 
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8 
vation of the feature in keyframe 6 will be ignored during 
further processing while other information about keyframe 6 
may still be used in further processing. 
The pre-processing module 106 also creates an array of 

inertial readings containing those inertial readings captured 
between and at the time of each Successive pair of keyframes. 
That is, the module 106 receives the inertial readings from the 
IMU 104 and identifies readings that occur at or close to the 
time at which each keyframe was captured by the image 
sensor 102. The module 106 then identifies all readings that 
occurred between the time of each keyframe and its succes 
sor. Thus, the pre-processing module 106 generates a 
sequence of inertial readings, beginning with a reading at or 
close to the time at which the first keyframe in a window was 
captured, and ending with a reading at or close to the time at 
which the last keyframe in the window was captured, and 
containing all the inertial readings occurring between those 
endpoints. Each inertial reading includes six measurements 
(e.g., floating point numbers) the first three refer to the X, Y, 
and Z components of the linear acceleration measured by the 
accelerometer, and the second three refer to the roll, pitch, and 
yaw components of the angular Velocity measured by the 
gyroscope. 
The pre-processing module 106 also computes an initial 

estimate for the state of the device at the time the first key 
frame is processed by the SWF. In some implementations, 
computation of the initial state estimate proceeds as follows. 
The accelerometer readings from a short initial period are 
averaged and normalized, and the roll and pitch orientation of 
the device is initialized to a rotation that maps the vector 
(0,0,1) to this average accelerometer reading, normalized to 
one, while the yaw can be set to any arbitrary value. The 
gyroscope readings from the same short initial period are 
averaged and the result is used as the initial estimate for the 
gyroscope bias. The initial position, Velocity, and accelerom 
eter biases are set to zero. The biases correspond to errors in 
the measurements of the motion sensing unit, which may 
change over time. 
The pre-processing module 106 also computes a first esti 

mate for the state of the device at the time of the second and 
Subsequent keyframes, for example using a propagation algo 
rithm. The propagation algorithm takes a sequence of inertial 
readings between a first time and a second time together with 
the inertial state of the device at the first time and produces an 
estimate for the inertial state of the device at the second time. 
This initial estimate generally has poor accuracy, but it is used 
by a Subsequent processing step to compute a more accurate 
estimate for the state of the device. 
The pre-processing module 106 also calculates an initial 

estimate of the position and/or orientation of objects proxi 
mate to the device using, e.g., a triangulation algorithm. A 
triangulation algorithm takes the location at which a single 
image feature is observed and matched in two, or more, 
different keyframes (provided in the feature tracks) together 
with the state of the device at the time of those two keyframes 
and produces an estimate of the 3D position of the image 
feature. The initial estimate generally has poor accuracy, but 
it is used by a Subsequent processing step to compute a more 
accurate estimate for the 3D positions. The estimated 3D 
position of matched image features is expressed with respect 
to the pose of the device, or with respect to any other frame of 
reference. Furthermore, each3D position of a matched image 
feature is considered an object or a portion of an object in the 
real world. As a result the initial estimate is an estimate of the 
position and/or orientation of objects proximate to the device. 

For each window identified by the pre-processing module 
106, the module 106 passes the feature track information 
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(which includes the feature tracks, the binary vectors associ 
ated with the feature tracks, and the initial estimate of the 3D 
position of each matched image feature across the different 
keyframes representing position and/or orientation of objects 
proximate to the device) and the inertial data (which includes 
the sequence of inertial readings for the keyframes in each 
window and the initial estimate of the state of the device 100 
at the time each keyframe was captured) to the SWF module 
108. 
The SWF module 108 can be electronic hardware, soft 

ware, or a combination of both electronic hardware and soft 
ware. The SWF module 108 includes several sub-modules 
that together are used to determine estimates of the position 
and/or orientation of objects proximate to the device, as well 
as estimates of the state of the device 100 at various points in 
time. The sub-modules include a bundle adjustment (BA) 
module 110, a sparse structure marginalization (SSM) mod 
ule 112, and a delayed motion marginalization (DMM) mod 
ule 114. The SWF module 108 processes data input from the 
pre-processing module 106 one window at a time. For each 
window the SWF module 108 maintains estimates of the state 
of the device at various points in time, as well as the 3D 
position of tracked image features that are representing the 
position and/or orientation of an object proximate to the 
device. These estimates are together known as the “model 
parameters. For example, the model parameters include 
variables representing the position and/or orientation of 
objects proximate to the device 100 and variables represent 
ing an estimate of the state (e.g., position, orientation, Veloc 
ity, and/or inertial biases) for the device 100 at the time of one 
or more keyframes in the window. The SWF module 108 also 
maintains an information matrix Hassociated with the win 
dow that represents the information available regarding the 
current model parameters, where this information describes 
the confidence in the model parameters. Hence H is associ 
ated with a set of variables representing estimates of position 
and/or orientation of objects proximate to the device and 
anotherset of variables representing an estimate of the state of 
the device at the time (or close to the time) of each keyframe. 
The information matrix H may contain multiple different 
entries, with some entries representing the information about 
the first set of variables (confidence in position and/or orien 
tation estimates), some entries representing the information 
about the second set of variables (confidence in the estimates 
of the device state), and some other entries representing 
shared information between the first and second set of vari 
ables in which the shared information represents shared con 
fidence between the first and second set of variables. Further 
details related to information matrices may be found, e.g., in 
Triggs et al., “Bundle Adjustment—A Modern Synthesis.” 
pp. 1-71, Dec. 20, 2010, incorporated herein by reference in 
its entirety. When the SWF module 108 first operates, the 
module 108 is initialized with an estimate of the device state 
for one or more initial keyframes. 
The BA module 110, the SSM module 112, and the DMM 

module 114 work in conjunction to update new model param 
eters as each new window is received. The BA module 110 
maintains and outputs model parameters to a post-processing 
module 116. The SSM module 112 and DMM module 114 
perform marginalization. The process of marginalization 
reduces the number of variables associated with the informa 
tion matrix Handyields a new information matrix, into which 
a Summary of information about the reduced variables has 
been folded. Hence some of the entries in Hare summarized 
into other entries in H yielding a new Smaller information 
matrix. It should be noted that the SWF module still maintains 
association between entries in the new information matrix: 
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10 
that is, it maintains association between variables that have 
not been Summarized. In particular, the association between 
variables and entries in H is carried into the new information 
matrix by re-associating the entries in the new information 
matrix that were not Summarized. 
The purpose of marginalization is to transfer information 

within a previous window onto information within a new 
window, as well as information about a set of model param 
eters onto information about a Subset of these model param 
eters. When the SWF module 108 receives a new window, the 
module 108 gains access to new feature tracks and inertial 
readings associated with new keyframes, but also drops fea 
ture tracks and inertial readings associated with older key 
frames not present in the newer window. If the SWF module 
108 never dropped any feature tracks or inertial readings then 
the processing time would grow without limit. Conversely, if 
the SWF module 108 dropped feature tracks and inertial 
readings without performing marginalization, then the calcu 
lated model parameter estimates would be suboptimal, in the 
sense of being made without consideration of relevant data 
from the past. Thus, by reducing the total number of model 
parameters over which the optimization problem is solved, 
marginalization reduces the computational burden of the 
SWF module 108, but also maintains a consistent model 
estimate over time by Summarizing and transferring informa 
tion between each window and the next. 
The post-processing module 116, which receives the 

model parameters from the SWF module 108, can include 
various algorithms/programs and/or hardware that utilize the 
information contained in the model parameters depending on 
the user-application. For example, the post-processing mod 
ule 116 may include a program that uses the model param 
eters output by the SWF module 108 to determine a path 
history of the device 100 and store the path history in device 
memory and/or overlay the path history on a map that is 
output to a display, such as shown in FIG.1. That is, as each 
new set of model parameters is output by the SWF module 
108, the post-processing module 116 takes the 3D feature 
position estimate and device state estimate determined for the 
device 100 at the time of each keyframe and adds those values 
to a collection (e.g., an array) of historical position and ori 
entation values for the device 100. The position estimates 
may then be plotted by the device 100 on a map or other grid 
to illustrate the path travelled by the device. 

FIG. 3 is a flow chart illustrating an example process 300 
for calculating estimates of model parameters performed by 
the SWF module 108. The process 300 is described with 
respect to the device 100 of FIG. 2. Upon receiving (302) the 
feature track information and inertial readings associated 
with each new window from the pre-processing module 106, 
the SWF module 108 provides that data to the BA module 
110. The BA module 110 performs abundle adjustment (304) 
to update the model parameters on the basis of the currently 
received feature tracks and inertial readings. To perform the 
adjustment, the BA module 110 also receives data relating to 
a previously calculated information matrix H. In general, 
the prior information matrix His computed by the DMM 
module 114 for a window received prior to the current win 
dow. Alternatively, H is calculated during the initializa 
tion of the visual-based inertial navigation procedure, when 
the SWF module 108 has not processed any previous window. 
The BA module 110 yields an updated estimate for the model 
parameters as well as an updated information matrix H rep 
resenting the SWF modules information about the model 
parameters. Further details about bundle adjustment may be 
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found, for example, in Triggs et. al., “Bundle Adjustment—A 
Modern Synthesis, incorporated herein by reference in its 
entirety. 

After updating the model parameters and the information 
matrix H, the BA module 110 passes the model parameters 
and the information matrix H to the SSM module 112, which 
then proceeds to perform sparse structure marginalization 
(306). The purpose of sparse structure marginalization is to 
transfer information from the tracked features into informa 
tion about the state of the device at the time of each keyframes 
within the current window. That is, the marginalization pro 
cess performed by the SSM module 112 produces a revised 
information matrix of Smaller size that contains multiple val 
ues representing the marginal information about the State of 
the device at the time of each keyframe in the current window. 
The marginalization of the tracked features information 
hence reduces the computational burden of processing the 
information matrix in later steps. The revised information 
matrix can be a new matrix or can be maintained as the same 
original information matrix H where Subsets of original infor 
mation matrix H are marginalized into other Subsets of that 
same matrix H and the marginalized Subsets are ignored in 
later steps hence achieving the same result of reducing the 
computational burden of processing the information matrix in 
later steps. 
The SSM module 112 outputs the revised matrix contain 

ing the marginal information values to the DMM module 114. 
The DMM module then performs delayed motion marginal 
ization (308) on the revised matrix. The purpose of delayed 
motion marginalization is to project the information pertain 
ing to device states for all but a specified number of key 
frames, hence further reducing the size of the information 
matrix and the resulting computational burden for the device 
100. In an alternate implementation, the DMM module 114 
performs delayed motion marginalization with respect to a 
covariance matrix obtained from the revised information 
matrix, rather than the revised information matrix itself. In 
this implementation, the matrix inverse of the revised infor 
mation matrix produced by the SSM module 112 is computed 
first, which yields a covariance matrix. Delayed motion mar 
ginalization is then performed on the covariance matrix, and 
the output matrix is inverted. 

In either case, the output matrix from the DMM module 
114 is passed back to the BA module 110 and used as the prior 
information matrix H in the next bundle adjustment pro 
cedure with respect to a new window identified by the pre 
processing module 106. In addition for some windows 
received by the SWF module 108, post-processing module 
116 may pull from the BA module 110 the updated corre 
sponding model parameters and/or information matrix relat 
ing to those model parameters. For example, post-processing 
module 116 may pull the most recent model parameters from 
the BA module 110 to obtain an updated position of the 
device. For simplicity the process of post processing module 
116 pulling most recent model parameters from the BA mod 
ule can also be described as BA module outputting the infor 
mation to post processing module 116 as shown in FIG. 3 
block 310. 

The following provides further details on the operations 
performed by the BA module 110, the SSM module 112 and 
the DMM module 114. FIG. 4 is a flow chart illustrating a 
process for performing bundle adjustment. As noted above, 
the BA module 110 first receives (402) feature track informa 
tion and inertial readings for keyframes in a first window, as 
well as a prior information matrix H. Using the received 
feature track information, inertial readings, and prior infor 
mation matrix H the BA module 110 then updates model prior 
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12 
parameters and calculates (404) a current information matrix 
Hassociated with the model parameter (404). 
An example of calculating the current information matrix 

H is described as follows. Let X be the current model 
parameters, which are either computed during initialization 
by the pre-processing module or carried over from a previous 
iteration of bundle adjustment. A first Jacobian matrix J is 
computed for the image features, relating X, to the image 
features. In particular, the entries of J are computed as the 
first-order derivatives of the transformation from 3D feature 
positions to 2D image features. A residual vector rr is also 
computed for the image features. In particular, the entries of 
rt are computed as the differences between the location of 
each image feature and the location predicted by the current 
model parameters for each image feature. A second Jacobian 
matrix J is computed for the inertial readings between each 
consecutive pair of keyframes in the current window. The 
second Jacobian matrix relates some of the model parameters 
of X. based on the inertial readings. In particular, the 
entries of J are computed as the first-order derivatives of the 
propagation function described above. A residual vector r is 
also computed for the inertial readings. In particular, the 
entries of rare computed as the difference between the device 
state output by the propagation algorithm for each keyframe 
and the device state predicted by the current model param 
eters for each keyframe. A prior estimate x and informa 
tion matrix H are provided as a result of the Delayed 
Motion Marginalization procedure performed on a previous 
window (or provided at initialization if this is the first win 
dow). A prior residual r is computed, where r repre 
sents the difference between the current estimate for the 
device state at the time of each keyframe and the prior esti 
mate for the same. A Cholesky decomposition L of the 
prior information matrix He also is computed. 
The current information matrix H then may be expressed as 

follows: 

H.J.J.-J.J.--Hi (1) 
where J is the transpose of the first Jacobian matrix com 
puted for the image features and J, is the transpose of the 
second Jacobian matrix computed for the inertial readings. 
The first, second, and third terms in the equation may corre 
spond to matrices of different sizes. For example, due to the 
marginalization process to be described in more detail below, 
the prior information matrix H may be smaller than the 
first and second Jacobian matrices. In that case, rows and 
columns populated entirely of Zeros are added to one or more 
of the three terms as appropriate to ensure that rows and 
columns in one term are associated with the same variable as 
the corresponding rows and columns in each other term. 
The BA module 110 then calculates (406) new model 

parameters X, using the Jacobian matrices, residual vectors, 
prior residual r, and Cholesky decomposition L. An 
example of calculating the new model parameters is as fol 
lows. First, an estimate of the new model parameters for the 
current window is obtained by solving the following linear 
system using the Cholesky decomposition of matrix H: 

Höx=-Jr-J,"r-L'r prior prior (2) 

(3) 

where X, refers to the existing model parameters for the 
current window, X, refers to the updated model parameters 
for the current window, prio. is the matrix transpose of 
L and ÖX is a temporary variable used to store the update 
to the model parameters. In some variations of the system, 

& xcurrentov 

prior 
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equation (3) may be replaced with a non-Euclidean update 
operation. One example of a non-Euclidean update operation 
is a quaternion update, 

We, (88. (4) 
where Öq is a quaternion formed by appending the value 1 to 
the corresponding orientation error values stored in ÖX, and 
G) represents quaternion multiplication. Another example of 
a non-Euclidean update operation is a rotation matrix update, 

(5) Re-Rei,(I+föxx)) 

where R is a rotation matrix constructed from the values 
Stored in X. R. is a rotation matrix constructed from 
the values stored in X, and the operation being performed 
is matrix multiplication. Öxx represents the skew-symmet 
ric matrix for Öx, 

0 - V3 V2 (6) 
v X = v3 O - V1, 

-v2 O 

A third example of a non-Euclidean update operation is any 
combination of any number of Euclidean and non-Euclidean 
update operations applied separately to different Sub-vectors 
Within Xie Xue, and ÖX. 

After calculating the new model parameters for the current 
window, the BA module 110 evaluates a cost function that 
measures agreement between the model parameters for the 
current window and the current feature tracks and inertial 
readings. Various different cost functions known in the art 
may be utilized. The main requirement of the cost function is 
that the cost function has a greater value when the model 
parameters are inconsistent with the current feature tracks 
and inertial readings, and a lesser value when model param 
eters are consistent with the current feature tracks and inertial 
readings. For example, in Some implementations, the cost 
function is evaluated as follows. A "predicted 2D location' 
for each image feature is computed by projecting the 3D 
position associated with the image feature into the keyframe 
in which the feature was observed, using the position and 
orientation associated with that keyframe by the current 
model parameters. This prediction is compared to the 
“observed location of the feature as observed by the image 
sensor, and the squared Euclidean distance between the “pre 
dicted” and “observed location is computed, which we will 
henceforth refer to as the error for this image feature. 

Next, an error is computed for each keyframe in the current 
window as follows. Suppose a first keyframe of the current 
window was captured at time T and the next Subsequent 
keyframe in the window was captured at time T+1. The state 
for the device at the time of keyframe T (as contained within 
the current model parameters) and the inertial readings cap 
tured between T and T+1 are used to compute a “predicted 
state for the device at the time of keyframe T+1. The weighted 
squared difference between the predicted state for the device 
at the time of keyframeT+1 and the state for device at the time 
of keyframe T+1 stored within the current model estimate is 
computed, which we will henceforth refer to as the quadratic 
error term for keyframe T. 
The cost associated with the current model estimate then is 

computed as the sum of quadratic errors for all image features 
plus the Sum of quadratic errors for all keyframes. This cost is 
evaluated once for the model parameters X, and once for the 
model parameters X. If the cost associated with the 
model parameters X, is less than the cost associated with the 
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14 
model parameters X, then the new model estimate 
replaces the current model estimate. Otherwise, the new 
model estimate is rejected. 
Many variations of the cost function are possible, including 

but not limited to the following. For example, in some imple 
mentations, a robust cost function may be used in place of the 
sum of squared differences for either or both of the image 
feature errors or keyframe errors. Examples of robust cost 
function are: 

the L1 norm: 

the Huber function: 

f(x)=2blx|-b’ otherwise; 
or the Cauchy function: 

f(x)=b2 log(1+x/b) 
In some implementations, domain-specific knowledge may 
be inserted into the cost function. For instance, in a particular 
application it may be known that the device performing the 
visual-based inertial navigation moves only on a horizontal 
plane, with its altitude remaining fixed, or that changes in the 
velocity of the device are limited by the inertial characteris 
tics of the device itself. Such constraints can be incorporated 
by using cost terms that take on large values for model esti 
mates inconsistent with the domain-specific knowledge and 
Small values for model estimates consistent with the domain 
specific knowledge. 
At this point, the absolute difference between the cost for 

X, and the cost for X is computed, and if this difference 
is less than a threshold Y or the number of repetitions of the 
bundle adjustment process exceeds an upper bound N, 
then the bundleadjustment process is complete, in which case 
the current value for X is output by the BA module 110 
as the final position and orientation estimate and processing 
continues with the sparse structure marginalization described 
below. That is, after applying bundle adjustment to a set of 
feature tracks and inertial readings, the BA module 110 out 
puts the current model parameters, which contain estimates of 
the state of the device 100 at the time of each keyframe within 
the current window and estimates of the 3D location of the 
observed image features. The output of the BA module 110 
also includes values representing confidence (or certainty) in 
the model parameters, in the form of the current information 
matrix H that is associated with the model parameters. Oth 
erwise, if the absolute difference between the cost X, and 
the cost for X is greater than the threshold Y and the 
number of repetitions of the bundle adjustment process is less 
than the upper bound N, then a furtheriteration of bundle 
adjustment is performed and the SWF module 110 resumes 
processing from the beginning of the bundle adjustment pro 
cess, starting with computation of the Jacobian matrices, and 
proceeding as described above. 
Upon completing the bundle adjustment process, the cur 

rent information matrix H is passed to the SSM module 112. 
FIG. 5 is a schematic illustrating an example of an informa 
tion matrix. The information matrix H contains information 
about the model parameters, which is information about the 
state of the device at the time of each keyframe, and informa 
tion about the 3D positions and/or orientation of objects 
proximate to the device. As shown in the example of FIG. 5, 
the information matrix H may be arranged into different 
groupings A, B, C, and D. The grouping A includes values 
corresponding to the device state estimates. The grouping D 
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includes values corresponding to the estimates about the posi 
tion and/or orientation of objects proximate to the device 
(e.g., the 3D feature positions). Groups B and C include 
values that correspond to shared information between the 
device state estimates in A and the feature positions in D. The 
information matrix His symmetric, so the grouping C is the 
matrix transpose of B. 
The SSM module 112 performs the first part of marginal 

izing the information matrix H. FIG. 6 is a flow chart illus 
trating an example process 600 for performing sparse struc 
ture marginalization. First, the SSM module receives (602) 
the information matrix Hand for the current window from the 
BA module 110. Then, the SSM module marginalizes (604) 
the subsets of the information matrix Hassociated with vari 
ables representing position and/or orientation of objects 
proximate to the device i.e., groups B, C, and D from FIG. 5. 
A Summary of information pertaining to the marginalized 
variables is then kept in a new matrix A. As an example, 
marginalizing B, C, and D may be computed using the Schur 
complement, which can be expressed as: 

Here, the SSM module 112 takes advantage of the sparse 
structure of H. In particular, the submatrix A is block tridi 
agonal and D is block diagonal. The SSM module 112 con 
siders only the terms of the Schur complement that are non 
Zero, which significantly decreases computation time. Thus, 
the output of the SSM module 112 from this process is a new 
information matrix A representing the marginal information 
about the device state at the time of each keyframe. The values 
contained in A' are “marginal information values. An 
example of the new matrix A is shown in FIG. 7 and the 
subsets of that matrix are further explained below. The new 
matrix A is then passed (606) to the delayed motion margin 
alization module 114. 

FIG. 8 is a flow chart illustrating an example process 800 
for performing delayed motion marginalization. The DMM 
module 114 receives (802) the new information matrix A 
from the SSM module 112, where the DMM module 114 
performs the second part of the marginalization process, i.e., 
delayed motion marginalization. During the marginalization 
process, the DMM module 114 eliminates the information 
associated with variables representing the device state esti 
mates for all but one keyframe. First, however, the DMM 
module selects (804) a keyframe that is common to the cur 
rent window and new window to be processed by the SWF 
module 108. In order to perform this operation, the DMM 
module 114 needs to know which of the frames in the current 
window will also be present in the next window. For this 
reason, the selection of the commonkeyframe does not occur 
until the next window arrives. Preferably, the earliest frame 
that is present in both windows is selected as the common 
keyframe. However, other frames that are present in both 
windows may also be selected as the common keyframe. In 
Some implementation more than one commonkeyframe may 
be selected and more than one keyframe will be used to 
transfer information between the windows. 
As an example, assume the current window is W. and the 

next window to arrive is W. Once the information from W. 
(i.e., feature tracks and inertial state information) arrives at 
the SWF module 108, the DMM module 114 associates 
frames in W with frames in W using a list of frame identi 
fiers (e.g., integers). Let the earliest frame that is present in 
both W and W be designated with the frame identifier F0. In 
particular, Suppose that W contains frames (3,4,5,6,7) and 
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W contains frames (5,6,7,8,9). In this case F0=frame 5 
because frame 5 is the earliest frame that is present in both 
windows. 
Once the commonkeyframe is selected, the DMM module 

114 marginalizes (806) the subset of the information matrix 
A' associated with the variables representing the state of the 
device, except for the subset of A' associated with the vari 
ables that are representing the state of the device at the 
selected common keyframe. FIG. 7 is an example drawing 
illustrating the arrangement of the matrix A. As depicted in 
the figure, the matrix A includes the marginal information 
values associated with variables representing the device State 
at the time of each keyframe as well as shared information 
terms between variables representing the device state at the 
times of each pair of keyframes. The matrix A" may be sub 
divided into four sub-matrices: a block K corresponding to 
the rows and columns associated with the selected frame FO 
that is common to both W and W., blocks G, G, G, G, 
which contains information about frames that do not include 
the selected frame as well as shared information terms 
between them; and blocks F, F, E, E, that contain shared 
information terms between the selected frame F0 and frames 
other than the selected frame F0. 
The goal of the delayed motion marginalization is to mar 

ginalize blocks F. F. E. E. and G. G. G. G. and 
Summarize this information in a new matrix with size equal to 
that of K. The new matrix K' may be determined by comput 
ing the Schur complement, and can be expressed as: 

K = K - EGF (8) 
wherein: 

C. (9) G = 
G21 G22 

(10) 
F = 

F. 

E = E. E. (11) 

The DMM module 114 then scales K" by dividing the 
values in K" by a constant (808) in order to maintain consis 
tency and avoid cases of overconfidence. For example, in 
Some implementations, the constant is equal to the window 
size (e.g., the number of measurements in the window or the 
period of time with which the window is associated). The 
values within K" are referred to as the common frame mar 
ginal information values. The resulting matrix K' may also be 
referred to as H. H. then is used as the prior informa 
tion matrix by the BA module 110 for the next window. Thus, 
the information matrix generated by the SWF module 108 
during the bundle adjustment process, the sparse structure 
marginalization process, and the delayed motion marginal 
ization process, is now used as input to the filter in its next 
iteration as a prior information matrix and thereby facilitates 
a transfer of information between the iterations of the filter 
and between the windows. The filter now also contains an 
updated estimate for the state of the device that can be output 
to or obtained by post-processing module 116. 

In some implementations, the delayed motion marginaliza 
tion of the revised matrix A" may be alternatively performed 
as follows: first, the DMM module 114 obtains the matrix 
inverse of A', which can be expressed as: 

X=4 (12) 
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Next, the matrix X is divided into the sub-blocks as shown in 
FIG. 7, the sub-block K is extracted, and the matrix K' is 
computed according to 

K=K-1 (13) 

The matrix K' is then processed as described above, including 
division by a constant in order to maintain consistency of the 
SWF. 
The matrix K' is of substantially smaller dimensions than 

the original information matrix H. As an example, if the 
information matrix H initially has a size of 1000x1000, then 
performing the sparse structure marginalization using the 
SSM module 112 may reduce the matrix to a size of 150x150. 
After applying delayed motion marginalization, the matrix 
can be further reduced to a size of 15x15. 
Applications 
The sliding window inverse filter (SWF) module described 

herein (e.g., SWF module 108) may be used as part of various 
visual-based inertial navigation applications. For example, in 
some implementations, the SWF module is incorporated into 
a mobile electronic computing device having a visual display. 
The position and orientation estimates determined by the 
SWF module can be output to the display as points on a map 
(e.g., before or after post-processing) to provide a user of the 
electronic computing device visual information about the 
device's current and past positions. In some cases, the SWF 
module is configured to be a part of the electronic computing 
device that is being moved. In other implementations, the 
SWF module is separate from the electronic computing 
device, e.g., the SWF module may be operating on a server, 
whereas the IMU and image sensor are in the electronic 
computing device. The feature tracks and inertial data from 
the electronic computing device may then be transmitted to 
the SWF module on the server, where the SWF module then 
calculates the position and orientation estimates. The server 
may be an internet server that updates to a website the posi 
tion and orientation information of the electronic computing 
device in real-time. This information can also be used com 
bined with additional information such as depth information 
of the environment being imaged and produce a 3D map of the 
places being traversed. 

In some implementations, the position and orientation esti 
mates can be used to track objects that have at one point been 
imaged by the image sensor. For example, the pre-processing 
module 106 may identify one or more objects (e.g., keys, 
wallet, etc.) within an image captured by the image sensor and 
then use the position and orientation data from the SWF 
module to maintain the last known position of the object when 
the object is no longer in the field of view of the image sensor. 
Should the user forget where the object was or how to return 
to the location where the object was identified, an electronic 
computing device may output (e.g., to a display) the last 
known position of the object and/or a path the user can follow 
to return to the object. 

In some implementations, the interior/exterior of a build 
ing (e.g., a warehouse, shopping mall or residential home) is 
traversed using an electronic computing device having a 
visual-based inertial navigation system according to the 
present disclosure to record a map of the building. The elec 
tronic computing device may store the position and orienta 
tion information provided by the SWF module, while also 
collecting additional information from sources Such as, for 
example, WiFi signals, BlueTooth signals, signals generated 
by beacons, Near Field Communications (NFC), among oth 
ers. The accurate location and orientation of the electronic 
computing device may then be used to create a map of the 
signals in the different locations within the structure. 
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In some implementations, an area (e.g., a house, backyard, 

building interior) may be traversed using an electronic com 
puting device having the visual-based inertial navigation sys 
tem according to the present disclosure to create a three 
dimensional (3D) map of the area without requiring 
additional sensors beyond the image sensor and inertial mea 
surement unit of the device itself. This is because the infor 
mation generated by the SWF module may include 3D infor 
mation about the device and the device's external 
environment. In some cases, the accuracy of the 3D mapping 
produced using the visual-based inertial navigation system 
may be improved using information coming from additional 
sensors incorporated into the electronic computing device, 
Such as depth sensors. 

In some implementations, the SWF module can be used to 
direct a user toward an object. FIG. 10 is an example of a 
display output by an electronic computing device showing an 
image of an area of a store, in which a graphical arrow 1010 
is overlaid on the photo and points to the position of an item 
in the store. The visual-based inertial navigation system as 
disclosed herein can be used to calculate the position and 
orientation of the electronic computing device relative to the 
item, so that the arrow is always pointing in a direction to the 
item in the location of the item, where the location of the item 
is known in advance and the location and orientation of the 
device is calculated with the SWF module. The arrow guides 
the user to the item that needs to be picked up. 

In some implementations, the SWF module provides accu 
rate position and orientation of an electronic computing 
device to allow a user to track their movement. FIG. 11 is an 
example of an image output by a display of an electronic 
computing device that includes a visual-based inertial navi 
gation system, in which a virtual path 1110 is overlaid on the 
image. The virtual path is calculated by the visual-based 
inertial navigation system as a guide for the user to follow 
while holding, carrying or wearing the electronic computing 
device. 
Hardware and Software 

FIG. 9 shows an example of an electronic computing 
device 550, which may be used with the techniques described 
here. For example, referring to FIG. 2, the mobile electronic 
computing device 100 could be an example of the device 550. 
Electronic computing device 550 is intended to represent 
various forms of electronic computing devices, such as per 
Sonal digital assistants, cellular telephones, Smartphones, 
Smart glasses, and other similar computing devices. The com 
ponents shown here, their connections and relationships, and 
their functions, are meant to be examples only, and are not 
meant to limit implementations of the techniques described 
and/or claimed in this document. 

Electronic computing device 550 includes a processor 552, 
memory 564, an input/output device such as a display 554, a 
communication interface 566, and a transceiver 568, among 
other components. The device 550 may also be provided with 
a storage device, such as a microdrive or other device, to 
provide additional storage. Each of the components 550,552, 
564, 554, 566, and 568, are interconnected using various 
buses, and several of the components may be mounted on a 
common motherboard or in other manners as appropriate. 
The processor 552 can execute instructions within the com 

puting device 550, including instructions stored in the 
memory 564. The processor may be implemented as a chipset 
of chips that include separate and multiple analog and digital 
processors. The processor may provide, for example, for 
coordination of the other components of the device 550, such 
as control of user interfaces, applications run by device 550, 
and wireless communication by device 550. 
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Processor 552 may communicate with a user through con 
trol interface 558 and display interface 556 coupled to a 
display 554. The display 554 may be, for example, a TFT 
LCD (Thin-Film-Transistor Liquid Crystal Display) or an 
OLED (Organic Light Emitting Diode) display, or other 
appropriate display technology. The display interface 556 
may comprise appropriate circuitry for driving the display 
554 to present graphical and other information to a user. The 
control interface 558 may receive commands from a user and 
convert them for submission to the processor 552. In addition, 
an external interface 562 may be provided in communication 
with processor 552, so as to enable near-area communication 
of device 550 with other devices. External interface 562 may 
provide, for example, for wired communication in some 
implementations, or for wireless communication in other 
implementations, and multiple interfaces may also be used. 
The memory 564 stores information within the computing 

device 550. The memory 564 can be implemented as one or 
more of a computer-readable medium or media, a volatile 
memory unit or units, or a non-volatile memory unit or units. 
Expansion memory 574 may also be provided and connected 
to device 550 through expansion interface 572, which may 
include, for example, a SIMM (Single In Line Memory Mod 
ule) card interface. Such expansion memory 574 may provide 
extra storage space for device 550, or may also store applica 
tions or other information for device 550. Specifically, expan 
sion memory 574 may include instructions to carry out or 
Supplement the processes described above, and may include 
secure information also. Thus, for example, expansion 
memory 574 may be provide as a security module for device 
550, and may be programmed with instructions that permit 
secure use of device 550. 
The memory may include, for example, flash memory and/ 

or NVRAM memory, as discussed below. In one implemen 
tation, a computer program product is tangibly embodied in 
an information carrier. The computer program product con 
tains instructions that, when executed, perform one or more 
methods, such as those described above. The information 
carrier is a computer- or machine-readable medium, Such as 
the memory 564, expansion memory 574, or memory on 
processor 552 

Device 550 may communicate wirelessly through commu 
nication interface 566, which may include digital signal pro 
cessing circuitry where necessary. Communication interface 
566 may provide for communications under various modes or 
protocols, such as GSM voice calls, SMS, EMS, or MMS 
messaging, CDMA, TDMA, PDC, WCDMA, CDMA2000, 
or GPRS, among others. Such communication may occur, for 
example, through radio-frequency transceiver 568. In addi 
tion, short-range communication may occur, Such as using a 
Bluetooth, WiFi, or other such transceiver (not shown). In 
addition, GPS (Global Positioning System) receiver module 
570 may provide additional navigation- and location-related 
wireless data to device 550, which may be used as appropriate 
by applications running on device 550. 

Device 550 may also communicate audibly using audio 
codec 560, which may receive spoken information from a 
user and convert it to usable digital information. Audio codec 
560 may likewise generate audible sound for a user, such as 
through a speaker, e.g., in a handset of device 550. Such sound 
may include Sound from Voice telephone calls, may include 
recorded sound (e.g., voice messages, music files, and so 
forth) and may also include Sound generated by applications 
operating on device 550. 
The computing device 550 may be implemented in mul 

tiple different forms, as shown in the figure. For example, it 
may be implemented as a cellular telephone 580. It may also 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
be implemented as part of a Smartphone 582, personal digital 
assistant, tablet computer, Smart glasses, Smart watch, or 
other similar mobile device. 

Various implementations of the systems and techniques 
described here can be realized in digital electronic circuitry, 
integrated circuitry, specially designed ASICs (application 
specific integrated circuits), computer hardware, firmware, 
software, and/or combinations thereof. These various imple 
mentations can include implementation in one or more com 
puter programs that are executable and/or interpretable on a 
programmable system including at least one programmable 
processor, which may be special or general purpose, coupled 
to receive data and instructions from, and to transmit data and 
instructions to, a storage system, at least one input device, and 
at least one output device. 

These computer programs (also known as programs, soft 
ware, Software applications or code) include machine instruc 
tions for a programmable processor, and can be implemented 
in a high-level procedural and/or object-oriented program 
ming language, and/or in assembly/machine language. As 
used herein, the terms “machine-readable medium’ “com 
puter-readable medium” refers to any computer program 
product, apparatus and/or device (e.g., magnetic discs, optical 
disks, memory, Programmable Logic Devices (PLDs)) used 
to provide machine instructions and/or data to a program 
mable processor, including a machine-readable medium that 
receives machine instructions. 
To provide for interaction with a user, the systems and 

techniques described here can be implemented on a device 
having a display (e.g., liquid crystal display monitor) for 
displaying information to the user. The display may also be 
used for receiving information from the user (e.g., a touch 
screen). The device may have other input devices Such as a 
keyboard and/or pointing device (e.g., a mouse or a trackball) 
by which the user can provide input to the computer. Other 
kinds of devices can be used to provide for interaction with a 
user as well. For example, feedback provided to the user can 
be any form of sensory feedback (e.g., visual feedback, audi 
tory feedback, or tactile feedback). Input from the user can be 
received in any form, including acoustic, speech, or tactile 
input. 

Multiple implementations have been described. Neverthe 
less, it will be understood that various modifications may be 
made without departing from the spirit and scope of the 
invention. Other implementations are within the scope of the 
following claims. 

What is claimed is: 
1. An electronic computing system for performing naviga 

tion, the electronic computing system comprising an elec 
tronic processor and memory operable to implement a slid 
ing-window inverse filter module, wherein the sliding 
window inverse filter module is configured to: 

receive sensor measurements from a pre-processing mod 
ule, wherein the sensor measurements comprise image 
data and inertial data for a device; 

transfer information, derived from the sensor measure 
ments, from a first set of variables associated with a first 
window of time to a second set of variables associated 
with a second window of time, wherein the first and 
second windows consecutively overlap in time; and 

output, to a post-processing module, a state of the device 
based on the transferred information, 

wherein each window in the pair is associated with a cor 
responding first information matrix, and each first infor 
mation matrix is for a plurality of first variables repre 
senting a position and/or orientation of at least one 
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object proximate to the device and a plurality of second 
variables representing a state of the device at two or 
more points in time, and 

wherein transferring the information comprises: 
marginalizing at least a Subset of the first variables associ 

ated with the first information matrix of the first window 
to obtain a second information matrix, which still main 
tains the association with the plurality of second vari 
ables; 

marginalizing a Subset of the second variables associated 
with the second information matrix to obtain a third 
information matrix; and 

scaling the third information matrix to obtain a fourth 
information matrix, 

wherein the fourth information matrix is a summarized 
representation of the information about the state of the 
device and of the position and/or orientation of the 
objects proximate to the device at points in time when 
the first window and the second window in the pair 
overlap. 

2. The electronic computing system of claim 1, further 
comprising: 

the pre-processing module; 
an image detection unit coupled to the pre-processing mod 

ule, wherein the pre-processing module is configured to 
receive a plurality of images captured by the image 
detection unit and derive the image data from the plu 
rality of images; and 

a motion sensing unit coupled to the pre-processing mod 
ule, wherein the pre-processing module is configured to 
receive the inertial data from the motion sensing unit. 

3. The electronic computing system of claim 1, wherein a 
subset of the first set of variables associated with the first 
window overlaps in time with a subset of the second set of 
variables associated with the second window. 

4. The electronic computing system of claim3, wherein the 
overlap between the first set of variables and the second set of 
variables is at the earliest time that is present in both the first 
and second windows. 

5. The electronic computing system of claim 1, wherein, 
for each window, the plurality of first variables represents 3D 
positions and/or orientations of image features across a plu 
rality of images, and 

wherein, for each window, the plurality of second variables 
comprises linear acceleration data and angular Velocity 
data. 

6. The electronic computing system of claim 5, wherein the 
state of the device further comprises biases for the motion 
sensing unit. 

7. The electronic computing system of claim 1, wherein the 
first information matrix associated with each window com 
prises: 

first information about at least one variable representing an 
estimate for a position or orientation of an object proxi 
mate to the device; and 

second information about at least one variable representing 
an estimate of the state of the device; and 

shared information between the first information and the 
second information. 

8. The electronic computing system of claim 7, wherein the 
shared information represents shared confidence between the 
estimates of a position or orientation of an object proximate to 
the device and the estimate of the state of the device. 
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9. The electronic computing system of claim 7. 
wherein marginalizing at least the Subset of the first vari 

ables associated with the first information matrix of the 
first window comprises marginalizing the shared infor 
mation, and 

wherein scaling the third information matrix comprises 
dividing or multiplying the third information matrix by a 
COnStant. 

10. The electronic computing system of claim 9, wherein 
the constant is equal to a size of the first window. 

11. A computer-implemented method comprising: 
receiving sensor measurements from a pre-processing 

module, wherein the sensor measurements comprise 
image data and inertial data for a device; 

transferring, using a processor, information derived from 
the sensor measurements, from a first set of variables 
associated with a first window of time to a second set of 
variables associated with a second window of time, 
wherein the first and second windows consecutively 
overlap in time; and 

outputting, to a post-processing module, a state of the 
device based on the transferred information, 

wherein each window in the pair is associated with a cor 
responding first information matrix, and each first infor 
mation matrix is for a plurality of first variables repre 
senting a position and/or orientation of at least one 
object proximate to the device and a plurality of second 
variables representing a state of the device at two or 
more points in time, and 

wherein transferring the information comprises: 
marginalizing at least a Subset of the first variables associ 

ated with the first information matrix of the first window 
to obtain a second information matrix, which still main 
tains the association with the plurality of second vari 
ables; 

marginalizing a Subset of the second variables associated 
with the second information matrix to obtain a third 
information matrix; and 

scaling the third information matrix to obtain a fourth 
information matrix, 

wherein the fourth information matrix is a summarized 
representation of the information in the state of the 
device and of the position and/or orientation of the 
objects proximate to the device at points in time when 
the first window and the second window in the pair 
overlap. 

12. The computer-implemented method of claim 11, 
wherein a subset of the first set of variables associated with 
the first window overlaps in time with a subset of the second 
set of variables associated with the second window. 

13. The computer-implemented method of claim 12, 
wherein the overlap between the first set of variables and the 
second set of variables is at the earliest time that is present in 
both the first and second windows. 

14. The computer-implemented method of claim 11, 
wherein, for each window, the plurality of first variables 
represents 3D positions and/or orientations of image features 
across a plurality of images, and 

wherein, for each window, the plurality of second variables 
comprises linear acceleration data and angular Velocity 
data. 

15. The computer-implemented method of claim 14, 
wherein the state of the device further comprises biases for 
the motion sensing unit. 

16. The computer-implemented method of claim 11, 
wherein the first information matrix associated with each 
window comprises: 
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first information about at least one variable representing an 
estimate for a position or orientation of an object proxi 
mate to the device; and 

Second information about at least one variable representing 
an estimate of the state of the device; and 

shared information between the first information and the 
second information. 

17. The computer-implemented method of claim 16, 
wherein the shared information represents shared confidence 
between the estimates of a position or orientation of an object 
proximate to the device and the estimate of the state of the 
device. 

18. The computer-implemented method of claim 16, 
wherein marginalizing at least the subset of the first vari 

ables associated with the first information matrix of the 
first window comprises marginalizing the shared infor 
mation, and 

wherein scaling the third information matrix comprises 
dividing or multiplying the third information matrix by a 
COnStant. 

19. The computer-implemented method of claim 18, 
wherein the constant is equal to a size of the first window. 

20. A non-transitory computer storage medium encoded 
with computer program instructions that when executed by 
one or more electronic computing devices cause the one or 
more electronic computing devices to perform operations 
comprising: 

receiving sensor measurements from a pre-processing 
module, wherein the sensor measurements comprise 
image data and inertial data for a device; 

transferring, using a processor, information derived from 
the sensor measurements, from a first set of variables 
associated with a first window of time to a second set of 
variables associated with a second window of time, 
wherein the first and second windows consecutively 
overlap in time; and 

outputting, to a post-processing module, a state of the 
device based on the transferred information, 

wherein each window in the pair is associated with a cor 
responding first information matrix, and each first infor 
mation matrix is for a plurality of first variables repre 
senting a position and/or orientation of at least one 
object proximate to the device and a plurality of second 
variables representing a state of the device at two or 
more points in time, and 

wherein transferring the information comprises: 
marginalizing at least a subset of the first variables associ 

ated with the first information matrix of the first window 
to obtain a second information matrix, which still main 
tains the association with the plurality of second vari 
ables: 
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marginalizing a subset of the second variables associated 

with the second information matrix to obtain a third 
information matrix; and 

Scaling the third information matrix to obtain a fourth 
information matrix, 

wherein the fourth information matrix is a summarized 
representation of the information about the state of the 
device and of the position and/or orientation of the 
objects proximate to the device at points in time when 
the first window and the second window in the pair 
overlap. 

21. The medium of claim 20, wherein a subset of the first 
set of variables associated with the first window overlaps in 
time with a subset of the second set of variables associated 
with the second window. 

22. The medium of claim 21, wherein the overlap between 
the first set of variables and the second set of variables is at the 
earliest time that is present in both the first and second win 
dows. 

23. The medium of claim 20, wherein, for each window, the 
plurality of first variables represents 3D positions and/or ori 
entations of image features across a plurality of images, and 

wherein, for each window, the plurality of second variables 
comprises linear acceleration data and angular velocity 
data. 

24. The medium of claim 23, wherein the state of the device 
further comprises biases for the motion sensing unit. 

25. The medium of claim 20, wherein the first information 
matrix associated with each window comprises: 

first information about at least one variable representing an 
estimate for a position or orientation of an object proxi 
mate to the device; and 

second information about at least one variable representing 
an estimate of the state of the device; and 

shared information between the first information and the 
second information. 

26. The medium of claim 25, wherein the shared informa 
tion represents shared confidence between the estimates of a 
position or orientation of an object proximate to the device 
and the estimate of the state of the device. 

27. The medium of claim 25, wherein marginalizing at 
least the subset of the first variables associated with the first 
information matrix of the first window comprises marginal 
izing the shared information, and 

wherein scaling the third information matrix comprises 
dividing or multiplying the third information matrix by a 
constant. 

28. The medium of claim 27, wherein the constant is equal 
to a size of the first window. 


